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Active Contours Based Segmentation and Lesion
Periphery Analysis For Characterization of Skin

Lesions in Dermoscopy Images
Farhan Riaz, Sidra Naeem, Raheel Nawaz and Miguel Coimbra

Abstract—This paper proposes a computer assisted diagnostic
(CAD) system for the detection of melanoma in dermoscopy im-
ages. Clinical findings have concluded that in case of melanoma,
the lesion borders exhibit differential structures such as pigment
networks and streaks as opposed to normal skin spots, which
have smoother borders. We aim to validate these findings by
performing segmentation of the skin lesions followed by an
extraction of the peripheral region of the lesion that is subjected
to feature extraction and classification for detecting melanoma.
For segmentation, we propose a novel active contours based
method that takes an initial lesion contour followed by the usage
of Kullback-Leibler divergence between the lesion and skin to
fit a curve to the lesion boundaries. After segmentation of the
lesion, its periphery is extracted to detect melanoma using image
features that are based on local binary patterns. For validation
of our algorithms, we have used the publicly available PH2 and
ISIC dermoscopy datasets. An extensive experimental analysis
reveals two important findings: 1. The proposed segmentation
method mimics the ground truth data, and 2. The most significant
melanoma characteristics in the lesion actually lie on the lesion
periphery.

Index Terms—Image Segmentation, Active Contours, Local
Binary Patterns, Classification, Dermoscopy.

I. INTRODUCTION

MELANOMA is the most deadly form of skin cancer
that comprises about 4.5% of all cancers that affect

humans [1]. The incidence of melanoma results in a survival
rate of only about 15% in the first five years [2]. Given that
the incidence rate of melanoma has been increasing over the
past three decades [3] and its moratlity rate is very high if not
diagnosed at an early stage, early detection of melanoma is
of significant importance. Assisted diagnostic tools can help
significantly in early detection of cancer and thus, an effective
recovery of the patients. Dermoscopy is a non-invasive tech-
nique that is used for the detection of melanoma. It involves
visual inspection of the pigmented skin lesion by placing gel
on the affected skin, followed by its observation with the help
of a magnification instrument called a dermoscope that has
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the ability to amplify a skin image by upto 100 times. The
dermoscope allows a detailed inspection of the subsurface
structures of the skin followed by the application of diagnostic
methods for a clinical assessment of the lesion.

There are four main diagnostic methods to detect melanoma:
the ABCD rule, pattern analysis, Menzie’s method and the
seven-point check list. These methods have been validated at
the 2000 Consensus Net Meeting on Dermoscopy (CNMD) [4]
by experts from across the world and are widely used by
the physicians for diagnostic purposes. All these methods are
based on the visual characteristics of the skin lesions. It has
been validated that dermoscopy can increase the sensitivity of
melanoma detection by about 10%-27% [5]. Researchers have
found that dermoscopy increases diagnostic performance only
if formal training has been received by dermatologists [5]. If
the dermatologist is not adequately trained, there is an inverse
relation between the use of dermoscopy and its diagnostic
effectiveness towards early detection of melanoma [6]. Fur-
thermore, the human analysis is subjective since it depends on
human vision and clinical experience [7] making the diagnosis
of melanoma difficult to reproduce. This has led to the
emergence of CAD systems that can facilitate in diagnosing
melanomas by handling all these issues and providing a second
opinion which can be potentially very useful for its early
detection.

Rest of the paper is organized as follows: We discuss the
related work and highlight our contributions in Section II,
followed by discussion of the proposed segmentation method
in Section III. Later, we discuss feature extraction and classi-
fication methodology in Section IV, perform our experiments
with a visual analysis of the segmentation results (Section V)
and conclude the paper (Section VI).

II. BACKGROUND

A melanocytic lesion can be identified by its general der-
moscopic pattern that can be referred to as a global pattern,
whereas a more detailed description of the lesion can be
performed by the analysis of its local patterns. The global
features are basically composed of a repetitive arrangement
of micro-texture patterns such as streaks, pigment networks,
blue-white veils, dots and globules [8]. Several visual features
can be used for the detection of melanoma [9], texture being
the most important one. The main objective of this paper is
to classify a dermoscopic lesion as being either normal or
cancerous (melanoma). A pattern recognition (PR) system that
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has the ability to classify the skin lesions is usually composed
of three stages: 1). segmentation, 2). feature extraction, and
3). classification. Given that the main focus of the paper is
on image segmentation followed by a study of the impact of
lesion periphery on diagnostics in dermoscopy, we visit the
relevant literature on segmentation of dermoscopy images and
clinical background on the significance of lesion periphery.

A. Background on dermoscopic image segmentation

Segmentation is a vital step in automated diagnostic systems
for melanoma as it affects all the subsequent stages for the
design of effective CAD systems. It is also a very challenging
problem due to various factors including illumination varia-
tions, irregular structural and color variations, presence of hair
and existence of multiple lesions in a close vicinity. Several
methods have been proposed to tackle this important task. In
the context of dermoscopic image analysis, the segmentation
methods can be mainly categorized as: thresholding, region
based and edge based methods [10]–[12].

Indeed, the simplest skin lesion segmentation is thresh-
olding [13]–[17]. The thresholding techniques work well in
cases where there is a good contrast between the lesion
and the skin, ideally yielding bimodal image histograms.
When the histogram modes corresponding to the skin and
the lesion overlap, segmentation becomes a challenge and
cannot be handled using thresholding. Another category of
algorithms are the region based methods. Some examples of
these methods include multiscale region growing [14] and
region merging [18]. The region based methods have difficul-
ties in effective segmentation when the lesion is textured or
inhomogeneous [19]. This is very common since the periphery
of the lesion contains dermoscopic differential structures that
can result in an oversegmentation of the image (Fig. 1-left).
Sometimes, a soft skin tone change happens as we traverse
from the lesion to the skin leading to imprecise segmentation
(Fig. 1-right).

Fig. 1: A visual illustration of over segmentation of a highly
textured lesion (left) and under segmentation of a lesion

having low contrast from the skin.

Last but not the least, another important class of seg-
mentation methods is the edge based methods. Examples of
such methods include the watersheds [20]–[22], morphological
flooding [12], [23] etc. These methods rely heavily on the
edge features of the images that segregate the object from the
background. In the context of the segmentation of dermoscopy
images, these methods are expected to perform poorly when
the lesion boundaries are not clearly defined and the transition

(a) Hair (b) Illumination

(c) High Texture (d) Pigment Network

Fig. 2: The most typical computer vision challenges in
dermoscopy images.

from the skin to lesion is smooth. Additionally, there is a
significant presence of spurious edges in the images resulting
from artifacts such as hair, specular reflections, uneven illumi-
nation, or even irregularities resulting from the image texture
making segmentation a challenge to handle (Fig. 2).

One class of segmentation methods that has gained signif-
icant importance in the recent past is active contours [24],
[25]. These are model based segmentation methods that are
composed of dynamic fronts which move towards the object
boundaries. As the contours approach object boundaries the
curve evolution stops, a phenomena that is typically imple-
mented by finding an optimal solution to a minimization
problem using the gradient descent algorithm. There can be
various criteria to perform the curve evolution that may be
based on edges appearing in the images [26] or characteristics
of the image regions [27]. These methods can be categorized
as either edge based or region based methods depending upon
the underlying methodology. However it is important to note
that even when an edge based criteria is used, active contours
are performing optimization based on a local optimum in the
region lying around the curve at a particular location. Thus,
the advantages of active contours include their capability to
implicitly represent a moving curve such that the regions and
the bundaries are captured simultaneously; their robustness
against noise that are catered for by the handling of internal
forces during curve evolution; and their capability to integrate
the desired (custom) properties of the regions. Given this, we
have chosen to use active contours to perform the segmentation
of lesions in dermoscopy images [10], [28]–[30].

We combine the strengths of thresholding, region and edge
characteristics in the images for segmenting dermoscopic
lesions using active contours. It is well known that the
active contours are based on the evolution of a curve that
is initially selected for the algorithm and is thus sensitive
to this initialization. The strength of adaptive thresholding is
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utilized in the proposed algorithm by using it to select an initial
contour, followed by an optimization framework. This frame-
work is based on maximizing the Kullback-Leibler divergence
of gray level distribution between the skin and the lesions.
The proposed optimization simplifies to the minimization of
the mean shift vectors for both the lesion and the skin with
assistance from the image edges. The segmentation results are
used to define peripheral regions in the underlying lesions.
An empirical study of the significance of lesion periphery has
been conducted, quantifying its impact on the identification of
melanoma in dermoscopy images.

B. Background on significance of lesion periphery

Clinical findings pertaining to the significance of the pe-
riphery of skin lesion has already been carried out previously.
Riccardo et al. [31] found out that all the dermoscopic benign
lesions shared a common dermoscopic homogeneous pattern
surrounded by peripheral, slightly dotted hyper-pigmentation.
Burroni et al. [32] performed a logistic regression analysis
validated by a study of statistical significance on different pa-
rameters (visual features) affecting the discrimination between
in nevi and melanocytic lesions. They concluded that one of
the factors, which significantly helps in the discrimination
between the said lesions is the presence of pigments clusters at
the lesion periphery. These clusters are available in the form
of black dots and blotches which help in the identification
of melanoma. Henning et al. [33] concluded in their findings
that the hyperpigmentation, streaking, radial streaming etc.
tend to be focal and asymmetric at the periphery of the
melanocytic lesions. These findings are shared by various
clinical researchers, emphasizing on the significance of the
lesion periphery in differentiating between the normal and
benign lesions [32]–[40]. Given this, a quantitative study of the
impact of visual features from lesions periphery in comparison
to the lesion center can be of significant value towards giving a
future direction to the assisted decision systems for diagnostics
of skin lesions.

C. Contributions

A novel energy functional based on the maximization of
distance between the distributions of the object and the back-
ground is proposed. This energy functional is embedded as
an external energy term in the existing distance regularized
level sets evolution (DRLSE) implementation for image seg-
mentation that is composed of the regularization and length
terms. We further simplify the formulation and implement it
using the finite difference scheme. The proposed formulation
is inspired by previous work in [41] where the application was
image registration. We quantitatively validate the significance
of the peripheral region of the skin lesion as opposed to
using the full lesion for characterization purposes. This is
done by performing feature extraction and classification on the
segmented lesion by selecting peripheral regions of different
sizes and performing quantitative validation. The benchmark
for this performance is established by performing classification
on lesion peripheral regions obtained using manual annota-
tions. It is important to note that the main aim of this paper

is on proposing a novel segmentation method followed by
an analysis of the contribution of lesion periphery towards
classification, and not on improving the overall classification
results. Therefore, we use only texture features among all the
features defined in the ABCD rules and did not consider the
other shape and color based features as the relative conclusions
on the lesion periphery analysis will not change.

The overall organization of the paper is as follows: We
propose the novel segmentation method (Section III), followed
by a description on feature extraction (Section IV). We finally
present our experimental results (Section V) and conclude the
paper (Section VI).

III. SEGMENTATION

A. Background

We will now explain our modeling assumptions and no-
tations and define our segmentation problem. Let Ω be the
image domain and I : Ω → R2 be a gray level image.
This domain has two mutually exclusive subdomains, Ω− and
Ω+, indicating the object and background respectively. These
subdomains are segregated by a level set function φ : Ω→ R2

that represents the curve indicating the boundary of the region
of interest in the image. This function, also known as an active
contour is evolved to fit the real boundaries of the objects. The
sequence of level set functions for this evolution process can
be easily constructed using the variational framework. More
specifically, this evolution can be defined using the gradient
flow that minimizes an appropriate cost function. Typically in
variational level sets [42], this cost function is defined as an
energy functional J (φ)

J (φ) = µR(φ) + λL(φ) + αA(φ) (1)

where R(φ) is the regularization term for the level set
function, L(φ) is the length term and A(φ) is the area
term in the level sets framework and µ, λ and α are their
respective weighting factors controlling the curve evolution.
The regularization and length terms are defined as

R(φ) =
1

2

∫
Ω

(∇φ− 1)2dΩ (2)

which ensures that the evolving curve stays a signed dis-
tance function, and

L(φ) =

∫
Ω

δ(φ)|∇φ|dΩ (3)

which represents the contour length which needs to be
minimal to guarantee smooth convergence

∂φ

∂t
= −∂J

∂φ
(4)

Given this, the first variation of J can be written as

∂J
∂φ

= µ(δ(φ)− k) + λk + α
∂A(φ)

∂φ
(5)

where k = ∇. ∇φ|∇φ| is the curvature of the evolving front [27]
and δ is the derivative of the Heaveside function.
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We adapt the regularization (eq. 2) and length (eq. 3) terms
fully from the DRLSE implementation whereas we propose a
novel area term based on the external energy, A(φ) for curve
evolution.

B. Problem Formulation

Let us assume that an image is composed of two mutually
exclusive regions: the object and the background, and these
regions can be represented by their respective distributions.
Given that we can extract some probability distributions that
have the ability to characterize the lesion and the skin dis-
tinctively, a robust criteria for segmentation is to maximize
the distance between the distributions of the object and the
background using a relevant distance measure. In this paper,
we have used the Kullback-Leibler (KL) divergence for this
purpose. This choice is motivated by the fact that the KL-
divergence is a non-negative measure and is zero if the subject
distributions are the same. This behavior of the KL-divergence
is unique given that the other measure such as Bhattacharya
distance is non-zero even if the distributions are equal [43],
[44]. The shortcoming of KL-divergence is that it is not a true
distance measure as it does not satisfy triangle inequality. To
make this measure symmetric, we define A(φ)

A(φ) = D{P (Ω−)||P (Ω+)}+D{P (Ω+)||P (Ω−)} (6)

where D{P (Ω−)||P (Ω+)} is the Kullback-Leibler (KL)
distance between the probability density estimate of the
object P (Ω−) (lesion) and the background P (Ω+) and
D{P (Ω+)||P (Ω−)} is similarly defined. It can be noticed
that the usage of these two KL divergence terms makes A(φ)
symmetric. The KL divergence between two distributions is
defined as follows:

DΩ− = D{P (Ω−)||P (Ω+)} =

∫
Ω

P (Ω−) log
P (Ω−)

P (Ω+)
dΩ

(7)

In order to obtain a good segmentation result, the distance
between the lesion and the skin should be maximized. Conse-
quently, the area term for an optimal φ can be written as:

A(φ∗) = arg maxφA(φ) (8)

where φ∗ is the optimal φ that maximizes A(φ). This
maximization can be conveniently converted to the following
minimization problem:

A(φ∗) = arg minφ−A(φ) (9)
= arg minφ{−DΩ− −DΩ+}

Rather than solving the problem posed in equation 9 directly
(which is usually impossible), the search for a φ that proves
to be a minimizer for J is done using the “gradient descent”
strategy. Assuming that A is sufficiently regular, its first
variation at φ ∈ F in the direction ∇φ ∈ F is defined as

δA(φ) = lim
ε→0

A(φ+ ε∇φ)− φ
ε

=
dA(φ+ ε∇φ)

dε

∣∣∣∣
ε=0

(10)

If a minimizer φ∗ of A exists, then δA(φ∗,∇φ) = 0 must
hold for every∇φ ∈ F known as the Euler-Lagrange equation,
where ∇φ =

[
∂φ/∂x ∂φ/∂y

]
indicates the direction of

curve evolution. Assuming that F is a linear subspace of a
Hilbert subspace H , with a scalar product 〈., .〉H , we define
the gradient ∇A by requiring

δA = 〈∇A,∇φ〉H (11)

where ∇A can be calculated using the gradient of equa-
tion 9,

∇A(φ) = −∇DΩ− −∇DΩ+ (12)

Equation 12 forms the basis of the optimization problem
posed in this paper. It is the external energy term in the
objective function and is obtained from the image data.

C. Proposed Optimization
Let us consider equation 7

D∗Ω− = −DΩ− = −
∫

Ω

Pφ(Ω−) log
Pφ(Ω−)

Pφ(Ω+)
dΩ

=

∫
Ω

Pφ(Ω−) log
Pφ(Ω+)

Pφ(Ω−)
dΩ (13)

An explicit computation of the first variation of D∗Ω− yields
(see the Appendix):

δD∗Ω− = −
∫

Ω−
δP (Ω−) logP (Ω−)dΩ− (14)

where δP (Ω−) is the partial derivative of P (Ω−). It is well
known that the kernel density estimation can be used for the
calculation of P (Ω−) as follows

P (Ω−) =
1

|Ω−|

∫
Ω−

G(I(x)− i)dx

where |Ω−| indicates the area of the inner region of the
evolving level sets curve and G(i) is the normalized Gaussian
kernel, the first variation of the density estimate can be
calculated as follows [41]

δP (Ω−) =
1

|Ω−|

∫
Ω−

∂G(I(x)− i)∇I.∇φdx. (15)

Substituting equation 15 into equation 14, we obtain

δD∗Ω− =
−1

|Ω−|

∫
Ω−

∫
Ω−

logP (Ω−)∂G(I − i)∇I.∇φdxdΩ−.

A convolution with respect to i appears in this expression.
It commutes with the derivative operator giving us

δD∗Ω− =
−1

|Ω−|

∫
Ω−

(∂ logP (Ω−) ? G)∇I.∇φdx. (16)
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Let us now define

L =
1

|Ω−|
G ? ∂ logP (Ω−) =

1

|Ω−|
G ?

∂Pφ(Ω−)

Pφ(Ω−)
(17)

Substituting equation 17 in equation 16, we obtain

δD∗Ω− = −
∫

Ω−
L∇I.∇φdx. (18)

By identifying this expression as a scalar product in L2 by
similarity with equation 11 we define ∇D∗Ω− as follows

δD∗Ω− = 〈∇D∗Ω− ,∇φ〉2. (19)

Comparing equation 19 and 18, we can deduce that

∇D∗Ω− = −L∇I. (20)

Making substitutions from equations 17 and 18 into equa-
tion 20 we obtain,

∇D∗Ω− =
−1

|Ω−|

(
G ?

∂Pφ(Ω−)

Pφ(Ω−)

)
︸ ︷︷ ︸

=0 at steady state

∇I (21)

where m(Ω−) = ∂Pφ(Ω−)/Pφ(Ω−) forms the basis of
optimization for this term. The term ∇D∗Ω− tries to move the
intensity of Ω− closer to its local maximum (lesion). A similar
term for ∇D∗Ω+ can be written as:

∇D∗Ω+ =
−1

|Ω+|

(
G ?

∂Pφ(Ω+)

Pφ(Ω+)

)
︸ ︷︷ ︸

=0 at steady state

∇I (22)

where m(Ω+) = ∂Pφ(Ω+)/Pφ(Ω+) is the basis of opti-
mization for this term and to tries to move the intensity of Ω+

closer to its local maximum (background). The optimization
problem posed in equation 12 can be solved by minimizing

∇A = −G ? {m(Ω+) +m(Ω−)} (23)

The complete optimization problem after incorporating the
regularization and length terms can be written as:

∇J = µ(δ(φ)− k) + λk + αG ? {m(Ω+) +m(Ω−)} (24)

D. Implementation

In our specific scenario, we are performing the segmentation
of dermoscopy images. We are using the distribution of min-
imum of three channels in RGB (minRGB) of the lesion and
skin for the purpose of segmentation, due to its effectiveness
in dermoscopy [45]. An initial curve is selected using adaptive
thresholding [10]. For the implementation of regularization
and length terms, we are employing Li’s [42] implementation.
The area term is composed of two important variables, m(Ω+)
and m(Ω−) which indicate the modes of a mean shift process,
that iteratively converge to their respective local maxima at the
end of the iterative process [41]. There are four parameters in
the proposed model i.e., λ, µ, α and ∇t (time step). The model

is adapted from DRLSE which is not sensitive to the choice
of these parameters [42]. However, these parameters are fixed
as λ = 5.0, µ = 0.04, α = 1.0 and ∇t = 5.0. The curve
evolution process in the proposed model will attain a steady
state when the mean shift of the density estimate is at a steady
state for both the lesion and the background.

IV. FEATURE EXTRACTION

After segmentation of the images, we extract the peripheral
region of the lesion followed by feature extraction using local
binary patterns.

A. Periphery Extraction

Clinical findings have concluded that the visual character-
istics of the lesion that conform to the presence or absence of
melanoma in dermoscopy images lie on the periphery region of
the lesion. These regions are populated with two pronounced
dermoscopic structures in case of melanoma: pigment net-
works and streaks. A pigment network is considered as one
of the key dermoscopic structures that appears due to the
existence of melanin in deep layers of the skin. Therefore, the
pigment network is considered as a hallmark of melanocytic
lesion. This structure has a very specific shape that visually
appears as a grid of thin dark lines appearning on a lighter
background forming a pattern called reticular, resembling a
honey comb. The pigment network is more pronounced at
the periphery of lesions and usually ends abruptly at the end
of the lesion. The streaks are also important visual features
in dermoscopy images that can considered interchangeably
with with radial streaming or pseudopods because of the same
histopathological correlation [46]. Radial streaming is a linear
extension of pigment at the periphery of a lesion as radially
arranged linear structures in the lesion growth direction, and
pseudopods represent finger-like projections of dark pigment
(brown to black) at the periphery of the lesion [46].

Fig. 3: Texture in the periphery and center of the skin lesion.

Given that the periphery of the lesion in dermoscopy
images exhibits significant information regarding the clinical
diagnostics of the skin, we are curious if the texture features
obtained only from the image regions in the lesion periphery
are more discriminant than the more conventional full region
descriptors.
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B. Texture features

As discussed in Section IV, dermoscopy allows the iden-
tification of dozens of morphological features such as pig-
ment networks, dots/globules, streaks, blotches etc. All these
features are basically differential structures which are strong
indicators of melanoma [12]. Any computer vision algorithm
that has to be used for assisted diagnostic support for der-
moscopy images should have the ability to quantify these
differential structures. Local binary patterns (LBP) is a texture
feature extraction methodology that can extract local image
characteristics such as blobs, spots, corners and edges based
on a very local analysis of the images. Given this, our natural
choice for feature extraction from dermoscopy images is LBP.

1) Local Binary Patterns (LBP): The LBP is a gray
scale invariant operator that was proposed initially by
Ojala et al. [47]. The method is based on generating a binary
pattern at a pixel by calculating the difference of the center
pixel from its neighbors followed by binarizing the differences
and concatenating the results in a clockwise way to form a
decimal number representing the underlying pattern at a pixel.

LBPP,R =

P−1∑
p=0

s(gp − gc)2p, s(x) =

{
1 x ≤ 0
0 x > 0

(25)

where gc and gp denote the gray level values of the central
pixel and its neighbor respectively, and p is the index of the
neighbor. P is the number of the neighbors in a circular set
surrounding a pixel at a radius of R from gc. Suppose that
the coordinate gc is (0, 0), the coordinate of each neighboring
pixel gp is determined according to its index p and parameter
(P,R) as (R cos(2πp/P ), R sin(2πp/P )). The gray values of
the neighbors that are not located at the image grids can be
estimated by an interpolation operator. Uniformity of an LBP
can be quantified as

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)|
(26)

which corresponds to the number of spatial transitions
(bitwise 0/1 changes) in a pattern. An LBP with a uniformity
measure of at most 2 is taken as a uniform LBP. The
motivation for using uniform LBPs is their ability to detect
the important intrinsic characteristics of textures like spots,
line edges, edges and corners (Fig. 4).

2) Joint histogram of multiresolution LBP and contrast:
Although traditional LBPs capture the texture patterns very
efficiently, the description of texture content can be enhanced
if the strength of LBPs is also taken into account. This is
mainly because the perception of visual textures is mainly
created by the variations of contrast in the images and in
our specific scenario, the pigment networks and streaks in
the images present a stronger contrast. Therefore, we use
aim to perform feature extraction from the images using a
joint histogram of uniform LBPs and local contrast, where the
contrast is calculated as

Fig. 4: Examples of different microstructures which are
detected using LBP. The pixel in gray color indicates the

center pixel gc, the white pixels indicate the neighbors which
are greater than gc whereas the black pixels indicate the

neighbors which are less than gc (adapted from [48]).

C(gc) =

P−1∑
i=0

|gp − gc| (27)

We calculate LBPs (by selecting the values
(P,R) = {(8, 1), (8, 1.5), (8, 2)} followed by selecting
LBP for the scale (i.e., R) at which we have the highest
contrast, indicating a stronger texture component. Joint
histograms of the selected LBPs and local contrast are used
as image features that are used for the classification of
dermoscopy images [49].

V. EXPERIMENTS

A. Dataset

We have used two different datasets for the evaluation of
the proposed method:
• The public PH2 dataset [50] that we have used is com-

posed of 200 dermoscopy images with the following
composition: 80% (160) nevus and 20% (40) melanoma.
The images were acquired at Hospital Pedro Hispano,
Matosinhos. All images have been acquired during clini-
cal exams using a dermoscope. Each image was manually
segmented to identify the lesions and classified by an ex-
perienced dermatologist as being normal, atypical nevus
(benign) or melanoma (malignant). For our experiments,
we perform automatic segmentation of the dermoscopy
images and compare the segmentation results against the
ground truth which are provided to us by the physicians.

• The second dataset that we have used for evaluation is the
International Skin Imaging Collaboration (ISIC) public
dataset [51] which contain about 10,000 dermoscopic
images which have been acquired at various international
hospitals from different devices. A new dermoscopy
imaging segmentation challenge was hosted by ISIC in
International Symposium on Biomedical Imaging (ISBI)
2016. For carrying out our study, we used 900 dermo-
scopic images used in this challenge. This is a challenging
dataset with various visual artifacts such as color, hair,
calibration chart ruler etc. The dataset has been manually
segmented by expert physicians.

Manual annotations of both the datasets by expert dermatol-
ogists have been made available as ground truth for evaluation
purposes.
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Fig. 5: Some example images segmented using various segmentation methods: DRLSE (row 1, blue contour), LRSI (row 2,
blue contour), C-LS (row 3, blue contour), ACWC (row 4, blue contour) and KL-LS (row 5, blue contour). The red contours

indicate manual annotations done by the physicians.

B. Segmentation Results

1) Experimental Setup and Implementation Details: We
have compared the proposed method (Kullback-Leibler based
level sets, KL-LS) with four other segmentation methods
that are based on active contours: Chen based level sets (C-
LS) [10], the distance regularized level sets (DRLSE) [42],
level sets robust to intensity inhomogenity (LSRI) [52] and
level sets with creases (ACWC) [53]. We applied hair removal
as a preprocessing step for both the PH2 and ISIC datasets
using the algorithm proposed by Lee et al [54]. The following
setting was used for the segmentation methods: In all the above
mentioned methods, an initial seed segmentation is required
for which we have used adaptive thresholding (AT) [10],

except C-LS for which the results obtained by Euijoon et
al. [55] and [56] were directly used. We applied the basic
post processing such as region filling (dark pixels completely
surrounded by brighter pixels) and noise removal (isolated
group of pixels) to all the methods.

2) Performance metrics: We have used three standard met-
rics that have been used by various researchers for evaluation
of the segmentation results: The Dice similarity coefficient that
is defined as follows: [57].

DSC(A,S) =
2N(A ∩ S)

N(A) +N(S)
(28)

where A is the ground truth and S is the segmentation
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Fig. 6: Segmentation of split lesion: DRLSE (top left, blue
contour), C-LS (top right, blue contour), ACWC (bottom

left, blue contour) and KL-LS (bottom right, blue contour).
The red contours indicate manual annotations done by the

physicians.

result. The DSC values lie between 0 and 1 for zero overlap
and identical contours respectively. The Hammoude distance
(HM) and XOR measure the dissimilarity between the result
of segmentation and ground truth, defined as:

HM(A,S) =
N(A ∪ S)−N(A ∩ S)

N(A ∪ S)
(29)

XOR(A,S) =
N(A ∪ S)−N(A ∩ S)

N(S)
(30)

A higher magnitude of both these measures indicates a
higher degree of dissimilarity between A and S and vice versa.

3) Evaluation of PH2 dataset: Our experiments show that
in general, all active contours based methods show good
segmentation results. Therefore, generally they are useful for
the design of assisted diagnostic systems for dermoscopy. The
proposed method (KL-LS) obtains very good segmentation
results (Table I). It obtain the best overall DSC value as
compared to the other methods. In comparison, the worst
segmentation results were yielded by ACWC due to a very
specific reason: the image smoothing process in multilocal
creasness operator used in ACWC significantly pronounces
the boundary around the lesions. Effectively the contours
encapsulate a slightly larger region around the lesions, gen-
erating segmentations having an offset consistently across
the whole dataset effecting the DSC values for all images.
Although the overall DSC is poor for ACWC, the overall HM
and XOR values are very good because the encapsulation of
larger regions increases the number of pixels in the segments
increasing the N(A∪S) and N(S) values thus decreasing the
values of HM and XOR respectively (fourth row in Fig. 5).
In general, C-LS is most comparable to KL-LS showing good
segmentation results.

TABLE I: Segmentation results measured by DSC, HM and
XOR averaged over 200 images of the PH2 dataset.

Mean DRLSE LRSI C-LS ACWC KL-LS
DSC 82.17 80.53 84.82 75.95 86.54
HM 28.38 47.45 24.58 20.47 23.01
XOR 49.39 49.51 28.93 22.33 25.14

TABLE II: Segmentation results measured by DSC, HM and
XOR averaged over 900 images of the ISIC dataset.

Mean DRLSE LRSI C-LS ACWC KL-LS
DSC 74.81 73.11 79.61 65.85 80.17
HM 29.57 35.44 30.00 22.10 25.25
XOR 45.65 48.36 50.58 24.59 29.38

4) Evaluation of ISIC dataset: The ISIC is a more chal-
lenging dataset having more visual artifacts such as presence
of hair, presence of calibration scale and a circular mask
appearing in the border of some images. Also, there is a
complex variation in lesion locations, lighting conditions and
nonuniform vignetting [58]. Therefore, all the methods yield
relatively low segmentation results as compared to those
for the PH2 dataset. However, KL-LS outperforms the other
methods that have been considered in this paper (Table II).

5) Comparison With Saliency Detection Methods: One
class of segmentation methods that has gained significant
importance in the recent times is the saliency detection meth-
ods. Although the methods are unsupervised, background and
foreground templates from some images which can represent
good examples of the skin and lesion respectively are used to
learn the structural models represented by them inducing prior
knowledge to the segmentation models [55]. Accordingly, we
have included some saliency based methods in our comparison
to study the effects of adding some prior knowledge to the
segmentation methods. The results for two different methods
have been used for comparison: saliency based skin lesion
segmentation (SSLS) [55] and robust SSLS (RSSLS) [59],
which show the best results on the datasets considered in
this paper. The results for these methods have been quoted
directly from [59]. On the PH2 dataset, RSSLS shows better
performance using all metrics. On the contrary, KL-LS per-
forms better using two metrics (HM and XOR) on the ISIC
dataset. It should be noted that the results obtained on ISIC
exhibit a much higher statistical significance as the size of this
dataset is about 4.5 times that of the PH2 dataset. Also, the
gap in DSC narrows from 4.51% for PH2 to about 3.24% for
ISIC. This analysis brings us to another interesting conclusion:
adding some prior knowledge to the segmentation methods
results in an improved performance. The proposed KL-LS
is an unsupervised segmentation method in which the curve
evolution is purely based on the fact that the final segmentation
results should maximize the difference between the lesion
and the background (as assumed in many other methods such
as [60]). Although the KL-LS does not present optimal (best)
segmentation results (specifically for PH2 dataset), the ability
of active contours to incorporate the custom features of specific
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imaging scenarios makes it a very suitable contender for
segmentation in specific scenarios such as dermoscopy.

TABLE III: Segmentation results measured by DSC, HM
and XOR averaged 200 PH2 and 900 ISIC images.

Mean SSLS RSSLS KL-LS
DSC1 85.34 91.05 86.54
DSC2 80.61 83.41 80.17
HM1 22.92 15.49 23.01
HM2 29.78 25.67 25.25
XOR1 25.27 16.45 25.14
XOR2 38.40 36.21 29.38

1Images from PH2 dataset.
2Images from ISIC dataset.

C. Classification results

The objective of the classification task in this paper is to
quantify the relative contribution of lesion periphery and its
size on the identification of melanoma, in contrast to using
image description from full lesion. In this context, the lesion
periphery is defined as a region that starts with the boundaries
of the segmented lesion and grows inward (towards the lesion
center). We have started with a small periphery (5 pixels) and
varied its size upto 45 pixels to assess the effects of increasing
the periphery size on the classification results of the lesion
(Fig. 7). We have performed our classification results on the
Weka data mining tool using 10-fold cross validation using two
different classifiers for classification purposes i.e., one-nearest
neighbor (1NN) and support vector machine (SVM) with
linear kernel. This choice is complementary and is motivated
by two important considerations: the 1NN classifier will help
us conceive if the lesion is linearly separable from the skin
or not whereas SVM is a more generic classifier that seeks
to obtain the margins that maximize the class separation.
Additionally, we want to analyze the trend adopted by different
classifiers for the size of periphery to ensure that the results
are not classifier specific and are generic enough to make
robust conclusions. For feature extraction, we have used the
standard uniform local binary patterns (LBP) which yield 60
features and joint histogram of local binary patterns and local
contrast LBP C (120 features: 60 features for uniform LBP

Fig. 7: Texture in the periphery and center of the skin lesion.

and 2 features for contrast i.e., low or high). Although, the
researchers have already found that LBP C outperforms LBP
for feature extraction from dermoscopy images, the main ob-
jective is to evaluate the trend of changing the lesion periphery
on the classification of lesion and not on obtaining the ‘best’
classification results. These are histogram based features and
thus the number of features stay the same irrespective of the
size of the peripheral region of the lesion.

Our experiments demonstrate that better prospects of iden-
tifying melanoma exist when only the lesion periphery is used
for classification purposes. This conclusion is consistent when
manual annotations and the proposed method are used. The
general trend is that as we increase the periphery size, the
classification results start to improve until we reach a periphery
of 35 pixels width at the lesion periphery. When the size
increases beyond 35 pixels, the classification results start to
depreciate (Table IV and V). This observation is consistent
for the two different classifiers and feature extraction method-
ologies that have been considered in this paper. We attribute
this result to the fact that the peripheral region of the lesions is
mainly exhibiting the differential structures which are present
in the lesion, which mainly include the pigment network and
streaks. These particular characteristics of the lesion are more
relevant in identifying melanoma. When full lesion is used for
feature extraction, some redundancy is added to the descriptor
which is contributing to the lower classification accuracies
in identifying melanoma. It is important to note that the
underlying conclusions are consistent with the clinical findings
that the lesion periphery is more significant for identifying
melanoma in dermoscopy images.

VI. CONCLUSION

This paper deals with a study of assisted diagnostics applied
to dermoscopy images. We have focused on proposing a
novel image segmentation algorithm followed by a study of
the significance of periphery in characterizing skin lesions,
in contrast to using the full lesion. For segmentation, we
have proposed an optimization problem where the objective
function is to maximize the distance of gray level distribution
between the skin and the lesion. The proposed method ex-
ploits advantages from the different categories of segmentation
methods including thresholding, edge based and region based
methods given that we use adaptive thresholding for contour
initialization, followed by the proposed optimization criteria
which uses a region based term (convergence of the means of
the lesion and skin to their local maxima) integrated with the
image gradient (edges) to perform image segmentation. Very
good segmentation results are obtained as the proposed method
exhibits various strengths which are usually hard to find in
one segmentation method. The proposed method is based on
the maximization of KL distance between the distributions of
lesion and the background, which is a standard segmentation
optimization problem. There is a lack of context aware in-
formation (specific texture, color, shape etc. features) in the
proposed method. Very recently, methods which incorporate
prior knowledge have been used such as SSLS and RSSLS
which show very good segmentation results on dermoscopy
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TABLE IV: Classification results obtained as the periphery of the lesion varies from 5 pixels to 45 pixels on PH2 dataset
using ground truth (Manual) and segmentation (Automatic). The periphery is obtained from the segmentation results that are

obtained using KL-LS (LBP - Local Binary Patterns; LBP C - Joint histogram of LBP and local contrast).

Class Segmentation Method 5px 15px 25px 35px 45px

Acc % ROC % Acc % ROC % Acc % ROC % Acc % ROC % Acc % ROC %

Manual LBP 84.9 74.6 85.4 79.8 89.7 83.9 90.4 85.1 83 80.6
LBP C 87.65 83.1 90.85 86.2 91.2 86.9 90.1 85 88.75 77.6

SVM

Automatic LBP 79.15 69.3 80.74 69.9 86 74.6 89.2 75.6 84.5 76.1
LBP C 85.5 82.2 90.45 84.9 89.02 79.8 84.9 74 82.25 70.1

Manual LBP 77 66.1 78.8 69.8 84 71.9 85.1 75.4 84.5 73.5
LBP C 76 69.8 86.4 81.2 85.4 80 81.4 75.3 77 57.3

KNN

Automatic LBP 68.1 59.4 75.8 68.6 82.13 70.4 85.01 71.8 80.4 69.2
LBP C 80.9 69.9 85.3 75 87.7 80.4 83.7 71.7 74 53.6

TABLE V: Classification results obtained as the periphery of the lesion varies from 5 pixels to 45 pixels on ISIC dataset
using ground truth (Manual) and segmentation (Automatic). The periphery is obtained from the segmentation results that are

obtained using KL-LS (LBP - Local Binary Patterns; LBP C - Joint histogram of LBP and local contrast).

Class Segmentation Method 5px 15px 25px 35px 45px

Acc % ROC % Acc % ROC % Acc % ROC % Acc % ROC % Acc % ROC %

Manual LBP 63.9 54.2 70.4 68.5 77.6 70.4 84 85.7 80.9 82.1
LBP C 69.2 50.5 72.6 68.8 78.5 71.4 89.6 87.9 86.9 82.1

SVM

Automatic LBP 60.8 42.1 68.6 65.0 70.4 61.8 79.6 75.2 79.2 74.3
LBP C 64.2 52.2 70.4 62.5 72.1 65.6 79.4 75.4 80.6 74.7

Manual LBP 68.6 50.9 69.9 50.7 75.6 66.6 77.9 70.2 75.8 70
LBP C 70.0 69.1 70.7 77 75.9 69 79.8 78.5 70.2 79

KNN

Automatic LBP 66.4 49 72.3 50.1 79.6 75.8 85.1 79.7 84.5 77.9
LBP C 71.5 70.5 74.8 78.6 80.7 80.9 80.1 82.6 79.7 80.5

images. Given that these methods obtain slightly superior
results (adding context awareness gives better results in seg-
mentation) and the fact active contours have the capabilities
to incorporate specific features useful in dermoscopy imaging,
we believe that there is a reasonable potential of improvement
in the proposed method for segmenting dermoscopy images if
context awareness is added to the segmentation model.

For assessing the quantitative impact of lesion periphery
on the characterization of skin lesions, we have carried out
experiments in which after segmentation, instead of using the
full lesion, we consider peripheral region of different sizes
and study their impact on the classification of skin lesions.
Our experiments show that the classification results improve
as we increase the periphery size upto about 35 pixels and
than the results start to depreciate. The benchmark to validate
this fact has been obtained using manual annotations followed
by using automatic segmentation, completing the chain of a
standard pattern recognition system for assisted diagnosis of
dermoscopy images. The relative conclusion that the peripheral
features give better results as opposed to using full lesion do
not change. This is consistent with the clinical findings that
the skin lesions exhibit a border region having dermosopic
structures which have a higher significance in the identification
of melanoma.

In the future, we intend to work on novel deformable
models for segmentation by inducing prior knowledge to the
segmentation models. Also, we intend to focus on improving
the classification results for the detection of melanoma. For
this purpose, we will work on using more adequate visual
descriptors that have more physiological importance in iden-
tifying melanoma.

APPENDIX

Let us suppose we have

D =

∫
P (Ω−) log

P (Ω+)

P (Ω−)
dΩ (31)

=

∫
P (Ω−)

[
logP (Ω+)− logP (Ω−)

]
dΩ

=

∫
P (Ω−) logP (Ω+)dΩ−

∫
P (Ω−) logP (Ω−)dΩ

We will simplify this equation by considering the left and
right term of this equation respectively. Let

L =

∫
P (Ω−) logP (Ω+)dΩ (32)

R =

∫
P (Ω−) logP (Ω−)dΩ. (33)
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Taking derivative of L, we get

∂L =

[∫
P (Ω−)

P (Ω+)
∂P (Ω+)dΩ +

∫
logP (Ω+)∂P (Ω−)dΩ

]
(34)

Rearranging the terms,

∂L =

∫
∂P (Ω+)

P (Ω+)

∫
P (Ω−)dΩ−︸ ︷︷ ︸

=1

dΩ+ + (35)

∫
logP (Ω+)

∫
∂P (Ω−)dΩ−︸ ︷︷ ︸

=0

dΩ+

Therefore,

∂L =

∫
∂P (Ω+)

P (Ω+)
dΩ+ (36)

Now applying uv rule of integration where u = 1/P (Ω+)
and v = ∂P (Ω+), we obtain

∂L =
1

P (Ω+)

∫
∂P (Ω+)dΩ+︸ ︷︷ ︸

=0

+

∫
∂P (Ω+)

P 2(Ω+)

∫
∂P (Ω+)dΩ+︸ ︷︷ ︸

=0

dΩ+

⇒ ∂L = 0 (37)

Now let us consider the equation 33

R =

∫
P (Ω−) logP (Ω−)dΩ.

Taking derivative of R, we get

∂R = ∂

[∫
P (Ω−) logP (Ω−)dΩ

]
Commuting derivative and integral operators and derivative,

we get

∂R =

∫ [
P (Ω−)

P (Ω−)
∂P (Ω−) + logP (Ω−)∂P (Ω−)

]
dΩ

=

∫
∂P (Ω−)dΩ +

∫
∂P (Ω−) logP (Ω−)dΩ

= ∂

∫
P (Ω−)dΩ︸ ︷︷ ︸

=1︸ ︷︷ ︸
=0 (constant)

+

∫
∂P (Ω−) logP (Ω−)dΩ

⇒ ∂R =

∫
∂P (Ω−) logP (Ω−)dΩ (38)

Therefore,

∂D = ∂L− ∂R

= −
∫
∂P (Ω−) logP (Ω−)dΩ (39)
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