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Abstract 

In recent years, sedentary behaviour (SB) has been identified as a health risk, independent 

of physical activity (PA). With the population becoming increasingly sedentary, detailed 

analysis of its effects is required. It is proposed that in the elderly, arguably the most 

sedentary age group, SB might adversely affect musculoskeletal health hence leading to 

poorer physical functioning, less independence and higher risk of falling. Hence, this thesis 

aimed to study the associations between SB and muscle-tendon properties in older adults 

(aged ≥60 years). To do so, a machine learning algorithm was applied onto thigh-mounted 

accelerometry data. Algorithm performance was acceptable for a wide spectrum of 

physical activity intensities, and its concurrent validity was good. Then, a cross-sectional 

study on 105 older adults included a 7-day habitual activity monitoring week, and assessed 

gastrocnemius medialis (GM) muscle-tendon morphology, architecture, function, fatigue 

indices, mechanical and material properties, and postural balance. From the accelerometer 

data, both total amount and patterns of SB were extracted. Analysis of these outcomes 

ranged from simple comparison of general SB levels to compositional data analysis. 

Multiple linear regression models showed a few associations linking SB with detrimental 

outcomes with GM muscle properties (dimension, strength and force). Similarly, 

isotemporal substitution yielded a limited number of significant potential relative effects 

of SB behaviour alterations. GM tendon mechanical, material and morphological properties 

also showed associations. Interestingly, negative associations between SB and postural 

balance in this group of older adults were also identified. Overall, this thesis presents novel 

data from detailed analyses on SB and intrinsic muscle-tendon properties in older adults. 

Regardless of the somewhat limited associations between sleep and PA-independent SB 

outcomes and GM muscle-tendon properties in older adults, the negative relationship with 

a task associated with habitual physical independence (i.e. postural balance) warrants 

further investigation of SB in elderly. 
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Chapter 1. Introduction 

Over the past years, time spent sitting has increased and still is increasing in modern 

societies. Sitting predominantly occurs at work, leisure or commuting. Although previous 

research showed that increased time spent sitting is negatively related to health (1,2), it 

was always assumed that sufficient levels of physical activity (PA) would counteract the 

adverse health effects. However, recent studies proved that, after controlling for PA, 

(prolonged) sitting has independent negative health effects (3–6). 

Interestingly, the health effects of sitting have been described as early as the 17th century, 

but it was not until the 21st century that the study of sitting and its relations to health 

became more popular (7–9). In addition, instead of investigating sitting exclusively, 

researchers are focussing on all inactive behaviour, including lying or reclining. In other 

words, any sedentary behaviour (SB) during waking hours. Formally, SB is defined as any 

awake behaviour characterised by an energy expenditure ≤1.5 metabolic equivalents 

(METs) while in a seated or reclined posture (10). It is important to note that SB is distinct 

from PA, and thus does not necessarily reflect a lack of PA (10). This latter is related to 

meeting the lifestyle recommendations as outlined in PA guidelines. Most of these 

guidelines, however, lack recommendations specific to SB. The few official guidelines that 

include a brief statement on SB , are vague in that they simply recommend to limit time 

spent in prolonged SB bouts (11). Unfortunately, exact information on duration or 

frequency is missing and in fact, evidence for/against any impact of habitual mobility 

patterns on a number of physiological health markers is scarce. 

To study SB, accurate assessment of SB is vital. According to the SITT formula (derived from 

the FITT formula to characterise PA and exercise), Sedentary behaviour frequency, number 

of Interruptions, Time (duration) and Type are valuable outcomes to be assessed (12). 

Generally, either subjective or objective methods can be used to study these variables. 

Although subjective methods are practical, easy to administer, inexpensive, useful in large-

scale studies and do not alter behaviour (13–15), most have obvious caveats, like bias and 

the tendency to under-report SB (13,16,17). SB appears to be more difficult to recall than 

PA, because of its habitual nature (18,19). The combination of underestimation and low 

precision is likely to reduce the ability to accurately detect dose-response relationships 

between self-reported SB and health outcomes (15). Nevertheless, self-reports might give 

a detailed picture of how SB time is spent (20,21). Thus, subjective measures only allow 
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assessment of Type from the SITT formula. Unlike subjective methods, objective techniques 

(such as accelerometry) provide reliable and valid, ambulatory and long-term measures of 

both PA and SB, and it overcomes many of the above-mentioned limitations of self-reports 

(6,13,22–24). By providing outcomes, such as total SB time, sedentary bout time, sedentary 

pattern, and number and frequency of breaks in SB for instance, accelerometry allows 

assessment of all SITT formula variables, except for Type. However, modern technological 

advancements do allow objective assessment of individual’s surroundings e.g. by using a 

body-worn time-lapse photography camera (25). Hence, objective methods (accelerometry 

in particular) are preferred in SB measurement. To optimise objective monitoring, a 

customised algorithm should be calibrated with respect to the population and 

activities/intensities under study (26), because variation in biomechanics and physiology 

can be substantially due to different movement patterns or metabolic demands. 

Previous literature shows that SB increases with age, resulting in older adults (aged ≥60 

years) being the most sedentary (Table 1.1) (20,27,28). Based on objective measures, older 

adults (aged ≥60 years) spend on average 8.5-9.6 hours/day sedentary (17,22,29), which 

equates to 65-80% of their waking day. Another accelerometer-based study showed that 

older adults spend approximately 80% of their awake time in SB which represents 8-12 

hours/day (30). Other studies suggest that 67% of the older age population is sedentary for 

>8.5 hours/day (31), and approximately 47% of them are sedentary >80% of their waking 

hours (32). Although, the amount of SB reported seems to be wide ranging in the current 

literature, it is nevertheless clear that SB is highly prevalent in older adults. Detailed 

analyses show that most of their SB is spent at home and on their own (25). It is also notable 

that, older adults engage in approximately 16 types of SB daily, with TV viewing, reading, 

eating meals, computer use and transportation being the most common (33). According to 

the World Health Organisation (WHO), the number of older adults will increase from 11% 

to 22% by 2050, meaning there will be 2 billion people aged 60 years or older worldwide 

(34), with 20% aged ≥80 years (34). Given all the above, it is surprising that SB has only been 

studied limitedly in the elderly (4,21,35). 

Despite the limited number of SB studies in older adults, evidence is growing on the health 

effects of SB in later life. However, a recent systematic review by Rezende et al. (30) 

suggests that to date evidence in older adults is inconclusive. Due to the limited quality of 

available studies, only scarce evidence exists for all the reported health outcomes 

associated with SB in elderly, except for the confirmed evidence on a previously established 
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dose-response relationship between SB and all-cause mortality (Figure 1.1) (30). Until now, 

the exact underlying mechanisms identifying the possible causal relationship between SB 

and adverse health outcomes remain uncertain and are therefore a research priority (5,8). 

Generally, most SB-related research has focused on cardiovascular and -metabolic 

outcomes, while other outcomes such as musculoskeletal health have received less 

attention. 

During ageing musculoskeletal health deteriorates, this is not only marked by a loss of bone 

mass (osteopenia, osteoporosis), but also muscle mass, strength and function (termed 

sarcopenia), which in itself leads to an increased risk of falls and disability, a loss of 

independence, morbidity and increased mortality (36–40). Further, with ageing fatigability 

increases, which is an important measure of motor performance, as it is associated with a 

further decline in strength and power in a negative downwards spiral (41). Moreover, 

increased fatigue-induced variability of force or power is thought to interfere with daily 

activities, especially in the elderly (41). To date, the contribution of SB to sarcopenia and 

its determinants is still uncertain (5). However, SB in older adults, through muscle disuse, 

may accelerate sarcopenia (42). Since SB is also a driver for obesity (42), and adipose tissue 

is found to have a catabolic effect on muscle tissue (5), a combination of both sarcopenia 

and obesity, or sarcopenic obesity, results in an increased risk of disablement and frailty in 

older adults (43). In addition to muscular alterations, age-related tendon changes (i.e. 

increased tendon compliance) result in decreased postural balance, and as such is 

associated with mobility and independence loss in older adults due to the inherent fear 

linked to their higher falls risk (44). By continual under-loading of the tendon, SB is 

proposed to accelerate this tendon ageing process. Reports show that each year 28-35% of 

people aged 65 years or older experience a mild to severe (and even morbid) injurious fall, 

with the same being true in 32-42% of elderly aged >70 years (45). As a result of falling, 

older adults may exhibit both physical and psychological consequences (45). This makes 

falling in elderly not only a challenge for health, but also for social care resources. Indeed 

annual costs from fall-related injuries in the EU are estimated to be ≥£21.7 billion (≥€25 

billion) and expected to exceed £39.1 billion (€45 billion) by the year 2050 (46). 

Generally, days are composed of limited number of (in)activities which, apart from SB, 

involve sleep and PA. Although these phenomena cluster together, they are partly 

independent and it is becoming clear that so are their effects, including on musculoskeletal 

health (47). As discussed above, SB increases with ageing and has adverse effects on 
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muscle-tendon outcomes (5,27,28,42). Levels of sleep and PA, however, decrease with 

ageing and might have opposed associations with musculoskeletal health (47). Whilst, the 

positive associations of PA with human muscle-tendon properties are well-known, 

evidence for sleep is only limited. Nevertheless, sleep was identified as a risk factor for 

sarcopenia in older adults (48,49). Moreover, Piovezan et al. (50) have suggested that 

anabolic hormone cascades are inhibited, while catabolic pathways are enhanced in the 

skeletal muscle, due to age-related sleep problems. Given that sleep, SB and PA are partly 

co-dependent within a daily composition and (potentially) have independent effects on 

musculoskeletal health, it is important to consider all when studying the true associations 

between SB and muscle-tendon properties in elderly. 

The combination of facts including western population ageing, elderly being the most 

sedentary age group, SB potentially accelerating the ageing-related decline in skeletal 

muscle-tendon properties and resultant postural balance (independent of sleep and PA), 

the scarcity of evidence of SB effects on musculoskeletal health and postural balance 

stability in elderly, highlights the timeliness of studying the direct impact of extent and/or 

pattern of engagement of this mobility behaviour in older adults (Figure 1.2). 
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Table 1.1. Sedentary behaviour across different age groups as assessed with accelerometry. 

Matthews et al. (28) 

 Age groups 

16 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 85 

Male 7.9 (0.1) 7.3 (0.2) 7.2 (0.2) 7.6 (0.1) 7.9 (0.1) 8.8 (0.1) 9.5 (0.1) 

Female 8.1 (0.1) 7.7 (0.1) 7.3 (0.1) 7.5 (0.1) 7.8 (0.1) 8.1 (0.1) 9.1 (0.1) 

Martin et al. (27) 

 
Age groups 

20 - 39 40 - 59 60 - 69 ≥70 

Male 7.9 (0.1) 8.5 (0.1) 9.4 (0.2) 10.3 (0.1) 

Female 7.9 (0.1) 8.3 (0.1) 8.7 (0.1) 9.8 (0.1) 

Values represent mean (standard error (SE)) hours/day (adjusted for monitor-wearing time where 

appropriate). 

 

Figure 1.1. Overview of identified and suggested associations between sedentary 

behaviour and (health) outcomes in older adults as reported in literature. 

+, positive association; -, negative association; Solid lines represent identified associations; Dashed lines 

represent suggested associations; Associations in bold are confirmed by a systematic review from Rezende 

et al. (30), aOutcome depends on the type of assessed sedentary behaviour (e.g. television viewing, computer 

use or reading). 
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Figure 1.2. The association between age, muscle-tendon properties and postural balance, 

and the (mediating) role of sleep, sedentary behaviour, physical activity and other factors. 

The dashed box and unknown associations (?) indicate the main foci of the thesis. 

 

Thesis aim 

The aim of the thesis is to understand how sedentary behaviour relates to musculoskeletal 

health and postural balance in older adults. 

 

Thesis objectives 

To realise the above aim, the thesis has the following objectives 

- To develop an algorithm for assessment of SB and PA levels (i.e. habitual mobility 

patterns) in relatively healthy community-dwelling older adults (hereafter simply 

referred to as older adults) using thigh-mounted triaxial accelerometry; 

- To monitor sleep, SB and PA levels in older adults for seven continuous days; 

- To assess size, architecture, function and fatigability of the gastrocnemius medialis 

muscle in older adults and how this relates to habitual mobility patterns; 

- To assess mechanical, material and morphological properties of the gastrocnemius 

medialis tendon in older adults and how this relates to habitual mobility patterns; 

Sleep 

- - 

Postural 
balance 

- 

? 

Age 

Physical 
activity 

Sedentary 
behaviour 

Muscle-
tendon 

properties 

Covariates 

+ 

+/- 

- - 

? 



7 

- To assess postural balance in older adults and how this relates to habitual mobility 

patterns. 

Hypotheses 

Related to the aim and objectives of this thesis, it is hypothesised that: 

- A thigh-mounted triaxial accelerometer algorithm for the assessment of SB and PA 

levels in older adults is valid and robust; 

- SB increases with ageing in older adults, while PA decreases; 

- Size, architecture, function and fatigability of the gastrocnemius medialis muscle in 

older adults are negatively associated with SB (amount and pattern), irrespective of 

sleep and PA engagement; 

- Mechanical, material and morphological properties of the gastrocnemius medialis 

tendon in older adults are negatively associated with SB (amount and pattern), 

irrespective of sleep and PA engagement; 

- Postural balance in older adults is negatively associated with SB (amount and 

pattern), irrespective of sleep and PA engagement. 

 

Thesis outline 

Part I 

The first part of the thesis concerns the development and (concurrent) validation of an 

accelerometer algorithm to classify activity intensities in an elderly sample population. The 

studies included in Part I were performed at both the Manchester Metropolitan University, 

UK and Katholieke Universiteit Leuven, Belgium, and the results are presented in the 

following chapters (Figure 1.3): 

• Chapter 2 describes the development and comparison of cut-off point and machine 

learning algorithms; 

• Chapter 3 describes the concurrent validity of the best performing algorithm from 

chapter one. It is compared against other activity monitors and their proprietary 

algorithms. 
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Part II 

In part II, the independent associations of SB with different muscle-tendon properties and 

postural balance in older adults are investigated. The results come from a study performed 

at the Manchester Metropolitan University, UK, and are presented in the following 

chapters (Figure 1.3): 

• Chapter 4 describes the characteristics and the 7-day monitored sleep, SB and PA 

levels of the elderly studied in the next chapters; 

• Chapter 5 describes relationships of SB with size and architecture of the 

gastrocnemius medialis muscle. The chapter also includes sleep and PA data to 

compare the magnitude of modulation on these structural outcomes, where 

appropriate; 

• Chapter 6 describes relationships of SB with function and fatigability of the 

gastrocnemius medialis muscle. The chapter also includes sleep and PA data to 

compare the magnitude of modulation on these functional outcomes, where 

appropriate; 

• Chapter 7 describes relationships of SB with (i) mechanical, material and 

morphological properties of the gastrocnemius medialis tendon and (ii) postural 

balance. The chapter also includes sleep and PA data to compare the magnitude of 

modulation on the tendon and postural balance outcomes, where appropriate. 

The thesis concludes with a chapter giving an overview of the main findings, limitations and 

considerations for future research. 
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Figure 1.3. Thesis structure and study samples. 
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Chapter 2. Performance of thigh-mounted triaxial accelerometer algorithms 

in objective quantification of sedentary behaviour and physical activity in 

older adults 

Introduction 

To evaluate the health effects of sedentary behaviour (SB) and physical activity (PA), 

including their role in healthy ageing, it is important to accurately and objectively monitor 

these aspects of habitual mobility or lack thereof (51). Motion-sensing technologies using 

accelerometers are typically used in mobility monitoring since they are pertained to be 

objective, and measurements can be carried out over a number of days (6,51–55). The 

concept of accelerometry to assess SB and PA is derived from Newton’s Second Law, which 

gives the interaction between force, mass and acceleration by the formula: force = mass * 

acceleration (56). In the context of human movement, this formula can be expressed as: an 

activity characterised by moving a mass (i.e. body (segment)) at changing velocity over time 

(=acceleration). This acceleration results from forces generated by (and on) the muscles at 

the expense of energy (54). Several studies have shown positive linear relationships 

between energy expenditure (EE) and movement acceleration in people of different ages, 

while performing activities under standardised test conditions with the accelerometer 

close to the centre of mass (57–62). This allows EE to be estimated from acceleration signals 

and the classification of habitual daily activity as sedentary, light and moderate-to-

vigorous, by using, until recently, cut-off point models. To illustrate this, when presenting 

the amount of movement acceleration as counts per minute, these models will classify an 

outcome of <100 as sedentary, 100-1951 as light and ≥1952 as moderate-to-vigorous (51). 

However, with the preferred accelerometer mounting location shifting away from centre 

of mass sites such as the hip or waist (63–65), towards wrist-worn devices for the most 

part, the premise of a linear relationship between EE and movement acceleration and thus, 

the use of cut-off point models has become questionable. This commercially-led shift forces 

researchers to focus on posture detection only (i.e. the ‘Sedentary Sphere’ (66)) or to start 

looking into other, more sophisticated and complex, methods to analyse acceleration 

signals by e.g. machine learning (35,67,68). Machine learning is already used for activity 

recognition and has only recently been explored in PA research (35,68). By focusing on 

patterns and regularities, pattern recognition for example, can handle complex and non-

linear data (51,69,70), potentially providing opportunities for SB and PA research (71). 
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Although some experts have advised to stop developing cut-off point algorithms and start 

using machine learning (72,73), to date the use of cut-off points remains preferred for 

intensity classification (24). One reason to continue using cut-off point models lies in the 

complex nature of machine learning, and the ease to understand and widespread adoption 

of cut-off points (26). Although proprietary cut-off points are not necessarily well 

understood either, the desire to compare results with previous cut-off point-based studies 

could be another reason. Notwithstanding, studies have already shown machine learning 

to outperform traditional cut-off point algorithms for activity recognition not only in 

healthy adults, but also in niche populations such as the young or the overweight/obese 

(51,71). However, validation of machine learning needs to be confirmed for all intended 

end-users/study populations, e.g. the elderly, prior to general adoption (54). Rosenberg et 

al. (74) recently showed high levels of accuracy and concurrent validity using Random 

Forest classifiers in older women. 

The decision of researchers to choose a simpler, but less accurate method over a more 

challenging and accurate one for activity intensity classification, can be justified when using 

thigh-mounted triaxial accelerometry. Since the thigh is relatively close to the centre of 

mass, cut-off point models might still be valid in this situation, especially when adding 

posture detection to these models, which then enables distinguishing between sitting or 

lying down and standing for instance. Whilst the ActivPAL inclinometer is a good example 

of a valid thigh-mounted activity monitor (64,66), it uses black-boxed proprietary 

algorithms, thereby hampering progress in thigh-mounted accelerometer algorithm 

development. To date cut-off point models for thigh-mounted accelerometers are 

understudied, hence further investigation and detailed comparison with machine learning 

is needed. 

All algorithms require value calibration and the eventual utility of an algorithm depends on 

the specific activities and intensities included in the calibration study (26). To ensure high 

accuracy of the algorithm in the general population, it is recommended to perform the 

calibration on a heterogeneous sample, matching the population of interest, and including 

a broad range of common activities ranging from sedentary to vigorous intensity 

(26,68,72,75). Algorithm performance is generally expressed in terms of overall accuracy 

and when it reaches ≥80% for example, an algorithm is deemed acceptable (35). However, 

even in possession of the overall (i.e. group) accuracy, algorithm performance on an 

individual (i.e. single end-user) level, remains unknown. Theoretically, performance can be 
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unacceptable in some individuals where algorithm robustness is lacking. If algorithm 

inaccuracy disproportionately affects some demographic groups over others, it may lead 

to misinterpretation of associations between either SB or PA and health. Thus, it is 

important to check robustness and benchmark end-user-specific performance of 

accelerometer algorithms developed on heterogeneous pooled-data sets prior to applying 

them to daily-life data. To date, evidence regarding this type of triangulation is sparse. 

The main aim of the present chapter was to compare between traditional cut-off points 

and machine learning, for the provision of the best performing algorithm to classify SB and 

PA in a heterogeneous population of older adults using thigh-mounted triaxial 

accelerometry. It was hypothesised that machine learning outperforms cut-off point based 

algorithms through being robust for individual’s physiological and non-physiological 

characteristics, more accurate and showing acceptable accuracies for all activity intensities. 

To test this hypothesis, this chapter (i) examines overall balanced accuracy and robustness 

of four heterogeneous pooled-data algorithms, (ii) compares participant-specific balanced 

accuracies between all four algorithms, and (iii) benchmarks both overall and participant-

specific balanced accuracies of the algorithms. 

 

Materials and methods 

Participants 

Forty healthy older adults (73.5 (6.3) years; 50% female) participated in this study (Table 

2.1). Participants were excluded if they were: <60 years of age, terminally ill or receiving 

cancer treatment, diabetic, suffered from any central nervous system disease or condition, 

had a heart attack in the past 12 months or any currently unstable cardiovascular condition, 

had any pulmonary disease or condition that did not allow expired gas sampling, recently 

(within the past three months) injured or had surgery on either of their lower limbs, were 

not independently mobile or at least not able to complete a laboratory-based activity 

protocol without a (walking) aid, had been advised by their physician not to take on any 

physical activity or exercise, or were not competent to make an informed decision about 

study participation. 

This study was approved by the local ethics committee of the Manchester Metropolitan 

University, UK. All participants gave written informed consent prior to their participation in 

this study. 
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Table 2.1. Study sample baseline characteristics. 

Age (years) 73.5 (6.3) 

Sex 20 Female 20 Male 

Body mass (kg) 72.2 (13.7) 

Body height (m) 1.67 (0.10) 

BMI (kg∙m-2) 25.6 (4.3) 

Prandial state 20 Fasted* 20 Non-fasted* 

RVO2 (ml∙kg-1∙min-1) 2.82 (1.00) 

Prosthetic lower limb joints 2 Yes 38 No 

Cardiovascular medication 20 Yes 20 No 

Physical fitness levelno cardiovascular meds 9 Less than good 11 Good or better 

Preferred walking speed (km∙h-1)no prosthetic lower limb joints 3.7 (1.0) 

Falls risk 31 Low 9 Medium or high 

Values represent arithmetic mean (SD) when normally distributed data, else median (IQR). SD, standard 

deviation; IQR, interquartile range; BMI, body mass index; RVO2, resting oxygen consumption. *See details in 

the text below. 

Baseline characteristics 

From each participant, the following baseline characteristics were recorded: age, sex, body 

mass, body height, body mass index (BMI), prandial state, resting oxygen consumption 

(RVO2), presence of prosthetic lower limb joints, use of heart rate controlling medication, 

physical fitness level, preferred walking speed and risk of falling (Table 2.1). Age (years), 

sex (female/male), prandial state (fasting/non-fasting), presence of prosthetic lower limb 

joints (yes/no) and use of cardiovascular (heart rate controlling) medication (yes/no) was 

determined through a health questionnaire on the day of testing. Body mass was assessed 

in kilograms using a digital body mass scale (seca GmbH & Co. KG., Hamburg, Germany) and 

body height was measured in centimetres using a stadiometer (Holtain Ltd., Crymych, UK). 

Both measures were determined up to the closest decimal with the participant barefoot 

and wearing light clothing only. The body mass index (BMI) was calculated by dividing body 

mass by squared body height (kg∙m-2). RVO2 (ml∙kg-1∙min-1; STPD conditions: standard 

temperature and dry gas at standard barometric pressure) was assessed while sitting 

quietly on a chair for four minutes, together with resting heart rate (beats per minute). 

Both RVO2 and resting heart rate were expressed as the arithmetic mean of the readings 

taken during the third and fourth minute of sitting. To increase the accuracy of RVO2 

baseline estimates, only data from fasted participants were used. Since resting heart rate 

served to estimate baseline physical fitness levels, participants who were on heart rate 
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controlling medication were not taken into account. Classification of the physical fitness 

levels was done using a standard resting heart rate table (76). Preferred walking speed 

(km∙h-1) was based on the self-selected speed during treadmill walking in participants 

without prosthetic lower limb joints. Risk of falling (low/medium/high) was determined 

using the falls risk assessment tool (FRAT) (77). 

Instrumentation 

During the laboratory-based activity protocol participants were equipped with a number of 

instruments. First, two GENEActiv Original triaxial accelerometers (Activinsights Ltd., 

Kimbolton, UK) with range ±8 g (1 g = 9.81 m∙s-2) and weighing 16 grams each, were fitted 

bilaterally on the anterior mid-thigh (at 50% of the distance between trochanter major and 

lateral femur epicondyle). Both accelerometers were mounted using Tegaderm™ 

transparent film dressing (3M Health Care, St. Paul, MN, USA) and set at a sample rate of 

60 Hz. This frequency respects the Nyquist-Shannon sampling theorem, which states that 

the sample frequency should at least be twice the maximum frequency at which sampling 

is required. Since essentially all human body movement occurs below 20 Hz, the sampling 

rate should be ≥40 Hz (78,79). Orientation of the accelerometer axes during standing was: 

X = mediolateral, Y = vertical and Z = anteroposterior. The devices were used as calibrated 

by the manufacturer. GENEActiv was chosen as the brand of accelerometer, not only for 

this chapter but the whole thesis, because of its validity and reliability (80), technical 

features (e.g. triaxial), ease of access to raw data output, design for 24-hour wear 

(waterproof), ability to be worn in various body positions and unit costs compared to 

leading market competitors (£160). Next, participants wore a Polar T31 chest belt to 

monitor heart rate, which would then remain in place for the entirety of the test protocol 

(Polar Electro Oy, Kempele, Finland). To estimate energy expenditure during the activities 

(see below) we used indirect calorimetry. Expired gas samples were collected per activity 

via a standard mouthpiece and two-way T-shape non-rebreathing valve (2700 series) (Hans 

Rudolph Inc., Kansas City, MO, USA) into a Douglas Bag (DB) (Plysu Industrial Ltd., Milton 

Keynes, UK). Expired gas sample concentrations of oxygen and carbon dioxide inside the 

DB were determined using a Servomex 5200 gas analyser (Servomex Group Ltd., 

Crowborough, UK). The gas analyser was calibrated prior to each participant’s testing 

session. The total volume of expired gas inside the DB was analysed using a calibrated dry 

gas meter (Harvard Apparatus Ltd., Edenbridge, UK). 

Laboratory-based activity protocol 
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Participants were asked to perform ten laboratory-based activities of daily living which 

were assumed to be representative for older adults. Half of the participants (N=20, 50% 

female) were instructed to arrive in a 10-hour overnight fasted condition, allowing to drink 

water up to a maximum of 250 ml only, while the other half received no instructions. The 

protocol started with 20 minutes rest in a supine position. Then, the following ten 

standardised activities of daily living (four minutes each) were executed in the specified 

order: (i) lying supine on a treatment bed, (ii) sitting on a chair, (iii) standing upright, (iv) 

shuffling sideways, (v) free over-ground walking at self-selected speed, (vi) cycling on an 

ergometer at a preferred pace (Monark Exercise AB, Vansbro, Sweden), (vii) treadmill 

walking at 3.2 km∙h-1, (viii) treadmill walking at self-selected speed, (ix) treadmill walking at 

self-selected speed wearing a weighted vest (15% of body mass) and (x) brisk treadmill 

walking at a maximum speed of 6.5 km∙h-1. All treadmill walking was performed on a slat-

belt treadmill (Woodway USA Inc., Waukesha, WI, USA). The first two minutes of each 

activity were used to reach a steady state in EE. During the second half of the activities, two 

one-minute expired gas samples were taken. To prevent any carry-over effects of fatigue, 

participants were seated between the activities until their heart rate returned to resting 

level. The total duration of the protocol was approximately 90 minutes. A standard digital 

video camera was time-synchronised and used to record the entire testing session, which 

served as a criterion measure and allowed direct observation of all activities post laboratory 

protocol completion. 

Accelerometer data pre-processing & feature selection 

Analysis of the triaxial accelerometer data required multiple steps. Firstly, raw acceleration 

signals per axis were filtered twice using a zero-phase fourth order low pass Butterworth 

filter: (i) a cut-off frequency of 20 Hz was applied to remove any noise and (ii) a cut-off 

frequency of 0.5 Hz was used to split the noise-filtered signal into static and dynamic 

acceleration signals, allowing determination of monitor orientation and movement (51,81). 

Secondly, two one-minute periods (identical to the gas sampling minutes) of both static 

and dynamic acceleration signals per axis were extracted per performed activity. Next, 

twenty time- and frequency domain based features per non-overlapping 10-s windows 

were determined per axis for each of the samples extracted from both the dynamic and 

static acceleration signals. These time- and frequency domain based features included: 

arithmetic mean, standard deviation (SD), minimum, maximum, median, interquartile 

range (IQR), skewness, kurtosis, root mean square, cross-correlation, roll, pitch, yaw, peak-
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to-peak amplitude, peak intensity, zero-crossings, lag one autocorrelation, dominant 

frequency, amplitude of dominant frequency and entropy. Also, two resultant vectors were 

calculated over the three axes, one using arithmetic means and the other SDs. (Please see 

Liu et al. (82) for the applied formulas.) All data pre-processing was done using R 3.2.5 (83). 

After data pre-processing, the 10s-window features were used to model four algorithms 

based on methods using either cut-off points or machine learning. Three algorithms 

including posture classification (based on the 10s-window arithmetic mean static 

acceleration of the Y-axis (static Ymean)) were derived from cut-off point analyses using 

dynamic acceleration data. The first algorithm used the sum of vector magnitudes (SVM) 

as an outcome, 

𝑆𝑉𝑀 =  ∑ √𝑥𝑑
2 + 𝑦𝑑

2 + 𝑧𝑑
2

600

𝑑=1

 

where d represents the data-point number within the 10s-window. The second algorithm 

used summation of the time integrals of the moduli of the triaxial accelerometer signal 

(IMA), where 

𝐼𝑀𝐴 =  ∫ |𝑥|
𝑡0+𝑇

𝑡=𝑡0

𝑑𝑡 + ∫ |𝑦|
𝑡0+𝑇

𝑡=𝑡0

𝑑𝑡 + ∫ |𝑧|
𝑡0+𝑇

𝑡=𝑡0

𝑑𝑡 

where T represents 10 seconds. The last cut-off point algorithm was adapted from our 

previous postural balance studies that focus on total movement (TM) using force plate 

balancing tasks (44), which is calculated as 

𝑇𝑀 =  √𝑥𝑆𝐷
2 + 𝑦𝑆𝐷

2 + 𝑧𝑆𝐷
2 

where SD represents the 10s-window standard deviation of the dynamic acceleration signal 

per axis. For the only machine learning algorithm we used Random Forest in this chapter, 

which is known for its high performance (68,84–86). Briefly, Random Forest is an ensemble 

method using the bootstrapping of multiple decision trees to predict an outcome. Prior to 

developing a Random Forest model, factor analyses were performed to select optimal 

features for the Random Forest classifier. Firstly, pairwise correlations between features 

were studied, removing either one of the factors when r >0.75, then feature selection was 

performed in R 3.2.5 (83) using the Boruta package (87). Eventually, 55 features were 

selected for the Random Forest model. 

Activity intensity classification 
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To classify activity intensities, we used metabolic equivalent (MET) values. These values 

were calculated per participant for all the one-minute expired gas samples taken during 

the activity protocol. Due to individual differences, this was done by dividing the VO2 (in 

ml∙kg-1∙min-1) during a one-minute activity sample by the participant’s measured RVO2. 

Thus, 

𝑀𝐸𝑇1 𝑚𝑖𝑛 𝑎𝑐𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 =  
𝑉𝑂2−1 𝑚𝑖𝑛 𝑎𝑐𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑉𝑂2−𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡
 

Intensity classification for each one-minute sample (6 x 10s-windows) was done by 

checking (i) the MET value and (ii) the participant’s posture using the video recording. 

Practically, when the one-minute sample’s MET value was ≤1.5, the laboratory-based 

activity was classified as either sedentary activity or standing, depending on the posture. 

Classifications of light-intensity PA (LIPA) and moderate-to-vigorous PA (MVPA) were based 

on the MET value only, meaning if >1.5 and <3 then an epoch was classified as LIPA, while 

epochs with MET values ≥3 were classified as moderate-to-vigorous PA (MVPA) (54). 

Intensity classification of the laboratory-based activities per this system represented the 

reference classification used for algorithm development and cross-validation. 

Algorithm development and cross-validation 

The initial step in cut-off point based algorithm development was to create a scatterplot in 

MS Office Excel 2016 (Microsoft Corp., Redmond, WA, USA) using the 10s-window data, 

with either SVM, IMA or TM values on the horizontal axis and MET values on the vertical 

axis. Next, trend line-analysis was performed and the line-of-best fit (i.e. showing the 

highest proportion of explained variance (R2)) was chosen. The calculated cut-off points for 

SVM, IMA and TM represented MET values of 1.5 and 3, which allow classification of activity 

intensities per 10s-windows based on SVM, IMA and TM values, either or not combined 

with posture detection. Briefly, these cut-off point algorithms only use two steps in their 

classification structure: (i) comparing SVM, IMA or TM values with the calculated cut-off 

points and (ii) if necessary, posture detection (Table 2.2). 

Random Forest model development on 10s-window features was performed in R 3.2.5 (83) 

using the randomForest package (88). The 10s-window reference classifications of the 

laboratory-based activities were used to train the Random Forest classifier (supervised 

machine learning) with the number of trees set to 100. This number was derived from out-

of-bag error analyses (Figure 2.1). 
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For this chapter, pooled-data algorithms were developed using the leave-one-subject-out 

method. This means that the 10s-window data of N=39 (training sample; on average 1427 

(8.6) data points for SB, 620 (7.4) for standing, 761 (19.9) for LIPA and 2937 (35.5) for 

MVPA) was used to develop the pooled-data algorithms, while the data of N=1 was used 

to cross-validate the algorithms. With N=40 this cross-validation procedure was repeated 

40 times with another participant to be left out each iteration. Based on the performed 

10s-window cross-validations, confusion matrices were created per participant per 

algorithm. Eventually, these matrices were used to determine balanced accuracy per 

intensity for each algorithm from two perspectives: (i) participant-specific and (ii) overall 

(all participants’ confusion matrices summed). 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑁)

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑁) +  𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑁)
∗ 100 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (%) =
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑁)

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑁)  +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑁)
∗ 100 

where N represents the number of cases. Apart from the cross-validation, all algorithms 

were also tested on their own training samples to check for overfitting. Balanced accuracies 

of ≥80% were considered acceptable (35). 

Table 2.2. Cut-off point algorithm classification scheme. 

Rules Classification 

1 If MET value ≤1.5 and not upright, then: Sedentary 

2 Else: If MET value ≤1.5 and upright, then: Standing 

3 Else: If MET value >1.5 and <3, then: LIPA 

4 Else: MET value ≥3, then: MVPA 

MET, metabolic equivalent; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical 

activity. 
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Figure 2.1. Out-of-bag error analyses for Random Forest modelling. 

Statistical analyses 

Prior to summarising or testing data, we checked its distribution for normality. Since we 

had a data sample of N=40, the Shapiro-Wilk test was used for this purpose. Baseline 

characteristics are presented as the arithmetic mean (SD) (or median (IQR)). To test 

robustness of the four pooled-data algorithms we assessed if continuous baseline 

characteristics were correlated with balanced accuracy values (either Pearson or Spearman 

correlation). Differences in balanced accuracy values between categories of categorical 

baseline characteristics were tested with the independent T-test (or Mann-Whitney U test). 

For the comparison between the four pooled-data algorithms the one-way ANOVA 

repeated-measures test (or the Friedman test) was performed. Balanced accuracy levels 

from these analyses are reported as arithmetic mean (95%-confidence interval (95%-CI) (or 

median (95%-CI)). In case multiple comparisons were necessary for hypothesis testing, 

either Bonferroni or Sidak correction was used to adjust P-values. 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑃 − 𝑣𝑎𝑙𝑢𝑒𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 = 𝑃𝑣𝑎𝑙𝑢𝑒 ∗ 𝑘 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑆𝑖𝑑𝑎𝑘 = 1 − (1 − 𝑃𝑣𝑎𝑙𝑢𝑒)𝑘 

where k is the number of comparisons. For the current chapter, P-values were considered 

statistically significant when P <0.05. 
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With data variability, even within-subject under controlled conditions, and variance being 

one of the components for algorithm prediction errors, detailed data reliability checks were 

deemed highly important. Since 24 x 10s-windows bilateral accelerometer data and two 

one-minute expired gas samples were collected per laboratory-based activity, reliability of 

both main triaxial accelerometer (static Ymean, SVM, IMA & TM) and oxygen consumption 

data was determined by calculating a coefficient of variation (CV) per activity per 

participant. 

𝐶𝑉 (%) =
𝑆𝐷𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦/𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦/𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡
∗ 100 

where SD represents standard deviation. To check for consistency across the activity 

protocol, all CVs were checked for correlation with MET values. If a correlation was found, 

data dispersion was determined (SD or IQR). Finally, depending on the distribution, either 

the arithmetic mean (95%-CI) or median (~95%-CI) was calculated over the moduli of all 

CVs per outcome variable to get sample-based reliability measures. In this chapter, a CV of 

<10% is considered acceptable. 

All statistical analyses were executed using IBM SPSS Statistics for Windows, version 23.0 

(IBM Corp., Armonk, NY, USA). 

 

Results 

Data reliability 

Relationships with MET values were only found for the CVs of accelerometer outcomes 

SVM and static Ymean, ρ -0.105 (P=0.046) and ρ -0.382 (P<0.001) respectively (Figure 2.2). 

IQRs for these variables were between 3.4% and 8.5% (SVM), and between 0.4% and 2.1% 

(static Ymean). The sample-based CVs of static Ymean, SVM, IMA and TM were 0.8% (0.7%, 

1.0%), 5.5% (5.1%, 6.0%), 5.6% (5.2%, 6.2%) and 6.2% (5.7%, 7.0%) respectively. CVs of 

oxygen consumption data collected using the DB method also showed a negative 

relationship (ρ -0.495 (P<0.001)) with MET values. As shown by the IQR, VO2 CVs were 

typically between 2.2% and 7.5%. The sample-based CV of the DB method was 4.4% (3.4%, 

5.3%). For all variables, the CVs within the IQR were <10%. 
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Figure 2.2. Reliability per intensity per outcome. 

CV, coefficient of variation; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical 

activity; Static Ymean, arithmetic mean static vertical acceleration; SVM, sum of vector magnitudes; IMA, 

integrals of the moduli of acceleration signals; TM, total movement; VO2, oxygen consumption. Error bars 

represent 95%-confidence intervals. Dashed lines show correlations between coefficients of variation and 

intensities per outcome. 

Overall balanced accuracy 

The confusion matrix shows that all algorithms classified sedentary activity with overall 

balanced accuracies of ≥99.5% (Table 2.3). Sensitivity and specificity values were ≥99.2%. 

Classification of standing was ≥95.5% accurate in all four models. Sensitivity was 92.5% in 

the cut-off point algorithms and 92.0% for Random Forest, while specificity was equal over 

the four algorithms (99.1%). 

Most variation in overall balanced accuracies was found for LIPA, ranging from 74.3% (TM) 

to 80.6% (Random Forest). The confusion matrix revealed that the models’ sensitivity was 

only 57.4%, 60.1%, 51.0% and 63.7%, for SVM, IMA, TM and Random Forest respectively. 

On the other hand, specificity values were ≥97.5% for all algorithms. 

Finally, overall balanced accuracies of ≥93.3% were found for MVPA classification. 

Sensitivity was ≥97.3% in all models, while specificity varied from 88.8% (TM) to 92.9% 

(Random Forest). 

The overall balanced accuracies per intensity per algorithm were comparable between the 

cross-validation and training sample, except for Random Forest (Table 2.3). Standing, LIPA 

and MVPA showed overall balanced accuracies of 100.0% on the training sample against 

95.5%, 80.6% and 95.1% during cross-validation.
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Table 2.3. Algorithm cross-validation confusion matrix. 

Cross-validation 
Individual 

results 

Training 

sample 

Method Intensity 
Reference 

Sensitivity (%) Specificity (%) 
Balanced 

accuracy (%) 

Acceptable 

level (%) 

Balanced 

accuracy (%) Sedentary Standing LIPA MVPA 

SVM 

Sedentary 1463 0 12 0 99.9 99.7 99.8 100.0 99.8 

Standing 0 588 48 0 92.5 99.1 95.8 92.5 95.8 

LIPA 1 48 448 61 57.4 97.8 77.6 62.5 78.0 

MVPA 0 0 272 2951 98.0 90.6 94.3 100.0 94.4 

IMA 

Sedentary 1463 0 12 0 99.9 99.7 99.8 100.0 99.8 

Standing 0 588 48 0 92.5 99.1 95.8 92.5 95.8 

LIPA 1 48 469 66 60.1 97.8 78.9 65.0 79.2 

MVPA 0 0 251 2946 97.8 91.3 94.5 100.0 94.6 

TM 

Sedentary 1454 0 12 0 99.3 99.7 99.5 100.0 99.5 

Standing 0 588 48 0 92.5 99.1 95.8 92.5 95.8 

LIPA 10 47 398 67 51.0 97.6 74.3 57.5 74.5 

MVPA 0 1 322 2945 97.8 88.8 93.3 100.0 93.3 

Random 

Forest 

Sedentary 1463 0 34 0 99.9 99.2 99.6 100.0 100.0 

Standing 0 585 48 0 92.0 99.1 95.5 92.5 100.0 

LIPA 1 47 497 82 63.7 97.5 80.6 80.0 100.0 

MVPA 0 4 201 2930 97.3 92.9 95.1 100.0 100.0 
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SVM, sum of vector magnitudes; IMA, integrals of the moduli of acceleration signals; TM, total movement; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical 

activity. Bold values represent the number of correct classifications. 
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Robustness 

Random Forest was the only algorithm not showing any changes or differences in balanced 

accuracies per intensity for all individual’s baseline characteristics. The cut-off point 

algorithms did show changes for a single baseline characteristic each, namely body height. 

More specifically, balanced accuracies for standing were positively correlated with body 

height (all three algorithms ρ 0.392 (P=0.047)). 

Algorithm comparison 

Overall, differences in participant-specific balanced accuracies between algorithms were 

found for one intensity only (Figure 2.3). More specifically, participant-specific balanced 

accuracies for LIPA classification were different in three occasions, where SVM, IMA & 

Random Forest appeared superior over TM. The differences found were 4.1% (1.5%, 6.6%) 

(P=0.006), 6.3% (2.6%, 10.0%) (P<0.001) and -11.2% (-18.0%, -4.4%) (P=0.030) respectively. 

 

Figure 2.3. Pairwise comparisons between algorithms per intensity using participant-

specific balanced accuracies. 

SVM, sum of vector magnitudes; IMA, integrals of the moduli of acceleration signals; TM, total movement; 

LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity; Error bars represent 

95%-confidence intervals; Dashed line represents no difference; *P <0.05. 



26 

Algorithm benchmarking 

Applying the critical 80%-threshold to the overall balanced accuracies of the pooled-data 

algorithms per intensity showed that all algorithms reached the threshold for sedentary 

activity, standing and MVPA classification (Table 2.3). However, only the Random Forest 

model also met the criterion for LIPA classification. 

Benchmarking the participant-specific balanced accuracies per intensity for each algorithm 

revealed that all models had a perfect score (100.0%) for sedentary activity and MVPA 

(Table 2.3). The balanced accuracy for standing classification was acceptable for 92.5% of 

the participants in all algorithms. LIPA classification, however, showed acceptable balanced 

accuracies for only 62.5% (SVM), 65.0% (IMA) and 57.5% (TM) of the participants in the cut-

off point algorithms, while this was 80.0% in Random Forest. 

 

Discussion 

The main aim of the current chapter was to compare between traditional cut-off points 

algorithms and a machine learning approach, to provide the best performing 

heterogeneous pooled-data algorithm to study SB and PA in older adults using thigh-

mounted triaxial accelerometry. It is encouraging to note that all models showed 

acceptable overall balanced accuracies for classification of sedentary activity, standing and 

MVPA. As hypothesised however, Random Forest outperformed the cut-off point 

classifiers, being robust for all individual’s physiological and non-physiological 

characteristics and the only algorithm with acceptable (≥80%) overall balanced accuracies 

over the whole range of activity intensities. In addition, participant-specific balanced 

accuracies of Random Forest were superior over TM when classifying LIPA. 

The fact that Random Forest algorithm performance was better than cut-off point models 

of SB and PA intensity detection is likely owing to its ability to recognise patterns in non-

linear and complex data by using a combination of multiple decision trees, each trained on 

a random set of features (26,51). To illustrate the difference with cut-off point algorithms, 

these models were developed using only two parameters from the triaxial accelerometer 

data, whereas modelling of the Random Forest algorithm used 55 parameters. Despite this, 

the differences in performance found between the cut-off point algorithms and Random 

Forest were only small. When comparing balanced accuracies between the cut-off point 

algorithms tested, an explanation for the results might come from the variability of the 
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parameters used to develop the algorithms. Since oxygen consumption data was used 

similarly for all models, this parameter did not result in any differences. Nevertheless, a 

negative relationship with MET values was identified, which indicates more variation for 

lower intensities, resulting in difficulties distinguishing between standing and LIPA for 

example. However, with an overall CV of 4.4% (3.4%, 5.3%), DB was generally regarded a 

reliable method in this chapter. The fact that all algorithms used the same parameter for 

posture detection, static Ymean respectively, means that it can also be ruled out as a possible 

explanation for algorithm performance differences. With a CV of only 0.8% (0.7%, 1.0%) in 

this chapter, this parameter was considered highly reliable. Although a negative correlation 

between CVs and MET values was found, it did not affect posture detection much, since 

overall balanced accuracies were 97.1% for all models when classifying activities as either 

SB or non-SB. Based on balanced accuracies, TM is the lowest performing algorithm 

showing either similar or inferior balanced accuracy results per intensity when compared 

to the other cut-off-point algorithms. Although the CV of TM as a parameter is only 6.2% 

(5.7%, 7.0%), it is slightly higher than the CVs of SVM and IMA, 5.5% (5.1%, 6.0%) and 5.6% 

(5.2%, 6.2%) respectively. The use of a parameter representing dataset dispersion (the SD 

in TM), rather than a summation or integration of all data points may well be the 

explanation for comparatively sub-optimal performance. As reflected by their CVs, SVM 

and IMA are equally performing classifiers. Although not all parameter CVs showed 

consistency with increasing MET values, the CVs within the IQR of all parameters were of 

an acceptable level (<10%), which might have resulted in acceptable overall balanced 

accuracies (≥80%) for all intensities of the cut-off point algorithms, except LIPA. Generally, 

when looking at the overall balanced accuracies per cut-off point algorithm, a similar 

pattern is found. Sedentary activity and standing are the most accurately classified 

intensities, followed by MVPA and ultimately LIPA. The main issue with LIPA classification, 

for as well cut-off point algorithms as Random Forest, is the poor sensitivity (51.0% - 

63.7%), which is predominantly caused by misclassification with MVPA. Since the MET 

value range for LIPA classification is relatively small compared to MVPA’s, the LIPA/MVPA 

threshold is easily surpassed and therefore any amount of movement is more likely to be 

classified as MVPA instead of LIPA. 

The positive relationships found between balanced accuracies and body height for standing 

classification in all three cut-off point algorithms during robustness analyses, may be due 

to another reason than body height. Although we standardised accelerometer mounting 

position by using 50% of the femur length, absolute measures show different positions, 
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which could affect accelerometer signals. Namely, the distance to the centre of rotation 

(hip and knee joint respectively) influences accelerometer measurements proportionally 

(89). For identical movements, the larger the distance to the centre of rotation (as in taller 

people), the greater the dynamic acceleration compared to that measured at positions 

closer to the centre of rotation (as in smaller people). This over-registration of dynamic 

acceleration could lead to false classification of activities with higher intensities instead. 

Looking at the confusion matrices, standing does show lower sensitivity values for the cut-

off point algorithms, which results from misclassification with LIPA. Altogether, this implies 

that taller people would have lower balanced accuracies than smaller people, but frankly, 

we found positive correlations. Moreover, we only saw the robustness issues for standing 

and no other intensities. Therefore, it is plausible to assume that it was not body height to 

cause any changes in balanced accuracies of standing for the cut-off point algorithms. 

Further analysis showed that there were only three people with considerably lower 

balanced accuracies for standing (75% vs. ≥96.2%). Interestingly, they were amongst the 

smallest study participants (≤1.60 m). In addition, the confusion matrices showed that all 

the standing misclassifications happened in these three participants, while ten others of 

≤1.60 m body height showed balanced accuracies like taller participants. Hence, when 

leaving the three out of the correlation analyses, no significant relationships between 

balanced accuracies of cut-off point algorithms for standing classification and body height 

were found anymore. When looking into more detail at the raw data, we noticed that the 

misclassifications in fact occurred during sideways shuffling, for which the three involved 

participants also happened to exhibit EE ≤1.5 MET. As a result of the latter, the reference 

classification for this activity was standing but the algorithms classified it as LIPA due to 

motion sensing. Thus, it was not the ‘body height’ parameter, which negatively affected 

the algorithm robustness results in these rare cases. Therefore, it is safe to say that all 

algorithms in this current study are robust, which is most probably the result of using a 

heterogeneous study sample. 

Whilst it was encouraging to note that all algorithms showed acceptable overall balanced 

accuracies for classification of sedentary activity, standing and MVPA, Random Forest was 

the only model that also achieved the critical 80%-threshold for LIPA classification. Despite 

the generally good results, the disadvantage of an overall measure is that it can mask 

unacceptable algorithm performance on an individual basis. For that reason, it is also 

important to check the percentage of acceptable participant-specific balanced accuracies 

per intensity for each model. This revealed that, regardless of algorithm, individual 
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classification of sedentary activity and MVPA was always of an acceptable level, which 

allows categorisation of people based on the amount of SB and MVPA, such as active, 

inactive and active couch potato. Moreover, standing classification was acceptable for 

92.5% of the participants in all algorithms. On the contrary, LIPA classification was 

acceptable in only ≤65.0% of the participants when using a cut-off point algorithm, while 

this number rose to 80.0% in case Random Forest was used. To summarise, these results 

show that the cut-off point algorithms presented in this chapter, can be used to detect SB, 

standing and MVPA in older adults confidently. Random Forest, however, is the only 

algorithm that can be used for LIPA classification too. This latter is exciting, because LIPA 

might play an important role in gaining health benefits by counteracting SB through PA in 

elderly (90). Moreover, performance of MVPA may have negative physiological effects, 

such as increased inflammation, and not necessarily elicit any greater physiological benefits 

over LIPA in the older adult population (91). Additionally, performing MVPA may have a 

high threshold, potentially affecting long-term adherence in elderly negatively (92). 

Compared to recent research that, similarly to our present one, conducted laboratory-

based testing to validate activity intensity identification algorithms including machine 

learning, our results are in fact a further improvement on these classifiers because we also 

focus on algorithm robustness and benchmark individual accuracies (35,67,93). Although 

comparing results between studies is complicated by differences in populations, monitor 

placement (mainly hip or wrist, against us thigh) that may influence classification (35), and 

outcome variables (e.g. Kappa statistic vs. balanced accuracy) (85), our overall finding is in 

agreement with Ellis et al. (51). They also showed improved free-living activity intensity 

classification with machine learning over traditional cut-off point models (without posture 

detection). However, it must be noted that their machine learning algorithm was 

developed using free-living accelerometer data only, while the traditional cut-off points 

were derived in the laboratory. 

One could consider the development of algorithms under laboratory conditions as a 

limitation, given the fact that when laboratory-based, performance during real-life mobility 

monitoring is compromised (35,51). However, in the laboratory, conditions can be 

controlled and a whole range of activities and intensities can be studied allowing 

calibration, while simultaneously providing proof-of-concept such as thigh-mounted 

triaxial accelerometry in older adults (35,68). To improve the matching of performance 

from laboratory-based with free-living based accelerometer algorithms one may match the 
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amount of data collected on each behaviour with its prevalence in free-living and train the 

algorithms with bout lengths similar to true daily life behaviour (68). Although our use of 

steady-state data of activities with predefined length will improve algorithm accuracies 

(35), this may not be directly translated to data collected outside the laboratory, since 

steady-state is not necessarily reached in free-living conditions with activities being more 

sporadic (68). Also, Gyllensten and Bonomi (94) found that activities in free-living 

conditions exhibit a higher degree of overlapping characteristics in their acceleration 

features when compared with activities performed in the laboratory. Some free-living 

activities even show substantially different acceleration signals in comparison to when 

performed in the laboratory (35,68). Although we agree that true performance of our 

algorithms in real-life conditions cannot necessarily be derived from the balanced 

accuracies seen under laboratory settings and it will probably be lower in free-living, we do 

not expect the dramatic decrease (~13%–46%) reported elsewhere (35,51,68,93,94). There 

are several reasons supporting this expectation. Firstly, most of these studies are either not 

comparable to this chapter in terms of study population, modelling techniques/settings, 

extracted features, and accelerometer placement, or suffered from serious methodological 

issues such as using the same sample to both develop and validate algorithms 

(35,51,68,93,94). Secondly, we included few, but common basic activities for elderly 

persons in our protocol (33,95,96), and instructed participants to perform them as 

‘naturally as possible’ i.e. using self-selected speed and/or intensity. Next, instead of 

activity classification, we used intensity classification (based on individual RVO2 corrected 

MET values) in this chapter, which is a more generic system providing less options, and thus 

expected to be less prone to error when applied outside the laboratory (68). Finally, we 

used a heterogeneous sample, representing the true healthy community-dwelling older 

adult population, to develop the algorithms. 

Another potential study limitation may be the fact that our models have been developed 

for application in a single thigh-mounted accelerometer, which does not allow perfect 

monitoring of PA, as perhaps wobbling of thigh mass or the lack of upper-body movement 

detection results in classification errors (54,71). Although it has been suggested that 

mounting multiple sensors could address the latter issue (54,71,97), study compliance may 

become compromised (93), something that is less of a problem with a single accelerometer 

(65,71). Moreover, thigh mounting can accurately distinguish between sitting and standing, 

which is not possible with traditional monitor placement at the hip or waist (31,63,64,98). 

This thigh placement is thus superior to detect upright stationary activities common in the 
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household, that tend to be more metabolically demanding than daily living activities that 

recruit only the upper body. Thigh mounting is also relatively close to the centre of mass, 

which is vital for good prediction of EE and monitoring of locomotion (54,60). Capturing 

locomotion is important in the elderly, because it provides information about potential for 

maintained/acquired physical independence (54). Generally, a combination between thigh-

mounted accelerometry and machine learning is considered ideal, because the latter in fact 

makes sensor placement less relevant (71). 

The major strength of our current approach is that its design and protocol are largely in 

accordance with the recommendations for accelerometry-based studies done by Welk et 

al. (75). To highlight these compelling elements, despite being modestly sized (~16.4 hrs of 

algorithm training data only), a study sample containing a large variety of physiological and 

non-physiological characteristics was used to develop four different accelerometer 

algorithms. The analyses were performed in more detail (such as focusing on robustness 

and benchmarking individual accuracies) than usually seen in the literature. The use of 

leave-one-subject-out cross-validation, ideal for smaller datasets, minimises the risk of 

overfitting with Random Forest machine learning and enhances the general applicability of 

the algorithms to new data (99). Additionally, by using a reliable method for measuring 

oxygen consumption (CV 4.4% (5.3%)) and correcting for individual metabolic baselines, 

coupled with direct observation, the reference intensity classification is highly accurate. 

Since both raw accelerometer data and videos were collected, post-study analyses will be 

possible such as algorithm tuning, epoch length optimisation or qualitative activity 

classification, but also comparisons with other monitors. Most importantly, this is the first 

study to conduct detailed analyses of heterogeneous pooled-data algorithms, ranging from 

simple cut-off point to complex machine learning, for the quantification of SB and PA in 

older adults using thigh-mounted triaxial accelerometry. 

Future studies should focus on further analysis and development of the Random Forest 

algorithm to classify activities qualitatively. This will not only result in better prediction of 

EE (100), but also provide information not captured by intensity classification (51,68,72). 

Moreover, the Random Forest algorithm should be validated in a free-living set-up and 

compared to a similar algorithm developed on free-living data. Furthermore, comparisons 

with proprietary algorithms of commercially available activity monitors would be 

interesting, not least to allow direct comparison of data from different laboratories and 

hence the creation of large data sets. Overall, these suggestions would (i) improve 
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understanding of the associations between human activity and health that will inform 

future recommendations and guidelines for older adults to support healthy ageing 

(51,68,72) and (ii) help to improve current industry standards in activity monitoring in 

elderly. 

 

Conclusions 

Unlike the cut-off point algorithms, under laboratory conditions the Random Forest 

machine learning model showed acceptable algorithm performance throughout the whole 

range of activity intensities in older adults wearing a thigh-mounted triaxial accelerometer. 

Its performance of LIPA classification in particular, makes the algorithm highly relevant for 

this age group. The fact that this pattern recognition technique (i) does not require 

subgroup-specific calibrations and/or specific accelerometer body part positioning, (ii) is 

capable of recognising actual human activities and (iii) works independent of 

accelerometer brand/settings, signifies its potential large-scale applicability to distinguish 

SB and different levels/types of PA in older adults. 
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Chapter 3. Concurrent validity of activity monitors in older adults 

Introduction 

Both sedentary behaviour (SB) and physical activity (PA) are recognised as independent 

factors in healthy ageing (3,6,9). To study the dose-response relationships, monitors are 

preferred over questionnaires, since most limitations of subjective monitoring do not apply 

to objective methods (6,13,24). Objective monitoring is also useful for planning and 

evaluating interventions which can help to update recommendations in physical activity 

guidelines (6). For example, light-intensity PA (LIPA) is suggested to be important for 

counteracting the highly sedentary lifestyles of elderly (90). However, monitoring activity 

levels in older adults can be challenging. 

Firstly, most activity monitor algorithms have been designed for and developed on younger 

and healthier populations, and as such, any established activity thresholds or cut-off points 

for activity intensities are unlikely to apply to other populations (6,101,102). This latter will 

compromise accuracy of movement behaviour monitoring. Generally speaking, ageing is 

associated with biomechanical, physiological and metabolic characteristics that influence 

perception of effort, and indeed, relative use of physiological reserves, to carry out 

activities of daily living (62,103). In other words, different age groups will be expected to 

exhibit different activity thresholds and hence cut-off points for metabolic demands at 

given activity intensities. Thus, in older adults, slower walking speeds, decreased fitness 

levels and even dependency on walking aids are factors that would tend to contribute to 

changes in metabolic demands (6,104). We would propose that whilst the goal standard 

for mobility behaviour monitoring would be to include each individual’s physical and 

demographic characteristics thereby developing individualised algorithms, this is not very 

practical. An advance on current commercially available movement monitors would be to 

have these incorporate age-specific algorithms, as an acceptable compromise (6). 

Although there is an increasing amount of literature on SB and PA effects on a number of 

health and quality of life outcomes in older persons (30,105), the data from the different 

laboratories tends to use diverse monitors and each of these will have been developed 

using different algorithms (24,68,98,106,107). In addition, it is unclear whether the 

anatomical site of monitor wear would impact on the apparatus’s ability to accurately 

detect posture and activity intensity. To draw a good picture of the distinct effects of SB 

and PA in elderly, both the degree of monitor accuracy and agreement between monitors, 
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needs to be established. This will enable researchers and end-users alike, to pool all the 

information gathered from the numerous studies. In addition, where a monitor may diverse 

completely from the other units, this should also be highlighted so that spurious 

conclusions about cause-effects are avoided. Generally, an extensive comparison of activity 

monitors, as chosen for this chapter, has not been conducted in elderly yet. Moreover, 

evidence on their validity in older and slower moving people is limited (102). 

Therefore, the purpose of the current chapter was to validate and compare six algorithms 

using four different activity monitors for the quantification of activity intensities in older 

adults. This was done by (i) determining participant-specific and overall balanced 

accuracies per algorithm, (ii) comparing participant-specific balanced accuracies between 

algorithms, and (iii) benchmarking participant-specific and overall balanced accuracies per 

algorithm. It was hypothesised that wearing an activity monitor on an anatomical site that 

would ease the distinction of standing from sitting/lying postures would increase the 

monitor’s accuracy in detecting physical activity intensity. It was also hypothesised that an 

algorithm developed using data from older persons would outperform any other 

(proprietary) algorithms for each activity intensity when applied to an older adults study 

sample. 

 

Materials and methods 

Participants 

Twenty older adults (70.0 (12.0) years; 50% female) participated in this study. Exclusion 

criteria were: <60 years of age, not able complete the laboratory-based activity protocol 

independently, any diagnosed neurological disease or condition, diabetic, terminally ill or 

currently receiving cancer treatment, myocardial infarction in the previous 12 months or 

any currently unstable cardiovascular condition, any pulmonary disease or condition that 

did not allow expired gas sampling, injuries or surgeries within the previous three months, 

previously advised by their physician not to undertake  any physical activity/exercise, or 

not competent to make an informed decision about study participation. 

This study was approved by the medical ethical board of University Hospital KU Leuven, 

Belgium. All participants provided written informed consent prior to study participation. 

Baseline characteristics 
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The following baseline characteristics were determined for all participants: age (years), sex 

(female/male), body height (to the nearest 0.1 cm; barefoot), body mass (to the nearest 

0.1 kg; barefoot and light clothing only) (Table 3.1). Additionally, the body mass index was 

calculated by dividing body mass by squared body height (kg∙m-2). Resting oxygen 

consumption (RVO2) (ml∙kg-1∙min-1; STPD conditions: standard temperature and dry gas at 

standard barometric pressure) was assessed per participant while sitting quietly on a chair 

for four minutes. At the same time resting heart rate was monitored (beats per minute), in 

order to estimate physical fitness levels according a standard heart rate table (76). This was 

not determined for participants who used heart rate controlling medication. Participants’ 

self-selected walking speed on a treadmill was referred to as the preferred walking speed 

(km∙h-1). Finally, a falls risk assessment tool classified risk of falling for each participant 

(low/medium/high) (77). 

Table 3.1. Study sample characteristics. 

Age (years) 70.0 (12.0)¶ 

Sex 10 Female 10 Male 

Body mass (kg) 73.4 (13.0) 

Body height (cm) 165.6 (8.1) 

BMI (kg∙m-2) 26.7 (3.6) 

RVO2 (ml∙kg-1∙min-1) 2.87 (0.52) 

Physical fitness level* 3 Less than good 11 Good or better 

Preferred walking speed (km∙h-1) 2.6 (2.0)¶ 

Falls risk 19 Low 1 Medium or high 

BMI, body mass index; RVO2, resting oxygen consumption. *Only determined for participants not taking any 

heart rate controlling medication. ¶Values represent either arithmetic mean (standard deviation) or median 

(interquartile range). 

Instrumentation 

Activity monitors 

Four different activity monitors were simultaneously used for this study, respectively 

ActiGraph wGT3X-BT (ActiGraph, Ft. Pensacola, Florida, USA), ActivPAL3c VT (PAL 

Technologies, Glasgow, UK), GENEActiv Original (Activinsights Limited, Kimbolton, 

Cambridgeshire, UK) and DynaPort MM+ (McRoberts B.V., The Hague, The Netherlands). 

Each monitor was set to their default settings and worn as recommended by the 

manufacturer.  
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Thus, the ActiGraph wGT3X-BT (46 x 33 x 15 mm, 19 grams) sampled at 30 Hz (with the low-

frequency extension filter applied) and was worn around the waist on the mid-axillary line 

of the right hip using an elastic band. The ActivPAL3c VT (35 x 53 x 7 mm, 15 grams) sampled 

at 20 Hz and was mounted on the right anterior mid-thigh (at 50% femur length; the latter 

being the distance between the trochanter major and the lateral femur epicondyle) using 

Tegaderm™ transparent film dressing (3M Health Care, St. Paul, MN, USA). The GENEActiv 

Original (43 x 40 x 13 mm, 16 grams) was worn on two locations each having its own sample 

frequency (non-dominant wrist using medical tape (100 Hz) and left anterior mid-thigh (at 

50% femur length using Tegaderm™ transparent film dressing; 60 Hz)). Finally, the 

DynaPort MM+ (106.6 x 58 x 11.5 mm, 55 grams) was worn on the middle of the lower back 

using an elastic band and sampled at 100 Hz (Figure 3.1). 

 

Figure 3.1. Study participant wearing all monitors. 

  



37 

Indirect calorimeter 

A portable breath-by-breath metabolic system was used for indirect calorimetry (Oxycon 

Mobile JAEGER™/CareFusion, Hoechberg, Germany). The system comprised 2 units (sensor 

box and data exchange unit, each 126 x 96 x 41 mm) worn against the chest using a harness. 

In addition, a Polar T31 coded transmitter belt for heart rate monitoring (Polar Electro Oy, 

Kempele, Finland) and a face mask with a dead space of <30 mL (Hans Rudolph Inc, Kansas 

City, MO, USA) were used. A lightweight bi-directional 30 mL dead-space DVT volume 

sensor was connected to the facemask to which a Nafion sampling tube for exhaled air was 

connected. Due to its low weight (950 grams), the system caused minimal discomfort. 

Oxygen consumption (VO2), carbon dioxide production (VCO2), heart rate, respiratory rate 

and tidal volume were measured continuously for the duration of the laboratory protocol. 

All measured data (gas & flow signals and heart rate) were sent telemetrically to a 

calibration and receiver unit, itself connected to a laptop (IBM, Armonk, NY, USA) where it 

was processed using JLAB (Carefusion Germany 234 GmbH, Hoechberg, Germany). All data 

was backed up on an internal SD memory card inside the data exchange unit. The portable 

system was switched on at least 30 minutes prior to each participant’s arrival at the 

laboratory, and a two-point gas calibration was completed using JLAB’s automated 

procedure. 

Direct observation 

A GoPro Hero3 video camera (GoPro Inc., San Mateo, CA, USA) was attached to the front 

of the participant’s harness and used to record the entirety of the laboratory-based activity 

protocol. The recordings were stored on a microSD card and downloaded to a laptop after 

each session. This data allowed direct observation of all activities post laboratory protocol 

completion. 

All instrumentation was time-synchronised with a laptop, used for initialising the activity 

monitors and analysing the collected data.  

Laboratory-based activity protocol 

All participants were instructed to refrain from physical exercises, stimulants or smoking at 

least four hours prior testing. The protocol was only executed once and consisted of 10 

activities, which were performed in a random order, after a period of 20 minutes resting 

followed by sitting quietly on a chair: (i) sitting while watching TV, (ii) sweeping the floor, 

(iii) cycling on an ergometer (Technogym, Cesena, Italy), (iv) stairs negotiations (walking up 
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and down), (v) standing, (vi) walking with two shopping bags (2.5 kg each hand), (vii) 

walking on a treadmill at a self-selected speed (Forcelink, Culemborg, The Netherlands), 

(viii) sitting while doing desk work, (ix) doing the washing up and (x) lying on a bed. All 

activities were performed for four minutes, where the first two minutes were used to reach 

a steady-state and the last two minutes were for data recording. The only exception to this 

was walking the stairs, as participants walked two minutes before going up the stairs (one 

minute) and then walked two minutes again before going down (one minute). Hence, the 

total duration of this activity was six minutes (2+1+2+1) instead of four. For data quality 

purposes, all activities were extended by a second at least, to assure activity continuation 

throughout the whole data recording period. Participants were instructed to perform each 

activity as naturally as possible and at their preferred pace. To prevent any fatigue carry-

over effects, participants were seated in-between activities and the next activity was not 

started until their heart rate returned to resting level as measured during initial quiet sitting 

on a chair. The total duration of the activity protocol was approximately 60 minutes. 

Validation 

All activity monitors were analysed using their own (proprietary) algorithms and software, 

and results were given per epoch, which varied for each monitor. The ActiGraph wGT3X-BT 

was analysed in 60s-epochs using the Freedson Adult VM3 algorithm as provided in the 

ActiLife-software, version 6.13.3 (ActiGraph, Ft. Pensacola, Florida, USA). Data collected 

with the ActivPAL3c VT was analysed in 15s-epochs using the ActivPAL3™-software, version 

7.2.32 (PAL Technologies, Glasgow, UK). Two different algorithms were used for analysing 

the thigh-worn GENEActiv Original. One algorithm is known as ‘Sedentary Sphere’ (thigh-

worn version) and analysed the data in 15s-epochs (98), while the other algorithm used 

Random Forest machine learning (100 trees) and 10s-epochs (Chapter 1). The wrist-worn 

GENEActiv Original, was also analysed in 15s-epochs, but using a wrist-worn version of the 

‘Sedentary Sphere’ algorithm (66,106). Finally, the DynaPort MM+ was analysed in 60s-

epochs using the company’s online platform MyMcRoberts version 2.2.1 (McRoberts B.V., 

The Hague, The Netherlands). 

Oxygen consumption data was measured by the Oxycon Mobile per 5s-epochs. To 

determine intensities of the activities performed during the protocol, VO2 per 5s-epochs 

was divided by the participant’s RVO2. This resulted in metabolic equivalent (MET) values. 

RVO2 was estimated by calculating the arithmetic mean over the 5s-epoch VO2 collected 

during the last two minutes while sitting quietly on a chair. Since MET values were 
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calculated per 5s-epochs, this allowed average MET values to be calculated for all intervals 

as used in the activity monitors, respectively 10s, 15s and 60s-epochs. The average MET 

values were used to classify activity intensities per epoch by first checking the MET value 

and then (if necessary) the participant’s posture (Table 3.2). The classifications resulting 

from this scheme served as the criterion measure and were compared to the activity 

monitor outputs. To allow direct comparison with the criterion measure, each epoch 

outcome per monitor was converted to these criterion measure classifications, if necessary 

(Table 3.3). 

Participant-specific confusion matrices were created to determine balanced accuracies per 

activity intensity for each monitor. In addition, overall confusion matrices per monitor were 

created by summing the participant-specific matrices. The balanced accuracies were 

calculated as the arithmetic mean of the sensitivity and specificity results per activity 

intensity for each monitor. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑁)

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑁) +  𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑁)
∗ 100 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (%) =
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑁)

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑁)  +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑁)
∗ 100 

where N represents the number of cases. Balanced accuracies of ≥80% were considered of 

an acceptable level (35). 

Table 3.2. Criterion measure classification scheme. 

Rules Intensity classification 

1. If MET ≤1.5 and posture = sedentary, then Sedentary 

2. Else: If MET ≤1.5 and posture ≠ sedentary, then Standing 

3. Else: If MET >1.5 and <3, then LIPA 

4. Else: If MET ≥3, then MVPA 

MET, metabolic equivalent; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical 

activity. 

  



40 

Table 3.3 Monitor classification conversion scheme. 

Rules Classification 

ActivPAL 

If epoch time predominantly = Sedentary, then Sedentary 

Else: If epoch time predominantly = Upright, then Standing 

Else: If epoch time predominantly = Stepping and MET <3, then LIPA 

Else: If epoch time predominantly = Stepping and MET ≥3, then MVPA 

ActiGraph 

If epoch time predominantly = Sitting or Lying, then Sedentary 

Else: If epoch time predominantly = Standing and VM = 0, then Standing 

Else: If epoch time predominantly = Standing and VM <2690, then LIPA 

Else: If epoch time predominantly = Standing and VM ≥2690, then MVPA 

DynaPort MM+ 

If epoch class = Sitting or Lying, then Sedentary 

Else: If epoch class = Standing, then Standing 

Else: If epoch class = Shuffling or Walking and MET <3, then LIPA 

Else: If epoch class = Shuffling or Walking and MET ≥3, then MVPA 

GENEActiv Original – Thigh – Random Forest 

Classifications of this monitor are in line with the criterion measure N/a 

GENEActiv Original – Thigh & Wrist – Sedentary Sphere 

If epoch intensity/activity = Sleep, then Sedentary 

Else: If epoch intensity/activity = Sedentary or Light and posture = Sit/lie, then Sedentary 

Else: If epoch intensity/activity = Sedentary and posture = Standing, then Standing 

Else: If epoch intensity/activity = Light and posture = Standing, then LIPA 

Else: If epoch intensity/activity = Moderate or Vigorous, then MVPA 

MET, metabolic equivalent; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical 

activity; VM, Vector Magnitude. 

Data reliability 

Since MET values are a main part of the criterion measure classification scheme, it is 

important to check the reliability of this outcome for all epoch lengths used in the studied 

activity monitors, respectively 10, 15 and 60 seconds. To do this, for each epoch length a 

coefficient of variation (CV) per activity per participant was calculated as: 

𝐶𝑉 (%) =
𝑆𝐷𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦/𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦/𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡
× 100 

where SD represents standard deviation. Depending on data normal distribution, either the 

arithmetic mean (SD) or median (interquartile range (IQR)) was calculated over the moduli 
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of all CVs per epoch length to obtain sample-based reliability measures. A CV <10% was 

considered acceptable. Additionally, CV consistency across the activity protocol was 

checked by examining the correlation between the CVs and accompanying MET values per 

epoch length. If a correlation was found, data dispersion was determined (SD or IQR). 

Statistical analyses 

All data was checked for normality by using the Shapiro-Wilk test. Baseline characteristics 

are presented as the arithmetic mean (SD) (or median (IQR)). Balanced accuracies are 

reported as arithmetic mean (95%-confidence interval (95%-CI) (or median (95%-CI)), 

except for those in the confusion matrices. To compare the balanced accuracies of the 

different monitors, a one-way ANOVA repeated-measures test (or the Friedman test for 

non-parametric data) was performed. Where multiple post-hoc comparisons were 

conducted, the Bonferroni correction was applied to adjust P-values. 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑃 − 𝑣𝑎𝑙𝑢𝑒𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 = (𝑃𝑣𝑎𝑙𝑢𝑒)𝑘 

where k is the number of comparisons. P-values were considered statistically significant 

when P <0.05. 

All statistical analyses were executed using IBM SPSS Statistics for Windows, version 23.0 

(IBM Corp., Armonk, NY, USA). 

 

Results 

Data reliability 

MET CV values were negatively correlated with observed MET data for all epoch lengths, 

respectively ρ -0.448 (P<0.001) for 10s-epochs, ρ -0.482 (P<0.001) for 15s-epochs and ρ -

0.236 (P=0.001) for 60s-epochs (Figure 3.1). The IQRs of these epoch lengths’ CVs were 

between 7.9% - 19.8% (10s), 6.5% - 16.7% (15s) and 1.7% - 7.6% (60s). For 10s-epochs, the 

sample-based CV was 12.1% (11.2%, 13.2%), while it was 10.7% (9.1%, 12.0%) for 15s-

epochs and 3.3% (2.7%, 4.2%) for 60s-epochs. Overall, only the 60s-epoch CVs were <10%. 
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Figure 3.2. Metabolic equivalent value reliability per activity intensity per epoch length. 

CV, coefficient of variation; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical 

activity. Error bars represent 95%-confidence intervals. Dashed lines show correlations between coefficients 

of variation and intensities per epoch length. 

Overall monitor performance 

The thigh-worn monitors (ActivPAL, Random Forest and Sedentary Sphere – Thigh) showed 

the best performance in classifying sedentary behaviour (all balanced accuracies ≥94.2%, 

with sensitivity ≥99.3% and specificity ≥88.5%) (Table 3.4). On the contrary, the other 

monitors’ performances (ActiGraph, DynaPort MM+ and Sedentary Sphere – Wrist) ranged 

between 73.6% and 75.5%. Their sensitivity values ranged between 67.2% and 85.7%, while 

specificity was between 65.4% and 80.1%. 

Balanced accuracies for standing classification varied from 42.4% (DynaPort MM+) to 90.1% 

(Sedentary Sphere – Thigh). The highest sensitivity was found for ActivPAL (94.0%) and the 

lowest for DynaPort MM+ (4.9%). Specificity was the highest for Random Forest (98.3%) 

and the lowest for DynaPort MM+ (79.8%). 

ActiGraph showed the highest balanced accuracy for LIPA classification (69.7%), while 

DynaPort MM+ had the lowest (49.9%). Sensitivity values ranged from 0.0% (DynaPort 

MM+) to 66.7% (ActiGraph). Specificity was the highest for DynaPort MM+ (99.7%) and the 

lowest for ActiGraph (72.8%). 

Finally, moderate-to-vigorous PA (MVPA) classification appeared to be between 68.8% 

(Sedentary Sphere – Wrist) and 85.4% (ActivPAL). Random Forest showed the highest 



43 

sensitivity (83.7%), while ActiGraph had the lowest (40.4%). Monitor specificity ranged 

between 85.4% (Random Forest) and 98.4% (ActiGraph). 
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Table 3.4 Algorithm cross-validation confusion matrix. 

Monitor Intensity 
Reference 

Sensitivity (%) Specificity (%) Balanced accuracy (%) 
Acceptable level 

(%) Sedentary Standing LIPA MVPA 

A
ct

iv
P

A
L 

Sedentary 563 0 53 0 99.3 95.4 97.4 100.0 

Standing 4 156 192 102 94.0 80.9 87.5 100.0 

LIPA 0 0 17 37 5.0 97.3 51.2 0.0 

MVPA 0 10 76 519 78.9 92.0 85.4 85.0 

A
ct

iG
ra

p
h

 

Sedentary 95 11 21 22 68.3 80.0 74.2 52.6 

Standing 8 16 0 0 41.0 97.8 69.4 43.8 

LIPA 8 12 50 71 66.7 72.8 69.7 33.3 

MVPA 0 0 4 63 40.4 98.4 69.4 33.3 

D
yn

aP
o

rt
 M

M
+

 Sedentary 126 37 27 35 85.7 65.4 75.5 40.0 

Standing 21 2 40 18 4.9 79.8 42.4 0.0 

LIPA 0 0 0 1 0.0 99.7 49.9 0.0 

MVPA 0 2 10 114 67.9 95.5 81.7 80.0 

R
an

d
o

m
 F

o
re

st
 Sedentary 842 0 103 1 100.0 94.1 97.0 100.0 

Standing 0 173 37 4 70.3 98.3 84.3 85.0 

LIPA 0 45 160 159 31.7 90.3 61.0 5.0 

MVPA 0 28 205 841 83.7 85.4 84.5 95.0 

Se
d

en
ta

ry
 

Sp
h

er
e 

- 

Th
ig

h
 

Sedentary 566 5 92 37 99.8 88.5 94.2 100.0 

Standing 0 149 97 53 89.8 90.4 90.1 100.0 

LIPA 1 12 116 215 34.3 83.6 59.0 0.0 
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MVPA 0 0 33 356 53.9 96.9 75.4 40.0 

Se
d

en
ta

ry
 

Sp
h

er
e 

- 
W

ri
st

 Sedentary 381 17 111 104 67.2 80.1 73.6 40.0 

Standing 178 131 31 40 78.9 84.1 81.5 85.0 

LIPA 8 13 78 193 23.1 84.6 53.9 0.0 

MVPA 0 5 118 324 49.0 88.5 68.8 15.0 

LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity. Bold values represent the number of correct classifications. 
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Monitor comparison 

Performance of sedentary classification was significantly different for ActivPAL and 

Random Forest when compared to all monitors, but not each other (Figure 3.2). Both 

showed higher participant-specific balanced accuracies. For classifying standing, Random 

Forest showed the most significant differences with other monitors, respectively ActivPAL 

(-3.5%, -7.4%, -0.9%, P=0.045) and DynaPort MM+ (-55.8%, -58.8%, -54.6%, P<0.001). 

Again, Random Forest also showed most differences with monitors for LIPA classification. 

Participant-specific balanced accuracies in this monitor were higher than in ActivPAL (-

9.7%, -14.3%, -5.0%, P<0.001), DynaPort MM+ (-10.1%, -14.7%, -5.4%, P<0.001) and 

Sedentary Sphere – Wrist (8.4%, 2.5%, -12.0%, P<0.001). As for sedentary activity, MVPA 

classification favoured ActivPAL and Random Forest, which had similar performance and 

appeared significantly different to all monitors, except DynaPort MM+. 
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Figure 3.2 Pairwise comparisons between monitors per intensity using participant-specific 

balanced accuracies. 

AP, ActivPAL; AG, ActiGraph; DP MM+, DynaPort MM+; RF, Random Forest; SS_thigh, Sedentary Sphere – 

Thigh; SS_wrist, Sedentary Sphere – Wrist; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous 

physical activity; Error bars represent 95%-confidence intervals; Dashed line represents no difference; *P 

<0.05. 

Monitor benchmarking 

Overall balanced accuracies for classification of sedentary activity were only of an 

acceptable level (≥80.0%) in the thigh-worn monitors (ActivPAL, Random Forest and 

Sedentary Sphere – Thigh) (Figure 3.3). Standing classification was acceptable in the same 

monitors, but also including Sedentary Sphere – Wrist. Interestingly, none of the monitors 

showed ≥80% overall balanced accuracy for classifying LIPA. Fortunately nevertheless, 
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ActivPAL, DynaPort MM+ and Random Forest reached the ≥80% overall balanced accuracy 

threshold for MVPA classification. 

Checking the percentage of participants showing an acceptable level of participant-specific 

balanced accuracy, revealed that classification of sedentary activity was acceptable in all 

participants when using a thigh-worn monitor (Table 3.4). The other monitors showed a 

maximum of 52.6% only. Standing was classified acceptably in all participants when using 

ActivPAL or Sedentary Sphere – Thigh. In Random Forest and Sedentary Sphere – Wrist this 

number was 85.0%, while it appeared 43.8% and 0.0% in ActiGraph and DynaPort MM+ 

respectively. Acceptable levels of LIPA classification were the highest in ActiGraph (33.3%) 

followed by Random Forest (5.0%). All other monitors failed to reach an acceptable levels 

of LIPA classification. Acceptable MVPA classification varied significantly between the 

monitors. Random Forest tended to display the highest degree of MVPA classification 

balanced accuracy (95.0%), followed by ActivPAL (85.0%) and DynaPort MM+ (80.0%). The 

remaining monitors only had acceptable levels in ≤40.0% of the participants, respectively 

Sedentary Sphere – Thigh (40.0%), ActiGraph (33.3%) and Sedentary Sphere – Wrist 

(15.0%). 

 

Figure 3.3. Benchmarking of overall balanced accuracies per activity intensity for each 

tested algorithm. 

LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity. Dashed line represents 

threshold for acceptable algorithm performance (80%). 
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Discussion 

As hypothesised, algorithms specially developed using older persons and/or worn in 

anatomical positions that permitted the clear identification of posture, were the most 

accurate at classifying activity intensities in older adults. In particular, Random Forest 

appeared the best performing algorithm, in that at each activity intensity, it outperformed 

other algorithms/monitors. The fact that overall balanced accuracies were acceptable for 

sedentary, standing and MVPA classification is promising, just as their rate of acceptable 

individual results. Although most monitors showed good results for at least one activity 

intensity, ActivPAL is the only monitor with comparable performance to Random Forest. 

Again, thigh-worn monitors proved their value for the SB and standing classification. 

Another notable observation was that shorter epoch lengths proved more accurate than 

longer ones. Interestingly, none of the monitors showed acceptable outcomes for LIPA 

classification in our elderly participants. This would indicate the complexity of qualifying 

LIPA in this group and/or an inability for older individuals to carry an activity at that 

threshold. Given that LIPA is suggested to be important for counteracting SB especially 

within that age bracket (90), whilst minimising engagement in MVPA in order to maximise 

long-term compliance to adequate amounts of daily physical activity (92), the reason for 

the difficulties in reliably/accurately tracking LIPA using activity monitors in older adults 

warrants further study. 

To check the potential cause for the low balanced accuracies for LIPA classification, the 

confusion matrix must be studied, which shows both sensitivity and specificity values per 

monitor for each activity intensity. Unlike specificity, sensitivity seems to be the issue. More 

specifically, three out of six monitors, including ActivPAL, DynaPort MM+ and Sedentary 

Sphere – Thigh, predominantly misclassify LIPA with standing. Random Forest and 

Sedentary Sphere – Wrist on the other hand, mainly misclassify LIPA with MVPA. ActiGraph 

is the sole monitor without such a LIPA classification issue. Under the assumption that 

activities were performed in a metabolic steady-state, with matching biomechanics, 

discrepancies between these two could lead to inaccuracies. Since we found a negative 

correlation between CVs of the METs and activity intensities, metabolic steady-state might 

not be the case for lower intensities, such as standing or LIPA. Also, it is known that activity 

monitoring in slower moving people, like elderly, is challenging (102). In normal ground 

walking for instance, older persons tend to utilise a larger number of small steps at a low 

pace to achieve motion (rather than quick and large, but less numerous steps) (108). This 
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might result in lower biomechanical values, not matching the higher metabolic demand. 

Indeed, the confusion matrix shows misclassification of LIPA with standing for example. The 

fact that ActiGraph is the only monitor to use a low-frequency extension filter, might 

explain why it does not have this classification issue. Basically, such a filter helps to pick up 

slow movements were other monitors (such as the three mentioned) do not sense it, which 

results in less misclassification. LIPA misclassification may have also occurred due to the 

incorporation of household activities in our activity protocol. An activity such as washing 

dishes, requires mainly upper limb action, hence monitors not attached to this anatomical 

site, will register less movement, while upper limb monitors might do the opposite. 

Interestingly, Random Forest is the only non-upper limb algorithm, which misclassifies LIPA 

with MVPA mostly. Presumably, this is caused by the fact it is using pattern recognition, 

which makes the monitor regard motion differently than just detecting the amount of 

movement. Finally, with the LIPA window being only small in terms of metabolic demands 

and yet similar in pattern to MVPA, it can be conceivable why misclassifications with MVPA 

could be made theoretically. Interestingly, a considerable amount of LIPA (≥15.7%), but 

MVPA in some cases too, was also misclassified as sedentary activity. A plausible 

explanation comes from the cycling activity that was performed. For this activity, the 

posture including thigh inclination near horizontal and hands holding the steer, potentially 

made classification difficult. 

Apart from confusing cycling activity classification, measuring thigh inclination can also help 

to better distinguish between SB and standing (63,64). As seen in this chapter, the thigh-

worn monitors performed better than the waist-worn (including lower back). Interestingly, 

also wrist-worn monitors seem to handle these classifications better. This is important 

information for deciding what monitor best to use if SB is a primary outcome measure. 

Another consideration is what epoch length to use. This chapter showed better 

performance with shorter epoch lengths, which is in line with previous research (109). 

However, the CVs of the MET values suggest otherwise. The smallest sample-based CV was 

found for 60s-epochs, while the largest were found for 10s-epochs. In fact, only the 60s-

epochs CVs were acceptable for this steady-state data. Despite this, monitor performance 

was better with the smaller epoch lengths. Since activities were performed in the same 

fashion throughout the whole activity, it is suggested that better performance in epochs 

with higher CVs is not a direct result of smart or robust algorithms. Instead, because CVs 

were calculated over MET values, which were converted into intensities and eventually 

cross-validated, it rather proves robustness of the classification scheme. 
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The main reason for Random Forest to outperform the other monitors, may be through it 

use of pattern recognition instead of cut-off points for the classification of activity 

intensities. With most of the studied algorithms being proprietary, their exact 

mathematical iterations are unclear. However, it is safe to assume that they would largely 

rely on cut-off points. Studies have already shown that machine learning is more accurate 

than cut-off points in activity monitoring (51,71). Moreover, pattern recognition has been 

suggested as the future standard (24). Nevertheless, most current studies are still using 

cut-off point algorithms, potentially as these are more straight-forward to apply; even for 

the non-mathematically minded (24). Although machine learning algorithms make the 

requirement of specific anatomical attachment sites of an activity monitor less relevant 

(71), we propose that our application may be even more valuable given that it was 

developed using a model for thigh-mounted triaxial accelerometry. Our findings also lend 

further support to ActivPAL being considered as one of the gold standards and its 

widespread use as a criterion measure to validate other monitors (64,110). 

Contextualising our findings in the light of the existing literature is challenging, not least, 

because of the scarcity of comparable ‘mobility monitor’ validation studies in older adults 

and the use of different outcomes measures. Nevertheless, comparisons with prior studies, 

which applied the monitors in the same fashion (none performed in older adults 

specifically, except for DynaPort MM+), show that the results of the ActivPAL monitor in 

this chapter were relatively comparable in the classification of SB (97.4% vs. lying horizontal 

100.0% and sitting 91.0%), but worse for upright activities, such as standing and stepping 

(≤87.5% vs. 99.0%) (98,111). As for the ActiGraph, our results for sedentary activity were 

slightly better than the accuracy presented in a previous study (≤72.0% in theirs compared 

to 74.2% in ours), while accuracy of detecting upright activities was slightly better in the 

other study (74.0% vs. ≤69.7%) (98). However, Kerr et al. (68) showed worse mobility 

detection accuracy for all activities (≤43.0% vs. ≥69.4%), except sitting (84.0% vs. 74.2%). 

The accuracies of the DynaPort MM+ monitor as measured in this chapter, were lower than 

the results found by Hollewand et al. (107). They showed 79.6% for lying, 87.6% for sitting 

(both vs. 75.5%), 81.5% for standing (vs. 42.4%) and 91.7% for locomotion (vs. ≥49.9%). A 

study by Rowlands et al. (106) found accuracies of 74.0% and 91.0% for classifying SB and 

upright activities when using Sedentary Sphere – Wrist. The results in this chapter are 

similar for sedentary activity (73.6%), but worse for standing (81.5%), LIPA (53.9%) and 

MVPA (68.8%). When comparing the Sedentary Sphere – Thigh results from this chapter 
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with Edwardson et al. (98), it is clear that their findings are (slightly) better, respectively 

≥99.8% vs. 94.2% for SB and ≥88.3% vs. ≥59.0% for upright activities. 

To our knowledge, we are the first group to have validated this machine learning technique 

for thigh-worn accelerometry (Chapter 2). Comparing the present results against the data 

from Chapter 2, shows that the present findings are (slightly) worse for all intensities, 

respectively 99.6% vs. 97.0% for SB, 95.5% vs. 84.3% for standing, 80.6% vs. 61.0% for LIPA 

and 95.1% vs. 84.5% for MVPA. When focusing on Random Forest algorithms applied to 

accelerometer data collected from the hip or wrist, a lot of varying results have been 

published. For example, hip accuracies ranged from 75.0% - 94.0% for SB, from 64.0% - 

89.0% for standing and from 73.0% - 97.0% for walking/running (51,68). Wrist classifiers 

showed 80.1% - 89.3% accuracy for sitting, 95.7% for standing and 91.7% - 93.7% for 

walking/running (51,112). Overall, our Random Forest result for sedentary activity is 

slightly better, whereas standing and MVPA are in line with the hip classifiers, but lower 

than the wrist algorithms. As mentioned above, the impact of the age discrepancy between 

ours and all these other studies cannot be underestimated. 

The fact that this study was performed in a laboratory setting is a limitation because it does 

not show any information on how well the monitors will perform during free-living. 

However, the comparison made, provides useful information on how monitors will perform 

compared to each other, even in free-living when assuming their performance remains 

relatively the same. Although activities were performed in a standardised environment, we 

asked the participants to perform them as naturally as possible. One of the strengths of 

this chapter is that we concurrently compared a good selection of activity monitors used in 

research. Moreover, we used these as recommended by their developers/manufacturers, 

including the optimal body location and epoch length. 

Overall, generalisation of findings is difficult because we only used a small study sample 

(N=20) of fit and healthy older adults. Nevertheless, this chapter presents highly valuable 

and important insights for activity monitoring in an understudied age group. Future 

research should validate and compare the studied monitors for quantifying free-living 

physical activity levels in the elderly. We would also recommend that device improvements 

be made in terms of ability to accurately detect LIPA, especially at least, in the elderly. 
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Conclusion 

A thigh-worn triaxial GENEActiv with a Random Forest algorithm can be used best for 

accurate assessment of SB and PA in older adults. However, other monitors can be used, 

as they proved to be (partially) valid too. Generally, the decision of which monitor to use 

when, depends largely on the research question and setting. 
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Chapter 4. Descriptive analysis of the elderly cross-sectional study sample 

Introduction 

This chapter reports the descriptive statistics of the elderly cross-sectional study sample 

used to investigate several gastrocnemius medialis (GM) muscle-tendon properties, of 

which the findings are separately reported in the next three chapters. This muscle was 

chosen because it has been studied frequently regarding muscle architecture and size, and 

ultrasound scanning of it has been proven valid (113). Moreover, GM is also an important 

muscle for postural balance in older adults (44) and hence physical functioning. Last but 

not least it is an antigravity muscle, which shows fast impact of unloading (atrophy) as 

suggested in sedentary behaviour (SB). 

Variables included in this analysis principally consist of anthropometric and accelerometer 

data. These data are important as they are the baseline characteristics of the cross-

sectional study sample. Basically, the accelerometer data will be used to investigate 

potential associations with GM muscle-tendon properties, while anthropometric and other 

collected data will serve as covariates to adjust regression models, where appropriate. In 

addition to the descriptive analysis, this chapter also investigated both the further ageing 

effect on SB and physical activity (PA) levels, and the independence between SB and PA 

outcomes, which have been reported in literature previously and serve as important 

assumptions in this thesis (Chapter 1) (9,27,28,114). 

Overall, the aim of this chapter was to check the representativeness of the study sample, 

which was done by comparing the study sample characteristics with existing evidence. It 

was hypothesised that (i) the cross-sectional study sample would be representative and (ii) 

SB and PA measures would show to be both affected by age and independent. 

 

Materials and methods 

A total sample of 106 healthy older adults participated in this study. They were initially 

recruited from an existing university database of former study participant, and later also in 

the local area via social meetings, posters and word-of-mouth. Participants were excluded 

if they were: aged <60 years, diabetic, had any issue affecting their mobility or ability to 

exert maximum force with the lower limb muscles/joints, had any recent (<3 months) injury 
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or surgery on their tested leg, not able to understand or follow up on study instructions, or 

not competent to make an informed decision about study participation. 

This study was approved by the ethical review board of Manchester Metropolitan 

University, Crewe, UK. All participants provided written informed consent prior study 

participation. 

Study visits 

Participants visited the university on two separate occasions (≥7 days). On the first visit, 

participants completed questionnaires, were familiarised with the equipment to be used 

during the following visit and they were also fitted with an activity monitor. This visit lasted 

approximately one hour. On the second visit, proper testing took place, which included 

several tests such as a whole-body scan to measure body composition. In total, participants 

spent ~4 hours on the second laboratory visit (inclusive of a 30-45 mins breakfast ingestion 

break). 

Questionnaires 

All participants provided demographics and information about their previous and current 

PA and medical status via a general questionnaire. Additionally, information was collected 

about their smoking status and dietary intake. They also completed a falls risk assessment 

tool (FRAT), which served as a measure of frailty (77). This questionnaire consisted of five 

yes/no-questions about previous falls, medication usage, neurological problems, issues 

with balance and sit-to-stand ability. Based on their answers, participants were classified 

as having a low (≤1 yes), medium (2 yes) or high (≥3 yes) risk of falling. 

Anthropometric data 

All participants had their body height and mass taken on the first visit. Body height was 

measured barefoot and to the closest 0.1 cm using a wall-mounted stadiometer (Holtain 

Ltd., Crymych, UK). Body mass was measured wearing the least clothing as possible and to 

the nearest 0.1 kg using a digital body mass scale (seca GmbH & Co. KG., Hamburg, 

Germany). On the second visit, dual-energy X-ray absorptiometry (DEXA) (Hologic 

Discovery: Vertec Scientific Ltd, UK) was used to determine participants’ body composition. 

Participants were instructed to arrive to the university campus after 10 hours overnight 

fasting. On the morning of testing they were only allowed to drink up to 250 mL of water. 

In addition, they were asked to void their bladder last thing prior to scanning and remove 
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all metal items on their body (if possible). All participants were laid in a supine position and 

underwent a ~7-minute whole body scan (effective dose 8.4 µSv), whilst wearing a hospital 

gown only. Using the built-in scan analysis software (Version 12.4; QDR for Windows, 

Hologic, Waltham, MA(115), USA), whole body analysis was performed to determine body 

compositional outcomes such as percentages of body fat mass, lean body mass and bone 

mineral content. Based on percent body fat mass, participants were classified, in terms of 

adiposity, as either normal or high (<40% or ≥40% in female, while <28% or ≥28% in male) 

(116). In addition, appendicular segmental masses were manually identified and assessed 

to be able to calculate the skeletal muscle index (SMI; appendicular lean mass per squared 

body height (kg∙m2)). This outcome was used for sarcopenia classification according to the 

suggested thresholds by Baumgartner et al. (115). Participants were deemed sarcopenic 

when SMI was <5.45 kg∙m2 for women and <7.26 kg∙m2 for men. 

Accelerometer data 

SB and PA levels were monitored for seven consecutive days using a triaxial accelerometer. 

The waterproof accelerometer that served as the activity monitor in this thesis, was the 

GENEActiv Original (43 x 40 x 13 mm, 16 grams) (Activinsights Limited, Kimbolton, 

Cambridgeshire, UK). It was mounted on the anterior mid-thigh (at 50% femur length using 

Tegaderm™ transparent film dressing (3M Health Care, St. Paul, MN, USA)) of the dominant 

leg (preferred for single-leg balance). The monitor was initialised to sample at 60 Hz. 

Participants were instructed to record their sleeping times on a provided log sheet, which 

allowed accurate analysis of daytime SB and PA. The accelerometer data was analysed with 

an in-house developed machine learning algorithm and software application (Chapter 2). 

This application provides a wide range of daily SB and PA outcomes, such as total time spent 

in different intensities, time spent in moderate-to-vigorous PA (MVPA) bouts of ≥10 

continuous minutes, breaks in SB and distribution of SB bouts (Table 4.1). These outcomes 

were adopted from previous studies (16,117), which provide details on the calculations 

performed. The accelerometer data was only considered valid, if ≥5 days (of which ≥1 

weekend day) were measured (90). This was the case in 105 out of 106 participants tested. 

Average values of all outcomes over the valid days were considered for further analyses. 

In this thesis SB and PA outcomes were analysed on three different levels: (i) general SB 

levels combined with information on whether participants are physically active or not, (ii) 

compositional data analysis of total daily time spent in different behaviours (This type of 

analysis has been described in detail previously (118,119). Briefly, daily compositions are 
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transformed into isometric log-ratio coordinates, which are then unconstrained and allow 

the application of traditional multivariate statistics.), and (iii) daily SB pattern parameters 

combined with a variety of PA outcomes, such as percent standing, light-intensity PA (LIPA) 

or MVPA during PA bouts, or daily sporadic MVPA (sMVPA). 

Table 4.1. Overview of accelerometer outcomes used in this thesis. 

Accelerometer outcome¶ Description 

Sleep (hrs) Time spent sleeping 

SB (hrs) Time spent in SB 

Standing (hrs) Time spent standing 

LIPA (hrs) Time spent in LIPA 

MVPA (hrs) Time spent in MVPA 

SB level (low/high) Daily SB <8 or ≥8 hours 

Breaks SB (n) SB interruptions with ≥2 consecutive minutes upright activity 

Short SB bouts (n) SB bouts <30 minutes duration 

Long SB bouts (n) SB bouts ≥30 minutes duration 

α Scaling parameter sedentary bout length distribution 

X1/2 (mins) Median SB bout duration 

W1/2 (%) 
Fraction total sedentary time accumulated in bouts longer than 

median sedentary bout length 

W50% (mins) Half of total SB is accumulated in SB bouts ≤ this duration 

F (bouts∙hrs-1) Fragmentation index of SB bouts and total SB 

Period (mins) Mean period between SB bouts 

PA bouts (n) Bouts of ≥2 consecutive minutes upright activity 

Total PA bouts time (mins) Total PA bouts duration 

SB during PA bout (%) Percent of time spent in SB during PA bouts 

Standing during PA bout (%) Percent of time spent in standing during PA bouts 

LIPA during PA bout (%) Percent of time spent in LIPA during PA bouts 

MVPA during PA bout (%) Percent of time spent in MVPA during PA bouts 

MVPA≥10 mins (mins) Total time spent in ≥10 consecutive minutes MVPA 

sMVPA (mins) Sporadic MVPA (total MVPA - MVPA≥10 mins) 

Physically active (no/yes) Weekly MVPA≥10 mins <150 or ≥150 mins 

SB, sedentary behaviour; PA, physical activity; LIPA, light-intensity physical activity; MVPA, moderate-to-

vigorous physical activity; ¶Daily measure, unless stated otherwise. 

Statistical analyses 

All data were checked for normality using either the Shapiro-Wilk or Kolmogorov-Smirnov 

tests. Normal distributed variables are presented as arithmetic mean (standard deviation 

(SD)), else as median (interquartile range (IQR)). To test the effect of age on SB and PA 



59 

measures, and the independence between SB and PA outcomes (excluding compositional 

data for the latter), either Pearson or Spearman correlation (non-parametric) was 

determined for continuous data. In case one of the variables was categorical, an 

independent T-test (or the non-parametric Mann-Whitney U test) was used. When both 

variables were categorical, either the Chi-square or Fisher’s Exact test was conducted. To 

investigate co-dependencies between different behaviours of the compositional data, a 

variation matrix with log-ratio variances was created. Values close to zero, implied 

behaviours involved in the ratio to be highly proportional. 

All statistical analyses were executed using IBM SPSS Statistics for Windows, version 23.0 

(IBM Corp., Armonk, NY, USA). P-values <0.05 were considered statistically significant. 

 

Results 

Descriptive statistics 

The mean (SD) age of the 105 participants tested, was 72.8 (6.0) years, while average 

anthropometrics showed body height of 166.3 (9.3) cm, body mass of 73.0 (13.4) kg and 

BMI of 25.9 (6.0) kg∙m-2 (Table 4.2). Mean (SD) body composition consisted of 36.3 (7.9)% 

fat mass, 60.2 (7.5)% lean mass and 3.5 (0.7)% bone mineral content. About 45% of the 

subjects was deemed to be sarcopenic. Gender distribution in our predominantly white 

(99.0%) study sample was 53.3% female vs. 46.7% male. Although most people were 

classified with high adiposity (71.4%), frailty (15.2%) and history of major illness was low 

(16.3%). Our participants were on statins in 32.4% of the cases, while a current diagnosis 

of rheumatoid arthritis was only seen in 3.8% of the people. Only 2.9% of the participants 

smoked currently, while daily intake of ≥3 units alcohol was also low (4.9%). Regular intake 

of dairy and caffeine was 95.2% and 82.9% respectively. Finally, calcium/vitamin D 

supplements were used by 14.3% of the participants, while 22.1% recently performed 

resistance training. 

Our participants spent 35.6% of their days sleeping, 39.4% in SB, 2.8% standing, 11.5% in 

LIPA and 10.7% in MVPA (Table 4.3). Overall, 81.9% spent ≥8 hours per day in SB, while only 

10.5% was physically active. Combining these two outcomes, only 1.9% had both low SB 

levels and were physically active, while 16.2% had low SB but was not physically active, 

8.6% had high SB and was physically active and 73.3% showed high SB levels combined with 

physical inactivity. 
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Table 4.2. Study sample characteristics. 

Variable Mean (SD) or ¶Median (IQR) 

Age (yrs.) 72.8 (6.0) 

Sex (female / male) 56 49 

Ethnicity (white / black) 104 1 

Body height (cm) 166.3 (9.3) 

Body mass (kg) 73.0 (13.4) 

BMI (kg∙m-2) 25.9 (6.0)¶ 

Body fat mass (%) 36.3 (7.9) 

Body lean mass (%) 60.2 (7.5) 

Body BMC (%) 3.5 (0.7) 

SMI (kg∙m-2) 6.4 (1.8)¶ 

Adiposity class (normal / high) 30 75 

FRAT (low / medium-to-high) 89 16 

History of major illness (no / yes) 87 17 

Currently on statins (no / yes) 71 34 

Currently smoking (no / yes) 102 3 

Resistance training within previous 6 months (no / yes) 81 23 

Regular consumption of dairy products (no / yes) 5 100 

Caffeine intake (no / yes) 18 87 

Current RA diagnosis (no / yes) 101 4 

Daily alcohol intake ≥3 units (no / yes) 98 5 

Calcium/vitamin D supplements intake (no / yes) 90 15 

BMI, body mass index; BMC, bone mineral content; FRAT, falls risk assessment tool; RA, rheumatoid arthritis. 

Table 4.3. Overview of the study sample’s daily sedentary behaviour and physical activity 

levels. 

Accelerometer outcome Mean (SD) or ¶Median (IQR) 

Sleep (hrs) 8.4 (0.8)¶ 

SB (hrs) 9.3 (1.5) 

Standing (hrs) 0.7 (0.3) 

LIPA (hrs) 2.9 (1.0) 

MVPA (hrs) 2.7 (1.0) 

SB level (low/high) 19 86 

Breaks SB (n) 22.2 (3.5) 

Short SB bouts (n) 17.0 (3.8) 

Long SB bouts (n) 6.0 (1.2) 

α 1.45 (0.04) 

X1/2 (mins) 8.8 (11.8)¶ 
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W1/2 (%) 93.3 (11.2)¶ 

W50% (mins) 58.3 (22.9)¶ 

F (bouts∙hrs-1) 2.5 (0.7)¶ 

Period (mins) 10.2 (2.9)¶ 

PA bouts (n) 22.2 (3.5) 

Total PA bouts time (mins) 365.2 (95.9) 

SB during PA bout (%) 1.5 (0.7)¶ 

Standing during PA bout (%) 11.8 (4.6) 

LIPA during PA bout (%) 44.2 (11.0) 

MVPA during PA bout (%) 42.5 (12.4) 

MVPA≥10 mins (mins) 3.4 (10.6)¶ 

sMVPA (mins) 153.5 (57.8) 

Physically active (no/yes) 94 11 

SB, sedentary behaviour; PA, physical activity; LIPA, light-intensity physical activity; MVPA, moderate-to-

vigorous physical activity; sMVPA, sporadic moderate-to-vigorous physical activity. 

Further ageing and SB & PA 

Most accelerometer outcomes did not show any significances with age, except for SB, LIPA, 

long SB bouts, total PA bouts time, LIPA during PA bout and MVPA during PA bout (Table 

4.4). SB (0.230, p=0.018), long SB bouts (0.205, p=0.036) and MVPA during PA bout (0.276, 

p=0.004) were positively correlated with age, while LIPA (-0.370, p<0.001), total PA bouts 

time (-0.241, p=0.013) and LIPA during PA bout (-0.313, p=0.001) demonstrated negative 

correlations. 

Table 4.4. Correlations between age and accelerometer outcomes. 

Accelerometer outcome Correlation coefficient P-value 

Sleep 0.091 0.354 

SB 0.230 0.018 

Standing -0.145 0.141 

LIPA -0.370 <0.001 

MVPA 0.009 0.924 

SB level  0.273 

Breaks SB -0.026 0.793 

Short SB bouts -0.085 0.387 

Long SB bouts 0.205 0.036 

α -0.134 0.175 

X1/2 -0.085 0.388 

W1/2 0.098 0.318 
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W50% 0.185 0.059 

F -0.113 0.250 

Mean period between SB bouts -0.186 0.058 

PA bouts -0.026 0.794 

Total PA bouts time -0.241 0.013 

SB during PA bout -0.063 0.526 

Standing during PA bout 0.012 0.900 

LIPA during PA bout -0.313 0.001 

MVPA during PA bout 0.276 0.004 

MVPA≥10 mins -0.164 0.095 

sMVPA 0.043 0.666 

Physically active  0.249 

SB, sedentary behaviour; PA, physical activity; LIPA, light-intensity physical activity; MVPA, moderate-to-

vigorous physical activity; sMVPA, sporadic MVPA, moderate-to-vigorous physical activity. Bold values 

represent significant outcomes. 

Independency of SB & PA 

General SB levels appeared independent of physical activity classification (Fisher’s Exact 

test, p=1.000). Log-ratio variances from the compositional data analysis showed similar 

results, with only sleep and SB having a low log-ratio variance (0.0355) and thus showing 

co-dependency (Table 4.5). Generally, SB pattern parameters were independent from most 

PA pattern outcomes, such as SB during PA bout, standing during PA bout, LIPA during PA 

bout, MVPA during PA bout and MVPA≥10 mins (Table 4.6). 

Table 4.5. Log-ratio variances of compositional accelerometer data. 

 Sleep SB Standing LIPA MVPA 

Sleep 0.0000     

SB 0.0355 0.0000    

Standing 0.2912 0.3934 0.0000   

LIPA 0.1615 0.2661 0.2228 0.0000  

MVPA 0.2064 0.2667 0.3928 0.2982 0.0000 

SB, sedentary behaviour; PA, physical activity; LIPA, light-intensity physical activity; MVPA, moderate-to-

vigorous physical activity. 
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Table 4.6. SB-PA independencies for daily SB pattern parameters. 

 PA bouts 

Total PA 

bouts 

time 

SB 

during 

PA 

bout 

Standing 

during 

PA bout 

LIPA 

during 

PA bout 

MVPA 

during 

PA 

bout 

MVPA≥10 

mins 
sMVPA 

Breaks SB 1.000** 0.275** 0.096 -0.155 -0.192* 0.223* 0.085 0.323** 

Short SB 

bouts 
0.947** 0.450** 0.074 -0.125 -0.108 0.138 0.087 0.389** 

Long SB bouts -0.124 -0.691** 0.027 -0.026 -0.197 0.182 -0.039 -0.341** 

α 0.325** 0.486** 0.078 -0.103 0.102 -0.056 -0.106 0.315** 

X1/2 -0.489** -0.516** 0.098 0.017 0.079 -0.075 -0.239* -0.404** 

W1/2 0.219* 0.256* -0.125 -0.037 -0.078 0.070 0.213* 0.212* 

W50% -0.527** -0.635** 0.087 -0.017 0.049 -0.059 -0.237* -0.476** 

F 0.670** 0.785** -0.026 -0.066 -0.064 0.096 0.173 0.622** 

Mean period 

between SB 

bouts 

-0.329** 0.747** -0.222* 0.140 0.173 -0.191 0.157 0.306** 

SB, sedentary behaviour; PA, physical activity; LIPA, light-intensity physical activity; MVPA, moderate-to-

vigorous physical activity; sMVPA, sporadic moderate-to-vigorous physical activity. *P<0.05; **P<0.01. 

 

Discussion 

At the beginning of this chapter it was hypothesised that (i) the cross-sectional study 

sample would be representative and (ii) SB and PA measures would show to be both 

affected by age and independent. Generally, our data showed similar values to the general 

adult UK population in terms of anthropometrics (120) and gender distribution in elderly 

(121). Even including most participants aged 60-69 years, then aged 70-79 years and finally 

≥80 years, is in accordance with the age groups’ prevalence within the general population 

(121). Also, SB/PA levels and adherence to current UK PA guidelines are more or less in line 

with existing literature (17,27,28,92). Thus, the first hypothesis was confirmed. 

The fact that both an increase in SB and decline in LIPA occurred with ageing, was in 

agreement with previous studies (27,122,123). A brief check of sex differences in outcomes 

such as total daily SB/PA, SB breaks and number of short/long SB bouts, showed similar 

outcomes with other reports too (17,22,27,32,124,125). Furthermore, the independencies 

found between SB and PA for the different levels of statistical analyses, were as expected. 

Therefore, the second hypothesis was also confirmed. 
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Conclusion 

Overall, the cross-sectional study sample as described in this chapter, appears 

representative for the older UK population. SB and PA differed independently during 

further ageing, with SB increasing and PA decreasing respectively. This population is thus a 

good sample to study the effects of SB and PA separately and in combination on 

gastrocnemius medialis muscle-tendon properties in older adults within the next chapters. 
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Chapter 5. The association between sedentary behaviour and both resting 

skeletal muscle size and architecture in community-dwelling older adults 

Introduction 

Skeletal muscle ageing is a phenomenon characterised by a decrease in muscle mass (126) 

and strength (44,127–129), a decrease in agonist activation (130) and an increase in 

antagonist co-contraction (131). Generally, this results in a decreased functional capacity 

(132), and an increased disability and physical dependence of elderly (133–135). In 

addition, the increased morbidity, higher rate of hospitalisation and mortality after bone 

fractures due to falls in old age have been reported to be associated with lower muscle 

strength (136,137). 

Apart from sarcopenia, an age-related drop in habitual physical activity (PA) levels are 

thought to, at least partially, explain some muscle ageing effects (130,138). Although 

evidence is limited and conflicting, sedentary behaviour (SB) is also suggested to be 

independently associated with muscle health (90). Multiple studies have reported a 

negative relationship between SB on one side and functional fitness and performance on 

the other (139–142). SB has also been identified mediating the association between obesity 

and falls in elderly (143). Especially the relation between SB and obesity is interesting, as it 

suggested that sarcopenia is catalysed by the amount of visceral and intramuscular fat 

tissue (5). Gianoudis et al. (5) examined the relation between sarcopenia and SB, and found 

that (i) higher overall daily sitting time resulted in a 33% increased risk of having sarcopenia 

and (ii) TV viewing time was inversely related to total body and leg lean mass. This latter 

finding was confirmed by another study, which suggested a direct relationship between 

(lower limb) adiposity in older men and SB (42). Counter-intuitively, they also found that 

increased and prolonged SB was associated with increased leg power and muscle quality 

(42). Although one study (42) quantified SB objectively, the other used subjective measures 

(5), which makes the validity of their study results questionable. 

Besides muscle mass and fibre type composition, the power output, force generating 

capacity and maximal shortening velocity are also influenced by the architecture of the 

muscle (144–147). The muscle architecture is often described in terms of fascicle length 

(LF), pennation angle (θ) and physiological cross-sectional area (PCSA), where the latter 

provides a more accurate measure of the contractile area than muscle anatomical cross-

sectional area, especially for pennate muscles (as in this chapter) (148). PCSA is calculated 
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by dividing muscle volume (VM) by LF, and thus represents the number of parallel 

sarcomeres, which makes it directly proportional to maximum force production of the 

muscle (144,149). However, this is not the force at the tendon as not all force is transmitted 

according to the line of pull; to take that into account, the force has to be multiplied by the 

cosine of the angle of pennation, and preferably so during a maximal contraction (150). 

Clearly, skeletal VM and architecture are highly significant for accurate understanding of 

muscle health. With ageing, not only VM, but also LF, θ and muscle PCSA are reduced (151), 

where the reduction in θ brings the muscle fascicles more in the line of pull and hence 

attenuates some of the loss of power and force in old age (147). Apart from ageing, other 

factors also have a significant impact on skeletal muscle, such as sex, body composition, 

genetic constitution and training status (152–156). Thus, it is important to consider some 

or at best all these factors when examining any effects on muscle size and architecture in 

a cross-sectional study of an aged population. 

Overall, the literature has suggested several factors that contribute to muscle ageing, in 

which SB potentially might play a role. For example, as stated above, lower habitual daily 

activity levels might result in age-related muscle weakness (130). The same accounts for 

increased intramuscular fat infiltration, as seen in obesity. SB is proposed to cause muscle 

atrophy due to disuse, and to contribute to obesity due to a lack of movement (90). 

Furthermore, SB measures appeared independent of (most) PA outcomes (Chapter 3). 

Hence, SB might have adverse effects on skeletal muscle size and architecture, 

independent of factors such as age, sex, body composition and concurrent PA. To our 

knowledge, no study has yet comprehensively investigated the effect of SB on skeletal 

muscle size and architecture in a cross-sectional young-old to older-old population. 

Therefore, the main aim of this chapter was to examine the independent association 

between SB and both resting skeletal muscle size and architecture in older adults. Different 

measures of SB were studied, respectively (i) SB level classification, (ii) total daily SB and 

(iii) daily SB patterns. It was hypothesised that muscle size and architecture are inferior in 

older adults with high vs. low SB, regardless of adherence to PA guidelines. Moreover, both 

total daily SB and daily SB patterns were hypothesised to be (detrimentally) associated with 

muscle size and architecture in the elderly. 
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Materials and methods 

As described in Chapter 4 of this thesis, 105 healthy older adults participated in this cross-

sectional study. As per the test protocol, participants came to the university for a second 

visit after the habitual daily activity monitoring week. During this visit, muscle size and 

architecture of the gastrocnemius medialis (GM) was assessed. 

SB and PA outcomes 

See chapter 4 for a detailed overview of the SB and PA outcomes used in this chapter. 

Muscle size 

For the assessment of the GM size, participants were placed in a prone position with their 

self-perceived dominant leg (preferred for single leg balance) extended and ankle fixed at 

a 90° angle (no plantar- (PF) or dorsiflexion (DF)). Real-time B-mode ultrasonography 

(Technos; Esaote S.p.A, Genoa, Italy) was used to assess GM muscle architecture. Firstly, 

the GM origin (0% GM length) and Achilles tendon insertion into the calcaneus were 

determined and marked by scanning these sites in a sagittal plane. The distance between 

these two sites represented the muscle-tendon unit length (LMTU; cm). Next, the 

myotendinous junction was determined. Muscle length (LM; cm) was defined as the 

distance between GM origin and the myotendinous junction (0-100% GM length). Knowing 

LM allowed to position the ultrasound probe at 25, 50 and 75% GM length, which were 

marked on the skin using a water-soluble pen across the GM width. Thin strips (~2 mm) of 

micropore tape (Transpore, 3M, USA) were placed in axillary lines (~3.5 cm apart) along the 

GM length and across the three marked muscle sites (Figure 5.1). They served as echo-

absorptive markers for the reconstruction of the muscle sites’ anatomical cross-sectional 

area (ACSA). Water-soluble transmission gel (Aquasonic 100; Parker Laboratories Inc., 

Fairfield, NJ, USA) was placed over the ultrasound probe head to improve acoustic coupling 

during ultrasound scanning. Each section was then transversally scanned across the marked 

pathway from the medial to the lateral GM border, during which the ultrasound probe (7.5-

MHz linear-array probe, 3.8 cm wide) was held perpendicular to the skin for the duration 

of the scanning procedure. While moving the probe steadily, minimal pressure was applied 

to avoid compression of muscle tissue. The ultrasound picture was recorded in real time 

onto a computer (25 frames per second) using capturing software (Adobe Premier Pro 

version 6), which allowed offline extraction of individual transverse frames. The shadows 

projected by the micropore tape and anatomical markers were used to reconstruct the 
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ACSAs at each of the three GM lengths of interest (25 (ACSA25), 50 (ACSA50) and 75% 

(ACSA75)) with photo editing software (Adobe Photoshop Elements, version 10) (Figure 

5.2). The complete ACSAs were measured (cm2) using digitising software (ImageJ 1.45; 

National Institutes of Health, Bethesda, MD, USA). Finally, muscle volume (VM; cm3) was 

calculated using the truncated cone method, which required the three measured ACSAs 

plus two assumed ACSAs at the GM origin (0%) and insertion (100%). For the latter two, a 

standard area of 0.5 cm2 was used as previously done in our and other research groups. In 

total, the volumes of four different cones (0 - 25, 25 - 50, 50 - 75, and 75 - 100%) were 

calculated and summed for the muscle volume. The calculation of each cone volume was 

carried out using the following formula: 

Cone volume (cm3) = (h/3) * (ACSAbase + √(ACSAbase * ACSAtop) + ACSAtop) 

where h = distance between the segments (cm), ACSAbase = anatomical cross-sectional area 

(cm2) of the cone base, and ACSAtop = anatomical cross-sectional area (cm2) of the cone top. 

 

Figure 5.1. Example of a marked leg. 

 



69 

 

Figure 5.2. Anatomical cross-sectional area of the gastrocnemius medialis at 50% muscle 

length. 

Muscle architecture 

Architecture of the GM was measured with real-time B-mode ultrasonography while 

participants were seated in an isokinetic dynamometer (Cybex Norm; Cybex International, 

New York, NY, USA) with their hip at 85° angle, self-perceived dominant leg extended and 

foot secured to the footplate of the dynamometer at 90° angle (no PF or DF). Non-

extending straps were used at the hip, distal thigh and chest to prevent extraneous 

movements. Resting measures of LF and θ were obtained by placing the ultrasound probe 

perpendicular to the dermal surface in the mid-sagittal plane at 50% of the GM muscle 

length (Figure 5.3). Again, water-soluble transmission gel was placed over the ultrasound 

probe head to improve acoustic coupling during ultrasound scanning. The ultrasound 

picture was recorded in real time onto a computer using capturing software, from where 

individual images were extracted for post-testing analyses. LF and θ were analysed on these 

images using digitising software. To do so, three fascicles had to be clearly visible in the 

area between the deep and superficial aponeuroses. LF (cm) and θ (°) (defined as the angle 

between a fascicle’s orientation and the tendon axis) were measured for all three fascicles, 

with the mean value recorded as the participant’s data. In cases where a chosen fascicle 

extended beyond the scanning window, linear extrapolation was applied, but only if ≥60% 

of the fascicle was visible (151). These extrapolations have previously been shown to be 

valid (157). 
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With having the LM, LF and VM measured, calculation of normalised fascicle length (LF-N) and 

resting PCSA (cm2) was performed. The first was done by dividing LF (cm) by LM (cm), while 

for the second VM (cm3) was taken over LF (cm). 

 

Figure 5.3. Muscle architecture at 50% gastrocnemius medialis muscle length. 

LF, fascicle length; θ, pennation angle. Upper dashed line represents superficial aponeurosis, bottom dashed 

line represents deep aponeurosis. 

Reliability 

Test-retest reliability for ultrasound scanning was investigated by intraclass correlation 

coefficients (ICCs) for absolute agreement using a two-way mixed model. Reliability values 

<0.5 were interpreted as poor, between 0.5 - 0.75 as moderate, between 0.75 - 0.9 as good 

and >0.9 as excellent (158). ICCs for the main muscle size properties measured in this 

chapter, were LM = 0.941, ACSA25 = 0.824, ACSA50 = 0.910 and ACSA75 = 0.974. Main GM 

muscle architecture outcomes appeared to have ICCs of 0.700 for LF and 0.645 for θ. 

Statistical analyses 

The outcome variables are displayed as mean (standard deviation (SD)) or median 

(interquartile range (IQR)) (Table 5.1). Prior to conducting any inferential statistical analysis, 

all outcome variables were checked for normality (either Kolmogorov-Smirnov or Shapiro-

Wilk test). In case of non-normality, the variables were log-transformed and the 

distribution of the transformed data also checked. Since postural balance was performed 

in a subsample only, their representativeness of the whole study sample was assessed 

using an Independent samples T-test or Mann-Whitney U test. Potential covariates were 
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analysed per outcome variable by running a univariate General Linear Model (GLM). When 

a parameter appeared significant, it was treated as a covariate (Table 5.2). Since daily time 

spent in sleep, SB and physical activity (PA) is constrained to 24 hours, we used 

compositional data analysis for these accelerometer outcomes. This type of analysis has 

been described in detail previously (118,119). Briefly, daily compositions are transformed 

into isometric log-ratio coordinates, which are then unconstrained and allow the 

application of traditional multivariate statistics. In this chapter, both single and multiple 

linear regression analysis was used to study the associations with SB levels, proportional 

total daily SB and PA, and daily SB pattern parameters. The identified covariates were 

added to the regression models first, by using backward elimination, after which the 

predictor(s) of interest was/were entered. During backward elimination, parameters were 

retained if p-values were <0.20 (118). For all models, Durbin-Watson statistics (>1.0 and 

<3.0) were checked to identify any correlation between the predictor and covariates, and 

covariates with variance inflation factor ≥10.0 were removed from the regression model, 

one at the time. The same was done with individual cases showing Cook’s distance ≥1.0. If 

significant associations were observed for the compositional data, isotemporal substitution 

was applied to the identified models including covariates, to calculate the relative effects 

(%) of re-allocating 10 minutes from one behaviour to the other, with respect to the study 

sample’s mean outcomes. Ten minutes was chosen, not only because of its beneficial 

effects (for example when moderate-to-vigorous PA (MVPA) is performed) (159), but also 

because it is a realistic amount of time to replace in most elderly. 

All statistical analyses were performed using IBM SPSS Statistics for Windows, version 24.0 

(IBM Corp., Armonk, NY, USA) and p-values <0.05 were considered statistically significant. 
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Results 

Descriptive statistics 

Table 5.1 shows the study sample’s descriptive statistics of the GM size and architecture. 

Table 5.1. Study sample descriptive statistics of resting gastrocnemius medialis muscle size 

and architecture. 

Resting GM variables Mean (SD) or ¶median (IQR) 

LMTU (cm) 40.1 (3.5) 

LM (cm) 22.3 (3.2) 

ACSA25 (cm2) 11.6 (4.4)¶ 

ACSA50 (cm2) 15.0 (5.3)¶ 

ACSA75 (cm2) 8.8 (4.6)¶ 

VM (cm3) 185.5 (82.7)¶ 

LF (cm) 7.4 (1.2) 

LF-N 0.34 (0.06) 

θ (°) 15.2 (2.5) 

PCSA (cm2) 26.0 (10.0)¶ 

GM, gastrocnemius medialis; SD, standard deviation; IQR, interquartile range; LMTU, muscle-tendon unit 

length; LM, muscle length; ACSA, anatomical cross-sectional area; VM, muscle volume; LF, fascicle length; LF-N, 

normalised fascicle length; θ, fascicle pennation angle; PCSA, physiological cross-sectional area. 

Covariate analysis 

The variables identified as covariates in this chapter, were: age, sex, body height, body 

mass, body mass index (BMI), skeletal muscle index (SMI), body fat mass, body lean mass, 

body bone mineral content (BMC), adiposity class, falls risk assessment tool (FRAT) score, 

menopause age, history of major illness, current resistance training, intake of dairy 

products, current rheumatoid arthritis diagnosis, calcium/vitamin D supplement usage, 

number of daily PA bouts, SB during PA bouts, standing during PA bouts, light-intensity PA 

(LIPA) during PA bouts and MVPA during PA bouts (Table 5.2). 
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Table 5.2. Correlation coefficients of covariate analysis. 

 LMTU LM ACSA25¶ ACSA50¶ ACSA75¶ VM
¶ LF LF-N θ PCSA¶ 

Age -0.037 -0.287 -0.230 -0.193 -0.171 -0.289 -0.158 0.115 0.032 -0.258 

Sex 0.649 0.338 0.167 0.226 0.304 0.339 0.144 -0.161 0.087 0.338 

Ethnicity -0.156 -0.115 -0.101 -0.078 -0.156 -0.140 -0.138 -0.046 -0.079 -0.085 

Body height 0.799 0.491 0.282 0.235 0.235 0.416 0.207 -0.220 -0.035 0.385 

Body mass 0.508 0.347 0.500 0.580 0.487 0.593 0.174 -0.142 0.286 0.619 

BMI 0.032 0.055 0.361 0.478 0.379 0.374 0.035 -0.026 0.347 0.433 

SMI 0.489 0.347 0.431 0.490 0.482 0.543 0.193 -0.116 0.295 0.555 

Fat mass -0.458 -0.263 0.085 0.137 0.021 -0.036 -0.089 0.127 0.129 -0.003 

Lean mass 0.450 0.257 -0.081 -0.137 -0.020 0.035 0.086 -0.125 -0.117 0.002 

BMC mass 0.397 0.252 -0.097 -0.101 -0.022 0.042 0.090 -0.116 -0.225 0.012 

Adiposity class 0.062 -0.054 0.304 0.409 0.282 0.270 0.026 0.037 0.289 0.310 

FRAT score -0.158 -0.195 -0.125 -0.148 -0.178 -0.219 -0.156 0.005 0.035 -0.167 

Menopause age 0.050 0.128 0.039 -0.232 -0.280 -0.075 0.058 -0.080 -0.141 -0.121 

Major illness history 0.232 0.159 0.025 0.143 0.152 0.161 -0.039 -0.170 -0.004 0.208 

Statins usage 0.123 0.009 -0.005 0.002 0.073 0.021 0.039 0.029 0.017 0.002 

Smoking -0.199 -0.241 -0.158 -0.072 -0.022 -0.179 -0.116 0.124 0.002 -0.150 

Resistance training -0.005 0.124 0.083 -0.030 -0.048 0.051 0.213 0.104 -0.181 -0.053 

Dairy products -0.041 0.039 0.040 -0.071 -0.076 -0.021 -0.244 -0.273 0.143 0.104 

Caffeine intake 0.150 0.090 0.063 -0.008 0.030 0.059 0.099 0.016 -0.171 0.018 

RA diagnosis 0.086 0.079 0.082 0.195 0.219 0.178 0.005 -0.058 0.084 0.204 
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Daily alcohol intake ≥3 units 0.188 0.155 0.024 0.100 0.161 0.150 0.056 -0.085 0.010 0.168 

Calcium/vitamin D 

supplements 
-0.205 -0.080 -0.079 -0.101 -0.090 -0.110 -0.010 0.048 -0.052 -0.128 

PA bouts 0.129 0.140 0.040 0.112 0.104 0.137 0.211 0.072 -0.020 0.053 

Total PA bouts time -0.083 0.008 0.065 -0.090 -0.048 -0.021 0.170 0.167 -0.095 -0.119 

SB during PA bout -0.184 -0.097 -0.172 -0.127 -0.200 -0.180 -0.026 0.068 -0.094 -0.206 

Standing during PA bout -0.111 0.049 0.023 0.084 0.100 0.088 -0.041 -0.077 0.267 0.125 

LIPA during PA bout -0.269 -0.055 0.005 -0.006 -0.022 -0.029 0.007 0.053 -0.053 -0.033 

MVPA during PA bout 0.291 0.036 -0.004 -0.019 -0.007 0.003 0.011 -0.022 -0.046 -0.006 

MVPA≥10 mins 0.042 0.007 0.108 -0.031 0.067 0.033 -0.004 -0.020 -0.003 0.040 

sMVPA 0.177 0.049 0.039 -0.047 -0.040 0.006 0.123 0.084 -0.088 -0.064 

Physical activity status 0.052 -0.006 0.036 -0.032 0.095 0.016 -0.048 -0.037 0.001 0.045 

LMTU, muscle-tendon unit length; LM, muscle length; ACSA, anatomical cross-sectional area; VM, muscle volume; LF, fascicle length; LF-N, normalised fascicle length; θ, fascicle pennation angle; 

PCSA, physiological cross-sectional area; BMI, body mass index; BMC, bone mineral content; Skeletal muscle index; FRAT, falls risk assessment tool; RA, rheumatoid arthritis; PA, physical 

activity; SB, sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity; sMVPA, sporadic moderate-to-vigorous physical activity; ¶Log-

transformed. Bold values represent significances at P<0.05 level. 
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SB levels 

No significant associations were identified between SB levels and both resting GM size and 

architecture in older adults, except for θ (β = 0.21, R2
adj = 0.036) (Table 5.3). However, these 

associations disappeared when adjusting the regression models for covariates. The effect 

sizes of the models with covariates appeared 0.105 ≤ R2
adj ≤ 0.834. 

Table 5.3. Regression analysis results for sedentary behaviour levels. 

 
Without covariates With covariates 

B 95%-CI β R2
adj B 95%-CI β R2

adj 

LMTU 0.35 -1.41 2.11 0.04 -0.008 0.20 -0.58 0.97 0.02 0.834** 

LM 0.01 -1.60 1.62 0.00 -0.010 -0.07 -1.18 1.05 -0.01 0.576** 

ACSA25¶ 0.05 -0.07 0.18 0.08 -0.003 -0.01 -0.12 0.10 -0.02 0.297** 

ACSA50¶ 0.14 -0.01 0.29 0.18 0.023 0.04 -0.08 0.16 0.06 0.411** 

ACSA75¶ 0.11 -0.06 0.28 0.13 0.006 0.03 -0.12 0.18 0.03 0.283** 

VM
¶ 0.10 -0.07 0.27 0.11 0.004 0.04 -0.09 0.16 0.04 0.551** 

LF -0.25 -0.84 0.34 -0.08 -0.003 -0.06 -0.63 0.51 -0.02 0.105** 

LF-N -0.01 -0.04 0.02 -0.08 -0.003 0.00 -0.03 0.02 -0.02 0.209** 

θ 1.36 0.15 2.58 0.21* 0.036* 0.86 -0.29 2.01 0.13 0.232** 

PCSA¶ 0.13 -0.01 0.27 0.18 0.023 0.06 -0.04 0.16 0.08 0.540** 

LMTU, muscle-tendon unit length; LM, muscle length; ACSA, anatomical cross-sectional area; VM, muscle 

volume; LF, fascicle length; LF-N, normalised fascicle length; θ, fascicle pennation angle; PCSA, physiological 

cross-sectional area; 95%-CI, 95% confidence interval; ¶Log-transformed; *P<0.05; ** P<0.01. 

Daily total SB and PA 

Compositional data analysis showed significant associations between time spent in some 

behaviours relative to the others for a number of muscle size and architecture outcomes 

(Table 5.4). For example, MVPA was associated with LMTU (β = 0.21, R2
adj = 0.063), both sleep 

(β = -0.47) and SB (β = 0.60) (both R2
adj = 0.038) with ACSA50, while sleep (β = -0.60) and SB 

(β = 0.71) (both R2
adj = 0.085) were also associated with ACSA75, and both sleep (β = -0.43) 

and SB (β = 0.50) (both R2
adj = 0.020) again with VM. For GM muscle architecture, sleep (β = 

-0.45), SB (β = 0.58) and standing (β = 0.33) (all R2
adj = 0.110) were associated with θ, while 

sleep (β = -0.41) and SB (β = 0.55) (both R2
adj = 0.039) were associated with PCSA. 

However, when adjusting the regression models for a variety of identified covariates, the 

above associations changed significantly. Muscle size showed associations between as well 

sleep (β=-0.49), SB (β=0.41) as LIPA (β=0.27) (all R2
adj = 0.393) and ACSA75, while standing 

(β=0.17, R2
adj = 0.578) was associated with VM. Muscle architecture only showed 
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associations for LIPA with LF (β=0.24, R2
adj = 0.116) and LF-N (β=0.21, R2

adj = 0.224), and 

standing with both θ (β=0.31, R2
adj = 0.296) and PCSA (β=0.21, R2

adj = 0.573). Effect sizes for 

the models showing at least one significant association with time spent in a behaviour 

relative to the others, were 0.116 ≤ R2
adj ≤ 0.578. The adjusted R2 values for the other 

models ranged from 0.318 through 0.831. Isotemporal substitution showed that the 

relative effects of re-allocating 10 minutes from one behaviour to another within the mean 

composition of the study sample’s total daily SB and PA (sleep = 35.6%, SB = 39.4%, standing 

= 2.8%, LIPA = 11.5% and MVPA = 10.7%) for the models including behaviours significantly 

associated with muscle size and architecture and adjusted for covariates, varied from -

0.041% through +0.033% (Table 5.5). These maximum changes were both seen in ACSA75, 

when substituting 10 min of standing with sleep and vice versa respectively. 

Table 5.4 Regression analysis results for daily total sedentary behaviour and physical 

activity. 

 
Without covariates With covariates 

B β R2
adj B β R2

adj 

LMTU 

Sleep -1.22 -0.08 

0.063* 

1.00 0.06 

0.831** 

SB 1.70 0.16 -0.26 -0.02 

Standing -0.95 -0.12 -0.06 -0.01 

LIPA -1.38 -0.13 -0.40 -0.04 

MVPA 1.85 0.21* -0.29 -0.03 

LM 

Sleep -1.43 -0.10 

-0.035 

1.72 0.12 

0.585** 

SB 0.97 0.10 -1.89 -0.20 

Standing 0.17 0.02 0.85 0.12 

LIPA -0.08 -0.01 -0.34 -0.04 

MVPA 0.37 0.05 -0.35 -0.04 

ACSA25¶ 

Sleep -0.37 -0.32 

-0.009 

-0.07 -0.06 

0.318** 

SB 0.22 0.29 -0.08 -0.11 

Standing 0.03 0.06 0.04 0.07 

LIPA 0.07 0.09 0.11 0.15 

MVPA 0.05 0.07 0.00 0.00 

ACSA50¶ 

Sleep -0.64 -0.47* 

0.038 

-0.35 -0.26 

0.426** 

SB 0.52 0.60* 0.20 0.22 

Standing 0.07 0.11 0.07 0.10 

LIPA 0.05 0.05 0.16 0.18 

MVPA 0.00 0.00 -0.07 -0.10 

ACSA75¶ Sleep -0.96 -0.60* 0.085* -0.78 -0.49** 0.393** 
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SB 0.73 0.71* 0.41 0.41* 

Standing 0.15 0.19 0.13 0.17 

LIPA 0.06 0.06 0.28 0.27** 

MVPA 0.02 0.03 -0.04 -0.05 

VM
¶ 

Sleep -0.68 -0.43* 

0.020 

-0.17 -0.11 

0.578** 

SB 0.50 0.50* 0.02 0.02 

Standing 0.09 0.11 0.13 0.17* 

LIPA 0.05 0.05 0.08 0.08 

MVPA 0.04 0.04 -0.06 -0.07 

LF 

Sleep -1.00 -0.19 

-0.001 

-1.13 -0.21 

0.116** 

SB 0.22 0.06 0.36 0.10 

Standing -0.09 -0.03 -0.19 -0.07 

LIPA 0.51 0.14 0.83 0.24* 

MVPA 0.37 0.13 0.11 0.04 

LF-N 

Sleep -0.04 -0.15 

-0.003 

-0.07 -0.27 

0.224** 

SB 0.00 0.02 0.04 0.23 

Standing -0.01 -0.04 -0.01 -0.11 

LIPA 0.03 0.16 0.04 0.21* 

MVPA 0.01 0.09 0.01 0.07 

θ 

Sleep -5.16 -0.45* 

0.110** 

-3.22 -0.28 

0.296** 

SB 4.24 0.58** 2.63 0.36 

Standing 1.84 0.33** 1.70 0.31** 

LIPA -0.67 -0.09 -0.32 -0.04 

MVPA -0.25 -0.04 -0.80 -0.13 

PCSA¶ 

Sleep -0.53 -0.41* 

0.039 

-0.20 -0.15 

0.573** 

SB 0.46 0.55* 0.15 0.18 

Standing 0.10 0.15 0.13 0.21** 

LIPA -0.01 -0.02 0.02 0.02 

MVPA -0.02 -0.02 -0.10 -0.15 

LMTU, muscle-tendon unit length; LM, muscle length; ACSA, anatomical cross-sectional area; VM, muscle 

volume; LF, fascicle length; LF-N, normalised fascicle length; θ, fascicle pennation angle; PCSA, physiological 

cross-sectional area; SB, sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-

vigorous physical activity; ¶Log-transformed; *P<0.05; ** P<0.01. 
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Table 5.5. Relative effects (%) on muscle size and architecture of re-allocating proportional 

time spent in daily total sedentary behaviour and physical activity for regression models 

showing significant associations. 

Outcome variable +10 mins 
-10 mins 

Sleep SB Standing LIPA MVPA 

ACSA75¶ 

Sleep +0.000 -0.007 -0.041 -0.013 -0.009 

SB +0.007 +0.000 +0.013 +0.002 +0.006 

Standing +0.033 -0.010  -0.006  

LIPA +0.012 -0.002 +0.008 +0.000 +0.006 

MVPA +0.009 -0.006  -0.006  

VM
¶ 

Sleep 
 

-0.006 
 

SB -0.002 

Standing +0.005 +0.002 +0.000 +0.001 +0.003 

LIPA 
 

-0.001 
 

MVPA -0.004 

LF 

Sleep 

 

-0.007 

 SB -0.002 

Standing -0.013 

LIPA +0.007 +0.002 +0.016 +0.000 +0.004 

MVPA  -0.004  

LF-N 

Sleep 

 

-0.008 

 SB +0.000 

Standing -0.014 

LIPA +0.008 +0.000 +0.016 +0.000 +0.003 

MVPA  -0.003  

θ 

Sleep 
 

-0.033 
 

SB +0.006 

Standing +0.026 -0.005 +0.000 +0.012 +0.016 

LIPA 
 

-0.015 
 

MVPA -0.019 

PCSA¶ 

Sleep 
 

-0.010 
 

SB +0.001 

Standing +0.008 -0.001 +0.000 +0.003 +0.007 

LIPA 
 

-0.004 
 

MVPA -0.008 

ACSA, anatomical cross-sectional area; VM, muscle volume; LF, fascicle length; LF-N, normalised fascicle length; 

θ, fascicle pennation angle; PCSA, physiological cross-sectional area; SB, sedentary behaviour; LIPA, light-

intensity physical activity; MVPA, moderate-to-vigorous physical activity; ¶Log-transformed. 
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Daily SB pattern parameters 

Only few significant associations with muscle architecture outcomes were found for SB 

pattern parameters (Table 5.6). LM was associated with X1/2 (β = -0.20, R2
adj = 0.030), while 

LF was associated with Breaks SB and Short SB bouts, as W50% and F were associated (β = 

0.21, R2
adj = 0.035; β = 0.21, R2

adj = 0.036; β = -0.24, R2
adj = 0.047 and β = 0.22, R2

adj = 0.041 

respectively). 

As seen above, adding covariates to the regression models changed identified associations 

significantly. Only two outcomes showed significant associations, one for muscle size (LM) 

and the other for muscle architecture (LF). For LM, an association was found with Breaks SB 

(β = 0.14, R2
adj = 0.590), W50% (β = -0.21, R2

adj = 0.607) and F (β = 0.17, R2
adj = 0.594), whereas 

VM was associated with W50% (β = -0.16, R2
adj = 0.564) and LF was associated with Breaks SB 

(β = 0.25, R2
adj = 0.164), Short SB bouts (β = 0.24, R2

adj = 0.159), W1/2 (β = -0.20, R2
adj = 0.186) 

and F (β = 0.24, R2
adj = 0.156). The adjusted R2 values for the latter regression models 

including covariates, varied from 0.155 through 0.607. Effect sizes for the other regression 

models with covariates, were 0.208 ≤ R2
adj ≤ 0.837.
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Table 5.6. Regression analysis results for daily sedentary behaviour pattern parameters. 

 
Without covariates With covariates 

B 95%-CI β R2
adj B 95%-CI β R2

adj 

LMTU 

Breaks SB 0.13 -0.07 0.33 0.13 0.007 0.06 -0.02 0.15 0.06 0.835** 

Short SB bouts 0.06 -0.12 0.24 0.06 -0.006 0.05 -0.02 0.13 0.06 0.833** 

Long SB bouts 0.51 -0.04 1.05 0.18 0.023 0.05 -0.20 0.30 0.02 0.833** 

α -5.52 -22.15 11.12 -0.06 -0.005 0.51 -6.62 7.65 0.01 0.833** 

X1/2 -0.01 -0.02 0.00 -0.16 0.017 0.00 -0.01 0.00 0.00 0.834** 

W1/2 0.03 -0.07 0.12 0.05 -0.007 0.02 -0.02 0.06 0.04 0.833** 

W50% -0.02 -0.06 0.01 -0.11 0.004 -0.01 -0.02 0.01 -0.04 0.832** 

F -0.18 -1.27 0.91 -0.03 -0.009 0.27 -0.19 0.74 0.05 0.832** 

Period -0.20 -0.48 0.08 -0.14 0.010 -0.10 -0.22 0.02 -0.07 0.837** 

LM 

Breaks SB 0.13 -0.05 0.31 0.14 0.010 0.13 0.01 0.25 0.14* 0.590** 

Short SB bouts 0.10 -0.07 0.26 0.12 0.004 0.11 0.00 0.22 0.13 0.587** 

Long SB bouts 0.14 -0.36 0.64 0.06 -0.007 0.01 -0.36 0.39 0.01 0.576** 

α 2.94 -12.24 18.12 0.04 -0.008 8.05 -2.33 18.43 0.10 0.584** 

X1/2 -0.01 -0.02 0.00 -0.20* 0.030* -0.00 -0.01 0.00 -0.07 0.580** 

W1/2 -0.01 -0.10 0.08 -0.03 -0.009 -0.03 -0.09 0.04 -0.06 0.579** 

W50% -0.03 -0.06 0.00 -0.17 0.019 -0.04 -0.06 -0.01 -0.21** 0.607** 

F 0.23 -0.76 1.22 0.05 -0.008 0.84 0.16 1.53 0.17* 0.594** 

Period -0.03 -0.29 0.23 -0.02 -0.009 -0.00 -0.19 0.19 -0.00 0.576** 

ACSA25¶ Breaks SB 0.00 -0.01 0.02 0.04 -0.008 0.00 -0.01 0.01 0.02 0.298** 
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Short SB bouts 0.00 -0.01 0.01 0.03 -0.009 0.00 -0.01 0.01 0.06 0.300** 

Long SB bouts 0.01 -0.03 0.05 0.03 -0.009 -0.02 -0.06 0.01 -0.12 0.309** 

α -0.13 -1.34 1.09 -0.02 -0.009 -0.24 -1.27 0.80 -0.04 0.293** 

X1/2 0.00 0.00 0.00 -0.04 -0.008 0.00 0.00 0.00 -0.02 0.302** 

W1/2 0.00 -0.01 0.00 -0.09 -0.002 0.00 -0.01 0.01 -0.01 0.297** 

W50% 0.00 0.00 0.00 -0.06 -0.006 0.00 0.00 0.00 -0.09 0.304** 

F 0.00 -0.08 0.08 0.00 -0.010 0.05 -0.02 0.12 0.12 0.311** 

Period 0.00 -0.02 0.02 0.02 -0.009 0.01 0.00 0.03 0.14 0.314** 

ACSA50¶ 

Breaks SB 0.01 -0.01 0.03 0.11 0.003 0.01 0.00 0.02 0.12 0.425** 

Short SB bouts 0.00 -0.01 0.02 0.05 -0.007 0.01 0.00 0.02 0.12 0.422** 

Long SB bouts 0.04 -0.01 0.08 0.16 0.016 0.00 -0.04 0.04 -0.01 0.408** 

α 0.16 -1.26 1.57 0.02 -0.009 0.57 -0.58 1.72 0.08 0.414** 

X1/2 0.00 0.00 0.00 -0.05 -0.007 0.00 0.00 0.00 -0.07 0.406** 

W1/2 -0.01 -0.01 0.00 -0.14 0.010 0.00 -0.01 0.00 -0.05 0.411** 

W50% 0.00 0.00 0.00 -0.01 -0.010 0.00 0.00 0.00 -0.09 0.415** 

F -0.03 -0.12 0.06 -0.06 -0.006 0.05 -0.02 0.13 0.11 0.419** 

Period -0.02 -0.04 0.01 -0.14 0.010 0.00 -0.02 0.02 -0.01 0.408** 

ACSA75¶ 

Breaks SB 0.01 -0.01 0.03 0.10 0.001 0.01 -0.01 0.02 0.08 0.288** 

Short SB bouts 0.00 -0.01 0.02 0.05 -0.007 0.01 -0.01 0.02 0.07 0.287** 

Long SB bouts 0.04 -0.01 0.10 0.15 0.014 0.00 -0.05 0.05 0.01 0.282** 

α 0.41 -1.23 2.05 0.05 -0.007 0.52 -0.87 1.92 0.06 0.286** 

X1/2 0.00 0.00 0.00 0.16 0.015 0.00 0.00 0.00 -0.09 0.286** 
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W1/2 -0.01 -0.01 0.00 -0.11 0.002 0.00 -0.01 0.01 -0.03 0.283** 

W50% 0.00 0.00 0.00 -0.02 -0.009 0.00 -0.01 0.00 -0.12 0.296** 

F -0.02 -0.13 0.08 -0.04 -0.008 0.05 -0.04 0.15 0.10 0.291** 

Period -0.01 -0.04 0.01 -0.10 0.001 0.01 -0.01 0.04 0.09 0.289** 

VM
¶ 

Breaks SB 0.01 -0.01 0.03 0.14 0.009 0.01 -0.00 0.03 0.12 0.564** 

Short SB bouts 0.01 -0.01 0.03 0.09 -0.001 0.01 -0.00 0.02 0.12 0.563** 

Long SB bouts 0.03 -0.02 0.09 0.12 0.005 -0.00 -0.04 0.04 -0.01 0.549** 

α 0.31 -1.31 1.93 0.04 -0.008 0.60 -0.55 1.75 0.07 0.554** 

X1/2 0.00 0.00 0.00 -0.14 0.009 -0.00 -0.00 0.00 -0.09 0.557** 

W1/2 -0.01 -0.01 0.00 -0.11 0.003 -0.00 -0.01 0.00 -0.06 0.553** 

W50% 0.00 -0.01 0.00 -0.10 0.000 -0.00 -0.01 -0.00 -0.16* 0.564** 

F 0.00 -0.11 0.10 -0.01 -0.010 0.08 -0.00 0.15 0.14 0.565** 

Period -0.01 -0.04 0.02 -0.08 -0.003 0.00 -0.02 0.02 0.01 0.549** 

LF 

Breaks SB 0.07 0.01 0.14 0.21* 0.035* 0.09 0.02 0.15 0.25** 0.164** 

Short SB bouts 0.07 0.01 0.12 0.21* 0.036* 0.08 0.02 0.13 0.24** 0.159** 

Long SB bouts -0.06 -0.25 0.12 -0.07 -0.005 0.00 -0.18 0.18 0.00 0.155** 

α 5.31 -0.17 10.79 0.19 0.025 3.94 -1.51 9.40 0.14 0.167** 

X1/2 0.00 -0.01 0.00 -0.08 -0.004 0.00 0.00 0.01 0.07 0.174** 

W1/2 0.00 -0.04 0.03 -0.02 -0.009 -0.03 -0.07 0.00 -0.20* 0.186** 

W50% -0.01 -0.03 0.00 -0.24* 0.047* -0.01 -0.02 0.00 -0.16 0.172** 

F 0.42 0.06 0.77 0.22* 0.041* 0.44 0.10 0.78 0.24* 0.156** 

Period 0.03 -0.07 0.12 0.06 -0.006 0.04 -0.06 0.13 0.08 0.160** 
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LF-N 

Breaks SB 0.00 0.00 0.00 0.07 -0.004 0.00 0.00 0.00 0.07 0.214** 

Short SB bouts 0.00 0.00 0.00 0.10 -0.001 0.00 0.00 0.00 0.07 0.213** 

Long SB bouts 0.00 -0.01 0.00 -0.11 0.003 0.00 -0.01 0.01 0.00 0.208** 

α 0.18 -0.09 0.44 0.13 0.007 0.11 -0.12 0.35 0.08 0.215** 

X1/2 0.00 0.00 0.00 -0.01 -0.010 0.00 0.00 0.00 0.09 0.218** 

W1/2 0.00 0.00 0.00 0.02 -0.009 0.00 0.00 0.00 -0.03 0.209** 

W50% 0.00 0.00 0.00 -0.07 -0.005 0.00 0.00 0.00 -0.07 0.213** 

F 0.02 0.00 0.03 0.17 0.020 0.01 -0.01 0.02 0.09 0.217** 

Period 0.00 0.00 0.01 0.08 -0.003 0.00 0.00 0.00 0.02 0.209** 

θ 

Breaks SB -0.01 -0.15 0.12 -0.02 -0.009 0.01 -0.11 0.14 0.02 0.278** 

Short SB bouts -0.04 -0.17 0.08 -0.07 -0.005 0.00 -0.11 0.11 0.00 0.278** 

Long SB bouts 0.27 -0.11 0.66 0.14 0.010 0.13 -0.23 0.48 0.06 0.281** 

α -8.87 -20.51 2.76 -0.15 0.012 -7.42 -17.41 2.58 -0.12 0.293** 

X1/2 0.00 -0.01 0.01 0.07 -0.005 0.00 0.00 0.00 -0.05 0.280** 

W1/2 -0.03 -0.10 0.04 -0.08 -0.004 -0.01 -0.07 0.05 -0.01 0.278** 

W50% 0.02 -0.01 0.04 0.13 0.008 0.02 0.00 0.04 0.15 0.286** 

F -0.55 -1.31 0.20 -0.14 0.010 -0.23 -0.93 0.47 -0.06 0.281** 

Period -0.13 -0.33 0.06 -0.13 0.008 -0.08 -0.26 0.10 -0.08 0.284** 

PCSA¶ 

Breaks SB 0.00 -0.01 0.02 0.05 -0.007 0.00 -0.01 0.02 0.05 0.536** 

Short SB bouts 0.00 -0.01 0.01 0.00 -0.010 0.00 -0.01 0.01 0.05 0.536** 

Long SB bouts 0.04 0.00 0.08 0.17 0.020 0.00 -0.03 0.03 -0.01 0.534** 

α -0.35 -1.69 1.00 -0.05 -0.007 -0.03 -1.01 0.95 0.00 0.534** 
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X1/2 0.00 0.00 0.00 0.19 0.028 0.00 0.00 0.00 -0.10 0.538** 

W1/2 -0.01 -0.01 0.00 -0.13 0.007 0.00 -0.01 0.00 -0.04 0.535** 

W50% 0.00 0.00 0.00 0.01 -0.010 0.00 0.00 0.00 -0.03 0.534** 

F -0.06 -0.14 0.03 -0.13 0.006 0.01 -0.05 0.08 0.03 0.534** 

Period -0.02 -0.04 0.01 -0.13 0.008 0.00 -0.02 0.02 -0.01 0.534** 

LMTU, muscle-tendon unit length; LM, muscle length; ACSA, anatomical cross-sectional area; VM, muscle volume; LF, fascicle length; LF-N, normalised fascicle length; θ, fascicle pennation angle; 

PCSA, physiological cross-sectional area; Breaks SB, sedentary behaviour interruptions with ≥2 consecutive minutes upright activity; Short SB bouts, sedentary behaviour bouts <30 minutes 

duration; Long SB bouts, sedentary behaviour bouts ≥30 minutes duration; α, scaling parameter sedentary bout length distribution; X1/2, median SB bout duration; W1/2, fraction total 

sedentary time accumulated in bouts longer than median sedentary bout length; W50%, half of total SB is accumulated in SB bouts ≤ this duration; F, fragmentation index of SB bouts and 

total SB; Period, mean period between SB bouts; 95%-CI, 95% confidence interval; ¶Log-transformed; *P<0.05; ** P<0.01.
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Discussion 

Although associations between measures of SB and skeletal muscle outcomes in older 

adults were identified with non-adjusted regression models, only few associations 

remained after correcting for covariates. More specifically, general SB was not associated 

with GM muscle size and architecture in this group of elderly. In addition, total daily time 

spent in SB relative to other daily behaviours, showed no associations with any resting 

skeletal muscle outcome, except for a positive instead of the hypothesised negative 

association with ACSA75, meaning that the ACSA at 75% GM length will increase with more 

SB. Looking into more detail we found, however, that LM was positively associated with 

more breaks in SB, bouts of longer duration that make up 50% of total daily SB and higher 

ratio of SB bouts to total SB, whereas VM is negatively associated with bouts of longer 

duration that make up 50% of total daily SB and LF increased with a higher number of either 

SB breaks, SB bouts <30 minutes duration or ratio of SB bouts to total SB and decreased 

with a greater fraction of total sedentary time accumulated in bouts longer than the 

median sedentary bout length. Apart from SB, more proportional time spent sleeping was 

found to decrease ACSA at 75% GM length in elderly, while the opposite occurred with time 

spent in LIPA relative to other daily behaviours. Furthermore, increased time spent 

standing relative to other daily behaviours will increase not only GM volume in older adults, 

but also θ and PCSA. Finally, higher proportions of daily time spent in LIPA was suggested 

to increase LF and LF-N. Overall, these findings show that long bouts of SB with little 

interruptions have a negative impact on muscle, which can be counteracted by performing 

regular light physical activity. 

The fact that no significant associations were observed for SB levels, might result from the 

classification used, which is very general and only requires daily total SB to distinguish 

between low and high SB (160). Since total SB can be similar between people, but patterns, 

and thus health associations, completely different, using overall volume measures is 

inconclusive (9). Moreover, with SB being part of a composition of daily activity behaviours, 

focusing on SB volume alone may lead to incorrect results (118). Therefore, we also used 

both compositional data analysis and studied SB pattern parameters to assess whether this 

would show any associations with resting muscle size and architecture. 

Nevertheless, the observation of increased ACSA75 with more time spent in SB relative to 

other behaviours seems counter-intuitive. However, the negative association between SB 

and body mass in elderly (Chapter 1), imposing a larger load on the muscle may well explain 
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this finding. This is in agreement with previous literature, which proposed that increased 

fat mass induce extra loading on skeletal muscles of the lower limb (161), resulting in higher 

absolute muscle strength, possibly due to greater total body mass (162). This was 

systematically demonstrated by Tomlinson et al. (153) who found positive correlations (all 

r ≥0.39) between measures of body composition (e.g. BMI, body mass and fat mass) and 

GM θ, VM and PCSA. However, since extensive covariate analysis was performed prior 

regression model development in this chapter, the finding of increased ACSA75 with more 

time spent in SB relative to other behaviours cannot be explained by any of the studied 

covariates. Since both SB and ageing potentially result in skeletal muscle fat infiltration, this 

could also explain an increase in ACSA75. In this chapter muscle morphology was 

determined, but not composition. Thus, it is possible that the increase in ACSA is due to fat 

infiltration rather than muscle tissue growth. Unfortunately, we only assessed whole-body 

composition instead of lower limb too. Nevertheless, the results of time re-allocation for 

SB showed only very small relative effects on ACSA75, respectively ≤0.013% increase when 

adding 10 minutes to daily total SB and ≤0.010% decrease when losing 10 minutes of SB. 

Therefore, it can be questioned whether daily total SB will noticeably affect GM size, in this 

case ACSA75. The same applies to all the identified associations with other daily total 

behaviours, such as sleep, standing and LIPA. Their relative effects on a variety of muscle 

size and architecture outcomes for substituting 10 minutes from one behaviour to another, 

do not exceed 0.041%. Given that mechanical overload, as in resistance training, is 

important to achieve changes in muscle size and architecture (163), it seems plausible that 

the relative effects of habitual daily activities, which generally lack overloading, are at best 

very small only. Interestingly, most of the identified associations with compositional data 

analysis (75.0%) incorporate either standing or LIPA. However, it is important to note that 

both behaviours have shown issues with accurate classification previously (Chapter 2 & 3), 

which may affect results. 

Apart from total daily SB, it is important to focus on daily SB patterns, as total amounts 

could be similar but with different patterns. Generally, our results did not show any effects 

of SB pattern parameters on GM muscle size and architecture, except for LM, VM and LF. The 

first outcome appeared to increase with better daily SB patterns, in this case more SB 

breaks, shorter bout durations making up 50% of total SB and higher ratio of SB bouts to 

total SB. Similarly, VM was found to increase when shortening the bout durations making 

up 50% of total SB. With regards to LF, this outcome appeared to become longer with 

‘better’ daily SB patterns, which is a likely and positive result to note. However, it is 
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important to stress that no associations were found for LF-N, which suggests that the 

identified associations between daily SB pattern parameters and LF should be interpreted 

with caution. This is particularly true because the average LF in this chapter is higher than 

reported in previous studies which also examined GM muscle architecture in elderly 

(127,153,164,165). However, these studies did not assess LF (or any other size and 

architecture outcomes) with the foot in a 90° angle and an extended leg, as we did. 

Having good-to-excellent ICCs for most (4 out of 6) of the muscle outcomes tested in this 

chapter showed that the collected data was reliable. Although, the remaining two 

outcomes (LF and θ) showed lower ICCs of 0.700 and 0.645 respectively, these values could 

still be interpreted as moderate reliability. Therefore, the data in this chapter was generally 

regarded as being of acceptable quality, which is a major strength. 

 

Conclusion 

Regardless of the few identified associations, considerable changes in resting GM size and 

architecture due to SB seem questionable in older adults. What the implication of 

relationships and exact associations with other GM outcomes will be, such as muscle force 

generating capacity, is yet not clear. 
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Chapter 6. The association of sedentary behaviour with skeletal muscle 

strength, specific force and function in older adults 

Introduction 

According to the World Health Organization (WHO), over the next decades the proportion 

of older adults in the worldwide population will nearly double (from 12% to 22%). With this 

group being highly sedentary (27,28), research into the physiological effects of sedentary 

behaviour (SB) is becoming more prevalent. Although SB is defined as any waking 

behaviour characterised by an energy expenditure ≤1.5 times the resting metabolic rate 

while in a sitting, reclining or lying posture (10), it could also be thought of as infrequent 

skeletal muscle contractile activity (166). This is important as the literature suggests that 

SB affects skeletal muscle independent of the level of physical activity (90). 

As the increased longevity results in an ever-increasing proportion of the population at 

older age, muscle ageing becomes more and more an issue as it plays an important role in 

the maintenance of physical independence and hence quality-of-later life. Skeletal muscle 

ageing is associated with decreased agonist activation capacity, increased antagonist co-

activation, decreased muscle mass, smaller pennation angle and fascicle length, and 

reduced muscle strength (127,130,151). These age-related changes in muscle properties, 

often summarised under the term  sarcopenia, are arguably the most significant challenges 

in the elderly (136). Like SB, sarcopenia increases with ageing and affects anybody from the 

highly active to the highly sedentary (167,168). Sarcopenia is not only considered a major 

factor in the decline of muscle strength, but also function (38,168,169). This results in major 

functional limitations for activities of daily living, increased morbidity, reduced quality of 

life, and higher rates of hospitalisation and mortality after falling in older adults 

(36,40,116,137). Further age-related muscular changes, are: larger proportion of non-

contractile material and lower muscle specific force (force per unit physiological cross-

sectional area (PCSA)) (127,170), which are likely caused by increased intramuscular fat 

(116). Interestingly, it is suggested that due to a combination of some ageing-induced 

changes, such as lower maximal motor unit discharge rates, slower contractile properties 

and relatively greater reliance on oxidative metabolism, elderly actually have better muscle 

fatigue resistance than young people (171). Nevertheless, with a well-established link 

between low levels of physical activity (PA) and obesity, it is expected for SB to play a role 

in weakening of the muscles. 
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Although PA has previously been linked to muscle strength and force, with previous 

research showing PA to be a modulator of neural activation (172) and that reduced PA 

levels can account for decreased fibre-specific tension (173), SB has only received little 

scientific attention to date. Especially in the elderly, the proof of SB effects on 

musculoskeletal health is scarce and in some cases counterintuitive. Generally, evidence 

exists that SB is not only associated with lower lean and higher fat mass, an increased risk 

of sarcopenia and limited physical function, but also increased leg power and muscle 

quality (for a review, read Wullems et al. (90)). However, the authors presenting the latter 

finding warned to interpret their results with caution. Of the studies on SB in elderly, most 

focus on functional fitness, whereas the studies on musculoskeletal health have limitations. 

For example, Gianoudis et al. (5) used self-reported measures of SB and uncorrected 

muscle strength, while Chastin et al. (42) used muscle power and lower limb fat free mass 

to define muscle quality. Thus, neither of both studies determined specific muscle force 

(normalising fascicle force to PCSA), which allows direct comparison between individuals 

after correcting for confounding variables such as muscle architecture, tendon moment 

arm length or neural drive (127). Also, no studies have used compositional data analysis to 

investigate associations between SB and muscle properties yet. Therefore, the true 

association between SB and muscle properties in older adults is still unknown. Since 

physical disability is largely determined by the lower limbs (36) and calf muscle-tendon 

properties may explain the majority of variance in postural balance for example (44), 

investigation of the calf muscle-tendon complex is important in the oldest age group.  

The aim of the present study was to examine the association of SB with gastrocnemius 

medialis (GM) muscle strength, force and function in elderly. Associations were determined 

for different SB outcomes, respective total daily SB level, proportional total daily SB, and 

daily SB pattern parameters. It was hypothesised that (i) intrinsic GM muscle strength, (ii) 

GM specific force, and (iii) GM function are inferior when exhibiting high SB levels, 

regardless of being sufficiently physically active or not. Additionally, both proportional total 

daily SB and daily SB pattern parameters were expected to be detrimentally associated with 

all studied GM muscle outcomes in older adults. 

 

Materials and methods 

As described in Chapter 4 of this thesis, a total of 105 healthy older adults participated in 

this cross-sectional study. Per protocol, participants came to the university twice, at the 
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first visit they were familiarised with the testing equipment and an activity monitor was 

provided, while on the second visit (after a week of physical behaviour monitoring) they 

underwent muscle strength and function tests. 

SB and PA outcomes 

See chapter 4 for a detailed overview of the SB and PA outcomes used in this chapter. 

Muscle strength 

Participants sat on the chair of an isokinetic dynamometer with their hip at 85° angle, self-

perceived dominant leg (preferred leg for single leg balance) extended and foot secured to 

the footplate of the dynamometer and the lateral malleolus aligned with the axis of 

rotation. Non-extending straps were used at the hip, distal thigh and chest to prevent 

extraneous movements. After a series of five submaximal plantar- (PF) and dorsiflexion (DF) 

contractions that served as a warm-up (50 - 75% self-perceived maximum voluntary 

contraction (MVC) with 10% increments), the ankle range of motion (RoM) was assessed. 

The ankle angles included the neutral position (no PF or DF) and angles of 10° increments 

towards, and including, maximum PF and DF. In every angle participants performed two 

rapid isometric MVCs of 2 - 3 second duration, whilst verbal encouragement and 

biofeedback were provided by the experimenter during each effort. Per trial, a combination 

of PF and DF MVC was performed, with 30-60 seconds between the trials (Figure 6.1). In 

case >10% difference was observed for PF, extra MVCs (maximum four in total) were 

performed to obtain the true maximal torque values. The PF/DF combination with the 

highest PF value was used for data analyses. Performing the above test, allowed to 

determine torque-angle relationships per participant. 

To calculate true PF torques, antagonist co-activation was determined using surface 

electromyography (sEMG). After appropriate skin preparation, two bipolar Ag-AgCl sEMG 

electrodes (Ambu A/S, Ballerup, Denmark) were placed 20 mm apart at the proximal third 

of the tibialis anterior (TA) muscle belly on the line between the caput fibulae and the 

medial malleolus, with a reference electrode positioned on the ankle (SENIAM). The sEMG 

signal was sampled at 2,000 Hz and filtered using high- and low-pass filters set at 10 and 

500 Hz, respectively (plus notch filter at 50 Hz). The median root mean square (RMS) of the 

sEMG signal was calculated over 1 s around the peak torque during each rapid PF and DF 

MVC. Eventually, antagonist torque output during PF MVC was calculated by dividing TA 

sEMG RMS during PF MVC by TA sEMG RMS during DF MVC, and multiplying DF MVC torque 
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by this ratio. Multiplying the same ratio by 100 resulted in percentage TA co-activation. The 

sum of the antagonist torque and PF MVC torque represented the net PF MVC (nMVC; 

N∙m). 

 

Figure 6.1. Rapid (left) and ramped (right) maximum voluntary contraction. 

Top traces represent torque production during plantar- and dorsiflexion, middle traces represent 

gastrocnemius medialis muscle activation and bottom traces represent tibialis anterior activation. 

Muscle volume and intrinsic strength 

For the assessment of muscle volume, the set-up used was as described in Chapter 4 of this 

thesis. Briefly, B-mode ultrasonography (Technos; Esaote S.p.A, Genoa, Italy) was used to 

determine the anatomical cross-sectional area (ACSA) at three sites of the GM muscle (25, 

50 and 75% GM length). Using these ACSAs muscle volume can be estimated using the 

truncated cone formula. 

Intrinsic GM muscle strength (N∙m∙cm-3) was calculated by dividing the PF net MVC by the 

GM muscle volume. 

Muscle specific force 

The setup for the measurement of GM architecture has also been described in Chapter 5, 

however, only partially. In short, B-mode ultrasonography was used to allow 

measurements of GM fascicle length (LF) and pennation angle (θ) during PF isometric MVC. 

To do so, participants sat on the chair of the isokinetic dynamometer, as described above, 

and were instructed to perform a ramped PF isometric MVC over 5 seconds with their ankle 

in a neutral position (0°; no PF or DF). Each ramped PF MVC was followed by a rapid DF 

MVC, while verbal encouragement and biofeedback were provided by the experimenter 

during each effort (Figure 6.1). To obtain true values, a total of three MVC combinations 
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were performed, with 30 - 60 seconds between the trials. If >10% difference was observed 

between all values, extra ramped MVCs were executed (maximum five in total). The trial 

with the highest PF torque was used for data analysis. Probe placement, ultrasound 

recording, and extraction and analysis of individual images at PF isometric MVC was as 

described in Chapter 5. Synchronisation of the muscle strength data and ultrasound 

recording was performed using a square wave signal generator. Again, sEMG was used in 

these trials to allow the calculation of net PF MVC. 

Next, Achilles tendon (AT) force (N) was calculated by dividing the net PF MVC by the 

tendon moment arm in the neutral ankle angle (0°) (m). The latter was assessed by taking 

an instant vertebral assessment in high definition (IVA-HD) scan of the ankle in two 

positions using single-energy X-ray absorptiometry (SXA), at respectively 10° PF and 10° DF 

(174). To keep the ankle in a fixed position, the foot was strapped to a tool that set the joint 

angle. A sagittal image of the ankle joint was taken twice (one per angle) with the lateral 

malleolus placed on the bed and within the imaging zone. Anatomical landmarks of the 

talus were used to overlap the two images and determine the ankle joint centre of rotation. 

Additionally, a straight line was used to identify the midline of the Achilles tendon on both 

images. Then, another straight line was drawn on both images from the centre of rotation 

perpendicular to the Achilles tendon midline, which represented the tendon moment arms 

for 10° PF and 10° DF (Figure 6.2). Adapted from the Reuleaux method (175), the tendon 

moment arm for the 0° angle was calculated as the average of the 10° PF and 10° DF tendon 

moment arms. 

It was assumed that 20.3% of the AT force was generated by the GM (176). Calculation of 

the GM’s contribution combined with the measured θ during the ramped PF MVC allowed 

determination of fascicle force (N). Fascicle force was calculated by dividing the GM muscle 

force by the cosine of θ. Finally, GM specific force (N∙cm-2) was calculated by dividing 

fascicle force by PCSAMVC (cm2), where PCSAMVC is determined as the ratio of resting GM 

muscle volume over LF during ramped PF isometric MVC. 
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Figure 6.2. Example of the Achilles tendon moment arm analysis. 

Dashed lines represent the Achilles tendon moment arms in both 10° plantar- and dorsiflexion. 

Voluntary muscle activation 

The level of voluntary activation (VA) was measured using supramaximal single twitch 

stimulation during a rapid PF MVC with the joint set at 0°. Electrical muscle stimulation was 

administered percutaneously to the PF muscle group via two 50 × 100 mm self-adhesive 

electrodes (American Imex, Irvine, CA, USA) placed distal to the popliteal crease (cathode) 

and the myotendinous junction of the soleus (anode). The amplitude of the stimulus was 

determined by administering twitches starting from 50 mA (with subsequent increments 

of 10 – 50 mA until no further increase in twitch torque was elicited), while the participant 

sat on the chair of the dynamometer in the same position as earlier, but in a relaxed state 

(Figure 6.3). The supramaximal stimulation (200 µs pulse width and 400 volts) singlet was 

applied during the plateau phase of a rapid PF isometric MVC, which was performed three 

times with 60 seconds between the trials (Figure 6.3). Singlets were chosen because several 

studies reported no differences when comparing single twitches, doublets, quadruplets 

and quintuplets and to minimise discomfort in older adults (177–179). The level of 

voluntary muscle activation was calculated for the highest of three PF MVCs, applying the 

interpolated twitch technique, which is given by 1 minus the ratio of the superimposed 

twitch torque over the resting twitch torque. Multiplying the result by 100 gives the 

percentage of voluntary agonist muscle activation. 
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Figure 6.3. Twitch-response curve (left) and supramaximal stimulation applied during 

maximum voluntary contraction (right). 

Top traces represent torque production, while bottom traces represent applied stimulations. 

Muscle fatigue 

Participants were asked to perform two muscle fatigue protocols, one isometric and the 

other isokinetic. For the first protocol, participants had to sustain a submaximal isometric 

PF contraction (at 75% MVC) for as long as possible, up to a maximum of 60 seconds with 

their ankle in a neutral position (0°), as described above (Figure 6.4). sEMG allowed to 

measure GM muscle recruitment during the first and last 5 seconds of the trial (or 8.33% 

of the trial duration if <60 seconds). The captured raw sEMG data of both bouts underwent 

Fast Fourier Transformation to determine their median power frequencies (MPF), which is 

a well-known and frequently used method for assessment of muscle fatigue using sEMG 

(180,181). Generally, muscle fatigue is featured by several outcomes such as an increase in 

EMG amplitude or a decrease in MPF. The outcomes taken from this trial, were: trial 

duration (s), relative change in MPF ((MPFEND - MPFSTART)/MPFSTART) and rate of change in 

MPF (relative change in MPF normalised for trial duration). Data was only analysed from 

participants who managed to sustain at 75% MVC level for the whole trial duration. Finally, 

data from 44 participants was left to analyse. 

After 5-10 minutes rest, a single PF isometric MVC was performed in the neutral angle, to 

check whether participants were recovered from the isometric fatigue protocol. When the 

torque output of the PF MVC was within 10% range of previous recorded MVCs for the 

same ankle angle, the participant was deemed recovered. For the isokinetic protocol, 

participants were instructed to perform continuous rapid PF and DF each at a speed of 

149°∙s-1 and 300°∙s-1 respectively (Figure 6.4). These speeds were chosen because the first 
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appeared the optimal speed for triceps surae torque-velocity during PF in elderly (126), 

while the latter was a relatively easy speed to perform DF without fatiguing the TA quicker 

than the GM. Participants were asked to perform the trial for as long as possible, but 

allowed to stop in case of too much discomfort as a result of fatigue or when three 

consecutive PFs showed torque output <50% of the average torque over the first three PFs 

at the start of the trial. The same outcomes as in isometric fatigue were calculated over the 

first and last three PFs for a total of 101 participants. Average values per both series of 

three PFs were recorded as the start and end measurement of the isokinetic trial. 

 

Figure 6.4. Isometric (left) and isokinetic (right) fatigue protocols. 

Top traces represent torque production during plantar- and dorsiflexion, middle traces represent 

gastrocnemius medialis muscle activation and bottom traces represent tibialis anterior activation. 

Reliability 

Test-retest reliability was determined for the main outcomes under study in this chapter, 

using intraclass correlation coefficients (ICCs) for absolute agreement using a two-way 

mixed model. Reliability values <0.5 were interpreted as poor, between 0.5 - 0.75 as 

moderate, between 0.75 - 0.9 as good and >0.9 as excellent (158). LF-MVC showed an ICC of 

0.910, while θMVC was 0.878. The ICC for the measurement of tendon moment arm was 

0.733, however for both PF torque values measured during the rapid and ramped MVCs in 

the neutral ankle angle the ICCs were 0.997 and 0.989 respectively. Determination of the 

peak angle and accompanying torque appeared reliable with ICCs of 0.940 and 0.993. 

Finally, repeated measurements for TA coactivation and GM activation capacity had ICCs 

of 0.925 and 0.891. 

Statistical analyses 

The outcome variables are displayed as mean (standard deviation (SD)) or median 

(interquartile range (IQR)) (Table 6.1). Prior conducting any inferential statistical analysis, 
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all outcome variables were checked for normality (either Kolmogorov-Smirnov or Shapiro-

Wilk test). In case of non-normality, the variables were log-transformed and the 

distribution of the transformed data also checked. Potential covariates were analysed per 

outcome variable by running a univariate General Linear Model (GLM). When a parameter 

appeared significant, it was treated as a covariate (Table 6.2-3). Since daily time spent in 

sleep, SB and physical activity (PA) is constrained to 24 hours, we used compositional data 

analysis for these accelerometer outcomes. This type of analysis has been described in 

detail previously (118,119). Briefly, daily compositions are transformed into isometric log-

ratio coordinates, which are then unconstrained and allow the application of traditional 

multivariate statistics. In this chapter, both single and multiple linear regression analysis 

was used to study the associations with SB levels, proportional total daily SB and PA, and 

daily SB pattern parameters. The identified covariates were added to the regression models 

first, by using backward elimination, after which the predictor(s) of interest was/were 

entered. During backward elimination, parameters were retained if p-values were <0.20 

(118). For all models, Durbin-Watson statistics (>1.0 and <3.0) were checked to identify any 

correlation between the predictor and covariates, and covariates with variance inflation 

factor ≥10.0 were removed from the regression model, one at the time. The same was done 

with individual cases showing Cook’s distance ≥1.0. If significant associations were 

observed for the compositional data, isotemporal substitution was applied to the identified 

models including covariates, to calculate the relative effects (%) of re-allocating 10 minutes 

from one behaviour to the other, with respect to the study sample’s mean outcomes. Ten 

minutes was chosen, not only because of its beneficial effects (for example when 

moderate-to-vigorous PA (MVPA) is performed) (159), but also because it is a realistic 

amount of time to replace in most elderly. 

All statistical analyses were performed using IBM SPSS Statistics for Windows, version 24.0 

(IBM Corp., Armonk, NY, USA) and p-values <0.05 were considered statistically significant. 

 

Results 

Descriptive statistics 

Table 6.1 shows the study sample’s descriptive statistics of the GM muscle strength, force 

and function. 
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Table 6.1. Study sample descriptive statistics of gastrocnemius skeletal muscle strength, 

specific force and function. 

Outcome variable Mean (SD) or ¶median (IQR) 

Ankle angle MVCPeak (°) -5.0 (8.0)¶ 

Net torque at angle MVCPeak (N∙m) 85.9 (32.1) 

Intrinsic strength at angle MVCPeak (N∙m∙cm-3) 0.43 (0.26)¶ 

Net torque at 0° angle (N∙m) 78.3 (29.9) 

Intrinsic strength at 0° angle (N∙m∙cm-3) 0.37 (0.23)¶ 

AT moment arm (mm) 55.4 (4.8) 

LF-MVC (cm) 4.9 (1.7)¶ 

θMVC (°) 22.0 (8.5)¶ 

PCSAMVC (cm2) 39.7 (23.4)¶ 

AT force (N) 1314.8 (533.0) 

Fascicle force (N) 287.7 (178.9)¶ 

Specific force (N) 6.78 (3.62)¶ 

TA co-activation (%) 9.1 (7.4)¶ 

GM activation capacity (%) 86.7 (14.5)¶ 

FatigueISOM duration (s) 60.0 (0.0)¶ 

FatigueISOM relative change RMS EMG (%) -23.8 (36.0)¶ 

FatigueISOM rate of relative change RMS EMG (%∙s-1) -0.41 (0.61)¶ 

FatigueISOM relative change MPF (%) -4.0 (82.8)¶ 

FatigueISOM rate of relative change MPF (%∙s-1) -0.07 (1.38)¶ 

FatigueISOK duration (s) 34.4 (17.1)¶ 

FatigueISOK relative change RMS EMG (%) -51.6 (46.3)¶ 

FatigueISOK rate of relative change RMS EMG (%∙s-1) -1.46 (1.28)¶ 

FatigueISOK relative change MPF (%) -1.1 (35.2)¶ 

FatigueISOK rate of relative change MPF (%∙s-1) -0.02 (1.05)¶ 

MVC, maximum voluntary contraction; AT, Achilles tendon; LF-MVC, fascicle length during MVC; θMVC, fascicle 

pennation angle during MVC; PCSAMVC, physiological cross-sectional area during MVC; TA, tibialis anterior; 

GM, gastrocnemius medialis; Isom, isometric condition; Isok, isokinetic condition; RMS, root mean square; 

EMG, electromyography; MPF, median power frequency; SD, standard deviation; IQR, interquartile range. 

Covariate analysis 

The variables identified as covariates in this chapter, were: sex, ethnicity, body height, body 

mass, body mass index (BMI), skeletal muscle index (SMI), body fat mass, body lean mass, 

body bone mineral content (BMC), adiposity class, falls risk assessment tool (FRAT) score, 

menopause age, current use of statins, smoking, calcium/vitamin D supplement usage, 

daily total PA bouts time, SB during PA bouts, standing during PA bouts, light-intensity PA 
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(LIPA) during PA bouts, MVPA during PA bouts, sporadic MVPA (sMVPA), and physical 

activity status (Table 6.2-3). 
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Table 6.2. Correlation coefficients of covariate analysis for gastrocnemius muscle strength, force and function. 

 
Angle 

MVCPeak
¶ 

Net 

torque 

MVCPeak 

Intrinsic 

strength 

MVCPeak
¶ 

Net 

torque 

0° angle 

Intrinsic 

strength 

0° angle¶ 

AT 

moment 

arm 

LF-MVC
¶ θMVC

¶ PCSAMVC
¶ 

AT 

force 

Fascicle 

force¶ 

Specific 

force¶ 

TA co-

activation¶ 

GM 

AC¶ 

Age 0.095 -0.172 0.026 -0.153 0.041 0.182 -0.079 0.007 -0.172 -0.145 -0.141 0.001 -0.082 0.120 

Sex 0.009 0.455 0.116 0.482 0.159 0.410 -0.069 0.266 0.371 0.452 0.467 0.191 -0.104 0.269 

Ethnicity 0.081 -0.079 0.048 -0.060 0.070 0.002 -0.265 0.152 0.060 -0.035 0.003 -0.055 0.060 N/a 

Body height -0.006 0.485 0.076 0.523 0.125 0.519 0.041 0.081 0.349 0.446 0.422 0.160 -0.023 0.098 

Body mass 0.239 0.175 -0.339 0.229 -0.260 0.467 0.013 0.265 0.522 0.238 0.246 -0.220 0.060 -0.024 

BMI 0.284 -0.137 -0.428 -0.098 -0.367 0.181 -0.023 0.235 0.348 -0.043 -0.016 -0.362 0.069 -0.091 

SMI 0.072 0.363 -0.124 0.401 -0.059 0.356 -0.085 0.428 0.544 0.420 0.431 -0.022 -0.060 0.160 

Fat mass 0.219 -0.490 -0.393 -0.490 -0.394 -0.166 0.090 -0.141 -0.104 -0.434 -0.411 -0.388 0.175 -0.267 

Lean mass -0.236 0.497 0.401 0.494 0.399 0.160 -0.081 0.138 0.097 0.434 0.409 0.392 -0.185 0.269 

BMC mass 0.042 0.250 0.173 0.277 0.204 0.183 -0.156 0.124 0.150 0.296 0.299 0.209 -0.007 0.156 

Adiposity class 0.341 -0.201 -0.393 -0.164 -0.334 0.200 0.086 0.057 0.192 -0.128 -0.077 -0.280 0.080 -0.062 

FRAT score 0.185 -0.195 -0.035 -0.154 0.014 0.099 -0.047 -0.081 -0.133 -0.208 -0.233 -0.147 -0.041 0.046 

Menopause age -0.022 0.062 0.125 0.055 0.115 -0.173 0.033 -0.015 -0.097 0.086 0.088 0.175 0.129 -0.079 

Major illness 

history 
-0.032 0.025 -0.061 0.057 -0.032 0.121 -0.026 0.051 0.157 0.053 0.082 -0.056 0.014 0.125 

Statins usage -0.032 0.185 0.132 0.167 0.124 0.056 0.008 0.042 0.036 0.108 0.108 0.093 -0.089 -0.031 

Smoking -0.153 -0.068 0.073 -0.114 0.012 -0.247 0.011 -0.011 -0.172 -0.044 -0.042 0.119 -0.156 N/a 

Resistance training -0.028 0.108 0.045 0.117 0.035 -0.064 0.061 -0.059 -0.006 0.105 0.075 0.096 0.061 0.021 
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Dairy products 0.061 0.122 0.152 0.129 0.154 -0.136 -0.144 0.081 0.085 0.117 0.092 0.026 -0.027 -0.078 

Caffeine intake 0.018 0.072 0.026 0.069 0.003 -0.163 0.011 0.003 0.013 0.136 0.097 0.103 -0.158 -0.015 

RA diagnosis -0.028 -0.023 -0.129 -0.072 -0.173 0.035 0.042 0.014 0.127 -0.051 -0.049 -0.184 0.041 -0.043 

Daily alcohol intake 

≥3 units 
-0.061 0.135 -0.012 0.118 -0.017 0.187 -0.084 0.072 0.191 0.055 0.055 -0.132 -0.070 0.074 

Calcium/vitamin D 

supplements 
0.018 -0.219 -0.124 -0.212 -0.123 0.015 0.024 -0.105 -0.122 -0.241 -0.288 -0.224 -0.066 0.001 

PA bouts -0.050 -0.026 -0.129 -0.060 -0.165 0.048 0.182 -0.038 -0.002 -0.020 -0.030 -0.034 -0.066 -0.036 

Total PA bouts 

time 
-0.270 0.101 0.140 0.068 0.108 -0.171 0.056 -0.024 -0.082 0.053 0.052 0.144 0.066 0.208 

SB during PA bout -0.109 0.012 0.127 0.002 0.099 -0.267 0.063 -0.154 -0.197 -0.002 -0.030 0.158 -0.116 -0.113 

Standing during PA 

bout 
-0.013 -0.148 -0.158 -0.141 -0.148 -0.057 -0.047 0.128 0.109 -0.152 -0.105 -0.232 0.103 0.241 

LIPA during PA 

bout 
0.080 -0.105 -0.068 -0.107 -0.090 -0.144 0.002 -0.079 -0.056 -0.044 -0.088 -0.049 0.067 -0.066 

MVPA during PA 

bout 
-0.060 0.148 0.113 0.147 0.130 0.163 0.013 0.030 0.020 0.096 0.119 0.122 -0.093 -0.030 

MVPA≥10 mins 0.018 0.082 0.089 0.103 0.114 0.059 0.005 0.015 0.017 0.112 0.105 0.108 -0.129 -0.009 

sMVPA -0.263 0.191 0.178 0.161 0.166 -0.015 0.040 0.016 -0.025 0.115 0.145 0.197 0.009 0.188 

Physical activity 

status 
0.054 0.101 0.127 0.138 0.161 0.053 -0.060 0.066 0.051 0.136 0.149 0.128 -0.100 0.049 

MVC, maximum voluntary contraction; AT, Achilles tendon; LF-MVC, fascicle length during MVC; θMVC, fascicle pennation angle during MVC; PCSAMVC, physiological cross-sectional area during 

MVC; TA, tibialis anterior; GM, gastrocnemius medialis; AC, activation capacity; BMI, body mass index; SMI, skeletal muscle index; BMC, bone mineral content; FRAT, falls risk assessment 
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tool; RA, rheumatoid arthritis; PA, physical activity; SB, sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity; sMVPA, sporadic moderate-

to-vigorous physical activity; ¶Log-transformed. Bold values represent significances at P<0.05 level. 
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Table 6.3. Correlation coefficients of covariate analysis for gastrocnemius medialis fatigue indices. 

 

FatigueISOM FatigueISOK 

Duration¶ 

Relative 

change RMS 

EMG¶ 

Rate of 

change RMS 

EMG¶ 

Relative 

change MPF¶ 

Rate of 

change MPF¶ 
Duration¶ 

Relative 

change RMS 

EMG¶ 

Rate of 

change RMS 

EMG¶ 

Relative 

change MPF¶ 

Rate of 

change MPF¶ 

Age -0.198 -0.177 -0.201 -0.073 0.030 -0.173 -0.042 -0.026 -0.044 -0.070 

Sex 0.049 -0.326 -0.219 -0.008 -0.139 0.022 -0.145 0.029 -0.159 -0.130 

Ethnicity N/a N/a N/a N/a N/a -0.178 0.072 0.022 0.137 0.225 

Body height 0.042 -0.179 -0.114 0.194 0.001 -0.073 -0.003 0.085 -0.112 -0.107 

Body mass 0.151 0.068 0.099 0.093 -0.115 -0.063 -0.060 0.031 -0.183 -0.121 

BMI 0.159 0.216 0.208 -0.036 -0.152 -0.012 -0.051 -0.005 -0.139 -0.067 

SMI 0.060 -0.160 -0.089 0.057 -0.080 0.041 -0.203 -0.012 -0.176 -0.111 

Fat mass 0.159 0.455 0.357 -0.025 -0.041 -0.086 0.125 -0.008 0.020 0.033 

Lean mass -0.156 -0.457 -0.357 0.030 0.040 0.086 -0.123 0.017 -0.018 -0.030 

BMC mass -0.145 -0.318 -0.260 -0.038 0.029 0.067 -0.104 -0.089 -0.040 -0.070 

Adiposity class 0.295 0.177 0.207 -0.049 -0.216 -0.176 0.084 0.023 -0.177 -0.176 

FRAT score -0.181 0.019 -0.027 0.004 -0.064 -0.057 -0.062 -0.087 -0.110 -0.115 

Menopause age 0.445 0.115 0.263 -0.131 -0.351 0.177 -0.040 0.134 -0.016 -0.032 

Major illness 

history 
0.103 -0.062 -0.074 0.032 -0.015 0.153 0.066 0.181 0.079 0.025 

Statins usage -0.041 -0.007 0.031 0.000 -0.064 0.106 -0.282 -0.127 -0.174 -0.119 

Smoking 0.032 0.052 0.034 -0.002 -0.041 -0.087 0.023 -0.033 0.097 0.098 
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Resistance training 0.092 -0.011 0.082 0.135 0.047 0.040 0.015 0.055 0.078 0.095 

Dairy products -0.032 0.140 0.108 0.016 0.045 -0.148 0.014 -0.007 0.122 0.119 

Caffeine intake -0.092 0.287 0.238 -0.141 -0.058 -0.121 -0.010 0.019 0.037 -0.089 

RA diagnosis 0.046 0.223 0.189 0.122 0.008 -0.022 -0.067 -0.049 -0.110 -0.053 

Daily alcohol intake 

≥3 units 
0.047 -0.151 -0.110 0.139 0.097 0.075 -0.098 -0.068 0.054 0.070 

Calcium/vitamin D 

supplements 
0.067 0.184 0.172 -0.051 0.006 0.004 -0.042 -0.069 0.011 -0.036 

PA bouts 0.092 -0.039 -0.056 0.032 0.089 -0.048 -0.059 0.015 -0.021 -0.110 

Total PA bouts time -0.021 -0.180 -0.147 0.076 0.056 -0.024 0.053 0.005 0.034 0.011 

SB during PA bout 0.107 0.091 0.089 -0.039 -0.047 0.079 -0.113 -0.060 -0.086 -0.084 

Standing during PA 

bout 
0.151 -0.018 -0.032 -0.075 -0.044 0.013 0.058 -0.052 0.063 0.068 

LIPA during PA bout -0.102 0.351 0.228 -0.144 0.004 -0.083 0.082 0.022 0.065 0.061 

MVPA during PA 

bout 
0.032 -0.303 -0.192 0.150 0.014 0.065 -0.090 0.003 -0.078 -0.076 

MVPA≥10 mins -0.145 -0.339 -0.293 0.143 0.050 0.088 -0.045 -0.034 -0.001 -0.007 

sMVPA 0.054 -0.327 -0.224 0.156 0.034 0.040 -0.028 0.022 -0.078 -0.084 

Physical activity 

status 
-0.131 -0.365 -0.307 0.041 -0.036 0.129 -0.031 0.012 -0.072 -0.045 

Isom, isometric condition; Isok, isokinetic condition; RMS, root mean square; EMG, electromyography; MPF, median power frequency; BMI, body mass index; SMI, skeletal muscle index; 

BMC, bone mineral content; FRAT, falls risk assessment tool; RA, rheumatoid arthritis; PA, physical activity; SB, sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-

to-vigorous physical activity; sMVPA, sporadic moderate-to-vigorous physical activity; ¶Log-transformed. Bold values represent significances at P<0.05 level.
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SB levels 

Both ankle angle MVCPeak (β = 0.35, R2
adj = 0.114) and intrinsic strength at MVCPeak angle (β 

= -0.20, R2
adj = 0.029) were significantly associated with SB levels, however, when adjusting 

for covariates only the positive association with ankle angle MVCPeak (β = 0.28, R2
adj = 0.176) 

remained (Table 6.4). Effect sizes for the covariate-adjusted models, were: -0.023 ≤ R2
adj ≤ 

0.355. 
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Table 6.4. Regression analysis results for sedentary behaviour levels. 

Outcome variable 

Without covariates With covariates 

B 
95%-CI lower 

bound 

95%-CI 

upper 

bound 

β R2
Adj B 

95%-CI 

lower 

bound 

95%-CI 

upper 

bound 

β R2
Adj 

Ankle angle MVCPeak
¶ 0.44 0.21 0.68 0.35** 0.114** 0.36 0.13 0.59 0.28** 0.176** 

Net torque at angle MVCPeak -7.17 -23.41 9.07 -0.09 -0.002 -2.80 -16.62 11.03 -0.03 0.320** 

Intrinsic strength at angle 

MVCPeak
¶ 

-0.22 -0.43 0.00 -0.20* 0.029* -0.04 -0.24 0.16 -0.04 0.220** 

Net torque at 0° angle -3.49 -18.63 11.66 -0.05 -0.008 2.44 -10.50 15.38 0.03 0.355** 

Intrinsic strength at 0° angle¶ -0.18 -0.39 0.04 -0.16 0.016 -0.02 -0.23 0.19 -0.02 0.173** 

AT moment arm 2.13 -0.28 4.53 0.17 0.082 1.66 -0.40 3.72 0.13 0.350** 

LF-MVC
¶ 0.02 -0.12 0.15 0.02 -0.009 0.02 -0.11 0.16 0.03 0.053* 

θMVC
¶ 0.03 -0.10 0.16 0.05 -0.008 0.01 -0.10 0.13 0.02 0.167** 

PCSAMVC
¶ 0.09 -0.10 0.28 0.09 -0.001 0.02 -0.15 0.18 0.02 0.344** 

AT force -90.15 -360.17 179.86 -0.07 -0.005 -12.32 -254.34 229.69 -0.01 0.290** 

Fascicle force¶ -0.08 -0.31 0.15 -0.07 -0.005 -0.04 -0.25 0.17 -0.03 0.285** 

Specific force¶ -0.17 -0.37 0.02 -0.17 0.021 -0.07 -0.26 0.11 -0.07 0.183** 

TA co-activation¶ -0.04 -0.34 0.26 -0.02 -0.009  

GM activation capacity¶ -0.09 -0.30 0.12 -0.12 -0.004 -0.08 -0.28 0.12 -0.10 0.048 

FatigueISOM duration¶ -0.02 -0.09 0.06 -0.08 -0.018 -0.02 -0.09 0.06 -0.08 -0.018 

FatigueISOM relative change 

RMS EMG¶ 
0.00 -0.25 0.25 0.00 -0.024 -0.09 -0.31 0.14 -0.11 0.234** 

FatigueISOM rate of change 

RMS EMG¶ 
0.00 0.00 0.00 0.01 -0.024 0.00 -0.01 0.00 -0.07 0.121* 
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FatigueISOM relative change 

MPF¶ 
-0.05 -0.80 0.71 -0.02 -0.023 -0.05 -0.80 0.71 -0.02 -0.023 

FatigueISOM rate of change 

MPF¶ 
0.01 -0.01 0.02 0.14 -0.006 0.01 -0.01 0.02 0.14 -0.006 

FatigueISOK duration¶ -0.09 -0.27 0.09 -0.10 -0.001 -0.09 -0.27 0.09 -0.10 -0.001 

FatigueISOK relative change 

RMS EMG¶ 
-0.23 -0.65 0.19 -0.11 0.001 -0.18 -0.58 0.23 -0.08 0.080* 

FatigueISOK rate of change 

RMS EMG¶ 
0.00 -0.01 0.01 -0.06 -0.006 0.00 -0.01 0.01 -0.06 -0.006 

FatigueISOK relative change 

MPF¶ 
-0.14 -0.31 0.03 -0.17 0.018 -0.14 -0.31 0.03 -0.17 0.018 

FatigueISOK rate of change 

MPF¶ 
-0.01 -0.01 0.00 -0.16 0.016 -0.01 -0.01 0.00 -0.17 0.061* 

MVC, maximum voluntary contraction; AT, Achilles tendon; LF-MVC, fascicle length during MVC; θMVC, fascicle pennation angle during MVC; PCSAMVC, physiological cross-

sectional area during MVC; TA, tibialis anterior; GM, gastrocnemius medialis; Isom, isometric condition; Isok, isokinetic condition; RMS, root mean square; EMG, 

electromyography; MPF, median power frequency; ¶Log-transformed; *P<0.05; **P<0.01. 
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Daily total SB and PA 

Compositional data analysis showed that time spent in some of the studied behaviours 

relative to the others, were significantly associated with a few GM muscle strength, force 

and function outcomes (Table 6.5). For example, nMVC at peak angle was positively 

associated (β = 0.20, R2
adj = 0.007) with proportional time spent in MVPA, however, this 

association disappeared when correcting the model for covariates. The same was true for 

θMVC, which was associated with sleep (β = -0.41), SB (β = 0.46) and standing (β = 0.24) (all 

R2
adj = 0.048). After correcting for covariates, only the association with standing remained 

(β = 0.21, R2
adj = 0.221). PCSAMVC was significantly associated with sleep (β = -0.38) and SB 

(β = 0.48) (both R2
adj = 0.143). However, both associations were mitigated by adding 

covariates. Nevertheless, standing was found significantly associated now (β = 0.20, R2
adj = 

0.398). Next, AT force was initially not associated with any daily behaviour, but after adding 

covariates to the regression model it was positively associated with LIPA (β = 0.23, R2
adj = 

0.325). GM activation capacity was positively associated with standing, both before and 

after covariate adjustment (β = 0.34, R2
adj = 0.082 vs. β = 0.35, R2

adj = 0.180). Significant 

associations were also found for one outcome from the isometric fatigue protocol, relative 

change in RMS EMG respectively. This outcome was associated with MVPA (β = -0.38, R2
adj 

= 0.148) prior to covariate adjustment, but the association disappeared after adding 

covariates. The isokinetic protocol did not show any associations at all. Overall, the effect 

sizes of the multiple regression models including significant associations, were 0.180 ≤ R2
adj 

≤ 0.398, while for the other models they ranged from -0.086 through 0.362. 

Isotemporal substitution revealed that the relative effects (%-change from study sample 

means) of re-allocating 10 minutes from one behaviour to another within the mean 

composition of the study sample’s total daily SB and PA (sleep = 35.6%, SB = 39.4%, standing 

= 2.8%, LIPA = 11.5% and MVPA = 10.7%) for the models including behaviours significantly 

associated with either muscle architecture, force or function and adjusted for covariates, 

varied from -0.030% through +0.036% (Table 6.6). These maximum changes were both seen 

for relative change in AT force, when substituting 10 min of LIPA with standing and vice 

versa respectively. 

Table 6.5. Coefficients of multiple regression models based on compositional data analysis. 

Outcome variable 
Without covariates With covariates 

B β R2
Adj B β R2

Adj 

Sleep -0.14 -0.06 0.037 -0.04 -0.02 0.115** 
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Ankle angle 

MVCPeak
¶ 

SB 0.43 0.29 0.24 0.16 

Standing -0.07 -0.07 -0.08 -0.07 

LIPA -0.01 -0.01 0.09 0.06 

MVPA -0.20 -0.17 -0.20 -0.16 

Net torque at angle 

MVCPeak 

Sleep -37.64 -0.25 

0.007 

-24.93 -0.17 

0.318** 

SB 17.26 0.18 18.10 0.19 

Standing -2.63 -0.04 0.68 0.01 

LIPA 6.57 0.07 15.52 0.16 

MVPA 15.85 0.20* -10.01 -0.13 

Intrinsic strength at 

angle MVCPeak
¶ 

Sleep 0.41 0.21 

0.014 

0.15 0.08 

0.206** 

SB -0.47 -0.37 -0.05 -0.04 

Standing -0.09 -0.09 -0.08 -0.09 

LIPA 0.00 0.00 -0.03 -0.02 

MVPA 0.15 0.14 0.00 0.00 

Net torque at 0° 

angle 

Sleep -31.43 -0.23 

0.000 

-17.26 -0.13 

0.362** 

SB 15.93 0.18 15.37 0.17 

Standing -3.14 -0.05 -0.16 0.00 

LIPA 4.58 0.05 13.09 0.15 

MVPA 13.51 0.18 -11.67 -0.16 

Intrinsic strength at 

0° angle¶ 

Sleep 0.50 0.25 

0.014 

0.29 0.15 

0.161** 

SB -0.50 -0.39 -0.15 -0.12 

Standing -0.09 -0.10 -0.08 -0.09 

LIPA -0.05 -0.04 -0.02 -0.01 

MVPA 0.15 0.14 -0.05 -0.05 

AT moment arm 

Sleep -3.69 -0.17 

0.039 

0.65 0.03 

0.351** 

SB 5.02 0.35 2.12 0.15 

Standing -0.97 -0.09 -0.04 -0.00 

LIPA -1.10 -0.08 -1.06 -0.07 

MVPA 0.75 0.06 -1.67 -0.14 

LF-MVC
¶ 

Sleep -0.03 -0.02 

-0.033 

0.07 0.05 

0.039 

SB 0.00 0.00 -0.05 -0.06 

Standing -0.05 -0.08 -0.08 -0.14 

LIPA 0.05 0.07 0.04 0.05 

MVPA 0.03 0.04 0.02 0.03 

θMVC
¶ 

Sleep -0.48 -0.41* 

0.048 

-0.38 -0.33 

0.221** 

SB 0.34 0.46* 0.26 0.35 

Standing 0.14 0.24* 0.12 0.21* 

LIPA -0.04 -0.05 0.05 0.06 

MVPA 0.04 0.06 -0.07 -0.11 
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PCSAMVC
¶ 

Sleep -0.67 -0.38* 

0.143 

-0.37 -0.21 

0.398** 

SB 0.54 0.48* 0.20 0.18 

Standing 0.15 0.17 0.17 0.20* 

LIPA -0.04 -0.04 0.12 0.10 

MVPA 0.01 0.02 -0.13 -0.14 

AT force 

Sleep -655.76 -0.27 

-0.002 

-

406.71 
-0.17 

0.325** 

SB 362.96 0.23 324.63 0.21 

Standing -86.02 -0.07 -52.96 -0.04 

LIPA 181.99 0.11 370.21 0.23* 

MVPA 194.68 0.15 
-

237.67 
-0.18 

Fascicle force¶ 

Sleep -0.51 -0.24 

-0.005 

-0.23 -0.11 

0.298** 

SB 0.27 0.20 0.15 0.11 

Standing -0.02 -0.02 0.01 0.01 

LIPA 0.08 0.05 0.23 0.17 

MVPA 0.19 0.17 -0.16 -0.15 

Specific force¶ 

Sleep 0.15 0.09 

0.035 

0.07 0.04 

0.182** 

SB -0.28 -0.24 -0.06 -0.06 

Standing -0.17 -0.20 -0.15 -0.17 

LIPA 0.12 0.10 0.15 0.13 

MVPA 0.17 0.18 -0.01 -0.01 

TA co-activation¶ 

Sleep 0.02 0.01 

-0.018  

SB -0.06 -0.04 

Standing 0.17 0.13 

LIPA -0.01 -0.00 

MVPA -0.12 -0.08 

GM activation 

capacity¶ 

Sleep 0.15 0.11 

0.082 

0.20 0.14 

0.180* 

SB -0.24 -0.27 -0.26 -0.30 

Standing 0.23 0.34* 0.23 0.35* 

LIPA -0.12 -0.13 0.00 0.00 

MVPA 0.04 0.05 -0.11 -0.15 

FatigueISOM 

duration¶ 

Sleep -0.19 -0.24 

-0.053 

0.03 0.08 

-0.086 

SB 0.15 0.30 -0.04 -0.15 

Standing 0.06 0.17 0.01 0.07 

LIPA -0.04 -0.09 0.01 0.02 

MVPA 0.00 0.00 -0.01 -0.04 

FatigueISOM relative 

change RMS EMG¶ 

Sleep 0.53 0.37 
0.148* 

0.56 0.39 
0.244** 

SB -0.32 -0.35 -0.45 -0.49 
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Standing -0.17 -0.25 -0.18 -0.26 

LIPA 0.17 0.18 0.12 0.13 

MVPA -0.29 -0.38* -0.15 -0.19 

FatigueISOM rate of 

change RMS EMG¶ 

Sleep 0.01 0.31 

0.041 

0.01 0.34 

0.099 

SB 0.00 -0.28 -0.01 -0.40 

Standing 0.00 -0.21 0.00 -0.22 

LIPA 0.00 0.10 0.00 0.06 

MVPA 0.00 -0.28 0.00 -0.12 

FatigueISOM relative 

change MPF¶ 

Sleep -0.15 -0.03 

-0.061 

-0.15 -0.03 

-0.061 

SB 0.05 0.02 0.05 0.02 

Standing -0.11 -0.05 -0.11 -0.05 

LIPA -0.05 -0.02 -0.05 -0.02 

MVPA 0.45 0.19 0.45 0.19 

FatigueISOM rate of 

change MPF¶ 

Sleep 0.02 0.16 

-0.078 

0.02 0.16 

-0.078 

SB -0.02 -0.22 -0.02 -0.22 

Standing -0.01 -0.08 -0.01 -0.08 

LIPA 0.00 0.04 0.00 0.04 

MVPA 0.00 0.05 0.00 0.05 

FatigueISOK duration¶ 

Sleep 0.29 0.18 

-0.021 

0.29 0.18 

-0.021 

SB -0.20 -0.19 -0.20 -0.19 

Standing 0.06 0.07 0.06 0.07 

LIPA -0.17 -0.16 -0.17 -0.16 

MVPA 0.01 0.01 0.01 0.01 

FatigueISOK relative 

change RMS EMG¶ 

Sleep -0.42 -0.11 

-0.029 

-0.43 -0.11 

0.047 

SB 0.21 0.09 0.29 0.12 

Standing -0.03 -0.02 0.03 0.02 

LIPA 0.30 0.12 0.07 0.03 

MVPA -0.05 -0.03 0.05 0.03 

FatigueISOK rate of 

change RMS EMG¶ 

Sleep -0.01 -0.17 

-0.018 

-0.01 -0.17 

-0.018 

SB 0.01 0.14 0.01 0.14 

Standing 0.00 0.14 0.00 0.14 

LIPA 0.00 0.02 0.00 0.02 

MVPA 0.00 -0.02 0.00 -0.02 

FatigueISOK relative 

change MPF¶ 

Sleep 0.34 0.22 

-0.019 

0.34 0.22 

-0.019 

SB -0.26 -0.27 -0.26 -0.27 

Standing -0.03 -0.04 -0.03 -0.04 

LIPA 0.02 0.02 0.02 0.02 

MVPA -0.07 -0.08 -0.07 -0.08 

Sleep 0.01 0.22 -0.021 0.01 0.16 0.020 
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FatigueISOK rate of 

change MPF¶ 

SB -0.01 -0.25 -0.01 -0.20 

Standing 0.00 -0.02 0.00 0.03 

LIPA 0.00 0.00 0.00 0.01 

MVPA 0.00 -0.09 0.00 -0.09 

MVC, maximum voluntary contraction; AT, Achilles tendon; LF-MVC, fascicle length during MVC; θMVC, fascicle 

pennation angle during MVC; PCSAMVC, physiological cross-sectional area during MVC; TA, tibialis anterior; 

GM, gastrocnemius medialis; Isom, isometric condition; Isok, isokinetic condition; RMS, root mean square; 

EMG, electromyography; MPF, median power frequency; SB, sedentary behaviour; LIPA, light-intensity 

physical activity; MVPA, moderate-to-vigorous physical activity; ¶Log-transformed; *P<0.05; **P<0.01. 

Table 6.6. Relative effects (%) of isotemporal substitution on outcome variables. 

Outcome variable +10 mins 
-10 mins 

Sleep SB Standing LIPA MVPA 

θMVC
¶ 

Sleep 
 

-0.016 
 

SB +0.005 

Standing +0.013 -0.004 +0.000 +0.002 +0.006 

LIPA 
 

-0.002 
 

MVPA -0.007 

PCSAMVC
¶ 

Sleep 
 

-0.015 
 

SB +0.001 

Standing +0.012 -0.001 +0.000 +0.001 +0.008 

LIPA 
 

-0.001 
 

MVPA -0.009 

AT force 

Sleep 

 

-0.016 

 SB -0.001 

Standing -0.030 

LIPA +0.015 +0.001 +0.036 +0.000 +0.019 

MVPA  -0.019  

GM activation 

capacity¶ 

Sleep 
 

-0.001 
 

SB -0.011 

Standing +0.000 +0.009 +0.000 +0.005 +0.007 

LIPA 
 

-0.006 
 

MVPA -0.008 

AT, Achilles tendon; θMVC, fascicle pennation angle during MVC; PCSAMVC, physiological cross-sectional area 

during MVC; GM, gastrocnemius medialis; SB, sedentary behaviour; LIPA, light-intensity physical activity; 

MVPA, moderate-to-vigorous physical activity; ¶Log-transformed. 

Daily SB pattern parameters 

Ankle angle MVCPeak was significantly associated with a few SB pattern parameters, namely 

long SB bouts (β = 0.26, R2
adj = 0.056), α (β = -0.25, R2

adj = 0.052) and F (β = -0.21, R2
adj = 
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0.034) (Table 6.7). However, all associations disappeared when adding covariates to the 

regression models. The opposite was found for nMVC and intrinsic strength at peak angle, 

nMVC at 0° angle and intrinsic strength at 0° angle, where no associations were observed 

initially, but did appear after adjusting for covariates. More specifically, W1/2 was negatively 

associated with the first (β = -0.23, R2
adj = 0.375) and third outcome (β = -0.24, R2

adj = 0.412), 

whereas the second and fourth were associated with breaks in SB (β = -0.21, R2
adj = 0.259 

&. β = -0.25, R2
adj = 0.235) and short SB bouts (β = -0.19, R2

adj = 0.248 &. β = -0.22, R2
adj = 

0.221). Intrinsic strength at the neutral angle was also associated with W50% (β = 0.24, R2
adj 

= 0.214) and F (β = -0.21, R2
adj = 0.213). For the AT moment arm long SB bouts and α were 

significantly associated in uncorrected models (β = 0.24, R2
adj = 0.047 & β = -0.22, R2

adj = 

0.039), but not in corrected models. Period was negatively associated in both single and 

multiple linear regression models (β = -0.22, R2
adj = 0.038 & β = -0.26, R2

adj = 0.380). W50% 

was only significantly associated (β = 0.30, R2
adj = 0.410) after adjusting the model for 

covariates. PCSAMVC was negatively associated with X1/2 (β = -0.20, R2
adj = 0.370), but only 

in a covariate-adjusted model. Next, AT force, GM fascicle force and GM specific force were 

significantly associated with W1/2. However, where associations were found for both 

models (β = -0.21, R2
adj = 0.034 & β = -0.25, R2

adj = 0.351) in AT force, as well GM fascicle as 

specific force only showed associations in covariate-adjusted models for W1/2, respectively 

β = -0.20, R2
adj = 0.326 & β = -0.23, R2

adj = 0.241. Specific force was also found to be 

associated with α (β = 0.21, R2
adj = 0.036), however this association disappeared when using 

corrected models. Finally, significant associations were also observed for GM activation 

capacity. More specifically, F was positively associated when using a single linear regression 

model (β = 0.32, R2
adj = 0.083), while period was positively related in a multiple regression 

model (β = 0.27, R2
adj = 0.113). Overall, the effect sizes of the multiple regression models 

including significant associations, were 0.113 ≤ R2
adj ≤ 0.412, while for the other models 

they ranged from -0.024 through 0.372.
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Table 6.7. Regression analysis results for daily sedentary behaviour pattern parameters. 

Outcome variable 

Without covariates With covariates 

B 

95%-CI 

lower 

bound 

95%-CI 

upper 

bound 

Β R2
Adj B 

95%-CI 

lower 

bound 

95%-CI 

upper 

bound 

β R2
Adj 

Ankle angle MVCPeak
¶ 

Breaks SB -0.01 -0.03 0.02 -0.05 -0.007 0.00 -0.03 0.03 0.01 0.149** 

Short SB bouts -0.02 -0.04 0.01 -0.12 0.005 0.00 -0.03 0.02 -0.01 0.149** 

Long SB bouts 0.10 0.03 0.18 0.26** 0.056** 0.03 -0.05 0.11 0.08 0.154** 

α -2.96 -5.24 -0.68 -0.25* 0.052* -1.78 -4.04 0.48 -0.15 0.169** 

X1/2 0.00 0.00 0.00 0.11 0.003 0.00 0.00 0.00 0.02 0.142** 

W1/2 0.00 -0.01 0.01 -0.01 -0.010 0.01 -0.01 0.02 0.11 0.160** 

W50% 0.00 0.00 0.01 0.15 0.013 0.00 -0.01 0.01 0.00 0.149** 

F -0.16 -0.31 -0.01 -0.21* 0.034* -0.02 -0.19 0.15 -0.02 0.149** 

Period -0.03 -0.07 0.01 -0.17 0.019 0.01 -0.04 0.05 0.03 0.150** 

Net torque at angle 

MVCPeak 

Breaks SB -0.25 -2.07 1.57 -0.03 -0.009 -0.91 -2.45 0.63 -0.10 0.333** 

Short SB bouts -0.13 -1.79 1.53 -0.02 -0.010 -0.68 -2.09 0.73 -0.08 0.330** 

Long SB bouts -0.55 -5.63 4.53 -0.02 -0.009 -0.36 -4.89 4.17 -0.01 0.324** 

α 114.71 -37.67 267.09 0.15 0.012 113.51 -13.13 240.14 0.14 0.340** 

X1/2 -0.05 -0.16 0.05 -0.10 -0.001 0.00 -0.09 0.10 0.01 0.321** 

W1/2 -0.81 -1.70 0.08 -0.18 0.021 -1.05 -1.78 -0.31 -0.23** 0.375** 

W50% -0.09 -0.42 0.25 -0.05 -0.007 0.17 -0.13 0.47 0.10 0.333** 

F -1.07 -11.12 8.97 -0.02 -0.009 -5.07 -13.92 3.79 -0.10 0.333** 
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Period 1.21 -1.39 3.82 0.09 -0.001 0.86 -1.40 3.12 0.06 0.323** 

Intrinsic strength at 

angle MVCPeak
¶ 

Breaks SB -0.02 -0.04 0.01 -0.13 0.007 -0.03 -0.05 -0.01 -0.21* 0.259** 

Short SB bouts -0.01 -0.03 0.02 -0.06 -0.006 -0.02 -0.04 0.00 -0.19* 0.248** 

Long SB bouts -0.07 -0.13 0.00 -0.19 0.027 -0.01 -0.08 0.05 -0.04 0.215** 

α 1.30 -0.75 3.35 0.12 0.006 0.11 -1.76 1.99 0.01 0.219** 

X1/2 0.00 0.00 0.00 0.00 -0.010 0.00 0.00 0.00 0.06 0.213** 

W1/2 0.00 -0.01 0.01 -0.04 -0.009 -0.01 -0.02 0.00 -0.12 0.227** 

W50% 0.00 0.00 0.00 0.02 -0.010 0.00 0.00 0.01 0.21 0.253** 

F 0.01 -0.12 0.15 0.02 -0.009 -0.13 -0.26 0.00 -0.19 0.245** 

Period 0.03 0.00 0.06 0.17 0.019 0.00 -0.03 0.03 0.01 0.219** 

Net torque at 0° angle 

Breaks SB -0.52 -2.21 1.17 -0.06 -0.006 -1.29 -2.64 0.07 -0.15 0.372** 

Short SB bouts -0.43 -1.97 1.12 -0.05 -0.007 -1.00 -2.25 0.26 -0.13 0.366** 

Long SB bouts 0.29 -4.44 5.01 0.01 -0.010 0.22 -3.95 4.39 0.01 0.354** 

α 69.52 -73.08 212.13 0.10 -0.001 57.64 -62.22 177.50 0.08 0.360** 

X1/2 0.17 -0.07 0.42 0.14 0.011 0.01 -0.08 0.09 0.01 0.349** 

W1/2 -0.78 -1.61 0.04 -0.18 0.024 -1.04 -1.71 -0.38 -0.24** 0.412** 

W50% -0.05 -0.36 0.27 -0.03 -0.009 0.21 -0.06 0.48 0.13 0.365** 

F -2.90 -12.23 6.42 -0.06 -0.006 -6.63 -14.60 1.35 -0.14 0.367** 

Period 1.15 -1.27 3.58 0.09 -0.001 0.99 -1.07 3.04 0.08 0.356** 

Intrinsic strength at 0° 

angle¶ 

Breaks SB -0.02 -0.04 0.00 -0.17 0.018 -0.03 -0.05 -0.01 -0.25** 0.235** 

Short SB bouts -0.01 -0.03 0.01 -0.10 0.000 -0.03 -0.05 0.00 -0.22* 0.221** 

Long SB bouts -0.06 -0.12 0.01 -0.16 0.016 -0.01 -0.08 0.06 -0.03 0.174** 
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α 0.83 -1.23 2.90 0.08 -0.004 -0.31 -2.25 1.62 -0.03 0.174** 

X1/2 0.00 0.00 0.00 0.02 -0.010 0.00 0.00 0.00 0.07 0.169** 

W1/2 0.00 -0.02 0.01 -0.06 -0.006 -0.01 -0.02 0.00 -0.13 0.180** 

W50% 0.00 0.00 0.01 0.04 -0.008 0.01 0.00 0.01 0.24* 0.214** 

F -0.01 -0.15 0.12 -0.02 -0.009 -0.15 -0.27 -0.02 -0.21* 0.213** 

Period 0.03 0.00 0.07 0.17 0.021 0.01 -0.02 0.04 0.05 0.176** 

AT moment arm 

Breaks SB 0.07 -0.20 0.34 0.05 -0.007 -0.02 -0.25 0.21 -0.01 0.340** 

Short SB bouts -0.04 -0.29 0.20 -0.03 -0.008 -0.08 -0.29 0.13 -0.06 0.343** 

Long SB bouts 0.93 0.19 1.67 0.24* 0.047* 0.62 -0.05 1.29 0.16 0.361** 

α -25.91 -48.40 -3.42 -0.22* 0.039* -16.61 -35.26 2.05 -0.14 0.360** 

X1/2 0.00 0.00 0.00 -0.04 -0.008 0.01 -0.00 0.03 0.16 0.358** 

W1/2 0.10 -0.03 0.24 0.15 0.013 0.07 -0.05 0.19 0.10 0.343** 

W50% 0.03 -0.02 0.08 0.13 0.007 0.08 0.03 0.12 0.30** 0.410** 

F -0.97 -2.47 0.52 -0.13 0.006 -1.08 -2.43 0.27 -0.14 0.356** 

Period -0.44 -0.82 -0.06 -0.22* 0.038* -0.52 -0.84 -0.21 -0.26** 0.380** 

LF-MVC
¶ 

Breaks SB 0.01 0.00 0.03 0.18 0.024 0.01 0.00 0.03 0.13 0.069* 

Short SB bouts 0.01 0.00 0.02 0.16 0.016 0.01 -0.01 0.02 0.11 0.064* 

Long SB bouts 0.00 -0.04 0.05 0.02 -0.009 0.00 -0.04 0.04 0.02 0.052* 

α 0.54 -0.74 1.81 0.08 -0.003 0.33 -0.92 1.58 0.05 0.055* 

X1/2 0.00 0.00 0.00 0.07 -0.005 0.00 0.00 0.00 0.06 0.056* 

W1/2 0.00 -0.01 0.00 -0.08 -0.004 0.00 -0.01 0.01 -0.06 0.055* 

W50% 0.00 -0.01 0.00 -0.17 0.020 0.00 0.00 0.00 -0.10 0.062* 
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F 0.07 -0.01 0.15 0.16 0.016 0.05 -0.03 0.13 0.12 0.066* 

Period 0.00 -0.02 0.02 -0.03 -0.009 0.00 -0.02 0.02 -0.03 0.053* 

θMVC
¶ 

Breaks SB 0.00 -0.02 0.01 -0.04 -0.008 0.00 -0.02 0.01 -0.05 0.169** 

Short SB bouts 0.00 -0.02 0.01 -0.05 -0.007 0.00 -0.01 0.01 -0.03 0.168** 

Long SB bouts 0.01 -0.03 0.05 0.05 -0.008 -0.01 -0.04 0.03 -0.03 0.168** 

α -0.21 -1.42 1.00 -0.03 -0.009 -0.28 -1.38 0.81 -0.05 0.169** 

X1/2 0.00 0.00 0.00 -0.09 -0.001 0.00 0.00 0.00 -0.16 0.190** 

W1/2 0.00 -0.01 0.01 0.00 -0.010 0.00 0.00 0.01 0.06 0.170** 

W50% 0.00 0.00 0.00 0.10 0.001 0.00 0.00 0.00 0.07 0.172** 

F -0.05 -0.12 0.03 -0.11 0.003 -0.02 -0.09 0.05 -0.05 0.169** 

Period 0.00 -0.02 0.02 -0.03 -0.009 0.00 -0.01 0.02 0.04 0.169** 

PCSAMVC
¶ 

Breaks SB 0.00 -0.02 0.02 0.00 -0.010 0.00 -0.02 0.02 -0.02 0.344** 

Short SB bouts 0.00 -0.02 0.01 -0.05 -0.008 0.00 -0.02 0.02 -0.01 0.344** 

Long SB bouts 0.05 -0.01 0.10 0.15 0.013 0.00 -0.06 0.05 -0.01 0.344** 

α -0.41 -2.23 1.40 -0.04 -0.008 -0.07 -1.60 1.47 -0.01 0.344** 

X1/2 0.00 0.00 0.00 -0.17 0.020 0.00 0.00 0.00 -0.20* 0.370** 

W1/2 0.00 -0.01 0.01 -0.06 -0.006 0.00 -0.01 0.01 0.01 0.344** 

W50% 0.00 0.00 0.00 0.04 -0.009 0.00 0.00 0.00 -0.02 0.345** 

F -0.08 -0.20 0.04 -0.14 0.009 0.00 -0.11 0.10 0.00 0.344** 

Period -0.01 -0.04 0.02 -0.07 -0.005 0.01 -0.01 0.04 0.08 0.350** 

AT force 
Breaks SB -3.03 -33.27 27.21 -0.02 -0.009 -14.61 -40.19 10.96 -0.09 0.299** 

Short SB bouts -1.35 -28.91 26.21 -0.01 -0.010 -9.44 -33.10 14.21 -0.07 0.294** 
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Long SB bouts -9.89 -94.24 74.45 -0.02 -0.009 -24.39 -100.75 51.98 -0.06 0.293** 

α 2190.98 -329.27 4711.23 0.17 0.019 1874.97 -339.50 4089.43 0.14 0.310** 

X1/2 3.38 -0.89 7.66 0.16 0.014 -0.27 -1.80 1.26 -0.03 0.291** 

W1/2 -15.86 -30.56 -1.17 -0.21* 0.034* -18.85 -31.35 -6.34 -0.25** 0.351** 

W50% -1.05 -6.61 4.52 -0.04 -0.008 2.47 -2.56 7.49 0.09 0.297** 

F -45.42 -211.99 121.15 -0.05 -0.007 -91.87 -241.56 57.82 -0.11 0.300** 

Period 14.64 -28.68 57.96 0.07 -0.005 14.64 -23.78 53.06 0.07 0.294** 

Fascicle force¶ 

Breaks SB 0.00 -0.03 0.02 -0.03 -0.009 -0.02 -0.04 0.01 -0.11 0.298** 

Short SB bouts 0.00 -0.03 0.02 -0.02 -0.009 -0.01 -0.03 0.01 -0.09 0.292** 

Long SB bouts -0.01 -0.08 0.06 -0.02 -0.009 -0.03 -0.09 0.04 -0.07 0.288** 

α 1.59 -0.59 3.76 0.14 0.010 1.34 -0.59 3.26 0.12 0.298** 

X1/2 0.00 0.00 0.00 -0.13 0.006 -0.00 -0.00 0.00 -0.08 0.291** 

W1/2 -0.01 -0.03 0.00 -0.19 0.027 -0.01 -0.02 -0.00 -0.20* 0.326** 

W50% 0.00 -0.01 0.00 -0.02 -0.009 0.00 -0.00 0.01 0.08 0.291** 

F -0.04 -0.19 0.10 -0.06 -0.006 -0.08 -0.21 0.05 -0.11 0.296** 

Period 0.01 -0.03 0.05 0.06 -0.006 0.02 -0.01 0.05 0.10 0.294** 

Specific force¶ 

Breaks SB 0.00 -0.03 0.02 -0.03 -0.009 -0.02 -0.04 0.00 -0.14 0.207** 

Short SB bouts 0.00 -0.02 0.02 0.02 -0.009 -0.01 -0.03 0.01 -0.10 0.197** 

Long SB bouts -0.05 -0.11 0.01 -0.18 0.021 -0.03 -0.09 0.03 -0.09 0.196** 

α 2.00 0.19 3.80 0.21* 0.036* 1.28 -0.40 2.96 0.14 0.206** 

X1/2 0.00 0.00 0.00 0.02 -0.009 0.00 0.00 0.00 0.09 0.190** 

W1/2 -0.01 -0.02 0.00 -0.17 0.019 -0.01 -0.02 0.00 -0.23** 0.241** 
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W50% 0.00 -0.01 0.00 -0.06 -0.006 0.00 0.00 0.01 0.10 0.196** 

F 0.04 -0.08 0.16 0.06 -0.006 -0.06 -0.18 0.06 -0.10 0.195** 

Period 0.02 -0.01 0.05 0.14 0.011 0.01 -0.02 0.04 0.08 0.193** 

TA co-activation¶ 

Breaks SB -0.01 -0.04 0.02 -0.07 -0.006 

 

Short SB bouts -0.00 -0.04 0.03 -0.03 -0.009 

Long SB bouts -0.05 -0.14 0.04 -0.10 0.001 

α 0.91 -1.90 3.72 0.06 -0.006 

X1/2 -0.00 -0.00 0.00 -0.11 0.002 

W1/2 0.01 -0.01 0.02 0.08 -0.003 

W50% 0.00 -0.00 0.01 0.09 -0.002 

F -0.01 -0.19 0.18 -0.01 -0.010 

Period 0.02 -0.03 0.06 0.06 -0.006 

GM activation capacity¶ 

Breaks SB 0.00 -0.03 0.02 -0.04 -0.017 -0.01 -0.03 0.01 -0.10 0.047 

Short SB bouts 0.00 -0.02 0.02 0.04 -0.017 0.00 -0.02 0.02 -0.02 0.038 

Long SB bouts -0.05 -0.11 0.02 -0.20 0.020 -0.06 -0.12 0.01 -0.24 0.095* 

α 1.80 -0.10 3.71 0.25 0.045 1.64 -0.22 3.51 0.23 0.091* 

X1/2 0.00 0.00 0.00 0.02 -0.018 0.00 0.00 0.00 0.06 0.041 

W1/2 -0.01 -0.02 0.01 -0.13 0.000 -0.01 -0.02 0.00 -0.15 0.062 

W50% 0.00 -0.01 0.00 -0.06 -0.015 0.00 0.00 0.01 0.04 0.039 

F 0.16 0.03 0.29 0.32* 0.083* 0.13 -0.01 0.26 0.25 0.114* 

Period 0.03 0.00 0.06 0.24 0.041 0.03 0.00 0.06 0.27* 0.113* 

FatigueISOM duration¶ Breaks SB 0.00 -0.01 0.02 0.09 -0.015 0.00 -0.02 0.02 0.08 0.121 



120 

Short SB bouts 0.00 -0.01 0.02 0.05 -0.021 0.00 -0.02 0.02 0.00 0.114 

Long SB bouts 0.01 -0.03 0.05 0.09 -0.015 -0.01 -0.03 0.01 -0.11 -0.012 

α 0.09 -1.20 1.37 0.02 -0.023 0.17 -1.60 1.94 0.04 0.116 

X1/2 0.00 0.00 0.00 0.04 -0.022 0.00 0.00 0.00 0.03 -0.024 

W1/2 0.00 -0.01 0.01 -0.09 -0.015 0.00 -0.01 0.00 -0.09 -0.017 

W50% 0.00 0.00 0.00 0.05 -0.022 0.00 0.00 0.00 -0.16 0.002 

F 0.04 -0.01 0.08 0.27 0.048 -0.02 -0.13 0.10 -0.06 0.118 

Period 0.00 -0.02 0.02 0.03 -0.023 0.00 -0.01 0.01 0.04 -0.022 

FatigueISOM relative 

change RMS EMG¶ 

Breaks SB 0.00 -0.03 0.02 -0.04 -0.022 0.01 -0.02 0.03 0.08 0.242** 

Short SB bouts 0.00 -0.03 0.02 -0.05 -0.022 0.01 -0.02 0.03 0.07 0.239** 

Long SB bouts 0.01 -0.07 0.08 0.02 -0.023 -0.02 -0.09 0.05 -0.06 0.223** 

α -0.03 -2.39 2.33 0.00 -0.024 0.52 -1.58 2.63 0.07 0.224** 

X1/2 0.00 0.00 0.00 0.13 -0.007 0.00 0.00 0.00 0.04 0.236** 

W1/2 0.00 -0.02 0.01 -0.07 -0.018 0.00 -0.01 0.01 0.02 0.235** 

W50% 0.00 0.00 0.01 0.10 -0.014 0.00 -0.01 0.00 -0.09 0.227** 

F -0.11 -0.28 0.05 -0.22 0.023 0.15 -0.04 0.34 0.30 0.280** 

Period -0.01 -0.05 0.03 -0.10 -0.014 0.00 -0.04 0.03 -0.02 0.234** 

FatigueISOM rate of 

change RMS EMG¶ 

Breaks SB 0.00 0.00 0.00 -0.06 -0.021 0.00 0.00 0.00 0.01 0.085 

Short SB bouts 0.00 0.00 0.00 -0.07 -0.019 0.00 0.00 0.00 0.01 0.085 

Long SB bouts 0.00 0.00 0.00 0.03 -0.023 0.00 0.00 0.00 -0.03 0.086 

α 0.00 -0.05 0.04 -0.03 -0.023 0.01 -0.03 0.05 0.04 0.086 

X1/2 0.00 0.00 0.00 0.10 -0.014 0.00 0.00 0.00 0.04 0.086 
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W1/2 0.00 0.00 0.00 -0.05 -0.021 0.00 0.00 0.00 -0.02 0.085 

W50% 0.00 0.00 0.00 0.09 -0.015 0.00 0.00 0.00 -0.03 0.086 

F 0.00 -0.01 0.00 -0.24 0.037 0.00 0.00 0.00 -0.15 0.126* 

Period 0.00 0.00 0.00 -0.03 -0.023 0.00 0.00 0.00 0.04 0.086 

FatigueISOM relative 

change MPF¶ 

Breaks SB 0.01 -0.08 0.09 0.03 -0.023 0.01 -0.08 0.09 0.03 -0.023 

Short SB bouts 0.01 -0.07 0.09 0.04 -0.022 0.01 -0.07 0.09 0.04 -0.022 

Long SB bouts -0.01 -0.24 0.23 -0.01 -0.024 -0.01 -0.24 0.23 -0.01 -0.024 

α -1.94 -9.07 5.18 -0.08 -0.016 -1.94 -9.07 5.18 -0.08 -0.016 

X1/2 0.00 0.00 0.00 -0.07 -0.019 0.00 0.00 0.00 -0.07 -0.019 

W1/2 0.02 -0.02 0.06 0.15 0.000 0.02 -0.02 0.06 0.15 0.000 

W50% 0.00 -0.02 0.02 0.01 -0.024 0.00 -0.02 0.02 0.01 -0.024 

F 0.30 -0.21 0.80 0.18 0.010 0.30 -0.21 0.80 0.18 0.010 

Period 0.03 -0.09 0.16 0.09 -0.016 0.03 -0.09 0.16 0.09 -0.016 

FatigueISOM rate of 

change MPF¶ 

Breaks SB 0.00 0.00 0.00 0.09 -0.016 0.00 0.00 0.00 0.09 -0.016 

Short SB bouts 0.00 0.00 0.00 0.12 -0.008 0.00 0.00 0.00 0.12 -0.008 

Long SB bouts 0.00 -0.01 0.01 -0.08 -0.017 0.00 -0.01 0.01 -0.08 -0.017 

α -0.04 -0.29 0.21 -0.05 -0.022 -0.04 -0.29 0.21 -0.05 -0.022 

X1/2 0.00 0.00 0.00 -0.07 -0.019 0.00 0.00 0.00 -0.07 -0.019 

W1/2 0.00 0.00 0.00 0.15 -0.001 0.00 0.00 0.00 0.15 -0.001 

W50% 0.00 0.00 0.00 -0.10 -0.014 0.00 0.00 0.00 -0.10 -0.014 

F 0.00 -0.01 0.01 -0.10 -0.015 0.00 -0.01 0.01 -0.10 -0.015 

Period 0.00 0.00 0.00 0.00 -0.024 0.00 0.00 0.00 0.00 -0.024 
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FatigueISOK duration¶ 

Breaks SB -0.01 -0.03 0.02 -0.05 -0.008 -0.01 -0.03 0.02 -0.05 -0.008 

Short SB bouts 0.00 -0.02 0.01 -0.04 -0.008 0.00 -0.02 0.01 -0.04 -0.008 

Long SB bouts 0.00 -0.05 0.06 0.01 -0.010 0.00 -0.05 0.06 0.01 -0.010 

α 0.35 -1.37 2.07 0.04 -0.008 0.35 -1.37 2.07 0.04 -0.008 

X1/2 0.00 0.00 0.00 0.09 -0.002 0.00 0.00 0.00 0.09 -0.002 

W1/2 0.00 -0.01 0.01 -0.05 -0.008 0.00 -0.01 0.01 -0.05 -0.008 

W50% 0.00 0.00 0.00 0.03 -0.009 0.00 0.00 0.00 0.03 -0.009 

F -0.03 -0.15 0.08 -0.06 -0.007 -0.03 -0.15 0.08 -0.06 -0.007 

Period 0.01 -0.02 0.04 0.06 -0.006 0.01 -0.02 0.04 0.06 -0.006 

FatigueISOK relative 

change RMS EMG¶ 

Breaks SB -0.01 -0.06 0.03 -0.06 -0.007 -0.02 -0.06 0.03 -0.07 0.078* 

Short SB bouts -0.01 -0.05 0.04 -0.04 -0.009 -0.01 -0.06 0.03 -0.06 0.077* 

Long SB bouts -0.04 -0.17 0.09 -0.06 -0.006 -0.02 -0.15 0.11 -0.03 0.073* 

α -0.71 -4.71 3.29 -0.04 -0.009 -0.68 -4.52 3.16 -0.03 0.074* 

X1/2 0.00 0.00 0.00 0.01 -0.010 0.00 0.00 0.00 0.01 0.073* 

W1/2 0.01 -0.02 0.03 0.06 -0.007 0.00 -0.02 0.03 0.02 0.073* 

W50% 0.00 -0.01 0.01 -0.02 -0.010 0.00 -0.01 0.01 -0.02 0.073* 

F 0.00 -0.27 0.26 0.00 -0.010 -0.06 -0.31 0.20 -0.04 0.075* 

Period 0.01 -0.06 0.08 0.02 -0.010 0.00 -0.07 0.07 0.00 0.073* 

FatigueISOK rate of 

change RMS EMG¶ 

Breaks SB 0.00 0.00 0.00 0.02 -0.010 0.00 0.00 0.00 0.02 -0.010 

Short SB bouts 0.00 0.00 0.00 0.03 -0.009 0.00 0.00 0.00 0.03 -0.009 

Long SB bouts 0.00 0.00 0.00 -0.04 -0.009 0.00 0.00 0.00 -0.04 -0.009 

α 0.00 -0.09 0.09 0.01 -0.010 0.00 -0.09 0.09 0.01 -0.010 
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X1/2 0.00 0.00 0.00 0.00 -0.010 0.00 0.00 0.00 0.00 -0.010 

W1/2 0.00 0.00 0.00 0.03 -0.009 0.00 0.00 0.00 0.03 -0.009 

W50% 0.00 0.00 0.00 -0.01 -0.010 0.00 0.00 0.00 -0.01 -0.010 

F 0.00 -0.01 0.01 0.00 -0.010 0.00 -0.01 0.01 0.00 -0.010 

Period 0.00 0.00 0.00 -0.01 -0.010 0.00 0.00 0.00 -0.01 -0.010 

FatigueISOK relative 

change MPF¶ 

Breaks SB 0.00 -0.02 0.02 -0.02 -0.010 0.00 -0.02 0.02 -0.02 -0.010 

Short SB bouts 0.00 -0.02 0.02 0.00 -0.010 0.00 -0.02 0.02 0.00 -0.010 

Long SB bouts -0.02 -0.07 0.04 -0.07 -0.006 -0.02 -0.07 0.04 -0.07 -0.006 

α -0.24 -1.84 1.35 -0.03 -0.009 -0.24 -1.84 1.35 -0.03 -0.009 

X1/2 0.00 0.00 0.00 -0.01 -0.010 0.00 0.00 0.00 -0.01 -0.010 

W1/2 0.00 -0.01 0.01 0.07 -0.005 0.00 -0.01 0.01 0.07 -0.005 

W50% 0.00 0.00 0.00 -0.04 -0.008 0.00 0.00 0.00 -0.04 -0.008 

F 0.03 -0.08 0.13 0.05 -0.008 0.03 -0.08 0.13 0.05 -0.008 

Period 0.01 -0.02 0.04 0.06 -0.006 0.01 -0.02 0.04 0.06 -0.006 

FatigueISOK rate of 

change MPF¶ 

Breaks SB 0.00 0.00 0.00 -0.11 0.002 0.00 0.00 0.00 -0.06 0.035 

Short SB bouts 0.00 0.00 0.00 -0.09 -0.002 0.00 0.00 0.00 -0.05 0.033 

Long SB bouts 0.00 0.00 0.00 -0.05 -0.007 0.00 0.00 0.00 -0.05 0.034 

α -0.01 -0.07 0.05 -0.02 -0.010 0.00 -0.06 0.06 0.01 0.031 

X1/2 0.00 0.00 0.00 -0.02 -0.010 0.00 0.00 0.00 -0.02 0.031 

W1/2 0.00 0.00 0.00 0.01 -0.010 0.00 0.00 0.00 -0.01 0.031 

W50% 0.00 0.00 0.00 0.03 -0.009 0.00 0.00 0.00 -0.04 0.032 

F 0.00 0.00 0.00 -0.02 -0.010 0.00 0.00 0.00 0.02 0.031 
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Period 0.00 0.00 0.00 0.08 -0.003 0.00 0.00 0.00 0.09 0.038 

MVC, maximum voluntary contraction; AT, Achilles tendon; LF-MVC, fascicle length during MVC; θMVC, fascicle pennation angle during MVC; PCSAMVC, physiological cross-sectional area during 

MVC; TA, tibialis anterior; GM, gastrocnemius medialis; Isom, isometric condition; Isok, isokinetic condition; RMS, root mean square; EMG, electromyography; MPF, median power 

frequency; Breaks SB, sedentary behaviour interruptions with ≥2 consecutive minutes upright activity; Short SB bouts, sedentary behaviour bouts <30 minutes duration; Long SB bouts, 

sedentary behaviour bouts ≥30 minutes duration; α, scaling parameter sedentary bout length distribution; X1/2, median SB bout duration; W1/2, fraction total sedentary time accumulated 

in bouts longer than median sedentary bout length; W50%, half of total SB is accumulated in SB bouts ≤ this duration; F, fragmentation index of SB bouts and total SB; Period, mean period 

between SB bouts; ¶Log-transformed; *P<0.05; ** P<0.01. 
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Discussion 

The present study investigated associations of SB with GM muscle strength, specific force 

and function in older adults. It was hypothesised that (i) intrinsic GM muscle strength, (ii) 

GM specific force, and (iii) GM function are inferior in participants exhibiting high SB levels, 

regardless of being sufficiently active or not. Additionally, both proportional total daily SB 

and daily SB pattern parameters were expected to be detrimentally associated with all 

studied GM muscle outcomes in older adults. Our results partially support these 

hypotheses. 

The fact that no differences were found between the SB level groups when correcting for 

covariates, might result from grouping our participants into broad categories (<8 or ≥8 hrs 

daily SB). This potentially attenuates any associations that we would see during linear 

regression analyses, due to large group variances. Nevertheless, an association with ankle 

angle of peak torque was identified, indicating that higher levels of SB are related to greater 

ankle angles (in other words more PF) indicating shorter muscle length. This is in agreement 

with literature, showing evidence that angle of peak torque shifts towards longer muscle 

lengths after training (182). 

Compositional data analysis did not show any associations with GM strength, specific force 

or function for the proportion of total daily time spent in SB. On the contrary, three out of 

four identified associations involved time spent standing relative to the other daily 

behaviours, while one involved LIPA. The observed relationships all indicate improved 

outcomes when increasing the proportional time spent in these behaviours. Standing for 

example, was positively associated with θMVC, PCSAMVC and GM activation capacity. These 

findings are similar to the effects seen in response to training (183,184) and opposite to 

those resulting from disuse (185). Interestingly, no associations were found for any PA 

intensities, except between LIPA and AT force. Overall, it is important to stress that the 

results involving standing and LIPA should be interpreted with caution. This is mainly due 

to the issues with distinguishing between standing and LIPA, as seen in Chapter 2 & 3 of 

this thesis. As a result, associations are potentially over- or underestimated. 

Apart from the fact that we applied single-twitch muscle stimulation, using the 

interpolation twitch technique to measure agonist activation capacity in human muscles 

(as in this chapter), can be quite challenging. Different authors have suggested a number 

of methodological and physiological considerations to be taken into account when applying 

the technique (186). Generally, the ability to maximally drive muscle is usually 
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overestimated and twitch interpolation is highly variable under constant circumstances 

(186). Hence, the results of this technique should be interpreted with caution. 

Nevertheless, test-retest reliability for the assessment of GM muscle activation capacity 

was good in this chapter (ICC = 0.891). 

A number of associations was found for a variety of daily SB pattern parameters during 

multiple regression analysis. Interestingly, the relationships were mainly seen for GM 

strength and force outcomes. However, also the Achilles tendon moment arm appeared to 

decrease with ‘better’ daily SB pattern parameters. Although the tendon moment arm is 

determined by the anatomical constraints of the skeleton, a trend for smaller tendon 

moment arm lengths was observed in an exercise group compared to controls (163). This 

suggests that physical activity may affect the tendon moment arm, but how is unclear. The 

use of a new method to measure Achilles tendon moment arms in this chapter could have 

affected the results, however, analysis showed moderate reliability (ICC = 0.733), which 

indicates that the quality of the collected data is acceptable. Combining this with the 

excellent ICCs for PF torque values, means that the calculation of AT force was highly 

reliable. 

The consensus is that decreased PA levels are one of the causing factors for the ageing-

related decrease in muscle strength, force and function (138,187). In line with this, it was 

observed that an increase in the amount of SB spent in bouts longer than the median bout 

duration was associated with a decrease in net torque production. This was the case for 

both the peak torque angle and the neutral angle. As discussed in Chapter 5, the force a 

muscle can generate is proportional to the PCSA, yet no associations were observed for 

muscle size or architecture, except for the preferred SB bout length (β = -0.20, R2
adj = 0.370). 

The lower force with increasing SB was also not explicable by changes in TA co-activation. 

However, an increase in the ability to activate the GM voluntarily was found with longer 

periods between separate SB bouts. Nevertheless, the fact that a result was found in only 

one out of nine SB pattern parameters, suggests that a true association between SB and 

net torque production is most probably lacking. 

More associations were identified regarding intrinsic muscle strength. In general, these 

results all indicate an increase in intrinsic strength with increasing SB, opposite to what has 

previously been reported (127). However, with intrinsic strength being the ratio of net 

torque over muscle volume, the observed trends (less SB = higher volume) in muscle 

volume (chapter 5) might explain these findings. It must be noted that when correcting for 
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muscle volume, both contractile and non-contractile tissue is taken into account, and thus 

measures of intrinsic strength are not conclusive and can effect an overall decrease in 

muscle quality, e.g. due to fat infiltrations. Instead, specific force was calculated, which 

showed only one association. The identified parameter suggests that with an increased 

proportion of total daily SB spent in bouts longer than the median bout duration, force 

production decreases. Having not observed any associations between SB on one hand and 

muscle architecture during isometric MVC on the other, probably explains the consistency 

of identified associations from tendon force to fascicle force and eventually specific force. 

Overall, with the lack of associations for specific force, it can be concluded that SB is not 

associated with muscle force production. 

In this chapter, no significant associations with any kind of SB outcome were found for TA 

co-activation and GM fatigue resistance, while only one was observed for both GM 

architecture during MVC and GM activation capacity. The fact that generally no association 

was found for muscle architecture is in line with the results seen in chapter 5. Although 

decreased activation capacity (130) and increased co-activation (188) was demonstrated 

during ageing, a recent review showed increased activation capacity but no change in co-

activation in elderly after strength training (189). Combining this result with our findings, 

suggests that PA has an important role in neuromuscular function in older adults, as 

previously stated (187). The only association found for GM activation capacity and SB in 

this chapter, supports this as the relationship suggests that breaking sedentary behaviour 

with longer duration of non-SB activity increases GM activation capacity. Next, the absence 

of significant results regarding muscle fatigue resistance seems to be in line with literature. 

Compared to their younger counterparts, older adults have been identified with an age-

related fatigue advantage under isometric conditions, regardless of PA levels (190). This is 

suggested to result from many changes in their neuromuscular system (171), such as a 

larger proportion of type I muscle fibres, which are more economical during isometric 

contractions (191,192) and might explain the absence of significant associations with either 

SB or PA. Finally, the remarkable lack of significant results for MVPA throughout the whole 

study overall, suggests that habitual levels of this PA intensity might be less important for 

the GM muscle properties studied in our elderly population under the given circumstances. 

Although a total of 105 older adults were tested, some outcomes were examined in 

subpopulations for a variety of reasons. Interpretation of the results in these variables (i.e. 

GM activation capacity or muscle fatigue resistance) should therefore be done more 
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cautiously. Nonetheless, an important strength of this chapter is the high number of good-

to-excellent ICCs (8 out of 9) indicating high reliability of the data used. As discussed above, 

the reliability for Achilles tendon moment arm measurements was moderate (ICC = 0.733), 

which means that this chapter’s data holds more than acceptable quality.  

 

Conclusion 

Except for the consistent negative association of both GM strength and force with the 

proportion of daily total SB spent in bouts longer than or equal to the median SB bout 

duration, no other associations with SB outcomes were identified. The absence of any 

relationship with MVPA suggests that the detrimental effects of SB on GM force cannot be 

overcome by MVPA, but rather by reducing SB in older adults. 
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Chapter 7. The association of sedentary behaviour with gastrocnemius 

medialis tendon properties and postural balance in older adults 

Introduction 

Upright stability is an important factor for functional independence in the elderly, and is 

negatively associated with ageing (44). Previous studies have shown correlations between 

postural sway and plantar flexor characteristics in both young and old age groups, such as 

muscle volume and tendon stiffness (44,193,194). The muscle-tendon unit (MTU) consists 

of two components: (i) the muscle and (ii) the tendon. The muscle Is the contractile 

component where force is developed, while a tendon is used to transmit those forces from 

muscles to bones (188). A more compliant tendon would result in slower force 

development and may delay responses to impeding falls (188). The latter shows the 

important role tendons have within the MTU, which warrants their targeted study. 

Although reports have shown that ageing does not only affect skeletal muscles, but also 

tendons, the effects identified are inconsistent (188). Nevertheless, the consensus is that 

elderly tendons are more compliant, which is mainly the result of tendon material changes 

(188,195). In addition, tendon cross-sectional area (CSA) increases with ageing, probably to 

compensate for changes in the mechanical properties in order to maintain appropriate 

tendon stiffness (195,196). Accumulation of scar tissue from previous injuries might also 

affect tendon CSA and compliance. The important functional implication of the stiffness 

reduction in elderly tendons is: a slower transmission of generated muscle forces. In other 

words, older people will be less effective at preventing falls, which can have serious impact 

on their lives (188). Fortunately, resistance training has been shown to effectively 

attenuate or even reverse the detrimental effect that ageing has on skeletal muscle and 

tendon (197,198). With regards to tendon adaptations, resistive loading can increase both 

stiffness and Young’s modulus (YM) in elderly human tendons (199). However, conflicting 

evidence exist regarding the effects on tendon CSA (200). Nevertheless, it is believed that 

increased tendon stiffness after resistance training is due to changes in the material 

properties rather than hypertrophy of the tendon (188,196). 

Where resistance training has beneficial effects, decreased PA levels are thought to be an 

important factor causing the age-related MTU changes (127,187,201). Since PA levels 

appeared to act independent of sedentary behaviour (SB) in older adults (Chapter 3), and 

a combination of the adverse effects of disuse on muscle-tendon properties (199) and the 
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positive relationship between age and SB (Introduction & Chapter 3), it would be highly 

interesting to examine the role of SB on tendon modulation in older adults. More 

specifically, investigating the associations between SB and both gastrocnemius medialis 

(GM) tendon properties and postural balance in older adults, have not yet been studied. 

Hence, the main aim of this present chapter was to examine the associations of SB with 

GM tendon properties and postural balance in older adults. It was hypothesised that SB 

levels are detrimentally associated with GM tendon stiffness (through YM) and postural 

stability. However, a positive association was expected between SB levels and tendon CSA. 

Similar associations were also expected for total daily time spent in SB relative to other 

behaviours and daily SB pattern parameters. 

 

Materials and methods 

As described in Chapter 4 of this thesis, 105 healthy older adults participated in this cross-

sectional study. Per protocol, participants came to the university twice: at the first visit they 

were familiarised with the testing equipment and an activity monitor was provided, while 

on the second visit (after a week of habitual daily activity monitoring) their GM tendon 

properties and postural balance were tested. In the participants that underwent postural 

stability assessment, this was performed before testing their tendon properties. 

SB and PA outcomes 

See chapter 4 for a detailed overview of the SB and PA outcomes used in this chapter. 

Postural balance 

To determine postural balance, a representative subgroup of 45 participants (without any 

disease or condition that could affect postural stability) were asked to stand barefoot and 

quietly (with hands hanging freely at either side) on a piezo-electric force platform (Kistler 

Instrument, Amherst, NY, USA) using their self-perceived dominant leg, while data was 

sampled at a frequency of 100 Hz. A total of six trials were performed (three times with 

eyes open and a visual focus point at eye level, about three meters in front of the 

participant; three times with eyes closed using blinding goggles) in a random order to 

minimise learning-effects. Participants were instructed to perform the single-leg stance 

(self-perceived dominant leg) for as longs as possible, up to 30 seconds maximum. To 

prevent any carry-over effect of fatigue, they sat down between two trials for at least two 
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minutes. For each trial, displacement of the centre-of-pressure was measured in both the 

anterior-posterior and mediolateral direction, which allowed calculation of total 

displacement (mm) using the following formula (44): 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = √(𝑅𝑀𝑆𝐴𝑃)2 + (𝑅𝑀𝑆𝑀𝐿)2 

where RMS = root mean square, AP = anterior-posterior, and ML = mediolateral. 

For each condition, the trial with the longest stance duration was analysed. To improve 

data quality, the first and last 5% of the selected trial data was discarded. Finally, three 

outcomes were determined per trial: duration (s), total displacement (mm) and sway 

frequency (total displacement normalised for trial duration (mm∙s-1)). 

Tendon size 

Participants were placed in a prone position on a treatment bed, with the foot of their self-

perceived dominant leg fixed in a neutral position (90° angle between foot and lower leg). 

While in this position, scanning of the Achilles tendon was performed using B-mode 

ultrasonography (Technos; Esaote S.p.A, Genoa, Italy). At first, the insertion of the tendon 

into the calcaneus was determined and marked. Next, the tendon was scanned 

longitudinally until the musculotendinous junction was identified. The position was then 

marked and thin strips (2 mm) of micropore tape (Transpore, 3M, USA) placed transversally 

across the tendon. The distance between the tendon insertion and musculotendinous 

junction was measured and represented the resting tendon length (cm; LT). Positions 1, 2 

and 3 cm above the tendon insertion were marked and scanned transversally, during which 

the ultrasound probe (7.5 MHz linear-array probe, 3.8 cm wide) was held perpendicular to 

the skin (Figure 7.1). Minimal pressure was maintained to avoid compression of tendon 

tissue. Water-soluble transmission gel (Aquasonic 100; Parker Laboratories Inc., Fairfield, 

NJ, USA) was placed over the ultrasound probe head to improve acoustic coupling. During 

the scanning, the real-time ultrasound image was recorded onto a PC with video capturing 

software (25 frames per second; Adobe premier pro version 6). This allowed offline 

extraction of individual transverse frames at the three identified sections of the tendon. 

The cross-sectional area (CSA) per section was measured (mm2) using digitising software 

(ImageJ 1.45, National Institutes of Health, Bethesda, MD, USA). The three CSAs were 

averaged and then multiplied by 0.3 to calculate the GM tendon CSA for further data 

analysis. This value was based upon the assumption that the fraction of the GM tendon CSA 

was equivalent to the proportion of GM muscle CSA to the whole triceps surae (202,203). 
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Figure 7.1. Analysis of Achilles tendon cross-sectional area at 2 cm above calcaneus 

insertion. 

Tendon stiffness and Young’s modulus 

Participants sat on the chair of an isokinetic dynamometer (Cybex Norm; Cybex 

International, New York, NY, USA) with their hip in an 85° angle, self-perceived dominant 

leg extended and foot secured to the footplate of the dynamometer in an 0° angle (no 

plantar- (PF) or dorsiflexion (DF)) and the lateral malleolus aligned with the axis of rotation. 

Non-extending straps were used at the hip, distal thigh and chest to prevent extraneous 

movements. After a series of five submaximal PF and DF contractions that served as a 

warm-up (50 - 75% self-perceived maximum voluntary contraction (MVC)), participants 

performed a ramped isometric PF MVC over 5 seconds. Each ramped PF MVC was followed 

by a rapid isometric DF MVC (2 – 3 seconds), with verbal encouragement and biofeedback 

provided by the experimenter during each effort. These MVCs were performed in the 0° 

angle for both PF and DF, with 30-60 seconds between the trials. A total of three MVC 

combinations were performed, however, if >10% difference was observed between all 

values, extra ramped MVCs were executed (maximum five in total). The effort with the 

highest PF MVC value was used for data analyses. Tendon elongation during the ramped 

PF MVCs was assessed by B-mode ultrasonography, placing the probe over the micropore 

tape on the musculotendinous junction. Again, water-soluble transmission gel was placed 

over the ultrasound probe head to improve acoustic coupling. Real time recording of the 

ultrasound image was similar to that for the tendon CSAs. Synchronisation of the muscle 

strength data and ultrasound recording was performed using a square wave signal 

generator. This allowed the extraction of ultrasound images from 0 – 100% MVC, with 10% 

increments. The distance between the musculotendinous junction and the shadow cast 

from the echo-absorptive micropore was measured using digitising software. Corrections 
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were made for unwanted shift of the heel during the ramped isometric MVC, as identified 

in a previous study (204). Important for the analysis was that both the shadow and 

musculotendinous junction were clearly visible on the ultrasound images. 

As described in Chapter 6, antagonist co-activation was determined using surface 

electromyography (sEMG) to allow calculation of true PF torques. In short, muscle 

activation of the tibialis anterior (TA) was determined by calculating the median root mean 

square (RMS) of the sEMG signal over 500 ms intervals around each 10% increment in 

ramped isometric PF MVC, while a period of 1 s around the peak torque during rapid 

isometric DF MVC was used. Antagonist torque output for each 10% increment of the 

ramped isometric PF MVC was calculated by dividing TA sEMG RMS during PF by TA sEMG 

RMS during DF, and multiplying the rapid isometric DF MVC torque by this ratio. This 

assumes a linear relation between DF torque and TA EMG (205). The sum of the antagonist 

torque and the ramped isometric PF MVC torque represented the net PF MVC (N∙m). 

Next, GM tendon force (N) at each 10% MVC interval was calculated by first dividing the 

net PF MVC by the tendon moment arm in the neutral ankle angle (0°) (mm; assessed with 

single energy X-ray absorptiometry, as detailed in Chapter 6), and then multiplying the 

result by 0.203. This latter value represents the assumption that 20.3% of the Achilles 

tendon force was generated by the GM (176). 

To estimate GM tendon stiffness per participant, denoted as K (N∙mm-1), GM tendon force 

and corresponding elongation data was plotted and fitted with a second-order polynomial 

fixed through zero (average R2 was 0.96 (0.05)). By calculating the polynomial’s first 

derivative, the slope at each point of the force-elongation curve could be determined, 

which represented K. A total of three tendon stiffness outcomes were calculated: average 

K over the curve, maximum K and standardised K. For this latter, a force level of 74.3 N (as 

seen in our weakest participant) was used. From these results, Young’s modulus (MPa) was 

calculated by multiplying K by the ratio of LT (mm) over tendon CSA (mm2). Tendon stress 

and strain were calculated as the ratio of tendon force over tendon CSA (stress; MPa) and 

the ratio of tendon elongation over resting tendon length (strain; %). 

Reliability 

Test-retest reliability was determined for the main outcomes under study in this chapter, 

using the intraclass correlation coefficient (ICC) for absolute agreement using a two-way 

mixed model. Reliability values <0.5 were interpreted as poor, between 0.5 - 0.75 as 
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moderate, between 0.75 - 0.9 as good and >0.9 as excellent (158). LT showed an ICC of 

0.906, while for tendon CSA it was 0.970. Finally, both PF torque values and maximum 

tendon elongation measured during the ramped MVC in the neutral ankle angle had ICCs 

of 0.995 and 0.698 respectively. 

Statistics 

The outcome variables are displayed as mean (standard deviation (SD)) or median 

(interquartile range (IQR)) (Table 7.1). Prior to conducting any inferential statistical analysis, 

all outcome variables were checked for normality (either Kolmogorov-Smirnov or Shapiro-

Wilk test). In case of non-normality, the variables were log-transformed and the 

distribution of the transformed data also checked. Since postural balance was performed 

in a subsample only, their representativeness of the whole study sample was assessed 

using an Independent samples T-test or Mann-Whitney U test. Potential covariates were 

analysed per outcome variable by running a univariate General Linear Model (GLM). When 

a parameter appeared significant, it was treated as a covariate (Table 7.2). Since daily time 

spent in sleep, SB and physical activity (PA) is constrained to 24 hours, we used 

compositional data analysis for these accelerometer outcomes. This type of analysis has 

been described in detail previously (118,119). Briefly, daily compositions are transformed 

into isometric log-ratio coordinates, which are then unconstrained and allow the 

application of traditional multivariate statistics. In this chapter, both single and multiple 

linear regression analysis was used to study the associations with SB levels, proportional 

total daily SB and PA, and daily SB pattern parameters. The identified covariates were 

added to the regression models first, by using backward elimination, after which the 

predictor(s) of interest was/were entered. During backward elimination, parameters were 

retained if p-values were <0.20 (118). For all models, Durbin-Watson statistics (>1.0 and 

<3.0) were checked to identify any correlation between the predictor and covariates, and 

covariates with variance inflation factor ≥10.0 were removed from the regression model, 

one at the time. The same was done with individual cases showing Cook’s distance ≥1.0. If 

significant associations were observed for the compositional data, isotemporal substitution 

was applied to the identified models including covariates, to calculate the relative effects 

(%) of re-allocating 10 minutes from one behaviour to the other, with respect to the study 

sample’s mean outcomes. Ten minutes was chosen, not only because of its beneficial 

effects (for example when moderate-to-vigorous PA (MVPA) is performed) (159), but also 

because it is a realistic amount of time to replace in most elderly. 
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All statistical analyses were performed using IBM SPSS Statistics for Windows, version 24.0 

(IBM Corp., Armonk, NY, USA) and p-values <0.05 were considered statistically significant. 

Results 

Descriptive statistics 

Table 7.1 shows the study sample’s descriptive statistics of the GM tendon size, stiffness, 

YM and postural balance. 

Table 7.1. Study sample descriptive statistics of GM tendon properties and postural 

balance. 

Outcome variable Mean (SD) or ¶median (IQR) 

GM LT (cm) 17.8 (2.4) 

Maximal GM tendon elongation (mm) 13.6 (5.5) 

GM tendon CSA (mm2) 28.6 (8.2)¶ 

GM tendon force (N) 266.9 (108.2) 

K 

Average (N∙mm-1) 19.4 (13.2)¶ 

Maximum (N∙mm-1) 28.3 (16.8)¶ 

Standardised (N∙mm-1) 23.2 (13.1)¶ 

YM  

Average (MPa) 118.2 (74.5)¶ 

Maximum (MPa) 163.8 (122.6)¶ 

Standardised (MPa) 143.3 (87.1)¶ 

Maximal stress (MPa) 9.2 (5.3)¶ 

Maximal strain (%) 7.3 (5.3)¶ 

EO 

Duration (s) 28.0 (24.0)¶ 

TD (mm) 8.9 (11.5)¶ 

Sway frequency (mm∙s-1) 0.4 (2.5)¶ 

EC 

Duration (s) 5.0 (4.0)¶ 

TD (mm) 21.7 (14.0)¶ 

Sway frequency (mm∙s-1) 5.3 (7.2)¶ 

GM, gastrocnemius medialis; LT, tendon length; CSA, cross-sectional area; K, stiffness; MVC, maximum 

voluntary contraction; YM, Young’s modulus; EO, eyes open; TD, total displacement; EC, eyes closed; SD, 

standard deviation; IQR, interquartile range. 

Covariate analysis 

The variables identified as covariates in this chapter were: age, sex, ethnicity, body height, 

body mass, body mass index (BMI), skeletal mass index (SMI), body fat mass, body lean 

mass, body bone mineral content (BMC), adiposity class, falls risk assessment tool (FRAT) 

score, menopause age, history of major illness, smoking, calcium/vitamin D supplement 
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usage, total time spent in PA bouts, standing during PA bouts, light-intensity PA (LIPA) 

during PA bouts, moderate-to-vigorous PA (MVPA) during PA bouts, MVPA in bouts of ≥10 

consecutive minutes and physical activity status (Table 7.2-3).



 

Table 7.2. Correlation coefficients of covariate analysis for tendon properties. 

 GM LT 
Max Δ 

GM LT 

GM 

tendon 

CSA¶ 

GM 

tendon 

force 

KAvg
¶ KMax

¶ KStd
¶ YMAvg

¶ YMMax
¶ YMStd

¶ 
Max 

stress¶ 

Max 

strain¶ 

Age 0.323 -0.158 0.101 -0.145 0.001 0.026 0.000 0.082 0.102 0.077 -0.204 -0.241 

Sex 0.489 0.000 0.529 0.452 0.303 0.391 0.425 0.197 0.298 0.326 0.148 -0.115 

Ethnicity -0.073 -0.015 0.093 -0.035 0.016 0.019 -0.043 -0.049 -0.042 -0.103 -0.066 0.026 

Body height 0.504 -0.046 0.579 0.446 0.327 0.366 0.325 0.192 0.248 0.201 0.054 -0.165 

Body mass 0.276 0.057 0.592 0.238 0.023 0.186 0.186 -0.177 -0.002 -0.006 -0.124 0.006 

BMI -0.026 0.090 0.279 -0.043 -0.196 -0.031 -0.007 -0.332 -0.166 -0.142 -0.180 0.113 

SMI 0.249 0.093 0.582 0.420 0.225 0.302 0.321 0.022 0.117 0.131 0.086 0.043 

Fat mass -0.313 0.032 -0.268 -0.434 -0.427 -0.342 -0.322 -0.387 -0.316 -0.292 -0.263 0.111 

Lean mass 0.310 -0.037 0.259 0.434 0.429 0.341 0.323 0.393 0.319 0.296 0.264 -0.116 

BMC mass 0.240 0.032 0.283 0.296 0.279 0.241 0.219 0.206 0.180 0.155 0.174 -0.028 

Adiposity class 0.159 0.008 0.204 -0.128 -0.140 0.002 0.007 -0.177 -0.037 -0.032 -0.207 -0.039 

FRAT score 0.029 -0.109 0.037 -0.208 -0.095 0.063 0.062 -0.088 0.066 0.064 -0.208 -0.153 

Menopause age -0.128 -0.094 0.085 0.086 0.161 0.320 0.243 0.030 0.170 0.108 0.022 -0.005 

Major illness history 0.122 0.060 0.152 0.053 -0.028 0.050 0.094 -0.054 0.024 0.067 0.002 0.032 

Statins usage 0.165 0.065 0.156 0.108 0.072 0.150 0.158 0.030 0.112 0.117 0.071 0.013 

Smoking 0.030 -0.058 -0.086 -0.044 -0.028 -0.073 -0.029 0.030 -0.020 0.025 -0.066 -0.106 

Resistance training -0.169 0.054 0.026 0.105 0.055 -0.032 -0.015 0.001 -0.081 -0.064 0.079 0.088 

Dairy products -0.110 0.008 -0.032 0.117 0.161 0.101 0.093 0.130 0.078 0.068 0.157 0.036 
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Caffeine intake 0.097 -0.003 0.143 0.136 0.152 0.057 0.097 0.092 0.006 0.044 0.010 -0.034 

RA diagnosis 0.019 -0.016 0.052 -0.051 0.128 0.168 0.091 0.052 0.100 0.021 -0.081 -0.016 

Daily alcohol intake 

≥3 units 
0.070 0.000 0.135 0.055 -0.047 0.038 0.049 -0.085 0.001 0.011 -0.032 -0.022 

Calcium/vitamin D 

supplements 
-0.190 0.027 -0.249 -0.241 -0.174 -0.118 -0.107 -0.093 -0.047 -0.034 -0.076 0.027 

PA bouts 0.002 -0.154 -0.096 -0.020 0.111 0.085 0.077 0.147 0.121 0.112 0.001 -0.117 

Total PA bouts time -0.131 0.095 -0.106 0.053 -0.062 -0.091 -0.082 -0.053 -0.084 -0.074 0.078 0.136 

SB during PA bout -0.138 0.019 -0.165 -0.002 0.020 -0.021 -0.008 0.057 0.015 0.027 0.095 0.017 

Standing during PA 

bout 
-0.224 0.118 -0.148 -0.152 -0.293 -0.273 -0.211 -0.282 -0.270 -0.206 -0.057 0.191 

LIPA during PA bout -0.314 0.147 -0.269 -0.044 -0.148 -0.267 -0.262 -0.131 -0.254 -0.246 0.045 0.203 

MVPA during PA bout 0.370 -0.176 0.303 0.096 0.241 0.341 0.312 0.220 0.326 0.294 -0.023 -0.254 

MVPA≥10 mins 0.052 -0.163 0.098 0.112 0.184 0.321 0.371 0.158 0.300 0.345 0.073 -0.161 

sMVPA 0.189 -0.031 0.161 0.115 0.111 0.132 0.116 0.097 0.121 0.104 0.038 -0.058 

Physical activity 

status 
0.083 -0.106 0.115 0.136 0.140 0.266 0.324 0.113 0.243 0.297 0.116 -0.096 

GM, gastrocnemius medialis; LT, resting tendon length; CSA, cross-sectional area; KAvg, average tendon stiffness; KMax, maximum tendon stiffness; KStd, standardised tendon stiffness; YMAvg, 

average Young’s modulus; YMMax, maximum Young’s modulus; YMStd, standardised Young’s modulus; EOTIME, duration of eyes open condition; EOTD, total displacement during eyes open 

condition; EOHz, postural sway frequency during eyes open condition; ECTIME, duration of eyes closed condition; ECTD, total displacement during eyes closed condition; ECHz, postural sway 

frequency during eyes closed condition; BMI, body mass index; SMI, skeletal muscle index; BMC, bone mineral content; FRAT, falls risk assessment tool; RA, rheumatoid arthritis; PA, 

physical activity; SB, sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity; sMVPA, sporadic moderate-to-vigorous physical activity; ¶log-

transformed. Bold values represent significances at P<0.05 level. 
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Table 7.3. Correlation coefficients of covariate analysis for postural balance. 

 EOTime
¶ EOTD

¶ EOHz
¶ ECTime

¶ ECTD
¶ ECHz

¶ 

Age -0.397 0.138 0.313 -0.308 -0.092 0.192 

Sex -0.176 0.388 0.291 -0.038 0.429 0.253 

Ethnicity 0.119 -0.142 -0.141 0.323 -0.312 -0.414 

Body height 0.050 0.298 0.108 0.022 0.369 0.176 

Body mass -0.174 0.485 0.336 0.037 0.263 0.108 

BMI -0.235 0.376 0.323 0.026 0.062 0.012 

SMI -0.145 0.440 0.296 0.073 0.329 0.114 

Fat mass -0.046 -0.095 -0.015 0.015 -0.346 -0.192 

Lean mass 0.056 0.081 0.003 -0.003 0.337 0.178 

BMC mass -0.066 0.205 0.137 -0.144 0.332 0.285 

Adiposity class -0.187 0.248 0.233 -0.038 0.089 0.076 

FRAT score -0.430 0.165 0.347 -0.445 -0.040 0.326 

Menopause age 0.211 -0.205 -0.225 0.314 0.197 -0.160 

Major illness history -0.027 0.292 0.153 -0.084 0.384 0.266 

Statins usage -0.012 0.164 0.084 0.125 0.107 -0.042 

Smoking 0.211 -0.297 -0.271 0.179 -0.079 -0.181 

Resistance training 0.217 -0.223 -0.240 0.037 -0.258 -0.164 

Dairy products 0.004 -0.039 -0.021 -0.125 0.154 0.178 

Caffeine intake 0.148 -0.016 -0.100 -0.041 0.020 0.043 

RA diagnosis -0.054 -0.104 -0.014 0.057 -0.292 -0.197 

Daily alcohol intake ≥3 

units 
0.011 0.105 0.042 0.109 0.053 -0.059 

Calcium/vitamin D 

supplements 
-0.059 0.068 0.069 -0.252 0.107 0.252 

PA bouts -0.020 0.037 0.030 -0.133 0.015 0.112 

Total PA bouts time 0.332 0.019 -0.200 -0.013 0.102 0.063 

SB during PA bout 0.011 -0.210 -0.105 0.168 -0.180 -0.224 

Standing during PA 

bout 
0.032 -0.058 -0.047 -0.010 0.128 0.074 

LIPA during PA bout 0.307 -0.212 -0.292 0.027 -0.184 -0.116 

MVPA during PA bout -0.275 0.213 0.272 -0.030 0.129 0.090 

MVPA≥10 mins 0.107 0.149 0.002 0.168 0.339 0.046 

sMVPA 0.048 0.110 0.021 -0.027 0.104 0.075 

Physical activity status 0.081 0.145 0.017 0.149 0.299 0.039 

GM, gastrocnemius medialis; LT, resting tendon length; CSA, cross-sectional area; KAvg, average tendon 

stiffness; KMax, maximum tendon stiffness; KStd, standardised tendon stiffness; YMAvg, average Young’s 

modulus; YMMax, maximum Young’s modulus; YMStd, standardised Young’s modulus; EOTIME, duration of eyes 
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open condition; EOTD, total displacement during eyes open condition; EOHz, postural sway frequency during 

eyes open condition; ECTIME, duration of eyes closed condition; ECTD, total displacement during eyes closed 

condition; ECHz, postural sway frequency during eyes closed condition; BMI, body mass index; SMI, skeletal 

muscle index; BMC, bone mineral content; FRAT, falls risk assessment tool; RA, rheumatoid arthritis; PA, 

physical activity; SB, sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous 

physical activity; sMVPA, sporadic moderate-to-vigorous physical activity; ¶log-transformed. Bold values 

represent significances at P<0.05 level. 

SB levels 

No significant models, and thus associations between SB levels and GM tendon properties 

or postural balance were found without covariate-adjustment (Table 7.4 & Figure 7.2). 

Adding covariates to the models, however, did not result in any significant associations 

either, except for balance trial duration with eyes open (β = -0.26, R2
adj = 0.293). The effect 

sizes of the other multiple linear regression models ranged from R2
adj = 0.000 through 

0.497.
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Table 7.4. Single and multiple regression analysis results for SB levels. 

Outcome variable 

Without covariates With covariates 

B 
95%-CI lower 

bound 

95%-CI upper 

bound 
β R2

Adj B 
95%-CI lower 

bound 

95%-CI upper 

bound 
β R2

Adj 

GM LT 3.38 -8.90 15.65 0.05 -0.007 0.41 -9.97 10.79 0.01 0.372** 

Max Δ GM LT -1.42 -4.30 1.46 -0.10 0.000 -1.42 -4.30 1.46 -0.10 0.000 

GM tendon CSA¶ 0.03 -0.08 0.14 0.05 -0.007 0.00 -0.09 0.08 -0.01 0.497** 

GM tendon force -18.30 -73.11 36.51 -0.07 -0.005 -2.50 -51.63 46.63 -0.01 0.290** 

K 

Average¶ -0.03 -0.27 0.20 -0.03 -0.010 0.08 -0.14 0.31 0.07 0.186** 

Maximum¶ 0.05 -0.21 0.31 0.04 -0.009 0.09 -0.16 0.33 0.07 0.180** 

Standardised¶ 0.05 -0.21 0.30 0.04 -0.009 0.08 -0.15 0.30 0.06 0.223** 

YM 

Average¶ -0.04 -0.29 0.20 -0.04 -0.009 0.12 -0.12 0.35 0.10 0.154** 

Maximum¶ 0.04 -0.23 0.30 0.03 -0.010 0.13 -0.12 0.39 0.10 0.113** 

Standardised¶ 0.04 -0.22 0.30 0.03 -0.010 0.06 -0.18 0.30 0.04 0.140** 

Maximal stress¶ -0.11 -0.33 0.11 -0.10 -0.001 -0.01 -0.23 0.21 -0.01 0.088** 

Maximal strain¶ -0.13 -0.39 0.13 -0.10 0.000 -0.11 -0.36 0.15 -0.08 0.045* 

EO 

Duration¶ -0.69 -1.43 0.05 -0.28 0.055 -0.64 -1.29 -0.00 -0.26* 0.293** 

TD¶ 0.32 -0.24 0.88 0.17 0.007 0.24 -0.27 0.75 0.13 0.270** 

Sway frequency¶ 1.01 -0.17 2.19 0.25 0.043 0.89 -0.16 1.93 0.22 0.260** 

EC 

Duration¶ 0.09 -0.53 0.70 0.04 -0.021 0.09 -0.42 0.60 0.05 0.288** 

TD¶ -0.07 -0.48 0.35 -0.05 -0.021 -0.03 -0.38 0.32 -0.02 0.328** 

Sway frequency¶ -0.15 -0.94 0.63 -0.06 -0.020 -0.10 -0.79 0.59 -0.04 0.215** 
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GM, gastrocnemius medialis; LT, resting tendon length; CSA, cross-sectional area; K, tendon stiffness; YM, Young’s modulus; EO, eyes open condition; TD, total displacement; EC, eyes closed 

condition; ¶log-transformed; *P<0.05; ** P<0.01. 

 

Figure 7.2. Comparison between low and high sedentary behaviour level groups for gastrocnemius medialis tendon stiffness (left) and Young’s modulus 

(right). 

GM, gastrocnemius medialis; SB, sedentary behaviour; Stress is the ratio of GM tendon force over resting GM tendon cross-sectional area; Strain is the ratio of GM tendon elongation over 

the GM tendon resting length. Error bars represent standard deviations.
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Daily total SB and PA 

Compositional data analysis showed several significant associations for a variety of 

outcomes (Table 7.5). More specifically, GM LT was associated with both standing (β = -

0.20) and MVPA (β = 0.25) when using an unadjusted model (R2
adj = 0.132). However, in the 

covariate-adjusted model (R2
adj = 0.377) all associations disappeared. The same happened 

in the models for GM tendon CSA, average K, maximum K, standardised K, average YM and 

maximum YM, where respectively MVPA (β = 0.22, R2
adj = 0.080), standing (β = -0.24, R2

adj 

= 0.046), MVPA (β = 0.24, R2
adj = 0.099), MVPA (β = 0.21, R2

adj = 0.068), standing (β = -0.23, 

R2
adj = 0.034) and MVPA (β = 0.22, R2

adj = 0.088) were associated at first, but not after 

developing new models including covariates (R2
adj = 0.489, R2

adj = 0.231, R2
adj = 0.190, R2

adj 

= 0.162, R2
adj = 0.200 and R2

adj = 0.144). The opposite was seen for GM tendon force, which 

was not associated at all, when using simple regression models but showed association 

with LIPA after adjusting (β = 0.23, R2
adj = 0.325). Associations identified for postural 

balance with eyes open were stable across unadjusted and adjusted models for some 

activity intensities, but not for all. For example, trial duration was positively associated with 

sleep, but only in an adjusted model (β = 0.51, R2
adj = 0.455), whereas SB was negatively 

associated in both models (β = -0.72, R2
adj = 0.198 & β = -0.99, R2

adj = 0.455). Total 

displacement was negatively associated with sleep (β = -0.71, R2
adj = 0.104 & β = -0.55, R2

adj 

= 0.293) but positively with SB (β = 0.88, R2
adj = 0.104 & β = 0.62, R2

adj = 0.293). Postural 

sway frequency was also associated with SB during eyes open condition in both models, 

respectively (β = 0.86, R2
adj = 0.164 & β = 0.98, R2

adj = 0.360). Nevertheless, sleep and MVPA 

were only associated in corrected models (β = -0.74 and β = 0.28, both R2
adj = 0.360). Finally, 

total displacement during eyes closed condition was only associated with sleep (β = -0.85) 

and SB (β = 0.98) in uncorrected models (R2
adj = 0.141). However, with the addition of 

covariates, another association appeared. Apart from sleep (β = -0.87) and SB (β = 1.13), 

standing (β = 0.28) was also associated with total displacement during the eyes closed 

condition in these models (R2
adj = 0.484). Overall, the effect sizes of the multiple linear 

regression models including a significant association, were 0.293 ≤ R2
adj ≤ 0.484. For the 

other corrected models (without an association), the effect sizes were: 0.009 ≤ R2
adj ≤ 0.489. 

Isotemporal substitution showed that the relative effects (%-change from study sample 

means) of re-allocating 10 minutes from one behaviour to another within the mean 

composition of the study sample’s total daily SB and PA (sleep = 35.6%, SB = 39.4%, standing 

= 2.8%, LIPA = 11.5% and MVPA = 10.7%) for the models including behaviours significantly 
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associated with either GM tendon properties or postural balance and adjusted for 

covariates, varied from -0.709% through +0.562% (Table 7.6). These maximum changes 

were both seen for sway frequency during postural balance with eyes open, when 

substituting 10 min of sleep with standing and vice versa respectively. 

Table 7.5. Coefficients of multiple regression models based on compositional data analysis. 

Outcome variable 
Without covariates With covariates 

B β R2
Adj B β R2

Adj 

GM LT 

Sleep 2.02 0.02 

0.132** 

4.93 0.04 

0.377** 

SB 7.30 0.10 1.47 0.02 

Standing -11.12 -0.20* -7.63 -0.14 

LIPA -12.99 -0.18 -3.66 -0.05 

MVPA 14.79 0.25* 4.89 0.08 

Max Δ GM LT 

Sleep -4.38 -0.17 

0.009 

-4.38 -0.17 

0.009 

SB 1.70 0.10 1.70 0.10 

Standing 1.52 0.12 1.52 0.12 

LIPA 2.20 0.13 2.20 0.13 

MVPA -1.16 -0.09 -1.16 -0.09 

GM tendon CSA¶ 

Sleep -0.11 -0.11 

0.080* 

0.10 0.11 

0.489** 

SB 0.14 0.22 -0.05 -0.08 

Standing -0.06 -0.13 -0.03 -0.07 

LIPA -0.09 -0.14 -0.02 -0.03 

MVPA 0.12 0.22* 0.00 0.00 

GM tendon force 

Sleep 
-

133.12 
-0.27 

-0.002 

-82.56 -0.17 

0.325** 
SB 73.68 0.23 65.90 0.21 

Standing -17.46 -0.07 -10.75 -0.04 

LIPA 36.94 0.11 75.15 0.23* 

MVPA 39.52 0.15 -48.25 -0.18 

K 

Average¶ 

Sleep 0.15 0.07 

0.046 

0.21 0.10 

0.231** 

SB -0.05 -0.04 0.12 0.09 

Standing -0.24 -0.24* -0.19 -0.19 

LIPA -0.04 -0.03 -0.08 -0.06 

MVPA 0.19 0.17 -0.03 -0.03 

Maximum¶ 

Sleep 0.22 0.10 

0.099** 

0.31 0.14 

0.190** 

SB -0.05 -0.03 -0.01 0.00 

Standing -0.23 -0.20 -0.18 -0.16 

LIPA -0.23 -0.16 -0.20 -0.14 

MVPA 0.29 0.24* 0.08 0.06 
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Standardised¶ 

Sleep 0.25 0.11 

0.068* 

0.33 0.15 

0.162** 

SB -0.09 -0.06 -0.07 -0.05 

Standing -0.13 -0.12 -0.13 -0.12 

LIPA -0.29 -0.20 -0.11 -0.07 

MVPA 0.25 0.21* 0.01 0.01 

YM 

Average¶ 

Sleep 0.30 0.14 

0.034 

0.11 0.05 

0.200** 

SB -0.16 -0.12 0.22 0.16 

Standing -0.24 -0.23* -0.21 -0.20 

LIPA -0.05 -0.03 -0.04 -0.03 

MVPA 0.17 0.15 -0.05 -0.05 

Maximum¶ 

Sleep 0.37 0.16 

0.088* 

0.32 0.14 

0.144** 

SB -0.16 -0.11 -0.01 0.00 

Standing -0.22 -0.20 -0.21 -0.19 

LIPA -0.25 -0.16 -0.19 -0.13 

MVPA 0.27 0.22* 0.08 0.07 

Standardised¶ 

Sleep 0.40 0.18 

0.057 

0.36 0.16 

0.106** 

SB -0.20 -0.14 -0.06 -0.04 

Standing -0.13 -0.12 -0.12 -0.10 

LIPA -0.31 -0.21 -0.26 -0.17 

MVPA 0.23 0.19 0.06 0.05 

Maximal stress¶ 

Sleep -0.19 -0.10 

-0.031 

-0.12 -0.06 

0.076* 

SB 0.02 0.02 0.16 0.13 

Standing 0.02 0.02 0.04 0.05 

LIPA 0.11 0.09 0.05 0.04 

MVPA 0.03 0.03 -0.15 -0.14 

Maximal strain¶ 

Sleep -0.41 -0.18 

0.061* 

-0.30 -0.13 

0.076* 

SB 0.11 0.08 0.09 0.06 

Standing 0.21 0.19 0.22 0.20 

LIPA 0.24 0.16 0.12 0.08 

MVPA -0.16 -0.13 -0.15 -0.12 

EO 

Duration¶ 

Sleep 1.00 0.22 

0.198* 

2.28 0.51* 

0.455** 

SB -2.06 -0.72* -2.84 -0.99** 

Standing -0.14 -0.07 -0.07 -0.03 

LIPA 0.84 0.29 0.26 0.09 

MVPA -0.23 -0.10 -0.48 -0.20 

TD¶ 

Sleep -2.35 -0.71* 

0.104 

-1.80 -0.55* 

0.293** 
SB 1.88 0.88** 1.30 0.62* 

Standing 0.12 0.08 0.14 0.09 

LIPA 0.06 0.03 0.43 0.20 
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MVPA 0.46 0.26 0.10 0.05 

Sway frequency¶ 

Sleep -3.36 -0.47 

0.164* 

-5.25 -0.74** 

0.360** 

SB 3.93 0.86** 4.48 0.98** 

Standing 0.27 0.08 0.17 0.05 

LIPA -0.78 -0.17 0.17 0.04 

MVPA 0.69 0.18 1.05 0.28* 

EC 

Duration¶ 

Sleep -1.05 -0.30 

-0.067 

-0.31 -0.09 

0.244* 

SB 0.69 0.30 0.32 0.14 

Standing -0.09 -0.05 0.09 0.05 

LIPA 0.35 0.15 -0.11 -0.05 

MVPA -0.01 -0.01 -0.12 -0.06 

TD¶ 

Sleep -2.02 -0.85** 

0.141* 

-2.06 -0.87** 

0.484** 

SB 1.50 0.98** 1.72 1.13** 

Standing 0.32 0.28 0.32 0.28* 

LIPA 0.05 0.03 0.28 0.18 

MVPA 0.28 0.22 0.05 0.04 

Sway frequency¶ 

Sleep -0.96 -0.21 

-0.044 

-1.49 -0.33 

0.212* 

SB 0.81 0.27 1.20 0.41 

Standing 0.41 0.18 0.19 0.09 

LIPA -0.30 -0.10 -0.09 -0.03 

MVPA 0.29 0.12 0.44 0.18 

GM, gastrocnemius medialis; LT, resting tendon length; CSA, cross-sectional area; K, tendon stiffness; YM, 

Young’s modulus; EO, eyes open condition; TD, total displacement; EC, eyes closed condition; SB, sedentary 

behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity; ¶log-

transformed; *P<0.05; ** P<0.01. 

Table 7.6. Relative effects (%) of isotemporal substitution on outcome variables. 

Outcome variable +10 mins 
-10 mins 

Sleep SB Standing LIPA MVPA 

GM tendon force 

Sleep 

 

-0.016 

 SB -0.001 

Standing -0.030 

LIPA +0.015 +0.001 +0.036 +0.000 +0.019 

MVPA  -0.019  

EO Duration¶ 

Sleep +0.000 +0.021 +0.058 +0.021 +0.024 

SB -0.021 +0.000 -0.115 -0.025 -0.025 

Standing -0.046 +0.091 

 LIPA -0.020 +0.024 

MVPA -0.023 +0.023 

EO TD¶ Sleep +0.000 -0.017 -0.095 -0.027 -0.025 
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SB +0.017 +0.000 +0.042 +0.009 +0.013 

Standing +0.075 -0.034 

 LIPA +0.026 -0.009 

MVPA +0.024 -0.013 

EO Sway frequency¶ 

Sleep +0.000 -0.120 -0.709 -0.153 -0.184 

SB +0.120 +0.000 +0.279 +0.110 +0.093 

Standing +0.562 -0.220 
 

+0.054 

LIPA +0.147 -0.105 -0.034 

MVPA +0.176 -0.089 -0.065 +0.034 +0.000 

EC TD¶ 

Sleep +0.000 -0.014 -0.082 -0.021 -0.020 

SB +0.014 +0.000 +0.036 +0.010 +0.013 

Standing +0.065 -0.028 +0.000 +0.004 +0.011 

LIPA +0.020 -0.010 -0.005 
 

MVPA +0.019 -0.012 -0.013 

GM, gastrocnemius medialis; EO, eyes open condition; TD, total displacement; EC, eyes closed condition; SB, 

sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity; 

¶log-transformed. Bold values represent the relative change from the study sample’s mean outcome for 

adjusted models including significant association(s) with any of the daily total behaviours. 

Daily SB pattern parameters 

Regression analysis showed several associations between daily SB pattern parameters and 

outcome variables (Table 7.7). For example, maximal tendon elongation was negatively 

associated with W1/2 in the single linear regression model, (β = -0.22, R2
adj = 0.041). 

However, the linear relationship disappeared completely when adding covariates. 

Although not associated in single regression models, GM tendon CSA was associated with 

Breaks SB when accounting for covariates (β = -0.15, R2
adj = 0.518). The same was true for 

average K (β = -0.25, R2
adj = 0.269), average YM (β = -0.29, R2

adj = 0.256) and maximum YM 

(β = -0.23, R2
adj = 0.216) with Period, and for total displacement during eyes closed postural 

balance with X1/2 (β = -0.27, R2
adj = 0.458). On the contrary, maximal strain and sway 

frequency during eyes open postural balance were associated with W1/2 & Period (both 

maximal strain) and Long SB bouts (sway frequency) in an uncorrected model (β = -0.22, 

R2
adj = 0.037 & β = 0.21, R2

adj = 0.035 vs. β = 0.31, R2
adj = 0.077), but this relationship 

disappeared after adding covariates. GM tendon force, maximal stress and trial duration 

during eyes open single-legged balance were the only outcomes showing models with 

consistent associations across single and multiple regression models. More specifically, GM 

tendon force was negatively associated with W1/2 (β = -0.21, R2
adj = 0.034 & β = -0.25, R2

adj 

= 0.351) and so was maximal stress (β = -0.23, R2
adj = 0.042 & β = -0.25, R2

adj = 0.151), while 
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trial duration during eyes open postural balance was negatively associated with X1/2 (β = -

0.34, R2
adj = 0.093 & β = -0.37, R2

adj = 0.449) and Period (β = 0.34, R2
adj = 0.094 & β = 0.29, 

R2
adj = 0.331). Interestingly, the latter outcome was also associated with Long SB bouts in a 

single regression model (β = -0.36, R2
adj = 0.108), but not after covariate-adjustment. 

Moreover, the opposite was seen for a negative association with W50% in a multiple linear 

regression model (β = -0.26, R2
adj = 0.312), but without showing a significant association in 

a single linear regression model. Overall, the effect sizes for the multiple linear regression 

models including significant associations of SB parameters, ranged from 0.151 through 

0.518. The rest of the adjusted models had effect sizes of 0.067 ≤ R2
adj ≤ 0.512. 
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Table 7.7. Single and multiple regression analysis results for daily sedentary behaviour pattern parameters. 

Outcome variable 

Without covariates With covariates 

B 

95%-CI 

lower 

bound 

95%-CI 

upper 

bound 

β R2
Adj B 

95%-CI 

lower 

bound 

95%-CI 

upper 

bound 

β R2
Adj 

GM LT 

Breaks SB 0.02 -1.36 1.39 0.00 -0.010 -0.79 -1.92 0.33 -0.11 0.392** 

Short SB bouts -0.37 -1.62 0.88 -0.06 -0.006 -0.65 -1.68 0.37 -0.10 0.390** 

Long SB bouts 3.62 -0.15 7.38 0.18 0.025 0.03 -3.39 3.45 0.00 0.375** 

α -84.58 -199.56 30.40 -0.14 0.011 -48.33 -147.59 50.93 -0.08 0.385** 

X1/2 0.01 -0.07 0.09 0.02 -0.009 0.05 -0.02 0.11 0.12 0.388** 

W1/2 0.38 -0.30 1.06 0.11 0.002 0.24 -0.33 0.80 0.07 0.384** 

W50% 0.07 -0.18 0.33 0.06 -0.006 0.16 -0.06 0.38 0.12 0.388** 

F -4.12 -11.66 3.42 -0.11 0.002 -3.63 -10.14 2.87 -0.09 0.383** 

Period -1.75 -3.69 0.20 -0.17 0.021 -0.78 -2.47 0.92 -0.08 0.380** 

Max Δ GM LT 

Breaks SB -0.24 -0.56 0.07 -0.15 0.013 

 

Short SB bouts -0.16 -0.45 0.14 -0.11 0.001 

Long SB bouts -0.46 -1.36 0.43 -0.10 0.001 

α 20.37 -6.63 47.36 0.15 0.013 

X1/2 0.00 0.00 0.00 0.08 -0.004 

W1/2 -0.18 -0.33 -0.02 -0.22* 0.041* 

W50% 0.01 -0.04 0.07 0.05 -0.008 

F -0.26 -2.04 1.52 -0.03 -0.010 
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Period 0.39 -0.06 0.85 0.17 0.020 

GM tendon CSA¶ 

Breaks SB -0.01 -0.02 0.01 -0.10 0.000 -0.01 -0.02 0.00 -0.15* 0.518** 

Short SB bouts -0.01 -0.02 0.00 -0.15 0.012 -0.01 -0.02 0.00 -0.14 0.512** 

Long SB bouts 0.03 0.00 0.07 0.19 0.025 0.00 -0.03 0.03 -0.01 0.497** 

α -0.55 -1.58 0.48 -0.10 0.001 -0.13 -0.90 0.65 -0.02 0.497** 

X1/2 0.00 0.00 0.00 -0.09 -0.002 0.00 0.00 0.00 -0.05 0.499** 

W1/2 0.00 -0.01 0.01 -0.01 -0.010 0.00 0.00 0.00 0.00 0.497** 

W50% 0.00 0.00 0.00 0.06 -0.006 0.00 0.00 0.00 0.12 0.507** 

F -0.07 -0.13 0.00 -0.19 0.027 -0.04 -0.09 0.01 -0.12 0.507** 

Period -0.01 -0.02 0.01 -0.07 -0.004 0.01 -0.01 0.02 0.06 0.500** 

GM tendon force 

Breaks SB -0.61 -6.75 5.52 -0.02 -0.009 -2.97 -8.16 2.23 -0.09 0.299** 

Short SB bouts -0.27 -5.87 5.32 -0.01 -0.010 -1.92 -6.72 2.88 -0.07 0.294** 

Long SB bouts -2.01 -19.13 15.11 -0.02 -0.009 -4.95 -20.45 10.55 -0.06 0.293** 

α 444.77 -66.84 956.38 0.17 0.019 380.62 -68.92 830.15 0.14 0.310** 

X1/2 0.69 -0.18 1.55 0.16 0.014 -0.05 -0.36 0.26 -0.03 0.291** 

W1/2 -3.22 -6.20 -0.24 -0.21* 0.034* -3.83 -6.36 -1.29 -0.25** 0.351** 

W50% -0.21 -1.34 0.92 -0.04 -0.008 0.50 -0.52 1.52 0.09 0.297** 

F -9.22 -43.03 24.59 -0.05 -0.007 -18.65 -49.04 11.74 -0.11 0.300** 

Period 2.97 -5.82 11.77 0.07 -0.005 2.97 -4.83 10.77 0.07 0.294** 

K Average¶ 

Breaks SB 0.01 -0.01 0.04 0.11 0.002 0.01 -0.02 0.03 0.04 0.214** 

Short SB bouts 0.01 -0.01 0.03 0.09 -0.003 0.00 -0.02 0.02 0.01 0.213** 

Long SB bouts 0.02 -0.06 0.09 0.04 -0.009 0.04 -0.03 0.11 0.11 0.224** 
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α 0.23 -2.01 2.47 0.02 -0.010 -0.54 -2.63 1.54 -0.05 0.215** 

X1/2 0.00 0.00 0.00 -0.08 -0.004 0.00 0.00 0.00 -0.05 0.215** 

W1/2 0.00 -0.01 0.01 -0.02 -0.010 0.00 -0.02 0.01 -0.07 0.217** 

W50% 0.00 -0.01 0.00 -0.06 -0.006 0.00 0.00 0.01 0.06 0.216** 

F 0.00 -0.15 0.14 -0.01 -0.010 -0.09 -0.22 0.05 -0.12 0.225** 

Period -0.03 -0.06 0.01 -0.14 0.009 -0.05 -0.08 -0.01 -0.25** 0.269** 

Maximum¶ 

Breaks SB 0.01 -0.02 0.04 0.08 -0.003 0.00 -0.02 0.03 0.01 0.235** 

Short SB bouts 0.01 -0.02 0.03 0.04 -0.009 0.00 -0.02 0.02 -0.01 0.235** 

Long SB bouts 0.04 -0.04 0.12 0.10 0.000 0.02 -0.05 0.09 0.05 0.238** 

α -1.30 -3.74 1.14 -0.11 0.001 -1.99 -4.17 0.18 -0.17 0.249** 

X1/2 0.00 0.00 0.00 -0.15 0.013 0.00 0.00 0.00 -0.14 0.255** 

W1/2 0.01 -0.01 0.02 0.08 -0.004 0.00 -0.01 0.02 0.04 0.236** 

W50% 0.00 -0.01 0.00 -0.02 -0.010 0.00 0.00 0.01 0.06 0.238** 

F -0.05 -0.21 0.11 -0.06 -0.007 -0.11 -0.26 0.04 -0.14 0.250** 

Period -0.03 -0.07 0.01 -0.13 0.007 -0.04 -0.07 0.00 -0.18 0.263** 

Standardised¶ 

Breaks SB 0.01 -0.02 0.04 0.08 -0.005 -0.01 -0.03 0.02 -0.04 0.266** 

Short SB bouts 0.00 -0.02 0.03 0.03 -0.010 -0.01 -0.03 0.02 -0.06 0.268** 

Long SB bouts 0.04 -0.03 0.12 0.11 0.002 0.03 -0.04 0.10 0.08 0.272** 

α -0.85 -3.25 1.55 -0.07 -0.005 -1.24 -3.30 0.81 -0.11 0.276** 

X1/2 0.00 0.00 0.00 -0.11 0.001 0.00 0.00 0.00 -0.07 0.269** 

W1/2 0.00 -0.01 0.02 0.02 -0.010 0.00 -0.01 0.01 -0.02 0.265** 

W50% 0.00 -0.01 0.00 -0.04 -0.009 0.00 0.00 0.01 0.08 0.266** 
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F -0.05 -0.20 0.11 -0.06 -0.007 -0.10 -0.24 0.03 -0.13 0.282** 

Period -0.02 -0.06 0.02 -0.11 0.002 -0.03 -0.06 0.01 -0.14 0.277** 

YM 

Average¶ 

Breaks SB 0.02 -0.01 0.05 0.15 0.011 0.01 -0.02 0.03 0.05 0.179** 

Short SB bouts 0.02 -0.01 0.04 0.13 0.005 0.00 -0.02 0.02 0.01 0.177** 

Long SB bouts 0.01 -0.07 0.08 0.02 -0.010 0.05 -0.03 0.12 0.12 0.191** 

α 0.41 -1.91 2.73 0.04 -0.009 -0.72 -2.86 1.42 -0.06 0.181** 

X1/2 0.00 0.00 0.00 -0.05 -0.008 0.00 0.00 0.00 0.01 0.177** 

W1/2 0.00 -0.01 0.01 0.01 -0.010 0.00 -0.02 0.01 -0.05 0.179** 

W50% 0.00 -0.01 0.00 -0.06 -0.007 0.00 0.00 0.01 0.09 0.184** 

F 0.03 -0.12 0.18 0.04 -0.008 -0.09 -0.24 0.05 -0.13 0.191** 

Period -0.03 -0.07 0.01 -0.15 0.013 -0.06 -0.09 -0.02 -0.29** 0.256** 

Maximum¶ 

Breaks SB 0.02 -0.01 0.05 0.12 0.004 0.00 -0.03 0.03 0.02 0.171** 

Short SB bouts 0.01 -0.02 0.04 0.08 -0.004 0.00 -0.03 0.02 -0.02 0.171** 

Long SB bouts 0.03 -0.05 0.11 0.08 -0.004 0.05 -0.02 0.13 0.13 0.182** 

α -1.12 -3.58 1.35 -0.09 -0.002 -1.87 -4.15 0.40 -0.15 0.187** 

X1/2 0.00 0.00 0.00 -0.13 0.005 0.00 0.00 0.00 -0.10 0.173** 

W1/2 0.01 -0.01 0.02 0.10 0.001 0.00 -0.01 0.02 0.03 0.172** 

W50% 0.00 -0.01 0.00 -0.02 -0.010 0.00 0.00 0.01 0.10 0.173** 

F -0.01 -0.17 0.15 -0.01 -0.010 -0.10 -0.26 0.05 -0.13 0.181** 

Period -0.03 -0.07 0.01 -0.15 0.011 -0.05 -0.09 -0.01 -0.23* 0.216** 

Standardised¶ 
Breaks SB 0.02 -0.01 0.04 0.11 0.002 0.00 -0.02 0.03 0.02 0.183** 

Short SB bouts 0.01 -0.02 0.04 0.07 -0.006 0.00 -0.02 0.02 0.00 0.183** 
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Long SB bouts 0.04 -0.04 0.12 0.09 -0.002 0.03 -0.04 0.10 0.07 0.188** 

α -0.67 -3.12 1.78 -0.06 -0.007 -1.33 -3.62 0.95 -0.11 0.191** 

X1/2 0.00 0.00 0.00 -0.08 -0.004 0.00 0.00 0.00 -0.05 0.185** 

W1/2 0.00 -0.01 0.02 0.04 -0.009 0.00 -0.01 0.01 0.00 0.183** 

W50% 0.00 -0.01 0.00 -0.04 -0.009 0.00 0.00 0.01 0.05 0.186** 

F -0.01 -0.17 0.15 -0.01 -0.010 -0.06 -0.20 0.09 -0.07 0.188** 

Period -0.03 -0.07 0.02 -0.13 0.006 -0.05 -0.09 -0.01 -0.24* 0.202** 

Maximal stress¶ 

Breaks SB 0.00 -0.02 0.02 0.00 -0.011 -0.01 -0.03 0.02 -0.06 0.092** 

Short SB bouts 0.00 -0.02 0.03 0.03 -0.009 -0.01 -0.03 0.02 -0.05 0.090** 

Long SB bouts -0.03 -0.10 0.04 -0.10 -0.001 -0.00 -0.07 0.06 -0.01 0.088** 

α 1.75 -0.30 3.81 0.17 0.019 0.98 -1.05 3.01 0.10 0.097** 

X1/2 0.00 0.00 0.00 0.03 -0.010 0.00 -0.00 0.00 0.07 0.094** 

W1/2 -0.01 -0.03 0.00 -0.23* 0.042* -0.01 -0.03 -0.00 -0.25* 0.151** 

W50% 0.00 -0.01 0.00 -0.05 -0.008 0.00 -0.00 0.01 0.12 0.100** 

F 0.02 -0.11 0.16 0.04 -0.009 -0.05 -0.19 0.08 -0.08 0.094** 

Period 0.01 -0.02 0.05 0.09 -0.003 -0.00 -0.04 0.03 -0.01 0.088** 

Maximal strain¶ 

Breaks SB -0.02 -0.05 0.01 -0.12 0.003 -0.01 -0.04 0.02 -0.08 0.073* 

Short SB bouts -0.01 -0.03 0.02 -0.06 -0.007 -0.01 -0.03 0.02 -0.05 0.069* 

Long SB bouts -0.06 -0.14 0.02 -0.15 0.012 -0.03 -0.11 0.05 -0.08 0.073* 

α 2.16 -0.25 4.58 0.18 0.022 1.97 -0.39 4.33 0.16 0.099** 

X1/2 0.00 0.00 0.00 0.08 -0.003 0.00 0.00 0.00 0.08 0.079* 

W1/2 -0.02 -0.03 0.00 -0.22* 0.037* -0.01 -0.03 0.00 -0.19 0.109** 



154 

W50% 0.00 -0.01 0.01 0.01 -0.010 0.00 0.00 0.01 0.05 0.069* 

F 0.02 -0.14 0.18 0.03 -0.010 0.01 -0.15 0.16 0.01 0.067* 

Period 0.04 0.00 0.08 0.21* 0.035* 0.03 -0.01 0.07 0.15 0.089** 

EO 

Duration¶ 

Breaks SB -0.01 -0.09 0.08 -0.02 -0.023 -0.03 -0.10 0.05 -0.10 0.313** 

Short SB bouts 0.02 -0.05 0.10 0.10 -0.014 -0.02 -0.09 0.05 -0.08 0.308** 

Long SB bouts -0.28 -0.50 -0.06 -0.36* 0.108* -0.18 -0.39 0.02 -0.24 0.325** 

α 3.75 -3.42 10.92 0.16 0.003 -1.18 -8.08 5.72 -0.05 0.305** 

X1/2 0.00 0.00 0.00 -0.34* 0.093* -0.00 -0.00 -0.00 -0.37** 0.449** 

W1/2 0.02 -0.03 0.06 0.12 -0.008 0.01 -0.03 0.05 0.07 0.308** 

W50% -0.01 -0.03 0.00 -0.24 0.038 -0.01 -0.03 -0.00 -0.26* 0.312** 

F 0.38 -0.08 0.84 0.25 0.040 0.30 -0.10 0.69 0.19 0.308** 

Period 0.14 0.02 0.25 0.34* 0.094* 0.12 0.02 0.22 0.29* 0.331** 

TD¶ 

Breaks SB 0.01 -0.06 0.07 0.04 -0.022 -0.01 -0.07 0.04 -0.06 0.257** 

Short SB bouts -0.01 -0.06 0.05 -0.03 -0.022 -0.02 -0.07 0.04 -0.08 0.259** 

Long SB bouts 0.11 -0.07 0.28 0.19 0.012 0.03 -0.13 0.20 0.06 0.256** 

α -0.79 -6.18 4.59 -0.05 -0.021 -0.26 -4.99 4.48 -0.01 0.253** 

X1/2 0.00 0.00 0.00 0.04 -0.022 0.00 0.00 0.00 0.00 0.253** 

W1/2 -0.01 -0.04 0.03 -0.05 -0.020 0.00 -0.03 0.02 -0.05 0.255** 

W50% 0.00 -0.01 0.01 -0.02 -0.023 0.00 -0.01 0.01 -0.05 0.256** 

F -0.10 -0.45 0.25 -0.09 -0.015 -0.05 -0.39 0.29 -0.05 0.255** 

Period -0.02 -0.11 0.08 -0.05 -0.021 0.03 -0.05 0.11 0.10 0.262** 

Sway frequency¶ Breaks SB 0.01 -0.12 0.15 0.03 -0.022 0.04 -0.08 0.16 0.09 0.232** 
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Short SB bouts -0.03 -0.15 0.09 -0.08 -0.017 0.02 -0.09 0.13 0.04 0.225** 

Long SB bouts 0.39 0.03 0.75 0.31* 0.077* 0.24 -0.10 0.58 0.19 0.243** 

α -4.55 -16.02 6.93 -0.12 -0.008 -0.17 -10.54 10.20 -0.00 0.223** 

X1/2 0.00 0.00 0.00 0.23 0.030 0.00 -0.00 0.00 0.22 0.275** 

W1/2 -0.02 -0.09 0.05 -0.10 -0.013 -0.01 -0.07 0.04 -0.07 0.228** 

W50% 0.01 -0.01 0.04 0.15 -0.001 0.00 -0.02 0.03 0.04 0.225** 

F -0.48 -1.22 0.26 -0.20 0.017 -0.11 -0.81 0.59 -0.05 0.225** 

Period -0.15 -0.34 0.04 -0.24 0.034 -0.06 -0.24 0.13 -0.09 0.231** 

EC 

Duration¶ 

Breaks SB -0.03 -0.10 0.04 -0.13 -0.005 -0.03 -0.09 0.03 -0.13 0.302** 

Short SB bouts -0.02 -0.08 0.04 -0.10 -0.013 -0.03 -0.08 0.03 -0.13 0.302** 

Long SB bouts -0.03 -0.22 0.16 -0.04 -0.021 0.03 -0.13 0.20 0.05 0.288** 

α -0.50 -6.29 5.29 -0.03 -0.023 -0.93 -5.85 4.00 -0.05 0.288** 

X1/2 0.00 0.00 0.00 -0.01 -0.023 -0.00 -0.00 0.00 -0.02 0.286** 

W1/2 0.00 -0.03 0.04 0.03 -0.022 0.00 -0.03 0.03 0.00 0.285** 

W50% 0.01 -0.01 0.02 0.16 0.002 0.01 -0.01 0.02 0.13 0.301** 

F -0.12 -0.50 0.25 -0.10 -0.013 -0.13 -0.45 0.19 -0.11 0.298** 

Period 0.02 -0.08 0.11 0.05 -0.021 -0.00 -0.09 0.08 -0.01 0.285** 

TD¶ 

Breaks SB 0.00 -0.04 0.05 0.02 -0.024 -0.02 -0.05 0.02 -0.12 0.397** 

Short SB bouts 0.00 -0.05 0.04 -0.03 -0.023 -0.02 -0.05 0.02 -0.11 0.395** 

Long SB bouts 0.06 -0.07 0.19 0.14 -0.003 0.02 -0.09 0.13 0.05 0.384** 

α -0.76 -4.68 3.15 -0.06 -0.020 -1.44 -4.57 1.69 -0.11 0.391** 

X1/2 0.00 0.00 0.00 -0.19 0.013 0.00 0.00 0.00 -0.27* 0.458** 
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W1/2 -0.01 -0.04 0.01 -0.18 0.010 -0.01 -0.03 0.00 -0.18 0.416** 

W50% 0.00 -0.01 0.00 -0.15 -0.002 0.00 -0.01 0.01 0.02 0.382** 

F -0.07 -0.32 0.19 -0.08 -0.017 -0.13 -0.34 0.08 -0.16 0.407** 

Period 0.01 -0.05 0.08 0.07 -0.019 0.02 -0.03 0.07 0.09 0.392** 

Sway frequency¶ 

Breaks SB 0.03 -0.06 0.12 0.11 -0.011 0.02 -0.06 0.10 0.07 0.218** 

Short SB bouts 0.02 -0.06 0.10 0.06 -0.019 0.01 -0.06 0.08 0.04 0.215** 

Long SB bouts 0.09 -0.16 0.33 0.11 -0.011 0.06 -0.16 0.27 0.07 0.219** 

α -0.26 -7.70 7.18 -0.01 -0.023 -0.90 -7.50 5.69 -0.04 0.215** 

X1/2 0.00 0.00 0.00 -0.09 -0.015 -0.00 -0.00 0.00 -0.08 0.221** 

W1/2 -0.02 -0.06 0.03 -0.12 -0.009 -0.01 -0.05 0.03 -0.08 0.220** 

W50% -0.01 -0.03 0.01 -0.20 0.017 -0.00 -0.02 0.01 -0.09 0.220** 

F 0.06 -0.43 0.54 0.04 -0.022 -0.02 -0.45 0.42 -0.01 0.213** 

Period 0.00 -0.13 0.12 -0.01 -0.023 -0.00 -0.11 0.11 -0.00 0.213** 

GM, gastrocnemius medialis; LT, resting tendon length; CSA, cross-sectional area; K, tendon stiffness; YM, Young’s modulus; EO, eyes open condition; TD, total displacement; EC, eyes closed 

condition; Breaks SB, sedentary behaviour interruptions with ≥2 consecutive minutes upright activity; Short SB bouts, sedentary behaviour bouts <30 minutes duration; Long SB bouts, 

sedentary behaviour bouts ≥30 minutes duration; α, scaling parameter sedentary bout length distribution; X1/2, median SB bout duration; W1/2, fraction total sedentary time accumulated 

in bouts longer than median sedentary bout length; W50%, half of total SB is accumulated in SB bouts ≤ this duration; F, fragmentation index of SB bouts and total SB; Period, mean period 

between SB bouts; ¶log-transformed; *P<0.05; ** P<0.01.
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Discussion 

We hypothesised that SB is detrimentally associated with GM tendon properties and 

postural balance. Although we did not find any association for SB levels and proportional 

time spent in SB with GM tendon properties, negative association were observed for some 

postural balance outcomes. In addition, a variety of daily SB pattern parameters were also 

detrimentally associated with postural balance. Interestingly, some pattern outcomes were 

associated with GM tendon properties too, however, they showed rather counterintuitive 

associations at times, such as K, YM and maximal stress. 

For human tendons, there are two mechanisms that account for stiffness adaptations: (i) 

changes in material properties (i.e. Young’s modulus), and (ii) changes in tendon 

morphology (i.e. CSA) (196). Since changes in the CSA do not contribute much, if anything, 

to changes in stiffness, changes in material properties are the main adaptation to modulate 

tendon stiffness. As stated in the introduction of this chapter, the research on ageing-

induced changes in tendon properties is inconclusive. Although the consensus is that 

tendon stiffness and Young’s modulus decrease, and tendon CSA becomes larger, not all 

studies show these effects (155,195,196). In this chapter, no association was found 

between age and GM tendon properties, K and Young’s Modulus, respectively. Tendon CSA 

was also not associated, however a positive correlation with tendon length was identified 

(r = 0.323, P<0.05), suggesting that longer resting GM tendon length is associated with older 

age. Theoretically, as for age-induced changes to muscle tissue, reduced activity levels in 

the elderly are also believed to be an important factor for the tendon property changes. 

This is based on the premise that the magnitude of loading seems key for the adaptive 

responses of human tendons (196,199). For example, previous studies have shown 

reductions in tendon stiffness and Young’s modulus with simulated microgravity (during 

bed rest) (199), while opposed effects were seen after resistance training, even in elderly 

(195,200). Tendon CSA remained unchanged in both situations (196,199,200). 

Nevertheless, in this chapter, no correlations were seen during analysis of covariates, 

between resistance training and any of the tendon properties and the association with 

tendon length may be a type I error. 

With the opposite effects of disuse during bed rest and resistance training from literature 

in mind, intuitively it makes sense that we did not find any associations for GM tendon 

stiffness, except with the mean period between SB bouts (average K). However, regardless 

whether SB is described as any waking behaviour with low energy expenditure performed 
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in a lying, seated or reclining position (10), or as a lack of muscular contractions (166), both 

are not similar to complete unloading. This means that, although SB can be found on the 

lower end of the physical activity continuum, it is still higher than bed rest and only when 

the reduction in activity falls below a certain threshold reductions in tendon stiffness occur 

(206). It is tempting to speculate that this most probably results from sufficient loading 

during breaks in SB. Yet, in this chapter a negative association between breaks in SB and 

tendon CSA (but also between period and all YM outcomes) was observed. Interestingly, 

looking at associations with PA intensities during PA bouts, LIPA is negatively and MVPA is 

positively associated. This suggests that LIPA is performed more than MVPA during SB 

breaks (Chapter 4). The fact that tendon CSA was associated with SB breaks only and not 

with other SB parameters warrants cautiousness when interpreting the results. In addition, 

with the model explaining ~52% of the variance, there are more predictors required to 

pinpoint the exact factors that determine tendon CSA. Although direct comparison of 

tendon mechanical properties with other studies is difficult, due to a variety of assumptions 

and methods used, comparison of morphological measures is more straightforward. Doing 

this, showed that the values of GM tendon CSA from this chapter are comparable to 

previous research (44). 

As stated before, the primary role of tendons is to transmit muscle forces to the skeleton, 

thereby generating joint movement or stabilisation (196,199). For this reason, tendons play 

not only a significant role in locomotion, but also in maintaining postural balance (44,196). 

As a result of increased GM tendon compliance, the speed of force transmission is reduced 

and so is the ability for postural balance (44). Although only a few associations between SB 

parameters and tendon mechanical properties were observed within this study, a relatively 

large number of relationships were identified with postural balance. For example, trial 

duration during the eyes open condition appeared negatively associated with proportional 

time spent in SB, number of prolonged SB bouts and the median SB bout duration. In other 

words, the postural balance decreases with increasing SB. Proportional time spent in SB 

was also identified to increase total displacement whilst balancing on one leg with either 

the eyes open or closed. In addition, time spent standing relative to the other daily 

behaviours also increased total displacement when balancing with the eyes closed. 

Following from Chapter 2 & 3, all associations involving standing must be interpreted with 

caution. As a result of the negative association with trial duration and the positive one with 

total displacement, postural sway during eyes open postural balance also increases with 

more time spent in SB relative to the other daily behaviours. Interestingly, increasing the 
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median SB bout length was associated with less total displacement during eyes closed 

postural balance. However, we propose that this is due to the fact that trials in this 

condition were only very short in most participants (down to 1 second only). Thus, 

participants capable and willing to try correcting their position during these short trials had 

higher total displacement with only slightly longer duration (a trend was observed) than 

people who did not or could not. We suggest that it is rather the less sedentary than the 

more sedentary participant who would try to make postural balance corrections during an 

eyes closed trial. Although the above results seem intuitively correct, it is difficult to explain 

them with data from within this chapter. Having an overall lack of associations with either 

of the tendon mechanical properties, indicates that other factors might explain the 

discussed results. It has already been suggested that both muscle architecture and tendon 

properties are not responsible for functional deficit in elderly, but that it is likely caused by 

muscle size, intrinsic muscle properties and perhaps neural control instead (195). 

Apart from tendon mechanical and morphological properties, we also tested associations 

of SB parameters with other outcomes, such as tendon force. Unlike SB level groups, which 

were not associated with any tendon outcome measure in this chapter, this variable was 

associated with the fraction of total daily SB spent in bouts longer than the median duration 

(W1/2). It was indicated that while being engaged in shorter SB bouts, tendon force 

increases. Also, an increase in the time spent in LIPA relative to other behaviours, was 

positively associated with tendon force. Although the relative effects seem small (max. 

0.036%), when substituting 10 minutes of LIPA for any other daily behaviour and vice versa. 

However, this was the case for all significant associations (max. 0.709%) identified during 

compositional data analysis in this chapter (Table 7.6). Moreover, LIPA classification was 

not shown valid for this study (Chapter 3) and thus, interpretation should rather be 

avoided. Since we only observed a few (debatable) associations with tendon properties, 

changes in force generating capacities are likely to mostly result from neuromuscular 

adaptations (188). As shown in the previous chapters, this statement is only partially 

confirmed. 

Although a total of 105 older adults were tested, postural balance was examined in a 

subpopulation. Comparing characteristics and predictors of interest between the total 

sample and the subgroup, revealed no statistical differences. Hence, the subgroup within 

this chapter is deemed representative for the whole cross-sectional study sample and 

normal interpretation of results is allowed. A strong point of this chapter is the excellent 
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reliability of most (3 out of 4) outcomes measured. Only maximum tendon elongation 

showed a lower ICC of 0.698, which, however, still indicates moderate reliability. Overall, 

the data used within this chapter is thus of acceptable quality. 

 

Conclusion 

SB appears to have little effect on tendon properties, but does negatively affect balance. 

This suggests that the lower balance in SB is not due to increased tendon compliance, but 

rather to other factors, such as impaired neural control of balance. 
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Chapter 8. General discussion 

Recap 

The main aim of the current thesis was to investigate any sleep and physical activity (PA) 

independent association between sedentary behaviour (SB) (amount and/or pattern) and 

structure-mechanical properties of the gastrocnemius medialis (GM) muscle and tendon in 

older adults. To do so an algorithm for the assessment of SB and PA levels using thigh-

mounted triaxial accelerometry was developed and applied to monitor habitual mobility 

patterns for seven continuous days. Following on from this, both GM muscle and tendon 

properties were assessed, more specifically: morphology, architecture, function, 

fatigability, mechanical and material properties. Finally, postural balance was examined as 

a functional outcome. 

It was hypothesized that a thigh-mounted triaxial accelerometer algorithm for the 

assessment of SB and PA levels in older adults would be valid and robust. The results from 

Chapter 2 & 3 confirm this hypothesis by showing acceptable algorithm performance 

(validity and robustness) of an in-house developed model using Random Forest machine 

learning, throughout the spectrum of activity intensities in older adults wearing a thigh-

mounted triaxial accelerometer. Comparison with concurrent activity monitors also 

showed high validity and suggested that a thigh-worn triaxial GENEActiv with a Random 

Forest algorithm can be used best for accurate assessment of SB and PA in older adults. 

Alternatively, we found that other monitors can also be used, depending on the research 

question and setting, as they proved to be (partially) valid too.  

Next, it was hypothesised that when applying an objective method to quantify SB and PA 

levels, we would observe an increase in SB and a decrease in PA during further ageing in 

older adults. This latter was confirmed in our population. Chapter 4 thus showed that the 

study sample was representative for the population under study. Moreover, independence 

was found between several SB and PA outcomes for the different levels of statistical 

analyses applied within this thesis. This is an important finding as the initial premise for this 

research was that SB and PA co-exist but have independent health effects.  

Part II of the thesis focused specifically on the associations between habitual daily activity 

outcomes (primarily SB, but also sleep and PA) and both GM muscle and tendon properties 

in elderly. For this part it was hypothesised that a detrimental association would exist 

between sleep and PA-independent SB (amount and pattern) and both structural and 
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functional GM muscle-tendon outcomes. The results of Chapter 5 & 6 identified a limited 

number of associations, linking SB with detrimental outcomes in GM muscle morphology, 

architecture, strength, force and function. However, since the models predicted relatively 

small effects, the hypothesis was only partially confirmed regarding GM muscle outcomes. 

Chapter 7 also showed a limited number of associations with GM tendon morphological, 

mechanical and material properties. Interestingly and as predicted, detrimental 

associations between SB and postural balance in older adults were identified. Hence, 

Chapter 7 further supported the initial hypothesis. 

 

Studies’ strengths and weaknesses 

For the interpretation of the findings, it is important to discuss the strength and 

weaknesses of this thesis. To start on the latter, one of the main limitations of this thesis 

lies in its design. Part I of the thesis was only performed under laboratory conditions. 

Although this provided a controlled setting for the development and validation of the 

machine learning algorithm, it compromises its performance in free-living. The concurrent 

validation in Chapter 3 also showed that LIPA classification appeared to be poor, hence 

results involving this outcome should be interpreted very conservatively. By using a cross-

sectional study design for Part II of the thesis, investigations were limited to associations 

only. Although this could be considered a limitation, the fact that there is a gap in literature 

regarding SB and GM muscle-tendon properties, it is a logical design to start exploring this 

area. Nevertheless, assumptions had to be made, for example when monitoring activity 

levels. It is possible that the accelerometer outcomes do not reflect true habitual 

behaviour, because people artificially altered their habitual physical activity behaviour due 

to a variety of reasons. These could include the mere fact of being conscious of being 

monitored (i.e. wearing the monitor) (207). However, by monitoring 7 days with a discrete 

accelerometer, which did not prevent participants from continuing their normal habitual 

activities, it is assumed that the effect is minimal. In addition, since data was averaged over 

one week, higher activity levels during the first days are expected to level out. Moreover, 

participants were monitored again when they reported their previous week might not be 

representative. This happened only twice and in both people, the data from the second 

monitoring week differed from the first, but was comparable to the rest of the study 

sample. With regards to sleeping times, log sheets were filled out by the participants, 

however, our accelerometer algorithm could account for any discrepancies between 
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reported times and accelerometer data. Furthermore, it is possible that weather/seasonal 

variation might have introduced noise into the data, resulting in fit and active people to 

stay inside and sit more than usually. In addition, it is unknown for how long the status quo 

habitual physical activity level has been reached and has impacted on the participant’s 

physiology. This could be an issue, for example when people have recently changed their 

habitual activity levels. This change might not reflect their physiology as of yet, and thus, 

may add noise to the data. In terms of skeletal musculature for example, loading/unloading 

must be endured for a physiologically lengthy duration for an effect to have an impact on 

either signalling pathways and/or biomechanical response mechanisms. A case in point is 

that the typical muscle hypertrophy/atrophy interventions requires a minimum of 9 days 

for signalling and phenotypic responses (208–210). Another main limitation is the fact that 

this thesis was part of a larger cohort study. Within this study not only SB-associations with 

muscle-tendon properties were studied but also with cardio-metabolic outcomes. Hence, 

an accelerometer algorithm was developed to suit both research topics. Instead of focusing 

on all loading experienced during monitoring time, which is of high importance for studying 

muscle-tendon properties, the algorithm was customised to differentiate between active 

and inactive physical states. For example, when a person was upright for at least two 

consecutive minutes, this was defined as an activity bout. Whereas, one consecutive 

minute of SB was required for a sedentary bout. These definitions might affect pattern 

measures of both SB and PA, as short interruptions in SB or PA are neglected. Perhaps this 

is not a problem for cardio-metabolic outcomes, but it may result in missing potentially 

relevant data for investigating the true association between SB and muscle-tendon 

properties. 

Studying an elderly population is both interesting and challenging, in a way that not only 

large between-subject variability exist amongst this age group, as evidenced from the large 

standard deviations and interquartile ranges within this thesis, but also within-subject 

variability (41). This latter can make interpretation of results complex. However, based 

upon our good-to-excellent test-retest reliability for most outcomes (15 out of 19), we 

assume this is not the case for our measurements. Regardless of the fact that 44.8% of our 

participants were sarcopenic (according to the skeletal mass index (SMI) thresholds from 

Baumgartner et al. (115)), generally, we included healthy community-dwelling older adults 

with relatively high activity levels only. This limits generalisation of our findings beyond this 

subgroup, as evidenced by the low R2
adj-values for some our regression models (ranging 

between -0.086 and 0.837). Although, an attempt was initially made to recruit participants 
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from assisted-living facilities and care homes, these older adults were not forthcoming in 

their participation. Indeed, after placing adverts in three homes and visiting these two 

times (hence reaching a potential 60 participants), only less than ten residents came 

forward to be included in this body of research. As a result, the cross-sectional study sample 

can only reflect, with any degree of confidence, one end of the elderly age group. In other 

words, our sample lacks the frail older participants who are likely to be those that engage 

in SB the most. Thus, variance is missing, which complicates the development of regression 

models and might explain low R2-values. Adding more factors is not expected to help in this 

case and will only decrease the observed power of the regression models. Since linear 

regression models were used for this thesis, it was assumed that the relationships between 

SB outcomes and both muscle-tendon properties and postural balance were linear. 

Obviously, in cases where this assumption is not true (however none of our existing data 

would suggest lack of linearity), linear regression models hold no value. Notwithstanding 

the above, research within the sedentarism area is explorative in nature, as such, all data 

is potentially useful and incrementally increases overall knowledge base. This additionally 

justifies the use of our cross-sectional study design, which does not allow examination of 

causal relationships, but was important for an initial investigation of our hypotheses. In 

fact, causal relationships, even in longitudinal study designs, are never straight forward to 

suggest. 

With regards to the strengths of this thesis, it is undeniable that these lie in the advanced 

technology and analyses used to study the hypotheses. More specifically, the fact that 

machine learning was applied to determine habitual daily activity levels, and both 

compositional data analysis and SB pattern parameters were used, thereby providing 

greater details than simply including overall quantification of SB levels (although based on 

recommendations with medium to high confidence by Byrom et al. (117), only W50% and 

daily total sedentary time should be used); this highlights the novelty of the current thesis. 

Next, the research was conducted on a reasonably sized study sample, providing good 

power for the identified significant associations. Moreover, the inclusion of a wide range 

of covariates in our analysis, comprising sex, body composition, comorbidities, concomitant 

medication and participation in resistance training, allowed improved interpretation of 

relationships. Finally, this thesis contains novel data regarding associations between sleep 

and PA-independent SB in older adults and a range of detailed GM muscle-tendon 

properties and postural balance. 
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Recommendations for future research 

Based on the findings in this thesis, future research should focus on developing an 

accelerometer algorithm, which offers more representative daily muscle-tendon loading 

profiles in elderly. This can easily be achieved by not using minimum time thresholds for an 

activity to be counted, as doing so, possibly filters out relevant data. Also, developing an 

algorithm in a free-living setting will help to improve measurement accuracy. Moreover, 

focusing on actual activity types, rather than intensities, and classifying sleep as SB instead, 

might be more applicable for investigating the role of SB on skeletal muscle-tendon 

characteristics in elderly. Altogether, this may lead to improved understanding of potential 

associations. Future studies should also aim to include the two ends of the physical 

behaviour spectrum i.e. more sedentary elderly as well as master athletes, thereby 

increasing the variance in activity levels and allowing further reaching modelling. 

Furthermore, selecting a range of other relevant covariates to be added to the existing 

models, such as metabolic, genetic and hormonal factors, may also improve regression 

models. However, this requires a sufficiently large sample size not to decrease the power 

of the prediction models. More detailed information on metabolic balance might be useful 

as well. Finally, multiple periods of 7-day habitual activity monitoring should be performed, 

as this provides important information on possible changes in activity levels (e.g. due to 

seasonality) on a longitudinal scale. Doing this will help in better understanding of long 

term associations between SB and muscle-tendon properties in older adults. 

On a more general note, it would also be very interesting to see what associations may be 

found in other populations, instead of healthy elderly, and whether they might be different. 

Next, as cross-sectional studies are currently dominating SB research, interventional 

studies should be performed to get closer to understanding the potential causal 

relationships, and ultimately, to determine dose-response effects of SB. This latter will 

allow the identification of preventative/counteractive mechanisms, and moreover, the 

development/update of current physical activity guidelines. Lastly, with SB being a multi-

factorial phenomenon (211), which is deeply rooted in our system and society, research 

trying to unravel this complex behaviour and focusing on identifying strategies for 

successful long-term changes in SB, will be of high importance. 
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Conclusion 

Generally, detrimental associations between sleep and PA-independent SB outcomes and 

GM muscle morphology, architecture, force production and neuromuscular function were 

few in this sample of relatively healthy older adults. The same was true for GM tendon 

morphological, mechanical and material properties. This may thus indicate a greater 

sensitivity of the musculotendinous parameters to high loading rather than periods of 

unloading. Key nonetheless, is the important observation that postural balance ability (and 

hence by extension, a maintenance of physical independence (212)) in elderly deteriorated 

with high levels of objectively quantified SB. 
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Healthy Ageing from Molecules to Organisms – 18-20 May 2015, Hinxton, UK. 

 

A novel triaxial accelerometer data algorithm for quantifying physical activity and 

sedentary behaviour both in young and older adults. 

Jorgen A. Wullems1, Christopher I. Morse1, Hans Degens2, Sabine M.P. Verschueren3, Gladys 

Onambélé-Pearson1. 

1Department of Exercise and Sport Science, Institute for Performance Research, Manchester 

Metropolitan University, Crewe, UK; 2School of Healthcare Science, Manchester 

Metropolitan University, Manchester, UK; 3Musculoskeletal rehabilitation research group, 

Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium. 

Background: Accelerometry is a promising avenue to quantify accurately total daily activity, 

classified as physical activity (PA) and sedentary behaviour (SB). Both PA and SB 

independently have distinct health effects. Therefore, accurate measurement of PA and SB 

is key to designing individualised lifestyle recommendations. Although a non-age-specific 

algorithm would be ideal for this purpose, it is a challenge to develop a highly accurate one 

due to differences between age groups in energy expenditure levels per type of PA and SB. 

Objective: To examine the feasibility of applying a novel, non-age-specific algorithm using 

both cut-off points and postural orientation, to monitor PA and SB objectively. 

Methods: Triaxial accelerometer (thigh-mounted) and gas analysis data were collected 

from two participants (aged 23 and 73, respectively) during a set of laboratory-based 

standardised activities of daily living (e.g. lying down, sitting, standing and walking). In 

addition, 24-hour accelerometer data was collected for both participants. A novel 

algorithm that includes total movement (TM) calculation, TM cut-off points and postural 

orientation was applied to the laboratory-based accelerometer data to determine the 

accuracy in assessing activities when using either age-specific (young or old) or non-age-

specific (pooled) cut-off points. The 24-hour samples were used to identify differences in 

PA and SB outcomes between the different cut-off points. 
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Results: The novel algorithm showed high accuracy and minimal between-subject 

differences when applied to the laboratory-based accelerometer data using either age-

specific or non-age-specific cut-off points. Moreover, excellent absolute agreement per 

each participant existed between the 24-hour sample-based PA and SB outcomes using the 

different cut-off points. 

Conclusions: Based on this preliminary study, a novel algorithm that includes non-age-

specific cut-off points and postural orientation is a promising development towards 

objective computation of daily PA and SB levels. Ultimately, this algorithm would help 

quantify the effects of ageing on physiological function, independent of daily activity 

factors. 
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International Conference on Movement and Nutrition in Health and Disease, 12-14 June 

2015, Regensburg, Germany. 

 

Algorithm development for objectively monitoring physical activity and sedentary 

behaviour. 

Authors: Jorgen A. Wullems1, Christopher I. Morse1, Hans Degens2, Sabine M.P. 

Verschueren3 and Gladys Onambélé-Pearson1. 

Authors’ affiliations: 1Department of Exercise and Sport Science, Institute for Performance 

Research, Manchester Metropolitan University, Crewe, UK. 

2School of Healthcare Science, Manchester Metropolitan University, Manchester, UK. 

3Musculoskeletal rehabilitation research group, Department of Rehabilitation Sciences, KU 

Leuven, Leuven, Belgium. 

Key words: Physical activity, sedentary behaviour, accelerometer, algorithm. 

Background: Total daily activity can be classified as either physical activity (PA) or sedentary 

behaviour (SB) [1]. Each is thought to have health effects, independent of the other [2]. To 

obtain insight into a person’s long-term health prognosis, it is important to monitor daily 

behaviour accurately, accounting for both PA and SB. Accelerometry is a promising avenue 

to accurately quantify both PA and SB [3]. Nevertheless, this technique has its limitations 

in that there is no current consensus for a gold-standard device or method of data analysis 

[3]. 

Objectives: To develop an algorithm using both cut-off points and postural orientation to 

monitor PA and SB objectively. 

Methods: Triaxial accelerometer data of a 73-year old woman was collected using a thigh-

mounted device during a standardised gas analysis protocol of free-living activities in a 

laboratory setting and during 24 hours in free-living conditions. These data were used to 

develop an algorithm that calculates multiple accelerometer outcomes; activity counts (AC; 

generally accepted and most commonly used), sum of vector magnitudes (SVM; software-

based outcome of the device) and total movement (TM; derived from the standard 

deviation values of the three accelerometer axes at discrete time points). All outcomes 

were used to create different algorithms according to the following steps: 1) The three 
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outcomes were correlated to energy expenditure (EE); 2) Cut-off points (SB vs. PA) for each 

outcome were defined using two different methods (receiver operating curve (ROC) vs. 

line-of-best-fit); 3) The impact of using postural orientation (thigh inclination) as a filter 

before or after the cut-off point analysis in the algorithm, was determined. As a result, 

twelve different algorithms were created. To determine the most accurate algorithm, all 

were applied to the laboratory-based data sample. The 24-hour data sample was used to 

present potential outcomes based on the optimal algorithm, including time in PA and SB, 

and number of SB breaks. 

Results: TM correlated best with EE, whilst cut-off points were most accurately calculated 

with the line-of-best-fit. Using postural orientation as a filter before cut-off point analysis 

removes most of the noise and increases algorithm accuracy. When applying all twelve 

algorithms to the 24-hour data sample, the algorithm using TM, the cut-off points 

calculated with the line-of-best fit and using postural orientation as a filter before cut-off 

point analysis, proved optimal. Based on this algorithm, an overview of daily PA and SB 

pattern was calculated (Figure 1). 

  

Figure 1. Bar chart representing 24-hour PA & SB pattern. 

Conclusions: Cut-off points and postural orientation are important factors in objectively 

monitoring PA and SB, especially when added to an algorithm using TM, which results in 

high accuracy. This finding is important not only for investigating total daily activity in 
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humans, but also improved understanding of the exact health benefits of both PA and SB. 

Since this was a preliminary study, the algorithm should be further tested and defined. 

References: 
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40:205-210. 

2. Gorman E, Hanson HM, Yang PH, Khan KM, Liu-Ambrose T, Ashe MC (2014). 

Accelerometry analysis of physical activity and sedentary behavior in older adults: a 

systematic review and data analysis. Eur Rev Aging Phys Act 11:35-49. 
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International Scientific Symposium, 12-13 November 2015, Kaunas, Lithuania. 

 

WHAT IS A PHYSIOLOGICALLY RELEVANT OUTCOME MEASURE AND EPOCH LENGTH IN 

OBJECTIVELY QUANTIFYING SEDENTARISM? 

Wullems Jorgen A.1, Morse Christopher I.1, Degens Hans1,2, Verschueren Sabine M.P.3, 

Onambélé-Pearson Gladys1 

jorgen.a.wullems@stu.mmu.ac.uk, 1Manchester Metropolitan University, UK; 2Lithuanian 

Sports University, Lithuania; 3University of Leuven, Belgium 

Relevance of the research. Total daily activity can be classified in terms degree of sedentary 

behaviour (SB) or physical activity levels (PA). Both SB and low PA have distinct negative 

effects on health and it is therefore important to accurately monitor daily mobility 

behaviour to obtain insight into a person’s long-term health prognosis (1,2). Although 

accelerometry is preferred in most studies, there is no current consensus for a gold-

standard device, or method of data analysis (3). Indeed, use of inappropriate devices or 

data analysis has the potential danger of misinterpreting the true pattern of daily behaviour 

(2). Accurate measurement of SB and PA is key to designing individualised lifestyle 

recommendations (4). This is of importance in older adults (≥65 years of age) since they are 

the most sedentary and less physically active age group (5). We believe that using thigh-

mounted triaxial accelerometry combined with an algorithm that includes a physiologically 

relevant outcome measure and epoch length can monitor objectively and accurately SB 

and PA. This objective approach will eventually help to understand how SB and PA are 

related to healthy ageing (6). 

The aim of the research is to refine an algorithm to monitor objectively SB and PA in elderly, 

and the objective is to determine the physiologically relevant outcome measure and epoch 

length to be included. 

Research methods and organization. Triaxial accelerometer data (thigh-mounted 

bilaterally; 60 Hz sampling rate) and expired gas were collected from six participants 

(algorithm-refining group: n=5, aged 67-82 years; 2 women; body mass index (BMI) 21.6-

35.8 kg·m-2 & algorithm validation group: n=1, aged 72 years; female; BMI 23.8 kg·m-2) 

during a set of laboratory-based standardised activities of daily living (three minutes each) 

of different intensities; such as lying down, sitting, standing and walking. Expired gas was 
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collected during the final minute of each activity. These samples were used to estimate 

energy expenditure (EE) and calculate the metabolic equivalent (MET) of the simulated 

activities of daily living. The accelerometer data acquired during the same minute was 

analysed using 18 different combinations of epoch lengths (1, 5, 10, 15, 30 and 60 seconds) 

and outcome measures (activity counts (AC; summed acceleration signals divided by device 

resolution)), sum of vector magnitude (SVM) and total movement (TM)). The outcome of 

each combination was plotted against EE to 1) explore correlations, and 2) calculate 

algorithm cut-off points according to 1.5 and 3.0 MET thresholds. For these purposes, data 

from the algorithm-refining group was used only. Next, all 18 algorithms (using both thigh 

orientation and cut-off points) were applied to the accelerometer data from the algorithm 

validation group only. The applied algorithms classified each epoch as either, SB, standing, 

light-intensity PA (LIPA) or moderate-to-vigorous PA (MVPA). To investigate which 

algorithm (and thus outcome measure and epoch length) was most valid, agreement with 

the actual performed activity per epoch was determined. 

Results and discussion. Correlations coefficients found for SVM and TM were >0.70 

regardless of epoch length, whilst AC showed a correlation coefficient of 0.79 for the 1 

second epoch length, but <0.56 for the others. Excellent agreement (100%) with the actual 

performed activity per epoch was shown when classifying SB, irrespective of outcome 

measure or epoch length. Standing was difficult to detect when using AC (highest 

agreement 7%, while 100% agreement was found for both SVM and TM regardless of epoch 

length, with the exception of using TM/30 seconds epoch (75%). High agreement was found 

for classifying PA, independent of epoch length (AC: 75-86%; SVM: 96-100%; TM: all 100%). 

When focusing on PA intensity, LIPA seems more difficult to correctly classify than MVPA, 

regardless of epoch length (AC: 0-34% vs. 85-100%; SVM: 37-75% vs. all epochs 100%; TM: 

0-36% vs. all epochs 100%). Inferior results when using AC could be due to the lack of overall 

variation in outcome measure, resulting in overlapping activity type clusters. The fact that 

preliminary data were used might explain the under- and overestimation of LIPA and MVPA 

respectively. 

Conclusions. The preliminary results of this study suggest that the optimal epoch length for 

determining sedentarism is dependent on the eventual outcome measure. 
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