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ABSTRACT 

Interactions between nano-scale filler particles (precipitated calcium carbonate, carbon 

black and fumed silica) and model compounds (dimethyl adipate and butan-2-one) are 

quantified using flow micro-calorimetry (FMC) and diffuse reflectance Fourier transform 

infrared spectroscopy (DRFTIRS). Carbonyl groups of dimethyl adipate interact strongly 

with silanol groups on the fumed silica surface but weakly with the uncoated precipitated 

calcium carbonate. In general, higher surface area loading a high level of adsorption 

because of the nanofiller has more adsorption sites. Carbon black is an exception likely 

due to the less accessible surface groups and the presence of relatively important 

amount of micropores. 

Keywords: A. Polyurethane. C. Infrared spectra. D. Interfaces.

1. Introduction 
Over the past few years, nanofillers are incorporated to thermoplastic polyurethane 

(TPU) adhesives in the automotive, footwear and construction industry to improve their 

rheological, thermal, mechanical and adhesion properties. The performance of TPU-

nanofiller material is related tightly to their interfacial interactions but detailed studies of 

such interactions are somewhat rare. 

Thermoplastic polyurethane adhesives (TPU) are synthesised by reacting an 

isocyanate, a polyester, and a chain extender. TPUs show segmented structure 

composed of soft (non-polar hydrocarbon chain due to the polyester) and hard (polar, 

produced by reacting the isocyanate and the chain extender) segments, causing phase 

separation but their properties are dominated by the interactions between the soft 

segments, i.e. polyester chains. Addition of nanofillers may cause disruption of the 

phase separation [1, 2]. Precipitated calcium carbonate (PCC), carbon black and fumed 

silica nanofillers have been used elsewhere for improving the rheological, mechanical 
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and adhesion properties of thermoplastic polyurethanes [3-5]. The improved properties 

of some of these filled polyurethanes were ascribed to the existence of interactions by 

hydrogen bonding between the nanofiller surface and the polyol moieties. Thus, Vega-

Baudrit et al. determined that the silanol groups on fumed silica and urethane groups in 

the polyurethane chains interacted by hydrogen bonding [6]. As a consequence of this, 

the soft segments were able to move freely and the phase separation increased. On the 

other hand, Luo et al. added nano-silicas modified with 3-

methacryloxypropyltrimethoxysilane to polyurethane [7] and they found an increase in 

mechanical properties of the filled polyurethanes because of creation of covalent bonds 

between –C=O groups on modified silica surface and polymer chains. As a result, the 

movement of PU chains was limited and the creep resistance of polyurethanes was 

improved.

Parallel plate rheometry, dynamic mechanical thermal analysis (DMTA) and 

transmission electron microscopy (TEM) have been used to assess indirectly the 

nanofiller-polyurethane interactions but they are limited due to the absence of 

quantitative data at a molecular level. Peng et al investigated the effect of adding 

modified carbon black on polyurethane foams [8]. They showed an increase in 

nanofiller-polymer chains interactions by using DMTA experiments.

In previous studies, precipitated calcium carbonate (PCC)-polyurethane 

interactions were assessed indirectly by parallel plate rheometry and DMTA 

experiments as well [5]. The addition of PCC increased the elastic modulus of the 

polyurethane slightly because of the existence of weak PCC-polyurethane interactions. 

In addition to this, the storage modulus was higher for filled polyurethanes and the glass 

transition temperature increased from -23ºC in the unfilled polyurethane to -19ºC in 20 

wt% filled polyurethane. It is probably for the creation of Van der Waals interactions 

between the polyurethane chains and the surface of PCC particles, which reduce the 

movement of polyurethane chains. 

In this study, the interfacial interactions between the polyurethane chains and the 

different nanofillers surfaces were studied with a more direct method, flow micro-

calorimetry (FMC) measurements supported by diffuse reflectance Fourier transform 

infrared spectroscopy (DRFTIRS).  
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FMC enables the measurement of the heats of adsorption and desorption of 

molecules in solution (and also in the gas phase) on to particulate solid surfaces. 

Attachment of the cell effluent line to concentration detectors allows determination of the 

levels of adsorption and desorption. As a result, FMC can be used to investigate and 

quantify interfacial interactions in composite materials [9-13]. In the existing literature, 

different fillers including carbon black, silica and organo-clays have been examined 

using FMC [11, 14-16]. For instance, silica is able to interact with polar adsorbates via 

hydrogen bonding interactions with surface silanol groups (i.e., isolated, germinal, 

vicinal varieties) and siloxane bridges [17]. Nevertheless, some grades of carbon black 

and calcined silicas typically show Van der Waals or hydrophobic interactions with 

polymers [17]. Occasionally, polymer molecules can also be adsorbed and bond 

strongly at high energy sites on the carbon black surface [18]. 

In previously studies, Akoum et al. [19,20] investigated the effect of silica particle 

size and morphology, and surface energy on poly(dimethylsiloxane) elastomers 

adsorption. They established that the conformation of polymer chains on the filler 

surface and how they are connected had an influence on the adsorption phenomena. 

Additional, the conformation of the macromolecules on silica depended on the silica 

surface area which was correlated with surface-polymer interactions.

Within the last five years FMC has been applied to studies of bio-diesel fuel 

manufacture, waste control, organic pollutants and catalysts, within the pharmaceutical, 

biochemical, chemical and polymer industries [21-25]. However, the use of FMC in 

studies of interfacial interactions in nanofilled thermoplastic polyurethane adhesive has 

not yet been reported in the literature. The aim of this study is to use a model compound 

to simulate the structural units of polyurethane. As the segmented structure of the 

thermoplastic polyurethanes is mainly dominated by polyester soft segments, in this 

study dimethyl adipate (DMA) was selected as a probe molecule to simulate the 

interactions between polyurethane chains and nanofillers of different chemical nature 

and surface chemistry.
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2. Experimental 
2.1. Materials 

Two coated (Socal®312) and uncoated (Socal®312) precipitated calcium carbonate 

(PCC, supplied by Solvay Specialités, Salin de Giraud, France), carbon black (CB) 

(Corax®N134 supplied by Evonik, Essen, Germany), and fumed silica (Aerosil®200

supplied by Degussa, Hanau, Germany) were used as nanofillers. Some properties of 

the nanofillers are given in Table 1 [26-28]. All fillers have a mean particle size in the 

nanometer range, and it is related to their specific surface area. Thus, the fumed silica 

has the smallest mean particle size and the highest specific surface area, and the PCCs 

have the biggest mean particle size and the lowest specific surface area. 

Table 1 – To be inserted here 

2.2. Experimental techniques  

2.2.1. Transmission Electron Microscopy (TEM). A Jeol TEM-2010 instrument (Tokyo, 

Japan) was used to analyse the topography, shape, particle size and degree of 

agglomeration of the nanofillers; an acceleration voltage of 100 kV was used. The 

samples were prepared from low concentration suspension of filler particles in ethanol 

up to obtain a translucent dispersion, and then it was mixed in ultrasonic bath for 4 

minutes. A drop of the suspension was put on Lacey grid of 3.05 mm of diameter, 

followed by ethanol evaporation at room temperature.

2.2.2. N2/77K adsorption-desorption isotherms. The adsorption-desorption isotherms of 

the nanofillers were obtained in Quantachrome Instrument adsorption system 

(Quantachrome, Florida, USA). Prior adsorption measurements, the filler was 

outgassed at 150ºC for 12 hours at a residual pressure of 10-6 Torr. From adsorption-

desorption data, specific surface area of nanofillers was obtained by using the B.E.T 

method and the equation (1) and (2), where Vm is adsorbing volume in a monolayer, C 

is a parameter due to gas-solid interactions, P is equilibrate pressure, P0 is saturated 



6

pressure, Vads is the N2 adsorbing volume, am is the area of one molecule of N2

(16.2·10-20 m2), NA is Avogadro’s number, and VM is molar volumen of adsorbate (22414 

cm3 mol-1).
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2.2.3. Thermal gravimetric analysis (TGA). The mass loss of the nanofillers as a 

function of the temperature was measured in TGA Q500 instrument from TA 

Instruments (New Castle, Delaware, USA). The samples (10–15 mg) were placed in 

platinum pans and were heated from room temperature to 800ºC at a heating rate of 10 

ºC min-1 under nitrogen atmosphere (flow rate: 100 ml min-1).

2.2.4. Flow Micro-Calorimetry (FMC). The FMC instrument used was a Microscal 3V 

with polytetrafluoroethylene (PTFE) cell (MICROSCAL Ltd, London, UK). The cell outlet 

was connected to a Waters 410 differential refractometer (MILLIPORE, Massachusetts, 

USA). The data outputs were handled by Perkin-Elmer Nelson 970 series interface 

connected to PC. The volume of the sample chamber was 0.15 cm3 (sufficient filler was 

used to fill the chamber), and the experiments were carried out at cell temperature of 

20±1 °C. Adsorption experiments were carried out from both heptane and butan-2-one 

because heptane is the most common solvent used in FMC and butan-2-one is the 

typical solvent for polyurethane adhesives formulation, at a flow rate of 4.0 ml·h-1. The 

concentration of the probe solution was 0.3 vol. %. Decahydronaphthalene was used as 

the non-adsorbing probe. 

The butan-2-one and heptane were HPLC grade (Lab-Scan Analytical Sciences, 

POCH S.A., Gliwice, Poland) and were dried over 3A molecular sieves. The adsorption 

and desorption of dimethyl adipate (99%, Aldrich, Dorset, UK) on to the nanofillers in 

heptane or butan-2-one, was carried out at 20 °C according to established FMC 
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methods [10,13-17,19,20,24,25]. After completion of the FMC experiments, the 

nanofillers were oven dried at 70 ºC for 20 hours, and then examined using diffuse 

reflectance Fourier transform infrared spectroscopy (DRFTIRS).

2.2.5. Diffuse reflectance Fourier transform infrared spectroscopy (DRFTIRS). The 

species adsorbed on the nanofillers were analysed quantitatively by using a Thermo-

Nicolet Nexus spectrometer (Madison, WI, USA) fitted with standard DTGS detector and 

Spectra-Tech DRFTIRS cell. Prior to analysis, the samples were diluted to 5 wt% with 

finely ground KBr; care was taken to gently fold the sample in to the KBr, in order to 

avoid damaging the filler particles.  DRFTIRS spectra were made up of 160 scans with 

resolution set to 4 cm-1. Automatic baseline correction and peak integration was carried 

out using Omnic 5.1 software.

3. Results and Discussion
3.1. Nanofillers characterization 

The shape and size of the nanofiller particles were assessed by TEM (Figure 1). 

All nanofillers are spherical and have primary particle sizes smaller than 100 nm. The 

nanoparticles are interconnected by physical interactions and, therefore agglomerates 

are formed. Precipitated calcium carbonates have the largest particle size and the 

highest degree of agglomeration, whereas carbon black has smaller particle size and 

shows some agglomerates. Fumed silica has the smallest particle size but the strongest 

interconnectivity between particles, likely due to silanol interactions [6].

Figure 1 – To be inserted here 

On the other hand, in this study the nanofillers were selected because of their 

different surface chemistry. Whereas the hydrophilic fumed silica has surface silanol 

groups, the calcium carbonate only has carbonate groups, i.e. it does not have hydroxyl 

groups on the surface [4,17,28,29]. Carbon black has several carbon-oxygen and 

hydroxyl groups on the surface but their nature are different than the silanol groups on 
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the fumed silica [30]. The amounts of surface groups on the nanofillers surfaces were 

obtained from thermal gravimetric analysis (Figures 2a and 2b). 

Figures 2a and 2b – To be inserted here 

TGA thermogram of the uncoated calcium carbonate shows the main 

decomposition at 704 ºC, although coated calcium carbonate shows two main 

decompositions at 386 and 710 ºC (Figure 2a). The decomposition at 386 ºC 

corresponds to loss of the stearate coating (3.2 wt%) which is given from the synthesis 

process of precipitated calcium carbonate [31,32]. The stearate is commonly added to 

calcium carbonate to avoid particle agglomeration and it is highly probable that 

precipitated calcium carbonate is coated with stearic acid or ammonium stearate as no 

other metals can be detected in the chemical analysis of the coated filler by X-ray 

fluorescence spectroscopy. On the other hand, the decomposition at 704-710 ºC 

corresponds to CO2 loss due to calcium carbonate decomposition and accounts for 42 

wt%.

According to Figure 2b, the carbon black shows two main decompositions at 590 

ºC and 667 ºC that have been ascribed to loss of CO2 and CO, respectively [33]. The 

decomposition of CO2 at about 600 ºC has been ascribed to carboxylic acid moieties, 

while the CO decomposition at about 670 ºC can be ascribed to phenol or carbonyl 

surface groups [34,35]. Therefore, the CB nanofiller contains 3.4 wt% of volatiles that 

derive from surface groups, 1.5 wt% for carboxyl groups and 1.9 wt% for 

carbonyl/phenol groups. 

On the other hand, the TGA thermogram of the fumed silica in Figure 2b shows 

two decompositions at 351 and 740 ºC due to the surface silanol groups of different 

nature (isolated silanols, and vicinal silanols and germinal silanol, respectively) [17, 29, 

36]. Thus, the fumed silica contains 3.8 wt% of surface silanol groups, 1.5 wt% for 

isolated silanols and 1.9 wt% for vicinal and germinal silanols. 

3.2. Adsorption/desorption of dimethyl adipate from heptane on to the nanofillers 
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The adsorption/desorption of dimethyl adipate (i.e. model probe of polyester in 

thermoplastic polyurethane) on the different nanofillers were investigated by using two 

different solvents, one non-polar (heptane) and one polar, butan-2-one. Heptane is a 

standard solvent for FMC experiments and butan-2-one is commonly used as solvent of 

thermoplastic polyurethane adhesive. 

Figure 3 shows the heats of adsorption and desorption of dimethyl adipate (DMA) 

from heptane on to coated and uncoated precipitated calcium carbonates (PCCs), 

carbon black (CB) and fumed silica. The untreated PCC shows more energetic 

adsorption relative to the stearate treated sample, in agreement with other studies [37-

40] that showed that the stearate coating of calcium carbonate blocked adsorption sites, 

resulting in relatively low DMA adsorption (Figure 3). The adsorption of DMA on to 

fumed silica is more energetic than adsorption on to the other three substrates. Fumed 

silica contains 3.8 wt% silanol groups on the surface which are able to interact by 

hydrogen bonding with the –C=O polar groups of DMA [17]. On the other hand, the heat 

of adsorption of DMA on carbon black is extremely low due to the relatively low 

concentration of surface functional groups in relation to the surface area available. TGA 

analysis indicated that the CB contains 1.5 wt% COOH groups and 1.9 wt% C=O 

groups, and it may be assumed that the majority of these groups are on the CB surface 

but they may not all be accessible to the DMA. It has been shown that carbon black 

surface functional groups generally interact rather weakly in solution adsorption 

experiments [41]. Moreover, the presence of adsorbed water (0.9 wt%), part of which 

may remain on the surface even after conditioning in the FMC overnight with dry 

heptane, can in some cases reduce the adsorption activity of CB due to blockage of 

adsorption sites by water molecules [41].

Figure 3 – To be inserted here 

The heat of desorption of DMA from fumed silica in heptane is lower than the heat 

of adsorption, indicating that some DMA is retained on the fumed silica surface. 

However, the heats of desorption of DMA from PCC and CB nanofillers in heptane 

(Figure 3) are higher than their corresponding heats of adsorption, particularly for 
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coated PCC. This can be ascribed to the partial removal of the stearate coating on the 

calcium carbonate surface that can be detached by heptane. On the other hand, as the 

same happens for the uncoated calcium carbonate but the differences between the 

heats of adsorption and desorption are smaller, it can be suggested that additional to 

dimethyl adipate adsorption some capillary condensation between the calcium 

carbonate particles can be produced (the particle size of the two calcium carbonates is 

much larger than for the other fillers favouring the existence of larger voids between 

them) contributing to higher heat of desorption than expected. Furthermore, for carbon 

black, the higher heat of desorption can be also associated with water which is being 

desorbed together with the DMA. 

Figure 4 – To be inserted here 

Substrate subtracted DRFTIRS spectra of dried uncoated and coated PCC, and 

fumed silica after adsorption/desorption of DMA from heptane are given in Figure 4. 

Dried CB cannot be characterized by DRFTIRS because a noisy spectrum was 

obtained. The DRFTIRS spectrum of DMA (Figure 4) shows a very intense absorbance 

band at 1720 cm-1 which correspond to the C=O stretching of the ester group. For this 

reason, this absorption band was used to determine the level of DMA retention on the 

substrates. The DRFTIRS spectrum of fumed silica clearly shows retention of DMA on 

the surface, in agreement with the reduced heat of desorption (Figure 3). In fact, the 

DRFTIRS spectrum shows a strong ester carbonyl band that has been broadened 

significantly indicating varying strengths of interaction between DMA and surface silanol 

groups. Careful inspection of the peak indicates two main contributions, the most 

dominant results in a peak which is blue-shifted relative to DMA in its liquid state, whilst 

the less significant component is red-shifted. Previous studies examining adsorption of 

molecules featuring ester groups on to silica have revealed only red-shifting of the 

carbonyl band which has been ascribed to interaction with isolated silanol groups [17]. It 

has to be appreciated, however that the overall level of silanol groups in the fumed silica 

(as measured by TGA and as according to DRFTIRS spectrum) is rather lower than 

those in the gel silicas previously examined. Therefore, interaction between the siloxane 
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linkages and the ester groups of DMA may in fact be the dominant mode of adsorption. 

Interaction of the lone pair of the –C-O- group of the ester with a siloxane linkage may 

result in an increase in carbonyl stretching frequency. Further work will be required to 

verify this proposition.

The substrate subtracted DRFTIRS spectrum of uncoated PCC after 

adsorption/desorption of DMA shows a perturbed carbonyl band at 1712 cm-1 as a 

consequence of DMA-uncoated PCC interactions. However, the substrate subtracted 

DRFTIRS spectrum of coated PCC after adsorption/desorption of DMA shows several 

weak absorption bands and an unperturbed carbonyl band at 1725 cm-1. The absence 

of shifting of this band may be significant in that a large fraction of the carbonyls are not 

interacting with the coated PCC surface, but instead resting on, and within, the stearate 

coating.

Figure 5 shows the variation of the heats of adsorption of DMA from heptane on to 

the substrates as a function of specific surface area. In non-porous materials, by 

increasing the specific surface area, higher level of adsorption can be expected, this 

general trend can be observed in Figure 5. However, the heat of adsorption of carbon 

black is lower than expected according to its surface area. Figure 6 shows the nitrogen 

adsorption isotherm at 77 K of the carbon black. The adsorption isotherm corresponds 

to mesoporous solids (pore sizes between 2 and 50 nm) and an important adsorption at 

high relative pressure is obtained due to the adsorption on the external surface. 

However, at very low relative pressure (below 0.01) a noticeable adsorption due to the 

micropores (pores below 2 nm in diameter) is noticed. As the size of DMA is larger than 

2 nm, DMA can only be adsorbed on the mesoporores and the external surface area of 

the carbon black, both contributing to a minor amount of the measured specific surface 

area. Therefore, the heat of adsorption of DMA on carbon black should be lower than 

expected according its specific surface area. 

Figures 5 and 6 – To be inserted here 

3.3. Adsorption/desorption of butan-2-one from heptane on to the nanofillers 



12

Because butan-2-one is a common solvent for thermoplastic polyurethane 

adhesives, the heats of adsorption and desorption of butan-2-one from heptane on to 

precipitated calcium carbonate and fumed silica nanofillers were measured. Figure 7 

shows that the heat of adsorption of butan-2-one on fumed silica is higher than for 

precipitated calcium carbonates, a trend similar to that obtained in the adsorption 

experiments of DMA. The silanol groups on the fumed silica surface interact with the –

C=O group of butan-2-one by hydrogen bonding, whilst precipitated calcium carbonate 

PCC interacts with the –C=O group of butan-2-one by Van der Waals forces only 

[17,38].

Figure 7 – To be inserted here 

On the other hand, according to Figure 7 the heats of desorption of butan-2-one 

from heptane are slightly higher than the corresponding heats of adsorption, but the 

differences between the heats of adsorption and desorption are lower than in the DMA 

adsorption experiments (Figure 3).

Figure 8 shows the substrate subtracted DRFTIRS spectra of dried nanofillers 

after adsorption and desorption of butan-2-one from heptane. The DRFTIRS spectrum 

of butan-2-one shows two absorbance bands at 2975 and 2950 cm-1 due to the –CH2

and –CH3 stretching, a high absorbance band of the –C=O group stretching at 1720 cm-

1 and an absorbance band at 1360 cm-1 due to –CH3 group bending. Comparing these 

absorbance bands with the substrate subtracted DRFTIRS spectra of precipitated 

calcium carbonates and fumed silica, none of them show retention of butan-2-one on 

the fumed silica surface, although a slightly absorbance band at 1750 cm-1 in the coated 

precipitated calcium carbonate spectrum is seen. As a result, the butan-2-one is more 

easily desorbed than DMA. 

Figure 8 – To be inserted here 

On the other hand, the specific surface area of the nanofillers has an influence on 

the heats of adsorption/desorption of butan-2-one from heptane (Table 2). Higher heat 
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of adsorption/desorption of butan-2-one on the fillers is produced by increasing their 

specific surface area, as both fillers are non-porous and only have external surface 

area.

Table 2 – To be inserted here 

3.4. Adsorption/desorption of dimethyl adipate from butan-2-one on to the nanofillers 

Dimethyl adipate was used as a model probe from butan-2-one for measuring the 

heats of adsorption/desorption of the different nanofillers. Figure 9 shows the heats of 

adsorption and desorption of DMA from butan-2-one on to precipitated calcium 

carbonates and fumed silica.  

Figure 9 – To be inserted here 

The fumed silica shows again more energetic DMA adsorption relative to 

precipitated calcium carbonates (Figure 9). Furthermore, the heats of adsorption of 

DMA from butan-2-one are considerably lower that from heptane due to the stronger 

interactions between the polar solvent butan-2-one and the nanofillers surface. It is 

possible that the highest energy adsorption sites on the nanofillers may be blocked by 

the butan-2-one solvent molecules. In fact, the heats of desorption of DMA from butan-

2-one in both nanofillers are very low, likely due to the retention of the solvent on the 

more active sites of the nanofiller surface.

Substrate subtracted DRFTIRS spectra of precipitated calcium carbonates and 

fumed silica dried nanofillers after adsorption and desorption of DMA from butan-2-one 

are given in Figure 10. The lower levels of adsorption from butan-2-one are immediately 

apparent as the ester carbonyl of samples where DMA was adsorbed from butan-2-one 

is rather weak relative equivalent samples where DMA was adsorbed from heptane. 

DRFTIRS spectra show retention of DMA on the fumed silica surface and to a lesser 

extent on precipitated calcium carbonates surface. In both cases, the ester carbonyl 

band shifted to higher energy indicating at 1725 cm-1 and 1740 cm-1 which correspond 
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to fumed silica and coated precipitated calcium carbonate, respectively, and a lower 

energy at 1712 cm-1 to uncoated precipitated calcium carbonate. 

Figure 10 – To be inserted here 

Table 3 included the variation of the heats of adsorption of DMA in butan-2-one 

from heptane on to the nanofillers as a function of the nanofiller specific surface area. 

The heat of adsorption increases by increasing the specific surface area. 

Table 3 – To be inserted here 

4. Conclusions 
Dimethyl adipate (DMA) has been used as a model compound to simulate the 

polyester based polyol component of a thermoplastic polyurethane. The interaction of 

the latter with a range of nanofillers of diverse surface properties was studied by FMC, 

supported by DRFTIRS analysis of samples isolated from the FMC cell. Carbonyl 

groups of DMA interacted strongly with silanol groups on the fumed silica surface via 

hydrogen bond formation. The interaction of dimethyl adipate and the untreated surface 

of precipitated calcium carbonate was via weaker Van der Waals forces. Dimethyl 

adipate strongly adsorbed onto fumed silica and uncoated precipitated calcium 

carbonate, and slightly onto coated precipitated calcium carbonate and carbon black. 

Stearate treatment of precipitated calcium carbonate greatly reduced the strength of 

interaction with the DMA due to blockage of the surface adsorption sites. In general, 

higher surface area loading a high level of adsorption because of the nanofiller had 

more adsorption sites. Carbon black is an exception likely due to the less accessible 

surface groups and the presence of relatively important amount of micropores. 

On the other hand, butan-2-one (a common solvent for thermoplastic polyurethane 

adhesives) competed with DMA for adsorption on nanofillers surface, mainly fumed 

silica. In fact, the trend in adsorption/desorption of DMA and butan-2-one were similar in 

FMC experiments, but the butan-2-one was more easily desorbed from the nanofillers 

surfaces. Finally, the heats of DMA adsorption from butan-2-one were considerably 
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lower than from heptane owing to the stronger interactions between the solvent and the 

nanofillers by blocking the energy adsorption sites. 
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Table 1. Some properties of the nanofillers.
Nanofiller  Specific surface area 

[m2 g-1]
Mean particle sizea)

[nm]
Coated precipitated calcium 
carbonate

 19 70 

Uncoated precipitated 
calcium carbonate 

 20 70 

Carbon black  159 <20 
Fumed silica  225 12 

a) Data taken from the technical data sheets [26-28].

Table 2. Heats of adsorption/desorption of butan-2-one from heptane on to the 

nanofillers.

Nanofiller  Heat of adsorption 
[mJ/g-1]

Heat of desorption 
[mJ/g-1]

Coated
precipitated
calcium
carbonate

510 920 

Uncoated
precipitated
calcium
carbonate

1580 1610 

Fumed
silica 

27600 28700 
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Table 3. Heats of adsorption/desorption of dimethyl adipate from butan-2-one on to the 
nanofillers.

Nanofiller  Heat of adsorption 
[mJ/ g-1]

Heat of desorption 
[mJ/ g-1]

Coated
precipitated
calcium
carbonate

180 25 

Uncoated
precipitated
calcium
carbonate

530 90 

Fumed
silica 

8200 220 

FIGURE CAPTIONS 

Figure 1. TEM micrographs of coated precipitated calcium carbonate (coated PCC), 

uncoated precipitated calcium carbonate (uncoated PCC), carbon black (CB) and fumed 

silica.

Figure 2a. TGA thermograms of the nanofillers. 

Figure 2b. TGA thermograms of the nanofillers. 100-95 wt% region.

Figure 3. Heats of adsorption/desorption of dimethyl adipate from heptane on to the 

nanofillers.

Figure 4. Substrate subtracted DRFTIRS spectra of precipitated calcium carbonates 

and fumed silica samples isolated from the FMC cell after adsorption/desorption

experiments. The dimethyl adipate spectrum has been reduced to fit.

Figure 5. Heats of adsorption of dimethyl adipate from heptane on to the nanofillers as 

a function of the nanofiller specific surface area. 

Figure 6. (a) N2/77K adsorption-desorption isotherm of carbon black filler; (b) 0-0.9 

relative pressure region.

Figure 7. Heats of adsorption/desorption of butan-2-one from heptane on to the 

nanofillers.

Figure 8. Substrate subtracted DRFTIRS spectra of the nanofillers isolated from the 

FMC cell after butan-2-one adsorption/desorption experiments.
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Figure 9. Heats of adsorption/desorption of dimethyl adipate from butan-2-one on to the 

nanofillers: coated and uncoated precipitated calcium carbonate (PCC), fumed silica.  

Figure 10. Substrate subtracted DRFTIRS spectra of the nanofillers isolated from the 

FMC cell after adsorption/desorption experiments. The dimethyl adipate spectrum has 

been reduced to fit. 
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