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Abstract

In recent years, sedentary behaviour (SB) has been identified as a health risk, independent
of physical activity (PA). With the population becoming increasingly sedentary, detailed
analysis of its effects is required. It is proposed that in the elderly, arguably the most
sedentary age group, SB might adversely affect musculoskeletal health hence leading to
poorer physical functioning, less independence and higher risk of falling. Hence, this thesis
aimed to study the associations between SB and muscle-tendon properties in older adults
(aged 260 years). To do so, a machine learning algorithm was applied onto thigh-mounted
accelerometry data. Algorithm performance was acceptable for a wide spectrum of
physical activity intensities, and its concurrent validity was good. Then, a cross-sectional
study on 105 older adults included a 7-day habitual activity monitoring week, and assessed
gastrocnemius medialis (GM) muscle-tendon morphology, architecture, function, fatigue
indices, mechanical and material properties, and postural balance. From the accelerometer
data, both total amount and patterns of SB were extracted. Analysis of these outcomes
ranged from simple comparison of general SB levels to compositional data analysis.
Multiple linear regression models showed a few associations linking SB with detrimental
outcomes with GM muscle properties (dimension, strength and force). Similarly,
isotemporal substitution yielded a limited number of significant potential relative effects
of SB behaviour alterations. GM tendon mechanical, material and morphological properties
also showed associations. Interestingly, negative associations between SB and postural
balance in this group of older adults were also identified. Overall, this thesis presents novel
data from detailed analyses on SB and intrinsic muscle-tendon properties in older adults.
Regardless of the somewhat limited associations between sleep and PA-independent SB
outcomes and GM muscle-tendon properties in older adults, the negative relationship with
a task associated with habitual physical independence (i.e. postural balance) warrants

further investigation of SB in elderly.
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Chapter 1. Introduction

Over the past years, time spent sitting has increased and still is increasing in modern
societies. Sitting predominantly occurs at work, leisure or commuting. Although previous
research showed that increased time spent sitting is negatively related to health (1,2), it
was always assumed that sufficient levels of physical activity (PA) would counteract the
adverse health effects. However, recent studies proved that, after controlling for PA,

(prolonged) sitting has independent negative health effects (3-6).

Interestingly, the health effects of sitting have been described as early as the 17t century,
but it was not until the 21 century that the study of sitting and its relations to health
became more popular (7-9). In addition, instead of investigating sitting exclusively,
researchers are focussing on all inactive behaviour, including lying or reclining. In other
words, any sedentary behaviour (SB) during waking hours. Formally, SB is defined as any
awake behaviour characterised by an energy expenditure <1.5 metabolic equivalents
(METSs) while in a seated or reclined posture (10). It is important to note that SB is distinct
from PA, and thus does not necessarily reflect a lack of PA (10). This latter is related to
meeting the lifestyle recommendations as outlined in PA guidelines. Most of these
guidelines, however, lack recommendations specific to SB. The few official guidelines that
include a brief statement on SB, are vague in that they simply recommend to limit time
spent in prolonged SB bouts (11). Unfortunately, exact information on duration or
frequency is missing and in fact, evidence for/against any impact of habitual mobility

patterns on a number of physiological health markers is scarce.

To study SB, accurate assessment of SB is vital. According to the SITT formula (derived from
the FITT formula to characterise PA and exercise), Sedentary behaviour frequency, number
of Interruptions, Time (duration) and Type are valuable outcomes to be assessed (12).
Generally, either subjective or objective methods can be used to study these variables.
Although subjective methods are practical, easy to administer, inexpensive, useful in large-
scale studies and do not alter behaviour (13—15), most have obvious caveats, like bias and
the tendency to under-report SB (13,16,17). SB appears to be more difficult to recall than
PA, because of its habitual nature (18,19). The combination of underestimation and low
precision is likely to reduce the ability to accurately detect dose-response relationships
between self-reported SB and health outcomes (15). Nevertheless, self-reports might give

a detailed picture of how SB time is spent (20,21). Thus, subjective measures only allow



assessment of Type from the SITT formula. Unlike subjective methods, objective techniques
(such as accelerometry) provide reliable and valid, ambulatory and long-term measures of
both PA and SB, and it overcomes many of the above-mentioned limitations of self-reports
(6,13,22-24). By providing outcomes, such as total SB time, sedentary bout time, sedentary
pattern, and number and frequency of breaks in SB for instance, accelerometry allows
assessment of all SITT formula variables, except for Type. However, modern technological
advancements do allow objective assessment of individual’s surroundings e.g. by using a
body-worn time-lapse photography camera (25). Hence, objective methods (accelerometry
in particular) are preferred in SB measurement. To optimise objective monitoring, a
customised algorithm should be calibrated with respect to the population and
activities/intensities under study (26), because variation in biomechanics and physiology

can be substantially due to different movement patterns or metabolic demands.

Previous literature shows that SB increases with age, resulting in older adults (aged 260
years) being the most sedentary (Table 1.1) (20,27,28). Based on objective measures, older
adults (aged =60 years) spend on average 8.5-9.6 hours/day sedentary (17,22,29), which
equates to 65-80% of their waking day. Another accelerometer-based study showed that
older adults spend approximately 80% of their awake time in SB which represents 8-12
hours/day (30). Other studies suggest that 67% of the older age population is sedentary for
>8.5 hours/day (31), and approximately 47% of them are sedentary >80% of their waking
hours (32). Although, the amount of SB reported seems to be wide ranging in the current
literature, it is nevertheless clear that SB is highly prevalent in older adults. Detailed
analyses show that most of their SB is spent at home and on their own (25). It is also notable
that, older adults engage in approximately 16 types of SB daily, with TV viewing, reading,
eating meals, computer use and transportation being the most common (33). According to
the World Health Organisation (WHO), the number of older adults will increase from 11%
to 22% by 2050, meaning there will be 2 billion people aged 60 years or older worldwide
(34), with 20% aged >80 years (34). Given all the above, it is surprising that SB has only been
studied limitedly in the elderly (4,21,35).

Despite the limited number of SB studies in older adults, evidence is growing on the health
effects of SB in later life. However, a recent systematic review by Rezende et al. (30)
suggests that to date evidence in older adults is inconclusive. Due to the limited quality of
available studies, only scarce evidence exists for all the reported health outcomes

associated with SB in elderly, except for the confirmed evidence on a previously established



dose-response relationship between SB and all-cause mortality (Figure 1.1) (30). Until now,
the exact underlying mechanisms identifying the possible causal relationship between SB
and adverse health outcomes remain uncertain and are therefore a research priority (5,8).
Generally, most SB-related research has focused on cardiovascular and -metabolic
outcomes, while other outcomes such as musculoskeletal health have received less

attention.

During ageing musculoskeletal health deteriorates, this is not only marked by a loss of bone
mass (osteopenia, osteoporosis), but also muscle mass, strength and function (termed
sarcopenia), which in itself leads to an increased risk of falls and disability, a loss of
independence, morbidity and increased mortality (36—40). Further, with ageing fatigability
increases, which is an important measure of motor performance, as it is associated with a
further decline in strength and power in a negative downwards spiral (41). Moreover,
increased fatigue-induced variability of force or power is thought to interfere with daily
activities, especially in the elderly (41). To date, the contribution of SB to sarcopenia and
its determinants is still uncertain (5). However, SB in older adults, through muscle disuse,
may accelerate sarcopenia (42). Since SB is also a driver for obesity (42), and adipose tissue
is found to have a catabolic effect on muscle tissue (5), a combination of both sarcopenia
and obesity, or sarcopenic obesity, results in an increased risk of disablement and frailty in
older adults (43). In addition to muscular alterations, age-related tendon changes (i.e.
increased tendon compliance) result in decreased postural balance, and as such is
associated with mobility and independence loss in older adults due to the inherent fear
linked to their higher falls risk (44). By continual under-loading of the tendon, SB is
proposed to accelerate this tendon ageing process. Reports show that each year 28-35% of
people aged 65 years or older experience a mild to severe (and even morbid) injurious fall,
with the same being true in 32-42% of elderly aged >70 years (45). As a result of falling,
older adults may exhibit both physical and psychological consequences (45). This makes
falling in elderly not only a challenge for health, but also for social care resources. Indeed
annual costs from fall-related injuries in the EU are estimated to be >£21.7 billion (>€25

billion) and expected to exceed £39.1 billion (€45 billion) by the year 2050 (46).

Generally, days are composed of limited number of (in)activities which, apart from SB,
involve sleep and PA. Although these phenomena cluster together, they are partly
independent and it is becoming clear that so are their effects, including on musculoskeletal

health (47). As discussed above, SB increases with ageing and has adverse effects on



muscle-tendon outcomes (5,27,28,42). Levels of sleep and PA, however, decrease with
ageing and might have opposed associations with musculoskeletal health (47). Whilst, the
positive associations of PA with human muscle-tendon properties are well-known,
evidence for sleep is only limited. Nevertheless, sleep was identified as a risk factor for
sarcopenia in older adults (48,49). Moreover, Piovezan et al. (50) have suggested that
anabolic hormone cascades are inhibited, while catabolic pathways are enhanced in the
skeletal muscle, due to age-related sleep problems. Given that sleep, SB and PA are partly
co-dependent within a daily composition and (potentially) have independent effects on
musculoskeletal health, it is important to consider all when studying the true associations

between SB and muscle-tendon properties in elderly.

The combination of facts including western population ageing, elderly being the most
sedentary age group, SB potentially accelerating the ageing-related decline in skeletal
muscle-tendon properties and resultant postural balance (independent of sleep and PA),
the scarcity of evidence of SB effects on musculoskeletal health and postural balance
stability in elderly, highlights the timeliness of studying the direct impact of extent and/or

pattern of engagement of this mobility behaviour in older adults (Figure 1.2).



Table 1.1. Sedentary behaviour across different age groups as assessed with accelerometry.

Matthews et al. (28)

Age groups

16- 19 20-29 30-39 40-49 50-59 60 - 69 70-85

Male 7.9(0.1) 7.3(0.2) 7.2(0.2) 7.6 (0.1) 7.9(0.1) 8.8(0.1) 9.5(0.1)
Female 8.1(0.1) 7.7 (0.1) 7.3(0.1) 7.5(0.1) 7.8(0.1) 8.1(0.1) 9.1(0.1)
Martin et al. (27)

Age groups

20-39 40-59 60 - 69 >70

Male 7.9(0.1) 8.5(0.1) 9.4(0.2) 10.3 (0.1)
Female 7.9 (0.1) 8.3(0.1) 8.7 (0.1) 9.8 (0.1)

Values represent mean (standard error (SE)) hours/day (adjusted for monitor-wearing time where

appropriate).

Bone health
Cardio metabolic
health

(All-cause) mortality

——————P

Sedentary behaviour
= in older adults

- Cognitive / Mental
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health®

+ /[ -

\ £ 37/ T

Muscle-tendon health? Quality of life

Functional fitness /
Physical independence

Figure 1.1. Overview of identified and suggested associations between sedentary

behaviour and (health) outcomes in older adults as reported in literature.

+, positive association; -, negative association; Solid lines represent identified associations; Dashed lines
represent suggested associations; Associations in bold are confirmed by a systematic review from Rezende

et al. (30), 2Outcome depends on the type of assessed sedentary behaviour (e.g. television viewing, computer
use or reading).



Sedentary
behaviour

Physical
activity

Covariates

Muscle-
tendon
properties

Postural
balance

e e -

Figure 1.2. The association between age, muscle-tendon properties and postural balance,

and the (mediating) role of sleep, sedentary behaviour, physical activity and other factors.

The dashed box and unknown associations (?) indicate the main foci of the thesis.

Thesis aim

The aim of the thesis is to understand how sedentary behaviour relates to musculoskeletal

health and postural balance in older adults.

Thesis objectives

To realise the above aim, the thesis has the following objectives

- To develop an algorithm for assessment of SB and PA levels (i.e. habitual mobility

patterns) in relatively healthy community-dwelling older adults (hereafter simply

referred to as older adults) using thigh-mounted triaxial accelerometry;

- To monitor sleep, SB and PA levels in older adults for seven continuous days;

- To assess size, architecture, function and fatigability of the gastrocnemius medialis

muscle in older adults and how this relates to habitual mobility patterns;

- To assess mechanical, material and morphological properties of the gastrocnemius

medialis tendon in older adults and how this relates to habitual mobility patterns;



To assess postural balance in older adults and how this relates to habitual mobility

patterns.

Hypotheses

Related to the aim and objectives of this thesis, it is hypothesised that:

A thigh-mounted triaxial accelerometer algorithm for the assessment of SB and PA
levels in older adults is valid and robust;

SB increases with ageing in older adults, while PA decreases;

Size, architecture, function and fatigability of the gastrocnemius medialis muscle in
older adults are negatively associated with SB (amount and pattern), irrespective of
sleep and PA engagement;

Mechanical, material and morphological properties of the gastrocnemius medialis
tendon in older adults are negatively associated with SB (amount and pattern),
irrespective of sleep and PA engagement;

Postural balance in older adults is negatively associated with SB (amount and

pattern), irrespective of sleep and PA engagement.

Thesis outline

Part |

The first part of the thesis concerns the development and (concurrent) validation of an

accelerometer algorithm to classify activity intensities in an elderly sample population. The

studies included in Part | were performed at both the Manchester Metropolitan University,

UK and Katholieke Universiteit Leuven, Belgium, and the results are presented in the

following chapters (Figure 1.3):

Chapter 2 describes the development and comparison of cut-off point and machine
learning algorithms;

Chapter 3 describes the concurrent validity of the best performing algorithm from
chapter one. It is compared against other activity monitors and their proprietary

algorithms.



Part Il

In part Il, the independent associations of SB with different muscle-tendon properties and
postural balance in older adults are investigated. The results come from a study performed
at the Manchester Metropolitan University, UK, and are presented in the following

chapters (Figure 1.3):

e Chapter 4 describes the characteristics and the 7-day monitored sleep, SB and PA
levels of the elderly studied in the next chapters;

e Chapter 5 describes relationships of SB with size and architecture of the
gastrocnemius medialis muscle. The chapter also includes sleep and PA data to
compare the magnitude of modulation on these structural outcomes, where
appropriate;

e Chapter 6 describes relationships of SB with function and fatigability of the
gastrocnemius medialis muscle. The chapter also includes sleep and PA data to
compare the magnitude of modulation on these functional outcomes, where
appropriate;

e Chapter 7 describes relationships of SB with (i) mechanical, material and
morphological properties of the gastrocnemius medialis tendon and (ii) postural
balance. The chapter also includes sleep and PA data to compare the magnitude of

modaulation on the tendon and postural balance outcomes, where appropriate.

The thesis concludes with a chapter giving an overview of the main findings, limitations and

considerations for future research.



Manchester Katholieke

Metropolitan Universiteit
University, UK Leuven, Belgium
{,,.______.._\\..g_ — — _x
i Chapter 2 ! Chapter 3 |
| Ny N=40 5 N =20 |

]S i
\ 3 f
Y — s — s — :.__ Part| — 7
1 S I :
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Figure 1.3. Thesis structure and study samples.
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Chapter 2. Performance of thigh-mounted triaxial accelerometer algorithms
in objective quantification of sedentary behaviour and physical activity in

older adults

Introduction

To evaluate the health effects of sedentary behaviour (SB) and physical activity (PA),
including their role in healthy ageing, it is important to accurately and objectively monitor
these aspects of habitual mobility or lack thereof (51). Motion-sensing technologies using
accelerometers are typically used in mobility monitoring since they are pertained to be
objective, and measurements can be carried out over a number of days (6,51-55). The
concept of accelerometry to assess SB and PA is derived from Newton’s Second Law, which
gives the interaction between force, mass and acceleration by the formula: force = mass *
acceleration (56). In the context of human movement, this formula can be expressed as: an
activity characterised by moving a mass (i.e. body (segment)) at changing velocity over time
(=acceleration). This acceleration results from forces generated by (and on) the muscles at
the expense of energy (54). Several studies have shown positive linear relationships
between energy expenditure (EE) and movement acceleration in people of different ages,
while performing activities under standardised test conditions with the accelerometer
close to the centre of mass (57—62). This allows EE to be estimated from acceleration signals
and the classification of habitual daily activity as sedentary, light and moderate-to-
vigorous, by using, until recently, cut-off point models. To illustrate this, when presenting
the amount of movement acceleration as counts per minute, these models will classify an

outcome of <100 as sedentary, 100-1951 as light and 21952 as moderate-to-vigorous (51).

However, with the preferred accelerometer mounting location shifting away from centre
of mass sites such as the hip or waist (63—65), towards wrist-worn devices for the most
part, the premise of a linear relationship between EE and movement acceleration and thus,
the use of cut-off point models has become questionable. This commercially-led shift forces
researchers to focus on posture detection only (i.e. the ‘Sedentary Sphere’ (66)) or to start
looking into other, more sophisticated and complex, methods to analyse acceleration
signals by e.g. machine learning (35,67,68). Machine learning is already used for activity
recognition and has only recently been explored in PA research (35,68). By focusing on
patterns and regularities, pattern recognition for example, can handle complex and non-

linear data (51,69,70), potentially providing opportunities for SB and PA research (71).
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Although some experts have advised to stop developing cut-off point algorithms and start
using machine learning (72,73), to date the use of cut-off points remains preferred for
intensity classification (24). One reason to continue using cut-off point models lies in the
complex nature of machine learning, and the ease to understand and widespread adoption
of cut-off points (26). Although proprietary cut-off points are not necessarily well
understood either, the desire to compare results with previous cut-off point-based studies
could be another reason. Notwithstanding, studies have already shown machine learning
to outperform traditional cut-off point algorithms for activity recognition not only in
healthy adults, but also in niche populations such as the young or the overweight/obese
(51,71). However, validation of machine learning needs to be confirmed for all intended
end-users/study populations, e.g. the elderly, prior to general adoption (54). Rosenberg et
al. (74) recently showed high levels of accuracy and concurrent validity using Random

Forest classifiers in older women.

The decision of researchers to choose a simpler, but less accurate method over a more
challenging and accurate one for activity intensity classification, can be justified when using
thigh-mounted triaxial accelerometry. Since the thigh is relatively close to the centre of
mass, cut-off point models might still be valid in this situation, especially when adding
posture detection to these models, which then enables distinguishing between sitting or
lying down and standing for instance. Whilst the ActivPAL inclinometer is a good example
of a valid thigh-mounted activity monitor (64,66), it uses black-boxed proprietary
algorithms, thereby hampering progress in thigh-mounted accelerometer algorithm
development. To date cut-off point models for thigh-mounted accelerometers are
understudied, hence further investigation and detailed comparison with machine learning

is needed.

All algorithms require value calibration and the eventual utility of an algorithm depends on
the specific activities and intensities included in the calibration study (26). To ensure high
accuracy of the algorithm in the general population, it is recommended to perform the
calibration on a heterogeneous sample, matching the population of interest, and including
a broad range of common activities ranging from sedentary to vigorous intensity
(26,68,72,75). Algorithm performance is generally expressed in terms of overall accuracy
and when it reaches >80% for example, an algorithm is deemed acceptable (35). However,
even in possession of the overall (i.e. group) accuracy, algorithm performance on an

individual (i.e. single end-user) level, remains unknown. Theoretically, performance can be
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unacceptable in some individuals where algorithm robustness is lacking. If algorithm
inaccuracy disproportionately affects some demographic groups over others, it may lead
to misinterpretation of associations between either SB or PA and health. Thus, it is
important to check robustness and benchmark end-user-specific performance of
accelerometer algorithms developed on heterogeneous pooled-data sets prior to applying

them to daily-life data. To date, evidence regarding this type of triangulation is sparse.

The main aim of the present chapter was to compare between traditional cut-off points
and machine learning, for the provision of the best performing algorithm to classify SB and
PA in a heterogeneous population of older adults using thigh-mounted triaxial
accelerometry. It was hypothesised that machine learning outperforms cut-off point based
algorithms through being robust for individual’s physiological and non-physiological
characteristics, more accurate and showing acceptable accuracies for all activity intensities.
To test this hypothesis, this chapter (i) examines overall balanced accuracy and robustness
of four heterogeneous pooled-data algorithms, (ii) compares participant-specific balanced
accuracies between all four algorithms, and (iii) benchmarks both overall and participant-

specific balanced accuracies of the algorithms.

Materials and methods
Participants

Forty healthy older adults (73.5 (6.3) years; 50% female) participated in this study (Table
2.1). Participants were excluded if they were: <60 years of age, terminally ill or receiving
cancer treatment, diabetic, suffered from any central nervous system disease or condition,
had a heart attack in the past 12 months or any currently unstable cardiovascular condition,
had any pulmonary disease or condition that did not allow expired gas sampling, recently
(within the past three months) injured or had surgery on either of their lower limbs, were
not independently mobile or at least not able to complete a laboratory-based activity
protocol without a (walking) aid, had been advised by their physician not to take on any
physical activity or exercise, or were not competent to make an informed decision about

study participation.

This study was approved by the local ethics committee of the Manchester Metropolitan
University, UK. All participants gave written informed consent prior to their participation in

this study.
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Table 2.1. Study sample baseline characteristics.

Age (years) 73.5(6.3)

Sex 20 Female 20 Male
Body mass (kg) 72.2(13.7)

Body height (m) 1.67 (0.10)

BMI (kg:m™2) 25.6 (4.3)

Prandial state 20 Fasted* 20 Non-fasted*
RVO; (ml-kg*-min) 2.82 (1.00)

Prosthetic lower limb joints 2 Yes 38 No
Cardiovascular medication 20 Yes 20 No
Physical fitness levelno cardiovascular meds 9 Less than good 11 Good or better
Preferred walking speed (km-h™)no prosthetic lower limb joints 3.7 (1.0)

Falls risk 31 Low 9 Medium or high

Values represent arithmetic mean (SD) when normally distributed data, else median (IQR). SD, standard
deviation; IQR, interquartile range; BMI, body mass index; RVO., resting oxygen consumption. *See details in

the text below.

Baseline characteristics

From each participant, the following baseline characteristics were recorded: age, sex, body
mass, body height, body mass index (BMI), prandial state, resting oxygen consumption
(RVO3), presence of prosthetic lower limb joints, use of heart rate controlling medication,
physical fitness level, preferred walking speed and risk of falling (Table 2.1). Age (years),
sex (female/male), prandial state (fasting/non-fasting), presence of prosthetic lower limb
joints (yes/no) and use of cardiovascular (heart rate controlling) medication (yes/no) was
determined through a health questionnaire on the day of testing. Body mass was assessed
in kilograms using a digital body mass scale (seca GmbH & Co. KG., Hamburg, Germany) and
body height was measured in centimetres using a stadiometer (Holtain Ltd., Crymych, UK).
Both measures were determined up to the closest decimal with the participant barefoot
and wearing light clothing only. The body mass index (BMI) was calculated by dividing body
mass by squared body height (kg-m2). RVO; (ml-kgl-min'l; STPD conditions: standard
temperature and dry gas at standard barometric pressure) was assessed while sitting
quietly on a chair for four minutes, together with resting heart rate (beats per minute).
Both RVO; and resting heart rate were expressed as the arithmetic mean of the readings
taken during the third and fourth minute of sitting. To increase the accuracy of RVO;
baseline estimates, only data from fasted participants were used. Since resting heart rate

served to estimate baseline physical fitness levels, participants who were on heart rate
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controlling medication were not taken into account. Classification of the physical fitness
levels was done using a standard resting heart rate table (76). Preferred walking speed
(km-h') was based on the self-selected speed during treadmill walking in participants
without prosthetic lower limb joints. Risk of falling (low/medium/high) was determined

using the falls risk assessment tool (FRAT) (77).
Instrumentation

During the laboratory-based activity protocol participants were equipped with a number of
instruments. First, two GENEActiv Original triaxial accelerometers (Activinsights Ltd.,
Kimbolton, UK) with range +8 g (1 g = 9.81 m-s’2) and weighing 16 grams each, were fitted
bilaterally on the anterior mid-thigh (at 50% of the distance between trochanter major and
lateral femur epicondyle). Both accelerometers were mounted using Tegaderm™
transparent film dressing (3M Health Care, St. Paul, MN, USA) and set at a sample rate of
60 Hz. This frequency respects the Nyquist-Shannon sampling theorem, which states that
the sample frequency should at least be twice the maximum frequency at which sampling
is required. Since essentially all human body movement occurs below 20 Hz, the sampling
rate should be 240 Hz (78,79). Orientation of the accelerometer axes during standing was:
X = mediolateral, Y = vertical and Z = anteroposterior. The devices were used as calibrated
by the manufacturer. GENEActiv was chosen as the brand of accelerometer, not only for
this chapter but the whole thesis, because of its validity and reliability (80), technical
features (e.g. triaxial), ease of access to raw data output, design for 24-hour wear
(waterproof), ability to be worn in various body positions and unit costs compared to
leading market competitors (£160). Next, participants wore a Polar T31 chest belt to
monitor heart rate, which would then remain in place for the entirety of the test protocol
(Polar Electro Oy, Kempele, Finland). To estimate energy expenditure during the activities
(see below) we used indirect calorimetry. Expired gas samples were collected per activity
via a standard mouthpiece and two-way T-shape non-rebreathing valve (2700 series) (Hans
Rudolph Inc., Kansas City, MO, USA) into a Douglas Bag (DB) (Plysu Industrial Ltd., Milton
Keynes, UK). Expired gas sample concentrations of oxygen and carbon dioxide inside the
DB were determined using a Servomex 5200 gas analyser (Servomex Group Ltd.,
Crowborough, UK). The gas analyser was calibrated prior to each participant’s testing
session. The total volume of expired gas inside the DB was analysed using a calibrated dry

gas meter (Harvard Apparatus Ltd., Edenbridge, UK).

Laboratory-based activity protocol
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Participants were asked to perform ten laboratory-based activities of daily living which
were assumed to be representative for older adults. Half of the participants (N=20, 50%
female) were instructed to arrive in a 10-hour overnight fasted condition, allowing to drink
water up to a maximum of 250 ml only, while the other half received no instructions. The
protocol started with 20 minutes rest in a supine position. Then, the following ten
standardised activities of daily living (four minutes each) were executed in the specified
order: (i) lying supine on a treatment bed, (ii) sitting on a chair, (iii) standing upright, (iv)
shuffling sideways, (v) free over-ground walking at self-selected speed, (vi) cycling on an
ergometer at a preferred pace (Monark Exercise AB, Vansbro, Sweden), (vii) treadmill
walking at 3.2 km-h, (viii) treadmill walking at self-selected speed, (ix) treadmill walking at
self-selected speed wearing a weighted vest (15% of body mass) and (x) brisk treadmill
walking at a maximum speed of 6.5 km-h1. All treadmill walking was performed on a slat-
belt treadmill (Woodway USA Inc., Waukesha, WI, USA). The first two minutes of each
activity were used to reach a steady state in EE. During the second half of the activities, two
one-minute expired gas samples were taken. To prevent any carry-over effects of fatigue,
participants were seated between the activities until their heart rate returned to resting
level. The total duration of the protocol was approximately 90 minutes. A standard digital
video camera was time-synchronised and used to record the entire testing session, which
served as a criterion measure and allowed direct observation of all activities post laboratory

protocol completion.
Accelerometer data pre-processing & feature selection

Analysis of the triaxial accelerometer data required multiple steps. Firstly, raw acceleration
signals per axis were filtered twice using a zero-phase fourth order low pass Butterworth
filter: (i) a cut-off frequency of 20 Hz was applied to remove any noise and (ii) a cut-off
frequency of 0.5 Hz was used to split the noise-filtered signal into static and dynamic
acceleration signals, allowing determination of monitor orientation and movement (51,81).
Secondly, two one-minute periods (identical to the gas sampling minutes) of both static
and dynamic acceleration signals per axis were extracted per performed activity. Next,
twenty time- and frequency domain based features per non-overlapping 10-s windows
were determined per axis for each of the samples extracted from both the dynamic and
static acceleration signals. These time- and frequency domain based features included:
arithmetic mean, standard deviation (SD), minimum, maximum, median, interquartile

range (IQR), skewness, kurtosis, root mean square, cross-correlation, roll, pitch, yaw, peak-
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to-peak amplitude, peak intensity, zero-crossings, lag one autocorrelation, dominant
frequency, amplitude of dominant frequency and entropy. Also, two resultant vectors were
calculated over the three axes, one using arithmetic means and the other SDs. (Please see

Liu et al. (82) for the applied formulas.) All data pre-processing was done using R 3.2.5 (83).

After data pre-processing, the 10s-window features were used to model four algorithms
based on methods using either cut-off points or machine learning. Three algorithms
including posture classification (based on the 10s-window arithmetic mean static
acceleration of the Y-axis (static Ymean)) were derived from cut-off point analyses using
dynamic acceleration data. The first algorithm used the sum of vector magnitudes (SVM)
as an outcome,

600

SVM = ) Jxg? + 4%+ 242
d=1

where d represents the data-point number within the 10s-window. The second algorithm
used summation of the time integrals of the moduli of the triaxial accelerometer signal

(IMA), where

to+T to+T to+T
IMA = f |x|dt+j |y|dt+j \z| dt
t t

=t0 =t0 t=t0

where T represents 10 seconds. The last cut-off point algorithm was adapted from our
previous postural balance studies that focus on total movement (TM) using force plate

balancing tasks (44), which is calculated as

TM = xsp* + ysp? + Zsp?

where SD represents the 10s-window standard deviation of the dynamic acceleration signal
per axis. For the only machine learning algorithm we used Random Forest in this chapter,
which is known for its high performance (68,84—-86). Briefly, Random Forest is an ensemble
method using the bootstrapping of multiple decision trees to predict an outcome. Prior to
developing a Random Forest model, factor analyses were performed to select optimal
features for the Random Forest classifier. Firstly, pairwise correlations between features
were studied, removing either one of the factors when r >0.75, then feature selection was
performed in R 3.2.5 (83) using the Boruta package (87). Eventually, 55 features were

selected for the Random Forest model.

Activity intensity classification
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To classify activity intensities, we used metabolic equivalent (MET) values. These values
were calculated per participant for all the one-minute expired gas samples taken during
the activity protocol. Due to individual differences, this was done by dividing the VO (in
ml-kg'*-mint) during a one-minute activity sample by the participant’s measured RVO..

Thus,

V02—1 min act sample

METl min act sample —

RVOZ—partiCipant

Intensity classification for each one-minute sample (6 x 10s-windows) was done by
checking (i) the MET value and (ii) the participant’s posture using the video recording.
Practically, when the one-minute sample’s MET value was <1.5, the laboratory-based
activity was classified as either sedentary activity or standing, depending on the posture.
Classifications of light-intensity PA (LIPA) and moderate-to-vigorous PA (MVPA) were based
on the MET value only, meaning if >1.5 and <3 then an epoch was classified as LIPA, while
epochs with MET values >3 were classified as moderate-to-vigorous PA (MVPA) (54).
Intensity classification of the laboratory-based activities per this system represented the

reference classification used for algorithm development and cross-validation.
Algorithm development and cross-validation

The initial step in cut-off point based algorithm development was to create a scatterplot in
MS Office Excel 2016 (Microsoft Corp., Redmond, WA, USA) using the 10s-window data,
with either SVM, IMA or TM values on the horizontal axis and MET values on the vertical
axis. Next, trend line-analysis was performed and the line-of-best fit (i.e. showing the
highest proportion of explained variance (R?)) was chosen. The calculated cut-off points for
SVM, IMA and TM represented MET values of 1.5 and 3, which allow classification of activity
intensities per 10s-windows based on SVM, IMA and TM values, either or not combined
with posture detection. Briefly, these cut-off point algorithms only use two steps in their
classification structure: (i) comparing SVM, IMA or TM values with the calculated cut-off

points and (ii) if necessary, posture detection (Table 2.2).

Random Forest model development on 10s-window features was performed in R 3.2.5 (83)
using the randomForest package (88). The 10s-window reference classifications of the
laboratory-based activities were used to train the Random Forest classifier (supervised
machine learning) with the number of trees set to 100. This number was derived from out-

of-bag error analyses (Figure 2.1).
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For this chapter, pooled-data algorithms were developed using the leave-one-subject-out
method. This means that the 10s-window data of N=39 (training sample; on average 1427
(8.6) data points for SB, 620 (7.4) for standing, 761 (19.9) for LIPA and 2937 (35.5) for
MVPA) was used to develop the pooled-data algorithms, while the data of N=1 was used
to cross-validate the algorithms. With N=40 this cross-validation procedure was repeated
40 times with another participant to be left out each iteration. Based on the performed
10s-window cross-validations, confusion matrices were created per participant per
algorithm. Eventually, these matrices were used to determine balanced accuracy per
intensity for each algorithm from two perspectives: (i) participant-specific and (ii) overall
(all participants’ confusion matrices summed).

Sensitivity + Specificity
2

Balanced accuracy (%) =

True positives (N)

Sensitivity (%) = 100

True positives (N) + False negatives (N) i

True negatives (N)

Specificity (%) = 100

*
True negatives (N) + False positives (N)

where N represents the number of cases. Apart from the cross-validation, all algorithms
were also tested on their own training samples to check for overfitting. Balanced accuracies

of 280% were considered acceptable (35).

Table 2.2. Cut-off point algorithm classification scheme.

Rules Classification
1 If MET value £1.5 and not upright, then: Sedentary
2 Else: If MET value <1.5 and upright, then: Standing

3 Else: If MET value >1.5 and <3, then: LIPA

4 Else: MET value 23, then: MVPA

MET, metabolic equivalent; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical

activity.
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Figure 2.1. Out-of-bag error analyses for Random Forest modelling.

Statistical analyses

Prior to summarising or testing data, we checked its distribution for normality. Since we
had a data sample of N=40, the Shapiro-Wilk test was used for this purpose. Baseline
characteristics are presented as the arithmetic mean (SD) (or median (IQR)). To test
robustness of the four pooled-data algorithms we assessed if continuous baseline
characteristics were correlated with balanced accuracy values (either Pearson or Spearman
correlation). Differences in balanced accuracy values between categories of categorical
baseline characteristics were tested with the independent T-test (or Mann-Whitney U test).
For the comparison between the four pooled-data algorithms the one-way ANOVA
repeated-measures test (or the Friedman test) was performed. Balanced accuracy levels
from these analyses are reported as arithmetic mean (95%-confidence interval (95%-Cl) (or
median (95%-Cl)). In case multiple comparisons were necessary for hypothesis testing,

either Bonferroni or Sidak correction was used to adjust P-values.
Adjusted P — valueponferroni = Poatue * k
Adjusted P — valuegigqr = 1 — (1 — Pygine)®

where k is the number of comparisons. For the current chapter, P-values were considered

statistically significant when P <0.05.
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With data variability, even within-subject under controlled conditions, and variance being
one of the components for algorithm prediction errors, detailed data reliability checks were
deemed highly important. Since 24 x 10s-windows bilateral accelerometer data and two
one-minute expired gas samples were collected per laboratory-based activity, reliability of
both main triaxial accelerometer (static Ymean, SVM, IMA & TM) and oxygen consumption
data was determined by calculating a coefficient of variation (CV) per activity per
participant.

SDactivity/participant

CV (%) = — -
Arithmetic meanactivity/participant

* 100

where SD represents standard deviation. To check for consistency across the activity
protocol, all CVs were checked for correlation with MET values. If a correlation was found,
data dispersion was determined (SD or IQR). Finally, depending on the distribution, either
the arithmetic mean (95%-Cl) or median (~95%-Cl) was calculated over the moduli of all
CVs per outcome variable to get sample-based reliability measures. In this chapter, a CV of

<10% is considered acceptable.

All statistical analyses were executed using IBM SPSS Statistics for Windows, version 23.0

(IBM Corp., Armonk, NY, USA).

Results
Data reliability

Relationships with MET values were only found for the CVs of accelerometer outcomes
SVM and static Ymean, p -0.105 (P=0.046) and p -0.382 (P<0.001) respectively (Figure 2.2).
IQRs for these variables were between 3.4% and 8.5% (SVM), and between 0.4% and 2.1%
(static Ymean). The sample-based CVs of static Ymean, SVM, IMA and TM were 0.8% (0.7%,
1.0%), 5.5% (5.1%, 6.0%), 5.6% (5.2%, 6.2%) and 6.2% (5.7%, 7.0%) respectively. CVs of
oxygen consumption data collected using the DB method also showed a negative
relationship (p -0.495 (P<0.001)) with MET values. As shown by the IQR, VO, CVs were
typically between 2.2% and 7.5%. The sample-based CV of the DB method was 4.4% (3.4%,
5.3%). For all variables, the CVs within the IQR were <10%.
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Figure 2.2. Reliability per intensity per outcome.

CV, coefficient of variation; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical
activity; Static Ymean, arithmetic mean static vertical acceleration; SVM, sum of vector magnitudes; IMA,
integrals of the moduli of acceleration signals; TM, total movement; VO, oxygen consumption. Error bars
represent 95%-confidence intervals. Dashed lines show correlations between coefficients of variation and

intensities per outcome.

Overall balanced accuracy

The confusion matrix shows that all algorithms classified sedentary activity with overall

balanced accuracies of 299.5% (Table 2.3). Sensitivity and specificity values were >99.2%.

Classification of standing was 295.5% accurate in all four models. Sensitivity was 92.5% in
the cut-off point algorithms and 92.0% for Random Forest, while specificity was equal over

the four algorithms (99.1%).

Most variation in overall balanced accuracies was found for LIPA, ranging from 74.3% (TM)
to 80.6% (Random Forest). The confusion matrix revealed that the models’ sensitivity was
only 57.4%, 60.1%, 51.0% and 63.7%, for SVM, IMA, TM and Random Forest respectively.

On the other hand, specificity values were 297.5% for all algorithms.

Finally, overall balanced accuracies of >93.3% were found for MVPA classification.
Sensitivity was >97.3% in all models, while specificity varied from 88.8% (TM) to 92.9%

(Random Forest).

The overall balanced accuracies per intensity per algorithm were comparable between the
cross-validation and training sample, except for Random Forest (Table 2.3). Standing, LIPA
and MVPA showed overall balanced accuracies of 100.0% on the training sample against

95.5%, 80.6% and 95.1% during cross-validation.
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Table 2.3. Algorithm cross-validation confusion matrix.

Individual Training
Cross-validation
results sample
Reference Balanced Acceptable Balanced
Method Intensity Sensitivity (%) Specificity (%)
Sedentary Standing LIPA MVPA accuracy (%) level (%) accuracy (%)
Sedentary 1463 0 12 0 99.9 99.7 99.8 100.0 99.8
Standing 0 588 48 0 92.5 99.1 95.8 92.5 95.8
oYM LIPA 1 48 448 61 57.4 97.8 77.6 62.5 78.0
MVPA 0 0 272 2951 98.0 90.6 94.3 100.0 94.4
Sedentary 1463 0 12 0 99.9 99.7 99.8 100.0 99.8
Standing 0 588 48 0 92.5 99.1 95.8 92.5 95.8
A LIPA 1 48 469 66 60.1 97.8 78.9 65.0 79.2
MVPA 0 0 251 2946 97.8 91.3 94.5 100.0 94.6
Sedentary 1454 0 12 0 99.3 99.7 99.5 100.0 99.5
Standing 0 588 48 0 92.5 99.1 95.8 92.5 95.8
™ LIPA 10 47 398 67 51.0 97.6 743 57.5 74.5
MVPA 0 1 322 2945 97.8 88.8 93.3 100.0 933
Sedentary 1463 0 34 0 99.9 99.2 99.6 100.0 100.0
Random Standing 0 585 48 0 92.0 99.1 95.5 92.5 100.0
Forest LIPA 1 47 497 82 63.7 97.5 80.6 80.0 100.0
MVPA 0 4 201 2930 97.3 92.9 95.1 100.0 100.0
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SVM, sum of vector magnitudes; IMA, integrals of the moduli of acceleration signals; TM, total movement; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical

activity. Bold values represent the number of correct classifications.
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Robustness

Random Forest was the only algorithm not showing any changes or differences in balanced
accuracies per intensity for all individual’s baseline characteristics. The cut-off point
algorithms did show changes for a single baseline characteristic each, namely body height.
More specifically, balanced accuracies for standing were positively correlated with body

height (all three algorithms p 0.392 (P=0.047)).
Algorithm comparison

Overall, differences in participant-specific balanced accuracies between algorithms were
found for one intensity only (Figure 2.3). More specifically, participant-specific balanced
accuracies for LIPA classification were different in three occasions, where SVM, IMA &
Random Forest appeared superior over TM. The differences found were 4.1% (1.5%, 6.6%)

(P=0.006), 6.3% (2.6%, 10.0%) (P<0.001) and -11.2% (-18.0%, -4.4%) (P=0.030) respectively.
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Figure 2.3. Pairwise comparisons between algorithms per intensity using participant-

specific balanced accuracies.

SVM, sum of vector magnitudes; IMA, integrals of the moduli of acceleration signals; TM, total movement;
LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity; Error bars represent

95%-confidence intervals; Dashed line represents no difference; *P <0.05.
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Algorithm benchmarking

Applying the critical 80%-threshold to the overall balanced accuracies of the pooled-data
algorithms per intensity showed that all algorithms reached the threshold for sedentary
activity, standing and MVPA classification (Table 2.3). However, only the Random Forest

model also met the criterion for LIPA classification.

Benchmarking the participant-specific balanced accuracies per intensity for each algorithm
revealed that all models had a perfect score (100.0%) for sedentary activity and MVPA
(Table 2.3). The balanced accuracy for standing classification was acceptable for 92.5% of
the participants in all algorithms. LIPA classification, however, showed acceptable balanced
accuracies for only 62.5% (SVM), 65.0% (IMA) and 57.5% (TM) of the participants in the cut-

off point algorithms, while this was 80.0% in Random Forest.

Discussion

The main aim of the current chapter was to compare between traditional cut-off points
algorithms and a machine learning approach, to provide the best performing
heterogeneous pooled-data algorithm to study SB and PA in older adults using thigh-
mounted triaxial accelerometry. It is encouraging to note that all models showed
acceptable overall balanced accuracies for classification of sedentary activity, standing and
MVPA. As hypothesised however, Random Forest outperformed the cut-off point
classifiers, being robust for all individual’s physiological and non-physiological
characteristics and the only algorithm with acceptable (280%) overall balanced accuracies
over the whole range of activity intensities. In addition, participant-specific balanced

accuracies of Random Forest were superior over TM when classifying LIPA.

The fact that Random Forest algorithm performance was better than cut-off point models
of SB and PA intensity detection is likely owing to its ability to recognise patterns in non-
linear and complex data by using a combination of multiple decision trees, each trained on
a random set of features (26,51). To illustrate the difference with cut-off point algorithms,
these models were developed using only two parameters from the triaxial accelerometer
data, whereas modelling of the Random Forest algorithm used 55 parameters. Despite this,
the differences in performance found between the cut-off point algorithms and Random
Forest were only small. When comparing balanced accuracies between the cut-off point

algorithms tested, an explanation for the results might come from the variability of the
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parameters used to develop the algorithms. Since oxygen consumption data was used
similarly for all models, this parameter did not result in any differences. Nevertheless, a
negative relationship with MET values was identified, which indicates more variation for
lower intensities, resulting in difficulties distinguishing between standing and LIPA for
example. However, with an overall CV of 4.4% (3.4%, 5.3%), DB was generally regarded a
reliable method in this chapter. The fact that all algorithms used the same parameter for
posture detection, static Ymean respectively, means that it can also be ruled out as a possible
explanation for algorithm performance differences. With a CV of only 0.8% (0.7%, 1.0%) in
this chapter, this parameter was considered highly reliable. Although a negative correlation
between CVs and MET values was found, it did not affect posture detection much, since
overall balanced accuracies were 97.1% for all models when classifying activities as either
SB or non-SB. Based on balanced accuracies, TM is the lowest performing algorithm
showing either similar or inferior balanced accuracy results per intensity when compared
to the other cut-off-point algorithms. Although the CV of TM as a parameter is only 6.2%
(5.7%, 7.0%), it is slightly higher than the CVs of SVM and IMA, 5.5% (5.1%, 6.0%) and 5.6%
(5.2%, 6.2%) respectively. The use of a parameter representing dataset dispersion (the SD
in TM), rather than a summation or integration of all data points may well be the
explanation for comparatively sub-optimal performance. As reflected by their CVs, SVM
and IMA are equally performing classifiers. Although not all parameter CVs showed
consistency with increasing MET values, the CVs within the IQR of all parameters were of
an acceptable level (<10%), which might have resulted in acceptable overall balanced
accuracies (280%) for all intensities of the cut-off point algorithms, except LIPA. Generally,
when looking at the overall balanced accuracies per cut-off point algorithm, a similar
pattern is found. Sedentary activity and standing are the most accurately classified
intensities, followed by MVPA and ultimately LIPA. The main issue with LIPA classification,
for as well cut-off point algorithms as Random Forest, is the poor sensitivity (51.0% -
63.7%), which is predominantly caused by misclassification with MVPA. Since the MET
value range for LIPA classification is relatively small compared to MVPA'’s, the LIPA/MVPA
threshold is easily surpassed and therefore any amount of movement is more likely to be

classified as MVPA instead of LIPA.

The positive relationships found between balanced accuracies and body height for standing
classification in all three cut-off point algorithms during robustness analyses, may be due
to another reason than body height. Although we standardised accelerometer mounting

position by using 50% of the femur length, absolute measures show different positions,
27



which could affect accelerometer signals. Namely, the distance to the centre of rotation
(hip and knee joint respectively) influences accelerometer measurements proportionally
(89). For identical movements, the larger the distance to the centre of rotation (as in taller
people), the greater the dynamic acceleration compared to that measured at positions
closer to the centre of rotation (as in smaller people). This over-registration of dynamic
acceleration could lead to false classification of activities with higher intensities instead.
Looking at the confusion matrices, standing does show lower sensitivity values for the cut-
off point algorithms, which results from misclassification with LIPA. Altogether, this implies
that taller people would have lower balanced accuracies than smaller people, but frankly,
we found positive correlations. Moreover, we only saw the robustness issues for standing
and no other intensities. Therefore, it is plausible to assume that it was not body height to
cause any changes in balanced accuracies of standing for the cut-off point algorithms.
Further analysis showed that there were only three people with considerably lower
balanced accuracies for standing (75% vs. 296.2%). Interestingly, they were amongst the
smallest study participants (<1.60 m). In addition, the confusion matrices showed that all
the standing misclassifications happened in these three participants, while ten others of
<1.60 m body height showed balanced accuracies like taller participants. Hence, when
leaving the three out of the correlation analyses, no significant relationships between
balanced accuracies of cut-off point algorithms for standing classification and body height
were found anymore. When looking into more detail at the raw data, we noticed that the
misclassifications in fact occurred during sideways shuffling, for which the three involved
participants also happened to exhibit EE <1.5 MET. As a result of the latter, the reference
classification for this activity was standing but the algorithms classified it as LIPA due to
motion sensing. Thus, it was not the ‘body height’ parameter, which negatively affected
the algorithm robustness results in these rare cases. Therefore, it is safe to say that all
algorithms in this current study are robust, which is most probably the result of using a

heterogeneous study sample.

Whilst it was encouraging to note that all algorithms showed acceptable overall balanced
accuracies for classification of sedentary activity, standing and MVPA, Random Forest was
the only model that also achieved the critical 80%-threshold for LIPA classification. Despite
the generally good results, the disadvantage of an overall measure is that it can mask
unacceptable algorithm performance on an individual basis. For that reason, it is also
important to check the percentage of acceptable participant-specific balanced accuracies

per intensity for each model. This revealed that, regardless of algorithm, individual
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classification of sedentary activity and MVPA was always of an acceptable level, which
allows categorisation of people based on the amount of SB and MVPA, such as active,
inactive and active couch potato. Moreover, standing classification was acceptable for
92.5% of the participants in all algorithms. On the contrary, LIPA classification was
acceptable in only <65.0% of the participants when using a cut-off point algorithm, while
this number rose to 80.0% in case Random Forest was used. To summarise, these results
show that the cut-off point algorithms presented in this chapter, can be used to detect SB,
standing and MVPA in older adults confidently. Random Forest, however, is the only
algorithm that can be used for LIPA classification too. This latter is exciting, because LIPA
might play an important role in gaining health benefits by counteracting SB through PA in
elderly (90). Moreover, performance of MVPA may have negative physiological effects,
such as increased inflammation, and not necessarily elicit any greater physiological benefits
over LIPA in the older adult population (91). Additionally, performing MVPA may have a

high threshold, potentially affecting long-term adherence in elderly negatively (92).

Compared to recent research that, similarly to our present one, conducted laboratory-
based testing to validate activity intensity identification algorithms including machine
learning, our results are in fact a further improvement on these classifiers because we also
focus on algorithm robustness and benchmark individual accuracies (35,67,93). Although
comparing results between studies is complicated by differences in populations, monitor
placement (mainly hip or wrist, against us thigh) that may influence classification (35), and
outcome variables (e.g. Kappa statistic vs. balanced accuracy) (85), our overall finding is in
agreement with Ellis et al. (51). They also showed improved free-living activity intensity
classification with machine learning over traditional cut-off point models (without posture
detection). However, it must be noted that their machine learning algorithm was
developed using free-living accelerometer data only, while the traditional cut-off points

were derived in the laboratory.

One could consider the development of algorithms under laboratory conditions as a
limitation, given the fact that when laboratory-based, performance during real-life mobility
monitoring is compromised (35,51). However, in the laboratory, conditions can be
controlled and a whole range of activities and intensities can be studied allowing
calibration, while simultaneously providing proof-of-concept such as thigh-mounted
triaxial accelerometry in older adults (35,68). To improve the matching of performance

from laboratory-based with free-living based accelerometer algorithms one may match the
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amount of data collected on each behaviour with its prevalence in free-living and train the
algorithms with bout lengths similar to true daily life behaviour (68). Although our use of
steady-state data of activities with predefined length will improve algorithm accuracies
(35), this may not be directly translated to data collected outside the laboratory, since
steady-state is not necessarily reached in free-living conditions with activities being more
sporadic (68). Also, Gyllensten and Bonomi (94) found that activities in free-living
conditions exhibit a higher degree of overlapping characteristics in their acceleration
features when compared with activities performed in the laboratory. Some free-living
activities even show substantially different acceleration signals in comparison to when
performed in the laboratory (35,68). Although we agree that true performance of our
algorithms in real-life conditions cannot necessarily be derived from the balanced
accuracies seen under laboratory settings and it will probably be lower in free-living, we do
not expect the dramatic decrease (~13%—46%) reported elsewhere (35,51,68,93,94). There
are several reasons supporting this expectation. Firstly, most of these studies are either not
comparable to this chapter in terms of study population, modelling techniques/settings,
extracted features, and accelerometer placement, or suffered from serious methodological
issues such as using the same sample to both develop and validate algorithms
(35,51,68,93,94). Secondly, we included few, but common basic activities for elderly
persons in our protocol (33,95,96), and instructed participants to perform them as
‘naturally as possible’ i.e. using self-selected speed and/or intensity. Next, instead of
activity classification, we used intensity classification (based on individual RVO; corrected
MET values) in this chapter, which is a more generic system providing less options, and thus
expected to be less prone to error when applied outside the laboratory (68). Finally, we
used a heterogeneous sample, representing the true healthy community-dwelling older

adult population, to develop the algorithms.

Another potential study limitation may be the fact that our models have been developed
for application in a single thigh-mounted accelerometer, which does not allow perfect
monitoring of PA, as perhaps wobbling of thigh mass or the lack of upper-body movement
detection results in classification errors (54,71). Although it has been suggested that
mounting multiple sensors could address the latter issue (54,71,97), study compliance may
become compromised (93), something that is less of a problem with a single accelerometer
(65,71). Moreover, thigh mounting can accurately distinguish between sitting and standing,
which is not possible with traditional monitor placement at the hip or waist (31,63,64,98).

This thigh placement is thus superior to detect upright stationary activities common in the
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household, that tend to be more metabolically demanding than daily living activities that
recruit only the upper body. Thigh mounting is also relatively close to the centre of mass,
which is vital for good prediction of EE and monitoring of locomotion (54,60). Capturing
locomotion is important in the elderly, because it provides information about potential for
maintained/acquired physical independence (54). Generally, a combination between thigh-
mounted accelerometry and machine learning is considered ideal, because the latter in fact

makes sensor placement less relevant (71).

The major strength of our current approach is that its design and protocol are largely in
accordance with the recommendations for accelerometry-based studies done by Welk et
al. (75). To highlight these compelling elements, despite being modestly sized (~16.4 hrs of
algorithm training data only), a study sample containing a large variety of physiological and
non-physiological characteristics was used to develop four different accelerometer
algorithms. The analyses were performed in more detail (such as focusing on robustness
and benchmarking individual accuracies) than usually seen in the literature. The use of
leave-one-subject-out cross-validation, ideal for smaller datasets, minimises the risk of
overfitting with Random Forest machine learning and enhances the general applicability of
the algorithms to new data (99). Additionally, by using a reliable method for measuring
oxygen consumption (CV 4.4% (5.3%)) and correcting for individual metabolic baselines,
coupled with direct observation, the reference intensity classification is highly accurate.
Since both raw accelerometer data and videos were collected, post-study analyses will be
possible such as algorithm tuning, epoch length optimisation or qualitative activity
classification, but also comparisons with other monitors. Most importantly, this is the first
study to conduct detailed analyses of heterogeneous pooled-data algorithms, ranging from
simple cut-off point to complex machine learning, for the quantification of SB and PA in

older adults using thigh-mounted triaxial accelerometry.

Future studies should focus on further analysis and development of the Random Forest
algorithm to classify activities qualitatively. This will not only result in better prediction of
EE (100), but also provide information not captured by intensity classification (51,68,72).
Moreover, the Random Forest algorithm should be validated in a free-living set-up and
compared to a similar algorithm developed on free-living data. Furthermore, comparisons
with proprietary algorithms of commercially available activity monitors would be
interesting, not least to allow direct comparison of data from different laboratories and

hence the creation of large data sets. Overall, these suggestions would (i) improve
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understanding of the associations between human activity and health that will inform
future recommendations and guidelines for older adults to support healthy ageing
(51,68,72) and (ii) help to improve current industry standards in activity monitoring in

elderly.

Conclusions

Unlike the cut-off point algorithms, under laboratory conditions the Random Forest
machine learning model showed acceptable algorithm performance throughout the whole
range of activity intensities in older adults wearing a thigh-mounted triaxial accelerometer.
Its performance of LIPA classification in particular, makes the algorithm highly relevant for
this age group. The fact that this pattern recognition technique (i) does not require
subgroup-specific calibrations and/or specific accelerometer body part positioning, (ii) is
capable of recognising actual human activities and (iii) works independent of
accelerometer brand/settings, signifies its potential large-scale applicability to distinguish

SB and different levels/types of PA in older adults.
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Chapter 3. Concurrent validity of activity monitors in older adults

Introduction

Both sedentary behaviour (SB) and physical activity (PA) are recognised as independent
factors in healthy ageing (3,6,9). To study the dose-response relationships, monitors are
preferred over questionnaires, since most limitations of subjective monitoring do not apply
to objective methods (6,13,24). Objective monitoring is also useful for planning and
evaluating interventions which can help to update recommendations in physical activity
guidelines (6). For example, light-intensity PA (LIPA) is suggested to be important for
counteracting the highly sedentary lifestyles of elderly (90). However, monitoring activity

levels in older adults can be challenging.

Firstly, most activity monitor algorithms have been designed for and developed on younger
and healthier populations, and as such, any established activity thresholds or cut-off points
for activity intensities are unlikely to apply to other populations (6,101,102). This latter will
compromise accuracy of movement behaviour monitoring. Generally speaking, ageing is
associated with biomechanical, physiological and metabolic characteristics that influence
perception of effort, and indeed, relative use of physiological reserves, to carry out
activities of daily living (62,103). In other words, different age groups will be expected to
exhibit different activity thresholds and hence cut-off points for metabolic demands at
given activity intensities. Thus, in older adults, slower walking speeds, decreased fitness
levels and even dependency on walking aids are factors that would tend to contribute to
changes in metabolic demands (6,104). We would propose that whilst the goal standard
for mobility behaviour monitoring would be to include each individual’s physical and
demographic characteristics thereby developing individualised algorithms, this is not very
practical. An advance on current commercially available movement monitors would be to

have these incorporate age-specific algorithms, as an acceptable compromise (6).

Although there is an increasing amount of literature on SB and PA effects on a number of
health and quality of life outcomes in older persons (30,105), the data from the different
laboratories tends to use diverse monitors and each of these will have been developed
using different algorithms (24,68,98,106,107). In addition, it is unclear whether the
anatomical site of monitor wear would impact on the apparatus’s ability to accurately
detect posture and activity intensity. To draw a good picture of the distinct effects of SB

and PA in elderly, both the degree of monitor accuracy and agreement between monitors,
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needs to be established. This will enable researchers and end-users alike, to pool all the
information gathered from the numerous studies. In addition, where a monitor may diverse
completely from the other units, this should also be highlighted so that spurious
conclusions about cause-effects are avoided. Generally, an extensive comparison of activity
monitors, as chosen for this chapter, has not been conducted in elderly yet. Moreover,

evidence on their validity in older and slower moving people is limited (102).

Therefore, the purpose of the current chapter was to validate and compare six algorithms
using four different activity monitors for the quantification of activity intensities in older
adults. This was done by (i) determining participant-specific and overall balanced
accuracies per algorithm, (ii) comparing participant-specific balanced accuracies between
algorithms, and (iii) benchmarking participant-specific and overall balanced accuracies per
algorithm. It was hypothesised that wearing an activity monitor on an anatomical site that
would ease the distinction of standing from sitting/lying postures would increase the
monitor’s accuracy in detecting physical activity intensity. It was also hypothesised that an
algorithm developed using data from older persons would outperform any other
(proprietary) algorithms for each activity intensity when applied to an older adults study

sample.

Materials and methods
Participants

Twenty older adults (70.0 (12.0) years; 50% female) participated in this study. Exclusion
criteria were: <60 years of age, not able complete the laboratory-based activity protocol
independently, any diagnosed neurological disease or condition, diabetic, terminally ill or
currently receiving cancer treatment, myocardial infarction in the previous 12 months or
any currently unstable cardiovascular condition, any pulmonary disease or condition that
did not allow expired gas sampling, injuries or surgeries within the previous three months,
previously advised by their physician not to undertake any physical activity/exercise, or

not competent to make an informed decision about study participation.

This study was approved by the medical ethical board of University Hospital KU Leuven,

Belgium. All participants provided written informed consent prior to study participation.

Baseline characteristics
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The following baseline characteristics were determined for all participants: age (years), sex
(female/male), body height (to the nearest 0.1 cm; barefoot), body mass (to the nearest
0.1 kg; barefoot and light clothing only) (Table 3.1). Additionally, the body mass index was
calculated by dividing body mass by squared body height (kg-m2). Resting oxygen
consumption (RVO2) (ml-kg*-mint; STPD conditions: standard temperature and dry gas at
standard barometric pressure) was assessed per participant while sitting quietly on a chair
for four minutes. At the same time resting heart rate was monitored (beats per minute), in
order to estimate physical fitness levels according a standard heart rate table (76). This was
not determined for participants who used heart rate controlling medication. Participants’
self-selected walking speed on a treadmill was referred to as the preferred walking speed
(km-h1). Finally, a falls risk assessment tool classified risk of falling for each participant

(low/medium/high) (77).

Table 3.1. Study sample characteristics.

Age (years) 70.0 (12.0)"

Sex 10 Female 10 Male
Body mass (kg) 73.4 (13.0)

Body height (cm) 165.6 (8.1)

BMI (kg-m™2) 26.7 (3.6)

RVO; (ml-kgt-min) 2.87(0.52)

Physical fitness level* 3 Less than good 11 Good or better
Preferred walking speed (km-h?) 2.6 (2.0)"

Falls risk 19 Low 1 Medium or high

BMI, body mass index; RVO2, resting oxygen consumption. *Only determined for participants not taking any
heart rate controlling medication. fValues represent either arithmetic mean (standard deviation) or median

(interquartile range).
Instrumentation

Activity monitors

Four different activity monitors were simultaneously used for this study, respectively
ActiGraph wGT3X-BT (ActiGraph, Ft. Pensacola, Florida, USA), ActivPAL3 VT (PAL
Technologies, Glasgow, UK), GENEActiv Original (Activinsights Limited, Kimbolton,
Cambridgeshire, UK) and DynaPort MM+ (McRoberts B.V., The Hague, The Netherlands).
Each monitor was set to their default settings and worn as recommended by the

manufacturer.
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Thus, the ActiGraph wGT3X-BT (46 x 33 x 15 mm, 19 grams) sampled at 30 Hz (with the low-
frequency extension filter applied) and was worn around the waist on the mid-axillary line
of the right hip using an elastic band. The ActivPAL3¢ VT (35 x 53 x 7 mm, 15 grams) sampled
at 20 Hz and was mounted on the right anterior mid-thigh (at 50% femur length; the latter
being the distance between the trochanter major and the lateral femur epicondyle) using
Tegaderm™ transparent film dressing (3M Health Care, St. Paul, MN, USA). The GENEActiv
Original (43 x40 x 13 mm, 16 grams) was worn on two locations each having its own sample
frequency (non-dominant wrist using medical tape (100 Hz) and left anterior mid-thigh (at
50% femur length using Tegaderm™ transparent film dressing; 60 Hz)). Finally, the

DynaPort MM+ (106.6 x 58 x 11.5 mm, 55 grams) was worn on the middle of the lower back

using an elastic band and sampled at 100 Hz (Figure 3.1).

Figure 3.1. Study participant wearing all monitors.
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Indirect calorimeter

A portable breath-by-breath metabolic system was used for indirect calorimetry (Oxycon
Mobile JAEGER™/CareFusion, Hoechberg, Germany). The system comprised 2 units (sensor
box and data exchange unit, each 126 x 96 x 41 mm) worn against the chest using a harness.
In addition, a Polar T31 coded transmitter belt for heart rate monitoring (Polar Electro Oy,
Kempele, Finland) and a face mask with a dead space of <30 mL (Hans Rudolph Inc, Kansas
City, MO, USA) were used. A lightweight bi-directional 30 mL dead-space DVT volume
sensor was connected to the facemask to which a Nafion sampling tube for exhaled air was
connected. Due to its low weight (950 grams), the system caused minimal discomfort.
Oxygen consumption (VO3), carbon dioxide production (VCO;), heart rate, respiratory rate
and tidal volume were measured continuously for the duration of the laboratory protocol.
All measured data (gas & flow signals and heart rate) were sent telemetrically to a
calibration and receiver unit, itself connected to a laptop (IBM, Armonk, NY, USA) where it
was processed using JLAB (Carefusion Germany 234 GmbH, Hoechberg, Germany). All data
was backed up on an internal SD memory card inside the data exchange unit. The portable
system was switched on at least 30 minutes prior to each participant’s arrival at the
laboratory, and a two-point gas calibration was completed using JLAB’s automated

procedure.

Direct observation

A GoPro Hero3 video camera (GoPro Inc., San Mateo, CA, USA) was attached to the front
of the participant’s harness and used to record the entirety of the laboratory-based activity
protocol. The recordings were stored on a microSD card and downloaded to a laptop after
each session. This data allowed direct observation of all activities post laboratory protocol

completion.

All instrumentation was time-synchronised with a laptop, used for initialising the activity

monitors and analysing the collected data.
Laboratory-based activity protocol

All participants were instructed to refrain from physical exercises, stimulants or smoking at
least four hours prior testing. The protocol was only executed once and consisted of 10
activities, which were performed in a random order, after a period of 20 minutes resting
followed by sitting quietly on a chair: (i) sitting while watching TV, (ii) sweeping the floor,

(iii) cycling on an ergometer (Technogym, Cesena, Italy), (iv) stairs negotiations (walking up
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and down), (v) standing, (vi) walking with two shopping bags (2.5 kg each hand), (vii)
walking on a treadmill at a self-selected speed (Forcelink, Culemborg, The Netherlands),
(viii) sitting while doing desk work, (ix) doing the washing up and (x) lying on a bed. All
activities were performed for four minutes, where the first two minutes were used to reach
a steady-state and the last two minutes were for data recording. The only exception to this
was walking the stairs, as participants walked two minutes before going up the stairs (one
minute) and then walked two minutes again before going down (one minute). Hence, the
total duration of this activity was six minutes (2+1+2+1) instead of four. For data quality
purposes, all activities were extended by a second at least, to assure activity continuation
throughout the whole data recording period. Participants were instructed to perform each
activity as naturally as possible and at their preferred pace. To prevent any fatigue carry-
over effects, participants were seated in-between activities and the next activity was not
started until their heart rate returned to resting level as measured during initial quiet sitting

on a chair. The total duration of the activity protocol was approximately 60 minutes.
Validation

All activity monitors were analysed using their own (proprietary) algorithms and software,
and results were given per epoch, which varied for each monitor. The ActiGraph wGT3X-BT
was analysed in 60s-epochs using the Freedson Adult VM3 algorithm as provided in the
ActiLife-software, version 6.13.3 (ActiGraph, Ft. Pensacola, Florida, USA). Data collected
with the ActivPAL3c VT was analysed in 15s-epochs using the ActivPAL3™-software, version
7.2.32 (PAL Technologies, Glasgow, UK). Two different algorithms were used for analysing
the thigh-worn GENEActiv Original. One algorithm is known as ‘Sedentary Sphere’ (thigh-
worn version) and analysed the data in 15s-epochs (98), while the other algorithm used
Random Forest machine learning (100 trees) and 10s-epochs (Chapter 1). The wrist-worn
GENEActiv Original, was also analysed in 15s-epochs, but using a wrist-worn version of the
‘Sedentary Sphere’ algorithm (66,106). Finally, the DynaPort MM+ was analysed in 60s-
epochs using the company’s online platform MyMcRoberts version 2.2.1 (McRoberts B.V.,

The Hague, The Netherlands).

Oxygen consumption data was measured by the Oxycon Mobile per 5s-epochs. To
determine intensities of the activities performed during the protocol, VO, per 5s-epochs
was divided by the participant’s RVO,. This resulted in metabolic equivalent (MET) values.
RVO; was estimated by calculating the arithmetic mean over the 5s-epoch VO, collected
during the last two minutes while sitting quietly on a chair. Since MET values were
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calculated per 5s-epochs, this allowed average MET values to be calculated for all intervals
as used in the activity monitors, respectively 10s, 15s and 60s-epochs. The average MET
values were used to classify activity intensities per epoch by first checking the MET value
and then (if necessary) the participant’s posture (Table 3.2). The classifications resulting
from this scheme served as the criterion measure and were compared to the activity
monitor outputs. To allow direct comparison with the criterion measure, each epoch
outcome per monitor was converted to these criterion measure classifications, if necessary

(Table 3.3).

Participant-specific confusion matrices were created to determine balanced accuracies per
activity intensity for each monitor. In addition, overall confusion matrices per monitor were
created by summing the participant-specific matrices. The balanced accuracies were
calculated as the arithmetic mean of the sensitivity and specificity results per activity

intensity for each monitor.

True positives (N)

Sensitivity (%) = 100

*
True positives (N) + False negatives (N)

True negatives (N)

Specificity (%) = 100

*
True negatives (N) + False positives (N)

where N represents the number of cases. Balanced accuracies of 280% were considered of

an acceptable level (35).

Table 3.2. Criterion measure classification scheme.

Rules Intensity classification
1. If MET £1.5 and posture = sedentary, then Sedentary

2. Else: If MET <1.5 and posture # sedentary, then Standing

3. Else: If MET >1.5 and <3, then LIPA

4. Else: If MET 23, then MVPA

MET, metabolic equivalent; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical

activity.
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Table 3.3 Monitor classification conversion scheme.

Rules Classification
ActivPAL
If epoch time predominantly = Sedentary, then Sedentary
Else: If epoch time predominantly = Upright, then Standing
Else: If epoch time predominantly = Stepping and MET <3, then LIPA
Else: If epoch time predominantly = Stepping and MET >3, then MVPA
ActiGraph
If epoch time predominantly = Sitting or Lying, then Sedentary
Else: If epoch time predominantly = Standing and VM =0, then Standing
Else: If epoch time predominantly = Standing and VM <2690, then LIPA
Else: If epoch time predominantly = Standing and VM 22690, then MVPA
DynaPort MM+
If epoch class = Sitting or Lying, then Sedentary
Else: If epoch class = Standing, then Standing
Else: If epoch class = Shuffling or Walking and MET <3, then LIPA
Else: If epoch class = Shuffling or Walking and MET 23, then MVPA

GENEActiv Original — Thigh — Random Forest

Classifications of this monitor are in line with the criterion measure N/a

GENEActiv Original — Thigh & Wrist — Sedentary Sphere

If epoch intensity/activity = Sleep, then Sedentary
Else: If epoch intensity/activity = Sedentary or Light and posture = Sit/lie, then Sedentary
Else: If epoch intensity/activity = Sedentary and posture = Standing, then Standing
Else: If epoch intensity/activity = Light and posture = Standing, then LIPA
Else: If epoch intensity/activity = Moderate or Vigorous, then MVPA

MET, metabolic equivalent; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical

activity; VM, Vector Magnitude.
Data reliability

Since MET values are a main part of the criterion measure classification scheme, it is
important to check the reliability of this outcome for all epoch lengths used in the studied
activity monitors, respectively 10, 15 and 60 seconds. To do this, for each epoch length a

coefficient of variation (CV) per activity per participant was calculated as:

SDactivity/participant
Arithmetic meanactivity/participant

CV (%) = x 100

where SD represents standard deviation. Depending on data normal distribution, either the

arithmetic mean (SD) or median (interquartile range (IQR)) was calculated over the moduli
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of all CVs per epoch length to obtain sample-based reliability measures. A CV <10% was
considered acceptable. Additionally, CV consistency across the activity protocol was
checked by examining the correlation between the CVs and accompanying MET values per

epoch length. If a correlation was found, data dispersion was determined (SD or IQR).
Statistical analyses

All data was checked for normality by using the Shapiro-Wilk test. Baseline characteristics
are presented as the arithmetic mean (SD) (or median (IQR)). Balanced accuracies are
reported as arithmetic mean (95%-confidence interval (95%-Cl) (or median (95%-Cl)),
except for those in the confusion matrices. To compare the balanced accuracies of the
different monitors, a one-way ANOVA repeated-measures test (or the Friedman test for
non-parametric data) was performed. Where multiple post-hoc comparisons were

conducted, the Bonferroni correction was applied to adjust P-values.
Adjusted P — valueBonferroni = (Pyaiue)k

where k is the number of comparisons. P-values were considered statistically significant

when P <0.05.

All statistical analyses were executed using IBM SPSS Statistics for Windows, version 23.0

(IBM Corp., Armonk, NY, USA).

Results
Data reliability

MET CV values were negatively correlated with observed MET data for all epoch lengths,
respectively p -0.448 (P<0.001) for 10s-epochs, p -0.482 (P<0.001) for 15s-epochs and p -
0.236 (P=0.001) for 60s-epochs (Figure 3.1). The IQRs of these epoch lengths’ CVs were
between 7.9% - 19.8% (10s), 6.5% - 16.7% (15s) and 1.7% - 7.6% (60s). For 10s-epochs, the
sample-based CV was 12.1% (11.2%, 13.2%), while it was 10.7% (9.1%, 12.0%) for 15s-
epochs and 3.3% (2.7%, 4.2%) for 60s-epochs. Overall, only the 60s-epoch CVs were <10%.
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Figure 3.2. Metabolic equivalent value reliability per activity intensity per epoch length.

CV, coefficient of variation; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical
activity. Error bars represent 95%-confidence intervals. Dashed lines show correlations between coefficients

of variation and intensities per epoch length.

Overall monitor performance

The thigh-worn monitors (ActivPAL, Random Forest and Sedentary Sphere — Thigh) showed
the best performance in classifying sedentary behaviour (all balanced accuracies 294.2%,
with sensitivity 299.3% and specificity 288.5%) (Table 3.4). On the contrary, the other
monitors’ performances (ActiGraph, DynaPort MM+ and Sedentary Sphere — Wrist) ranged
between 73.6% and 75.5%. Their sensitivity values ranged between 67.2% and 85.7%, while

specificity was between 65.4% and 80.1%.

Balanced accuracies for standing classification varied from 42.4% (DynaPort MM+) t0 90.1%
(Sedentary Sphere — Thigh). The highest sensitivity was found for ActivPAL (94.0%) and the
lowest for DynaPort MM+ (4.9%). Specificity was the highest for Random Forest (98.3%)
and the lowest for DynaPort MM+ (79.8%).

ActiGraph showed the highest balanced accuracy for LIPA classification (69.7%), while
DynaPort MM+ had the lowest (49.9%). Sensitivity values ranged from 0.0% (DynaPort
MM+) to 66.7% (ActiGraph). Specificity was the highest for DynaPort MM+ (99.7%) and the
lowest for ActiGraph (72.8%).

Finally, moderate-to-vigorous PA (MVPA) classification appeared to be between 68.8%

(Sedentary Sphere — Wrist) and 85.4% (ActivPAL). Random Forest showed the highest
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sensitivity (83.7%), while ActiGraph had the lowest (40.4%). Monitor specificity ranged
between 85.4% (Random Forest) and 98.4% (ActiGraph).
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Table 3.4 Algorithm cross-validation confusion matrix.

Reference Acceptable level

Monitor Intensity Sensitivity (%) Specificity (%)  Balanced accuracy (%)
Sedentary Standing LIPA MVPA (%)
Sedentary 563 0 53 0 99.3 95.4 97.4 100.0
g Standing 4 156 192 102 94.0 80.9 87.5 100.0
'§ LIPA 0 0 17 37 5.0 97.3 51.2 0.0
MVPA 0 10 76 519 78.9 92.0 85.4 85.0
Sedentary 95 11 21 22 68.3 80.0 74.2 52.6
e Standing 8 16 0 0 41.0 97.8 69.4 43.8
% LIPA 8 12 50 71 66.7 72.8 69.7 33.3
= MVPA 0 0 4 63 40.4 98.4 69.4 333
+ Sedentary 126 37 27 35 85.7 65.4 75.5 40.0
% Standing 21 2 40 18 49 79.8 42.4 0.0
% LIPA 0 0 0 1 0.0 99.7 49.9 0.0
;> MVPA 0 2 10 114 67.9 95.5 81.7 80.0
= Sedentary 842 0 103 1 100.0 94.1 97.0 100.0
E Standing 0 173 37 4 70.3 98.3 84.3 85.0
_§ LIPA 0 45 160 159 31.7 90.3 61.0 5.0
5 MVPA 0 28 205 841 83.7 85.4 84.5 95.0
> Sedentary 566 5 92 37 99.8 88.5 94.2 100.0
g _?g— ED Standing 0 149 97 53 89.8 90.4 90.1 100.0
g @» LIPA 1 12 116 215 343 83.6 59.0 0.0

I
N



MVPA 0 0 33 356 53.9 96.9 75.4 40.0

. Sedentary 381 17 111 104 67.2 80.1 73.6 40.0

g é Standing 178 131 31 40 78.9 84.1 81.5 85.0
g g LIPA 8 13 78 193 23.1 84.6 53.9 0.0
m f’)‘ MVPA 0 5 118 324 49.0 88.5 68.8 15.0

LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity. Bold values represent the number of correct classifications.
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Monitor comparison

Performance of sedentary classification was significantly different for ActivPAL and
Random Forest when compared to all monitors, but not each other (Figure 3.2). Both
showed higher participant-specific balanced accuracies. For classifying standing, Random
Forest showed the most significant differences with other monitors, respectively ActivPAL
(-3.5%, -7.4%, -0.9%, P=0.045) and DynaPort MM+ (-55.8%, -58.8%, -54.6%, P<0.001).
Again, Random Forest also showed most differences with monitors for LIPA classification.
Participant-specific balanced accuracies in this monitor were higher than in ActivPAL (-
9.7%, -14.3%, -5.0%, P<0.001), DynaPort MM+ (-10.1%, -14.7%, -5.4%, P<0.001) and
Sedentary Sphere — Wrist (8.4%, 2.5%, -12.0%, P<0.001). As for sedentary activity, MVPA
classification favoured ActivPAL and Random Forest, which had similar performance and

appeared significantly different to all monitors, except DynaPort MM+.
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Figure 3.2 Pairwise comparisons between monitors per intensity using participant-specific
balanced accuracies.

AP, ActivPAL; AG, ActiGraph; DP MM+, DynaPort MM+; RF, Random Forest; SS_thigh, Sedentary Sphere —
Thigh; SS_wrist, Sedentary Sphere — Wrist; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous
physical activity; Error bars represent 95%-confidence intervals; Dashed line represents no difference; *P

<0.05.
Monitor benchmarking

Overall balanced accuracies for classification of sedentary activity were only of an
acceptable level (280.0%) in the thigh-worn monitors (ActivPAL, Random Forest and
Sedentary Sphere — Thigh) (Figure 3.3). Standing classification was acceptable in the same
monitors, but also including Sedentary Sphere — Wrist. Interestingly, none of the monitors

showed 280% overall balanced accuracy for classifying LIPA. Fortunately nevertheless,
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ActivPAL, DynaPort MM+ and Random Forest reached the 280% overall balanced accuracy

threshold for MVPA classification.

Checking the percentage of participants showing an acceptable level of participant-specific
balanced accuracy, revealed that classification of sedentary activity was acceptable in all
participants when using a thigh-worn monitor (Table 3.4). The other monitors showed a
maximum of 52.6% only. Standing was classified acceptably in all participants when using
ActivPAL or Sedentary Sphere — Thigh. In Random Forest and Sedentary Sphere — Wrist this
number was 85.0%, while it appeared 43.8% and 0.0% in ActiGraph and DynaPort MM+
respectively. Acceptable levels of LIPA classification were the highest in ActiGraph (33.3%)
followed by Random Forest (5.0%). All other monitors failed to reach an acceptable levels
of LIPA classification. Acceptable MVPA classification varied significantly between the
monitors. Random Forest tended to display the highest degree of MVPA classification
balanced accuracy (95.0%), followed by ActivPAL (85.0%) and DynaPort MM+ (80.0%). The
remaining monitors only had acceptable levels in £40.0% of the participants, respectively

Sedentary Sphere — Thigh (40.0%), ActiGraph (33.3%) and Sedentary Sphere — Wrist

(15.0%).
100
90
N 80 -9r——-W--—-- --w-g----- —
S 70 N N _ mActivPAL
g 60 | F [ ActiGraph
g 50 | : | m DynaPort MM+
8 40 | | B Random Forest
LE 30 | ‘ | Sedentary Sphere - Thigh
- 20 : } : I Sedentary Sphere - Wrist
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o MIEN T MOEWOE NEEN N NN

Sedentary Standing LIPA MVPA

Figure 3.3. Benchmarking of overall balanced accuracies per activity intensity for each

tested algorithm.

LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity. Dashed line represents

threshold for acceptable algorithm performance (80%).
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Discussion

As hypothesised, algorithms specially developed using older persons and/or worn in
anatomical positions that permitted the clear identification of posture, were the most
accurate at classifying activity intensities in older adults. In particular, Random Forest
appeared the best performing algorithm, in that at each activity intensity, it outperformed
other algorithms/monitors. The fact that overall balanced accuracies were acceptable for
sedentary, standing and MVPA classification is promising, just as their rate of acceptable
individual results. Although most monitors showed good results for at least one activity
intensity, ActivPAL is the only monitor with comparable performance to Random Forest.
Again, thigh-worn monitors proved their value for the SB and standing classification.
Another notable observation was that shorter epoch lengths proved more accurate than
longer ones. Interestingly, none of the monitors showed acceptable outcomes for LIPA
classification in our elderly participants. This would indicate the complexity of qualifying
LIPA in this group and/or an inability for older individuals to carry an activity at that
threshold. Given that LIPA is suggested to be important for counteracting SB especially
within that age bracket (90), whilst minimising engagement in MVPA in order to maximise
long-term compliance to adequate amounts of daily physical activity (92), the reason for
the difficulties in reliably/accurately tracking LIPA using activity monitors in older adults

warrants further study.

To check the potential cause for the low balanced accuracies for LIPA classification, the
confusion matrix must be studied, which shows both sensitivity and specificity values per
monitor for each activity intensity. Unlike specificity, sensitivity seems to be the issue. More
specifically, three out of six monitors, including ActivPAL, DynaPort MM+ and Sedentary
Sphere — Thigh, predominantly misclassify LIPA with standing. Random Forest and
Sedentary Sphere — Wrist on the other hand, mainly misclassify LIPA with MVPA. ActiGraph
is the sole monitor without such a LIPA classification issue. Under the assumption that
activities were performed in a metabolic steady-state, with matching biomechanics,
discrepancies between these two could lead to inaccuracies. Since we found a negative
correlation between CVs of the METs and activity intensities, metabolic steady-state might
not be the case for lower intensities, such as standing or LIPA. Also, it is known that activity
monitoring in slower moving people, like elderly, is challenging (102). In normal ground
walking for instance, older persons tend to utilise a larger number of small steps at a low

pace to achieve motion (rather than quick and large, but less numerous steps) (108). This
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might result in lower biomechanical values, not matching the higher metabolic demand.
Indeed, the confusion matrix shows misclassification of LIPA with standing for example. The
fact that ActiGraph is the only monitor to use a low-frequency extension filter, might
explain why it does not have this classification issue. Basically, such a filter helps to pick up
slow movements were other monitors (such as the three mentioned) do not sense it, which
results in less misclassification. LIPA misclassification may have also occurred due to the
incorporation of household activities in our activity protocol. An activity such as washing
dishes, requires mainly upper limb action, hence monitors not attached to this anatomical
site, will register less movement, while upper limb monitors might do the opposite.
Interestingly, Random Forest is the only non-upper limb algorithm, which misclassifies LIPA
with MVPA mostly. Presumably, this is caused by the fact it is using pattern recognition,
which makes the monitor regard motion differently than just detecting the amount of
movement. Finally, with the LIPA window being only small in terms of metabolic demands
and yet similar in pattern to MVPA, it can be conceivable why misclassifications with MVPA
could be made theoretically. Interestingly, a considerable amount of LIPA (215.7%), but
MVPA in some cases too, was also misclassified as sedentary activity. A plausible
explanation comes from the cycling activity that was performed. For this activity, the
posture including thigh inclination near horizontal and hands holding the steer, potentially

made classification difficult.

Apart from confusing cycling activity classification, measuring thigh inclination can also help
to better distinguish between SB and standing (63,64). As seen in this chapter, the thigh-
worn monitors performed better than the waist-worn (including lower back). Interestingly,
also wrist-worn monitors seem to handle these classifications better. This is important
information for deciding what monitor best to use if SB is a primary outcome measure.
Another consideration is what epoch length to use. This chapter showed better
performance with shorter epoch lengths, which is in line with previous research (109).
However, the CVs of the MET values suggest otherwise. The smallest sample-based CV was
found for 60s-epochs, while the largest were found for 10s-epochs. In fact, only the 60s-
epochs CVs were acceptable for this steady-state data. Despite this, monitor performance
was better with the smaller epoch lengths. Since activities were performed in the same
fashion throughout the whole activity, it is suggested that better performance in epochs
with higher CVs is not a direct result of smart or robust algorithms. Instead, because CVs
were calculated over MET values, which were converted into intensities and eventually

cross-validated, it rather proves robustness of the classification scheme.
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The main reason for Random Forest to outperform the other monitors, may be through it
use of pattern recognition instead of cut-off points for the classification of activity
intensities. With most of the studied algorithms being proprietary, their exact
mathematical iterations are unclear. However, it is safe to assume that they would largely
rely on cut-off points. Studies have already shown that machine learning is more accurate
than cut-off points in activity monitoring (51,71). Moreover, pattern recognition has been
suggested as the future standard (24). Nevertheless, most current studies are still using
cut-off point algorithms, potentially as these are more straight-forward to apply; even for
the non-mathematically minded (24). Although machine learning algorithms make the
requirement of specific anatomical attachment sites of an activity monitor less relevant
(71), we propose that our application may be even more valuable given that it was
developed using a model for thigh-mounted triaxial accelerometry. Our findings also lend
further support to ActivPAL being considered as one of the gold standards and its

widespread use as a criterion measure to validate other monitors (64,110).

Contextualising our findings in the light of the existing literature is challenging, not least,
because of the scarcity of comparable ‘mobility monitor’ validation studies in older adults
and the use of different outcomes measures. Nevertheless, comparisons with prior studies,
which applied the monitors in the same fashion (none performed in older adults
specifically, except for DynaPort MM+), show that the results of the ActivPAL monitor in
this chapter were relatively comparable in the classification of SB (97.4% vs. lying horizontal
100.0% and sitting 91.0%), but worse for upright activities, such as standing and stepping
(<87.5% vs. 99.0%) (98,111). As for the ActiGraph, our results for sedentary activity were
slightly better than the accuracy presented in a previous study (<72.0% in theirs compared
to 74.2% in ours), while accuracy of detecting upright activities was slightly better in the
other study (74.0% vs. <69.7%) (98). However, Kerr et al. (68) showed worse mobility
detection accuracy for all activities (<43.0% vs. 269.4%), except sitting (84.0% vs. 74.2%).
The accuracies of the DynaPort MM+ monitor as measured in this chapter, were lower than
the results found by Hollewand et al. (107). They showed 79.6% for lying, 87.6% for sitting
(both vs. 75.5%), 81.5% for standing (vs. 42.4%) and 91.7% for locomotion (vs. 249.9%). A
study by Rowlands et al. (106) found accuracies of 74.0% and 91.0% for classifying SB and
upright activities when using Sedentary Sphere — Wrist. The results in this chapter are
similar for sedentary activity (73.6%), but worse for standing (81.5%), LIPA (53.9%) and
MVPA (68.8%). When comparing the Sedentary Sphere — Thigh results from this chapter
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with Edwardson et al. (98), it is clear that their findings are (slightly) better, respectively
>99.8% vs. 94.2% for SB and >88.3% vs. 259.0% for upright activities.

To our knowledge, we are the first group to have validated this machine learning technique
for thigh-worn accelerometry (Chapter 2). Comparing the present results against the data
from Chapter 2, shows that the present findings are (slightly) worse for all intensities,
respectively 99.6% vs. 97.0% for SB, 95.5% vs. 84.3% for standing, 80.6% vs. 61.0% for LIPA
and 95.1% vs. 84.5% for MVPA. When focusing on Random Forest algorithms applied to
accelerometer data collected from the hip or wrist, a lot of varying results have been
published. For example, hip accuracies ranged from 75.0% - 94.0% for SB, from 64.0% -
89.0% for standing and from 73.0% - 97.0% for walking/running (51,68). Wrist classifiers
showed 80.1% - 89.3% accuracy for sitting, 95.7% for standing and 91.7% - 93.7% for
walking/running (51,112). Overall, our Random Forest result for sedentary activity is
slightly better, whereas standing and MVPA are in line with the hip classifiers, but lower
than the wrist algorithms. As mentioned above, the impact of the age discrepancy between

ours and all these other studies cannot be underestimated.

The fact that this study was performed in a laboratory setting is a limitation because it does
not show any information on how well the monitors will perform during free-living.
However, the comparison made, provides useful information on how monitors will perform
compared to each other, even in free-living when assuming their performance remains
relatively the same. Although activities were performed in a standardised environment, we
asked the participants to perform them as naturally as possible. One of the strengths of
this chapter is that we concurrently compared a good selection of activity monitors used in
research. Moreover, we used these as recommended by their developers/manufacturers,

including the optimal body location and epoch length.

Overall, generalisation of findings is difficult because we only used a small study sample
(N=20) of fit and healthy older adults. Nevertheless, this chapter presents highly valuable
and important insights for activity monitoring in an understudied age group. Future
research should validate and compare the studied monitors for quantifying free-living
physical activity levels in the elderly. We would also recommend that device improvements

be made in terms of ability to accurately detect LIPA, especially at least, in the elderly.
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Conclusion

A thigh-worn triaxial GENEActiv with a Random Forest algorithm can be used best for
accurate assessment of SB and PA in older adults. However, other monitors can be used,
as they proved to be (partially) valid too. Generally, the decision of which monitor to use

when, depends largely on the research question and setting.
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Chapter 4. Descriptive analysis of the elderly cross-sectional study sample

Introduction

This chapter reports the descriptive statistics of the elderly cross-sectional study sample
used to investigate several gastrocnemius medialis (GM) muscle-tendon properties, of
which the findings are separately reported in the next three chapters. This muscle was
chosen because it has been studied frequently regarding muscle architecture and size, and
ultrasound scanning of it has been proven valid (113). Moreover, GM is also an important
muscle for postural balance in older adults (44) and hence physical functioning. Last but
not least it is an antigravity muscle, which shows fast impact of unloading (atrophy) as

suggested in sedentary behaviour (SB).

Variables included in this analysis principally consist of anthropometric and accelerometer
data. These data are important as they are the baseline characteristics of the cross-
sectional study sample. Basically, the accelerometer data will be used to investigate
potential associations with GM muscle-tendon properties, while anthropometric and other
collected data will serve as covariates to adjust regression models, where appropriate. In
addition to the descriptive analysis, this chapter also investigated both the further ageing
effect on SB and physical activity (PA) levels, and the independence between SB and PA
outcomes, which have been reported in literature previously and serve as important

assumptions in this thesis (Chapter 1) (9,27,28,114).

Overall, the aim of this chapter was to check the representativeness of the study sample,
which was done by comparing the study sample characteristics with existing evidence. It
was hypothesised that (i) the cross-sectional study sample would be representative and (ii)

SB and PA measures would show to be both affected by age and independent.

Materials and methods

A total sample of 106 healthy older adults participated in this study. They were initially
recruited from an existing university database of former study participant, and later also in
the local area via social meetings, posters and word-of-mouth. Participants were excluded
if they were: aged <60 years, diabetic, had any issue affecting their mobility or ability to

exert maximum force with the lower limb muscles/joints, had any recent (<3 months) injury
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or surgery on their tested leg, not able to understand or follow up on study instructions, or

not competent to make an informed decision about study participation.

This study was approved by the ethical review board of Manchester Metropolitan
University, Crewe, UK. All participants provided written informed consent prior study

participation.
Study visits

Participants visited the university on two separate occasions (27 days). On the first visit,
participants completed questionnaires, were familiarised with the equipment to be used
during the following visit and they were also fitted with an activity monitor. This visit lasted
approximately one hour. On the second visit, proper testing took place, which included
several tests such as a whole-body scan to measure body composition. In total, participants
spent ~4 hours on the second laboratory visit (inclusive of a 30-45 mins breakfast ingestion

break).
Questionnaires

All participants provided demographics and information about their previous and current
PA and medical status via a general questionnaire. Additionally, information was collected
about their smoking status and dietary intake. They also completed a falls risk assessment
tool (FRAT), which served as a measure of frailty (77). This questionnaire consisted of five
yes/no-questions about previous falls, medication usage, neurological problems, issues
with balance and sit-to-stand ability. Based on their answers, participants were classified

as having a low (<1 yes), medium (2 yes) or high (23 yes) risk of falling.

Anthropometric data

All participants had their body height and mass taken on the first visit. Body height was
measured barefoot and to the closest 0.1 cm using a wall-mounted stadiometer (Holtain
Ltd., Crymych, UK). Body mass was measured wearing the least clothing as possible and to
the nearest 0.1 kg using a digital body mass scale (seca GmbH & Co. KG., Hamburg,
Germany). On the second visit, dual-energy X-ray absorptiometry (DEXA) (Hologic
Discovery: Vertec Scientific Ltd, UK) was used to determine participants’ body composition.
Participants were instructed to arrive to the university campus after 10 hours overnight
fasting. On the morning of testing they were only allowed to drink up to 250 mL of water.

In addition, they were asked to void their bladder last thing prior to scanning and remove
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all metal items on their body (if possible). All participants were laid in a supine position and
underwent a ~7-minute whole body scan (effective dose 8.4 uSv), whilst wearing a hospital
gown only. Using the built-in scan analysis software (Version 12.4; QDR for Windows,
Hologic, Waltham, MA(115), USA), whole body analysis was performed to determine body
compositional outcomes such as percentages of body fat mass, lean body mass and bone
mineral content. Based on percent body fat mass, participants were classified, in terms of
adiposity, as either normal or high (<40% or >40% in female, while <28% or >28% in male)
(116). In addition, appendicular segmental masses were manually identified and assessed
to be able to calculate the skeletal muscle index (SMI; appendicular lean mass per squared
body height (kg-m?)). This outcome was used for sarcopenia classification according to the
suggested thresholds by Baumgartner et al. (115). Participants were deemed sarcopenic

when SMI was <5.45 kg-m? for women and <7.26 kg-m? for men.
Accelerometer data

SB and PA levels were monitored for seven consecutive days using a triaxial accelerometer.
The waterproof accelerometer that served as the activity monitor in this thesis, was the
GENEActiv Original (43 x 40 x 13 mm, 16 grams) (Activinsights Limited, Kimbolton,
Cambridgeshire, UK). It was mounted on the anterior mid-thigh (at 50% femur length using
Tegaderm™ transparent film dressing (3M Health Care, St. Paul, MN, USA)) of the dominant
leg (preferred for single-leg balance). The monitor was initialised to sample at 60 Hz.
Participants were instructed to record their sleeping times on a provided log sheet, which
allowed accurate analysis of daytime SB and PA. The accelerometer data was analysed with
an in-house developed machine learning algorithm and software application (Chapter 2).
This application provides a wide range of daily SB and PA outcomes, such as total time spent
in different intensities, time spent in moderate-to-vigorous PA (MVPA) bouts of >10
continuous minutes, breaks in SB and distribution of SB bouts (Table 4.1). These outcomes
were adopted from previous studies (16,117), which provide details on the calculations
performed. The accelerometer data was only considered valid, if >5 days (of which >1
weekend day) were measured (90). This was the case in 105 out of 106 participants tested.

Average values of all outcomes over the valid days were considered for further analyses.

In this thesis SB and PA outcomes were analysed on three different levels: (i) general SB
levels combined with information on whether participants are physically active or not, (ii)
compositional data analysis of total daily time spent in different behaviours (This type of
analysis has been described in detail previously (118,119). Briefly, daily compositions are
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transformed into isometric log-ratio coordinates, which are then unconstrained and allow
the application of traditional multivariate statistics.), and (iii) daily SB pattern parameters
combined with a variety of PA outcomes, such as percent standing, light-intensity PA (LIPA)

or MVPA during PA bouts, or daily sporadic MVPA (sMVPA).

Table 4.1. Overview of accelerometer outcomes used in this thesis.

Accelerometer outcome? Description
Sleep (hrs) Time spent sleeping
SB (hrs) Time spent in SB
Standing (hrs) Time spent standing
LIPA (hrs) Time spent in LIPA
MVPA (hrs) Time spent in MVPA
SB level (low/high) Daily SB <8 or 28 hours
Breaks SB (n) SB interruptions with >2 consecutive minutes upright activity
Short SB bouts (n) SB bouts <30 minutes duration
Long SB bouts (n) SB bouts 230 minutes duration
a Scaling parameter sedentary bout length distribution
X1/2 (mins) Median SB bout duration
Fraction total sedentary time accumulated in bouts longer than
W12 (%)
median sedentary bout length
Wso% (Mins) Half of total SB is accumulated in SB bouts < this duration
F (bouts-hrs™) Fragmentation index of SB bouts and total SB
Period (mins) Mean period between SB bouts
PA bouts (n) Bouts of 22 consecutive minutes upright activity
Total PA bouts time (mins) Total PA bouts duration
SB during PA bout (%) Percent of time spent in SB during PA bouts
Standing during PA bout (%) Percent of time spent in standing during PA bouts
LIPA during PA bout (%) Percent of time spent in LIPA during PA bouts
MVPA during PA bout (%) Percent of time spent in MVPA during PA bouts
MVPA:10 mins (mins) Total time spent in 210 consecutive minutes MVPA
sMVPA (mins) Sporadic MVPA (total MVPA - MVPA:10 mins)
Physically active (no/yes) Weekly MVPA:10 mins <150 or 2150 mins

SB, sedentary behaviour; PA, physical activity; LIPA, light-intensity physical activity; MVPA, moderate-to-

vigorous physical activity; 'Daily measure, unless stated otherwise.

Statistical analyses

All data were checked for normality using either the Shapiro-Wilk or Kolmogorov-Smirnov
tests. Normal distributed variables are presented as arithmetic mean (standard deviation

(SD)), else as median (interquartile range (IQR)). To test the effect of age on SB and PA
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measures, and the independence between SB and PA outcomes (excluding compositional
data for the latter), either Pearson or Spearman correlation (non-parametric) was
determined for continuous data. In case one of the variables was categorical, an
independent T-test (or the non-parametric Mann-Whitney U test) was used. When both
variables were categorical, either the Chi-square or Fisher’s Exact test was conducted. To
investigate co-dependencies between different behaviours of the compositional data, a
variation matrix with log-ratio variances was created. Values close to zero, implied

behaviours involved in the ratio to be highly proportional.

All statistical analyses were executed using IBM SPSS Statistics for Windows, version 23.0

(IBM Corp., Armonk, NY, USA). P-values <0.05 were considered statistically significant.

Results
Descriptive statistics

The mean (SD) age of the 105 participants tested, was 72.8 (6.0) years, while average
anthropometrics showed body height of 166.3 (9.3) cm, body mass of 73.0 (13.4) kg and
BMI of 25.9 (6.0) kg:-m™2 (Table 4.2). Mean (SD) body composition consisted of 36.3 (7.9)%
fat mass, 60.2 (7.5)% lean mass and 3.5 (0.7)% bone mineral content. About 45% of the
subjects was deemed to be sarcopenic. Gender distribution in our predominantly white
(99.0%) study sample was 53.3% female vs. 46.7% male. Although most people were
classified with high adiposity (71.4%), frailty (15.2%) and history of major illness was low
(16.3%). Our participants were on statins in 32.4% of the cases, while a current diagnosis
of rheumatoid arthritis was only seen in 3.8% of the people. Only 2.9% of the participants
smoked currently, while daily intake of 23 units alcohol was also low (4.9%). Regular intake
of dairy and caffeine was 95.2% and 82.9% respectively. Finally, calcium/vitamin D
supplements were used by 14.3% of the participants, while 22.1% recently performed

resistance training.

Our participants spent 35.6% of their days sleeping, 39.4% in SB, 2.8% standing, 11.5% in
LIPA and 10.7% in MVPA (Table 4.3). Overall, 81.9% spent 28 hours per day in SB, while only
10.5% was physically active. Combining these two outcomes, only 1.9% had both low SB
levels and were physically active, while 16.2% had low SB but was not physically active,
8.6% had high SB and was physically active and 73.3% showed high SB levels combined with
physical inactivity.
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Table 4.2. Study sample characteristics.

Variable Mean (SD) or "Median (IQR)
Age (yrs.) 72.8 (6.0)

Sex (female / male) 56 49
Ethnicity (white / black) 104 1
Body height (cm) 166.3 (9.3)
Body mass (kg) 73.0(13.4)
BMI (kg:m2) 25.9 (6.0)7
Body fat mass (%) 36.3(7.9)
Body lean mass (%) 60.2 (7.5)
Body BMC (%) 3.5(0.7)

SMI (kg-m™2) 6.4 (1.8)"
Adiposity class (normal / high) 30 75
FRAT (low / medium-to-high) 89 16
History of major illness (no / yes) 87 17
Currently on statins (no / yes) 71 34
Currently smoking (no / yes) 102 3
Resistance training within previous 6 months (no / yes) 81 23
Regular consumption of dairy products (no / yes) 5 100
Caffeine intake (no / yes) 18 87
Current RA diagnosis (no / yes) 101 4
Daily alcohol intake >3 units (no / yes) 98 5
Calcium/vitamin D supplements intake (no / yes) 90 15

BMI, body mass index; BMC, bone mineral content; FRAT, falls risk assessment tool; RA, rheumatoid arthritis.

Table 4.3. Overview of the study sample’s daily sedentary behaviour and physical activity

levels.
Accelerometer outcome Mean (SD) or "Median (IQR)
Sleep (hrs) 8.4 (0.8)1
SB (hrs) 9.3(1.5)
Standing (hrs) 0.7 (0.3)
LIPA (hrs) 2.9 (1.0)
MVPA (hrs) 2.7 (1.0)
SB level (low/high) 19 86
Breaks SB (n) 22.2 (3.5)
Short SB bouts (n) 17.0(3.8)
Long SB bouts (n) 6.0 (1.2)
o 1.45 (0.04)
X1/2 (mins) 8.8 (11.8)"
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W12 (%) 93.3(11.2)"
Wso% (mins) 58.3 (22.9)7
F (bouts-hrs) 2.5(0.7)"
Period (mins) 10.2 (2.9)"
PA bouts (n) 22.2 (3.5)
Total PA bouts time (mins) 365.2 (95.9)
SB during PA bout (%) 1.5(0.7)"
Standing during PA bout (%) 11.8 (4.6)
LIPA during PA bout (%) 44.2 (11.0)
MVPA during PA bout (%) 42.5(12.4)
MVPA10 mins (Mins) 3.4 (10.6)"
sMVPA (mins) 153.5 (57.8)

Physically active (no/yes)

94

11

SB, sedentary behaviour; PA, physical activity; LIPA, light-intensity physical activity; MVPA, moderate-to-

vigorous physical activity; SMVPA, sporadic moderate-to-vigorous physical activity.

Further ageing and SB & PA

Most accelerometer outcomes did not show any significances with age, except for SB, LIPA,

long SB bouts, total PA bouts time, LIPA during PA bout and MVPA during PA bout (Table

4.4).SB (0.230, p=0.018), long SB bouts (0.205, p=0.036) and MVPA during PA bout (0.276,

p=0.004) were positively correlated with age, while LIPA (-0.370, p<0.001), total PA bouts

time (-0.241, p=0.013) and LIPA during PA bout (-0.313, p=0.001) demonstrated negative

correlations.

Table 4.4. Correlations between age and accelerometer outcomes.

Accelerometer outcome Correlation coefficient P-value
Sleep 0.091 0.354
SB 0.230 0.018
Standing -0.145 0.141
LIPA -0.370 <0.001
MVPA 0.009 0.924
SB level 0.273
Breaks SB -0.026 0.793
Short SB bouts -0.085 0.387
Long SB bouts 0.205 0.036
a -0.134 0.175
X1/2 -0.085 0.388
W1/2 0.098 0.318
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Wso% 0.185 0.059
F -0.113 0.250
Mean period between SB bouts -0.186 0.058
PA bouts -0.026 0.794
Total PA bouts time -0.241 0.013
SB during PA bout -0.063 0.526
Standing during PA bout 0.012 0.900
LIPA during PA bout -0.313 0.001
MVPA during PA bout 0.276 0.004
MVPA:>10 mins -0.164 0.095
sMVPA 0.043 0.666
Physically active 0.249

SB, sedentary behaviour; PA, physical activity; LIPA, light-intensity physical activity; MVPA, moderate-to-
vigorous physical activity; sMVPA, sporadic MVPA, moderate-to-vigorous physical activity. Bold values

represent significant outcomes.

Independency of SB & PA

General SB levels appeared independent of physical activity classification (Fisher’s Exact
test, p=1.000). Log-ratio variances from the compositional data analysis showed similar
results, with only sleep and SB having a low log-ratio variance (0.0355) and thus showing
co-dependency (Table 4.5). Generally, SB pattern parameters were independent from most
PA pattern outcomes, such as SB during PA bout, standing during PA bout, LIPA during PA
bout, MVPA during PA bout and MVPA:10mins (Table 4.6).

Table 4.5. Log-ratio variances of compositional accelerometer data.

Sleep SB Standing LIPA MVPA
Sleep 0.0000
SB 0.0355 0.0000
Standing 0.2912 0.3934 0.0000
LIPA 0.1615 0.2661 0.2228 0.0000
MVPA 0.2064 0.2667 0.3928 0.2982 0.0000

SB, sedentary behaviour; PA, physical activity; LIPA, light-intensity physical activity; MVPA, moderate-to-

vigorous physical activity.
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Table 4.6. SB-PA independencies for daily SB pattern parameters.

SB MVPA
Total PA Standing LIPA
during during | MVPA:10
PA bouts bouts during during sSMVPA
PA PA mins
time PA bout | PA bout
bout bout
Breaks SB 1.000*%* | 0.275** 0.096 -0.155 -0.192* | 0.223* 0.085 0.323**
Short SB
0.947** | 0.450** 0.074 -0.125 -0.108 0.138 0.087 0.389**
bouts

Long SB bouts -0.124 -0.691** | 0.027 -0.026 -0.197 0.182 -0.039 -0.341**

a 0.325** | 0.486** 0.078 -0.103 0.102 -0.056 -0.106 0.315**
X1/2 -0.489** | -0.516** | 0.098 0.017 0.079 -0.075 -0.239* | -0.404**
W12 0.219* 0.256* -0.125 -0.037 -0.078 0.070 0.213* 0.212*

Wso% -0.527** | -0.635** | 0.087 -0.017 0.049 -0.059 -0.237* | -0.476**
F 0.670** | 0.785** | -0.026 -0.066 -0.064 0.096 0.173 0.622**

Mean period
between SB -0.329%* | 0.747** | -0.222* 0.140 0.173 -0.191 0.157 0.306**

bouts

SB, sedentary behaviour; PA, physical activity; LIPA, light-intensity physical activity; MVPA, moderate-to-

vigorous physical activity; SMVPA, sporadic moderate-to-vigorous physical activity. *P<0.05; **P<0.01.

Discussion

At the beginning of this chapter it was hypothesised that (i) the cross-sectional study
sample would be representative and (ii) SB and PA measures would show to be both
affected by age and independent. Generally, our data showed similar values to the general
adult UK population in terms of anthropometrics (120) and gender distribution in elderly
(121). Even including most participants aged 60-69 years, then aged 70-79 years and finally
280 years, is in accordance with the age groups’ prevalence within the general population
(121). Also, SB/PA levels and adherence to current UK PA guidelines are more or less in line

with existing literature (17,27,28,92). Thus, the first hypothesis was confirmed.

The fact that both an increase in SB and decline in LIPA occurred with ageing, was in
agreement with previous studies (27,122,123). A brief check of sex differences in outcomes
such as total daily SB/PA, SB breaks and number of short/long SB bouts, showed similar
outcomes with other reports too (17,22,27,32,124,125). Furthermore, the independencies
found between SB and PA for the different levels of statistical analyses, were as expected.

Therefore, the second hypothesis was also confirmed.
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Conclusion

Overall, the cross-sectional study sample as described in this chapter, appears
representative for the older UK population. SB and PA differed independently during
further ageing, with SB increasing and PA decreasing respectively. This population is thus a
good sample to study the effects of SB and PA separately and in combination on

gastrocnemius medialis muscle-tendon properties in older adults within the next chapters.
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Chapter 5. The association between sedentary behaviour and both resting

skeletal muscle size and architecture in community-dwelling older adults

Introduction

Skeletal muscle ageing is a phenomenon characterised by a decrease in muscle mass (126)
and strength (44,127-129), a decrease in agonist activation (130) and an increase in
antagonist co-contraction (131). Generally, this results in a decreased functional capacity
(132), and an increased disability and physical dependence of elderly (133-135). In
addition, the increased morbidity, higher rate of hospitalisation and mortality after bone
fractures due to falls in old age have been reported to be associated with lower muscle

strength (136,137).

Apart from sarcopenia, an age-related drop in habitual physical activity (PA) levels are
thought to, at least partially, explain some muscle ageing effects (130,138). Although
evidence is limited and conflicting, sedentary behaviour (SB) is also suggested to be
independently associated with muscle health (90). Multiple studies have reported a
negative relationship between SB on one side and functional fitness and performance on
the other (139-142). SB has also been identified mediating the association between obesity
and falls in elderly (143). Especially the relation between SB and obesity is interesting, as it
suggested that sarcopenia is catalysed by the amount of visceral and intramuscular fat
tissue (5). Gianoudis et al. (5) examined the relation between sarcopenia and SB, and found
that (i) higher overall daily sitting time resulted in a 33% increased risk of having sarcopenia
and (ii) TV viewing time was inversely related to total body and leg lean mass. This latter
finding was confirmed by another study, which suggested a direct relationship between
(lower limb) adiposity in older men and SB (42). Counter-intuitively, they also found that
increased and prolonged SB was associated with increased leg power and muscle quality
(42). Although one study (42) quantified SB objectively, the other used subjective measures

(5), which makes the validity of their study results questionable.

Besides muscle mass and fibre type composition, the power output, force generating
capacity and maximal shortening velocity are also influenced by the architecture of the
muscle (144-147). The muscle architecture is often described in terms of fascicle length
(Lr), pennation angle (8) and physiological cross-sectional area (PCSA), where the latter
provides a more accurate measure of the contractile area than muscle anatomical cross-

sectional area, especially for pennate muscles (as in this chapter) (148). PCSA is calculated
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by dividing muscle volume (Vm) by Lr, and thus represents the number of parallel
sarcomeres, which makes it directly proportional to maximum force production of the
muscle (144,149). However, this is not the force at the tendon as not all force is transmitted
according to the line of pull; to take that into account, the force has to be multiplied by the
cosine of the angle of pennation, and preferably so during a maximal contraction (150).
Clearly, skeletal Vim and architecture are highly significant for accurate understanding of
muscle health. With ageing, not only Vi, but also Lr, 6 and muscle PCSA are reduced (151),
where the reduction in 8 brings the muscle fascicles more in the line of pull and hence
attenuates some of the loss of power and force in old age (147). Apart from ageing, other
factors also have a significant impact on skeletal muscle, such as sex, body composition,
genetic constitution and training status (152—-156). Thus, it is important to consider some
or at best all these factors when examining any effects on muscle size and architecture in

a cross-sectional study of an aged population.

Overall, the literature has suggested several factors that contribute to muscle ageing, in
which SB potentially might play a role. For example, as stated above, lower habitual daily
activity levels might result in age-related muscle weakness (130). The same accounts for
increased intramuscular fat infiltration, as seen in obesity. SB is proposed to cause muscle
atrophy due to disuse, and to contribute to obesity due to a lack of movement (90).
Furthermore, SB measures appeared independent of (most) PA outcomes (Chapter 3).
Hence, SB might have adverse effects on skeletal muscle size and architecture,
independent of factors such as age, sex, body composition and concurrent PA. To our
knowledge, no study has yet comprehensively investigated the effect of SB on skeletal

muscle size and architecture in a cross-sectional young-old to older-old population.

Therefore, the main aim of this chapter was to examine the independent association
between SB and both resting skeletal muscle size and architecture in older adults. Different
measures of SB were studied, respectively (i) SB level classification, (ii) total daily SB and
(iii) daily SB patterns. It was hypothesised that muscle size and architecture are inferior in
older adults with high vs. low SB, regardless of adherence to PA guidelines. Moreover, both
total daily SB and daily SB patterns were hypothesised to be (detrimentally) associated with

muscle size and architecture in the elderly.
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Materials and methods

As described in Chapter 4 of this thesis, 105 healthy older adults participated in this cross-
sectional study. As per the test protocol, participants came to the university for a second
visit after the habitual daily activity monitoring week. During this visit, muscle size and

architecture of the gastrocnemius medialis (GM) was assessed.

SB and PA outcomes

See chapter 4 for a detailed overview of the SB and PA outcomes used in this chapter.
Muscle size

For the assessment of the GM size, participants were placed in a prone position with their
self-perceived dominant leg (preferred for single leg balance) extended and ankle fixed at
a 90° angle (no plantar- (PF) or dorsiflexion (DF)). Real-time B-mode ultrasonography
(Technos; Esaote S.p.A, Genoa, Italy) was used to assess GM muscle architecture. Firstly,
the GM origin (0% GM length) and Achilles tendon insertion into the calcaneus were
determined and marked by scanning these sites in a sagittal plane. The distance between
these two sites represented the muscle-tendon unit length (Lwru; cm). Next, the
myotendinous junction was determined. Muscle length (Lv; cm) was defined as the
distance between GM origin and the myotendinous junction (0-100% GM length). Knowing
Lv allowed to position the ultrasound probe at 25, 50 and 75% GM length, which were
marked on the skin using a water-soluble pen across the GM width. Thin strips (~2 mm) of
micropore tape (Transpore, 3M, USA) were placed in axillary lines (~3.5 cm apart) along the
GM length and across the three marked muscle sites (Figure 5.1). They served as echo-
absorptive markers for the reconstruction of the muscle sites’ anatomical cross-sectional
area (ACSA). Water-soluble transmission gel (Aquasonic 100; Parker Laboratories Inc.,
Fairfield, NJ, USA) was placed over the ultrasound probe head to improve acoustic coupling
during ultrasound scanning. Each section was then transversally scanned across the marked
pathway from the medial to the lateral GM border, during which the ultrasound probe (7.5-
MHz linear-array probe, 3.8 cm wide) was held perpendicular to the skin for the duration
of the scanning procedure. While moving the probe steadily, minimal pressure was applied
to avoid compression of muscle tissue. The ultrasound picture was recorded in real time
onto a computer (25 frames per second) using capturing software (Adobe Premier Pro
version 6), which allowed offline extraction of individual transverse frames. The shadows

projected by the micropore tape and anatomical markers were used to reconstruct the

67



ACSAs at each of the three GM lengths of interest (25 (ACSA25), 50 (ACSA50) and 75%
(ACSA75)) with photo editing software (Adobe Photoshop Elements, version 10) (Figure
5.2). The complete ACSAs were measured (cm?) using digitising software (Image) 1.45;
National Institutes of Health, Bethesda, MD, USA). Finally, muscle volume (Vm; cm3) was
calculated using the truncated cone method, which required the three measured ACSAs
plus two assumed ACSAs at the GM origin (0%) and insertion (100%). For the latter two, a
standard area of 0.5 cm? was used as previously done in our and other research groups. In
total, the volumes of four different cones (0 - 25, 25 - 50, 50 - 75, and 75 - 100%) were
calculated and summed for the muscle volume. The calculation of each cone volume was

carried out using the following formula:
Cone volume (cm3) = (h/3) * (ACSAbase + V(ACSApase ¥ ACSAtop) + ACSAtop)

where h = distance between the segments (cm), ACSApase = anatomical cross-sectional area

(cm?) of the cone base, and ACSA:o, = anatomical cross-sectional area (cm?) of the cone top.

Figure 5.1. Example of a marked leg.

68



Figure 5.2. Anatomical cross-sectional area of the gastrocnemius medialis at 50% muscle

length.

Muscle architecture

Architecture of the GM was measured with real-time B-mode ultrasonography while
participants were seated in an isokinetic dynamometer (Cybex Norm; Cybex International,
New York, NY, USA) with their hip at 85° angle, self-perceived dominant leg extended and
foot secured to the footplate of the dynamometer at 90° angle (no PF or DF). Non-
extending straps were used at the hip, distal thigh and chest to prevent extraneous
movements. Resting measures of Ly and 8 were obtained by placing the ultrasound probe
perpendicular to the dermal surface in the mid-sagittal plane at 50% of the GM muscle
length (Figure 5.3). Again, water-soluble transmission gel was placed over the ultrasound
probe head to improve acoustic coupling during ultrasound scanning. The ultrasound
picture was recorded in real time onto a computer using capturing software, from where
individual images were extracted for post-testing analyses. Lr and 8 were analysed on these
images using digitising software. To do so, three fascicles had to be clearly visible in the
area between the deep and superficial aponeuroses. Lr (cm) and 8 (°) (defined as the angle
between a fascicle’s orientation and the tendon axis) were measured for all three fascicles,
with the mean value recorded as the participant’s data. In cases where a chosen fascicle
extended beyond the scanning window, linear extrapolation was applied, but only if 260%
of the fascicle was visible (151). These extrapolations have previously been shown to be

valid (157).
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With having the Lv, Lr and Vm measured, calculation of normalised fascicle length (L¢-n) and
resting PCSA (cm?) was performed. The first was done by dividing Lr (cm) by Lm (cm), while

for the second Vi (cm3) was taken over L (cm).

2170772015
09:49:43_AH

Figure 5.3. Muscle architecture at 50% gastrocnemius medialis muscle length.

Lr, fascicle length; 8, pennation angle. Upper dashed line represents superficial aponeurosis, bottom dashed

line represents deep aponeurosis.
Reliability

Test-retest reliability for ultrasound scanning was investigated by intraclass correlation
coefficients (ICCs) for absolute agreement using a two-way mixed model. Reliability values
<0.5 were interpreted as poor, between 0.5 - 0.75 as moderate, between 0.75 - 0.9 as good
and >0.9 as excellent (158). ICCs for the main muscle size properties measured in this
chapter, were Ly = 0.941, ACSA25 = 0.824, ACSA50 = 0.910 and ACSA75 = 0.974. Main GM

muscle architecture outcomes appeared to have ICCs of 0.700 for Lr and 0.645 for O.
Statistical analyses

The outcome variables are displayed as mean (standard deviation (SD)) or median
(interquartile range (IQR)) (Table 5.1). Prior to conducting any inferential statistical analysis,
all outcome variables were checked for normality (either Kolmogorov-Smirnov or Shapiro-
Wilk test). In case of non-normality, the variables were log-transformed and the
distribution of the transformed data also checked. Since postural balance was performed
in a subsample only, their representativeness of the whole study sample was assessed

using an Independent samples T-test or Mann-Whitney U test. Potential covariates were
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analysed per outcome variable by running a univariate General Linear Model (GLM). When
a parameter appeared significant, it was treated as a covariate (Table 5.2). Since daily time
spent in sleep, SB and physical activity (PA) is constrained to 24 hours, we used
compositional data analysis for these accelerometer outcomes. This type of analysis has
been described in detail previously (118,119). Briefly, daily compositions are transformed
into isometric log-ratio coordinates, which are then unconstrained and allow the
application of traditional multivariate statistics. In this chapter, both single and multiple
linear regression analysis was used to study the associations with SB levels, proportional
total daily SB and PA, and daily SB pattern parameters. The identified covariates were
added to the regression models first, by using backward elimination, after which the
predictor(s) of interest was/were entered. During backward elimination, parameters were
retained if p-values were <0.20 (118). For all models, Durbin-Watson statistics (>1.0 and
<3.0) were checked to identify any correlation between the predictor and covariates, and
covariates with variance inflation factor 210.0 were removed from the regression model,
one at the time. The same was done with individual cases showing Cook’s distance 21.0. If
significant associations were observed for the compositional data, isotemporal substitution
was applied to the identified models including covariates, to calculate the relative effects
(%) of re-allocating 10 minutes from one behaviour to the other, with respect to the study
sample’s mean outcomes. Ten minutes was chosen, not only because of its beneficial
effects (for example when moderate-to-vigorous PA (MVPA) is performed) (159), but also

because it is a realistic amount of time to replace in most elderly.

All statistical analyses were performed using IBM SPSS Statistics for Windows, version 24.0

(IBM Corp., Armonk, NY, USA) and p-values <0.05 were considered statistically significant.
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Results
Descriptive statistics
Table 5.1 shows the study sample’s descriptive statistics of the GM size and architecture.

Table 5.1. Study sample descriptive statistics of resting gastrocnemius medialis muscle size

and architecture.

Resting GM variables Mean (SD) or "median (IQR)
Lvru (cm) 40.1 (3.5)
Lm (cm) 22.3(3.2)
ACSA25 (cm?) 11.6 (4.4)"
ACSAS50 (cm?) 15.0 (5.3)"
ACSA75 (cm?) 8.8 (4.6)"
Vi (cm3) 185.5 (82.7)"
Lr (cm) 7.4(1.2)
Le-N 0.34 (0.06)
0 (°) 15.2 (2.5)
PCSA (cm?) 26.0 (10.0)"

GM, gastrocnemius medialis; SD, standard deviation; IQR, interquartile range; Lmru, muscle-tendon unit
length; Lm, muscle length; ACSA, anatomical cross-sectional area; Vm, muscle volume; L, fascicle length; Lr-n,

normalised fascicle length; 8, fascicle pennation angle; PCSA, physiological cross-sectional area.

Covariate analysis

The variables identified as covariates in this chapter, were: age, sex, body height, body
mass, body mass index (BMI), skeletal muscle index (SMI), body fat mass, body lean mass,
body bone mineral content (BMC), adiposity class, falls risk assessment tool (FRAT) score,
menopause age, history of major illness, current resistance training, intake of dairy
products, current rheumatoid arthritis diagnosis, calcium/vitamin D supplement usage,
number of daily PA bouts, SB during PA bouts, standing during PA bouts, light-intensity PA
(LIPA) during PA bouts and MVPA during PA bouts (Table 5.2).
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Table 5.2. Correlation coefficients of covariate analysis.

LmTu Lw ACSA257 ACSA50" ACSA75" Vm' L Lrn G] PCSAT
Age -0.037 -0.287 -0.230 -0.193 -0.171 -0.289 -0.158 0.115 0.032 -0.258
Sex 0.649 0.338 0.167 0.226 0.304 0.339 0.144 -0.161 0.087 0.338
Ethnicity -0.156 -0.115 -0.101 -0.078 -0.156 -0.140 -0.138 -0.046 -0.079 -0.085
Body height 0.799 0.491 0.282 0.235 0.235 0.416 0.207 -0.220 -0.035 0.385
Body mass 0.508 0.347 0.500 0.580 0.487 0.593 0.174 -0.142 0.286 0.619
BMI 0.032 0.055 0.361 0.478 0.379 0.374 0.035 -0.026 0.347 0.433
SMI 0.489 0.347 0.431 0.490 0.482 0.543 0.193 -0.116 0.295 0.555
Fat mass -0.458 -0.263 0.085 0.137 0.021 -0.036 -0.089 0.127 0.129 -0.003
Lean mass 0.450 0.257 -0.081 -0.137 -0.020 0.035 0.086 -0.125 -0.117 0.002
BMC mass 0.397 0.252 -0.097 -0.101 -0.022 0.042 0.090 -0.116 -0.225 0.012
Adiposity class 0.062 -0.054 0.304 0.409 0.282 0.270 0.026 0.037 0.289 0.310
FRAT score -0.158 -0.195 -0.125 -0.148 -0.178 -0.219 -0.156 0.005 0.035 -0.167
Menopause age 0.050 0.128 0.039 -0.232 -0.280 -0.075 0.058 -0.080 -0.141 -0.121
Major illness history 0.232 0.159 0.025 0.143 0.152 0.161 -0.039 -0.170 -0.004 0.208
Statins usage 0.123 0.009 -0.005 0.002 0.073 0.021 0.039 0.029 0.017 0.002
Smoking -0.199 -0.241 -0.158 -0.072 -0.022 -0.179 -0.116 0.124 0.002 -0.150
Resistance training -0.005 0.124 0.083 -0.030 -0.048 0.051 0.213 0.104 -0.181 -0.053
Dairy products -0.041 0.039 0.040 -0.071 -0.076 -0.021 -0.244 -0.273 0.143 0.104
Caffeine intake 0.150 0.090 0.063 -0.008 0.030 0.059 0.099 0.016 -0.171 0.018
RA diagnosis 0.086 0.079 0.082 0.195 0.219 0.178 0.005 -0.058 0.084 0.204
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Daily alcohol intake 23 units 0.188 0.155 0.024 0.100 0.161 0.150 0.056 -0.085 0.010 0.168
Calcium/vitamin D

-0.205 -0.080 -0.079 -0.101 -0.090 -0.110 -0.010 0.048 -0.052 -0.128
supplements
PA bouts 0.129 0.140 0.040 0.112 0.104 0.137 0.211 0.072 -0.020 0.053
Total PA bouts time -0.083 0.008 0.065 -0.090 -0.048 -0.021 0.170 0.167 -0.095 -0.119
SB during PA bout -0.184 -0.097 -0.172 -0.127 -0.200 -0.180 -0.026 0.068 -0.094 -0.206
Standing during PA bout -0.111 0.049 0.023 0.084 0.100 0.088 -0.041 -0.077 0.267 0.125
LIPA during PA bout -0.269 -0.055 0.005 -0.006 -0.022 -0.029 0.007 0.053 -0.053 -0.033
MVPA during PA bout 0.291 0.036 -0.004 -0.019 -0.007 0.003 0.011 -0.022 -0.046 -0.006
MVPA:10 mins 0.042 0.007 0.108 -0.031 0.067 0.033 -0.004 -0.020 -0.003 0.040
sMVPA 0.177 0.049 0.039 -0.047 -0.040 0.006 0.123 0.084 -0.088 -0.064
Physical activity status 0.052 -0.006 0.036 -0.032 0.095 0.016 -0.048 -0.037 0.001 0.045

Lmtu, muscle-tendon unit length; Lm, muscle length; ACSA, anatomical cross-sectional area; Vm, muscle volume; L¢, fascicle length; Lr.n, normalised fascicle length; 8, fascicle pennation angle;
PCSA, physiological cross-sectional area; BMI, body mass index; BMC, bone mineral content; Skeletal muscle index; FRAT, falls risk assessment tool; RA, rheumatoid arthritis; PA, physical
activity; SB, sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity; sSMVPA, sporadic moderate-to-vigorous physical activity; TLog-

transformed. Bold values represent significances at P<0.05 level.
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SB levels

No significant associations were identified between SB levels and both resting GM size and
architecture in older adults, except for 8 (B = 0.21, R%,q4j= 0.036) (Table 5.3). However, these
associations disappeared when adjusting the regression models for covariates. The effect

sizes of the models with covariates appeared 0.105 < R?,q; < 0.834.

Table 5.3. Regression analysis results for sedentary behaviour levels.

Without covariates With covariates
B 95%-Cl B R%adj B 95%-Cl B R%adj
Lmtu 0.35 | -1.41 211 0.04 -0.008 | 0.20 -0.58 0.97 0.02 | 0.834%**
Lm 0.01 | -1.60 1.62 0.00 -0.010 | -0.07 | -1.18 1.05 -0.01 | 0.576**

ACSA25" | 0.05 -0.07 0.18 0.08 -0.003 | -0.01 -0.12 0.10 -0.02 | 0.297**

ACSA50" | 0.14 -0.01 0.29 0.18 0.023 0.04 -0.08 0.16 0.06 | 0.411%*

ACSA75% | 0.11 -0.06 0.28 0.13 0.006 0.03 -0.12 0.18 0.03 | 0.283**

Vm' 0.10 -0.07 0.27 0.11 0.004 0.04 -0.09 0.16 0.04 | 0.551%*
Lr -0.25 | -0.84 0.34 -0.08 -0.003 | -0.06 -0.63 0.51 -0.02 | 0.105**
Lr-n -0.01 | -0.04 0.02 -0.08 -0.003 | 0.00 -0.03 0.02 -0.02 | 0.209**
6 1.36 0.15 2.58 0.21* | 0.036* | 0.86 -0.29 2.01 0.13 | 0.232%**
PCSAT 0.13 -0.01 0.27 0.18 0.023 0.06 -0.04 0.16 0.08 | 0.540**

Lmtu, muscle-tendon unit length; Lm, muscle length; ACSA, anatomical cross-sectional area; Vm, muscle
volume; L, fascicle length; Len, normalised fascicle length; 8, fascicle pennation angle; PCSA, physiological

cross-sectional area; 95%-Cl, 95% confidence interval; TLog-transformed; *P<0.05; ** P<0.01.
Daily total SB and PA

Compositional data analysis showed significant associations between time spent in some
behaviours relative to the others for a number of muscle size and architecture outcomes
(Table 5.4). For example, MVPA was associated with Lvru (B =0.21, R2,4j= 0.063), both sleep
(B=-0.47) and SB (B = 0.60) (both R2,q4j= 0.038) with ACSA50, while sleep (B =-0.60) and SB
(B =0.71) (both R2,4j= 0.085) were also associated with ACSA75, and both sleep (B = -0.43)
and SB (B = 0.50) (both R?,4;= 0.020) again with V. For GM muscle architecture, sleep (B =
-0.45), SB (B = 0.58) and standing (B = 0.33) (all R%gq;= 0.110) were associated with 8, while
sleep (B =-0.41) and SB (B = 0.55) (both R%,q4;= 0.039) were associated with PCSA.

However, when adjusting the regression models for a variety of identified covariates, the
above associations changed significantly. Muscle size showed associations between as well
sleep (B=-0.49), SB (B=0.41) as LIPA (B=0.27) (all R%4j= 0.393) and ACSA75, while standing

(B=0.17, R%q4 = 0.578) was associated with Vm. Muscle architecture only showed
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associations for LIPA with L¢ (B=0.24, R%g; = 0.116) and Len (B=0.21, R%,qj = 0.224), and
standing with both 8 (B=0.31, R%4=0.296) and PCSA (B=0.21, R%,qj= 0.573). Effect sizes for
the models showing at least one significant association with time spent in a behaviour
relative to the others, were 0.116 < R%,4 < 0.578. The adjusted R? values for the other
models ranged from 0.318 through 0.831. Isotemporal substitution showed that the
relative effects of re-allocating 10 minutes from one behaviour to another within the mean
composition of the study sample’s total daily SB and PA (sleep = 35.6%, SB = 39.4%, standing
= 2.8%, LIPA = 11.5% and MVPA = 10.7%) for the models including behaviours significantly
associated with muscle size and architecture and adjusted for covariates, varied from -
0.041% through +0.033% (Table 5.5). These maximum changes were both seen in ACSA75,

when substituting 10 min of standing with sleep and vice versa respectively.

Table 5.4 Regression analysis results for daily total sedentary behaviour and physical

activity.
Without covariates With covariates
B B RZaqj B B RZadj

Sleep -1.22 -0.08 1.00 0.06
SB 1.70 0.16 -0.26 -0.02

LmTu Standing -0.95 -0.12 0.063* -0.06 -0.01 0.831%*
LIPA -1.38 -0.13 -0.40 -0.04
MVPA 1.85 0.21* -0.29 -0.03
Sleep -1.43 -0.10 1.72 0.12
SB 0.97 0.10 -1.89 -0.20

Lm Standing 0.17 0.02 -0.035 0.85 0.12 0.585%*
LIPA -0.08 -0.01 -0.34 -0.04
MVPA 0.37 0.05 -0.35 -0.04
Sleep -0.37 -0.32 -0.07 -0.06
SB 0.22 0.29 -0.08 -0.11

ACSA257 Standing 0.03 0.06 -0.009 0.04 0.07 0.318%*
LIPA 0.07 0.09 0.11 0.15
MVPA 0.05 0.07 0.00 0.00
Sleep -0.64 -0.47* -0.35 -0.26
SB 0.52 0.60* 0.20 0.22

ACSA50" Standing 0.07 0.11 0.038 0.07 0.10 0.426**
LIPA 0.05 0.05 0.16 0.18
MVPA 0.00 0.00 -0.07 -0.10

ACSA75Y Sleep -0.96 -0.60* 0.085* -0.78 -0.49%* 0.393**
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SB 0.73 0.71* 0.41 0.41*
Standing 0.15 0.19 0.13 0.17
LIPA 0.06 0.06 0.28 0.27**
MVPA 0.02 0.03 -0.04 -0.05
Sleep -0.68 -0.43* -0.17 -0.11
SB 0.50 0.50* 0.02 0.02
Vm' Standing 0.09 0.11 0.020 0.13 0.17* 0.578**
LIPA 0.05 0.05 0.08 0.08
MVPA 0.04 0.04 -0.06 -0.07
Sleep -1.00 -0.19 -1.13 -0.21
SB 0.22 0.06 0.36 0.10
L Standing -0.09 -0.03 -0.001 -0.19 -0.07 0.116**
LIPA 0.51 0.14 0.83 0.24*
MVPA 0.37 0.13 0.11 0.04
Sleep -0.04 -0.15 -0.07 -0.27
SB 0.00 0.02 0.04 0.23
Lr-N Standing -0.01 -0.04 -0.003 -0.01 -0.11 0.224**
LIPA 0.03 0.16 0.04 0.21*
MVPA 0.01 0.09 0.01 0.07
Sleep -5.16 -0.45* -3.22 -0.28
SB 4.24 0.58** 2.63 0.36
0 Standing 1.84 0.33** 0.110** 1.70 0.31** 0.296**
LIPA -0.67 -0.09 -0.32 -0.04
MVPA -0.25 -0.04 -0.80 -0.13
Sleep -0.53 -0.41* -0.20 -0.15
SB 0.46 0.55* 0.15 0.18
PCSAT Standing 0.10 0.15 0.039 0.13 0.21%* 0.573**
LIPA -0.01 -0.02 0.02 0.02
MVPA -0.02 -0.02 -0.10 -0.15

Lmtu, muscle-tendon unit length; Lm, muscle length; ACSA, anatomical cross-sectional area; Vm, muscle

volume; Ly, fascicle length; Lr-n, normalised fascicle length; 6, fascicle pennation angle; PCSA, physiological

cross-sectional area; SB, sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-

vigorous physical activity; TLog-transformed; *P<0.05; ** P<0.01.
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Table 5.5. Relative effects (%) on muscle size and architecture of re-allocating proportional
time spent in daily total sedentary behaviour and physical activity for regression models

showing significant associations.

-10 mins
Outcome variable +10 mins
Sleep SB Standing LIPA MVPA
Sleep +0.000 -0.007 -0.041 -0.013 -0.009
SB +0.007 +0.000 +0.013 +0.002 +0.006
ACSA757 Standing +0.033 -0.010 -0.006
LIPA +0.012 -0.002 +0.008 +0.000 +0.006
MVPA +0.009 -0.006 -0.006
Sleep -0.006
SB -0.002
Vm' Standing +0.005 +0.002 +0.000 +0.001 +0.003
LIPA -0.001
MVPA -0.004
Sleep -0.007
SB -0.002
Lr Standing -0.013
LIPA +0.007 +0.002 +0.016 +0.000 +0.004
MVPA -0.004
Sleep -0.008
SB +0.000
Lr-n Standing -0.014
LIPA +0.008 +0.000 +0.016 +0.000 +0.003
MVPA -0.003
Sleep -0.033
SB +0.006
0 Standing +0.026 -0.005 +0.000 +0.012 +0.016
LIPA -0.015
MVPA -0.019
Sleep -0.010
SB +0.001
PCSAT Standing +0.008 -0.001 +0.000 +0.003 +0.007
LIPA -0.004
MVPA -0.008

ACSA, anatomical cross-sectional area; Vv, muscle volume; Lf, fascicle length; Lr-n, normalised fascicle length;
6, fascicle pennation angle; PCSA, physiological cross-sectional area; SB, sedentary behaviour; LIPA, light-

intensity physical activity; MVPA, moderate-to-vigorous physical activity; Log-transformed.
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Daily SB pattern parameters

Only few significant associations with muscle architecture outcomes were found for SB
pattern parameters (Table 5.6). Lm was associated with Xi/2 (B = -0.20, R?%.q;= 0.030), while
Lr was associated with Breaks SB and Short SB bouts, as Wsoy% and F were associated (B =
0.21, R%4j= 0.035; B = 0.21, R%q;= 0.036; B = -0.24, R%,gj= 0.047 and B = 0.22, R%q;= 0.041

respectively).

As seen above, adding covariates to the regression models changed identified associations
significantly. Only two outcomes showed significant associations, one for muscle size (Lw)
and the other for muscle architecture (Lg). For Lm, an association was found with Breaks SB
(B = 0.14, R%qj= 0.590), Wsoy% (B = -0.21, R%qj= 0.607) and F (B = 0.17, R%q4;= 0.594), whereas
VM was associated with Wsoy (B = -0.16, R%.qj= 0.564) and Lr was associated with Breaks SB
(B =0.25, R%qj= 0.164), Short SB bouts (B = 0.24, R%q;= 0.159), W1/2 (B = -0.20, R%q;= 0.186)
and F (B = 0.24, R%gq; = 0.156). The adjusted R? values for the latter regression models
including covariates, varied from 0.155 through 0.607. Effect sizes for the other regression

models with covariates, were 0.208 < R%,4; < 0.837.
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Table 5.6. Regression analysis results for daily sedentary behaviour pattern parameters.

Without covariates With covariates
B 95%-Cl B R2adj B 95%-Cl B R2adj
Breaks SB 0.13 -0.07 0.33 0.13 0.007 0.06 -0.02 0.15 0.06 0.835%*
Short SB bouts 0.06 -0.12 0.24 0.06 -0.006 0.05 -0.02 0.13 0.06 0.833**
Long SB bouts 0.51 -0.04 1.05 0.18 0.023 0.05 -0.20 0.30 0.02 0.833**
a -5.52 -22.15 11.12 -0.06 -0.005 0.51 -6.62 7.65 0.01 0.833**
Lmru X1/2 -0.01 -0.02 0.00 -0.16 0.017 0.00 -0.01 0.00 0.00 0.834**
W12 0.03 -0.07 0.12 0.05 -0.007 0.02 -0.02 0.06 0.04 0.833**
Wso% -0.02 -0.06 0.01 -0.11 0.004 -0.01 -0.02 0.01 -0.04 0.832**
F -0.18 -1.27 0.91 -0.03 -0.009 0.27 -0.19 0.74 0.05 0.832**
Period -0.20 -0.48 0.08 -0.14 0.010 -0.10 -0.22 0.02 -0.07 0.837**
Breaks SB 0.13 -0.05 0.31 0.14 0.010 0.13 0.01 0.25 0.14* 0.590**
Short SB bouts 0.10 -0.07 0.26 0.12 0.004 0.11 0.00 0.22 0.13 0.587**
Long SB bouts 0.14 -0.36 0.64 0.06 -0.007 0.01 -0.36 0.39 0.01 0.576**
a 2.94 -12.24 18.12 0.04 -0.008 8.05 -2.33 18.43 0.10 0.584**
Lm X1/2 -0.01 -0.02 0.00 -0.20* 0.030* -0.00 -0.01 0.00 -0.07 0.580**
W12 -0.01 -0.10 0.08 -0.03 -0.009 -0.03 -0.09 0.04 -0.06 0.579**
Wso% -0.03 -0.06 0.00 -0.17 0.019 -0.04 -0.06 -0.01 -0.21** 0.607**
F 0.23 -0.76 1.22 0.05 -0.008 0.84 0.16 1.53 0.17* 0.594**
Period -0.03 -0.29 0.23 -0.02 -0.009 -0.00 -0.19 0.19 -0.00 0.576**
ACSA25" | Breaks SB 0.00 -0.01 0.02 0.04 -0.008 0.00 -0.01 0.01 0.02 0.298**
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Short SB bouts 0.00 -0.01 0.01 0.03 -0.009 0.00 -0.01 0.01 0.06 0.300**
Long SB bouts 0.01 -0.03 0.05 0.03 -0.009 -0.02 -0.06 0.01 -0.12 0.309**
a -0.13 -1.34 1.09 -0.02 -0.009 -0.24 -1.27 0.80 -0.04 0.293**
X1/2 0.00 0.00 0.00 -0.04 -0.008 0.00 0.00 0.00 -0.02 0.302**
W12 0.00 -0.01 0.00 -0.09 -0.002 0.00 -0.01 0.01 -0.01 0.297**
Wso% 0.00 0.00 0.00 -0.06 -0.006 0.00 0.00 0.00 -0.09 0.304**
F 0.00 -0.08 0.08 0.00 -0.010 0.05 -0.02 0.12 0.12 0.311**
Period 0.00 -0.02 0.02 0.02 -0.009 0.01 0.00 0.03 0.14 0.314**
Breaks SB 0.01 -0.01 0.03 0.11 0.003 0.01 0.00 0.02 0.12 0.425**
Short SB bouts 0.00 -0.01 0.02 0.05 -0.007 0.01 0.00 0.02 0.12 0.422**
Long SB bouts 0.04 -0.01 0.08 0.16 0.016 0.00 -0.04 0.04 -0.01 0.408**
a 0.16 -1.26 1.57 0.02 -0.009 0.57 -0.58 1.72 0.08 0.414**
ACSAS0" | X2 0.00 0.00 0.00 -0.05 -0.007 0.00 0.00 0.00 -0.07 0.406**
W12 -0.01 -0.01 0.00 -0.14 0.010 0.00 -0.01 0.00 -0.05 0.411**
Wso% 0.00 0.00 0.00 -0.01 -0.010 0.00 0.00 0.00 -0.09 0.415**
F -0.03 -0.12 0.06 -0.06 -0.006 0.05 -0.02 0.13 0.11 0.419**
Period -0.02 -0.04 0.01 -0.14 0.010 0.00 -0.02 0.02 -0.01 0.408**
Breaks SB 0.01 -0.01 0.03 0.10 0.001 0.01 -0.01 0.02 0.08 0.288**
Short SB bouts 0.00 -0.01 0.02 0.05 -0.007 0.01 -0.01 0.02 0.07 0.287**
ACSA75" | Long SB bouts 0.04 -0.01 0.10 0.15 0.014 0.00 -0.05 0.05 0.01 0.282**
o 0.41 -1.23 2.05 0.05 -0.007 0.52 -0.87 1.92 0.06 0.286**
X1/2 0.00 0.00 0.00 0.16 0.015 0.00 0.00 0.00 -0.09 0.286**
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W12 -0.01 -0.01 0.00 -0.11 0.002 0.00 -0.01 0.01 -0.03 0.283**
Wso% 0.00 0.00 0.00 -0.02 -0.009 0.00 -0.01 0.00 -0.12 0.296**
F -0.02 -0.13 0.08 -0.04 -0.008 0.05 -0.04 0.15 0.10 0.291**
Period -0.01 -0.04 0.01 -0.10 0.001 0.01 -0.01 0.04 0.09 0.289**
Breaks SB 0.01 -0.01 0.03 0.14 0.009 0.01 -0.00 0.03 0.12 0.564**
Short SB bouts 0.01 -0.01 0.03 0.09 -0.001 0.01 -0.00 0.02 0.12 0.563**
Long SB bouts 0.03 -0.02 0.09 0.12 0.005 -0.00 -0.04 0.04 -0.01 0.549%**
a 0.31 -1.31 1.93 0.04 -0.008 0.60 -0.55 1.75 0.07 0.554%**
V' X1/2 0.00 0.00 0.00 -0.14 0.009 -0.00 -0.00 0.00 -0.09 0.557**
W12 -0.01 -0.01 0.00 -0.11 0.003 -0.00 -0.01 0.00 -0.06 0.553**
Wso% 0.00 -0.01 0.00 -0.10 0.000 -0.00 -0.01 -0.00 -0.16* 0.564**
F 0.00 -0.11 0.10 -0.01 -0.010 0.08 -0.00 0.15 0.14 0.565**
Period -0.01 -0.04 0.02 -0.08 -0.003 0.00 -0.02 0.02 0.01 0.549**
Breaks SB 0.07 0.01 0.14 0.21* 0.035* 0.09 0.02 0.15 0.25** 0.164**
Short SB bouts 0.07 0.01 0.12 0.21* 0.036* 0.08 0.02 0.13 0.24** 0.159**
Long SB bouts -0.06 -0.25 0.12 -0.07 -0.005 0.00 -0.18 0.18 0.00 0.155**
a 5.31 -0.17 10.79 0.19 0.025 3.94 -1.51 9.40 0.14 0.167**
Lr X1/2 0.00 -0.01 0.00 -0.08 -0.004 0.00 0.00 0.01 0.07 0.174**
W12 0.00 -0.04 0.03 -0.02 -0.009 -0.03 -0.07 0.00 -0.20* 0.186**
Wso% -0.01 -0.03 0.00 -0.24* 0.047* -0.01 -0.02 0.00 -0.16 0.172**
F 0.42 0.06 0.77 0.22* 0.041* 0.44 0.10 0.78 0.24* 0.156**
Period 0.03 -0.07 0.12 0.06 -0.006 0.04 -0.06 0.13 0.08 0.160**
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Breaks SB 0.00 0.00 0.00 0.07 -0.004 0.00 0.00 0.00 0.07 0.214**
Short SB bouts 0.00 0.00 0.00 0.10 -0.001 0.00 0.00 0.00 0.07 0.213**
Long SB bouts 0.00 -0.01 0.00 -0.11 0.003 0.00 -0.01 0.01 0.00 0.208**
a 0.18 -0.09 0.44 0.13 0.007 0.11 -0.12 0.35 0.08 0.215**
Lr-n X172 0.00 0.00 0.00 -0.01 -0.010 0.00 0.00 0.00 0.09 0.218**
W12 0.00 0.00 0.00 0.02 -0.009 0.00 0.00 0.00 -0.03 0.209**
Wso% 0.00 0.00 0.00 -0.07 -0.005 0.00 0.00 0.00 -0.07 0.213**
F 0.02 0.00 0.03 0.17 0.020 0.01 -0.01 0.02 0.09 0.217**
Period 0.00 0.00 0.01 0.08 -0.003 0.00 0.00 0.00 0.02 0.209**
Breaks SB -0.01 -0.15 0.12 -0.02 -0.009 0.01 -0.11 0.14 0.02 0.278**
Short SB bouts -0.04 -0.17 0.08 -0.07 -0.005 0.00 -0.11 0.11 0.00 0.278**
Long SB bouts 0.27 -0.11 0.66 0.14 0.010 0.13 -0.23 0.48 0.06 0.281**
a -8.87 -20.51 2.76 -0.15 0.012 -7.42 -17.41 2.58 -0.12 0.293**
0 X1/2 0.00 -0.01 0.01 0.07 -0.005 0.00 0.00 0.00 -0.05 0.280**
W12 -0.03 -0.10 0.04 -0.08 -0.004 -0.01 -0.07 0.05 -0.01 0.278**
Wso% 0.02 -0.01 0.04 0.13 0.008 0.02 0.00 0.04 0.15 0.286**
F -0.55 -1.31 0.20 -0.14 0.010 -0.23 -0.93 0.47 -0.06 0.281**
Period -0.13 -0.33 0.06 -0.13 0.008 -0.08 -0.26 0.10 -0.08 0.284**
Breaks SB 0.00 -0.01 0.02 0.05 -0.007 0.00 -0.01 0.02 0.05 0.536**
bCsAT Short SB bouts 0.00 -0.01 0.01 0.00 -0.010 0.00 -0.01 0.01 0.05 0.536**
Long SB bouts 0.04 0.00 0.08 0.17 0.020 0.00 -0.03 0.03 -0.01 0.534**
a -0.35 -1.69 1.00 -0.05 -0.007 -0.03 -1.01 0.95 0.00 0.534%**
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X1/2 0.00 0.00 0.00 0.19 0.028 0.00 0.00 0.00 -0.10 0.538%**
W12 -0.01 -0.01 0.00 -0.13 0.007 0.00 -0.01 0.00 -0.04 0.535%*
Wso% 0.00 0.00 0.00 0.01 -0.010 0.00 0.00 0.00 -0.03 0.534**
F -0.06 -0.14 0.03 -0.13 0.006 0.01 -0.05 0.08 0.03 0.534**
Period -0.02 -0.04 0.01 -0.13 0.008 0.00 -0.02 0.02 -0.01 0.534**

Lmtu, muscle-tendon unit length; Lm, muscle length; ACSA, anatomical cross-sectional area; Vm, muscle volume; Lf, fascicle length; Lr-n, normalised fascicle length; 6, fascicle pennation angle;
PCSA, physiological cross-sectional area; Breaks SB, sedentary behaviour interruptions with >2 consecutive minutes upright activity; Short SB bouts, sedentary behaviour bouts <30 minutes
duration; Long SB bouts, sedentary behaviour bouts 230 minutes duration; a, scaling parameter sedentary bout length distribution; X1/2, median SB bout duration; Wi/, fraction total
sedentary time accumulated in bouts longer than median sedentary bout length; Wsox%, half of total SB is accumulated in SB bouts < this duration; F, fragmentation index of SB bouts and

total SB; Period, mean period between SB bouts; 95%-Cl, 95% confidence interval; TLog-transformed; *P<0.05; ** P<0.01.
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Discussion

Although associations between measures of SB and skeletal muscle outcomes in older
adults were identified with non-adjusted regression models, only few associations
remained after correcting for covariates. More specifically, general SB was not associated
with GM muscle size and architecture in this group of elderly. In addition, total daily time
spent in SB relative to other daily behaviours, showed no associations with any resting
skeletal muscle outcome, except for a positive instead of the hypothesised negative
association with ACSA75, meaning that the ACSA at 75% GM length will increase with more
SB. Looking into more detail we found, however, that Ly was positively associated with
more breaks in SB, bouts of longer duration that make up 50% of total daily SB and higher
ratio of SB bouts to total SB, whereas Vv is negatively associated with bouts of longer
duration that make up 50% of total daily SB and Lr increased with a higher number of either
SB breaks, SB bouts <30 minutes duration or ratio of SB bouts to total SB and decreased
with a greater fraction of total sedentary time accumulated in bouts longer than the
median sedentary bout length. Apart from SB, more proportional time spent sleeping was
found to decrease ACSA at 75% GM length in elderly, while the opposite occurred with time
spent in LIPA relative to other daily behaviours. Furthermore, increased time spent
standing relative to other daily behaviours will increase not only GM volume in older adults,
but also 8 and PCSA. Finally, higher proportions of daily time spent in LIPA was suggested
to increase Lr and Lr.n. Overall, these findings show that long bouts of SB with little
interruptions have a negative impact on muscle, which can be counteracted by performing

regular light physical activity.

The fact that no significant associations were observed for SB levels, might result from the
classification used, which is very general and only requires daily total SB to distinguish
between low and high SB (160). Since total SB can be similar between people, but patterns,
and thus health associations, completely different, using overall volume measures is
inconclusive (9). Moreover, with SB being part of a composition of daily activity behaviours,
focusing on SB volume alone may lead to incorrect results (118). Therefore, we also used
both compositional data analysis and studied SB pattern parameters to assess whether this

would show any associations with resting muscle size and architecture.

Nevertheless, the observation of increased ACSA75 with more time spent in SB relative to
other behaviours seems counter-intuitive. However, the negative association between SB
and body mass in elderly (Chapter 1), imposing a larger load on the muscle may well explain
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this finding. This is in agreement with previous literature, which proposed that increased
fat mass induce extra loading on skeletal muscles of the lower limb (161), resulting in higher
absolute muscle strength, possibly due to greater total body mass (162). This was
systematically demonstrated by Tomlinson et al. (153) who found positive correlations (all
r 20.39) between measures of body composition (e.g. BMI, body mass and fat mass) and
GM 6, Vm and PCSA. However, since extensive covariate analysis was performed prior
regression model development in this chapter, the finding of increased ACSA75 with more
time spent in SB relative to other behaviours cannot be explained by any of the studied
covariates. Since both SB and ageing potentially result in skeletal muscle fat infiltration, this
could also explain an increase in ACSA75. In this chapter muscle morphology was
determined, but not composition. Thus, it is possible that the increase in ACSA is due to fat
infiltration rather than muscle tissue growth. Unfortunately, we only assessed whole-body
composition instead of lower limb too. Nevertheless, the results of time re-allocation for
SB showed only very small relative effects on ACSA75, respectively <0.013% increase when
adding 10 minutes to daily total SB and <0.010% decrease when losing 10 minutes of SB.
Therefore, it can be questioned whether daily total SB will noticeably affect GM size, in this
case ACSA75. The same applies to all the identified associations with other daily total
behaviours, such as sleep, standing and LIPA. Their relative effects on a variety of muscle
size and architecture outcomes for substituting 10 minutes from one behaviour to another,
do not exceed 0.041%. Given that mechanical overload, as in resistance training, is
important to achieve changes in muscle size and architecture (163), it seems plausible that
the relative effects of habitual daily activities, which generally lack overloading, are at best
very small only. Interestingly, most of the identified associations with compositional data
analysis (75.0%) incorporate either standing or LIPA. However, it is important to note that
both behaviours have shown issues with accurate classification previously (Chapter 2 & 3),

which may affect results.

Apart from total daily SB, it is important to focus on daily SB patterns, as total amounts
could be similar but with different patterns. Generally, our results did not show any effects
of SB pattern parameters on GM muscle size and architecture, except for Lm, Vm and Lr. The
first outcome appeared to increase with better daily SB patterns, in this case more SB
breaks, shorter bout durations making up 50% of total SB and higher ratio of SB bouts to
total SB. Similarly, Vm was found to increase when shortening the bout durations making
up 50% of total SB. With regards to Lf, this outcome appeared to become longer with

‘better’ daily SB patterns, which is a likely and positive result to note. However, it is
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important to stress that no associations were found for Lrn, wWhich suggests that the
identified associations between daily SB pattern parameters and Lr should be interpreted
with caution. This is particularly true because the average L in this chapter is higher than
reported in previous studies which also examined GM muscle architecture in elderly
(127,153,164,165). However, these studies did not assess L¢ (or any other size and

architecture outcomes) with the foot in a 90° angle and an extended leg, as we did.

Having good-to-excellent ICCs for most (4 out of 6) of the muscle outcomes tested in this
chapter showed that the collected data was reliable. Although, the remaining two
outcomes (Lr and 8) showed lower ICCs of 0.700 and 0.645 respectively, these values could
still be interpreted as moderate reliability. Therefore, the data in this chapter was generally

regarded as being of acceptable quality, which is a major strength.

Conclusion

Regardless of the few identified associations, considerable changes in resting GM size and
architecture due to SB seem questionable in older adults. What the implication of
relationships and exact associations with other GM outcomes will be, such as muscle force

generating capacity, is yet not clear.
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Chapter 6. The association of sedentary behaviour with skeletal muscle

strength, specific force and function in older adults

Introduction

According to the World Health Organization (WHO), over the next decades the proportion
of older adults in the worldwide population will nearly double (from 12% to 22%). With this
group being highly sedentary (27,28), research into the physiological effects of sedentary
behaviour (SB) is becoming more prevalent. Although SB is defined as any waking
behaviour characterised by an energy expenditure <1.5 times the resting metabolic rate
while in a sitting, reclining or lying posture (10), it could also be thought of as infrequent
skeletal muscle contractile activity (166). This is important as the literature suggests that

SB affects skeletal muscle independent of the level of physical activity (90).

As the increased longevity results in an ever-increasing proportion of the population at
older age, muscle ageing becomes more and more an issue as it plays an important role in
the maintenance of physical independence and hence quality-of-later life. Skeletal muscle
ageing is associated with decreased agonist activation capacity, increased antagonist co-
activation, decreased muscle mass, smaller pennation angle and fascicle length, and
reduced muscle strength (127,130,151). These age-related changes in muscle properties,
often summarised under the term sarcopenia, are arguably the most significant challenges
in the elderly (136). Like SB, sarcopenia increases with ageing and affects anybody from the
highly active to the highly sedentary (167,168). Sarcopenia is not only considered a major
factor in the decline of muscle strength, but also function (38,168,169). This results in major
functional limitations for activities of daily living, increased morbidity, reduced quality of
life, and higher rates of hospitalisation and mortality after falling in older adults
(36,40,116,137). Further age-related muscular changes, are: larger proportion of non-
contractile material and lower muscle specific force (force per unit physiological cross-
sectional area (PCSA)) (127,170), which are likely caused by increased intramuscular fat
(116). Interestingly, it is suggested that due to a combination of some ageing-induced
changes, such as lower maximal motor unit discharge rates, slower contractile properties
and relatively greater reliance on oxidative metabolism, elderly actually have better muscle
fatigue resistance than young people (171). Nevertheless, with a well-established link
between low levels of physical activity (PA) and obesity, it is expected for SB to play a role

in weakening of the muscles.
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Although PA has previously been linked to muscle strength and force, with previous
research showing PA to be a modulator of neural activation (172) and that reduced PA
levels can account for decreased fibre-specific tension (173), SB has only received little
scientific attention to date. Especially in the elderly, the proof of SB effects on
musculoskeletal health is scarce and in some cases counterintuitive. Generally, evidence
exists that SB is not only associated with lower lean and higher fat mass, an increased risk
of sarcopenia and limited physical function, but also increased leg power and muscle
quality (for a review, read Wullems et al. (90)). However, the authors presenting the latter
finding warned to interpret their results with caution. Of the studies on SB in elderly, most
focus on functional fitness, whereas the studies on musculoskeletal health have limitations.
For example, Gianoudis et al. (5) used self-reported measures of SB and uncorrected
muscle strength, while Chastin et al. (42) used muscle power and lower limb fat free mass
to define muscle quality. Thus, neither of both studies determined specific muscle force
(normalising fascicle force to PCSA), which allows direct comparison between individuals
after correcting for confounding variables such as muscle architecture, tendon moment
arm length or neural drive (127). Also, no studies have used compositional data analysis to
investigate associations between SB and muscle properties yet. Therefore, the true
association between SB and muscle properties in older adults is still unknown. Since
physical disability is largely determined by the lower limbs (36) and calf muscle-tendon
properties may explain the majority of variance in postural balance for example (44),

investigation of the calf muscle-tendon complex is important in the oldest age group.

The aim of the present study was to examine the association of SB with gastrocnemius
medialis (GM) muscle strength, force and function in elderly. Associations were determined
for different SB outcomes, respective total daily SB level, proportional total daily SB, and
daily SB pattern parameters. It was hypothesised that (i) intrinsic GM muscle strength, (ii)
GM specific force, and (iii) GM function are inferior when exhibiting high SB levels,
regardless of being sufficiently physically active or not. Additionally, both proportional total
daily SB and daily SB pattern parameters were expected to be detrimentally associated with

all studied GM muscle outcomes in older adults.

Materials and methods

As described in Chapter 4 of this thesis, a total of 105 healthy older adults participated in

this cross-sectional study. Per protocol, participants came to the university twice, at the
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first visit they were familiarised with the testing equipment and an activity monitor was
provided, while on the second visit (after a week of physical behaviour monitoring) they

underwent muscle strength and function tests.

SB and PA outcomes

See chapter 4 for a detailed overview of the SB and PA outcomes used in this chapter.
Muscle strength

Participants sat on the chair of an isokinetic dynamometer with their hip at 85° angle, self-
perceived dominant leg (preferred leg for single leg balance) extended and foot secured to
the footplate of the dynamometer and the lateral malleolus aligned with the axis of
rotation. Non-extending straps were used at the hip, distal thigh and chest to prevent
extraneous movements. After a series of five submaximal plantar- (PF) and dorsiflexion (DF)
contractions that served as a warm-up (50 - 75% self-perceived maximum voluntary
contraction (MVC) with 10% increments), the ankle range of motion (RoM) was assessed.
The ankle angles included the neutral position (no PF or DF) and angles of 10° increments
towards, and including, maximum PF and DF. In every angle participants performed two
rapid isometric MVCs of 2 - 3 second duration, whilst verbal encouragement and
biofeedback were provided by the experimenter during each effort. Per trial, a combination
of PF and DF MVC was performed, with 30-60 seconds between the trials (Figure 6.1). In
case >10% difference was observed for PF, extra MVCs (maximum four in total) were
performed to obtain the true maximal torque values. The PF/DF combination with the
highest PF value was used for data analyses. Performing the above test, allowed to

determine torque-angle relationships per participant.

To calculate true PF torques, antagonist co-activation was determined using surface
electromyography (sEMG). After appropriate skin preparation, two bipolar Ag-AgCl sSEMG
electrodes (Ambu A/S, Ballerup, Denmark) were placed 20 mm apart at the proximal third
of the tibialis anterior (TA) muscle belly on the line between the caput fibulae and the
medial malleolus, with a reference electrode positioned on the ankle (SENIAM). The sSEMG
signal was sampled at 2,000 Hz and filtered using high- and low-pass filters set at 10 and
500 Hz, respectively (plus notch filter at 50 Hz). The median root mean square (RMS) of the
SEMG signal was calculated over 1s around the peak torque during each rapid PF and DF
MVC. Eventually, antagonist torque output during PF MVC was calculated by dividing TA
SEMG RMS during PF MVC by TA sEMG RMS during DF MVC, and multiplying DF MVC torque
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by this ratio. Multiplying the same ratio by 100 resulted in percentage TA co-activation. The
sum of the antagonist torque and PF MVC torque represented the net PF MVC (nMVC;
N-m).

Figure 6.1. Rapid (left) and ramped (right) maximum voluntary contraction.

Top traces represent torque production during plantar- and dorsiflexion, middle traces represent

gastrocnemius medialis muscle activation and bottom traces represent tibialis anterior activation.

Muscle volume and intrinsic strength

For the assessment of muscle volume, the set-up used was as described in Chapter 4 of this
thesis. Briefly, B-mode ultrasonography (Technos; Esaote S.p.A, Genoa, ltaly) was used to
determine the anatomical cross-sectional area (ACSA) at three sites of the GM muscle (25,
50 and 75% GM length). Using these ACSAs muscle volume can be estimated using the

truncated cone formula.

Intrinsic GM muscle strength (N-m-cm-3) was calculated by dividing the PF net MVC by the

GM muscle volume.
Muscle specific force

The setup for the measurement of GM architecture has also been described in Chapter 5,
however, only partially. In short, B-mode ultrasonography was used to allow
measurements of GM fascicle length (Lf) and pennation angle (8) during PF isometric MVC.
To do so, participants sat on the chair of the isokinetic dynamometer, as described above,
and were instructed to perform a ramped PF isometric MVC over 5 seconds with their ankle
in a neutral position (0°; no PF or DF). Each ramped PF MVC was followed by a rapid DF
MVC, while verbal encouragement and biofeedback were provided by the experimenter

during each effort (Figure 6.1). To obtain true values, a total of three MVC combinations
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were performed, with 30 - 60 seconds between the trials. If >10% difference was observed
between all values, extra ramped MVCs were executed (maximum five in total). The trial
with the highest PF torque was used for data analysis. Probe placement, ultrasound
recording, and extraction and analysis of individual images at PF isometric MVC was as
described in Chapter 5. Synchronisation of the muscle strength data and ultrasound
recording was performed using a square wave signal generator. Again, SEMG was used in

these trials to allow the calculation of net PF MVC.

Next, Achilles tendon (AT) force (N) was calculated by dividing the net PF MVC by the
tendon moment arm in the neutral ankle angle (0°) (m). The latter was assessed by taking
an instant vertebral assessment in high definition (IVA-HD) scan of the ankle in two
positions using single-energy X-ray absorptiometry (SXA), at respectively 10° PF and 10° DF
(174). To keep the ankle in a fixed position, the foot was strapped to a tool that set the joint
angle. A sagittal image of the ankle joint was taken twice (one per angle) with the lateral
malleolus placed on the bed and within the imaging zone. Anatomical landmarks of the
talus were used to overlap the two images and determine the ankle joint centre of rotation.
Additionally, a straight line was used to identify the midline of the Achilles tendon on both
images. Then, another straight line was drawn on both images from the centre of rotation
perpendicular to the Achilles tendon midline, which represented the tendon moment arms
for 10° PF and 10° DF (Figure 6.2). Adapted from the Reuleaux method (175), the tendon
moment arm for the 0° angle was calculated as the average of the 10° PF and 10° DF tendon

moment arms.

It was assumed that 20.3% of the AT force was generated by the GM (176). Calculation of
the GM’s contribution combined with the measured 6 during the ramped PF MVC allowed
determination of fascicle force (N). Fascicle force was calculated by dividing the GM muscle
force by the cosine of 6. Finally, GM specific force (N-cm2) was calculated by dividing
fascicle force by PCSAmvc (cm?), where PCSAmvc is determined as the ratio of resting GM

muscle volume over Lg during ramped PF isometric MVC.
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Figure 6.2. Example of the Achilles tendon moment arm analysis.

Dashed lines represent the Achilles tendon moment arms in both 10° plantar- and dorsiflexion.

Voluntary muscle activation

The level of voluntary activation (VA) was measured using supramaximal single twitch
stimulation during a rapid PF MVC with the joint set at 0°. Electrical muscle stimulation was
administered percutaneously to the PF muscle group via two 50 x 100 mm self-adhesive
electrodes (American Imex, Irvine, CA, USA) placed distal to the popliteal crease (cathode)
and the myotendinous junction of the soleus (anode). The amplitude of the stimulus was
determined by administering twitches starting from 50 mA (with subsequent increments
of 10 — 50 mA until no further increase in twitch torque was elicited), while the participant
sat on the chair of the dynamometer in the same position as earlier, but in a relaxed state
(Figure 6.3). The supramaximal stimulation (200 ps pulse width and 400 volts) singlet was
applied during the plateau phase of a rapid PF isometric MVC, which was performed three
times with 60 seconds between the trials (Figure 6.3). Singlets were chosen because several
studies reported no differences when comparing single twitches, doublets, quadruplets
and quintuplets and to minimise discomfort in older adults (177-179). The level of
voluntary muscle activation was calculated for the highest of three PF MVCs, applying the
interpolated twitch technique, which is given by 1 minus the ratio of the superimposed
twitch torque over the resting twitch torque. Multiplying the result by 100 gives the

percentage of voluntary agonist muscle activation.

94



Figure 6.3. Twitch-response curve (left) and supramaximal stimulation applied during

maximum voluntary contraction (right).

Top traces represent torque production, while bottom traces represent applied stimulations.

Muscle fatigue

Participants were asked to perform two muscle fatigue protocols, one isometric and the
other isokinetic. For the first protocol, participants had to sustain a submaximal isometric
PF contraction (at 75% MVC) for as long as possible, up to a maximum of 60 seconds with
their ankle in a neutral position (0°), as described above (Figure 6.4). SEMG allowed to
measure GM muscle recruitment during the first and last 5 seconds of the trial (or 8.33%
of the trial duration if <60 seconds). The captured raw sEMG data of both bouts underwent
Fast Fourier Transformation to determine their median power frequencies (MPF), which is
a well-known and frequently used method for assessment of muscle fatigue using SEMG
(180,181). Generally, muscle fatigue is featured by several outcomes such as an increase in
EMG amplitude or a decrease in MPF. The outcomes taken from this trial, were: trial
duration (s), relative change in MPF ((MPFeno - MPFstart)/MPFstagt) and rate of change in
MPF (relative change in MPF normalised for trial duration). Data was only analysed from
participants who managed to sustain at 75% MVC level for the whole trial duration. Finally,

data from 44 participants was left to analyse.

After 5-10 minutes rest, a single PF isometric MVC was performed in the neutral angle, to
check whether participants were recovered from the isometric fatigue protocol. When the
torque output of the PF MVC was within 10% range of previous recorded MVCs for the
same ankle angle, the participant was deemed recovered. For the isokinetic protocol,
participants were instructed to perform continuous rapid PF and DF each at a speed of

149°-s* and 300°-s* respectively (Figure 6.4). These speeds were chosen because the first
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appeared the optimal speed for triceps surae torque-velocity during PF in elderly (126),
while the latter was a relatively easy speed to perform DF without fatiguing the TA quicker
than the GM. Participants were asked to perform the trial for as long as possible, but
allowed to stop in case of too much discomfort as a result of fatigue or when three
consecutive PFs showed torque output <50% of the average torque over the first three PFs
at the start of the trial. The same outcomes as in isometric fatigue were calculated over the
first and last three PFs for a total of 101 participants. Average values per both series of

three PFs were recorded as the start and end measurement of the isokinetic trial.
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Figure 6.4. Isometric (left) and isokinetic (right) fatigue protocols.

Top traces represent torque production during plantar- and dorsiflexion, middle traces represent

gastrocnemius medialis muscle activation and bottom traces represent tibialis anterior activation.
Reliability

Test-retest reliability was determined for the main outcomes under study in this chapter,
using intraclass correlation coefficients (ICCs) for absolute agreement using a two-way
mixed model. Reliability values <0.5 were interpreted as poor, between 0.5 - 0.75 as
moderate, between 0.75 - 0.9 as good and >0.9 as excellent (158). Lr-mvc showed an ICC of
0.910, while Bmvc was 0.878. The ICC for the measurement of tendon moment arm was
0.733, however for both PF torque values measured during the rapid and ramped MVCs in
the neutral ankle angle the ICCs were 0.997 and 0.989 respectively. Determination of the
peak angle and accompanying torque appeared reliable with ICCs of 0.940 and 0.993.
Finally, repeated measurements for TA coactivation and GM activation capacity had ICCs

of 0.925 and 0.891.
Statistical analyses

The outcome variables are displayed as mean (standard deviation (SD)) or median

(interquartile range (IQR)) (Table 6.1). Prior conducting any inferential statistical analysis,
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all outcome variables were checked for normality (either Kolmogorov-Smirnov or Shapiro-
Wilk test). In case of non-normality, the variables were log-transformed and the
distribution of the transformed data also checked. Potential covariates were analysed per
outcome variable by running a univariate General Linear Model (GLM). When a parameter
appeared significant, it was treated as a covariate (Table 6.2-3). Since daily time spent in
sleep, SB and physical activity (PA) is constrained to 24 hours, we used compositional data
analysis for these accelerometer outcomes. This type of analysis has been described in
detail previously (118,119). Briefly, daily compositions are transformed into isometric log-
ratio coordinates, which are then unconstrained and allow the application of traditional
multivariate statistics. In this chapter, both single and multiple linear regression analysis
was used to study the associations with SB levels, proportional total daily SB and PA, and
daily SB pattern parameters. The identified covariates were added to the regression models
first, by using backward elimination, after which the predictor(s) of interest was/were
entered. During backward elimination, parameters were retained if p-values were <0.20
(118). For all models, Durbin-Watson statistics (>1.0 and <3.0) were checked to identify any
correlation between the predictor and covariates, and covariates with variance inflation
factor 210.0 were removed from the regression model, one at the time. The same was done
with individual cases showing Cook’s distance 21.0. If significant associations were
observed for the compositional data, isotemporal substitution was applied to the identified
models including covariates, to calculate the relative effects (%) of re-allocating 10 minutes
from one behaviour to the other, with respect to the study sample’s mean outcomes. Ten
minutes was chosen, not only because of its beneficial effects (for example when
moderate-to-vigorous PA (MVPA) is performed) (159), but also because it is a realistic

amount of time to replace in most elderly.

All statistical analyses were performed using IBM SPSS Statistics for Windows, version 24.0

(IBM Corp., Armonk, NY, USA) and p-values <0.05 were considered statistically significant.

Results
Descriptive statistics

Table 6.1 shows the study sample’s descriptive statistics of the GM muscle strength, force

and function.
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Table 6.1. Study sample descriptive statistics of gastrocnemius skeletal muscle strength,

specific force and function.

Outcome variable Mean (SD) or "median (IQR)
Ankle angle MVCpeak (°) -5.0 (8.0)7
Net torque at angle MVCpeak (N-m) 85.9 (32.1)
Intrinsic strength at angle MVCpeak (N-m-cm™) 0.43 (0.26)"
Net torque at 0° angle (N-m) 78.3(29.9)
Intrinsic strength at 0° angle (N-m-cm3) 0.37(0.23)"
AT moment arm (mm) 55.4 (4.8)
Lr-mvc (cm) 4.9 (1.7)7
Bmvc (°) 22.0 (8.5)1
PCSAmvc (cm?) 39.7 (23.4)"
AT force (N) 1314.8 (533.0)
Fascicle force (N) 287.7 (178.9)1
Specific force (N) 6.78 (3.62)1
TA co-activation (%) 9.1 (7.4)"
GM activation capacity (%) 86.7 (14.5)"
Fatigueisom duration (s) 60.0 (0.0)1
Fatigueisom relative change RMS EMG (%) -23.8(36.0)"
Fatigueisom rate of relative change RMS EMG (%-s) -0.41 (0.61)"
Fatigueisom relative change MPF (%) -4.0 (82.8)"
Fatigueisom rate of relative change MPF (%-s?) -0.07 (1.38)"
Fatigueisok duration (s) 34.4 (17.1)"
Fatigueisok relative change RMS EMG (%) -51.6 (46.3)"
Fatigueisox rate of relative change RMS EMG (%-s) -1.46 (1.28)1
Fatigueisok relative change MPF (%) -1.1(35.2)7
Fatiguersok rate of relative change MPF (%-s?) -0.02 (1.05)"

MVC, maximum voluntary contraction; AT, Achilles tendon; Lr-mvc, fascicle length during MVC; Bwmvc, fascicle
pennation angle during MVC; PCSAmvc, physiological cross-sectional area during MVC; TA, tibialis anterior;
GM, gastrocnemius medialis; Isom, isometric condition; Isok, isokinetic condition; RMS, root mean square;

EMG, electromyography; MPF, median power frequency; SD, standard deviation; IQR, interquartile range.
Covariate analysis

The variables identified as covariates in this chapter, were: sex, ethnicity, body height, body
mass, body mass index (BMI), skeletal muscle index (SMI), body fat mass, body lean mass,
body bone mineral content (BMC), adiposity class, falls risk assessment tool (FRAT) score,
menopause age, current use of statins, smoking, calcium/vitamin D supplement usage,

daily total PA bouts time, SB during PA bouts, standing during PA bouts, light-intensity PA
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(LIPA) during PA bouts, MVPA during PA bouts, sporadic MVPA (sMVPA), and physical
activity status (Table 6.2-3).
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Table 6.2. Correlation coefficients of covariate analysis for gastrocnemius muscle strength, force and function.

Net Intrinsic Net Intrinsic AT
Angle AT Fascicle | Specific TA co- GM
torque strength torque | strength | moment | Lemve’ | Omve® | PCSAmvCT
MV Cpeak? force forcef force" activation? ACt
MV Cpeak MVCpeak" | 0°angle | 0°angle" arm

Age 0.095 -0.172 0.026 -0.153 0.041 0.182 -0.079 0.007 -0.172 -0.145 -0.141 0.001 -0.082 0.120
Sex 0.009 0.455 0.116 0.482 0.159 0.410 -0.069 0.266 0.371 0.452 0.467 0.191 -0.104 0.269
Ethnicity 0.081 -0.079 0.048 -0.060 0.070 0.002 -0.265 0.152 0.060 -0.035 0.003 -0.055 0.060 N/a
Body height -0.006 0.485 0.076 0.523 0.125 0.519 0.041 0.081 0.349 0.446 0.422 0.160 -0.023 0.098
Body mass 0.239 0.175 -0.339 0.229 -0.260 0.467 0.013 0.265 0.522 0.238 0.246 -0.220 0.060 -0.024
BMI 0.284 -0.137 -0.428 -0.098 -0.367 0.181 -0.023 0.235 0.348 -0.043 -0.016 -0.362 0.069 -0.091
SMI 0.072 0.363 -0.124 0.401 -0.059 0.356 -0.085 0.428 0.544 0.420 0.431 -0.022 -0.060 0.160
Fat mass 0.219 -0.490 -0.393 -0.490 -0.394 -0.166 0.090 -0.141 -0.104 -0.434 -0.411 -0.388 0.175 -0.267
Lean mass -0.236 0.497 0.401 0.494 0.399 0.160 -0.081 0.138 0.097 0.434 0.409 0.392 -0.185 0.269
BMC mass 0.042 0.250 0.173 0.277 0.204 0.183 -0.156 0.124 0.150 0.296 0.299 0.209 -0.007 0.156
Adiposity class 0.341 -0.201 -0.393 -0.164 -0.334 0.200 0.086 0.057 0.192 -0.128 -0.077 -0.280 0.080 -0.062
FRAT score 0.185 -0.195 -0.035 -0.154 0.014 0.099 -0.047 -0.081 -0.133 -0.208 -0.233 -0.147 -0.041 0.046
Menopause age -0.022 0.062 0.125 0.055 0.115 -0.173 0.033 -0.015 -0.097 0.086 0.088 0.175 0.129 -0.079
Major illness

-0.032 0.025 -0.061 0.057 -0.032 0.121 -0.026 0.051 0.157 0.053 0.082 -0.056 0.014 0.125
history
Statins usage -0.032 0.185 0.132 0.167 0.124 0.056 0.008 0.042 0.036 0.108 0.108 0.093 -0.089 -0.031
Smoking -0.153 -0.068 0.073 -0.114 0.012 -0.247 0.011 -0.011 -0.172 -0.044 -0.042 0.119 -0.156 N/a
Resistance training -0.028 0.108 0.045 0.117 0.035 -0.064 0.061 -0.059 -0.006 0.105 0.075 0.096 0.061 0.021
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Dairy products 0.061 0.122 0.152 0.129 0.154 -0.136 -0.144 0.081 0.085 0.117 0.092 0.026 -0.027 -0.078
Caffeine intake 0.018 0.072 0.026 0.069 0.003 -0.163 0.011 0.003 0.013 0.136 0.097 0.103 -0.158 -0.015
RA diagnosis -0.028 -0.023 -0.129 -0.072 -0.173 0.035 0.042 0.014 0.127 -0.051 | -0.049 -0.184 0.041 -0.043
Daily alcohol intake

-0.061 0.135 -0.012 0.118 -0.017 0.187 -0.084 0.072 0.191 0.055 0.055 -0.132 -0.070 0.074
23 units
Calcium/vitamin D

0.018 -0.219 -0.124 -0.212 -0.123 0.015 0.024 -0.105 -0.122 -0.241 | -0.288 -0.224 -0.066 0.001
supplements
PA bouts -0.050 -0.026 -0.129 -0.060 -0.165 0.048 0.182 -0.038 -0.002 -0.020 | -0.030 -0.034 -0.066 -0.036
Total PA bouts

-0.270 0.101 0.140 0.068 0.108 -0.171 0.056 -0.024 -0.082 0.053 0.052 0.144 0.066 0.208
time
SB during PA bout -0.109 0.012 0.127 0.002 0.099 -0.267 0.063 -0.154 -0.197 -0.002 | -0.030 0.158 -0.116 -0.113
Standing during PA

-0.013 -0.148 -0.158 -0.141 -0.148 -0.057 -0.047 0.128 0.109 -0.152 | -0.105 -0.232 0.103 0.241
bout
LIPA during PA

0.080 -0.105 -0.068 -0.107 -0.090 -0.144 0.002 -0.079 -0.056 -0.044 | -0.088 -0.049 0.067 -0.066
bout
MVPA during PA

-0.060 0.148 0.113 0.147 0.130 0.163 0.013 0.030 0.020 0.096 0.119 0.122 -0.093 -0.030
bout
MVPA:10 mins 0.018 0.082 0.089 0.103 0.114 0.059 0.005 0.015 0.017 0.112 0.105 0.108 -0.129 -0.009
sMVPA -0.263 0.191 0.178 0.161 0.166 -0.015 0.040 0.016 -0.025 0.115 0.145 0.197 0.009 0.188
Physical activity

0.054 0.101 0.127 0.138 0.161 0.053 -0.060 0.066 0.051 0.136 0.149 0.128 -0.100 0.049

status

MVC, maximum voluntary contraction; AT, Achilles tendon; Lr-mvc, fascicle length during MVC; Bmvc, fascicle pennation angle during MVC; PCSAwmvc, physiological cross-sectional area during

MVC; TA, tibialis anterior; GM, gastrocnemius medialis; AC, activation capacity; BMI, body mass index; SMI, skeletal muscle index; BMC, bone mineral content; FRAT, falls risk assessment
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tool; RA, rheumatoid arthritis; PA, physical activity; SB, sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity; SMVPA, sporadic moderate-

to-vigorous physical activity; TLog-transformed. Bold values represent significances at P<0.05 level.
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Table 6.3. Correlation coefficients of covariate analysis for gastrocnemius medialis fatigue indices.

Fatigueisom Fatigueisok
Relative Rate of Relative Rate of
Relative Rate of Relative Rate of
Duration? change RMS change RMS Duration change RMS change RMS
change MPF" | change MPF" change MPF' | change MPF"
EMG? EMG? EMG? EMGT

Age -0.198 -0.177 -0.201 -0.073 0.030 -0.173 -0.042 -0.026 -0.044 -0.070
Sex 0.049 -0.326 -0.219 -0.008 -0.139 0.022 -0.145 0.029 -0.159 -0.130
Ethnicity N/a N/a N/a N/a N/a -0.178 0.072 0.022 0.137 0.225
Body height 0.042 -0.179 -0.114 0.194 0.001 -0.073 -0.003 0.085 -0.112 -0.107
Body mass 0.151 0.068 0.099 0.093 -0.115 -0.063 -0.060 0.031 -0.183 -0.121
BMI 0.159 0.216 0.208 -0.036 -0.152 -0.012 -0.051 -0.005 -0.139 -0.067
SMI 0.060 -0.160 -0.089 0.057 -0.080 0.041 -0.203 -0.012 -0.176 -0.111
Fat mass 0.159 0.455 0.357 -0.025 -0.041 -0.086 0.125 -0.008 0.020 0.033
Lean mass -0.156 -0.457 -0.357 0.030 0.040 0.086 -0.123 0.017 -0.018 -0.030
BMC mass -0.145 -0.318 -0.260 -0.038 0.029 0.067 -0.104 -0.089 -0.040 -0.070
Adiposity class 0.295 0.177 0.207 -0.049 -0.216 -0.176 0.084 0.023 -0.177 -0.176
FRAT score -0.181 0.019 -0.027 0.004 -0.064 -0.057 -0.062 -0.087 -0.110 -0.115
Menopause age 0.445 0.115 0.263 -0.131 -0.351 0.177 -0.040 0.134 -0.016 -0.032
Major illness

0.103 -0.062 -0.074 0.032 -0.015 0.153 0.066 0.181 0.079 0.025
history
Statins usage -0.041 -0.007 0.031 0.000 -0.064 0.106 -0.282 -0.127 -0.174 -0.119
Smoking 0.032 0.052 0.034 -0.002 -0.041 -0.087 0.023 -0.033 0.097 0.098
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status

Resistance training 0.092 -0.011 0.082 0.135 0.047 0.040 0.015 0.055 0.078 0.095
Dairy products -0.032 0.140 0.108 0.016 0.045 -0.148 0.014 -0.007 0.122 0.119
Caffeine intake -0.092 0.287 0.238 -0.141 -0.058 -0.121 -0.010 0.019 0.037 -0.089
RA diagnosis 0.046 0.223 0.189 0.122 0.008 -0.022 -0.067 -0.049 -0.110 -0.053
Daily alcohol intake

0.047 -0.151 -0.110 0.139 0.097 0.075 -0.098 -0.068 0.054 0.070
23 units
Calcium/vitamin D

0.067 0.184 0.172 -0.051 0.006 0.004 -0.042 -0.069 0.011 -0.036
supplements
PA bouts 0.092 -0.039 -0.056 0.032 0.089 -0.048 -0.059 0.015 -0.021 -0.110
Total PA bouts time -0.021 -0.180 -0.147 0.076 0.056 -0.024 0.053 0.005 0.034 0.011
SB during PA bout 0.107 0.091 0.089 -0.039 -0.047 0.079 -0.113 -0.060 -0.086 -0.084
Standing during PA

0.151 -0.018 -0.032 -0.075 -0.044 0.013 0.058 -0.052 0.063 0.068
bout
LIPA during PA bout -0.102 0.351 0.228 -0.144 0.004 -0.083 0.082 0.022 0.065 0.061
MVPA during PA

0.032 -0.303 -0.192 0.150 0.014 0.065 -0.090 0.003 -0.078 -0.076
bout
MVPA:10 mins -0.145 -0.339 -0.293 0.143 0.050 0.088 -0.045 -0.034 -0.001 -0.007
sMVPA 0.054 -0.327 -0.224 0.156 0.034 0.040 -0.028 0.022 -0.078 -0.084
Physical activity

-0.131 -0.365 -0.307 0.041 -0.036 0.129 -0.031 0.012 -0.072 -0.045

Isom, isometric condition; Isok, isokinetic condition; RMS, root mean square; EMG, electromyography; MPF, median power frequency; BMI, body mass index; SMI, skeletal muscle index;
BMC, bone mineral content; FRAT, falls risk assessment tool; RA, rheumatoid arthritis; PA, physical activity; SB, sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-

to-vigorous physical activity; SMVPA, sporadic moderate-to-vigorous physical activity; TLog-transformed. Bold values represent significances at P<0.05 level.
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SB levels

Both ankle angle MVCpeak (B = 0.35, R%:qj= 0.114) and intrinsic strength at MVCpeak angle (B
=-0.20, R?%,qj= 0.029) were significantly associated with SB levels, however, when adjusting
for covariates only the positive association with ankle angle MVCpeak (B = 0.28, R%34j=0.176)
remained (Table 6.4). Effect sizes for the covariate-adjusted models, were: -0.023 < R?,q; <

0.355.
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Table 6.4. Regression analysis results for sedentary behaviour levels.

Without covariates

With covariates

95%-Cl 95%-Cl 95%-Cl
Outcome variable 95%-Cl lower
B upper B R%adj B lower upper B R2adj
bound
bound bound bound

Ankle angle MVCpeak" 0.44 0.21 0.68 0.35%* 0.114** 0.36 0.13 0.59 0.28** 0.176**
Net torque at angle MVCpeak -7.17 -23.41 9.07 -0.09 -0.002 -2.80 -16.62 11.03 -0.03 0.320**
Intrinsic strength at angle

-0.22 -0.43 0.00 -0.20* 0.029* -0.04 -0.24 0.16 -0.04 0.220**
MVCPeakﬂ
Net torque at 0° angle -3.49 -18.63 11.66 -0.05 -0.008 2.44 -10.50 15.38 0.03 0.355**
Intrinsic strength at 0° angle" -0.18 -0.39 0.04 -0.16 0.016 -0.02 -0.23 0.19 -0.02 0.173**
AT moment arm 2.13 -0.28 4.53 0.17 0.082 1.66 -0.40 3.72 0.13 0.350**
Le-mvc? 0.02 -0.12 0.15 0.02 -0.009 0.02 -0.11 0.16 0.03 0.053*
BOmvcT 0.03 -0.10 0.16 0.05 -0.008 0.01 -0.10 0.13 0.02 0.167**
PCSAmvc? 0.09 -0.10 0.28 0.09 -0.001 0.02 -0.15 0.18 0.02 0.344**
AT force -90.15 -360.17 179.86 -0.07 -0.005 -12.32 -254.34 229.69 -0.01 0.290**
Fascicle force -0.08 -0.31 0.15 -0.07 -0.005 -0.04 -0.25 0.17 -0.03 0.285**
Specific force" -0.17 -0.37 0.02 -0.17 0.021 -0.07 -0.26 0.11 -0.07 0.183**
TA co-activation? -0.04 -0.34 0.26 -0.02 -0.009
GM activation capacity?" -0.09 -0.30 0.12 -0.12 -0.004 -0.08 -0.28 0.12 -0.10 0.048
Fatigueisom duration” -0.02 -0.09 0.06 -0.08 -0.018 -0.02 -0.09 0.06 -0.08 -0.018
Fatigueisom relative change

0.00 -0.25 0.25 0.00 -0.024 -0.09 -0.31 0.14 -0.11 0.234**
RMS EMGT
Fatigueisom rate of change

0.00 0.00 0.00 0.01 -0.024 0.00 -0.01 0.00 -0.07 0.121*
RMS EMG?
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Fatigueisom relative change

MPFY

-0.05 -0.80 0.71 -0.02 -0.023 -0.05 -0.80 0.71 -0.02 -0.023
MPFT
Fatigueisom rate of change

0.01 -0.01 0.02 0.14 -0.006 0.01 -0.01 0.02 0.14 -0.006
MPFT
Fatigueisok duration? -0.09 -0.27 0.09 -0.10 -0.001 -0.09 -0.27 0.09 -0.10 -0.001
Fatigueisok relative change

-0.23 -0.65 0.19 -0.11 0.001 -0.18 -0.58 0.23 -0.08 0.080*
RMS EMG?
Fatigueisok rate of change

0.00 -0.01 0.01 -0.06 -0.006 0.00 -0.01 0.01 -0.06 -0.006
RMS EMGT
Fatigueisok relative change

-0.14 -0.31 0.03 -0.17 0.018 -0.14 -0.31 0.03 -0.17 0.018
MPF1
Fatigueisok rate of change

-0.01 -0.01 0.00 -0.16 0.016 -0.01 -0.01 0.00 -0.17 0.061*

MVC, maximum voluntary contraction; AT, Achilles tendon; Le-mvc, fascicle length during MVC; Bmvc, fascicle pennation angle during MVC; PCSAmvc, physiological cross-

sectional area during MVC; TA, tibialis anterior; GM, gastrocnemius medialis; Isom, isometric condition; Isok, isokinetic condition; RMS, root mean square; EMG,

electromyography; MPF, median power frequency; Log-transformed; *P<0.05; **P<0.01.
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Daily total SB and PA

Compositional data analysis showed that time spent in some of the studied behaviours
relative to the others, were significantly associated with a few GM muscle strength, force
and function outcomes (Table 6.5). For example, nMVC at peak angle was positively
associated (B = 0.20, R%q; = 0.007) with proportional time spent in MVPA, however, this
association disappeared when correcting the model for covariates. The same was true for
Bmvc, which was associated with sleep (B =-0.41), SB (B = 0.46) and standing (B = 0.24) (all
RZ,qj = 0.048). After correcting for covariates, only the association with standing remained
(B =0.21, R%,q; = 0.221). PCSAmvc was significantly associated with sleep (B = -0.38) and SB
(B = 0.48) (both R%q = 0.143). However, both associations were mitigated by adding
covariates. Nevertheless, standing was found significantly associated now (B = 0.20, R%,qj =
0.398). Next, AT force was initially not associated with any daily behaviour, but after adding
covariates to the regression model it was positively associated with LIPA (B = 0.23, R%q; =
0.325). GM activation capacity was positively associated with standing, both before and
after covariate adjustment (B = 0.34, R%,qj = 0.082 vs. B = 0.35, R%,4j = 0.180). Significant
associations were also found for one outcome from the isometric fatigue protocol, relative
change in RMS EMG respectively. This outcome was associated with MVPA (B =-0.38, R%.j
= 0.148) prior to covariate adjustment, but the association disappeared after adding
covariates. The isokinetic protocol did not show any associations at all. Overall, the effect
sizes of the multiple regression models including significant associations, were 0.180 < R%,q;

<0.398, while for the other models they ranged from -0.086 through 0.362.

Isotemporal substitution revealed that the relative effects (%-change from study sample
means) of re-allocating 10 minutes from one behaviour to another within the mean
composition of the study sample’s total daily SB and PA (sleep = 35.6%, SB = 39.4%, standing
= 2.8%, LIPA = 11.5% and MVPA = 10.7%) for the models including behaviours significantly
associated with either muscle architecture, force or function and adjusted for covariates,
varied from -0.030% through +0.036% (Table 6.6). These maximum changes were both seen
for relative change in AT force, when substituting 10 min of LIPA with standing and vice

versa respectively.

Table 6.5. Coefficients of multiple regression models based on compositional data analysis.

Without covariates With covariates
Outcome variable
B B RAq) B B R%adi
Sleep -0.14 -0.06 0.037 -0.04 -0.02 0.115**
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SB 0.43 0.29 0.24 0.16
Ankle angle Standing -0.07 -0.07 -0.08 -0.07
MV Creak" LIPA -0.01 -0.01 0.09 0.06
MVPA -0.20 -0.17 -0.20 -0.16
Sleep -37.64 -0.25 -24.93 -0.17
SB 17.26 0.18 18.10 0.19
Net torque at angle
Standing -2.63 -0.04 0.007 0.68 0.01 0.318**
MVCPeak
LIPA 6.57 0.07 15.52 0.16
MVPA 15.85 0.20* -10.01 -0.13
Sleep 0.41 0.21 0.15 0.08
SB -0.47 -0.37 -0.05 -0.04
Intrinsic strength at
Standing -0.09 -0.09 0.014 -0.08 -0.09 0.206**
angle MVCpeak"
LIPA 0.00 0.00 -0.03 -0.02
MVPA 0.15 0.14 0.00 0.00
Sleep -31.43 -0.23 -17.26 -0.13
SB 15.93 0.18 15.37 0.17
Net torque at 0°
Standing -3.14 -0.05 0.000 -0.16 0.00 0.362**
angle
LIPA 4.58 0.05 13.09 0.15
MVPA 13.51 0.18 -11.67 -0.16
Sleep 0.50 0.25 0.29 0.15
SB -0.50 -0.39 -0.15 -0.12
Intrinsic strength at
Standing -0.09 -0.10 0.014 -0.08 -0.09 0.161**
0° angle"
LIPA -0.05 -0.04 -0.02 -0.01
MVPA 0.15 0.14 -0.05 -0.05
Sleep -3.69 -0.17 0.65 0.03
SB 5.02 0.35 2.12 0.15
AT moment arm Standing -0.97 -0.09 0.039 -0.04 -0.00 0.351*%*
LIPA -1.10 -0.08 -1.06 -0.07
MVPA 0.75 0.06 -1.67 -0.14
Sleep -0.03 -0.02 0.07 0.05
SB 0.00 0.00 -0.05 -0.06
Le-mvc! Standing -0.05 -0.08 -0.033 -0.08 -0.14 0.039
LIPA 0.05 0.07 0.04 0.05
MVPA 0.03 0.04 0.02 0.03
Sleep -0.48 -0.41* -0.38 -0.33
SB 0.34 0.46* 0.26 0.35
BmvcT Standing 0.14 0.24* 0.048 0.12 0.21* 0.221**
LIPA -0.04 -0.05 0.05 0.06
MVPA 0.04 0.06 -0.07 -0.11
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Sleep -0.67 -0.38* -0.37 -0.21
SB 0.54 0.48* 0.20 0.18
PCSAmvc! Standing 0.15 0.17 0.143 0.17 0.20* 0.398%**
LIPA -0.04 -0.04 0.12 0.10
MVPA 0.01 0.02 -0.13 -0.14
Sleep -655.76 -0.27 -0.17
406.71
SB 362.96 0.23 324.63 0.21
AT force Standing -86.02 -0.07 -0.002 | -52.96 -0.04 0.325**
LIPA 181.99 0.11 370.21 0.23*
MVPA 194.68 0.15 -0.18
237.67
Sleep -0.51 -0.24 -0.23 -0.11
SB 0.27 0.20 0.15 0.11
Fascicle force" Standing -0.02 -0.02 -0.005 0.01 0.01 0.298**
LIPA 0.08 0.05 0.23 0.17
MVPA 0.19 0.17 -0.16 -0.15
Sleep 0.15 0.09 0.07 0.04
SB -0.28 -0.24 -0.06 -0.06
Specific force" Standing -0.17 -0.20 0.035 -0.15 -0.17 0.182**
LIPA 0.12 0.10 0.15 0.13
MVPA 0.17 0.18 -0.01 -0.01
Sleep 0.02 0.01
SB -0.06 -0.04
TA co-activation? Standing 0.17 0.13 -0.018
LIPA -0.01 -0.00
MVPA -0.12 -0.08
Sleep 0.15 0.11 0.20 0.14
SB -0.24 -0.27 -0.26 -0.30
GM activation
Standing 0.23 0.34* 0.082 0.23 0.35% 0.180*
capacity"
LIPA -0.12 -0.13 0.00 0.00
MVPA 0.04 0.05 -0.11 -0.15
Sleep -0.19 -0.24 0.03 0.08
SB 0.15 0.30 -0.04 -0.15
Fatigueisom
Standing 0.06 0.17 -0.053 0.01 0.07 -0.086
duration?
LIPA -0.04 -0.09 0.01 0.02
MVPA 0.00 0.00 -0.01 -0.04
Fatigueisom relative Sleep 0.53 0.37 0.56 0.39
0.148* 0.244**
change RMS EMG? SB -0.32 -0.35 -0.45 -0.49
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Standing -0.17 -0.25 -0.18 -0.26

LIPA 0.17 0.18 0.12 0.13

MVPA -0.29 -0.38* -0.15 -0.19

Sleep 0.01 0.31 0.01 0.34

SB 0.00 -0.28 -0.01 -0.40
Fatigueisom rate of

Standing 0.00 -0.21 0.041 0.00 -0.22 0.099
change RMS EMG?

LIPA 0.00 0.10 0.00 0.06

MVPA 0.00 -0.28 0.00 -0.12

Sleep -0.15 -0.03 -0.15 -0.03

SB 0.05 0.02 0.05 0.02
Fatigueisom relative

Standing -0.11 -0.05 -0.061 -0.11 -0.05 -0.061
change MPF1

LIPA -0.05 -0.02 -0.05 -0.02

MVPA 0.45 0.19 0.45 0.19

Sleep 0.02 0.16 0.02 0.16

SB -0.02 -0.22 -0.02 -0.22
Fatigueisom rate of 0.078

Standing -0.01 -0.08 : -0.01 -0.08 -0.078
change MPF"

LIPA 0.00 0.04 0.00 0.04

MVPA 0.00 0.05 0.00 0.05

Sleep 0.29 0.18 0.29 0.18

SB -0.20 -0.19 -0.20 -0.19
Fatigueisok duration" | Standing 0.06 0.07 -0.021 0.06 0.07 -0.021

LIPA -0.17 -0.16 -0.17 -0.16

MVPA 0.01 0.01 0.01 0.01

Sleep -0.42 -0.11 -0.43 -0.11

SB 0.21 0.09 0.29 0.12
Fatigueisok relative

Standing -0.03 -0.02 -0.029 0.03 0.02 0.047
change RMS EMG?

LIPA 0.30 0.12 0.07 0.03

MVPA -0.05 -0.03 0.05 0.03

Sleep -0.01 -0.17 -0.01 -0.17

SB 0.01 0.14 0.01 0.14
Fatigueisok rate of

Standing 0.00 0.14 -0.018 0.00 0.14 -0.018
change RMS EMG?

LIPA 0.00 0.02 0.00 0.02

MVPA 0.00 -0.02 0.00 -0.02

Sleep 0.34 0.22 0.34 0.22

SB -0.26 -0.27 -0.26 -0.27
Fatigueisok relative

Standing -0.03 -0.04 -0.019 -0.03 -0.04 -0.019
change MPF1

LIPA 0.02 0.02 0.02 0.02

MVPA -0.07 -0.08 -0.07 -0.08

Sleep 0.01 0.22 -0.021 0.01 0.16 0.020
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Fatigueisok rate of

change MPFT

SB -0.01 -0.25
Standing 0.00 -0.02
LIPA 0.00 0.00
MVPA 0.00 -0.09

-0.01 -0.20
0.00 0.03
0.00 0.01
0.00 -0.09

MVC, maximum voluntary contraction; AT, Achilles tendon; Lr-mvc, fascicle length during MVC; Bmvc, fascicle
pennation angle during MVC; PCSAwmvc, physiological cross-sectional area during MVC; TA, tibialis anterior;
GM, gastrocnemius medialis; Isom, isometric condition; Isok, isokinetic condition; RMS, root mean square;

EMG, electromyography; MPF, median power frequency; SB, sedentary behaviour; LIPA, light-intensity

physical activity; MVPA, moderate-to-vigorous physical activity; Log-transformed; *P<0.05; **P<0.01.

Table 6.6. Relative effects (%) of isotemporal substitution on outcome variables.

-10 mins
Outcome variable +10 mins
Sleep SB Standing LIPA MVPA
Sleep -0.016
SB +0.005
BOmvcT Standing +0.013 -0.004 +0.000 +0.002 +0.006
LIPA -0.002
MVPA -0.007
Sleep -0.015
SB +0.001
PCSAmvc! Standing +0.012 -0.001 +0.000 +0.001 +0.008
LIPA -0.001
MVPA -0.009
Sleep -0.016
SB -0.001
AT force Standing -0.030
LIPA +0.015 +0.001 +0.036 +0.000 +0.019
MVPA -0.019
Sleep -0.001
SB -0.011
GM activation
Standing +0.000 +0.009 +0.000 +0.005 +0.007
capacity"
LIPA -0.006
MVPA -0.008

AT, Achilles tendon; Bwmvc, fascicle pennation angle during MVC; PCSAmvc, physiological cross-sectional area
during MVC; GM, gastrocnemius medialis; SB, sedentary behaviour; LIPA, light-intensity physical activity;

MVPA, moderate-to-vigorous physical activity; TLog-transformed.

Daily SB pattern parameters

Ankle angle MVCpeak Was significantly associated with a few SB pattern parameters, namely

long SB bouts (B = 0.26, R%.4j = 0.056), a (B = -0.25, R%qj = 0.052) and F (B = -0.21, R%qj =
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0.034) (Table 6.7). However, all associations disappeared when adding covariates to the
regression models. The opposite was found for nMVC and intrinsic strength at peak angle,
nMVC at 0° angle and intrinsic strength at 0° angle, where no associations were observed
initially, but did appear after adjusting for covariates. More specifically, W12 was negatively
associated with the first (B = -0.23, R%q; = 0.375) and third outcome (B =-0.24, R%,4j=0.412),
whereas the second and fourth were associated with breaks in SB (B = -0.21, R%,qj = 0.259
&. B =-0.25, R%,q; = 0.235) and short SB bouts (B = -0.19, R%,4; = 0.248 &. B = -0.22, R?%qj =
0.221). Intrinsic strength at the neutral angle was also associated with Wsoy (B = 0.24, R%.qj
=0.214) and F (B =-0.21, R%,qj = 0.213). For the AT moment arm long SB bouts and a were
significantly associated in uncorrected models (B = 0.24, R%,q4j = 0.047 & B = -0.22, R?%ygj =
0.039), but not in corrected models. Period was negatively associated in both single and
multiple linear regression models (B = -0.22, R%gq; = 0.038 & B = -0.26, R%q; = 0.380). Ws0x%
was only significantly associated (B = 0.30, R%.qj = 0.410) after adjusting the model for
covariates. PCSAmvc was negatively associated with X172 (B = -0.20, R%.q; = 0.370), but only
in a covariate-adjusted model. Next, AT force, GM fascicle force and GM specific force were
significantly associated with W1/,. However, where associations were found for both
models (B =-0.21, R%,4j = 0.034 & B =-0.25, R%,4j = 0.351) in AT force, as well GM fascicle as
specific force only showed associations in covariate-adjusted models for W1/,, respectively
B = -0.20, R%qj = 0.326 & B = -0.23, R%q = 0.241. Specific force was also found to be
associated with a (B =0.21, R%q; = 0.036), however this association disappeared when using
corrected models. Finally, significant associations were also observed for GM activation
capacity. More specifically, F was positively associated when using a single linear regression
model (B = 0.32, R%,q; = 0.083), while period was positively related in a multiple regression
model (B = 0.27, R%qj = 0.113). Overall, the effect sizes of the multiple regression models
including significant associations, were 0.113 < R2,4 < 0.412, while for the other models

they ranged from -0.024 through 0.372.
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Table 6.7. Regression analysis results for daily sedentary behaviour pattern parameters.

Without covariates

With covariates

Outcome variable 95%-ClI 95%-Cl 95%-Cl 95%-CI
B lower upper B R2adj B lower upper B R2adj
bound bound bound bound
Breaks SB -0.01 -0.03 0.02 -0.05 -0.007 0.00 -0.03 0.03 0.01 0.149**
Short SB bouts -0.02 -0.04 0.01 -0.12 0.005 0.00 -0.03 0.02 -0.01 0.149**
Long SB bouts 0.10 0.03 0.18 0.26** 0.056** 0.03 -0.05 0.11 0.08 0.154**
a -2.96 -5.24 -0.68 -0.25%* 0.052* -1.78 -4.04 0.48 -0.15 0.169**
Ankle angle MVCpeak" Xa/2 0.00 0.00 0.00 0.11 0.003 0.00 0.00 0.00 0.02 0.142**
W12 0.00 -0.01 0.01 -0.01 -0.010 0.01 -0.01 0.02 0.11 0.160**
Wso% 0.00 0.00 0.01 0.15 0.013 0.00 -0.01 0.01 0.00 0.149%*
F -0.16 -0.31 -0.01 -0.21* 0.034* -0.02 -0.19 0.15 -0.02 0.149**
Period -0.03 -0.07 0.01 -0.17 0.019 0.01 -0.04 0.05 0.03 0.150**
Breaks SB -0.25 -2.07 1.57 -0.03 -0.009 -0.91 -2.45 0.63 -0.10 0.333**
Short SB bouts -0.13 -1.79 1.53 -0.02 -0.010 -0.68 -2.09 0.73 -0.08 0.330**
Long SB bouts -0.55 -5.63 4.53 -0.02 -0.009 -0.36 -4.89 4.17 -0.01 0.324%**
Net torque at angle a 114.71 -37.67 267.09 0.15 0.012 113.51 -13.13 240.14 0.14 0.340**
MV Cpeak X1/2 -0.05 -0.16 0.05 -0.10 -0.001 0.00 -0.09 0.10 0.01 0.321%*
W12 -0.81 -1.70 0.08 -0.18 0.021 -1.05 -1.78 -0.31 -0.23** 0.375**
Wso% -0.09 -0.42 0.25 -0.05 -0.007 0.17 -0.13 0.47 0.10 0.333**
F -1.07 -11.12 8.97 -0.02 -0.009 -5.07 -13.92 3.79 -0.10 0.333**
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Period 1.21 -1.39 3.82 0.09 -0.001 0.86 -1.40 3.12 0.06 0.323**
Breaks SB -0.02 -0.04 0.01 -0.13 0.007 -0.03 -0.05 -0.01 -0.21* 0.259**
Short SB bouts -0.01 -0.03 0.02 -0.06 -0.006 -0.02 -0.04 0.00 -0.19* 0.248**
Long SB bouts -0.07 -0.13 0.00 -0.19 0.027 -0.01 -0.08 0.05 -0.04 0.215**
o 1.30 -0.75 3.35 0.12 0.006 0.11 -1.76 1.99 0.01 0.219**
Intrinsic strength at
X1/2 0.00 0.00 0.00 0.00 -0.010 0.00 0.00 0.00 0.06 0.213**
angle MVCpeak"
Wiz 0.00 -0.01 0.01 -0.04 -0.009 -0.01 -0.02 0.00 -0.12 0.227**
Wsox% 0.00 0.00 0.00 0.02 -0.010 0.00 0.00 0.01 0.21 0.253**
F 0.01 -0.12 0.15 0.02 -0.009 -0.13 -0.26 0.00 -0.19 0.245**
Period 0.03 0.00 0.06 0.17 0.019 0.00 -0.03 0.03 0.01 0.219**
Breaks SB -0.52 -2.21 1.17 -0.06 -0.006 -1.29 -2.64 0.07 -0.15 0.372**
Short SB bouts -0.43 -1.97 1.12 -0.05 -0.007 -1.00 -2.25 0.26 -0.13 0.366**
Long SB bouts 0.29 -4.44 5.01 0.01 -0.010 0.22 -3.95 4.39 0.01 0.354**
o 69.52 -73.08 212.13 0.10 -0.001 57.64 -62.22 177.50 0.08 0.360**
Net torque at 0° angle X172 0.17 -0.07 0.42 0.14 0.011 0.01 -0.08 0.09 0.01 0.349**
Wiz -0.78 -1.61 0.04 -0.18 0.024 -1.04 -1.71 -0.38 -0.24** 0.412%**
Wso% -0.05 -0.36 0.27 -0.03 -0.009 0.21 -0.06 0.48 0.13 0.365**
F -2.90 -12.23 6.42 -0.06 -0.006 -6.63 -14.60 1.35 -0.14 0.367**
Period 1.15 -1.27 3.58 0.09 -0.001 0.99 -1.07 3.04 0.08 0.356**
Breaks SB -0.02 -0.04 0.00 -0.17 0.018 -0.03 -0.05 -0.01 -0.25%* 0.235%*
Intrinsic strength at 0°
angle’ Short SB bouts -0.01 -0.03 0.01 -0.10 0.000 -0.03 -0.05 0.00 -0.22* 0.221 %%
Long SB bouts -0.06 -0.12 0.01 -0.16 0.016 -0.01 -0.08 0.06 -0.03 0.174**
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a 0.83 -1.23 2.90 0.08 -0.004 -0.31 -2.25 1.62 -0.03 0.174**
Xi/2 0.00 0.00 0.00 0.02 -0.010 0.00 0.00 0.00 0.07 0.169**
W12 0.00 -0.02 0.01 -0.06 -0.006 -0.01 -0.02 0.00 -0.13 0.180**
Wso% 0.00 0.00 0.01 0.04 -0.008 0.01 0.00 0.01 0.24* 0.214%*
F -0.01 -0.15 0.12 -0.02 -0.009 -0.15 -0.27 -0.02 -0.21* 0.213**
Period 0.03 0.00 0.07 0.17 0.021 0.01 -0.02 0.04 0.05 0.176**
Breaks SB 0.07 -0.20 0.34 0.05 -0.007 -0.02 -0.25 0.21 -0.01 0.340**
Short SB bouts -0.04 -0.29 0.20 -0.03 -0.008 -0.08 -0.29 0.13 -0.06 0.343**
Long SB bouts 0.93 0.19 1.67 0.24* 0.047* 0.62 -0.05 1.29 0.16 0.361**
o] -25.91 -48.40 -3.42 -0.22* 0.039* -16.61 -35.26 2.05 -0.14 0.360**
AT moment arm X1/2 0.00 0.00 0.00 -0.04 -0.008 0.01 -0.00 0.03 0.16 0.358%*
W12 0.10 -0.03 0.24 0.15 0.013 0.07 -0.05 0.19 0.10 0.343%*
Wso% 0.03 -0.02 0.08 0.13 0.007 0.08 0.03 0.12 0.30** 0.410**
F -0.97 -2.47 0.52 -0.13 0.006 -1.08 -2.43 0.27 -0.14 0.356**
Period -0.44 -0.82 -0.06 -0.22* 0.038* -0.52 -0.84 -0.21 -0.26** 0.380**
Breaks SB 0.01 0.00 0.03 0.18 0.024 0.01 0.00 0.03 0.13 0.069*
Short SB bouts 0.01 0.00 0.02 0.16 0.016 0.01 -0.01 0.02 0.11 0.064*
Long SB bouts 0.00 -0.04 0.05 0.02 -0.009 0.00 -0.04 0.04 0.02 0.052*
Le-mvc! a 0.54 -0.74 1.81 0.08 -0.003 0.33 -0.92 1.58 0.05 0.055*
X1/2 0.00 0.00 0.00 0.07 -0.005 0.00 0.00 0.00 0.06 0.056*
W12 0.00 -0.01 0.00 -0.08 -0.004 0.00 -0.01 0.01 -0.06 0.055*
Wso% 0.00 -0.01 0.00 -0.17 0.020 0.00 0.00 0.00 -0.10 0.062*
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F 0.07 -0.01 0.15 0.16 0.016 0.05 -0.03 0.13 0.12 0.066*
Period 0.00 -0.02 0.02 -0.03 -0.009 0.00 -0.02 0.02 -0.03 0.053*
Breaks SB 0.00 -0.02 0.01 -0.04 -0.008 0.00 -0.02 0.01 -0.05 0.169**
Short SB bouts 0.00 -0.02 0.01 -0.05 -0.007 0.00 -0.01 0.01 -0.03 0.168**
Long SB bouts 0.01 -0.03 0.05 0.05 -0.008 -0.01 -0.04 0.03 -0.03 0.168**
a -0.21 -1.42 1.00 -0.03 -0.009 -0.28 -1.38 0.81 -0.05 0.169**
BmvcT X1/2 0.00 0.00 0.00 -0.09 -0.001 0.00 0.00 0.00 -0.16 0.190**
Wi/2 0.00 -0.01 0.01 0.00 -0.010 0.00 0.00 0.01 0.06 0.170**
Wso% 0.00 0.00 0.00 0.10 0.001 0.00 0.00 0.00 0.07 0.172%*
F -0.05 -0.12 0.03 -0.11 0.003 -0.02 -0.09 0.05 -0.05 0.169**
Period 0.00 -0.02 0.02 -0.03 -0.009 0.00 -0.01 0.02 0.04 0.169**
Breaks SB 0.00 -0.02 0.02 0.00 -0.010 0.00 -0.02 0.02 -0.02 0.344%*
Short SB bouts 0.00 -0.02 0.01 -0.05 -0.008 0.00 -0.02 0.02 -0.01 0.344%*
Long SB bouts 0.05 -0.01 0.10 0.15 0.013 0.00 -0.06 0.05 -0.01 0.344%*
a -0.41 -2.23 1.40 -0.04 -0.008 -0.07 -1.60 1.47 -0.01 0.344%*
PCSAmvcT X1/2 0.00 0.00 0.00 -0.17 0.020 0.00 0.00 0.00 -0.20* 0.370**
W12 0.00 -0.01 0.01 -0.06 -0.006 0.00 -0.01 0.01 0.01 0.344%*
Wso% 0.00 0.00 0.00 0.04 -0.009 0.00 0.00 0.00 -0.02 0.345%*
F -0.08 -0.20 0.04 -0.14 0.009 0.00 -0.11 0.10 0.00 0.344%*
Period -0.01 -0.04 0.02 -0.07 -0.005 0.01 -0.01 0.04 0.08 0.350**
Breaks SB -3.03 -33.27 27.21 -0.02 -0.009 -14.61 -40.19 10.96 -0.09 0.299**
AT force
Short SB bouts -1.35 -28.91 26.21 -0.01 -0.010 -9.44 -33.10 14.21 -0.07 0.294%*
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Long SB bouts -9.89 -94.24 74.45 -0.02 -0.009 -24.39 -100.75 51.98 -0.06 0.293**
a 2190.98 -329.27 4711.23 0.17 0.019 1874.97 -339.50 4089.43 0.14 0.310**
X172 3.38 -0.89 7.66 0.16 0.014 -0.27 -1.80 1.26 -0.03 0.291%**
Wiz -15.86 -30.56 -1.17 -0.21* 0.034* -18.85 -31.35 -6.34 -0.25%* 0.351%*
Wso% -1.05 -6.61 4.52 -0.04 -0.008 2.47 -2.56 7.49 0.09 0.297**
F -45.42 -211.99 121.15 -0.05 -0.007 -91.87 -241.56 57.82 -0.11 0.300**
Period 14.64 -28.68 57.96 0.07 -0.005 14.64 -23.78 53.06 0.07 0.294**
Breaks SB 0.00 -0.03 0.02 -0.03 -0.009 -0.02 -0.04 0.01 -0.11 0.298**
Short SB bouts 0.00 -0.03 0.02 -0.02 -0.009 -0.01 -0.03 0.01 -0.09 0.292%*
Long SB bouts -0.01 -0.08 0.06 -0.02 -0.009 -0.03 -0.09 0.04 -0.07 0.288**
a 1.59 -0.59 3.76 0.14 0.010 1.34 -0.59 3.26 0.12 0.298**
Fascicle force" X1/2 0.00 0.00 0.00 -0.13 0.006 -0.00 -0.00 0.00 -0.08 0.291%*
W12 -0.01 -0.03 0.00 -0.19 0.027 -0.01 -0.02 -0.00 -0.20* 0.326**
Wso% 0.00 -0.01 0.00 -0.02 -0.009 0.00 -0.00 0.01 0.08 0.291%*
F -0.04 -0.19 0.10 -0.06 -0.006 -0.08 -0.21 0.05 -0.11 0.296**
Period 0.01 -0.03 0.05 0.06 -0.006 0.02 -0.01 0.05 0.10 0.294**
Breaks SB 0.00 -0.03 0.02 -0.03 -0.009 -0.02 -0.04 0.00 -0.14 0.207**
Short SB bouts 0.00 -0.02 0.02 0.02 -0.009 -0.01 -0.03 0.01 -0.10 0.197**
Long SB bouts -0.05 -0.11 0.01 -0.18 0.021 -0.03 -0.09 0.03 -0.09 0.196**
Specific force"
a 2.00 0.19 3.80 0.21* 0.036* 1.28 -0.40 2.96 0.14 0.206**
Xa/2 0.00 0.00 0.00 0.02 -0.009 0.00 0.00 0.00 0.09 0.190**
W12 -0.01 -0.02 0.00 -0.17 0.019 -0.01 -0.02 0.00 -0.23%* 0.241%*
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Wso% 0.00 -0.01 0.00 -0.06 -0.006 0.00 0.00 0.01 0.10 0.196**
F 0.04 -0.08 0.16 0.06 -0.006 -0.06 -0.18 0.06 -0.10 0.195%*
Period 0.02 -0.01 0.05 0.14 0.011 0.01 -0.02 0.04 0.08 0.193**
Breaks SB -0.01 -0.04 0.02 -0.07 -0.006
Short SB bouts -0.00 -0.04 0.03 -0.03 -0.009
Long SB bouts -0.05 -0.14 0.04 -0.10 0.001
a 0.91 -1.90 3.72 0.06 -0.006
TA co-activation? X1/2 -0.00 -0.00 0.00 -0.11 0.002
W12 0.01 -0.01 0.02 0.08 -0.003
Wsoy 0.00 -0.00 0.01 0.09 -0.002
F -0.01 -0.19 0.18 -0.01 -0.010
Period 0.02 -0.03 0.06 0.06 -0.006
Breaks SB 0.00 -0.03 0.02 -0.04 -0.017 -0.01 -0.03 0.01 -0.10 0.047
Short SB bouts 0.00 -0.02 0.02 0.04 -0.017 0.00 -0.02 0.02 -0.02 0.038
Long SB bouts -0.05 -0.11 0.02 -0.20 0.020 -0.06 -0.12 0.01 -0.24 0.095*
a 1.80 -0.10 371 0.25 0.045 1.64 -0.22 351 0.23 0.091*
GM activation capacity’ | X2 0.00 0.00 0.00 0.02 -0.018 0.00 0.00 0.00 0.06 0.041
W12 -0.01 -0.02 0.01 -0.13 0.000 -0.01 -0.02 0.00 -0.15 0.062
Wso% 0.00 -0.01 0.00 -0.06 -0.015 0.00 0.00 0.01 0.04 0.039
F 0.16 0.03 0.29 0.32* 0.083* 0.13 -0.01 0.26 0.25 0.114*
Period 0.03 0.00 0.06 0.24 0.041 0.03 0.00 0.06 0.27* 0.113*
Fatigueisom duration? Breaks SB 0.00 -0.01 0.02 0.09 -0.015 0.00 -0.02 0.02 0.08 0.121
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Short SB bouts 0.00 -0.01 0.02 0.05 -0.021 0.00 -0.02 0.02 0.00 0.114
Long SB bouts 0.01 -0.03 0.05 0.09 -0.015 -0.01 -0.03 0.01 -0.11 -0.012
a 0.09 -1.20 1.37 0.02 -0.023 0.17 -1.60 1.94 0.04 0.116
X172 0.00 0.00 0.00 0.04 -0.022 0.00 0.00 0.00 0.03 -0.024
Wiz 0.00 -0.01 0.01 -0.09 -0.015 0.00 -0.01 0.00 -0.09 -0.017
Wso% 0.00 0.00 0.00 0.05 -0.022 0.00 0.00 0.00 -0.16 0.002
F 0.04 -0.01 0.08 0.27 0.048 -0.02 -0.13 0.10 -0.06 0.118
Period 0.00 -0.02 0.02 0.03 -0.023 0.00 -0.01 0.01 0.04 -0.022
Breaks SB 0.00 -0.03 0.02 -0.04 -0.022 0.01 -0.02 0.03 0.08 0.242%*
Short SB bouts 0.00 -0.03 0.02 -0.05 -0.022 0.01 -0.02 0.03 0.07 0.239**
Long SB bouts 0.01 -0.07 0.08 0.02 -0.023 -0.02 -0.09 0.05 -0.06 0.223**
a -0.03 -2.39 2.33 0.00 -0.024 0.52 -1.58 2.63 0.07 0.224%**
Fatigueisom relative
Xa/2 0.00 0.00 0.00 0.13 -0.007 0.00 0.00 0.00 0.04 0.236**
change RMS EMG'
Wiz 0.00 -0.02 0.01 -0.07 -0.018 0.00 -0.01 0.01 0.02 0.235%*
Wso% 0.00 0.00 0.01 0.10 -0.014 0.00 -0.01 0.00 -0.09 0.227**
F -0.11 -0.28 0.05 -0.22 0.023 0.15 -0.04 0.34 0.30 0.280**
Period -0.01 -0.05 0.03 -0.10 -0.014 0.00 -0.04 0.03 -0.02 0.234**
Breaks SB 0.00 0.00 0.00 -0.06 -0.021 0.00 0.00 0.00 0.01 0.085
Short SB bouts 0.00 0.00 0.00 -0.07 -0.019 0.00 0.00 0.00 0.01 0.085
Fatigueisom rate of
Long SB bouts 0.00 0.00 0.00 0.03 -0.023 0.00 0.00 0.00 -0.03 0.086
change RMS EMG'
a 0.00 -0.05 0.04 -0.03 -0.023 0.01 -0.03 0.05 0.04 0.086
X1/2 0.00 0.00 0.00 0.10 -0.014 0.00 0.00 0.00 0.04 0.086
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Wiz 0.00 0.00 0.00 -0.05 -0.021 0.00 0.00 0.00 -0.02 0.085
Wso% 0.00 0.00 0.00 0.09 -0.015 0.00 0.00 0.00 -0.03 0.086
F 0.00 -0.01 0.00 -0.24 0.037 0.00 0.00 0.00 -0.15 0.126*
Period 0.00 0.00 0.00 -0.03 -0.023 0.00 0.00 0.00 0.04 0.086
Breaks SB 0.01 -0.08 0.09 0.03 -0.023 0.01 -0.08 0.09 0.03 -0.023
Short SB bouts 0.01 -0.07 0.09 0.04 -0.022 0.01 -0.07 0.09 0.04 -0.022
Long SB bouts -0.01 -0.24 0.23 -0.01 -0.024 -0.01 -0.24 0.23 -0.01 -0.024
a -1.94 -9.07 5.18 -0.08 -0.016 -1.94 -9.07 5.18 -0.08 -0.016
Fatigueisom relative
X1/2 0.00 0.00 0.00 -0.07 -0.019 0.00 0.00 0.00 -0.07 -0.019
change MPF1
Wiz 0.02 -0.02 0.06 0.15 0.000 0.02 -0.02 0.06 0.15 0.000
Wso% 0.00 -0.02 0.02 0.01 -0.024 0.00 -0.02 0.02 0.01 -0.024
F 0.30 -0.21 0.80 0.18 0.010 0.30 -0.21 0.80 0.18 0.010
Period 0.03 -0.09 0.16 0.09 -0.016 0.03 -0.09 0.16 0.09 -0.016
Breaks SB 0.00 0.00 0.00 0.09 -0.016 0.00 0.00 0.00 0.09 -0.016
Short SB bouts 0.00 0.00 0.00 0.12 -0.008 0.00 0.00 0.00 0.12 -0.008
Long SB bouts 0.00 -0.01 0.01 -0.08 -0.017 0.00 -0.01 0.01 -0.08 -0.017
a -0.04 -0.29 0.21 -0.05 -0.022 -0.04 -0.29 0.21 -0.05 -0.022
Fatigueisom rate of
X172 0.00 0.00 0.00 -0.07 -0.019 0.00 0.00 0.00 -0.07 -0.019
change MPF1
Wiz 0.00 0.00 0.00 0.15 -0.001 0.00 0.00 0.00 0.15 -0.001
Wso% 0.00 0.00 0.00 -0.10 -0.014 0.00 0.00 0.00 -0.10 -0.014
F 0.00 -0.01 0.01 -0.10 -0.015 0.00 -0.01 0.01 -0.10 -0.015
Period 0.00 0.00 0.00 0.00 -0.024 0.00 0.00 0.00 0.00 -0.024
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Breaks SB -0.01 -0.03 0.02 -0.05 -0.008 -0.01 -0.03 0.02 -0.05 -0.008
Short SB bouts 0.00 -0.02 0.01 -0.04 -0.008 0.00 -0.02 0.01 -0.04 -0.008
Long SB bouts 0.00 -0.05 0.06 0.01 -0.010 0.00 -0.05 0.06 0.01 -0.010
a 0.35 -1.37 2.07 0.04 -0.008 0.35 -1.37 2.07 0.04 -0.008
Fatigueisok duration” X1/2 0.00 0.00 0.00 0.09 -0.002 0.00 0.00 0.00 0.09 -0.002
W12 0.00 -0.01 0.01 -0.05 -0.008 0.00 -0.01 0.01 -0.05 -0.008
Wso% 0.00 0.00 0.00 0.03 -0.009 0.00 0.00 0.00 0.03 -0.009
F -0.03 -0.15 0.08 -0.06 -0.007 -0.03 -0.15 0.08 -0.06 -0.007
Period 0.01 -0.02 0.04 0.06 -0.006 0.01 -0.02 0.04 0.06 -0.006
Breaks SB -0.01 -0.06 0.03 -0.06 -0.007 -0.02 -0.06 0.03 -0.07 0.078*
Short SB bouts -0.01 -0.05 0.04 -0.04 -0.009 -0.01 -0.06 0.03 -0.06 0.077*
Long SB bouts -0.04 -0.17 0.09 -0.06 -0.006 -0.02 -0.15 0.11 -0.03 0.073*
a -0.71 -4.71 3.29 -0.04 -0.009 -0.68 -4.52 3.16 -0.03 0.074*
Fatigueisok relative
X1/2 0.00 0.00 0.00 0.01 -0.010 0.00 0.00 0.00 0.01 0.073*
change RMS EMG'
W12 0.01 -0.02 0.03 0.06 -0.007 0.00 -0.02 0.03 0.02 0.073*
Wsoy 0.00 -0.01 0.01 -0.02 -0.010 0.00 -0.01 0.01 -0.02 0.073*
F 0.00 -0.27 0.26 0.00 -0.010 -0.06 -0.31 0.20 -0.04 0.075*
Period 0.01 -0.06 0.08 0.02 -0.010 0.00 -0.07 0.07 0.00 0.073*
Breaks SB 0.00 0.00 0.00 0.02 -0.010 0.00 0.00 0.00 0.02 -0.010
Fatigueisox rate of Short SB bouts 0.00 0.00 0.00 0.03 -0.009 0.00 0.00 0.00 0.03 -0.009
change RMS EMG' Long SB bouts 0.00 0.00 0.00 -0.04 -0.009 0.00 0.00 0.00 -0.04 -0.009
a 0.00 -0.09 0.09 0.01 -0.010 0.00 -0.09 0.09 0.01 -0.010
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X1/2 0.00 0.00 0.00 0.00 -0.010 0.00 0.00 0.00 0.00 -0.010
W2 0.00 0.00 0.00 0.03 -0.009 0.00 0.00 0.00 0.03 -0.009
Wso% 0.00 0.00 0.00 -0.01 -0.010 0.00 0.00 0.00 -0.01 -0.010
F 0.00 -0.01 0.01 0.00 -0.010 0.00 -0.01 0.01 0.00 -0.010
Period 0.00 0.00 0.00 -0.01 -0.010 0.00 0.00 0.00 -0.01 -0.010
Breaks SB 0.00 -0.02 0.02 -0.02 -0.010 0.00 -0.02 0.02 -0.02 -0.010
Short SB bouts 0.00 -0.02 0.02 0.00 -0.010 0.00 -0.02 0.02 0.00 -0.010
Long SB bouts -0.02 -0.07 0.04 -0.07 -0.006 -0.02 -0.07 0.04 -0.07 -0.006
a -0.24 -1.84 1.35 -0.03 -0.009 -0.24 -1.84 1.35 -0.03 -0.009
Fatigueisok relative
change MPF! X172 0.00 0.00 0.00 -0.01 -0.010 0.00 0.00 0.00 -0.01 -0.010
W12 0.00 -0.01 0.01 0.07 -0.005 0.00 -0.01 0.01 0.07 -0.005
Wso% 0.00 0.00 0.00 -0.04 -0.008 0.00 0.00 0.00 -0.04 -0.008
F 0.03 -0.08 0.13 0.05 -0.008 0.03 -0.08 0.13 0.05 -0.008
Period 0.01 -0.02 0.04 0.06 -0.006 0.01 -0.02 0.04 0.06 -0.006
Breaks SB 0.00 0.00 0.00 -0.11 0.002 0.00 0.00 0.00 -0.06 0.035
Short SB bouts 0.00 0.00 0.00 -0.09 -0.002 0.00 0.00 0.00 -0.05 0.033
Long SB bouts 0.00 0.00 0.00 -0.05 -0.007 0.00 0.00 0.00 -0.05 0.034
Fatigueisox rate of a -0.01 -0.07 0.05 -0.02 -0.010 0.00 -0.06 0.06 0.01 0.031
change MPF" X1/2 0.00 0.00 0.00 -0.02 -0.010 0.00 0.00 0.00 -0.02 0.031
W12 0.00 0.00 0.00 0.01 -0.010 0.00 0.00 0.00 -0.01 0.031
Wso% 0.00 0.00 0.00 0.03 -0.009 0.00 0.00 0.00 -0.04 0.032
F 0.00 0.00 0.00 -0.02 -0.010 0.00 0.00 0.00 0.02 0.031
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Period

0.00

0.00

0.00

0.08

-0.003

0.00

0.00

0.00

0.09

0.038

MVC, maximum voluntary contraction; AT, Achilles tendon; Lr.mvc, fascicle length during MVC; Bmvc, fascicle pennation angle during MVC; PCSAwmvc, physiological cross-sectional area during
MVC; TA, tibialis anterior; GM, gastrocnemius medialis; Isom, isometric condition; Isok, isokinetic condition; RMS, root mean square; EMG, electromyography; MPF, median power
frequency; Breaks SB, sedentary behaviour interruptions with >2 consecutive minutes upright activity; Short SB bouts, sedentary behaviour bouts <30 minutes duration; Long SB bouts,
sedentary behaviour bouts 230 minutes duration; a, scaling parameter sedentary bout length distribution; X1/2, median SB bout duration; W12, fraction total sedentary time accumulated

in bouts longer than median sedentary bout length; Wsoy, half of total SB is accumulated in SB bouts < this duration; F, fragmentation index of SB bouts and total SB; Period, mean period

between SB bouts; Log-transformed; *P<0.05; ** P<0.01.
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Discussion

The present study investigated associations of SB with GM muscle strength, specific force
and function in older adults. It was hypothesised that (i) intrinsic GM muscle strength, (ii)
GM specific force, and (iii) GM function are inferior in participants exhibiting high SB levels,
regardless of being sufficiently active or not. Additionally, both proportional total daily SB
and daily SB pattern parameters were expected to be detrimentally associated with all
studied GM muscle outcomes in older adults. Our results partially support these

hypotheses.

The fact that no differences were found between the SB level groups when correcting for
covariates, might result from grouping our participants into broad categories (<8 or 28 hrs
daily SB). This potentially attenuates any associations that we would see during linear
regression analyses, due to large group variances. Nevertheless, an association with ankle
angle of peak torque was identified, indicating that higher levels of SB are related to greater
ankle angles (in other words more PF) indicating shorter muscle length. This is in agreement
with literature, showing evidence that angle of peak torque shifts towards longer muscle

lengths after training (182).

Compositional data analysis did not show any associations with GM strength, specific force
or function for the proportion of total daily time spent in SB. On the contrary, three out of
four identified associations involved time spent standing relative to the other daily
behaviours, while one involved LIPA. The observed relationships all indicate improved
outcomes when increasing the proportional time spent in these behaviours. Standing for
example, was positively associated with Bmve, PCSAmve and GM activation capacity. These
findings are similar to the effects seen in response to training (183,184) and opposite to
those resulting from disuse (185). Interestingly, no associations were found for any PA
intensities, except between LIPA and AT force. Overall, it is important to stress that the
results involving standing and LIPA should be interpreted with caution. This is mainly due
to the issues with distinguishing between standing and LIPA, as seen in Chapter 2 & 3 of

this thesis. As a result, associations are potentially over- or underestimated.

Apart from the fact that we applied single-twitch muscle stimulation, using the
interpolation twitch technique to measure agonist activation capacity in human muscles
(as in this chapter), can be quite challenging. Different authors have suggested a number
of methodological and physiological considerations to be taken into account when applying

the technique (186). Generally, the ability to maximally drive muscle is usually
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overestimated and twitch interpolation is highly variable under constant circumstances
(186). Hence, the results of this technique should be interpreted with caution.
Nevertheless, test-retest reliability for the assessment of GM muscle activation capacity

was good in this chapter (ICC = 0.891).

A number of associations was found for a variety of daily SB pattern parameters during
multiple regression analysis. Interestingly, the relationships were mainly seen for GM
strength and force outcomes. However, also the Achilles tendon moment arm appeared to
decrease with ‘better’ daily SB pattern parameters. Although the tendon moment arm is
determined by the anatomical constraints of the skeleton, a trend for smaller tendon
moment arm lengths was observed in an exercise group compared to controls (163). This
suggests that physical activity may affect the tendon moment arm, but how is unclear. The
use of a new method to measure Achilles tendon moment arms in this chapter could have
affected the results, however, analysis showed moderate reliability (ICC = 0.733), which
indicates that the quality of the collected data is acceptable. Combining this with the
excellent ICCs for PF torque values, means that the calculation of AT force was highly

reliable.

The consensus is that decreased PA levels are one of the causing factors for the ageing-
related decrease in muscle strength, force and function (138,187). In line with this, it was
observed that an increase in the amount of SB spent in bouts longer than the median bout
duration was associated with a decrease in net torque production. This was the case for
both the peak torque angle and the neutral angle. As discussed in Chapter 5, the force a
muscle can generate is proportional to the PCSA, yet no associations were observed for
muscle size or architecture, except for the preferred SB bout length (B =-0.20, R2,4;=0.370).
The lower force with increasing SB was also not explicable by changes in TA co-activation.
However, an increase in the ability to activate the GM voluntarily was found with longer
periods between separate SB bouts. Nevertheless, the fact that a result was found in only
one out of nine SB pattern parameters, suggests that a true association between SB and

net torque production is most probably lacking.

More associations were identified regarding intrinsic muscle strength. In general, these
results all indicate an increase in intrinsic strength with increasing SB, opposite to what has
previously been reported (127). However, with intrinsic strength being the ratio of net
torque over muscle volume, the observed trends (less SB = higher volume) in muscle
volume (chapter 5) might explain these findings. It must be noted that when correcting for
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muscle volume, both contractile and non-contractile tissue is taken into account, and thus
measures of intrinsic strength are not conclusive and can effect an overall decrease in
muscle quality, e.g. due to fat infiltrations. Instead, specific force was calculated, which
showed only one association. The identified parameter suggests that with an increased
proportion of total daily SB spent in bouts longer than the median bout duration, force
production decreases. Having not observed any associations between SB on one hand and
muscle architecture during isometric MVC on the other, probably explains the consistency
of identified associations from tendon force to fascicle force and eventually specific force.
Overall, with the lack of associations for specific force, it can be concluded that SB is not

associated with muscle force production.

In this chapter, no significant associations with any kind of SB outcome were found for TA
co-activation and GM fatigue resistance, while only one was observed for both GM
architecture during MVC and GM activation capacity. The fact that generally no association
was found for muscle architecture is in line with the results seen in chapter 5. Although
decreased activation capacity (130) and increased co-activation (188) was demonstrated
during ageing, a recent review showed increased activation capacity but no change in co-
activation in elderly after strength training (189). Combining this result with our findings,
suggests that PA has an important role in neuromuscular function in older adults, as
previously stated (187). The only association found for GM activation capacity and SB in
this chapter, supports this as the relationship suggests that breaking sedentary behaviour
with longer duration of non-SB activity increases GM activation capacity. Next, the absence
of significant results regarding muscle fatigue resistance seems to be in line with literature.
Compared to their younger counterparts, older adults have been identified with an age-
related fatigue advantage under isometric conditions, regardless of PA levels (190). This is
suggested to result from many changes in their neuromuscular system (171), such as a
larger proportion of type | muscle fibres, which are more economical during isometric
contractions (191,192) and might explain the absence of significant associations with either
SB or PA. Finally, the remarkable lack of significant results for MVPA throughout the whole
study overall, suggests that habitual levels of this PA intensity might be less important for

the GM muscle properties studied in our elderly population under the given circumstances.

Although a total of 105 older adults were tested, some outcomes were examined in
subpopulations for a variety of reasons. Interpretation of the results in these variables (i.e.

GM activation capacity or muscle fatigue resistance) should therefore be done more
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cautiously. Nonetheless, an important strength of this chapter is the high number of good-
to-excellent ICCs (8 out of 9) indicating high reliability of the data used. As discussed above,
the reliability for Achilles tendon moment arm measurements was moderate (ICC = 0.733),

which means that this chapter’s data holds more than acceptable quality.

Conclusion

Except for the consistent negative association of both GM strength and force with the
proportion of daily total SB spent in bouts longer than or equal to the median SB bout
duration, no other associations with SB outcomes were identified. The absence of any
relationship with MVPA suggests that the detrimental effects of SB on GM force cannot be

overcome by MVPA, but rather by reducing SB in older adults.
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Chapter 7. The association of sedentary behaviour with gastrocnemius

medialis tendon properties and postural balance in older adults

Introduction

Upright stability is an important factor for functional independence in the elderly, and is
negatively associated with ageing (44). Previous studies have shown correlations between
postural sway and plantar flexor characteristics in both young and old age groups, such as
muscle volume and tendon stiffness (44,193,194). The muscle-tendon unit (MTU) consists
of two components: (i) the muscle and (ii) the tendon. The muscle Is the contractile
component where force is developed, while a tendon is used to transmit those forces from
muscles to bones (188). A more compliant tendon would result in slower force
development and may delay responses to impeding falls (188). The latter shows the

important role tendons have within the MTU, which warrants their targeted study.

Although reports have shown that ageing does not only affect skeletal muscles, but also
tendons, the effects identified are inconsistent (188). Nevertheless, the consensus is that
elderly tendons are more compliant, which is mainly the result of tendon material changes
(188,195). In addition, tendon cross-sectional area (CSA) increases with ageing, probably to
compensate for changes in the mechanical properties in order to maintain appropriate
tendon stiffness (195,196). Accumulation of scar tissue from previous injuries might also
affect tendon CSA and compliance. The important functional implication of the stiffness
reduction in elderly tendons is: a slower transmission of generated muscle forces. In other
words, older people will be less effective at preventing falls, which can have serious impact
on their lives (188). Fortunately, resistance training has been shown to effectively
attenuate or even reverse the detrimental effect that ageing has on skeletal muscle and
tendon (197,198). With regards to tendon adaptations, resistive loading can increase both
stiffness and Young’s modulus (YM) in elderly human tendons (199). However, conflicting
evidence exist regarding the effects on tendon CSA (200). Nevertheless, it is believed that
increased tendon stiffness after resistance training is due to changes in the material

properties rather than hypertrophy of the tendon (188,196).

Where resistance training has beneficial effects, decreased PA levels are thought to be an
important factor causing the age-related MTU changes (127,187,201). Since PA levels
appeared to act independent of sedentary behaviour (SB) in older adults (Chapter 3), and

a combination of the adverse effects of disuse on muscle-tendon properties (199) and the
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positive relationship between age and SB (Introduction & Chapter 3), it would be highly
interesting to examine the role of SB on tendon modulation in older adults. More
specifically, investigating the associations between SB and both gastrocnemius medialis

(GM) tendon properties and postural balance in older adults, have not yet been studied.

Hence, the main aim of this present chapter was to examine the associations of SB with
GM tendon properties and postural balance in older adults. It was hypothesised that SB
levels are detrimentally associated with GM tendon stiffness (through YM) and postural
stability. However, a positive association was expected between SB levels and tendon CSA.
Similar associations were also expected for total daily time spent in SB relative to other

behaviours and daily SB pattern parameters.

Materials and methods

As described in Chapter 4 of this thesis, 105 healthy older adults participated in this cross-
sectional study. Per protocol, participants came to the university twice: at the first visit they
were familiarised with the testing equipment and an activity monitor was provided, while
on the second visit (after a week of habitual daily activity monitoring) their GM tendon
properties and postural balance were tested. In the participants that underwent postural

stability assessment, this was performed before testing their tendon properties.

SB and PA outcomes

See chapter 4 for a detailed overview of the SB and PA outcomes used in this chapter.
Postural balance

To determine postural balance, a representative subgroup of 45 participants (without any
disease or condition that could affect postural stability) were asked to stand barefoot and
quietly (with hands hanging freely at either side) on a piezo-electric force platform (Kistler
Instrument, Amherst, NY, USA) using their self-perceived dominant leg, while data was
sampled at a frequency of 100 Hz. A total of six trials were performed (three times with
eyes open and a visual focus point at eye level, about three meters in front of the
participant; three times with eyes closed using blinding goggles) in a random order to
minimise learning-effects. Participants were instructed to perform the single-leg stance
(self-perceived dominant leg) for as longs as possible, up to 30 seconds maximum. To

prevent any carry-over effect of fatigue, they sat down between two trials for at least two
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minutes. For each trial, displacement of the centre-of-pressure was measured in both the
anterior-posterior and mediolateral direction, which allowed calculation of total

displacement (mm) using the following formula (44):

Total displacement = \/(RMS,p)? + (RMSy;,)?
where RMS = root mean square, AP = anterior-posterior, and ML = mediolateral.

For each condition, the trial with the longest stance duration was analysed. To improve
data quality, the first and last 5% of the selected trial data was discarded. Finally, three
outcomes were determined per trial: duration (s), total displacement (mm) and sway

frequency (total displacement normalised for trial duration (mm-s1)).
Tendon size

Participants were placed in a prone position on a treatment bed, with the foot of their self-
perceived dominant leg fixed in a neutral position (90° angle between foot and lower leg).
While in this position, scanning of the Achilles tendon was performed using B-mode
ultrasonography (Technos; Esaote S.p.A, Genoa, ltaly). At first, the insertion of the tendon
into the calcaneus was determined and marked. Next, the tendon was scanned
longitudinally until the musculotendinous junction was identified. The position was then
marked and thin strips (2 mm) of micropore tape (Transpore, 3M, USA) placed transversally
across the tendon. The distance between the tendon insertion and musculotendinous
junction was measured and represented the resting tendon length (cm; Ly). Positions 1, 2
and 3 cm above the tendon insertion were marked and scanned transversally, during which
the ultrasound probe (7.5 MHz linear-array probe, 3.8 cm wide) was held perpendicular to
the skin (Figure 7.1). Minimal pressure was maintained to avoid compression of tendon
tissue. Water-soluble transmission gel (Aquasonic 100; Parker Laboratories Inc., Fairfield,
NJ, USA) was placed over the ultrasound probe head to improve acoustic coupling. During
the scanning, the real-time ultrasound image was recorded onto a PC with video capturing
software (25 frames per second; Adobe premier pro version 6). This allowed offline
extraction of individual transverse frames at the three identified sections of the tendon.
The cross-sectional area (CSA) per section was measured (mm?) using digitising software
(Image) 1.45, National Institutes of Health, Bethesda, MD, USA). The three CSAs were
averaged and then multiplied by 0.3 to calculate the GM tendon CSA for further data
analysis. This value was based upon the assumption that the fraction of the GM tendon CSA

was equivalent to the proportion of GM muscle CSA to the whole triceps surae (202,203).
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Figure 7.1. Analysis of Achilles tendon cross-sectional area at 2 cm above calcaneus

insertion.

Tendon stiffness and Young’s modulus

Participants sat on the chair of an isokinetic dynamometer (Cybex Norm; Cybex
International, New York, NY, USA) with their hip in an 85° angle, self-perceived dominant
leg extended and foot secured to the footplate of the dynamometer in an 0° angle (no
plantar- (PF) or dorsiflexion (DF)) and the lateral malleolus aligned with the axis of rotation.
Non-extending straps were used at the hip, distal thigh and chest to prevent extraneous
movements. After a series of five submaximal PF and DF contractions that served as a
warm-up (50 - 75% self-perceived maximum voluntary contraction (MVC)), participants
performed a ramped isometric PF MVC over 5 seconds. Each ramped PF MVC was followed
by a rapid isometric DF MVC (2 — 3 seconds), with verbal encouragement and biofeedback
provided by the experimenter during each effort. These MVCs were performed in the 0°
angle for both PF and DF, with 30-60 seconds between the trials. A total of three MVC
combinations were performed, however, if >10% difference was observed between all
values, extra ramped MVCs were executed (maximum five in total). The effort with the
highest PF MVC value was used for data analyses. Tendon elongation during the ramped
PF MVCs was assessed by B-mode ultrasonography, placing the probe over the micropore
tape on the musculotendinous junction. Again, water-soluble transmission gel was placed
over the ultrasound probe head to improve acoustic coupling. Real time recording of the
ultrasound image was similar to that for the tendon CSAs. Synchronisation of the muscle
strength data and ultrasound recording was performed using a square wave signal
generator. This allowed the extraction of ultrasound images from 0 — 100% MVC, with 10%
increments. The distance between the musculotendinous junction and the shadow cast
from the echo-absorptive micropore was measured using digitising software. Corrections
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were made for unwanted shift of the heel during the ramped isometric MVC, as identified
in a previous study (204). Important for the analysis was that both the shadow and

musculotendinous junction were clearly visible on the ultrasound images.

As described in Chapter 6, antagonist co-activation was determined using surface
electromyography (sEMG) to allow calculation of true PF torques. In short, muscle
activation of the tibialis anterior (TA) was determined by calculating the median root mean
square (RMS) of the sEMG signal over 500 ms intervals around each 10% increment in
ramped isometric PF MVC, while a period of 1 s around the peak torque during rapid
isometric DF MVC was used. Antagonist torque output for each 10% increment of the
ramped isometric PF MVC was calculated by dividing TA sEMG RMS during PF by TA sEMG
RMS during DF, and multiplying the rapid isometric DF MVC torque by this ratio. This
assumes a linear relation between DF torque and TA EMG (205). The sum of the antagonist

torque and the ramped isometric PF MVC torque represented the net PF MVC (N-m).

Next, GM tendon force (N) at each 10% MVC interval was calculated by first dividing the
net PF MVC by the tendon moment arm in the neutral ankle angle (0°) (mm; assessed with
single energy X-ray absorptiometry, as detailed in Chapter 6), and then multiplying the
result by 0.203. This latter value represents the assumption that 20.3% of the Achilles

tendon force was generated by the GM (176).

To estimate GM tendon stiffness per participant, denoted as K (N-mm<t), GM tendon force
and corresponding elongation data was plotted and fitted with a second-order polynomial
fixed through zero (average R% was 0.96 (0.05)). By calculating the polynomial’s first
derivative, the slope at each point of the force-elongation curve could be determined,
which represented K. A total of three tendon stiffness outcomes were calculated: average
K over the curve, maximum K and standardised K. For this latter, a force level of 74.3 N (as
seen in our weakest participant) was used. From these results, Young’s modulus (MPa) was
calculated by multiplying K by the ratio of Lt (mm) over tendon CSA (mm?). Tendon stress
and strain were calculated as the ratio of tendon force over tendon CSA (stress; MPa) and

the ratio of tendon elongation over resting tendon length (strain; %).
Reliability

Test-retest reliability was determined for the main outcomes under study in this chapter,
using the intraclass correlation coefficient (ICC) for absolute agreement using a two-way

mixed model. Reliability values <0.5 were interpreted as poor, between 0.5 - 0.75 as
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moderate, between 0.75 - 0.9 as good and >0.9 as excellent (158). Lt showed an ICC of
0.906, while for tendon CSA it was 0.970. Finally, both PF torque values and maximum
tendon elongation measured during the ramped MVC in the neutral ankle angle had ICCs

of 0.995 and 0.698 respectively.
Statistics

The outcome variables are displayed as mean (standard deviation (SD)) or median
(interquartile range (IQR)) (Table 7.1). Prior to conducting any inferential statistical analysis,
all outcome variables were checked for normality (either Kolmogorov-Smirnov or Shapiro-
Wilk test). In case of non-normality, the variables were log-transformed and the
distribution of the transformed data also checked. Since postural balance was performed
in a subsample only, their representativeness of the whole study sample was assessed
using an Independent samples T-test or Mann-Whitney U test. Potential covariates were
analysed per outcome variable by running a univariate General Linear Model (GLM). When
a parameter appeared significant, it was treated as a covariate (Table 7.2). Since daily time
spent in sleep, SB and physical activity (PA) is constrained to 24 hours, we used
compositional data analysis for these accelerometer outcomes. This type of analysis has
been described in detail previously (118,119). Briefly, daily compositions are transformed
into isometric log-ratio coordinates, which are then unconstrained and allow the
application of traditional multivariate statistics. In this chapter, both single and multiple
linear regression analysis was used to study the associations with SB levels, proportional
total daily SB and PA, and daily SB pattern parameters. The identified covariates were
added to the regression models first, by using backward elimination, after which the
predictor(s) of interest was/were entered. During backward elimination, parameters were
retained if p-values were <0.20 (118). For all models, Durbin-Watson statistics (>1.0 and
<3.0) were checked to identify any correlation between the predictor and covariates, and
covariates with variance inflation factor 210.0 were removed from the regression model,
one at the time. The same was done with individual cases showing Cook’s distance >1.0. If
significant associations were observed for the compositional data, isotemporal substitution
was applied to the identified models including covariates, to calculate the relative effects
(%) of re-allocating 10 minutes from one behaviour to the other, with respect to the study
sample’s mean outcomes. Ten minutes was chosen, not only because of its beneficial
effects (for example when moderate-to-vigorous PA (MVPA) is performed) (159), but also

because it is a realistic amount of time to replace in most elderly.
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All statistical analyses were performed using IBM SPSS Statistics for Windows, version 24.0

(IBM Corp., Armonk, NY, USA) and p-values <0.05 were considered statistically significant.
Results
Descriptive statistics

Table 7.1 shows the study sample’s descriptive statistics of the GM tendon size, stiffness,

YM and postural balance.

Table 7.1. Study sample descriptive statistics of GM tendon properties and postural

balance.
Outcome variable Mean (SD) or 'median (IQR)
GM Lt (cm) 17.8 (2.4)
Maximal GM tendon elongation (mm) 13.6 (5.5)
GM tendon CSA (mm?) 28.6 (8.2)1
GM tendon force (N) 266.9 (108.2)
Average (N-mm™) 19.4 (13.2)"
K Maximum (N-mmt) 28.3 (16.8)"
Standardised (N-mm™) 23.2 (13.1)7
Average (MPa) 118.2 (74.5)"
YM Maximum (MPa) 163.8 (122.6)"
Standardised (MPa) 143.3 (87.1)"
Maximal stress (MPa) 9.2 (5.3)1
Maximal strain (%) 7.3 (5.3)"
Duration (s) 28.0 (24.0)"
EO TD (mm) 8.9 (11.5)"
Sway frequency (mm-s?) 0.4 (2.5)"
Duration (s) 5.0 (4.0)"
EC D (mm) 21.7 (14.0)"
Sway frequency (mm-s?) 5.3(7.2)"

GM, gastrocnemius medialis; Lt, tendon length; CSA, cross-sectional area; K, stiffness; MVC, maximum
voluntary contraction; YM, Young’s modulus; EO, eyes open; TD, total displacement; EC, eyes closed; SD,

standard deviation; IQR, interquartile range.

Covariate analysis

The variables identified as covariates in this chapter were: age, sex, ethnicity, body height,
body mass, body mass index (BMI), skeletal mass index (SMI), body fat mass, body lean
mass, body bone mineral content (BMC), adiposity class, falls risk assessment tool (FRAT)

score, menopause age, history of major illness, smoking, calcium/vitamin D supplement
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usage, total time spent in PA bouts, standing during PA bouts, light-intensity PA (LIPA)
during PA bouts, moderate-to-vigorous PA (MVPA) during PA bouts, MVPA in bouts of 210

consecutive minutes and physical activity status (Table 7.2-3).
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Table 7.2. Correlation coefficients of covariate analysis for tendon properties.

GM GM
Max A Max Max
GM Ly tendon tendon Kavg! Kwax" Ksta® YMave" YMmaxT YMsta?
GM Ly stress? strain'
CSAT force

Age 0.323 -0.158 0.101 -0.145 0.001 0.026 0.000 0.082 0.102 0.077 -0.204 -0.241
Sex 0.489 0.000 0.529 0.452 0.303 0.391 0.425 0.197 0.298 0.326 0.148 -0.115
Ethnicity -0.073 -0.015 0.093 -0.035 0.016 0.019 -0.043 -0.049 -0.042 -0.103 -0.066 0.026
Body height 0.504 -0.046 0.579 0.446 0.327 0.366 0.325 0.192 0.248 0.201 0.054 -0.165
Body mass 0.276 0.057 0.592 0.238 0.023 0.186 0.186 -0.177 -0.002 -0.006 -0.124 0.006
BMI -0.026 0.090 0.279 -0.043 -0.196 -0.031 -0.007 -0.332 -0.166 -0.142 -0.180 0.113
SMI 0.249 0.093 0.582 0.420 0.225 0.302 0.321 0.022 0.117 0.131 0.086 0.043
Fat mass -0.313 0.032 -0.268 -0.434 -0.427 -0.342 -0.322 -0.387 -0.316 -0.292 -0.263 0.111
Lean mass 0.310 -0.037 0.259 0.434 0.429 0.341 0.323 0.393 0.319 0.296 0.264 -0.116
BMC mass 0.240 0.032 0.283 0.296 0.279 0.241 0.219 0.206 0.180 0.155 0.174 -0.028
Adiposity class 0.159 0.008 0.204 -0.128 -0.140 0.002 0.007 -0.177 -0.037 -0.032 -0.207 -0.039
FRAT score 0.029 -0.109 0.037 -0.208 -0.095 0.063 0.062 -0.088 0.066 0.064 -0.208 -0.153
Menopause age -0.128 -0.094 0.085 0.086 0.161 0.320 0.243 0.030 0.170 0.108 0.022 -0.005
Major illness history 0.122 0.060 0.152 0.053 -0.028 0.050 0.094 -0.054 0.024 0.067 0.002 0.032
Statins usage 0.165 0.065 0.156 0.108 0.072 0.150 0.158 0.030 0.112 0.117 0.071 0.013
Smoking 0.030 -0.058 -0.086 -0.044 -0.028 -0.073 -0.029 0.030 -0.020 0.025 -0.066 -0.106
Resistance training -0.169 0.054 0.026 0.105 0.055 -0.032 -0.015 0.001 -0.081 -0.064 0.079 0.088
Dairy products -0.110 0.008 -0.032 0.117 0.161 0.101 0.093 0.130 0.078 0.068 0.157 0.036




status

Caffeine intake 0.097 -0.003 0.143 0.136 0.152 0.057 0.097 0.092 0.006 0.044 0.010 -0.034
RA diagnosis 0.019 -0.016 0.052 -0.051 0.128 0.168 0.091 0.052 0.100 0.021 -0.081 -0.016
Daily alcohol intake

0.070 0.000 0.135 0.055 -0.047 0.038 0.049 -0.085 0.001 0.011 -0.032 -0.022
23 units
Calcium/vitamin D

-0.190 0.027 -0.249 -0.241 -0.174 -0.118 -0.107 -0.093 -0.047 -0.034 -0.076 0.027
supplements
PA bouts 0.002 -0.154 -0.096 -0.020 0.111 0.085 0.077 0.147 0.121 0.112 0.001 -0.117
Total PA bouts time -0.131 0.095 -0.106 0.053 -0.062 -0.091 -0.082 -0.053 -0.084 -0.074 0.078 0.136
SB during PA bout -0.138 0.019 -0.165 -0.002 0.020 -0.021 -0.008 0.057 0.015 0.027 0.095 0.017
Standing during PA

-0.224 0.118 -0.148 -0.152 -0.293 -0.273 -0.211 -0.282 -0.270 -0.206 -0.057 0.191
bout
LIPA during PA bout -0.314 0.147 -0.269 -0.044 -0.148 -0.267 -0.262 -0.131 -0.254 -0.246 0.045 0.203
MVPA during PA bout 0.370 -0.176 0.303 0.096 0.241 0.341 0.312 0.220 0.326 0.294 -0.023 -0.254
MVPA:10 mins 0.052 -0.163 0.098 0.112 0.184 0.321 0.371 0.158 0.300 0.345 0.073 -0.161
sMVPA 0.189 -0.031 0.161 0.115 0.111 0.132 0.116 0.097 0.121 0.104 0.038 -0.058
Physical activity

0.083 -0.106 0.115 0.136 0.140 0.266 0.324 0.113 0.243 0.297 0.116 -0.096

GM, gastrocnemius medialis; Lt, resting tendon length; CSA, cross-sectional area; Kavg, average tendon stiffness; Kmax, maximum tendon stiffness; Kswd, standardised tendon stiffness; YMavg,
average Young’s modulus; YMmax, maximum Young’s modulus; YMstd, standardised Young’s modulus; EOmive, duration of eyes open condition; EOp, total displacement during eyes open
condition; EOx;, postural sway frequency during eyes open condition; ECrime, duration of eyes closed condition; ECrp, total displacement during eyes closed condition; EChz, postural sway
frequency during eyes closed condition; BMI, body mass index; SMI, skeletal muscle index; BMC, bone mineral content; FRAT, falls risk assessment tool; RA, rheumatoid arthritis; PA,

physical activity; SB, sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity; SMVPA, sporadic moderate-to-vigorous physical activity; Ylog-

transformed. Bold values represent significances at P<0.05 level.
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Table 7.3. Correlation coefficients of covariate analysis for postural balance.

EOTime" EOm" EOk" ECrime" ECro" ECh."
Age -0.397 0.138 0.313 -0.308 -0.092 0.192
Sex -0.176 0.388 0.291 -0.038 0.429 0.253
Ethnicity 0.119 -0.142 -0.141 0.323 -0.312 -0.414
Body height 0.050 0.298 0.108 0.022 0.369 0.176
Body mass -0.174 0.485 0.336 0.037 0.263 0.108
BMI -0.235 0.376 0.323 0.026 0.062 0.012
SMI -0.145 0.440 0.296 0.073 0.329 0.114
Fat mass -0.046 -0.095 -0.015 0.015 -0.346 -0.192
Lean mass 0.056 0.081 0.003 -0.003 0.337 0.178
BMC mass -0.066 0.205 0.137 -0.144 0.332 0.285
Adiposity class -0.187 0.248 0.233 -0.038 0.089 0.076
FRAT score -0.430 0.165 0.347 -0.445 -0.040 0.326
Menopause age 0.211 -0.205 -0.225 0.314 0.197 -0.160
Major illness history -0.027 0.292 0.153 -0.084 0.384 0.266
Statins usage -0.012 0.164 0.084 0.125 0.107 -0.042
Smoking 0.211 -0.297 -0.271 0.179 -0.079 -0.181
Resistance training 0.217 -0.223 -0.240 0.037 -0.258 -0.164
Dairy products 0.004 -0.039 -0.021 -0.125 0.154 0.178
Caffeine intake 0.148 -0.016 -0.100 -0.041 0.020 0.043
RA diagnosis -0.054 -0.104 -0.014 0.057 -0.292 -0.197
Daily alcohol intake 23

. 0.011 0.105 0.042 0.109 0.053 -0.059

units
Calcium/vitamin D

-0.059 0.068 0.069 -0.252 0.107 0.252
supplements
PA bouts -0.020 0.037 0.030 -0.133 0.015 0.112
Total PA bouts time 0.332 0.019 -0.200 -0.013 0.102 0.063
SB during PA bout 0.011 -0.210 -0.105 0.168 -0.180 -0.224
Standing during PA

0.032 -0.058 -0.047 -0.010 0.128 0.074
bout
LIPA during PA bout 0.307 -0.212 -0.292 0.027 -0.184 -0.116
MVPA during PA bout -0.275 0.213 0.272 -0.030 0.129 0.090
MVPA:10 mins 0.107 0.149 0.002 0.168 0.339 0.046
sMVPA 0.048 0.110 0.021 -0.027 0.104 0.075
Physical activity status 0.081 0.145 0.017 0.149 0.299 0.039

GM, gastrocnemius medialis; Lt, resting tendon length; CSA, cross-sectional area; Kavw, average tendon

stiffness; Kwmax, maximum tendon stiffness; Kstq, standardised tendon stiffness; YMav, average Young's

modulus; YMwmax, maximum Young’s modulus; YMstq, standardised Young’s modulus; EOnive, duration of eyes
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open condition; EOmp, total displacement during eyes open condition; EOw,, postural sway frequency during
eyes open condition; ECrime, duration of eyes closed condition; ECtp, total displacement during eyes closed
condition; ECh;, postural sway frequency during eyes closed condition; BMI, body mass index; SMI, skeletal
muscle index; BMC, bone mineral content; FRAT, falls risk assessment tool; RA, rheumatoid arthritis; PA,
physical activity; SB, sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous
physical activity; SMVPA, sporadic moderate-to-vigorous physical activity; og-transformed. Bold values

represent significances at P<0.05 level.

SB levels

No significant models, and thus associations between SB levels and GM tendon properties
or postural balance were found without covariate-adjustment (Table 7.4 & Figure 7.2).
Adding covariates to the models, however, did not result in any significant associations
either, except for balance trial duration with eyes open (B = -0.26, R%,4; = 0.293). The effect
sizes of the other multiple linear regression models ranged from R2,4 = 0.000 through

0.497.
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Table 7.4. Single and multiple regression analysis results for SB levels.

Without covariates

With covariates

Outcome variable 95%-Cl lower 95%-Cl upper 95%-Cl lower 95%-Cl upper
B B R2adj B B R2agi
bound bound bound bound
GM Lr 3.38 -8.90 15.65 0.05 -0.007 0.41 -9.97 10.79 0.01 0.372**
Max A GM Ly -1.42 -4.30 1.46 -0.10 0.000 -1.42 -4.30 1.46 -0.10 0.000
GM tendon CSAT 0.03 -0.08 0.14 0.05 -0.007 0.00 -0.09 0.08 -0.01 0.497**
GM tendon force -18.30 -73.11 36.51 -0.07 -0.005 -2.50 -51.63 46.63 -0.01 0.290**
Average' -0.03 -0.27 0.20 -0.03 -0.010 0.08 -0.14 0.31 0.07 0.186**
K Maximum? 0.05 -0.21 0.31 0.04 -0.009 0.09 -0.16 0.33 0.07 0.180**
Standardised" 0.05 -0.21 0.30 0.04 -0.009 0.08 -0.15 0.30 0.06 0.223**
Average' -0.04 -0.29 0.20 -0.04 -0.009 0.12 -0.12 0.35 0.10 0.154**
YM Maximum? 0.04 -0.23 0.30 0.03 -0.010 0.13 -0.12 0.39 0.10 0.113**
Standardised" 0.04 -0.22 0.30 0.03 -0.010 0.06 -0.18 0.30 0.04 0.140**
Maximal stress? -0.11 -0.33 0.11 -0.10 -0.001 -0.01 -0.23 0.21 -0.01 0.088%**
Maximal strain® -0.13 -0.39 0.13 -0.10 0.000 -0.11 -0.36 0.15 -0.08 0.045*
Durationf -0.69 -1.43 0.05 -0.28 0.055 -0.64 -1.29 -0.00 -0.26* 0.293**
EO TDY 0.32 -0.24 0.88 0.17 0.007 0.24 -0.27 0.75 0.13 0.270**
Sway frequency?’ 1.01 -0.17 2.19 0.25 0.043 0.89 -0.16 1.93 0.22 0.260**
Duration? 0.09 -0.53 0.70 0.04 -0.021 0.09 -0.42 0.60 0.05 0.288**
EC TDY -0.07 -0.48 0.35 -0.05 -0.021 -0.03 -0.38 0.32 -0.02 0.328**
Sway frequency? -0.15 -0.94 0.63 -0.06 -0.020 -0.10 -0.79 0.59 -0.04 0.215%*
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GM, gastrocnemius medialis; Lt, resting tendon length; CSA, cross-sectional area; K, tendon stiffness; YM, Young’s modulus; EQ, eyes open condition; TD, total displacement; EC, eyes closed

condition; Yog-transformed; *P<0.05; ** P<0.01.
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Figure 7.2. Comparison between low and high sedentary behaviour level groups for gastrocnemius medialis tendon stiffness (left) and Young’s modulus

(right).

GM, gastrocnemius medialis; SB, sedentary behaviour; Stress is the ratio of GM tendon force over resting GM tendon cross-sectional area; Strain is the ratio of GM tendon elongation over

the GM tendon resting length. Error bars represent standard deviations.
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Daily total SB and PA

Compositional data analysis showed several significant associations for a variety of
outcomes (Table 7.5). More specifically, GM Lt was associated with both standing (B = -
0.20) and MVPA (B = 0.25) when using an unadjusted model (R%,q; = 0.132). However, in the
covariate-adjusted model (R%,q; = 0.377) all associations disappeared. The same happened
in the models for GM tendon CSA, average K, maximum K, standardised K, average YM and
maximum YM, where respectively MVPA (B = 0.22, R%,q; = 0.080), standing (B = -0.24, R?.;
= 0.046), MVPA (B = 0.24, R%,4; = 0.099), MVPA (B = 0.21, R?,q; = 0.068), standing (B = -0.23,
R%.qj = 0.034) and MVPA (B = 0.22, R?%q = 0.088) were associated at first, but not after
developing new models including covariates (R?%aqj = 0.489, R%,qj = 0.231, R2%aq; = 0.190, R%,qj
=0.162, R%,qj = 0.200 and R%,qj = 0.144). The opposite was seen for GM tendon force, which
was not associated at all, when using simple regression models but showed association
with LIPA after adjusting (B = 0.23, R%g = 0.325). Associations identified for postural
balance with eyes open were stable across unadjusted and adjusted models for some
activity intensities, but not for all. For example, trial duration was positively associated with
sleep, but only in an adjusted model (B = 0.51, R%q; = 0.455), whereas SB was negatively
associated in both models (B = -0.72, R%q4 = 0.198 & B = -0.99, R%q = 0.455). Total
displacement was negatively associated with sleep (B =-0.71, R%,qj = 0.104 & B =-0.55, R%.;j
= 0.293) but positively with SB (B = 0.88, R%,4j = 0.104 & B = 0.62, R%q; = 0.293). Postural
sway frequency was also associated with SB during eyes open condition in both models,
respectively (B = 0.86, R%.qj = 0.164 & B = 0.98, R%,q; = 0.360). Nevertheless, sleep and MVPA
were only associated in corrected models (B =-0.74 and B = 0.28, both R%,4j = 0.360). Finally,
total displacement during eyes closed condition was only associated with sleep (B = -0.85)
and SB (B = 0.98) in uncorrected models (R%.g = 0.141). However, with the addition of
covariates, another association appeared. Apart from sleep (B = -0.87) and SB (B = 1.13),
standing (B = 0.28) was also associated with total displacement during the eyes closed
condition in these models (R%qj = 0.484). Overall, the effect sizes of the multiple linear
regression models including a significant association, were 0.293 < R?%q; < 0.484. For the

other corrected models (without an association), the effect sizes were: 0.009 < R?,4; < 0.489.

Isotemporal substitution showed that the relative effects (%-change from study sample
means) of re-allocating 10 minutes from one behaviour to another within the mean
composition of the study sample’s total daily SB and PA (sleep = 35.6%, SB = 39.4%, standing
= 2.8%, LIPA = 11.5% and MVPA = 10.7%) for the models including behaviours significantly
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associated with either GM tendon properties or postural balance and adjusted for

covariates, varied from -0.709% through +0.562% (Table 7.6). These maximum changes

were both seen for sway frequency during postural balance with eyes open, when

substituting 10 min of sleep with standing and vice versa respectively.

Table 7.5. Coefficients of multiple regression models based on compositional data analysis.

Outcome variable

Without covariates

With covariates

B B R2ag; B B R2ag;
Sleep 2.02 0.02 493 0.04
SB 7.30 0.10 1.47 0.02
GM Lt Standing -11.12 -0.20* 0.132** -7.63 -0.14 0.377**
LIPA -12.99 -0.18 -3.66 -0.05
MVPA 14.79 0.25* 4.89 0.08
Sleep -4.38 -0.17 -4.38 -0.17
SB 1.70 0.10 1.70 0.10
Max A GM Ly Standing 1.52 0.12 0.009 1.52 0.12 0.009
LIPA 2.20 0.13 2.20 0.13
MVPA -1.16 -0.09 -1.16 -0.09
Sleep -0.11 -0.11 0.10 0.11
SB 0.14 0.22 -0.05 -0.08
GM tendon CSATY Standing -0.06 -0.13 0.080* -0.03 -0.07 0.489**
LIPA -0.09 -0.14 -0.02 -0.03
MVPA 0.12 0.22* 0.00 0.00
Sleep ) -0.27 -82.56 -0.17
133.12
SB 73.68 0.23 65.90 0.21
GM tendon force -0.002 0.325%*
Standing -17.46 -0.07 -10.75 -0.04
LIPA 36.94 0.11 75.15 0.23*
MVPA 39.52 0.15 -48.25 -0.18
Sleep 0.15 0.07 0.21 0.10
SB -0.05 -0.04 0.12 0.09
Average? Standing -0.24 -0.24* 0.046 -0.19 -0.19 0.231**
LIPA -0.04 -0.03 -0.08 -0.06
MVPA 0.19 0.17 -0.03 -0.03
« Sleep 0.22 0.10 0.31 0.14
SB -0.05 -0.03 -0.01 0.00
Maximum? Standing -0.23 -0.20 0.099** -0.18 -0.16 0.190**
LIPA -0.23 -0.16 -0.20 -0.14
MVPA 0.29 0.24* 0.08 0.06
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Sleep 0.25 0.11 0.33 0.15
SB -0.09 -0.06 -0.07 -0.05
Standardised? Standing -0.13 -0.12 0.068* -0.13 -0.12 0.162**
LIPA -0.29 -0.20 -0.11 -0.07
MVPA 0.25 0.21* 0.01 0.01
Sleep 0.30 0.14 0.11 0.05
SB -0.16 -0.12 0.22 0.16
Average' Standing -0.24 -0.23* 0.034 -0.21 -0.20 0.200**
LIPA -0.05 -0.03 -0.04 -0.03
MVPA 0.17 0.15 -0.05 -0.05
Sleep 0.37 0.16 0.32 0.14
SB -0.16 -0.11 -0.01 0.00
YM | Maximum? Standing -0.22 -0.20 0.088* -0.21 -0.19 0.144**
LIPA -0.25 -0.16 -0.19 -0.13
MVPA 0.27 0.22* 0.08 0.07
Sleep 0.40 0.18 0.36 0.16
SB -0.20 -0.14 -0.06 -0.04
Standardised" Standing -0.13 -0.12 0.057 -0.12 -0.10 0.106**
LIPA -0.31 -0.21 -0.26 -0.17
MVPA 0.23 0.19 0.06 0.05
Sleep -0.19 -0.10 -0.12 -0.06
SB 0.02 0.02 0.16 0.13
Maximal stress' Standing 0.02 0.02 -0.031 0.04 0.05 0.076*
LIPA 0.11 0.09 0.05 0.04
MVPA 0.03 0.03 -0.15 -0.14
Sleep -0.41 -0.18 -0.30 -0.13
SB 0.11 0.08 0.09 0.06
Maximal strain? Standing 0.21 0.19 0.061* 0.22 0.20 0.076*
LIPA 0.24 0.16 0.12 0.08
MVPA -0.16 -0.13 -0.15 -0.12
Sleep 1.00 0.22 2.28 0.51*
SB -2.06 -0.72* -2.84 -0.99*%*
Duration? Standing -0.14 -0.07 0.198* -0.07 -0.03 0.455%*
LIPA 0.84 0.29 0.26 0.09
EO MVPA -0.23 -0.10 -0.48 -0.20
Sleep -2.35 -0.71* -1.80 -0.55*
SB 1.88 0.88** 1.30 0.62*
TDY 0.104 0.293**
Standing 0.12 0.08 0.14 0.09
LIPA 0.06 0.03 0.43 0.20
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MVPA 0.46 0.26 0.10 0.05
Sleep -3.36 -0.47 -5.25 -0.74**
SB 3.93 0.86** 4.48 0.98**
Sway frequency? | Standing 0.27 0.08 0.164* 0.17 0.05 0.360**
LIPA -0.78 -0.17 0.17 0.04
MVPA 0.69 0.18 1.05 0.28*
Sleep -1.05 -0.30 -0.31 -0.09
SB 0.69 0.30 0.32 0.14
Duration? Standing -0.09 -0.05 -0.067 0.09 0.05 0.244*
LIPA 0.35 0.15 -0.11 -0.05
MVPA -0.01 -0.01 -0.12 -0.06
Sleep -2.02 -0.85%* -2.06 -0.87%*
SB 1.50 0.98** 1.72 1.13%*
EC | TDT Standing 0.32 0.28 0.141* 0.32 0.28* 0.484%*
LIPA 0.05 0.03 0.28 0.18
MVPA 0.28 0.22 0.05 0.04
Sleep -0.96 -0.21 -1.49 -0.33
SB 0.81 0.27 1.20 0.41
Sway frequency? | Standing 0.41 0.18 -0.044 0.19 0.09 0.212*
LIPA -0.30 -0.10 -0.09 -0.03
MVPA 0.29 0.12 0.44 0.18

GM, gastrocnemius medialis; Lt, resting tendon length; CSA, cross-sectional area; K, tendon stiffness; YM,
Young’s modulus; EO, eyes open condition; TD, total displacement; EC, eyes closed condition; SB, sedentary
behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity; Yog-
transformed; *P<0.05; ** P<0.01.

Table 7.6. Relative effects (%) of isotemporal substitution on outcome variables.

-10 mins
Outcome variable +10 mins
Sleep SB Standing LIPA MVPA
Sleep -0.016
SB -0.001
GM tendon force Standing -0.030
LIPA +0.015 | +0.001 +0.036 +0.000 +0.019
MVPA -0.019
Sleep +0.000 | +0.021 +0.058 +0.021 +0.024
SB -0.021 +0.000 -0.115 -0.025 -0.025
EO Duration? Standing -0.046 | +0.091
LIPA -0.020 | +0.024
MVPA -0.023 +0.023
EO TDY Sleep +0.000 | -0.017 -0.095 -0.027 -0.025
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SB +0.017 | +0.000 +0.042 +0.009 +0.013

Standing +0.075 -0.034

LIPA +0.026 | -0.009

MVPA +0.024 | -0.013

Sleep +0.000 | -0.120 -0.709 -0.153 -0.184

SB +0.120 | +0.000 +0.279 +0.110 +0.093
EO Sway frequency? Standing +0.562 -0.220 +0.054

LIPA +0.147 -0.105 -0.034

MVPA +0.176 | -0.089 -0.065 +0.034 +0.000

Sleep +0.000 | -0.014 -0.082 -0.021 -0.020

SB +0.014 | +0.000 +0.036 +0.010 +0.013
ECTD' Standing +0.065 -0.028 +0.000 +0.004 +0.011

LIPA +0.020 | -0.010 -0.005

MVPA +0.019 | -0.012 -0.013

GM, gastrocnemius medialis; EO, eyes open condition; TD, total displacement; EC, eyes closed condition; SB,
sedentary behaviour; LIPA, light-intensity physical activity; MVPA, moderate-to-vigorous physical activity;
flog-transformed. Bold values represent the relative change from the study sample’s mean outcome for

adjusted models including significant association(s) with any of the daily total behaviours.

Daily SB pattern parameters

Regression analysis showed several associations between daily SB pattern parameters and
outcome variables (Table 7.7). For example, maximal tendon elongation was negatively
associated with W1/, in the single linear regression model, (B = -0.22, R%gq = 0.041).
However, the linear relationship disappeared completely when adding covariates.
Although not associated in single regression models, GM tendon CSA was associated with
Breaks SB when accounting for covariates (B = -0.15, R%q; = 0.518). The same was true for
average K (B = -0.25, R%q; = 0.269), average YM (B = -0.29, R%,4j = 0.256) and maximum YM
(B =-0.23, R%,4j = 0.216) with Period, and for total displacement during eyes closed postural
balance with X1/2 (B = -0.27, R%qj = 0.458). On the contrary, maximal strain and sway
frequency during eyes open postural balance were associated with W12 & Period (both
maximal strain) and Long SB bouts (sway frequency) in an uncorrected model (B = -0.22,
R%,qj = 0.037 & B = 0.21, R%,qj = 0.035 vs. B = 0.31, R%,q = 0.077), but this relationship
disappeared after adding covariates. GM tendon force, maximal stress and trial duration
during eyes open single-legged balance were the only outcomes showing models with
consistent associations across single and multiple regression models. More specifically, GM
tendon force was negatively associated with W12 (B =-0.21, R%,qj = 0.034 & B = -0.25, R%,q;
=0.351) and so was maximal stress (B =-0.23, R%,qj = 0.042 & B =-0.25, R%q; = 0.151), while
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trial duration during eyes open postural balance was negatively associated with Xi/2 (B = -
0.34, R%,¢j = 0.093 & B = -0.37, R2%.qj = 0.449) and Period (B = 0.34, R%4; = 0.094 & B = 0.29,
RZ,qj = 0.331). Interestingly, the latter outcome was also associated with Long SB bouts in a
single regression model (B = -0.36, R%,q = 0.108), but not after covariate-adjustment.
Moreover, the opposite was seen for a negative association with Wsoy in a multiple linear
regression model (B =-0.26, R%,qj = 0.312), but without showing a significant association in
a single linear regression model. Overall, the effect sizes for the multiple linear regression
models including significant associations of SB parameters, ranged from 0.151 through

0.518. The rest of the adjusted models had effect sizes of 0.067 < R2,qj < 0.512.
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Table 7.7. Single and multiple regression analysis results for daily sedentary behaviour pattern parameters.

Without covariates With covariates
95%-Cl 95%-Cl 95%-Cl 95%-Cl
Outcome variable
B lower upper B R2adj B lower upper B R2ag)
bound bound bound bound
Breaks SB 0.02 -1.36 1.39 0.00 -0.010 -0.79 -1.92 0.33 -0.11 0.392**
Short SB bouts -0.37 -1.62 0.88 -0.06 -0.006 -0.65 -1.68 0.37 -0.10 0.390**
Long SB bouts 3.62 -0.15 7.38 0.18 0.025 0.03 -3.39 3.45 0.00 0.375**
a -84.58 -199.56 30.40 -0.14 0.011 -48.33 -147.59 50.93 -0.08 0.385**
GM Lr X1/2 0.01 -0.07 0.09 0.02 -0.009 0.05 -0.02 0.11 0.12 0.388%**
W12 0.38 -0.30 1.06 0.11 0.002 0.24 -0.33 0.80 0.07 0.384**
Wso% 0.07 -0.18 0.33 0.06 -0.006 0.16 -0.06 0.38 0.12 0.388**
F -4.12 -11.66 3.42 -0.11 0.002 -3.63 -10.14 2.87 -0.09 0.383**
Period -1.75 -3.69 0.20 -0.17 0.021 -0.78 -2.47 0.92 -0.08 0.380**
Breaks SB -0.24 -0.56 0.07 -0.15 0.013
Short SB bouts -0.16 -0.45 0.14 -0.11 0.001
Long SB bouts -0.46 -1.36 0.43 -0.10 0.001
a 20.37 -6.63 47.36 0.15 0.013
Max A GM Lr
X1/2 0.00 0.00 0.00 0.08 -0.004
W12 -0.18 -0.33 -0.02 -0.22* 0.041*
Wso% 0.01 -0.04 0.07 0.05 -0.008
F -0.26 -2.04 1.52 -0.03 -0.010
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Period 0.39 -0.06 0.85 0.17 0.020
Breaks SB -0.01 -0.02 0.01 -0.10 0.000 -0.01 -0.02 0.00 -0.15* 0.518%**
Short SB bouts -0.01 -0.02 0.00 -0.15 0.012 -0.01 -0.02 0.00 -0.14 0.512**
Long SB bouts 0.03 0.00 0.07 0.19 0.025 0.00 -0.03 0.03 -0.01 0.497**
o] -0.55 -1.58 0.48 -0.10 0.001 -0.13 -0.90 0.65 -0.02 0.497**
GM tendon CSAf X1/2 0.00 0.00 0.00 -0.09 -0.002 0.00 0.00 0.00 -0.05 0.499**
Wiz 0.00 -0.01 0.01 -0.01 -0.010 0.00 0.00 0.00 0.00 0.497**
Wso% 0.00 0.00 0.00 0.06 -0.006 0.00 0.00 0.00 0.12 0.507**
F -0.07 -0.13 0.00 -0.19 0.027 -0.04 -0.09 0.01 -0.12 0.507**
Period -0.01 -0.02 0.01 -0.07 -0.004 0.01 -0.01 0.02 0.06 0.500%**
Breaks SB -0.61 -6.75 5.52 -0.02 -0.009 -2.97 -8.16 2.23 -0.09 0.299**
Short SB bouts -0.27 -5.87 5.32 -0.01 -0.010 -1.92 -6.72 2.88 -0.07 0.294**
Long SB bouts -2.01 -19.13 15.11 -0.02 -0.009 -4.95 -20.45 10.55 -0.06 0.293**
a 444.77 -66.84 956.38 0.17 0.019 380.62 -68.92 830.15 0.14 0.310**
GM tendon force X172 0.69 -0.18 1.55 0.16 0.014 -0.05 -0.36 0.26 -0.03 0.291**
Wiz -3.22 -6.20 -0.24 -0.21* 0.034* -3.83 -6.36 -1.29 -0.25%* 0.351**
Wso% -0.21 -1.34 0.92 -0.04 -0.008 0.50 -0.52 1.52 0.09 0.297**
F -9.22 -43.03 24.59 -0.05 -0.007 -18.65 -49.04 11.74 -0.11 0.300**
Period 2.97 -5.82 11.77 0.07 -0.005 2.97 -4.83 10.77 0.07 0.294**
Breaks SB 0.01 -0.01 0.04 0.11 0.002 0.01 -0.02 0.03 0.04 0.214**
K Average' Short SB bouts 0.01 -0.01 0.03 0.09 -0.003 0.00 -0.02 0.02 0.01 0.213**
Long SB bouts 0.02 -0.06 0.09 0.04 -0.009 0.04 -0.03 0.11 0.11 0.224**
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a 0.23 -2.01 2.47 0.02 -0.010 -0.54 -2.63 1.54 -0.05 0.215**
Xi/2 0.00 0.00 0.00 -0.08 -0.004 0.00 0.00 0.00 -0.05 0.215%*
W12 0.00 -0.01 0.01 -0.02 -0.010 0.00 -0.02 0.01 -0.07 0.217**
Wso% 0.00 -0.01 0.00 -0.06 -0.006 0.00 0.00 0.01 0.06 0.216**
F 0.00 -0.15 0.14 -0.01 -0.010 -0.09 -0.22 0.05 -0.12 0.225%*
Period -0.03 -0.06 0.01 -0.14 0.009 -0.05 -0.08 -0.01 -0.25%* 0.269**
Breaks SB 0.01 -0.02 0.04 0.08 -0.003 0.00 -0.02 0.03 0.01 0.235%*
Short SB bouts 0.01 -0.02 0.03 0.04 -0.009 0.00 -0.02 0.02 -0.01 0.235%*
Long SB bouts 0.04 -0.04 0.12 0.10 0.000 0.02 -0.05 0.09 0.05 0.238%**
a -1.30 -3.74 1.14 -0.11 0.001 -1.99 -4.17 0.18 -0.17 0.249**
Maximum? X1/2 0.00 0.00 0.00 -0.15 0.013 0.00 0.00 0.00 -0.14 0.255**
W12 0.01 -0.01 0.02 0.08 -0.004 0.00 -0.01 0.02 0.04 0.236**
Wso% 0.00 -0.01 0.00 -0.02 -0.010 0.00 0.00 0.01 0.06 0.238**
F -0.05 -0.21 0.11 -0.06 -0.007 -0.11 -0.26 0.04 -0.14 0.250**
Period -0.03 -0.07 0.01 -0.13 0.007 -0.04 -0.07 0.00 -0.18 0.263**
Breaks SB 0.01 -0.02 0.04 0.08 -0.005 -0.01 -0.03 0.02 -0.04 0.266**
Short SB bouts 0.00 -0.02 0.03 0.03 -0.010 -0.01 -0.03 0.02 -0.06 0.268**
Long SB bouts 0.04 -0.03 0.12 0.11 0.002 0.03 -0.04 0.10 0.08 0.272%*
Standardised" a -0.85 -3.25 1.55 -0.07 -0.005 -1.24 -3.30 0.81 -0.11 0.276**
X1/2 0.00 0.00 0.00 -0.11 0.001 0.00 0.00 0.00 -0.07 0.269**
W12 0.00 -0.01 0.02 0.02 -0.010 0.00 -0.01 0.01 -0.02 0.265**
Wso% 0.00 -0.01 0.00 -0.04 -0.009 0.00 0.00 0.01 0.08 0.266**
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F -0.05 -0.20 0.11 -0.06 -0.007 -0.10 -0.24 0.03 -0.13 0.282**
Period -0.02 -0.06 0.02 -0.11 0.002 -0.03 -0.06 0.01 -0.14 0.277**
Breaks SB 0.02 -0.01 0.05 0.15 0.011 0.01 -0.02 0.03 0.05 0.179**
Short SB bouts 0.02 -0.01 0.04 0.13 0.005 0.00 -0.02 0.02 0.01 0.177**
Long SB bouts 0.01 -0.07 0.08 0.02 -0.010 0.05 -0.03 0.12 0.12 0.191**
a 0.41 -1.91 2.73 0.04 -0.009 -0.72 -2.86 1.42 -0.06 0.181%**
Average? Xa/2 0.00 0.00 0.00 -0.05 -0.008 0.00 0.00 0.00 0.01 0.177**
W2 0.00 -0.01 0.01 0.01 -0.010 0.00 -0.02 0.01 -0.05 0.179**
Wso% 0.00 -0.01 0.00 -0.06 -0.007 0.00 0.00 0.01 0.09 0.184**
F 0.03 -0.12 0.18 0.04 -0.008 -0.09 -0.24 0.05 -0.13 0.191**
Period -0.03 -0.07 0.01 -0.15 0.013 -0.06 -0.09 -0.02 -0.29%* 0.256**
Breaks SB 0.02 -0.01 0.05 0.12 0.004 0.00 -0.03 0.03 0.02 0.171%**
™ Short SB bouts 0.01 -0.02 0.04 0.08 -0.004 0.00 -0.03 0.02 -0.02 0.171**
Long SB bouts 0.03 -0.05 0.11 0.08 -0.004 0.05 -0.02 0.13 0.13 0.182%**
a -1.12 -3.58 1.35 -0.09 -0.002 -1.87 -4.15 0.40 -0.15 0.187**
Maximum? Xa/2 0.00 0.00 0.00 -0.13 0.005 0.00 0.00 0.00 -0.10 0.173**
Wiz 0.01 -0.01 0.02 0.10 0.001 0.00 -0.01 0.02 0.03 0.172%**
Wso% 0.00 -0.01 0.00 -0.02 -0.010 0.00 0.00 0.01 0.10 0.173**
F -0.01 -0.17 0.15 -0.01 -0.010 -0.10 -0.26 0.05 -0.13 0.181%**
Period -0.03 -0.07 0.01 -0.15 0.011 -0.05 -0.09 -0.01 -0.23* 0.216**
Breaks SB 0.02 -0.01 0.04 0.11 0.002 0.00 -0.02 0.03 0.02 0.183**
Standardised"
Short SB bouts 0.01 -0.02 0.04 0.07 -0.006 0.00 -0.02 0.02 0.00 0.183**
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Long SB bouts 0.04 -0.04 0.12 0.09 -0.002 0.03 -0.04 0.10 0.07 0.188**
a -0.67 -3.12 1.78 -0.06 -0.007 -1.33 -3.62 0.95 -0.11 0.191**
X172 0.00 0.00 0.00 -0.08 -0.004 0.00 0.00 0.00 -0.05 0.185%*
Wiz 0.00 -0.01 0.02 0.04 -0.009 0.00 -0.01 0.01 0.00 0.183**
Wsox% 0.00 -0.01 0.00 -0.04 -0.009 0.00 0.00 0.01 0.05 0.186**
F -0.01 -0.17 0.15 -0.01 -0.010 -0.06 -0.20 0.09 -0.07 0.188**
Period -0.03 -0.07 0.02 -0.13 0.006 -0.05 -0.09 -0.01 -0.24* 0.202**
Breaks SB 0.00 -0.02 0.02 0.00 -0.011 -0.01 -0.03 0.02 -0.06 0.092**
Short SB bouts 0.00 -0.02 0.03 0.03 -0.009 -0.01 -0.03 0.02 -0.05 0.090**
Long SB bouts -0.03 -0.10 0.04 -0.10 -0.001 -0.00 -0.07 0.06 -0.01 0.088**
a 1.75 -0.30 3.81 0.17 0.019 0.98 -1.05 3.01 0.10 0.097**
Maximal stress' X1/2 0.00 0.00 0.00 0.03 -0.010 0.00 -0.00 0.00 0.07 0.094**
W12 -0.01 -0.03 0.00 -0.23* 0.042* -0.01 -0.03 -0.00 -0.25%* 0.151**
Wso% 0.00 -0.01 0.00 -0.05 -0.008 0.00 -0.00 0.01 0.12 0.100**
F 0.02 -0.11 0.16 0.04 -0.009 -0.05 -0.19 0.08 -0.08 0.094**
Period 0.01 -0.02 0.05 0.09 -0.003 -0.00 -0.04 0.03 -0.01 0.088**
Breaks SB -0.02 -0.05 0.01 -0.12 0.003 -0.01 -0.04 0.02 -0.08 0.073*
Short SB bouts -0.01 -0.03 0.02 -0.06 -0.007 -0.01 -0.03 0.02 -0.05 0.069*
Long SB bouts -0.06 -0.14 0.02 -0.15 0.012 -0.03 -0.11 0.05 -0.08 0.073*
Maximal strain®
a 2.16 -0.25 4.58 0.18 0.022 1.97 -0.39 4.33 0.16 0.099**
Xa/2 0.00 0.00 0.00 0.08 -0.003 0.00 0.00 0.00 0.08 0.079*
W12 -0.02 -0.03 0.00 -0.22% 0.037* -0.01 -0.03 0.00 -0.19 0.109**
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Wso% 0.00 -0.01 0.01 0.01 -0.010 0.00 0.00 0.01 0.05 0.069*

F 0.02 -0.14 0.18 0.03 -0.010 0.01 -0.15 0.16 0.01 0.067*

Period 0.04 0.00 0.08 0.21* 0.035* 0.03 -0.01 0.07 0.15 0.089**

Breaks SB -0.01 -0.09 0.08 -0.02 -0.023 -0.03 -0.10 0.05 -0.10 0.313**

Short SB bouts 0.02 -0.05 0.10 0.10 -0.014 -0.02 -0.09 0.05 -0.08 0.308%**

Long SB bouts -0.28 -0.50 -0.06 -0.36* 0.108* -0.18 -0.39 0.02 -0.24 0.325**

a 3.75 -3.42 10.92 0.16 0.003 -1.18 -8.08 5.72 -0.05 0.305**

Duration? X1/2 0.00 0.00 0.00 -0.34* 0.093* -0.00 -0.00 -0.00 -0.37%* 0.449**
W12 0.02 -0.03 0.06 0.12 -0.008 0.01 -0.03 0.05 0.07 0.308**

Wsoy -0.01 -0.03 0.00 -0.24 0.038 -0.01 -0.03 -0.00 -0.26* 0.312%*

F 0.38 -0.08 0.84 0.25 0.040 0.30 -0.10 0.69 0.19 0.308**

Period 0.14 0.02 0.25 0.34* 0.094* 0.12 0.02 0.22 0.29* 0.331**

EO Breaks SB 0.01 -0.06 0.07 0.04 -0.022 -0.01 -0.07 0.04 -0.06 0.257**
Short SB bouts -0.01 -0.06 0.05 -0.03 -0.022 -0.02 -0.07 0.04 -0.08 0.259**

Long SB bouts 0.11 -0.07 0.28 0.19 0.012 0.03 -0.13 0.20 0.06 0.256**

a -0.79 -6.18 4.59 -0.05 -0.021 -0.26 -4.99 4.48 -0.01 0.253**

TDY X1/2 0.00 0.00 0.00 0.04 -0.022 0.00 0.00 0.00 0.00 0.253**
W12 -0.01 -0.04 0.03 -0.05 -0.020 0.00 -0.03 0.02 -0.05 0.255%*

Wso% 0.00 -0.01 0.01 -0.02 -0.023 0.00 -0.01 0.01 -0.05 0.256**

F -0.10 -0.45 0.25 -0.09 -0.015 -0.05 -0.39 0.29 -0.05 0.255%*

Period -0.02 -0.11 0.08 -0.05 -0.021 0.03 -0.05 0.11 0.10 0.262**

Sway frequency? Breaks SB 0.01 -0.12 0.15 0.03 -0.022 0.04 -0.08 0.16 0.09 0.232%*
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Short SB bouts -0.03 -0.15 0.09 -0.08 -0.017 0.02 -0.09 0.13 0.04 0.225**

Long SB bouts 0.39 0.03 0.75 0.31* 0.077* 0.24 -0.10 0.58 0.19 0.243**

a -4.55 -16.02 6.93 -0.12 -0.008 -0.17 -10.54 10.20 -0.00 0.223**

X1/2 0.00 0.00 0.00 0.23 0.030 0.00 -0.00 0.00 0.22 0.275**

Wiz -0.02 -0.09 0.05 -0.10 -0.013 -0.01 -0.07 0.04 -0.07 0.228**

Wso% 0.01 -0.01 0.04 0.15 -0.001 0.00 -0.02 0.03 0.04 0.225**

F -0.48 -1.22 0.26 -0.20 0.017 -0.11 -0.81 0.59 -0.05 0.225%*

Period -0.15 -0.34 0.04 -0.24 0.034 -0.06 -0.24 0.13 -0.09 0.231**

Breaks SB -0.03 -0.10 0.04 -0.13 -0.005 -0.03 -0.09 0.03 -0.13 0.302**

Short SB bouts -0.02 -0.08 0.04 -0.10 -0.013 -0.03 -0.08 0.03 -0.13 0.302**

Long SB bouts -0.03 -0.22 0.16 -0.04 -0.021 0.03 -0.13 0.20 0.05 0.288**

a -0.50 -6.29 5.29 -0.03 -0.023 -0.93 -5.85 4.00 -0.05 0.288**

Duration? X172 0.00 0.00 0.00 -0.01 -0.023 -0.00 -0.00 0.00 -0.02 0.286**
W12 0.00 -0.03 0.04 0.03 -0.022 0.00 -0.03 0.03 0.00 0.285**

Wso% 0.01 -0.01 0.02 0.16 0.002 0.01 -0.01 0.02 0.13 0.301**

= F -0.12 -0.50 0.25 -0.10 -0.013 -0.13 -0.45 0.19 -0.11 0.298%**
Period 0.02 -0.08 0.11 0.05 -0.021 -0.00 -0.09 0.08 -0.01 0.285**

Breaks SB 0.00 -0.04 0.05 0.02 -0.024 -0.02 -0.05 0.02 -0.12 0.397**

Short SB bouts 0.00 -0.05 0.04 -0.03 -0.023 -0.02 -0.05 0.02 -0.11 0.395**

TDY Long SB bouts 0.06 -0.07 0.19 0.14 -0.003 0.02 -0.09 0.13 0.05 0.384**
a -0.76 -4.68 3.15 -0.06 -0.020 -1.44 -4.57 1.69 -0.11 0.391**

X1/2 0.00 0.00 0.00 -0.19 0.013 0.00 0.00 0.00 -0.27* 0.458%**
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W12 -0.01 -0.04 0.01 -0.18 0.010 -0.01 -0.03 0.00 -0.18 0.416**
Wso% 0.00 -0.01 0.00 -0.15 -0.002 0.00 -0.01 0.01 0.02 0.382**
F -0.07 -0.32 0.19 -0.08 -0.017 -0.13 -0.34 0.08 -0.16 0.407**
Period 0.01 -0.05 0.08 0.07 -0.019 0.02 -0.03 0.07 0.09 0.392**
Breaks SB 0.03 -0.06 0.12 0.11 -0.011 0.02 -0.06 0.10 0.07 0.218**
Short SB bouts 0.02 -0.06 0.10 0.06 -0.019 0.01 -0.06 0.08 0.04 0.215**
Long SB bouts 0.09 -0.16 0.33 0.11 -0.011 0.06 -0.16 0.27 0.07 0.219**
a -0.26 -7.70 7.18 -0.01 -0.023 -0.90 -7.50 5.69 -0.04 0.215%*
Sway frequency? X1/2 0.00 0.00 0.00 -0.09 -0.015 -0.00 -0.00 0.00 -0.08 0.221**
W1/2 -0.02 -0.06 0.03 -0.12 -0.009 -0.01 -0.05 0.03 -0.08 0.220**
Wso% -0.01 -0.03 0.01 -0.20 0.017 -0.00 -0.02 0.01 -0.09 0.220**
F 0.06 -0.43 0.54 0.04 -0.022 -0.02 -0.45 0.42 -0.01 0.213**
Period 0.00 -0.13 0.12 -0.01 -0.023 -0.00 -0.11 0.11 -0.00 0.213**

GM, gastrocnemius medialis; Lr, resting tendon length; CSA, cross-sectional area; K, tendon stiffness; YM, Young’s modulus; EO, eyes open condition; TD, total displacement; EC, eyes closed
condition; Breaks SB, sedentary behaviour interruptions with >2 consecutive minutes upright activity; Short SB bouts, sedentary behaviour bouts <30 minutes duration; Long SB bouts,
sedentary behaviour bouts 230 minutes duration; a, scaling parameter sedentary bout length distribution; X1/2, median SB bout duration; W12, fraction total sedentary time accumulated
in bouts longer than median sedentary bout length; Wsoy, half of total SB is accumulated in SB bouts < this duration; F, fragmentation index of SB bouts and total SB; Period, mean period

between SB bouts; Tlog-transformed; *P<0.05; ** P<0.01.
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Discussion

We hypothesised that SB is detrimentally associated with GM tendon properties and
postural balance. Although we did not find any association for SB levels and proportional
time spent in SB with GM tendon properties, negative association were observed for some
postural balance outcomes. In addition, a variety of daily SB pattern parameters were also
detrimentally associated with postural balance. Interestingly, some pattern outcomes were
associated with GM tendon properties too, however, they showed rather counterintuitive

associations at times, such as K, YM and maximal stress.

For human tendons, there are two mechanisms that account for stiffness adaptations: (i)
changes in material properties (i.e. Young’s modulus), and (ii) changes in tendon
morphology (i.e. CSA) (196). Since changes in the CSA do not contribute much, if anything,
to changes in stiffness, changes in material properties are the main adaptation to modulate
tendon stiffness. As stated in the introduction of this chapter, the research on ageing-
induced changes in tendon properties is inconclusive. Although the consensus is that
tendon stiffness and Young’s modulus decrease, and tendon CSA becomes larger, not all
studies show these effects (155,195,196). In this chapter, no association was found
between age and GM tendon properties, Kand Young’s Modulus, respectively. Tendon CSA
was also not associated, however a positive correlation with tendon length was identified
(r=0.323, P<0.05), suggesting that longer resting GM tendon length is associated with older
age. Theoretically, as for age-induced changes to muscle tissue, reduced activity levels in
the elderly are also believed to be an important factor for the tendon property changes.
This is based on the premise that the magnitude of loading seems key for the adaptive
responses of human tendons (196,199). For example, previous studies have shown
reductions in tendon stiffness and Young’s modulus with simulated microgravity (during
bed rest) (199), while opposed effects were seen after resistance training, even in elderly
(195,200). Tendon CSA remained unchanged in both situations (196,199,200).
Nevertheless, in this chapter, no correlations were seen during analysis of covariates,
between resistance training and any of the tendon properties and the association with

tendon length may be a type | error.

With the opposite effects of disuse during bed rest and resistance training from literature
in mind, intuitively it makes sense that we did not find any associations for GM tendon
stiffness, except with the mean period between SB bouts (average K). However, regardless
whether SB is described as any waking behaviour with low energy expenditure performed
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in a lying, seated or reclining position (10), or as a lack of muscular contractions (166), both
are not similar to complete unloading. This means that, although SB can be found on the
lower end of the physical activity continuum, it is still higher than bed rest and only when
the reduction in activity falls below a certain threshold reductions in tendon stiffness occur
(206). It is tempting to speculate that this most probably results from sufficient loading
during breaks in SB. Yet, in this chapter a negative association between breaks in SB and
tendon CSA (but also between period and all YM outcomes) was observed. Interestingly,
looking at associations with PA intensities during PA bouts, LIPA is negatively and MVPA is
positively associated. This suggests that LIPA is performed more than MVPA during SB
breaks (Chapter 4). The fact that tendon CSA was associated with SB breaks only and not
with other SB parameters warrants cautiousness when interpreting the results. In addition,
with the model explaining ~52% of the variance, there are more predictors required to
pinpoint the exact factors that determine tendon CSA. Although direct comparison of
tendon mechanical properties with other studies is difficult, due to a variety of assumptions
and methods used, comparison of morphological measures is more straightforward. Doing
this, showed that the values of GM tendon CSA from this chapter are comparable to

previous research (44).

As stated before, the primary role of tendons is to transmit muscle forces to the skeleton,
thereby generating joint movement or stabilisation (196,199). For this reason, tendons play
not only a significant role in locomotion, but also in maintaining postural balance (44,196).
As a result of increased GM tendon compliance, the speed of force transmission is reduced
and so is the ability for postural balance (44). Although only a few associations between SB
parameters and tendon mechanical properties were observed within this study, a relatively
large number of relationships were identified with postural balance. For example, trial
duration during the eyes open condition appeared negatively associated with proportional
time spent in SB, number of prolonged SB bouts and the median SB bout duration. In other
words, the postural balance decreases with increasing SB. Proportional time spent in SB
was also identified to increase total displacement whilst balancing on one leg with either
the eyes open or closed. In addition, time spent standing relative to the other daily
behaviours also increased total displacement when balancing with the eyes closed.
Following from Chapter 2 & 3, all associations involving standing must be interpreted with
caution. As a result of the negative association with trial duration and the positive one with
total displacement, postural sway during eyes open postural balance also increases with

more time spent in SB relative to the other daily behaviours. Interestingly, increasing the
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median SB bout length was associated with less total displacement during eyes closed
postural balance. However, we propose that this is due to the fact that trials in this
condition were only very short in most participants (down to 1 second only). Thus,
participants capable and willing to try correcting their position during these short trials had
higher total displacement with only slightly longer duration (a trend was observed) than
people who did not or could not. We suggest that it is rather the less sedentary than the
more sedentary participant who would try to make postural balance corrections during an
eyes closed trial. Although the above results seem intuitively correct, it is difficult to explain
them with data from within this chapter. Having an overall lack of associations with either
of the tendon mechanical properties, indicates that other factors might explain the
discussed results. It has already been suggested that both muscle architecture and tendon
properties are not responsible for functional deficit in elderly, but that it is likely caused by

muscle size, intrinsic muscle properties and perhaps neural control instead (195).

Apart from tendon mechanical and morphological properties, we also tested associations
of SB parameters with other outcomes, such as tendon force. Unlike SB level groups, which
were not associated with any tendon outcome measure in this chapter, this variable was
associated with the fraction of total daily SB spent in bouts longer than the median duration
(W12). It was indicated that while being engaged in shorter SB bouts, tendon force
increases. Also, an increase in the time spent in LIPA relative to other behaviours, was
positively associated with tendon force. Although the relative effects seem small (max.
0.036%), when substituting 10 minutes of LIPA for any other daily behaviour and vice versa.
However, this was the case for all significant associations (max. 0.709%) identified during
compositional data analysis in this chapter (Table 7.6). Moreover, LIPA classification was
not shown valid for this study (Chapter 3) and thus, interpretation should rather be
avoided. Since we only observed a few (debatable) associations with tendon properties,
changes in force generating capacities are likely to mostly result from neuromuscular
adaptations (188). As shown in the previous chapters, this statement is only partially

confirmed.

Although a total of 105 older adults were tested, postural balance was examined in a
subpopulation. Comparing characteristics and predictors of interest between the total
sample and the subgroup, revealed no statistical differences. Hence, the subgroup within
this chapter is deemed representative for the whole cross-sectional study sample and

normal interpretation of results is allowed. A strong point of this chapter is the excellent
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reliability of most (3 out of 4) outcomes measured. Only maximum tendon elongation
showed a lower ICC of 0.698, which, however, still indicates moderate reliability. Overall,

the data used within this chapter is thus of acceptable quality.

Conclusion

SB appears to have little effect on tendon properties, but does negatively affect balance.
This suggests that the lower balance in SB is not due to increased tendon compliance, but

rather to other factors, such as impaired neural control of balance.
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Chapter 8. General discussion

Recap

The main aim of the current thesis was to investigate any sleep and physical activity (PA)
independent association between sedentary behaviour (SB) (amount and/or pattern) and
structure-mechanical properties of the gastrocnemius medialis (GM) muscle and tendon in
older adults. To do so an algorithm for the assessment of SB and PA levels using thigh-
mounted triaxial accelerometry was developed and applied to monitor habitual mobility
patterns for seven continuous days. Following on from this, both GM muscle and tendon
properties were assessed, more specifically: morphology, architecture, function,
fatigability, mechanical and material properties. Finally, postural balance was examined as

a functional outcome.

It was hypothesized that a thigh-mounted triaxial accelerometer algorithm for the
assessment of SB and PA levels in older adults would be valid and robust. The results from
Chapter 2 & 3 confirm this hypothesis by showing acceptable algorithm performance
(validity and robustness) of an in-house developed model using Random Forest machine
learning, throughout the spectrum of activity intensities in older adults wearing a thigh-
mounted triaxial accelerometer. Comparison with concurrent activity monitors also
showed high validity and suggested that a thigh-worn triaxial GENEActiv with a Random
Forest algorithm can be used best for accurate assessment of SB and PA in older adults.
Alternatively, we found that other monitors can also be used, depending on the research

guestion and setting, as they proved to be (partially) valid too.

Next, it was hypothesised that when applying an objective method to quantify SB and PA
levels, we would observe an increase in SB and a decrease in PA during further ageing in
older adults. This latter was confirmed in our population. Chapter 4 thus showed that the
study sample was representative for the population under study. Moreover, independence
was found between several SB and PA outcomes for the different levels of statistical
analyses applied within this thesis. This is an important finding as the initial premise for this

research was that SB and PA co-exist but have independent health effects.

Part Il of the thesis focused specifically on the associations between habitual daily activity
outcomes (primarily SB, but also sleep and PA) and both GM muscle and tendon properties
in elderly. For this part it was hypothesised that a detrimental association would exist

between sleep and PA-independent SB (amount and pattern) and both structural and
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functional GM muscle-tendon outcomes. The results of Chapter 5 & 6 identified a limited
number of associations, linking SB with detrimental outcomes in GM muscle morphology,
architecture, strength, force and function. However, since the models predicted relatively
small effects, the hypothesis was only partially confirmed regarding GM muscle outcomes.
Chapter 7 also showed a limited number of associations with GM tendon morphological,
mechanical and material properties. Interestingly and as predicted, detrimental
associations between SB and postural balance in older adults were identified. Hence,

Chapter 7 further supported the initial hypothesis.

Studies’ strengths and weaknesses

For the interpretation of the findings, it is important to discuss the strength and
weaknesses of this thesis. To start on the latter, one of the main limitations of this thesis
lies in its design. Part | of the thesis was only performed under laboratory conditions.
Although this provided a controlled setting for the development and validation of the
machine learning algorithm, it compromises its performance in free-living. The concurrent
validation in Chapter 3 also showed that LIPA classification appeared to be poor, hence
results involving this outcome should be interpreted very conservatively. By using a cross-
sectional study design for Part Il of the thesis, investigations were limited to associations
only. Although this could be considered a limitation, the fact that there is a gap in literature
regarding SB and GM muscle-tendon properties, it is a logical design to start exploring this
area. Nevertheless, assumptions had to be made, for example when monitoring activity
levels. It is possible that the accelerometer outcomes do not reflect true habitual
behaviour, because people artificially altered their habitual physical activity behaviour due
to a variety of reasons. These could include the mere fact of being conscious of being
monitored (i.e. wearing the monitor) (207). However, by monitoring 7 days with a discrete
accelerometer, which did not prevent participants from continuing their normal habitual
activities, it is assumed that the effect is minimal. In addition, since data was averaged over
one week, higher activity levels during the first days are expected to level out. Moreover,
participants were monitored again when they reported their previous week might not be
representative. This happened only twice and in both people, the data from the second
monitoring week differed from the first, but was comparable to the rest of the study
sample. With regards to sleeping times, log sheets were filled out by the participants,
however, our accelerometer algorithm could account for any discrepancies between
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reported times and accelerometer data. Furthermore, it is possible that weather/seasonal
variation might have introduced noise into the data, resulting in fit and active people to
stay inside and sit more than usually. In addition, it is unknown for how long the status quo
habitual physical activity level has been reached and has impacted on the participant’s
physiology. This could be an issue, for example when people have recently changed their
habitual activity levels. This change might not reflect their physiology as of yet, and thus,
may add noise to the data. In terms of skeletal musculature for example, loading/unloading
must be endured for a physiologically lengthy duration for an effect to have an impact on
either signalling pathways and/or biomechanical response mechanisms. A case in point is
that the typical muscle hypertrophy/atrophy interventions requires a minimum of 9 days
for signalling and phenotypic responses (208-210). Another main limitation is the fact that
this thesis was part of a larger cohort study. Within this study not only SB-associations with
muscle-tendon properties were studied but also with cardio-metabolic outcomes. Hence,
an accelerometer algorithm was developed to suit both research topics. Instead of focusing
on all loading experienced during monitoring time, which is of high importance for studying
muscle-tendon properties, the algorithm was customised to differentiate between active
and inactive physical states. For example, when a person was upright for at least two
consecutive minutes, this was defined as an activity bout. Whereas, one consecutive
minute of SB was required for a sedentary bout. These definitions might affect pattern
measures of both SB and PA, as short interruptions in SB or PA are neglected. Perhaps this
is not a problem for cardio-metabolic outcomes, but it may result in missing potentially
relevant data for investigating the true association between SB and muscle-tendon

properties.

Studying an elderly population is both interesting and challenging, in a way that not only
large between-subject variability exist amongst this age group, as evidenced from the large
standard deviations and interquartile ranges within this thesis, but also within-subject
variability (41). This latter can make interpretation of results complex. However, based
upon our good-to-excellent test-retest reliability for most outcomes (15 out of 19), we
assume this is not the case for our measurements. Regardless of the fact that 44.8% of our
participants were sarcopenic (according to the skeletal mass index (SMI) thresholds from
Baumgartner et al. (115)), generally, we included healthy community-dwelling older adults
with relatively high activity levels only. This limits generalisation of our findings beyond this
subgroup, as evidenced by the low R2,g-values for some our regression models (ranging

between -0.086 and 0.837). Although, an attempt was initially made to recruit participants
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from assisted-living facilities and care homes, these older adults were not forthcoming in
their participation. Indeed, after placing adverts in three homes and visiting these two
times (hence reaching a potential 60 participants), only less than ten residents came
forward to be included in this body of research. As a result, the cross-sectional study sample
can only reflect, with any degree of confidence, one end of the elderly age group. In other
words, our sample lacks the frail older participants who are likely to be those that engage
in SB the most. Thus, variance is missing, which complicates the development of regression
models and might explain low R?-values. Adding more factors is not expected to help in this
case and will only decrease the observed power of the regression models. Since linear
regression models were used for this thesis, it was assumed that the relationships between
SB outcomes and both muscle-tendon properties and postural balance were linear.
Obviously, in cases where this assumption is not true (however none of our existing data
would suggest lack of linearity), linear regression models hold no value. Notwithstanding
the above, research within the sedentarism area is explorative in nature, as such, all data
is potentially useful and incrementally increases overall knowledge base. This additionally
justifies the use of our cross-sectional study design, which does not allow examination of
causal relationships, but was important for an initial investigation of our hypotheses. In
fact, causal relationships, even in longitudinal study designs, are never straight forward to

suggest.

With regards to the strengths of this thesis, it is undeniable that these lie in the advanced
technology and analyses used to study the hypotheses. More specifically, the fact that
machine learning was applied to determine habitual daily activity levels, and both
compositional data analysis and SB pattern parameters were used, thereby providing
greater details than simply including overall quantification of SB levels (although based on
recommendations with medium to high confidence by Byrom et al. (117), only Ws0% and
daily total sedentary time should be used); this highlights the novelty of the current thesis.
Next, the research was conducted on a reasonably sized study sample, providing good
power for the identified significant associations. Moreover, the inclusion of a wide range
of covariates in our analysis, comprising sex, body composition, comorbidities, concomitant
medication and participation in resistance training, allowed improved interpretation of
relationships. Finally, this thesis contains novel data regarding associations between sleep
and PA-independent SB in older adults and a range of detailed GM muscle-tendon

properties and postural balance.
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Recommendations for future research

Based on the findings in this thesis, future research should focus on developing an
accelerometer algorithm, which offers more representative daily muscle-tendon loading
profiles in elderly. This can easily be achieved by not using minimum time thresholds for an
activity to be counted, as doing so, possibly filters out relevant data. Also, developing an
algorithm in a free-living setting will help to improve measurement accuracy. Moreover,
focusing on actual activity types, rather than intensities, and classifying sleep as SB instead,
might be more applicable for investigating the role of SB on skeletal muscle-tendon
characteristics in elderly. Altogether, this may lead to improved understanding of potential
associations. Future studies should also aim to include the two ends of the physical
behaviour spectrum i.e. more sedentary elderly as well as master athletes, thereby
increasing the variance in activity levels and allowing further reaching modelling.
Furthermore, selecting a range of other relevant covariates to be added to the existing
models, such as metabolic, genetic and hormonal factors, may also improve regression
models. However, this requires a sufficiently large sample size not to decrease the power
of the prediction models. More detailed information on metabolic balance might be useful
as well. Finally, multiple periods of 7-day habitual activity monitoring should be performed,
as this provides important information on possible changes in activity levels (e.g. due to
seasonality) on a longitudinal scale. Doing this will help in better understanding of long

term associations between SB and muscle-tendon properties in older adults.

On a more general note, it would also be very interesting to see what associations may be
found in other populations, instead of healthy elderly, and whether they might be different.
Next, as cross-sectional studies are currently dominating SB research, interventional
studies should be performed to get closer to understanding the potential causal
relationships, and ultimately, to determine dose-response effects of SB. This latter will
allow the identification of preventative/counteractive mechanisms, and moreover, the
development/update of current physical activity guidelines. Lastly, with SB being a multi-
factorial phenomenon (211), which is deeply rooted in our system and society, research
trying to unravel this complex behaviour and focusing on identifying strategies for

successful long-term changes in SB, will be of high importance.
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Conclusion

Generally, detrimental associations between sleep and PA-independent SB outcomes and
GM muscle morphology, architecture, force production and neuromuscular function were
few in this sample of relatively healthy older adults. The same was true for GM tendon
morphological, mechanical and material properties. This may thus indicate a greater
sensitivity of the musculotendinous parameters to high loading rather than periods of
unloading. Key nonetheless, is the important observation that postural balance ability (and
hence by extension, a maintenance of physical independence (212)) in elderly deteriorated

with high levels of objectively quantified SB.
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Abstract This literature review focuses on aspects
of sedentary behaviour (SB) in elderly. Since it has
been identified as a distinct health risk, independent of
physical activity, SB is a significant issue. This is
particularly true for an ageing population as evidence
shows that older adults (aged >65 years) are the most
sedentary age group (on average 8.5-96 h daily
sitting time). Accurate SB assessment is important

for und ding this habitual behavi and its
impact. However, SB is challenging
gardless of the hod used. Although negative

associations of SB in eldedy have been reported for
several health outcomes, evidence is inconclusive,
apart from the evidence on the adverse SB effect on
the all-cause monality rate. Generally, strategies have
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been propased to counteract SB, of which breaking
prolonged sedentary bouts with at least light-intensity
physical activity seems to be the most promising.
Overall, further research in elderly is mquired to
increase the evidence and to either support or refute
the current findings. Moreover, further research will
help to develop informed SB guidelines for an optimal
strategy to counteract SB and its health effects in older
adults.

Keywords Ageing physiology - Musculoskeletal -
Older adults - Physical activity - Sedentary behaviour

Introduction

Contrary to general perceptions, sedentary behaviour
(SB) does not necessarily reflect a lack of physical
activity (PA) (Sedentary Behaviour Research Network
2012). Instead, SB is defined as any waking behaviour
characterized by an energy expenditure <1.5 meta-
bolic equivalent of task (MET) while in a seated or
reclined posture (Sedentary Behaviour Research Net-
work 2012). Cumently, time spent sitting is increasing
in modem societies, p bly linked to activities
related to work, leisure or commuting. Previous
research has shown that higher sitting time is related
to poorer health (Gardiner et al. 201 Ic: Inoue et al.
2012). Recent health improvement strategies have
focused on increasing PA (Kikuchi et al. 2014). While
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PA contributes to healthy ageing and plays a key role
in the prevention of non<ommunicable diseases and
dml:ul:ty including cardiovascular disease, cama
syndrome, mental disordk

tal diseases and even all-cause monality (de Rezende
et al. 2014a; Gorman et al. 2014; Gennuso et al. 2015),
studies that controlled for PA intensity provide
evidence that also (prolonged) SB is an independent
determinant of health (Gennuso et al. 2013; Gorman
et al. 2014: de Rezende et al. 2014b; Gianoudis et al.
2015). This has led to the proposal of a novel
stratagem for reducing health nsks through not only
increasing PA, but also decreasing SB (Hamilton et al.
2008: Owen et al. 2011).

Recently, the study of SB and its relation to health
has become mare popular (de Rezende et al. 2014a), but
at present most underlyng mechanisms by which SB
has deletenious health effects remain unknown (Gia-
noudis et al. 2015). Moreover, existing studies have
generally focused on different ou.lcorm measures and

d divergent concl g the formula-
non of a cohesive understanding of ﬂ: interaction
between SB and health, as yet, impossible (de Rezende
et al. 2014b). Although SB research shows that older
adults (aged =65 years) are the most sedentary, this age
group has only been studied limitedly (G etal
2013: Van Cauwenberg et al. 2014b). This makes it
difficult to allow policy recommendations giving
detaled information on how to reduce SB in older
adults (Harvey etal. 2013). With an ageing population,
the increased SB is challenging for both health and
social care resourves, and better understanding of the
relationship between SB and health in the eldedy
requires mare and better-targeted research (de R d

(performed on 02 December 2015) identified 825 peer-
reviewed articles. All were screened for potential
inclusion hased first on the title and abstract, and if not
excluded, the full4exts were checked for eligibility.
Generally, eligible articles focused on SB (or a proxy
measure, but not physical inactivity) as a main

dent or dependent variable in healthy, com-
mumlydwcllmg older adults (aged >60 years) only.
Inaddition to the electronic databases search, reference
lists of the eligible articles (n =41) were hand-
searched to identify any missed papers (n=7)
(Fig. 1). Table 1 shows an overview of the 48
included papers, which are fundamental to this review.

Assessment of sedentary behaviour

Similar to characterising PA and exercise by the FITT
formula, describing the Frequency, Intensity, Time
(duration) and Type of activity, SB is suggested to be
chancterlsed by the SI'lT formula, which describes
Sed Y. ber of Interrup-
tions, Tu'nc (chrmcn) nnd Type (Tremblay et al.
2010). These vanables provide valuable information
on SB and should therefore be assessed in any study
dealing with SB. Since the need to quantify SB
emerged, efforts have been undertaken to develop
suitable measurement techniques. Overall, these can
be classified as either subjective or objecti ve, and both
have different outcome measures. According to pre-
vious research (Pate et al. 2008; Chastin and Granat
2010 Pedisic and Bauman 2015), studies on SB
mnnlly relied on self-reported methods, such as

et al. 2014a). To aid in developing targeted rescarch
programmes it is important to identify and summarize
curmrent findings of SB in older adults.

Hence, the aim of this review was to describe multiple
aspects of SB in older adults, from its assessment,
prevalence, physmloy health u'npn, through to any
known P lug

The strategy used to meet the mms of this literature
review was based on a search in four different
electromic  databases (PubMed, CINAHL, The

and/or logs. Subjective methods are
prmal, casy to administer, inexpensive, useful in
large-scale studies and do not alter behaviour (Celis-
Morales et al. 2012; Chastin et al. 2014a; Aguilar-
Farias et al. 2015). They will provide SB outcomes in
terms of total sitting time, total screen time or TV time.
If surrogate or proxy S B measures (e.g. TV viewing or
total screen time) are used as an indicator of total SB,
conclusions can however only be drawn limited to the
used measures, because the association with total
objective SB seems rather weak, even if the proxy

Cochmane Library and Sed y Beh.

Database) combining the following key words.
“sedentary behaviour”, “older adults”, and “health”.
Where passible, the following search limits were used:
English language and age group 65+4. This search

) springer

is objective (Pate et al. 2008; Visser and
Koster 2013: Chastin et al. 2014a). Although the

mber of SB questi ires for older adults increases
and quality improves in terms of acceptable reliability
measures, validity of self-reported total sedentary time
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and abstract for eligabiliy

825 rtiches Kdentified after etal. 2015: Aguilar-Farias et al. 2015). SB appears to
searching PubMed, CINAHL. be mare difficult to recall than PA, because of its
The Cochrane Library and habitual nature (Hart et al. 2011: Bond et al. 2014).
Sedeatmy *h'“:'z Especially for older adults it is a challenge 1o
Decemsber 2015 using accurately estimate sitting-time (van Uffelen et al.
keywords: “sedentary 2011). The bination of undk imation and low
belaviow”, “okler adulls”, precision is likely to reduce the ability to accurately
Muﬁ;f::"f Englich detect dose—resp relationships b self-re-
ponted SB and health outcomes (Chastin etal. 2014a).

Neverthel so<called past or previous day recall

92 duplicate articles removed questionnaires have been reported as promising since

they are easy-to-admini compare favourably with

other sedentary time questi criterion validity

733 ssticles scyoemed om title is high, and systematic errors low (Clark et al. 2013:

Matthews et al. 2013). Self-reports might give a
detailed picture of how, where and why SB time is

94 articles full-text screened
for eligibility

53 articles excluded afler

screening fisll-text
41 amicles eligible after
searching electronic databases
7 articles identified after
hand i lists
of eligible studies
48 articles inchaded in the

literarure review

Fig 1 Lierstwe search flow disgram

against accelerometer<derived SB is not strong yet
(Gardiner et al. 2011a: Hekler et al. 2012: Visser and
Koster 2013: Van Cauwenberg et al. 2014b: Aguilar-
Farias et al. 2015). A major flaw is that most studies
validate questionnaires against sensors unable to
capture SB accurately due to the inability of measuning
postural onentation, e.g. thigh inclination (Chastin

spent, which could be essential for developing inter-
ventions and public policy (Rhodes et al. 2012:
Matthews et al. 2013: Kozey Keadle et al. 2014; Van
Cauwenberg et al. 2014b: Busschaert et al. 2015).
Thus, subjective methods can provide useful informa-
tion and should not be ignored in SB assessment, but
they should not be used as sole means to assess SB, and
the development of accurate selfsreport toals to
measure (specific) SB in eldedy is still required
(Van Cauwenberg et al. 2014b:; Gennuso et al. 2015).

Although many objective techniques are available
to capture PA, there are only few to measure SB, in
particular I (Tremblay et al. 2010).
Acceleometry is preferred by most studies since it
provides reliable and valid measures of both PA and
SB, and it overcomes many of the above-mentioned
limitations of self-reports (Evenson et al. 2012:
Gorman et al. 2014;: Lohne-Seiler et al. 2014;
Aguilar-Faras et al. 2014: PediSi¢ and Bauman
2015). However, it is important to mention that
different accelerometers use distinct methods to
measure SB. One quantifies SB by a lack of move-
ment, and the other by postural allocation. The first
type only uses estimates of energy expenditure in
combination with cut-off points to define SB. How-
ever this results in misclassification as standing is
difficult to distinguish from sitting when performed
below the sedentary cut-off point (Stamatakis et al.
2012: Aguilar-Farias et al. 2014). Devices measuring
postural allocation are more accurate in assessing SB

et al. 2014a). Generally, most subjective
have obvious caveats, like bias and the tendency to

and therefore not only recommended but also used as

under-report SB (Chastin and Granat 2010: Harvey

fi dard (Kozey-Keadle et al. 2011: Agui-
lar-Farias et al. 2014). When compared to sel f-reports,
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Table 1 Overview of the 48 included smdies after lierstwe search

Data presented in Author(s) Sudy Subjective or  General finding(s)
paragraph(s) populstion  obyjective SB
wol
Original smdies
Assesment of SB Van n= 508 Both Validity for older adulss’ self-reporied total sitting time
Cauwenberg againsg k derived sedentary time was nol
etal. (2014b) strong, but comparable © previous studies
Aguilar-Fanass 0= 37 Objective The results suggest that cut-points are dependent on
et al. (20149) unit of analyses (ie. epoch length and axes); cut
points for & given epoch length and axs camnot
simply be extrapolated © other epoch lengths
Hekler et al. n=380  Both CHAMPS items effectively messured high-light, total
202) activity, and MVPA in seniors, but further re finement
s needed for sedentary and low-light activity
van Uffelen n=355 Subjectve The accuracy of okler adults’ self-reporied siming time
et al. (2011) is questionsble given the challenges they have in
ng siling-ti »
Gardineretal. n =48 Both The summary measure of Wtal sedentary time has good
(20118 repeatabality and modest validity and is sufficiently
responsive © change suggesting that it is suitable for
use in interventions with older aduls
Prevalence and types of  Shiromaetal n =727 Objective Older women spent shout two-thirds of waking time in
SB (2013) SB, most of which occurred in bouts lasting less than
30 min
Amardomir n=35%  Obective Sedentary time is high i lcelandic older aduls who
et al. (2013) have high life-expectancy and live narth of 60°
norhern latitude, while PA declines with incressing
age and bady mass index. Women spend more time in
low-light PA, but less in MVPA than men
Ewmonetal. n=760  Obective The New York sample spent a longer graportion of
(2014) time in SB and lght activities, but more time in
MVPA than the country sample. Urbanicity may
explain these differences
Ewmonetal. n=2630 Objective MVPA estimates vary among adults aged 60 or older,
(2012) depending on the cut point chosen, and most of their
time is spent in SHs
Lord et al. n=56 Objective Walking, sed y and itory behavi are
2011) distinct from each other, and together explain duily
function
Jeffrs etal. 0= 1419  Objective Amang older adults, the seeep decline in total PA
(20153a) occurmed due 1o reductions in MVPA whilst light PA
is relatively spared and sedentary time and long
sedentary bouts increase
Health impact of SB— Mitchelletal  n = 5681 Subjct SB was identified as medi for the ciat
Musculoskelets] health & 2015) between obesity and falk in commumty kving older
functional fitness people
Giuanoudis n=16&  Subjctve Higher levels of SB in older adults were sssocisted with
et al. (2015) reduced muscle mass and an incressed nisk of
sarcopenia in community-dwelling oler adults,
independent of PA
Dunlopetal. n=2286 Objective These U.S. national data show a strong relstionship
(205) between greater time spent in SB and the presence of
ADL dissbility, independent of time spest in
maoderaie or vigorous activity
QS <
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Table 1 continued

Data presented in Authar(s) Study Subjective o General finding(s)
paragraph(s) population  objective SB
toal
Sans etal. n =312  Objective Elderly who spend more time in PA or less ime in SBs
2012 exhibit improved functional fitmess and ofh S
Chastin n =30 Objective The pattemn of SB sccumulstion vanies between older
etal aduls and is ssocisted with muscle quality and
(2012 adiposity
Cawthon n=1983 Objective Older men with lower Wtal energy expenditure, lower
et al maoderaie activity, or greater sedentary time were more
(2013) likely to develop a functional limitstion
Health impact of SB— Ensrudetal. n=2918 Objective In older men exceading current guidelines on PA, grester
Cardio metbolic healh &  (2014) time spentin SB & asocisied with incressed mortality sk
mortality Chseetal. n=54  Objective  SB is sssociaied with an adverse metsbolic effect on low-
(2014 demsity ipogrotein in semors, even those who meet
guideline recommendations for an sctive ‘fit’ adult
Gemuso n=1914  Objective The results suggest that sufficient MVPA did not
et al ameliorake the negative sssociations between SB and
2013 cardio metsbolic sk factors or functions]l hmitations
in the current sample
Inoue etal  n = 1806 Subjective Spending less tme hing TV, a predomi SB, was
2012 associaied with lower risk of being overweiglht or
obese, independent of g PA guideh
Stumstakis 0 =2765 Bah SBis cisted with cardio bolic sk factors, but
etal the itions are more A when it is
2012 messwred by self-report that includes TV viewing
Gardiner n=1958 Subjective High leveks of SB were asocisted with grester
sl preval of the bolic synds
(2011¢)
Bankoski n = 1367 Objectiv The propartion of sed y time was strongly relsted ©
et al metabolic nisk, independent of PA
2011)
Gao et al. n =455  Subjective A high grevalence of the metsbolic syndrome in &
(2007 P ive sample of Caribbean-onigin Hispanic
elders was associsted with prolonged televisi
viewing, independent of PA and energy intake
Ledn- n=2635 Subjective C d with stently sedentary older adults,
Muiioz stent dentary individuals showed reduced
et al 11 lity. Individuals who changed siting
(2013 time experienced an intermediste reduction in mortality
Pavey etal. 0 =6656 Subjective Prolonged sitting-time was positive ly asocisted with all-
(2015) cawe martality. Women who reported sitting for more
than 8 Wday and did not meet PA guidelines had an
incressed risk of dying within the next 9 years
Gomez- n=3136 Subjective Sitting time mcreases the nsk of overweight-obesty and
Cabello overfat in women and the risk of central cbesity in
etal men, independently of walking time
(2012
Health impact of SB— Withall n=228  Objective Sep, MVPA and lower limb function were
Orher (health) et al ind dently and mod ly positively ed

outcomes & quality of (2014)
life

with perceived physical well-being but relationships
with mental well-being varisbles were weak. No
ignifh wations b SBs and well-being

were olwerved
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Table 1 comtinued

Data presented in Author(s) Sudy Subjective or  General finding(s)
paragraph(s) population  objective SB
wol
Balboa- n =107 Subjective Greaer leisure-time PA and less leiswe-time SB were
Castilloet al independentdy sssocisted with better long-erm health-
011) related QoL in older aduks
Vance etal n= 15 Sulyective Partial support was found for PA © improve and SB 10
(2008) worsen cognitive health
Verghewe et al n = 460 Subjective Participation in certain seated keisure activities (like reading
(2003) or playing board games) is sssocisted with a reduced nisk
of d ia, even after adj for base- line cognitive
status and after the exclusion of subjects with possibl
preclinical dementia
St o Mene guci n=326  Subject Socio-d hic, clinical, and health behaviow facions
counteract the et al. (2015) are sssocisted with high sitling time in older adults from
health effects of SB South-eastern Brazil
Swrdinhs et al. n =215 Objective B d y time is ised with better
(2015) plymal mndon h older adults; and, it may have an
important place in futwe guidelines on preserving older
adults’ physical function to support ADL
Gardneretal a= 1% Both N/a
(14)
Chastinetal. n=11 Subjective Older sdults consider self-efficacy, functional limitations,
(14 ageid stereotyping, locus of control, and pain as
determinanss of their SB
van der Berg 0 = 565 Objective Some d hi 1 i, and ba dical
et al (20149) dmmm in midlife were associated with considerably
more sedentary time per day in old age
Van n = 50986 Subjective There & a cross-sectional link between older adults’
Cauwenberg television viewing time -\d social compasition of their
etal (2014a) eighbowhood, formal participation, access 10 alermtive
aaim&s ud safety from crime
Fizsmons n=24 Both A ch may help individuals reduce time
et al (2013) spent in SBs
Davis et al n=217 Objective Promating regular breaks in sedentary time might be useful
(2014) in mamtsinng or ncreasing lower exwemity function and
later life mﬂqauhwe
Kikuchi etal. n= 1665 Subject Particul bie and hobavionnl
2013) characendtics related 1o TV time among Japanese older
adults have been identified, but they differ by gender
Gardineretal. n =59 Objective Sedentary time in older adults can be reduced following a
(2011b) brief intervention based on gasl setting and behavioural
sdfvmnimq
Nildssetal. n=48 Objective Self- il of sp PA and SB enh d
(214) successful mm of lost weight
Uffelen et al.  n = 6116  Sulyective It is suggested that older women with & high health nisk
(2012) profike and mal nisk grofile may mmhﬂy benefit
from ©p both reducing sitting me
and incressing PA or al least light auivhus
Dogra and n = 14560 Subjective Several specific comrelaies of exiended sitting time were
Stathokostas identified; tese findings have implications for public
(014) health strategies targeting older adults
) springer
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Table 1 cominued
Data presented in  Authar(s) Study Subjective or General finding(s)
paragraph(s) populstion  abjective SB wol
Reviews
Prevalence and Harvey et al. n=37255 Bot Whether are subyective or obje the

types of SB (013)
Harvey et al. n = 34969 Both

majority of older adults are sedentary
Time spent sedentary ranges from 5.3 © 94 h per

(2015) waking day m older adulis
Health impact of  de Rezende n=335503 Bot The dats supparss the relstionship between SB and
SB—Overall et al (20148) mortality in older adulis
SB sed: y belaviour, CHAMPS healthy activities model grogram for seniors, MVPA moderste-to-vigorows physical

activity, PA physical sctivity, ADL activities of daily living, 7V elevision, Qol. quality of life, Nz not applicsble

I are expensive (= £190 per unit), there
is potential bias due to a Hawthorne effect (behaviour
change in msponse to the awareness of being
observed) and data-analysis is labour-intensive (Vis-
ser and Koster 2013; Pedifi¢ and Bauman 2015), at
least until an analysis template has been d

specific SBs and provide more detailed (qualitative)
information that cannot be obtained with accelerom-
eters (Rhodes et al. 2012: Lohne-Seiler et al. 2014;
Van Cauwenberg et al. 2014b). Generally, it is
suggested that SB associations are complex to inter-
pretb they depend on the type of SB studied and

However, accelerometry enables more robust, objec-
tive, ambulatory and long-term recording of acceler-
ation signals (Chastin and Granat 2010: Tremblay
et al. 2010), and provides outcomes, such as total SB
time, sedentary bout time, sedentary pattern, and
number and frequency of breaks in SB. Nonetheless,

accel 1y only addn the energetic ontology
of the definition of SB and there is no consensus on a
standardised method for accel data process-

ing and analysis (e.g. non-validated cut-points or
epoch lengths) (Gorman et al. 2014; PediSic and
B 2015). A pti are still required to
quantify accelerometry-based PA and SB in older
adults, resulting in a potential danger of misinterpre-
tation (Evenson et al. 2012; Kowalski et al. 2012:
Gomman et al. 2014; Kozey Keadle e1 al. 2014). With
maodern technological ad a use is
assumed to be more straightforward and casy to
implement. Furthermore, the passibilities of objective
SB monitoring will continue to increase and provide
an ever detailed and bjective picture
of SB in elderly.

The main reason for preferring accelerometry in SB
measurement is that it provides an objective assess-
ment of SB and may thereby help to understand how
SB is related to healthy ageing (Visser and Koster
2013: Van Cauwenberg et al. 2014b). Nevertheless,
accelerometers should not substitute but supplement
questionnaires (Pedifi¢ and Bauman 2015). Self-
reports are still needed to assess engagement in

the measurement method used (Table 2) (Stamatakis
et al. 2012; de Rezende et al. 2014b). For example,
Lenz (2014) noted that in older adults TV viewing had
more associations with cardio metabolic outcomes
than repaorts of total SB, while Celis-Morales et al.
(2012) concluded that, due to underestimation, self-
reports might miss some significant trends that will be
found when objecti ve assessments are used.

When capturing SB in older adults, different
parameters have to be mk:n nto aocmnt. depending

on the method applied, ie. position, data
ﬁltenng and alpnthm. and type of devnce and/or
ire wed Additi con-

fomdm like age, gender, health Mtﬂ ar socioeco-
nomic status have to be considered. Another important
consideration to accurately estimate SB is the number
of complete data acquisition days needed. Compared
with PA, more itoring days are needed to reliably
estimate SB because it is less predictable on a daily
basis (Hart et al. 2011). In older adults, 5 monitoring
days are required to provide a reliable (1CC = 0.80)
SB estimate when using an objective method, while
only3 days are necessary to monitor PA with the same
level of reliability (Hart et al. 2011). Increasing the
number of monitoring days to either 7, 11 ar 21, will
improve the reliability of SB monitoning resulting in
ICCs of 0.85. 0.90 and 095 respectively (Hart et al.
2011). Since studies are divergent on whether there is
a difference in SB between week and weekend days in
older adults, it is advised to include both when using a
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193



Biogeronwlogy (2016) 17:547-565

554

vogEossE ey nds + ‘uqo@ow sy pows(F

DIVGH “uimosd AR N RIS [FEWOPGE O 00 dROFITEM YHM SOUSBMINOED IeM 4 Xaput s Kpoq [y d pool XwIp JHA d pootq
HoEhs 4y “wpeofFm Oy wwosdody Aruapmol 77 ‘waosdod| Kesuap-@y g e | PP ¥ T 1O #3038 DL mas st |
[Ppou st W YIYWOH (omt 2500n(F /) FUIMIN VOBIAIR) AL SRRVOR[ER0R 25y ‘PopRu aamelgns Tgng ‘pogpu anpAqo g0 morpg Amumpes gg
+ Ers)
+ + + + wy Apog
+ + + + + + + + + + OVAIHMWOM
frsg0)
+ - + + + +  FemasAgTNg
+ + nFem
+ + + + daa
+ + + -+ + Jds
- + + + 0L
+ + K
+ + + + + + + KIH
+ + + + o+ AL
D1vaH
+ + o+ + o+ SEREEVINOH
¥ & unsu
+ + + + + IDRsONDH
Furmrs
fs ans| fs s s SOPE) FU
MOl AL-UON AL OV MoL Al AL g wodsuesy, duo) Fuwy Fuipsy AL WY 0L VY NOGEIR OIpE)
Tans ko g “gns. s g0 rs  fq0
®561 = v) (Lg =w
GLIOD) sy =1) (r16l = v) @100
S9Lz = v R (Lo0e) €100) e saEoN
(ZIR) [ P someums  DupE) R OW) L = W) (p107) 207 "¢ 1 omuan 12D
vk g-g1)
(smak (9) synpe 2910 sqnpy SUORDORE §S

SAUOOINO IPOGEIN OIPSED I SUKRDONE FS XAAU00 3P 0 MAADAO Joug T INBL

) springer

194



Biogeronwology (2016) 17:547-565

55

<7-day monitoring protocol (Hart et al. 2011: Davis
et al. 2011: Visser and Koster 2013). Compared to
objective methods, self-reports show larger day-o-
day differences and therefore they mquire more
monitoring days (preferably >7) to reliably predict
SB (Han et al. 2011).

Generally, SB assessment in older adults is challenging,
egardless of the method applied or outcome measures
used. A combination of both objective (using postural
allocation) and self-reported methods used in a 7<day

itoning protocol is ly suggested to be optimal
for assessing SB in older adults.

Prevalence and types of sedentary behaviour

Daily function in older adults is mamly subdivided in
walking, postural transitions and SB (Lord et al. 2011),
with several studies reporting that most of thar time is
spent in SBs (Healy etal. 2008; Davis et al. 2011: Evenson
et al 2012: Shiroma et al. 2013; Jeffens et al. 2015b).
Previous literature shows that SB nareases with age,
resulting in older adults (aged =60 years) being the most
sedentary (Matthews e al. 2008: Rhodes e al. 2012;
Martin @ al. 2014) and oldolder adults bang more
sedentary than young-older adults (Table 3) (Evenson
et al. 2012: Martin et al. 2014; Harvey et al. 2015).
Interestingly, after retirement (from ~ 65 years of age) the
of SB iently red while the percentage of
bulatory activity (Godfrey et al. 2014). Not
only the amount of SB and long sedentary bouts increase
with ageing in older adults, but also the decline in total
daily PA accelerates (Table 3) (Davisetal. 2011: Harvey
et al. 2013; Buchman et al. 2014: Martin ot al 2014

Jefferiset al. 2015a). Thislater decline is charactenzed by:
(1) lower PA volume, (2) less higher-mtensity PA, and (3)
lower frequency of getting out and about (Davis o al.
2011). This results in old-older adults (aged =85 years)
performing only one third of the activity performed by
young-older adults (aged 70-74.9 years) at peak activity
times (Davis et al. 2011).

Acconding to national surveys, adults are on
average sedentary for 8 h of the waking day, and this
figure rises to >10 h in older adults (Matthews et al.
2008: Davis et al. 2011; Lenz 2014). However, two
systematic reviews describe that self-reported SB in
older adults (aged >60 years) is on average 5.3 h/day
only (Harvey et al. 2015), with ~60 % reporting
sitting >4 h/day dunng waking hours (Harvey et al.
2013). When using objective measurements, older
adults (aged =60 years) spend on avemge
8.5-9.6 Wday sedentary (Evenson et al. 2012, 2014;
Harvey et al. 2015), which equals 6580 % of their
waking day. Other accel based di
showed that older adults spend approximately
75-80 % of their awake time in SB which represents
8-12 h/day (Arnardottir et al. 2013: de Rezende et al.
2014a). Other studies suggest that 67 % of the older
age population is sedentary for >8.5 h/day (Sta-
matakis et al. 2012), and that about half (47 %) of
them are sedentary >80 % of their waking hours
(Davis et al. 2011). In general, older adult men spend
more time in SB (~75 % of the day) than older adult
women ( ~66 % of the day), but in both the total time
of SB is priman ly the result of accumulation of many
relatively short SB bouts of less than 30 min (Davis
et al. 2011: Evenson et al. 2012; Shiroma et al. 2013:
Harvey et al. 2015: Jefferis et al. 2015b).

T-Nf 3 Comparisan of Matthews et al. (2008)

" d SB
across different age groups Age groups
16-19 20-2 30-39 A A9 50-59 -69 70-85
Male 79 73 72 16 79 88 95
Female 81 17 73 75 78 81 91
Martin et al. (2014)
Age goups
Values represent mean 20-39 40-59 60-69 >0
how/day adjusted for
monitor-wearing time Male 19 85 94 103
4 behavi Female 79 83 87 9%
5B y
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For a better and more detailed understanding of SB,
it is important to assess typical S Bs. Previousresearch
has shown that older adults engage in approximately
16 types of SB daily, with TV viewing, reading, eating
meals, computer use and transportation being the most
common (Lenz 2014). Genenlly, TV viewing and
computer use are the main SB measures, followed by
the overall assessment of time-spent sitting (van
Uffelen et al. 2011: Rhodes et al. 2012; Visser and
Koster 2013). Time spent TV viewing combined with
computer use is termed screen time (Harvey et al.
2013). About 53 % of the older adults repont daily
screen time >4 h, and ~94 % >2 h (Harvey et al.
2013). When splitting daily screen time, older adults
watch on average 3.3 h TV, with more than half of the
age group (54 %) sitting in front of the TV for 3 h,
while about one third watches TV >3.6 h and 15 %
>4 h daily (Harvey etal. 2013). Around 65 % of ol der
adults use computers, but <10 % use it more than
1.6 h daily (Harvey et al. 2013). A more general
outcome, like leisure sitting time (excluding TV time),
is reported by older adults to be on average 3.3 h daily,
and reported by ~54 % to be >3 h (Patel et al. 2010;
Harvey etal. 2015). Total sitting time >3 h isreported
in older adults by 78 %, with ~59 % reporting sitting
>4 h, ~27 % reporting >6 h and 5 % meporting
>10 h daily (Harvey et al. 2013).

Although the amount of SB varies in the cument
litemture depending on the hod used
(range 53-12 h/day), it is neventheless clear that SBis
highly prevalent in older adults. PA appears to be
lower and of less i ity, making light-i ity PA
(LIPA) the mast commaon type of PA within the oldest
age groups (Table 3). This suggests that LIPA is the
most feasible PA in elderly, which is of interest to
counteract SB, as will be discussed later.

Sedentary physiology

Research into the physiology and healthimpacts of SB
has recently increased and represents an exciting new
field of study, which is distinct but complementary to
exercise physiology, namely sedentary physiology
(Tremblay et al. 2010; Sedentary Behaviour Research
Network 2012: Dunstan et al. 2012a). Associations
between SB and several outcomes have been reported.
However, the mechanisms underlying the association
between SB and adverse health effects remain

4 Springer
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in and are th a research priority (Dun-
stan et al. 2012a: Gianoudis et al. 2015). To date,
physiological mechanisms for four different outcomes
have been propased regandless of age, namely:

e Cardio metabolic It has been proposed that
reduced energy expenditure and muscle contrac-
tions not only lead to reduced insulin sensitivity
and an increase in pro-inflammatory cytokines
(Tremblay et al. 2010: Yates et al. 2012), but also
decreased lipoprotein lipase (LPL) activity and
muscle glucose t ter (GLUT) protein con-
tent (Tremblay etal. 2010: Gianoudis et al. 2015);

* Vascular Studies have shown that shear mte, FMD
and bmchial artery diameter decrease, while
endothelial cell damage and blood pressure
increase with increasing SB (Demiot et al. 2007;
Hamburg et al. 2007; Thosar et al. 2015):

®  Muscle—tendon It is proposed that continual under-
loading due to SB, negatively affects muscle—
tendon properties, since muscle<endon disuse
causes changes (e.g. muscle atrophy and increased
tendon compliance). Aside from that, SB is
thought to be a determinant driver for obesity
(Chastin et al. 2012). Generally, it is proposed that
an increase in visceral and intermuscular fat

imulates the rel of pro-infl y cytoki-
nes and decrease of anti-inflammatory markers
from adipose tissue, having a catabolic effect on
muscle tissue by impairing muscle protein synthe-
sis (Gianoudiset al. 2015). This will affect muscle
performance, however that does not only arise
from muscular but also neural factors (Tomlinson
etal. 2014);

o Skeletal SB is thought to change the balance
b bone ption and deposition, mainly by
a rapid increase in bone mesorption (marked by
increased deoxypyridinoline, unnary calcium and
type I collagen cross-linked N-telopeptides) with-
out concomitant changes in bone formation,
resulting in reduced bone mineml content and
increased nisk of osteoporasis (Kim et al. 2003;
Tremblay et al. 2010).

Health impact of sedentary behavi

Despite a high prevalence, SBinolder adults has so far
received limited scientific attention (Gennuso et al.
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2013; Van Cauwenberg et al. 2014b). A general
overview of reported (health) outcomes, indepen-
dently associated with SB in healthy, community-
dwelling older adults, is provided below (Fig. 2).

Musculoskeletal health & functional fitness

Although proof of SB effects on musculoskeletal
health is limited in elderly, some interesting findings
have been reported. Evidence shows for example, that
associations between screen-based SB and muscle
strength, independently of PA, are context-specific
where TV viewing is associated with lower muscle
strength while opposite effects are observed for
computer use (Hamer and Stamatakis 2013). This
might result from lower energy expenditure and
unhealthier eating behaviours during TV watching,
but also a potential confounding effect of education
level on computer use (Visser and Koster 2013: Lenz
2014). Further, a study examining the relationb

sarcopenia and SB, showed that hi gher volumes of TV

viewing time were related to lower total body and leg
lean mass after adjusting for fat mass, which was
positively associated with the duration of watching TV
(Gianoudis et al. 2015). Another study confimmed this
latter finding by suggesting that SB is directly related
to (lower limb) adiposity in older men, but increased
and prolonged SB was also, unexpectedly, associated
with increased leg power and muscle quality in these
men (Chastin et al. 2012). Passible explanations for
this latter finding were, eg. carrying more body fat
may provide a tmining stimulus or results reflect
adiposity developing in previously strong men who
have recently become sedentary. However, according
to Chastin et al. (2012), their results should be
interpreted with caution since the study sample was
not necessarily representative of elderly in general.
Other research shows that hi gher levels of SB in older
adults are associated with an increased risk of
sarcopenia and limited physical function, inde pendent
of PA or other potential confounding factors (G:

et al. 2013; Gianoudis et al. 2015). These findings are
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confirmed by other studies showing that even after
adjusting for PA and other confounders, objectively
measured SB is negatively associated with functional
fitness and the ability to perform activities of daily
living (Santos et al. 2012: Cawthonet al. 2013: Dunlop
et al. 2015). According to Marques etal. (2014), SB is
only a predictor for the nisk of losing physical
independence when not control ling for PA intensities.
However, this finding might result from misclassifi-
cation of participants due to using accelerometer data
of less than five monitoring days and a self-reported
measure of physical function. Santos et al. (2012)
found that PA was positively related to functional
fitness, independent of SB, and therefore they con-
cluded that both SB reduction and PA increase in older
adults might preserve functional fitness and perfor-
mance in temms of daily functioning tasks and inde-
pendent living. Especially obese people could benefit
ftunthlssmoeSBhubcmuhmﬁednl di for

2014). These findings are in agr with h

study suggesting that self-reported SB (TV viewing in
particular) and, to a lesser extent, objectively mea-
sured SB in ol der adults are negatively associated with
two cardio metabolic risk proxies, independently of
PA: (1) cholesteral index and (2) diabetes prevalence
(Stamatakis et al. 2012). Gennuso et al. (2013) also
reported that associations between accelerometer-
derived SB and various health outcomes in older
adults were not modified by PA, however they only
found independent associations with body mass (in-
dex), waist circumference, C-reactive protein and
plasma glucose, but not with blood pressure, choles-
terol markers and triglycendes (Gennuso et al. 2013).
Nevertheless, Chase et al. (2014) showed that objec-
tively measured SB was associated with an adverse
metabolic effect on low-density lipoprotein (LDL)
levcls in physically active eldedy. Overall, most

the besity and falls in elderly
(Mitchell et al. 2015). A study on successful ageing,
which represents the physical, psychosocial, and
social success with which adults age, showed that
SB is associated with lower odds of successful ageing
(Dogra and S(adnkoslu 2012). Although a dose-
ship exists b SB and each of
!hc three | ageing P s, the ges
association was found between SB and functional
limitations (physical component) (Dogra and Statho-
kastas 2012). Functional dependence in old age is
mare likely to develop in older adults who are not
physically active, or who were not so during their
middle age (Dogra and Stathol 2012; Mary

ggest that watching TV and/or engaging in
large amounts of total SB is negatively associated with
the (cardio metabolic) health of older adults (Bankoski
et al. 2011:; Gardiner et al. 201 lc: Gomez-Cabello
et al. 2012: Lenz 2014). Mareover, SB also negatively
affects mortality independently of PA, either or not
caused by cardio metabolic disorders (Dogm and
Stathol 2012:; St kis et al. 2012: Martinez-
Gomez et al. 2013: Le6n-Mufioz et al. 2013; Ensrod
et al. 2014: Pavey et al. 2015).

Other (health) outcomes & quality of life (QoL)

Although Withall et al. (2014) did not find an
1 between SB and subjective well-being of

etal. 2014).

Skeletal measures are limited to a single report,
showing that independent of time spent engaging in
PA. SB is negatively associated with femur bone

| density in older only (Chastin et al.
2014c¢).

Candio metabolic health & mortality

Regarding risk factors for cardio balic di

older adults, evidence shows that in the elderly, less
lei time SB is independently associated with
better long-term health-related QoL and cognitive
performance (Balboa-Castillo et al. 2011: Steinberg
et al. 2015). The number of sitting hours were
inversely related with the scale scores of physical
functioning, physical role, bodily pain, vitality, social
functioning and mental health (Balboa-Castillo et al.
2011). Obesity, diabetes and hypertension are possible

TV wviewing and self-reported SB are positively
associated with (i) dyslipidaecmia chamctensed by
increased triglycerides and lower high-density
lipoprotein (HDL), (i1) obesity, (iii) hypertension and
(iv) glucose intolerance (in women only) (Gao et al.
2007: Gardiner et al. 201 1c: Inoue et al. 2012: Lenz

) Springer

diating mechanisms for these associations between
SB and well-being (Balboa-Castillo et al. 2011). As
stated earlier in this review, leisure-time SB types are
differently associated with health markers in older
adults (Kesse-Guyot et al. 2012; Kikuchi et al. 2014).
For example, higher passive SB (e.g. TV viewing) is
associated with a higher likelihood of being
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overweight, adverse health behaviours (like poor diet)
and greater psychological distress, while mentally-
active sedentary time (i e. reading or computer use) is
not associated with health-related attributes and may
involve (i) beneficial processes which prevent for the
deleterious urpnct of sitting in older adults, (i)
provide | lation improving cognitive per-
formance capacities and (iii) improve social interac-
tion and QoL (Verghese etal. 2003: Vance etal. 2008:
Kesse-Guyot et al. 2012: Visser and Koster 2013:
Kikuchi et al. 2014). Overall across age groups, most
sedentary activities are suggested to decrease com-
munication with family, reduce the social network and
increase the risk of depression, anxiety and stress,
which would explain the poorer QolL. associated with
SB (Balboa-Castillo et al. 2011).

In spite of the limited ber of SB studies in ol der
adults, evidence is growing onthe (in g 1) ads
health effects of SB. A recent systematic review by de
Rezende et al. (2014a), accounting for the quality of
SB studies in older adults (assessed with the Grades of
R dati R Develop and
Evaluation (GRADE) tool), suggests, however, that
to date evidence is inconclusive. Due to the limited
quality of available studies, only scarme evidence
exists for all the reported health outcomes associated
with SB in elderly, except for the evidence on a
previously established do relati

can be classified as either interventional or
preventative.

Genenlly, research shows that especmlly pm-
longed sed y bouts instead of freg
bouts, have negative health effects, and llﬁcfm
sitting duration should be focused on more than on
frequency (Bond et al. 2014; Chastin et al. 2014¢). To
date, several studies on different age groups (including
older adults) have already shown that breaking
prolonged sedentary bouts can be effective, particu-
larly in decreasing the cardio metabolic disease risk
(Healy et al. 2008; Bankaoski et al. 2011; Bond et al.
2014; Guanouds et al. 2015: Bailey and Locke 2015),
while results on muscul oskeletal health and function
appear to be equivocal (Gianoudis et al. 2015).
Nevertheless, both Sandinha et al. (2015) and Davis
et al. (2014) found an association between breaks in
SB and better physical function in older adults.
Although all these findings make breaking prolonged
SB a very promising intervention, it has not been
studied as such in elderly yet and, only few studies
have been conducted to promote adoption of this
approach overall (Bond et al. 2014). In general, it is
not necessary to decrease SB dramatically before any
health effect can be achieved. This was shown by
Pronk etal. (2012), who noted that only 16 % decrease
in SB already g d health benefits in empl

ey

between SB and allcause mcrmhty which m
confirmed (Fig. 2) (de Rezende et al. 2014a). Maore-
over, the evidence on musculoskeletal health and

functional fitness in relation to SB in elderly, has not
been graded by de R:zcmtetal (Z)Ma) OvemlL the
present evidence of i

with sed y jobs. Other non-eldedy studies
reported improved cardio metabolic factors in partic-
ipants breaking every 20-30 min of sitting with just
~2 min of PA (Dunstan et al. 2012b; Peddie et al.
2013; Bailey and Locke 2015). These results are
highly stimulating in o ting SB, since it is a

SB and health outcast in older adults should be
carefull y interpreted, and further mesearch, to either
support or refute the cument findings, is needed to
draw firm conclusions which will lead toinformed SB-
minimisation strategies and guidelines for older adults
(de Rezende et al. 2014a).

Strategies to counteract the health effects
of sedentary behaviour

Regardless of the inconclusive evidence on all of the
possible negative health effects of SB in older adults,
multiple studies have already proposed stmtegies to
counteract the health impact of SB. These strategies

habitual lifestyle and therefore difficult to change
(Hart et al. 2011: Bond et al. 2014).

Itappears that the intensity of the SB interruption is
an important factor regarding its health effect (Chastin
et al. 2012: Bailey and Locke 2015). Bailey and Locke
(2015) showed that interrupting sitting with standing
alone is not sufficient and that at least LIPA (e.g. light-
intense walking) is required. A possible expl ion is
that minor increases in contractile activity (which are
associated and easily achieved with LIPA) can
dramatically increase muscle GLUT-1 & 4 content
and gl ! e in sed y individuals (Trem-
bhy et al. 2010; Latouche et al. 2013; Sardinha et al.
2015). This is ideal, since LIPA is not only inversely
related with SB, but also a feasible approach for older
adults to increase total PA and ameliorate the
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deleterious health effects of SB (Hamilton et al. 2008:
Healy et al. 2011). However, it needs to be determined
if there might be any adverse consequences of shifting
SB into LIPA, especially in case of older adults who
may be more prone to lower-body musculoskeletal
problems (Tremblay et al. 2010). Changing SB to
maoderate-to-vigorous PA (MVPA) (eg. brisk walk-
ing, walking stairs or exervising) would potentially
lead to spontancous compensatory behaviour resulting
in a less fragmented and possibly, higher total SB in
turn, and is therefore not preferred (Chastin et al.
2012). Epidemiologic evidence suggests that having a
positive balance between LIPA and SB is desirable
due to the inverse linearity of LIPA with a number of
cardio metabolic biomarkers (Hamilton et al. 2008). It
is known that physiological responses and adaptations
may differ within and between physiological systems
(Tremblay et al. 2010). For sedentary people it is
suggested that LIPA might only have beneficial effects
on the catd:ovnscuhr nml metabolic systems, but not
on the m kel possibly due to a lack
of overlcnd which is mnmlly required for improve-
ment of this particular system. Results from a prelim-
inary study suppart this and suggest that vigarous PA
during breaks is associated with higher muscle quality
in older adults (Chastin et al. 2012). However, new
evidence from a small study in young males (mildly
active only i.e. not involved in any type of exerise
program and not having undergone a systematic
resistance training program within 1 year prior onset
of the intervention) indicates that also mild walking
can improve muscle strength (Maeo et al. 2015).
Nevertheless, small changes from SB to LIPA can
already lead to a decrease in risk for chronic diseases
and mortality (Tremblay et al. 2010). Moreover, these
small changes also increase physical functioning
which reduces the risk of falls, allowing older adults
to live independently and the quality of later
life (Sardinha et al. 2015). These advantages are not
necessarily associated with MVPA and do also not
require prolonged periods of PA (Sardinha et al.
2015). However, regular MVPA is still important in
the prevention and treatment of chronic diseases, even
in older adults (Dunstan et al. 2012a). Therefore, both
PA and SB should be part of general guideli but

passive SB (e.g. TV watching) should be targeted
since this type of SB is also related to other adverse
health behaviours, like poor diet (Vlsser and Koster
2013). Overall, no definitive rec d regard-
ing the maximum total SB, number and duration of
breaks, and optimal interventional strategy to stimu-
late breaking prolonged SB exists cumently, as it
requires more research (Dunstan et al. 2012a).
Regardless of this, as well as motivational inter-
viewing (which was successful in stimulating PA in
elderly (Let and Goodman 2014), as the
emerging use of technology might be promising tools
to stimulate and alert breaks in SB. A recent example
of the latter method is a study by Bond et al. (2014)
who successfully used phone and activity mon-
itor applications that provide personal feedback and
prompt frequent short sitting breaks based onreal-time
data. However, their study was performed on a
middle-aged population, so it is unclear whether this
will also be effective in older adults, but expectations
are high. Although interventions might be successful
in the short-term, future research is necessary to
examine also the long-term post-intervention effects
on the amount and pattern of SB and PA. In order to
design successful intervention programs it is important
to know what reasons (apart from health or age) older
adults mi ght have that make them (more) sedentary or
stay inside, such as social, economic and environ-
mental factors (Uffelen et al. 2012: Kikuchi et al.
2013: Van Cauwenberg et al. 2014a: Dogra and
Stathok 2014; Meneguci et al. 2015). A prelim-
inary study by Chastin et al. (2014b) reported some
specific factors, considered as determi of SB by
older adults themselves, like selfefficacy, functional
limitations, ageist stereotyping, locus of control (the
extent 1o which people believe they have personal
control over events and outcomes in their lives), and
pain. Considening these factors when designing SB-
reducing interventions, might presumably lead to
tailored stmtegies with high efficacy (Chastin et al.
2014b). Other characteristics of successful interven-
tion programs to reduce SB in older adults might
include personalised goal setting and feedback as part
of hehl\'luural self itoring using a Itation

mare studies are needed to create informed guidelines
for SB in the clderly (de Rezende et al. 2014a). In
addition to breaking prolonged SB and reducing total
SB, studies have also reported that specific, pnimarily
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h (Gardiner et al. 2011b: Fitzsimons et al.

2013). Smlcﬂnng like this was alrady proven
successful in preventing weight regain in eldedy
(kaln et al. 2014). Or maybe even some form of
or habit f ion like in a newly ‘On
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Your Feet to Eam Your Seat’ mndomized controlled
trial (Gardner et al. 2014).

Instead of interventions, it might also be useful to
see whether large s of (prolonged) SB can be
prevented in elderly. Therefore, it is important to gain
knowledge about the nisk factors of SB mems
rescarch has shown that d hic, soci

elderly to limit their SB, as described in the latest
physical activity guidelines.

Open Access  This article s distribuied inder the erms of the
Creative C ibution 4.0 1 tonal License (hup: 4/
creati M /b “D/). which permits umwe-
stricied use, diswibution, and im in any medi

and biomedical vanables in midlife (eg. not being
married, primary education, living in a duplex or
living in an apartment (vs. villa), being obese, and
having a heart disease) were associated with a higher
prevalence of SB in older age, and thus might be useful
to predict which people will be highly sedentary as an
older adult (van der Belx et al. 2014). This will
potentially lead to pre targeted at
thase people identified, and mlgh redu:e SB preva-
lence in older adults.

Although all the suggestions for both intervention
and prevention strategies may have potential, most of
them are based on Felnmmry data only and thus need
further investigation to evidence and
generalizability.

Conclusion

Based on this review, it can be concluded that older
adults are the most sedentary age group, with an
accelerometer-derived avemge daily sitting time of
8.5-9.6 h, representing 65-80 %ufthmwahngnmc

ded you give approgriste credit to e original
amux(s)mdmeme. provide a link 1o the Creative Com-
mons Boense, and indicate if changes were made.
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and a Random Forest machine learning model were lop Ik using
the collected data. Defalsdmalyseswerepedonnedtodnd(dgorm robustness, and
examine and benchmark both overall and participant- spoclicbahmodacarados This
revealed that the four models can at least be used to confidently y behav-
iour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algo-
rithm outperformed the cut-off point models by being robust for all individual's physiological
and non-physiological characteristics and showing more performance of an acceptable
level over the whole range of physical activity intensities. Therefore, weproposotha Ran-
dom Forest machi ing may be for objective of
wandphydcalacwtyholmmtsusm“* d triaxial y.

ybehav-
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Introduction

Ageing is associated with a decline in physical function and recent evidence not only suggests
that this is largely attributable to increased sedentary behaviour (SB) in old age, but also states
that breaking prolonged SB by carrying out physical activity (PA) of at least light-intensity
may prove to be a promising counteraction strategy [11. It is surprising that though most
elderly exhibit high SB and low PA levels, leading to deleterious health outcomes, strategies to
minimise poor lifestyle choices in this age group has only received relatively little scientific
attention [1-3]. Ahead of this however, studies must first focus on improving the acauracy and
validity of activity monitoring in older adults [4,5]. To evaluate the exact health effects of SB
and PA, including ther role in healthy ageing, it isimportant to accurately and objectively
monitor these aspects of habitual mobility or lack thereof [6]. Motion-sensing technologies
using accelerometers are typically used in mobility monitoring since they are assumed to be
objective, and measurements can be carried out over a number of days [6-11].

The concept of accderometry to assess SB and PA is derived from Newton's Second
Law, which gives the interaction between force, mass and acceleration by the formula:
force = mass * acceleration [12]. In the context of human movement, this formula can be
expressed as: an activity is characterised by moving a mass (i.e. body (segment)) at changing
velodty over time (= acceleration). This acceleration results from forces generated by (and on)
the muscles at the expense of energy [10]. Several studies have shown positive linear relation-
ships between energy expenditure (EE) and movement accderation in people of different ages,
while performing activities under standardised test conditions with the accelerometer close to
the centre of mass [13-18]. This allows EE to be estimated from acceleration signals and the
classification of habitual daily activity as sed y. light and mod to-vigorous, by using,
until recently, cut-off point models. To illustrate this, when presenting the amount of move-
ment acceleration as counts per minute, these models will classify an outcome of <100 as sed-
entary, 100-1951 as light and >1952 as moderate-to-vigorous [6].

However, with the preferred accelerometer mounting location shifting away from centre of
mass sites such as the hip or waist [19-21], towards wrist-worn devices for the most part, the
premise of a linear relationship b EE and acceleration and thus, the use of
cut-off point models has become questionable. This c: ially-led shift forces researchers
to focus on posture detection only (i.e. the ‘Sedentary Sphere’ [22]) or to start looking into
other, more sophisticated and complex, methods to analyse acceleration signals by e.g.
machine learning [2,23,24]. Machine learning is already used for activity recognition and has
only recently been explored in PA research [2,24]. By focusing on patterns and regularities,
pattern recognition for ple, can handle plex and li data [6,25,26], potentially
providing opportunities for SB and PA research [27].

Although some experts have advised to stop developing cut-off point algorithms and start
using machine learning [4.28], to date the use of cut-off points remains preferred for intensity
classification [29]. One reason to continue using cut-off point modes lies in the complex
nature of machine learning, and the ease to und d and widespread adoption of cut-off
points [30]. Although proprietary cut-off points are not necessarily well understood either, the
desire to compare results with previous cut-off point-based studies could be another reason.
Notwithstanding, studies have already shown machine learning to outperform traditional cut-
off point algorithms for activity recognition not only in healthy adults, but also in niche popu-
lations such as the young or the overweight/obese [6.27]. However, validation of machine
learning needs to be confirmed for all intended end-users/study populations, e.g. the elderly,
prior to g; l adoption [10]. Rosenberg et al. [31] recently showed high levels of accuracy
and concurrent validity using Random Forest classifiers in older women.
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The decision of researchers to choose a simpler, but less accurate method over a more chal-
lenging and accurate one for activity intensity classification can possibly be justified when
using thigh-mounted triaxial accelerometry. Since the thigh is rdatively close to the centre of
mass, cut-off point models might still be valid in this smutlon. especially when adding posture
detection to these models, which then enables distinguishing b sedentary activity and
standing for instance. Whilst the IﬁIVPALIndlnﬂndﬂ' isa podenmpk ofa valid thigh-
mounted activity monitor [ZQ.’Z] it uses black-boxed proprietary algorithms, thereby ham-
pering p in thigh d accd algorithm development. To date, cut-off
point models for tl'ugh -mounted accek are und died, hence further investigation
and detailed comparison with machine learning is needed.

All algorithms require value calibration and the eventual utility of an algorithm depends on
the spedfic activities and intensities included in the calibration study [30]. To ensure high

accuracy of the algorithm in the general population, it is rec ded to perform the calibra-
tion on a heterogeneous sample, matching the population of interest, and induding a broad
range of activities ranging from sed ¥ to vigorous i ity [4,24,30,32]. Algo-

rithm performance is generally expressed in terms of overall accuracy and when it reaches
>80% for example, an algorithm is deemed acceptable [2]. However, even in possession of the
overall (Lg youp) accuracy, x.lgonthm performance on an individual (ie. single end-user)
level, Th ically, performance can be unacceptable in some individuals
where algorithm robustness is lacking. If algorithm inaccuracy disproportionately affects some
demographic groups over others, it may lead to misinterpretation of associations between
cither SB or PA and health. Thus, it isimportant to check robustness and benchmark end-
user-specific performance of accelerometer algorithms developed on heterogeneous pooled-
data sets prior to applying them to daily-life data. To date, evidence regarding this type of tri-
angulation is sparse.

The main aim of the present study was to compare between traditional cut-off points and
machine learning, for the provision of the best performing algorithm to classify SBand PAina
heterogeneous population of older adults using thigh-mounted triaxial accelerometry. It was
hypothesised that machine letnmg onqxffu'nu cut—oﬂ'punt based algorithms through
being robust for individual’s physiological and phy al characteristics, more accu-
rate and showing acceptable accuracies for all activity imumnes. To test this hypothesis, this
paper 1) examines overall balanced accuracy and robustness of four heterogeneous poaled-
data algorithms, 2) compares participant-specific balanced accuracies between all four algo-
rithms, and 3) benchmarks both overall and participant-specific balanced accuracies of the
algorithms.

Materials and methods

Participants

Forty healthy older adults (73.5 (6.3) years; 50% female) participated in this study (Table 1).
Participants were excluded if they were: <60 years of age, terminally ill or receiving cancer
treatment, diabetic, suffered from any central nervous system disease or condition, had a heart
attack in the past 12 months or any currently unstable ardiovascular condition, had any pul-
monary disease or condition thatdid not allow expired gas sampling, recently (within the past
three months) injured or had surgery on cither of their lower imbs, were not independently
mobile or atleast not able to complete a laboratory-based activity protocol without a (walking)
aid, had been advised by their physician not to take on any physical activity or exercise, or
were not competent to make an informed decision about study participation.
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Table 1. Study sample characteristics.
Age (years) 735(6.3)
Sex 20Female | 20 Male
Body mass (kg) 722(137)
Boay heignt (m) 167(010)
BMI (kgm*) 25.6 (4.3)
Prancial state 20 Fasting | 20Nonastng
REEswmg (VO: mikg™ min™) 282(1.00)
Prosthetic lower kmb joints 2VYes 38No
Cardiovascular medicaton 20 Yes 20No
Physical ftness level, 9 Less than good 11 Good or better
Preferred L v cwer s 3.7(10)
Falls nsk 32 Low | 8Mediumor high

Values represent anthmetic mean (SD) when normally distibuted data, else median (IQR).

SD, IOR range; BMI, body mass index; REE, resting energy expenditure;
VO, oxygen consumpton.
‘Https/idoi 0m)/10.137 1/pumal pona 0188215 001

This study was approved by the local ethics committee of the Manchester Metropolitan
University, UK. All participants gave written informed consent prior to their participation in
this study.

Baseline characteristics

From each partidpant, the following baseline characteristics were recorded: age, sex, body
mass, body height, body mass index (BM1), prandial state, resting energy expenditure (REE),
presence of prosthetic lower limb joints, use of heart rate contralling medication, physical fit-
ness levd, preferred walking speed and risk of falling (Table 1). Age (years), sex (female/male),
prandial state (fasting/non-fasting), presence of prosthetic lower limb joints (yes/no) and use
of aardiovascular (heart rate controlling) medication (yes/no) was determined througha
health questionnaire or orally on the day of testing. Body mass was assessed in kilograms using
adigital hody mass scale (Seca GmbH & Co. KG.,, Hamburg, Germany) and body height was

res using a stadi (Holtain Ltd,, Crymych, UK). Both measures
wemdtknmn:d up to the closest decimal with the participant barefoot and wearing light
clothing only. The body index (BMI) was calculated by dividing body mass by squared
body height (kg:m ). REE was estimated by ing oxygen ¢ ption (VO,) (mlkg
*.min""; STPD conditions: standard temperature and dry gas at standard barometric pressure)
while sitting quietly on a chair for four minutes, together with resting heart rate (beats per
minute). Both REE and resting heart rate were expressed as the arithmetic mean of the read-
ings taken during the third and fourth minute of sitting. To inarease the accuracy of REE base-
line estimates, only data from fasted participants were used. Since resting heart rate served to
estimate baseline physical fitness levels, participants who were on heart rate controlling medi-
cation were not taken into account. Classification of the physical fitness levds was done using
astandard resting heart rate table [33]. Preferred waking speed (kmh™*) was based an the self-
selected speed during treadmill walking in participants without prosthetic lower limb joints.
Risk of falling (low/medium /high) was determined using the falls risk assessment tool (FRAT)
[34].
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Instrumentation
During the laboratory-based activity protocol partidpants were equipped with different instru-
ments. First, two GENEActiv Original triaxial accel s (Activinsights Ltd., Kimbol

UK) with range +8 g (1 g = 9.81 ms”®) and weighing 16 grams each, were fitted bilaterally on
the anterior mid-thigh (at 50% of the distance between trochanter major and lateral femur epi-
condyle). Both accd swere d using Tegaderm™ transp film dressing (3M
Health Care, St. Paul, MN, USA) and set at a sample rate of 60 Hz. This frequency respects the
Nyquist-Shannon sampling theorem, which states that the sample frequency should at least be

twice the maximum frequency at which sampling is required. Since ially all human body
movement occurs bdow 20 Hz, the sampling rate should be >40 Hz [35,36]. Orientation of
the accelerometer axes during standing was: X = mediolateral, Y = vertical and

Z = anteroposterior. The devices were used as calibrated by the manufacturer. Next, partici-
pants wore a Polar T31 chest belt to monitor heart rate, which would then remain in place for
the entirety of the test protocol (Polar Electro Oy, Kempele, Finland). To estimate energy
expenditure during the activities (see bdow) we used indirect calorimetry. Expired gas samples
were collected per activity via a standard mouthpiece and two-way T-shape non-rebreathing
valve (2700 series) (Hans Rudolph Inc., Kansas City, MO, USA) into a Douglas Bag (DB)
(Plysu Industrial Ltd,, Milton Keynes, UK). Expired gas sample concentrations of oxygen and
carbon dioxide inside the DB were determined using a Servomex 5200 gas analyser (Servomex
Group Ltd., Crowborough, UK). The gas analyser was calibrated prior to each participant’s
testing session. The total volume of expired gas inside the DB was analysed using a calibrated
dry gas meter (Harvard Apparatus Ltd., Edenbridge, UK).

Laboratory-based activity protocol

Participants were asked to perform ten laboratory-based activities of daily living which were
assumed to be representative for older adults. Half of the participants (N = 20, 50% female)
were instructed to arrive ina fasting condition, allowing to drink water up to a maximum of
250 ml only, while the other half received no instructions. The protocal started with 20 min-
utes rest in a supine position. Then, the following ten standardised activities of daily living
(four minutes each) were executed in the spedfied order: 1) lying supine on a treatment bed,
2) sitting on a chair, 3) standing upright, 4) shuffling sid eways, 5) free over-ground walking at
self-selected speed, 6) cycling on an ergometer at a preferred pace (Monark Exercise AB, Vans-
bro, Sweden), 7) treadmill waking at 3.2 kmh, 8) tread mill walking at self-selected speed, 9)
treadmill walking at self-selected speed wearing a weighted vest (15% of body mass) and 10)
brisk treadmill walking at a maximum speed of 6.5 km h™*. All treadmill walking was per-
formed on a slat-belt treadmill (Woodway USA Inc, Waukesha, W1, USA). The first two min-
utes of each activity were used to reach a steady state in EE. During the second half of the
activities, two one-minute expired gas samples were taken. To prevent any carry-over effects of
fatigue, participants were seated between the activities until their heart rate returned to resting
level The total duration of the protocol was approximatdy %0 minutes. A standard digital
video camera was time-synchronised and used to record the entire testing session, which
served asa criteri and allowed direct observation of al activities post laboratory
protocol completion.

Accelerometer data pre-processing & feature selection

Analysis of the triaxial accelerometer data required multiple steps. Firstly, raw acceleration sig-
nals per axis were filtered twice using a zero-phase fourth order low pass Butterworth filter: 1)
a cut-off frequency of 20 Hz was applied to remove any noise and 2) a cut-off frequency of
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0.5 Hz was used to split the noise-filtered slgml into static and dynamic acceleration signals,
allowing deter mination of monitor ori and [6,37]. Secondly, two one-
minute periods (identical to the gas sampling minutes) of both static and dynamic acceleration
signals per axis were extracted per prﬂormcd activity. Next, twenty time- and frequency
domain based features per pping lO~s indows were d ined per axis for each
ofthtsnmpks enndtdfrombolh the dynamic and static accderation signals. These time-
md fr yd domain based fe mdudod. arithmetic mean, standard deviation (SD),

di quartile range (IQR), skewness, kurtasis, root mean
square, cross-correlation, rdl pm:h. yaw, peak-to-peak amplitude, peak intensity, zero-
[ gs, lag one autoc inant frequency, amplitude of dominant frequency and
entropy. Also, two resultant vectors were calculated over the three axes, one using arithmetic
means and the other SDs. (Please see Liu etal. [38] for the applied formulas.) All data pre-
processing was done using R 3.2.5 [39].

After data pre-processing, the 10-s window features were used to model four algorithms
based on methods using either cut-off points or machine learning, Three algorithms induding
posture classification (based on the 10-s window arithmetic mean static acceleration of the
Y-axis (static Y ye,,)) were derived from cut-off point analyses using dynamic acceleration
data. The first algorithm used the sum of vector magnitudes (SVM) as an outcome,

A0
SVM=Y"xityitz}
ol

where d represents the data-point number within the 10-s window. The second algorithm
used summation of the time integrals of the moduli of the triaxial accelerometer signal (IMA),

where
o+ T o+
IMA:/ WH/ ]y|dt+/ " e
~y

where T represents 10 seconds. The last cut-off point algorithm was adapted from our previous
postural balance studies that focus on total movement (TM) using force plate balancing tasks
[40], which is calculated as

™ = /xg? + yo? + 207

where SD rep the 10-s wind dard deviation of the dynamic acceleration signal

peraxis. For the only machine learning algorithm we used Random Forest in this study, which
is known for its high performance [24,41-43]. Briefly, Random Forest isan ble method
using the b pping of multiple dedsion trees to predict an Prior to developing a

Random Forest model, analyses were performed to sdect optimal features for the Random
Forest classifier. Firstly, pairwise correlations between features were studied, removing either
one of the factors when r >0.75, then feature selection was performed inR 3.2.5 [39] using the
Boruta package [44]. Eventually, 55 features were selected for the Random Forest model.

Activity intensity classification

To classify activity intensities, we used metabolic equlvalem (MET) values. These values were
calculated per participant for all the inute d gas samples taken during the activity
protocol Due to individual differences, this wasdonc by dividing the VO, (in ml-kg *-min™)
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duringa one-minute activity sample by the participant’s calculated REE. Thus,

Vi -
MET, i atsampic =M

REE_ ..

Intensity dassification for each one-minute sample (6 x 10-s windows) was done by check-
ing 1) the MET value and 2) the participant’s posture using the video recording. Practically,
when the one-minute sample’s MET value was < 1.5, the aboratory-based activity was classi-
fied as cither sed y activity or standing, depending on the posture. Classification of light-
intensity PA (LIPA) and moderate-to-vigorous PA (MVPA) wasbased on the MET value only,
meaningif >1.5 and <3 then an epoch was dassified as LIPA, while epochs with MET values
23 were classified as moderate-to-vigorous PA (MVPA) [10]. Intensity dassification of the
laboratory-based activities per this system represented the reference classification used for
algorithm devel and cross-validati

¥

Algorithm development and cross-validation

The initial step in cut-off point based algorithm development was to create a scatterplot in MS
Office Excel 2016 (Microsoft Corp., Redmond, WA, USA) using the 10-s window data, with
cither SVM, IMA or TM values on the horizontal axis and MET values on the vertical axis.
Next, trend line-analysis was performed and the line-of-best fit (i.e. showing the highest pro-
portion of exphined variance (R?)) was chosen. The cakulated cut-off points for SVM, IMA
and TM represented MET values of 1.5 and 3, which allow classification of activity intensities
per 10-s windows based on SVM, IMA and TM values, dther or not combined with posture
detection. Briefly, these cut-off point algorithms only use two steps in ther classification struc-
ture 1) comparing SVM, IMA or TM values with the calculated cut-off points and 2) if neces-
sary, posture detection (Table 2).

Random Forest modd develop on 10-s window features was performed inR 3.2.5 [39]
using the random Forest package [45]. The 10-s window reference classifications of the labora-
tory-based activities were used to train the Random Forest classifier (supervised machine
learning) with the number of trees set to 100. This number was derived from out-of-bag error
analyses (Eig1).

For this study, pooled-data algorithms were developed using the leave-one-subject-out
method. This means that the 10-s window data of N = 39 (training sample; on average 1427
(8.6) data points for SB, 620 (7 4) for standing, 761 (19.9) for LIPA and 2937 (35.5) for MVPA)
was used to develop the pooled-data algorithms, while the data of N = 1 was used to cross-
validate the algorithms. With N = 40 this cross-validation procedure was repeated 40 times
with another participant to be left out each iteration. Based on the performed 10-s window
cross-validations, confusion matrices were created per participant per algorithm. Eventually,

Table 2. Cut-off point aigorithm classification scheme.

Rules Classification

1 It MET value <1.5 and notupnght, then: Sedentary
2 Eise: f MET value <1.5 and upright, then: Standing
3 Eise: f MET value >1.5 and <3, then: LIPA

4 Eise: MET value >3, then: MVPA

MET, metabolic equnvalent; LIPA, ight-intensity physical activity; MVPA, modera te-to-wgorous physical
actvity.

https/idoi 0m/10 137 1/pumal pona 0188215 002
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Fig 1. Out-of-bag Forest modelling.
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these matrices were used to determine balanced accuracy per intensity for each algorithm
from two perspectives: 1) participant-spedfic and 2) overall (all participants’ confusion matri-
cessummed).

Balanced accuracy (%) =—S¢'miﬁw'ly-2+ Specificily

True positives (N)

True positives (N) + False negatives (N) wa

Sensitivity (7o) =

True negatives (N)

 p——— R T

Specificity (%) =

where N represents the number of cases. Apart from the cross-validation, all algorithms were
also tested on their own training samples to check for overfitting, Balanced acaurades of
280% were considered of an acceptable level [2].

Statistical analyses
Prior to summarising or testing data, we checked its distribution for normality. Since we hada
data sample of N = 40, the Shapiro-Wilk test was used for this purpose. Bascline characteristics
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are presented as the arithmetic mean (SD) (or median (IQR)). To test robustness of the four
pooled-data algorithms we dif ¢ baseline characteristics were correlated with
balanced accuracy values (either Pearson or Spearman corrdation). Differences in balanced
accuracy values between categories of categorical baseline characteristics were tested with the
independent T-test (or Mann-Whitney U test). For the comparison between the four pooled-
data algorithms the one-way ANOVA repeated-measures test (u' the Fricdman test) was per-
formed. Balanced accuracy levds from these analyses are rep d as arithmetic mean (95%-
confidence interval (95%-CI) (or median (~ 95%—(:])). In case multiple comparisons were nec-
essary for hypothesis testing, either Bonferroni or Sidak correction was used to adjust P-val-
ues.

Adjusted P~ valuey g .= Py + k

Adjusted P — valueg, =1~ (1-P_)*

where k is the number of comparisons. For the current study, P-values were considered statis-
tically significant when P <0.05.

With data variability, even within-subject under controlled conditions, and variance being
one of the components for algorithm prediction errors, detailed data reliability checks were
deemed highly important. Since 24 x 10-s windows bilateral accel data and two one-
minute expired gas samples were collected per laboratory-based activity, reliability of both
main triaxial accelerometer (static Y,,ep, SVM, IMA & TM) and oxygen consumption data
was determined by calculating a coefficient of variation (CV) per activity per participant.

CV (%) = SDesiypsicpes 100
Arithmetic mean g, e

where SD represents standard deviation. To check for consistency across the activity protocol,
all CVs were checked for correlation with MET values. If a correlation was found, data disper-
sion was determined (SD or IQR). Finally, depending on the distribution, either the arithmetic
mean (95%-CI) or median (~95%-CI) was calkulated over the moduli of all CVs per outcome
variable to get sample-based reliability measures. In this study, a CV of <10% was considered
acceptable.

All statistical analyses were executed using IBM SPSS Statistics for Windows, version 23.0
(IBM Corp., Armonk, NY, USA).

Results
Data reliability

Relationships with MET values were only found for the CV's of accelerometer outcomes SVM
and static Yeun p-0.105 (P = 0.046) and p -0.382 (P<0.001) respectively. IQRs for these vari-
ables were between 3.4% and 8.5% (SVM), and between 0.4% and 2.1% (static Y,,..,). The
sample-based CVs of static Y eun SVM, IMA and TM were 0.8% (0.7%, 1.0%), 5.5% (5.1%,
6.0%), 5.6% (5.2%, 6.2%) and 6.2% (5.7%, 7.0%) respectively. CVs of oxygen consumption data
collected using the DB method also showed a negative rdationship (p -0.495 (P<0.001)) with
MET values. As shown by the IQR, VO; CVs were typically between 2.2% and 7.5%. The sam-
ple-based CV ofthe DB method was 4.4% (3.4%, 5.3%). For all variables, the CVs within the

IQR were <10%.
PLOS ONE | hitps: #/doi.org/10.1371/joumnal pone 0188215 November 20,2017 9/18
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Table 3. Algorithmcross-validation confusion matrix.
Cross-validation Individual Training sample
results
Method Reference Sensitivity | Specificity A level
Standing | LIPA | MVPA (%) (%) accuracy (%) (%) accuracy (%)
SW Sedentary 1463 0 12 0 99.9 99.7 99.8 1000 99.8
Standing 0 588 48 0 925 99.1 95.8 %5 95.8
LIPA 1 48 448 | 61 574 97.8 776 625 78.0
MVPA 0 0 272 | 2951 98.0 90.6 94.3 1000 94.4
MA Sedentary 1463 0 12 0 99.9 9.7 99.8 1000 99.8
Standing 0 588 48 0 925 99.1 95.8 25 95.8
LIPA 1 48 469 | 66 60.1 97.8 789 650 79.2
MVPA 0 0 251 | 2046 97.8 91.3 94.5 1000 94.6
™ Sedentary 1454 0 12 0 99.3 99.7 99.5 1000 99.5
Standing 0 588 48 0 92.5 99.1 95.8 925 95.8
LIPA 10 47 398 | 67 51.0 97.6 74.3 575 745
MVPA 0 1 322 | 2045 978 888 3.3 1000 93.3
Random 1463 0 34 0 99.9 99.2 99.6 1000 100.0
Forest 0 585 45 0 20 99.1 95.5 925 100.0
LIPA 1 47 497 | &2 63.7 97.5 80.6 800 100.0
MVPA 0 4 201 | 2930 97.3 92.9 95.1 1000 100.0
SVM, sum of vector magnitudes; IMA, integrais of the modull of acceleration signais; TM, total move ment; LIPA, light-intensity physical activity, MVPA,
moder ate-10-wigorous physical activity.
A/'doi org10.137 1oumalpons 0188215 1003
Overall balanced accuracy
The confusion matrix shows that all algorithms classified sedentary activity with overall bal-
anced accuracies of 99.5% (Table 3). Sensitivity and specificity values were >99.2%.
Classification of standing was >95.5% accurate in all four modds. Sensitivity was 92.5% in
the cut-off point algorithms and 92.0% for Random Forest, while specificity was equal over the
four algorithms (99.1%).
Most variation in overall balanced accuracies was found for LIPA, ranging from 74.3%
(TM) to 80.6% (Random Forest). The confusion matrix revealed that the models’ sensitivity
was only 57.4%, 60.1%, 51.0% and 63.7%, for SVM, IMA, TM and Random Forest respectively.
On the other hand, specificity values were 297.5% for all algorithms.
Finally, overall balanced accuracies of >93.3% were found for MVPA classification. Sensi-
tivity was =97 3% in all models, while specificity varied from 88.8% (TM) to 92.9% (Random
Forest).
The overall balanced accuracies per intensity per algorithm were comparable b the
cross-validation and training sample, except for Random Forest (Lable 3). Standing, LIPA and
MVPA showed overall balanced accuracies of 100.0% on the training sample against 95.5%,
80.6% and 95.1% during cross-validation.
Robustness
Random Forest was the only algorithm not showing any changes or differences in balanced
accuracies per intensity for all individual’s baseline characteristics. The cut-off point algo-
rithms did show changes for a single baseline characteristic each, namely body height. More
PLOS ONE | hitps: /doi.org/10.1371/joumnal pone 0188215  November 20,2017 10/18
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specifically, balanced accuracies for standing were positively correlated with body height (all

three algorithms p 0392 (P = 0.047)).

Algorithm comparison

Overall, differences in participant-specific balanced accuracies between algorithms were found
for one intensity only (Eig 2). More specificlly, participant-specific balanced accuracies for
LIPA classification were different in three occasions, where SVM, IMA & Random Forest
appeared superior over TM. The differences found were 4.1% (1.5%, 6.6%) (P = 0.006), 6.3%
(2.6%, 10.0%) (P<0.001) and -11.2% (-18.0%, -4.4%) (P = 0.030) respectively.

v (%)

T T T
SVM - IMA I SVM - Randums Forewt [MA - Rasboes Forent I
SVM-T™ IMA-TM T

T T T
SVM - IMA | svt-RasdmForet | DO - Raniown Feee |
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L M - oo Foren)
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10
154
T T T T T T
SVM - IMA l SVM - Random Forest | TMA - Randon Forest l SVM - IMA | SVM - Random | ored | IMA - Random | orew I
SVM T IMA - T™ T™ « Rendios Furent SVM-T™ IMA-TM TM - Raeaboms Fovent
Fig2. o P usingp specific SVM, sum of vector
IMA, integrals of of acceleration signals; TM, total movement; LIPA, light-ntensity physical activty, MVPA, moderate-to-
) Y ty; Error bars 95% Dashed line *P <0.05.
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Algorithm benchmarking
Applying the critical 80%-threshold to the overall balanced accuracies of the pooled-data algo-
rithms per i ity showed that all algorithms reached the threshold for sedentary activity,

standing and MVPA classification (Table 3). However, only the Random Forest model also
met the criterion for LIPA dassification.

Benchmarking the participant-specific balanced accuracies per intensity for each algorithm
revealed thatall modds had a perfect score (100.0%) for sedentary activity and MVPA
(Table 3). The balanced accuracy for standing classifiation was acceptable for 92.5% of the
participants in all algorithms. LIPA classification, however, showed acceptable balanced accu-
racies for only 62.5% (SVM), 65.0% (IMA) and 57.5% (TM) of the participants in the cut-off
point algorithms, while this was 80.0% in Random Forest.

Discussion

The main aim of the current paper was to compare between traditional cut-off points algo-
rithms and a machine learning approach, to provide the best performing heterogeneous
pooled-data algorithm to study SB and PA in older adults using thigh-mounted triaxial accel-
erometry. It is encouraging to note that all models showed acceptable overall balanced accura-
cies for classification of sedentary activity, standing and MVPA. As hypothesised however,
Random Forest outperformed the cut-off point classifiers, being robust for all individual's
hysiological physiological characteristics and the only algorithm with acceptable
(>ams) overall balanced accuracies over the whole range of activity intensities. Inaddition,
participant-sped fic balanced accuracies of Random Forest were superior over TM when classi-
fying LIPA.
The fact that Random Forest algorithm performance was better than cut-off point models
of SB and PA intensity detection is likely owing to its ability to recognise patterns in li
and complex data by using a combination of multiple decision trees, each trained ona random
set of features [6.30]. To illustrate the difference with cut-off point algorithms, these models
were developed using only two parameters from the triaxial accelerometer data, whereas
modelling of the Random Forest algorithm used 55 parameters. Despite this, the differences in
performance found between the cut-off point algorithms and Random Forest were rather
small only. When comparing balanced accuracies between the cut-off point algorithms tested,
an explanation for the results might come from the variability of the parameters used to
develop the algorithms. Since oxygen consumption data was used similarly for all models, this
parameter did not result in any differences. Nevertheless, with a CV of 4.4% (3.4%, 5.3%), DB
proved to be a reliable method in the current study. The fact that all algorithms used the same
parameter for posture detection, static Y., respectivdy, means that it can also be ruled out
as a possibl lanation for algorithm performance differences. With a CV of only 0.8%
(0.7% 1.0%) in d'us study, this parameter was considered highly reliable. Based on the balanced
accuracies, TM is the lowest performing algorithm showing either similar or inferior balanced
accuracy results per intensity when compared to the other cut-off-point algorithms. Although
the CV of TM as a parameter is only 6.2% (5.7%, 7.0%), it is slightly higher than the CVs of
SVM and IMA, 5.5% (S 1%, 6.0%) and 5.6% (5.2%, 6.2%) respectively. The use ofa parameter
ing dataset d ion (the SD in TM), rather than a summation or integration of all
dah points may well be th:cxphnnu)n for comparatively poorer performance. As reflected by
their CVs, SVM and IMA are equally performing classifiers. Although not all parameter CVs
showed consistency with increasing MET values, the CVs within the IQR of all parameters
were of an acceptable level (< 10%), which might have resulted in acceptable overall balanced
accuracies (=80%) for all intensities of the cut-off point algorithms, except LIPA. Generally,
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whenlooking at the overall balanced accuracies per cut-off point algorithm, a similar pattern
can be discovered. Sedentary activity and standing are the most accurately dassified intensities,
then MVPA and ultimately LIPA. The main issue with LIPA classification, for as wdl cut-off
point algorithms as Random Forest, is the poor sensitivity (51.0%-63.7%), which is predomi-
nantly caused by misdassification with MVPA. Since the MET value range for LIPA classifica-
tion is relatively small compared to MVPA's, the LIPA/MVPA threshold is easily surpassed
and therefore any of is more likely to be classified as MVPA instead of
LIPA.

The positive relationships found between balanced accuracies and body height for standing
classification in all three cut-off point algorithms during robustness analyses, may be due to
another reason than body height. Although we standardised accelerometer mounting position
by using 50% of the femur length, absolute measures show different positions, which could
affect accelerometer signals. Namely, the distance to the centre of rotation (hip and knee joint
respectively) influences accelerometer measurements proportionally [46]. For identical move-
ments, the larger the distance to the centre of rotation (asin taller people), the greater the
dynamic acceleration compared to that measured at positions doser to the centre of rotation
(asin smaller people). This over-registration of dynamic acceleration could lead to false classi-
fication of activities with higher intensities instead. Looking at the confusion matrices, stand-
ing does show lower sensitivity values for the cut-off point algorithms, which results from
misclassification with LIPA. Altogether, thisimplies that taller people would have lower bal-
anced accuracies than smaller people, but frankly, we found positive correlations. Moreover,
we only saw the robustness issues for standing and no other intensities. Therefore, it is plausi-
ble to assume that it was not body height to cause any changes in balanced accuracies of stand-
ing for the cut-off point algorith Further analysis showed that there were anly three people
with considerably lower balanced accuracies for standing (75% vs. 296.2%). Interestingly, they
were amongst the smallest study participants (<1.60 m). In addition, the confusion matrices
showed that all the standing misdassifications happened in these three participants, while ten
others of <1.60 mbody height showed balanced accuracies like taller participants. Hence,
when leaving the three out of the correlation analyses, no significant relationships between bal-
anced accuracies of cut-off point algorithms for standing classification and body height were
found anymore. When looking into more detail at the raw data, we noticed that the misclassifi-
cations in fact occurred during sideways shuffling, for which the three involved participants
also happened to exhibit EE <15 MET. Asa result of the latter, the reference classifiation for
this activity was standing but the algorithms classified it as LIPA due to motion sensing. Thus,
it was not the ‘body height’ parameter, which negativey affected the algorithm robustness
results in these rare cases. Therefore, it is safe to say that all algorithms in this current study are
robust, which is most probably the result of using a heterogeneous study sample.

Whilst it was encouraging to note that all algorithms showed acceptable overall balanced
accuracies for classification of sedentary activity, standing and MVPA, Random Forest was the
only modd that also achieved the critical 80%-threshold for LIPA classification. Despite the
generally good results, the disadvantage of an overall measure is that it can mask unacceptable
algorithm performance on an individual basis. For that reason, it is also important to check
the percentage of acceptable participant-spedfic balanced accuracy per intensity for each
model. This revealed that individual classification of sedentary activity and MVPA was always
of an acceptable level, which allows categorisation of people based on the amount of SB and
MVPA, such asactive, inactive and active couch potato. Moreover, standing classification was
acceptable for 92.5% of the participants in all algorithms. On the contrary, LIPA classification
was acceptable in only £65.0% of the participants when using a cut-off point algorithm, while
this number rose to 80.0% in case Random Forest was used. To summarise, these results show

PLOS ONE | hitps: f'doi.org/10.1371/journal pone 0188215  November 20,2017 13/18

219



220

T PLOS | one

o and ineldery

that the cut-off point algorithms presented in the current study, can be used to detect SB,
standing and MVPA in older adults confidently. The Random Forest algorithm, however, can
be used for the same outcomes, including LIPA classification too. This latter is exciting,
becuse LIPA might play an important role in gaining health benefits by counteracting SB
through PA in elderly [1]. Moreover, performance of MVP A may have negative physiological
effects, such as increased inflammation, and not necessarily elicit any gtuter physiological
benefits over LIPA in the older adult population [47]. Additionall g MVPA may
have a high threshold as well as poor Jon, g-term adherence mcldcrly

Compared to recent research that, similarly to our present one, conducted laboratory-based
testing to validate activity intensity identification algorithms induding machine learning, our
results are in fact a further improvement on these classifiers because we also focus on algo-
rithm robustness and benchmark individual acauracies [2,2348]. Although comparing results
between studies is complicated by differences in populations, monitor placement (mainly hip
or wrist, against us thigh) that may influence dassification [2], and outcome variables (eg.
Kappa statistic vs. balanced accuracy) [42], our overal findingis in agreement with Ellis et al.
[6]. They also showed improved free-living activity intensity classification with machine learn-
ing over traditional cut-off point models (without posture detection). However, it must be
noted that their machine learning algorithm was developed using free-living accelerometer
data only, while the traditional cut-off points were derived in the laboratory.

One could consider the development of agorithms under laboratory conditions as a limita-
tion, given the fact that when laboratory-based, performance during real-life mobility moni-
toring is compromised [2,6]. However, in the laboratory, conditions can be controlled and a
whole range ofactivities and intensities can be studied allowing calibration, while simulta-
neously providing proof-of-concept such as thigh d triaxial accel y in older
adults [2,24]. To improve the matching of perf ¢ from lab y-based with free-living
based accelerometer algorithms one may match the amount of data collected on each behav-
iour with its prevalence in free-living and train the algorithms with bout lengths similar to true
dailylife behaviour [24]. Although our use of steady-state data of activities with predefined
length will improve algorithm accuracies [2], this may not be directly translated to data col-
lected outside the laboratory, since steady-state is not necessarily reached in free-living condi-
tions with activities being more sporadic [24]. Also, Gyllensten and Bonomi [49] found that
activities in free-living conditions exhibit a higher degree of overlapping characteristics in
their accderation features when compared with activities performed in the laboratory. Some
free-living activities even show sub ially different acceleration signals in comparison to
when performed in the laboratory [2,24]. Although we agree that true performance of our
algorithms in real-life conditions cannot necessarily be derived from the balanced accuracies
seen under lab y settings and it will probably be lower in free-living, we do not expect the
dramatic decrease (~13%-46%) reported elsewhere [2,6,24 48,49]. There are several reasons
supporting this expectation. Firstly, most of these studies are either not comparable to our
study in terms of study population, modelling techniques/settings, extracted features, and
accderometer placement, or suffered from serious methodological issues such as using the
same sample to both develop and validate algorithms [2,6,24,48,49]. Secondly, we induded
few, but common basic activities for elderly persons in our protocol [50-52], and instructed
participants to perform them as ‘naturally as possible’ i.e. using self-selected speed and/or
intensity. Next, instead of activity classification, we used intensity classification (based on indi-
vidual REE corrected MET values) in our study, which isa more generic system providing less
options, and thus expected to be less prone to error when applied outside the laboratory [24].
Finally, we used a heterogeneous sample, representing the true healthy older adult population,
to develop the algorithms.
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O PLOS | one R

Another potential study limitation may be the fact that our models have been developed for
application in a single thigh-mounted accelerometer, which does not allow perfect monitoring
of PA, as perhaps wobbling of thigh mass or the lack of upper-body movement detection
results in classification errors [10,27]. Although it has been suggested that mounting multiple
sensors could address the latter issue [10,27,53], study compliance may become compromised

[48], somcdnngthalulcscfapmliemmﬂlnnnﬂe-u ! [2L27]. M , thigh
mounting can accurately distinguish b sitting and ding, which is not possible with

traditional monitor placement at the hip or waist [19,20,54,55]. This placement is thus superior
to detect upright stationary activities common in the houschald, that tend to be more metabol-
ically demanding than activities that recruit only the upper body. Thigh mounting is also rela-
tivdly close to the centre of mass, which is vital for good prediction of EEand maonitoring of
locomotion [10,16]. Capturing locomotion is important in elderly, because it provides infor-
mation about physical independence [10]. Generally, a combination between thigh-mounted
accderometry and machine learning is considered ideal, because the latter in fact makes sensor

placement less relevant [27].
The major strength of our current approach is thatits design and protocol are largely in
accordance with the dations for accd ry-based studies done by Welk et al.

[32]. To highlight these compelling dements, despite being modestly sized (~16.4 hrs of algo-
rithm training data only), a study sample containing a large variety of physiological and non-
physiological characteristics was used to develop four different accelerometer algorithms. The
analyses were performed in more detail (such as focusing on robustness and benchmarking
individual acauracies) than usually seen in the literature. The use of leave-one-subject-out
cross-validation, ideal for smaller datasets, minimises the risk of overfitting with Random For-
est machine learning and enhances the general applicability of the algorithms to new data [56].
Additionally, by using a rdiable method for measuring axygen consumption (CV 4.4%
(5.3%)) and correcting for individual metabolic baselines, coupled with direct observation, the
reference intensity classification is highly accurate. Since both raw accelerometer data and vid-
cos were collected, post-study analyses will be possible such as algorithm tuning, epoch length
optimisation or activity classification, but also comparisons with other monitors. Most impor-
tantly, thisis the first study to conduct detailed analyses of heteroge pooled-data algo-
rithms, ranging from simple cut-off point to complex machine learning, for the quantification
of SB and PA in older adults using thigh-mounted triaxial accderometry.

Future studies should focus on further analysis and develop of the Random Forest
algorithm to classify activities qualitatively. This will not only result in better prediction of EE
[57], but also provide information not captured by intensity classification [4,6.24]. Moreover,
the Random Forest algorithm should be validated in a free-living set-up and compared to a
similar algorithm devdoped on free-living data. Furthermore, comparisons with proprietary
algorithms of ¢ ially available activity itors would be interesting, not least to allow
direct comparison of data from different laboratoriesand hence the creation of large data sets.
Overal, these suggestions would 1) improve understanding oflhe associations between
human activity and health that will inform future rec and guidelines for older
adults to support healthy ageing[4,6,24] and 2) help to improve current industry standardsin
activity monitoring in elderly.

Conclusions

Unlike the cut-off point algorithms, under laboratory conditions the Random Forest machine
learning modd showed acceptable algorithm performance Ihmughout the whole range of activ-

ity intensities in older adults wearing a thigh-mounted triaxial acc Its perfc e
PLOS ONE | hitps: f'doi.org/10.137 1/journal pone 0188215 November 20,2017 15/18
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of LIPA classification in particular, makes the algorithm highly relevant for this age group. The
fact that this pattern recognition technique 1) does not require subgroup-specific calibrations
and/or specific accelerometer body part positioning, 2) is capable of recognising actual human
activities and 3) works independent of accel brand/settings, signifies its potential
large-scale applicability to distinguish SB and different levels/types of PA in older adults.
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I-Introduction

Based on the multitude of sources of information and recommendations pertaining to

health recommendations for older persons, we would think that today’s individuals (at least in

the 1% world) aged 65 and over. are fully informed in the concept of. and engaged in the process

of, maintaining physical and mental health in their later years. In broad terms, the current

recommendations for physical activity tend to share the following principal attributes as

summarised by the World Health Organisation or WHO (Organization. 2015):

. They are neither gender. ethnic nor di specific

A minimum of 150 minutes of moderate physical activity (MPA) or 75 minutes of
vigorous physical activity (VPA) per week, inclusive of leisure time activities,

housework, rtation and/or pl d structured exercise.

¥

. Where physical activity involves an aerobic element, this should be carried out in a

contt bout of 10 mi or more, as opposed to start and stop shorter bouts. for

any health benefits to be imparted.

. Postural balance exercises should be an integral part of the physical activities

undertaken

. Resistance training of large muscle groups, must be at least a twice weekly undertaking

. Even in the p e of co-morbidities and frailty, physical activity to a person’s

capacity must be pursued

The degree to which the recommendations are fit for purpose, is somewhat under recent

scrutiny, with poor health factors still appearing in many individuals who self-report as

adhering to the recommendations.



II-The impact of exercise in the older person

The WHO proposes that the benefits to the individual who adheres to this lifestyle, mclude:
1. Decreased rates of all-cause mortality, coronary heart disease. high blood pressure,

stroke, type 2 diabetes. colon cancer and breast cancer;

=]

A higher level of cardiorespiratory and muscular fitness, healthier body mass and

composition;

3. A ‘biomarker profile’ that modulates the prevention of cardiovascular disease, type 2
diabetes and the enhancement of bone health:

4. Higher levels of functional health, a lower risk of falling. and better cognitive function:

5. Reduced nsk of moderate and severe functional limitations and role limitations.

There is no doubt to the general value of these recommendations in terms of the favourable
health effects. It is however striking that no degree of individualisation is taken into account,
given the known impact of socio-economic factors on the type and frequency of physical

activity. Indeed it is recognised that in adolescents for instance. being female, of a lower social

class, are key determinants of the variance in total physical activity undertaken (Raudsepp.
2006). Similarly, the physiological responses to exercises are also modulated by gender and/or
decade of life. Thus, to advise on a physical activity programme in later life, influences on, and
determinants of, activity levels need to be specifically considered. Indeed later life physical

activity is a complex behaviour d ined by many factors. Socio-economic status, social

1

support from family and friends, and aspects of the geographical environment, are likely to
influence physical activity participation (Farrell, Hollingsworth. Propper. & Shields, 2013). in
not a dissimilar way to that seen in adolescents (Santos, Esculcas, & Mota, 2004). It would be

expected that socio-economic status link to physical activity would include instrumental and
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direct (transportation, logistics, payment of fees), motivational (encouragement), and/or
observational (explicit modelling leading to improving mtrinsic motivation) support.
This book chapter gathers information from the most up-to-date literature on the known

impact (benefits & nisks). and leads informed discussions on the palatability and adherence of

older persons to popular physical activity regimes.

2.1. Structured exercise

As alluded to above, physical activity is a modifiable health behaviour. Whilst the
importance of physical activity is extensively documented and well accepted by health
professionals, how specific exercise affects known outcome measures in persons aged 63 and
over is not necessarily clear. Physical activity is defined as any body movement produced by
skeletal muscles that results in energy expenditure (Caspersen, Powell, & Christenson, 1985).
Current recommendations for physical activity in the over 65’s is 150 minutes of moderate
activity or 75 minutes of vigorous activity (Bull & the Expert Working Group. 2010). The
categorisation of physical activity is commonly intertwined with structured exercise as both
terms have similar characteristics. Yet. exercise is a different concept as it is usually planned
and time limited, and with the specific aim of increasing an aspect of physical fitness
(Caspersen et al., 1985) (see figure 1.). Structured exercise can be categorised by intensity
including: a) medium to vigorous exercise such as resistance or aerobic exercise. and b) low
impact low intensity exercise such as yoga or seated exercise classes. Whilst the modality and
intensity of exercise can differ. the focus of increasing/maintaining physical function in the

elderly is the main aim in all protocols.



Figure 1. The Imks between structured modalities of trammg and physical fitness ch 150 d in over
65s. (PRT = progresst 2 inng: MVC = max luntary ROM = range of motion)
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2.1.1. Resistance Exercise Training

The most beneficial intervention in view of increasing muscle structure and function

and reducing age-related muscle weakness in the older p is resi e training. The effects
of progressive resistance exercise (PRT) in the older person are well documented (Table 1).
Interventional studies have shown significant gains in muscle strength (Taaffe. Pruitt, Pyka,
Guido, & Marcus, 1996), muscle size (Hamdge, Kryger. & Stensgaard, 1999). muscle
activation capacity (Morse et al., 2005), specific force (Morse, Thom, Mian Birch, & Narici,
2007). tendon stiffness (Onambele-Pearson & Pearson. 2012; Reeves, Narici, & Maganaris,
2003) and bone density (Nelson et al., 1994) following twice or thrice weekly sessions of PRT.
The functional implications of these adaptations translates to increases in efficient sit-to-stand
transitions (Fahlman McNevin, Boardley, Morgan, & Topp. 2011). walking speed (Henwood
& Taaffe. 2005). balance (Nelson et al.. 1994; Onambele-Pearson, Breen. & Stewart. 2010a;

Onambele et al.. 2008) in a long list of other functional benefits. Improvements reported in
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these functional tasks play a leading role in the maintenance of independent later life. Whilst
the main adaptations of PRT centre on structural changes to skeletal muscle, there have been
several studies demonstrating improvements in decreasing systemic inflammation biomarkers
that are upregulated in ageing such as interlukin-6 (Onambele-Pearson et al. 2010a; Onambele-
Pearson. Breen, & Stewart. 2010b; Prestes et al . 2009) and Tumour Necrosis factor a (Gretwe,

Cheng. Rubin Yarasheski. & Semenkovich, 2001). The inflamed endocrine milien seen with

increased age is in fact negatively associated with a variety of morbidities (e.g. cards ular
disease). thus the impact of such co-morbidities is expanded upon later in this chapter.

It should nevertheless be noted that there are some risks associated with PRT in the
older person, with the key aspect being the high intensity nature of the activity and the

familiarity with the tasks for the individual. PRT places high stress levels on active muscles

and joint structures. requires potentially uncomfortable physical positioning during repetitive

loading, thus potentially increases the nisk of injury (Kolber, Beekhuizen Cheng, & Hellman,

2010).



Table 1. Adaptations associated wath a vanety of modalities of exercise m the elderly

ity of ap Functional Tasks
1 Muscle Strength 1 Gait Speed
T Muscle Power I Postural Balance
T Muscle Size T Sit to stand
T Activation Capacity { Risk of Falling
4 Tendon Stiffness
J Systemic Inflammatory
Biomarkers
Aerobic Exercise 1 Capillary Density 1 Gait Speed
1" Mitochondrial Density 1" Postural Balance
1 6 minute walk
1 Lipid Profile time
T Blood Glucose Uptake
4 Systemic Inflammatory
Biomarkers
T Aerobic Power
Dance 1 Muscle Strength 1 Gait Speed
1 Joint Range of Motion 1 Flexibility
Yoga 1 Muscle Strength 1 Risk of Falling
T Joint Range of Motion T Postural Balance
1 Flexibility
Balance Themed Exercise 1 Muscle Strength 1 Risk of Falling
T Postural Balance
Pilates/Core Based
Exercise 1 Muscle Strength 1 Risk of Falling
1" Joint Range of Motion T Postural Balance
1 Flexibility

2.1.2. Aerobic Exercise Training

Aerobic/endurance training can be characterised by numerous activities that range from
recreational walking to high intensity running. The stimulus placed on skeletal muscle here is

different to that in resistance/strength based traming. with repeated muscle contractions placing
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a greater demand on the cardiovascular system. The benefits with this modality of training are
the central and peripheral adaptations of the cardiovascular system. increasing the capacity to
deliver oxygen (02) to working muscles during activity (Holloszy & Coyle, 1984) and
improving the capability of skeletal muscles to generate energy via oxidative metabolism
(Cadore, Pinto, Bottaro, & Izquierdo, 2014). These effects are achieved through structural
increases in both mitochondrial and capillary density (Iversen et al.. 2011) and a shift in fibre
type towards oxidative slow twitch muscle fibres (Howald, Hoppeler. Claassen, Mathieu, &
Straub. 1985).

There are two types of traditional aerobic exercise: (i) continuous, based on training at
one uninterupted level throughout the protocol or (ii) interval, based on training delivered in
short high intensity bursts. Training intensity for over 65°s tends to be set using varying
methodologies. First, the subjective intensity assessment uses of a 10 point scale set at 5-6 with
0 classed as sitting and 10 being classed as an all-out effort for a minimum of 30 minutes, 5
days/week (Nelson et al., 2007a). Second. the more objective assessments either use heart rate,
the participant’s aerobic threshold or VO2 max, or both in conjunction (Emerenziani et al .

2015). Whilst a traditional structured bt ion is sh to increase an individual’s

functional capacity. unconventional dance based exercise classes have been shown to also
increase cardiorespiratory endurance, strength/endurance, body agility, flexibility, body fat.
and balance in elderly women (Hopkins, Murrah. Hoeger, & Rhodes, 1990: Serra et al., 2016;
Wu, Tu. Hsu, & Tsao, 2016). This demonstrates that to reach the attainable goal of improving
physical fitness, health and functional ability in over 657s, a variety of structured and semi-
structured aerobic based training methods may be used.

Notably, an important factor to comsider when choosing between training
methodologies is whether the exercise meets the individual’s physical. social and emotional

requirements to make it a long-term lifestyle change. With moderate/vig 1 ity training




in particular, the over 65’s tend to present poor exercise tolerance especially when they are
frail. and with no previous history of structured exercise. In addition. blood pressure increases
acutely during physical activity (Palatini, 1988). Therefore medical and training history should

be taken into account when prescribing moderate/vigorous training intensity to this age group.

2.1.3. Low Intensity Low Impact Exercise
Previous research has shown the benefit of low impact structured exercise sessions such
as yoga, tai chi. Pilates and balance themed classes on functional measures including flexibility
(Geremia, Iskiewicz, Marschner, Lehnen. & Lehnen, 2015; Grabara & Szopa, 2015). lowering
the risk of falling (Schmid, Van Puymbroeck, & Koceja, 2010). increasing postural balance
(Taylor et al.. 2012) and improving an individual’s quality-of-life (Woodyard, 2011). It is

possible that the & ity of the exercises being lower. means that they are more likely to be

palatable to over 65°s and especially to those who are either frail or have no previous history
of structured physical exercise. Again in favour to such activities, is the fact the low intensity
likely lowers any injury incidence owing to the avoidance of high levels of stress and strain on
both the cardiovascular, musculoskeletal and endocrine systems, with in fact not clear benefit

of higher exercise intensities in the older group (Onambele-Pearson et al.. 2010a. 2010b).

2.2. Physical activity and its impact on a key physical functioning marker: falls

One in three adults in the UK over the age of 65 years fall at least once a year. In these
individuals. injurious falls tend to result in loss of independence (Piirtola & Era, 2006). and are
one of the leading causes of death from injury (Rubenstein. 2006). With over £2 billion
currently spent every year by the NHS in relation to falls, and a predicted increase of 2 million
in the number of people aged 65+ living in the UK by 2021, this will undoubtedly infer a hefty

cost to the NHS.
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The key modifiable risk factors associated with increased risk of falling include muscle
weakness. balance and gait abnormalities (Granacher. Muehlbauer. & Gruber. 2012; Maki,

Holliday, & Topper. 1994; Rubenstein & Josephson. 2002). Postural balance is an important

prereq for independent and successful performance of daily living activities (Prata &

Scheicher, 2012) including for instance, stairs negotiations and ding up from a chair
(Granacher et al.. 2012). With the obligatory aspect of ageing-related decrement in muscular
performance and functional capacity. it is increasingly understood that lifestyle, and in

particular habitual ambulation/physical activity. may modulate the rate and magnitude of these

deleterious changes. For i e.ased y lifestyle (Participation in activities characterized

by an energy expenditure < 1.5 bolic equivalents and a sitting or reclining posture (Owen,

Healy, Matthews. & Dunstan. 2010)). has been shown to reduce the functional reserve capacity
of older individuals or the excess above that needed for normal functioning. Such reserves are
key. as they would normally allow for adaptations and responses to changes in the environment.
Older adults aged 65+ years are the most sedentary in society with a sedentary time
representing 65-80% of their waking day, with over 8.5 hours of that time spent sitting (Harvey,
Chastin, & Skelton. 2015). Arguably, this lifestyle may contribute to elderly individuals being
physically weaker, slower and having a reduced motor coordination in comparison to their
younger counterparts (Enoka, 1994).

On the other side of the lifestyle spectrum. we have physical activity and/or exercise.

Participation in regular physical activity (PA) elicits a number of favourabl that are

i 4

understood to contribute to healthy ageing. Studies show that training counteracts ageing-
related postural impairments (Permin, Gauchard. Perrot. & Jeandel, 1999) by acting on the
motor response or on balance sensors (Gauchard, Gangloff., Jeandel. & Pemin. 2003; Howe,

Rochester, Neil, Skelton, & Ballinger, 2011). Researchers report that a progressive heavy-

2o

e training program ¢ d with explosive types of exercises leads to great gains not

10



only in maximal isometric and dynamic strength but also in explosive force production
characteristics of the leg extensor muscles in both middle-aged and elderly men and women
(Hakkinen et al.. 1998). The strength gains are accompanied by considerable increases in the
voluntary neural activation of the agonist muscles in both middle-aged and elderly subjects of
both genders, with significant reductions taking place in the antagonist co-activation of the
maximal extension action in both older person groups. Such adaptations are key for
adequate/steady postural balance maintenance. In parallel, through a systemic review and meta-
analysis (Thibaud et al., 2012), it is evident that physical activity in individuals over 60 years
acts as a protecting factor against falls. Physically active older people are less at risk of falling
(OR of 0.75 [95% CI of 0.64. 0.88] than those who are physically inactive or sedentary (OR of

1.41 [95% CT of 1.10, 1.82]).

2.3 Physical activity and its impact on a key psychological marker: Cognitive function

Cognitive function is an essential component of daily living and makes a significant
contribution to quality of life (Williams & Kemper, 2010). Human ageing can lead to cognitive
decline (Brehmer, Kalpouzos, Wenger, & Lovden, 2014), often termed Dementia, and affecting
an estimated 36 million people, with Alzheimer's disease being the most common form
(Larson, Yaffe, & Langa. 2013). Polyphammacy being an issue with the older person. non-
pharmacological interventions that could help individuals maintain their cognitive capacity in
older age and reduce levels of morbidity are therefore highly desirable.

There is growing evidence that exercise could protect against ageing-related dementia
(Boots et al., 2015; Liu-Ambrose & Donaldson, 2009) as it has been associated with improved
cognitive performance especially in tasks involving executive control (Komulainen et al., 2010;
Prakash et al. 2011). which are the processes involved in selecting. scheduling and

coordinating perception. memory and action (Pontifex. Hillman Femhall Thompson &

1
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Valentini, 2009). Table 2, summarises further research in this area. Similarly, research suggests
that higher cardiorespiratory fitness in middle-aged adults correlates with a lower risk of
dementia later i life (Defina et al. 2013). In support of this theorem, studies in mice
demonstrate that chronic exercise can reduce the risk of Alzheimer' Disease, delaying its onset

and progression (Cho et al.. 2015; Garcia-Mesa et al., 2011; Liu, Zhao, Zhang. & Shi. 2013).

Interestingly. a community-based research study links cardi ory fitness with

¥

cognitive gains rather than the exercise dose (i.e.. duration) itself (Vidoni et al., 2015).
Several theones have been proposed to explain the mechanisms underlying the
exercise-cognition relationship. These include. but are not limited to. reduced levels of
homocysteine (Chang. Tsai. Huang. Wang. & Chu, 2014: Garcia. Haron, Pulman Hua, &
Freedman 2004). increased event-related brain potentials (Kamijo, Nishihira, Higashiura, &
Kuroiwa, 2007; Szucs & Soltesz, 2010), the transient hypofrontality theory (Del Giomo. Hall,
O'Leary. Bixby, & Miller, 2010; Dietrich. 2006) and increased cerebral blood flow (A. D.
Brown et al., 2010; Querido & Sheel, 2007). Whilst it is beyond the scope of this book chapter
to examine these in detail. the roles of brain-derived neurotrophic factor (BDNF) which is
linked with neurogenesis in the brain thus plays an important role in brain plasticity, and
insulin-like growth factor 1 (IGF-1) which is linked to protein synthesis stimulation. are
arguably key. Exercise is associated with increased BDNF levels (Griffin et al., 2011;
Komulainen et al., 2010). This is significant because low levels of BDNF have been linked to
Alzheimer's disease. Importantly also, exercise increases IGF-1 concentrations (Chang et al..

2014; Sonntag, Ramsey, & Carter. 2005). This is potentially relevant since lower IGF-1

cone ions correlate with agei lated cognitive decline (Al-Delaimy. von Muhlen. &

= ]

Barrett-Connor, 2009; Voss, Nagamatsu. Liu-Ambrose. & Kramer, 2011).

Aerobic exercise and resi e training rep: distinct forms of exercise with

different physiological and metabolic demands (Pontifex et al., 2009). If interventions to

12



improve cognitive function are to be recommended. it is essential to understand how these
exercise modalities affect cognition. It is also important to consider the effect of ageing on the
responsiveness of the cognitive function system (Defina et al., 2013).

In recent studies of older persons, cognitive function was positively correlated with
fitness (VO2max) in older women aged 50-90 years (A. D. Brown et al.. 2010). Similarly. higher
fitness levels in older adults are correlated with improved Stroop test performance (Prakash et
al., 2011), whereby dunng an executive function enabling task. irrelevant information or
interference is inhibited so that an appropriate response can be selected (Etnier & Chang, 2009).

In fact, meta-analytic reviews conclude a positive effect of aerobic exercise on cognition.

Table 2: S v of studies i igating the effects on ition of chronic nining

Date | Study Sample Intervention Cognitive Test Cognitive Test
Population Period Oucome

1997 | Tsutsunu et al. Senior adults | 12 weeks Vanous Tests of No improvement
M=68y) Executive Function

2006 | Lachman et al. Senior adults | 3 and 6 months | WAIS Backward Inprovement

Dzt Span

2007 | Cassilhas etal Senior men 6 months Vanous Tests of Inprovement
(65-75y) Working Memory

2008 | Liun-Ambrose et al. | Senmior adults | 6 months Stroop Test and Improvement
(over 70 y) Trail Making Test

2010 | Kmmmzetal Senior adults | 12 weeks Task-switching Test | No impr
(over 65 y)

A meta-analysis previously concluded that combinations of aerobic exercise and
resistance training positively affected cognitive performance in older adults more than aerobic
exercise alone (Colcombe & Kramer, 2003). However, studies that directly compare aerobic
exercise and resistance training and their effect on cognition are in fact scarce. A study

compared the effects of different exercise modalities on cognition among older persons aged

13
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62-95 during a six-month intervention (A. K. Brown. Liu-Ambrose, Tate, & Lord, 2009).

Participants were randomly assigned to either a group-exercise programme including twice-

weekly resistance training and balance comp ts, a twice-weekly flexibility and relaxation

group or a control group. Participants were assessed for several aspects of cognition including

fluid intelligence. with the Stroop test used to assess executive function. Executive function

did not improve in any of the 3 groups. Fluid intelligence results increased significantly in the
resistance training group only. Therefore the authors concluded that resistance traming and
balance exercises could reduce age-related cognitive decline in senior adults. However given
that no aerobic training was in fact included, this leaves the door open for further research to

confirm the contribution of aerobic exercise to cognitive function maintenance in older persons.

III-Evaluation of the impact of the exercise context

Low levels of physical activity and socio-economic status in middle-aged and older adults are
associated with poor musculoskeletal, metabolic, cardiovascular and psychological health and
this ultimately leads to loss of independent living and quality of life in old age. Interventions
designed to increase physical activity levels and promote social interaction. particularly those
with either a peer-mentor/lifestyle coaches, or an outdoors community-spirited emphasis such

as walking groups, should lead to improved health status, owing to longer lasting uptake.

3.1.Indoor vs outdoor exercise prescription
A common reason for older person to start exercising is to increase their physiologic
reserves and hence reduce the risk of falling. To achieve this, 50 hours of cumulative exercise
is needed (Shemrington et al., 2008). In other words, long-term exercise participation is

important for the older person. but unfortunately not a common habit in this segment of the

14



population (Organization. 2007). Although evidence on the (causal nature of the) relationship
between the physical setting of exercise and health benefits in older person is limited (Kerr,
Sallis. et al, 2012), there are some clear differences between both settings which may affect
the impact and long-term adherence of the exercise behaviour.

Unlike outdoor exercise, an indoor environment allows older person to exercise in a clean

and safe setting all year-round, independent of the weather or season (Hug. Hartig, Hansmann_

Seeland. & Hormung, 2009). Additionally, these are most often equipped for both

.=

e and endh e tramning (Hug et al.. 2009). Hence, indoor facilities are likely to be

the optimal setting for optimal traming in all including the older person. However, indoor

exercise also p a few disadvantages. Firstly, older adults often have vitamin D deficiency

which is related to chromic conditions such as cardiovascular disease and bone health
(Lauretani, Maggio, Valenti, Dall'Aglio, & Ceda, 2010). Therefore, it is suggested that by
going outdoor, older adults may experience physical and mental benefits (e.g. reduced
depression) and an improved sense of well-being from a combination of exercise and vitamin
D (Matthew P. Buman & King. 2010; Frumkin 2001; Kerr, Sallis, et al., 2012; Nelson et al.,
2007b; St Leger, 2003; Thompson Coon et al., 2011). The fact that exercising outdoors occurs
at a higher intensity but with a lower perceived exertion makes it different from indoor
exercising. which may influence the beneficial effect of exercise ultimately (Ceci & Hassmén.
1991; Teas. 2007). In addition, long-term adherence of exercising indoors is a well-recognised
issue (Thompson Coon et al., 2011). Studies have shown that outdoor exercise can have long-
term health benefits in older adults (Jacobs et al., 2008; Kono, Kai, Sakato, & Rubenstein.
2004), since engaging in it is an important factor for behavioural maintenance (Hekler et al.,
2013; Maas, van Dillen, Verhesj. & Groenewegen. 2009). It is suggested that outdoor exercisers

may enjoy the exercise more, and perform it for longer and/or more frequently (Maas et al..

2009). For nple, previous h shows that over a period of time outdoor exercisers

15
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accumulate significantly more minutes of intense exercise than indoor exercisers (Takano,
Nakamura, & Watanabe, 2002). The presence of social interaction may play a key role in
enjoyment and adherence to exercise (Gladwell. Brown, Wood, Sandercock, & Barton. 2013;
Hug et al., 2009; Maas et al.. 2009; Takano et al., 2002; Teas, 2007). In fact. research suggests
that socialising opportunities appear to be more persuasive for persons to engage in exercise
sessions than actual health benefits (Schasberger et al., 2009).

Despite the beneficial effects of outdoor exercise for older person. it may also adversely
affect health through exposure to pollutants and a challenging neighbourhood design in a built-
outdoor environment (Kerr, Marshall, et al., 2012). The latter may prevent older persons with
impaired physical function and fear of falling from engaging in exercising outdoors (Michael,
Green, & Farquhar, 2006; Murayama, Yoshie, Sugawara, Wakui, & Arami. 2012; Rantakokko
et al.. 2009). Therefore, these sub-populations would probably benefit with initially engaging
in indoor exercise, e.g. to improve lower-extremity physical function and self-confidence.
before going outdoors (Kerr, Sallis, et al.. 2012). In that case, indoor settings are a viable
temporary alternative to outdoors. Moreover, exercising in an appealing and supportive indoor
environment may have better psychological effect and adherence than exercising in a busy, and
hence perceived as threatening. urban environment (Thompson Coon et al, 2011). Hence,
should the benefits of outdoor exercise be conclusively shown to outweigh those of indoor
activities, it will become crucial for communities to provide both safe and attractive outdoor
exercise locations for older person (Murayama et al., 2012; Takano et al., 2002). Even further,
we would also argue that natural green, rather than built-outdoor environments might be the
preferable option. since current evidence suggests that nature-based exercise provides greater
physiological and psychological health benefits in adults (Bowler. Buyung-Ali, Knight, &
Pullin, 2010; Gladwell et al., 2013; Pretty, Griffin, Sellens. & Pretty, 2003; Thompson Coon

etal, 2011). However. it must be noted that subgroups of the population. and in particular the

16



older person, might have different responsiveness to exercising in green spaces (Richardson &
Mitchell, 2010). Future research should therefore specifically investigate any age-sensitivity
to/preference for, outdoors green environment-based physical activities.

Whilst the duration of participation prior to measureable psycho-physical effects is unclear,
based on available literature, outdoor exercise might be preferred for older person (figure 2),
even if outdoor pursuits may not necessarly be accessible/appealing to all (Thompson Coon et
al, 2011). Nevertheless, as the older person tends to struggle to achieve optimal levels of
activity for a number of intrinsic and extrinsic reasons, any exercise participation is encouraged
as it will likely induce health benefits regardless of the physical setting for the exercises

(Nelson et al., 2007b).

Figuwre 2. A balance ng the overall findings of indoor vs. outdoor exercise mn elderly

3.2.Energy Balance
Energy cannot be created or destroyed, it can only be transformed. Within human
physiology, the equation: Energy Stores = Energy Intake (EI) — Energy Expenditure (EE) is
commonly used. When EI = EE then body mass is likely to be maintained. EE is comprised of
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Resting Metabolic Rate (RMR) (60-70% contribution). thermic (8-13% contribution). brown
adipose tissue (2-3% contribution) and physical activity (15-30% contribution) (Wilson &
Morley, 2003). The RMR of young males (18-33 years) is 1785.6 = 432 kcal-day” and
decreases approximately 3.50% per decade of ageing (69-89 years: 1497.6 + 28 8 keal-day™)
(Fukagawa, Bandini, & Young, 1990). This is mainly due to reductions in fat-free mass (FFM)
(explaining 82.8% and 45.3% of the variance in young adults and older adult’s RMR,
respectively (Bosy-Westphal et al., 2003)). With this decline in RMR_ there is a subsequent
decline in EL known as physiological anorexia. Declined RMR can be attenuated with
engagement in exercise, and is unlikely to be due to the preservation of dietary intake. Indeed,
the difference in dietary intake between pre and post-menopausal runners is found to be similar
to that of pre and post-menopausal sedentary women (Van Pelt et al.. 1997).

With exercise for weight loss, most interventions do not meet the expected weight loss
as over half of the groups compensate for the increased EE with increased EI (King, Hopkins,
Caudwell, Stubbs, & Blundell, 2008; Thomas et al., 2012). When body mass is broken down
into its components, partaking in exercise only (60 mins @ 75% of maximum oxygen
utilisation. 5 times a week for 12 weeks) results in a lower reduction in fat mass compared to
partaking in a dietary calories control regime or dieting (500 keal-day™ reduction) plus exercise

(Solomon et al., 2008). More importantly. dieting plus exercise does improve cardio-metabolic

variables that are associated with cardiovascular di byagr t compared to
dieting or exercise alone. Improving health biomarkers in older adults is more important than
weight loss per se because increasing BMI is not associated with an increased hazard risk (HR)
of three-year follow up mortality (BMI > 35.0 kg-m™ relative to ‘healthy’ BMI). On the other
hand, being underweight (< 18.5 kg'm™ BMI relative to a ‘healthy’ BMI population). The
underweight older person may simply be the phenotypic expression of another underlying

comorbidity since nearly 50% of this age group reported that weight loss had been
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unintentional (Locher et al., 2007). In view of the above, it therefore appears that exercise and
diet for weight loss should not be the focus in older adults. rather exercise and diet for improved

health and physical functioning

3.3 Physical status associated limitations to exercise

3.3.1. Frailty as a limitation to exercise

Currently. there is no ¢ on the definition of frailty. though it is acknowledged that it

incorporates the degradation of several physiological parameters, increased risk of falling.
feelings of vulnerability, and is highly prevalent in older adults (Fried et al.. 2001: Vifa,
Salvador-Pascual. Tarazona-Santabalbina, Rodriguez-Mafias, & Gomez-Cabrera, 2016).
Engagement in physical activity, specifically walking and stair climbing. accouants for 30.0%
and 20.0% of non-syncopal falls in older adults (Nevitt, Cummings, & Hudes, 1991).
Therefore, consideration for the participant’s physical limitations is needed prior to a physical
activity intervention. Moderate-vigorous physical activity (MVPA, 3.0 - = 6.0 x RMR) is the
recommended aerobic intensity for health improvements. In NHANES cohort older adults (50+
years), an hour a day increase in older adult’s MVPA was associated with a 0.045 point (95%
CT 0.028, 0.063) reduction in the 46-item frailty index score (possible score range 0 — 1)
(Blodgett. Theou, Kirkland. Andreou, & Rockwood, 2015). However, attaining and
maintaining this intensity of physical activity is difficult for older adults. Therefore, a focus
towards functional and light intensity physical activity (LIPA. 1.50 - 3.00 x RMR) would seem
more appropriate. For example, 3 months thrice weekly. ‘posture transition’ training (sitting to
standing. prone to supine) led to improvements in a physical performance test. These test
comprised of placing a book on an overhead shelf, putting on a coat, picking up a penny from

the floor, walking 50.0 feet, turning 360°, ascending stairs, raising from a chair, and Romberg
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test (M. Brown et al.. 2000) which, are all essential movements for daily function. The
relationship between LIPA and physical and psychological health is also documented in
epidemiology, predicting that the 30 minute substitution of sitting for LIPA can lead to similar
improvements compared to MVPA (physical: b 0.46 95%CI 0.37.0.54, b 0.37 95%CI 0.28,
0.46. psychosocial: b 0.24 95%C10.12,0.36. b -0.02 95%CI -0.13, 0.10. respectively) (Matthew

P Buman et al., 2010).

3.3.2. Cardiovascular Disease and cancer as limitations to exercise
Cardiovascular disease (CVD) mortality. after cancer. is most prevalent in older adults,
increasing nearly two-fold per decade of life after the age of 55 (figure 3). Those who already
suffer with CVD may be hesitant to participate in physical activity however, the rate of
cardiovascular events during supervised exercise is reported to range from 1/50000 — 1/20000
patient hours of exercise (Franklin, Bonzheim, Gordon, & Timmis, 1998) with evidence to
suggest participation will in fact reduce total and cardiac mortality by 27.0% (95%CI -2.00,
40.0) and 31.0% (95%CI -6.00. 49.0). respectively (Jolliffe et al.. 2001).

The maintenance of physical activity is essential following a cardiac event in older
adults as patients who attend more than 24 rehabilitation sessions were 19.0% relatively less
likely to die within 5 years after a cardiac event compared to those with 24 sessions or fewer

(Suaya, Stason, Ades, Normand, & Shepard. 2009).
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Figure 3. The number of CVD and Cancer deaths in the United Kingdom for 2014 throughout older age. Adapted
from 5.
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Along with CVD, cancer is one of the greatest causes of mortality in the UK
(Townsend, Bhatnagar, Wilkins, Wickramasinghe, & Rayner, 2015). Cancer comes in many
forms and therefore it is not possible to recommend the same levels of exercise for everyone.
For example, those with immumnity cancers should avoid the use of public fitness facilities due
to the increased contraction risk of bacterial and viral infections through bodily fluid contact.

Cancer and its’ treatment inflicts psychological ds (e.g. feelings of fatigue, anxiety,

depression) and has been the focus of physical activity research. A systematic review by
Luctkar-Flude, Groll, Tranmer, and Woodend (2007) found that older adults have reduced
feelings of fatigue and improved quality of life when exercise is taken up either during or

£A11

ing cancer treatment. Overall, h into the effects of physical activity on older
cancer survivors is limited and requires further investigation (Daum, Cochrane, Fitzgerald,
Johnson, & Buford, 2016). For now, the general consensus appears to be similar to that of
healthy older adults, iterventions should have a focus on functional and quality of life

improvement.
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3.4.Should the diurnal rhythm be a consideration for exercise in the older person?
Skeletal muscle is a highly plastic tissue that readily adapts to changes during and following a
loading state (Campos et al.. 2002). Increased load imposed on the skeletal muscle elicits
adaptations that result in changes in the contractile characteristics of the muscle, ultimately
leading to muscle hypertrophy (Hulmi et al.. 2009). More specifically, when skeletal muscle is
subjected to an overload stimulus, the resultant micro-injuries in the myofibers and
extracellular matrix (Hulmi et al.. 2009). leads to a chain of myogenic events (Housh, Housh.
Johnson, & Chu, 1992). These events culminate in the enlargement of the diameter of
individual fibres, thus resulting in an increase in muscle cross sectional area (CSA) and fascicle
length. ultimately causing muscle hypertrophy (Seynnes. de Boer. & Narici, 2007).

Research into the different intensities. volume and load used in resistance training allow

conclusions to be drawn on what may yield the best results when hypertrophy is the main

mphasis for this of training. Researchers examined bodybuilders using a programme involving
moderate load (65-75% IRM). high volume (6-8reps) with short rest periods (1-2minute).
Results showed that this produces a greater testosterone response than a high load (> 85%
IRM). low volume with long rest periods (3 minutes) (Kraemer et al.. 1991; Kraemer et al.,
1990). This type of training has also been shown to illicit the greatest increase in Growth
Hormone (GH) response (Kanaley, Weltman, Pieper, Weltman, & Hartman_ 2001; Kraemer et
al.. 1991; Kraemer et al.. 1990) which inevitably increases Insulin Growth factor-1 (IGF-1)
secretion allowing for greater protein synthesis (Borst et al., 2001). In addition. GH has mainly
anabolic properties which spike after various forms of exercise (Crewther, Keogh. Cronin, &
Cook. 2006). Resistance training promotes the mcrease of GH isoforms allowing for sustained
action on target tissues (Ahtiainen, Pakaninen Alen, Kraemer, & Haklanen, 2003), as well as

enhanced interaction with muscle cell receptors which facilitate exercise recovery and the



hypertrophic response (Crewther et al.. 2006). The increase in GH is thought to be associated
with a concurrent increase in IGF-1. thereby enabling further myogenic promotion (Velloso,
2008). Hormones such as Testosterone, Cortisol. GH and IGF-1 have been extensively

examined as to their role in the muscles hypertrophic to resi e training (Fry. 2004;

Y

Kraemer & Ratamess, 2005; Schoenfeld. 2013).

R h is pointing to an optimal timing for maximal exercise-induced gains. The

P is that ne has considerable anabolic effects. binding with androgen receptors

and interacting with DNA. subsequently causing an increase in cell size (Kraemer & Ratamess.
2005). It can also have indirect effects on protein accretion through the release of GH (Kraemer
etal.. 1991). as well as promoting satellite cell replication and activation. at least in the first 20
weeks of use (for a review read (Kadi, 2008)). Data previously identified significant

correlations between training-induced increase in Testosterone and muscle cross-sectional area

e ]

(Ahtiainen et al., 2003). Interestingly. data also highlights diurnal variation in testosterone,
with a peak between 7-9AM (Diver, Imtiaz. Ahmad, Vora, & Fraser, 2003). On the other hand,
as cortisol increases protein metabolism. it could be suggested that the reduction of circulating
cortisol levels would allow for a greater hypertrophic response, when the timing for exercise is
optimised (Burley, Whittingham-Dowd, Allen. Grosset. & Onambele-Pearson. 2016). Cortisol
levels peak during the early hours just before awakening with levels progressively decreasing
throughout the day. reaching its lowest level between 5-7PM (Kanaley et al., 2001). Whilst
exercise results m a decrease m Cortisol and greater reductions appear to be prevalent in the
moming (Burley et al.. 2016; Pledge. Grosset, & Onambele-Pearson. 2011; Sedliak. Finni,
Peltonen, & Hakkinen. 2008). interestingly in terms of ‘muscle growth promoting’ endocrine
milieu, the testosterone:cortisol ratio 1s at its peak in the evening. In view of the above, and in
view also of the fact that androgen level naturally decrease with age (Kaufman & Vermeulen,

2005), some research now associates the diumal fluctuations in these hormones, to an
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optimisation of traming routines, and hence tentatively point to training in the evening as the
most favourable endocrine environment (Busley et al.. 2016 Teo, Newton. & McGuigan,

2011).

IV- Summary & practical applications

In summary, the primary aim of increasing physical activity in someone aged over 65 is to
improve their health. fitness and quality of life, whilst managing ageing-related co-
morbidities and limitations to exercise. To ensure this criterion is achieved, the selection of
activities should take a multi-faceted approach through the integration of numerous structured
exercise methods. Whilst it is accepted that the gold standard for increasing muscle size and
resultant strength is through PRT, both aerobic and balance focused training should be
incorporated into a structured exercise program alongside PRT, not least for holistic health

benefits. However, to ensure adh e and liance to a structured exercise program. the

focus should be individualised and programed to fit the specific needs and lifestyle of the
individual, taking into account their physical status, group versus lone exercise preferences,
including inclination or otherwise for activities in green outdoor spaces. The necessity to
conduct conventional structured exercise is less of an issue in over 65°s given that leisure-
based dance classes are shown to increase both functional fitness and numerous physiological

outcome measures.

Suggested further reading

A key aspect of physical exertion that has not been discussed in this book chapter to any

extent is the t in sed y behaviours. Indeed. it 1s increasingly becoming evident

=)
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that engagement in sedentary behaviours has distinct health effects, regardless of any
concurrent participation in physical activity the rest of the time. This effect is significant, not
least since sedentary behaviours tend to take up a greater proportion of modern daily living.
The publications below are readily available and provide up-to-date overviews of this
relatively new research area.

o Gladys Onambele-Pearson, Emma Bostock, Christopher Morse, Keith Winwood, Islay
McEwan, Claire Stewart, 2015. Chapter: Sedentarism and the endo-metabolic system. In
Sedentary Lifestyle: Predictive Factors, Health Risks and Physiological Implications.
(Ed) Ahmad Alkhatib. Nova Science Publishers, New York [book in press]

o Gladys Onambele-Pearson, Jodi Ventre & Jon Adam Brown. 2017. Reducing sedentary
behaviour among older people. Chapter 7.2. In The Palgrave Handbook of Ageing and
Physical Activity Promotion. (Eds) Samuel Nyman. Palgrave Macmillan UK.

e Jorgen A. Wullems, Sabine M P. Verschueren, Hans Degens, Christopher I. Morse,
Gladys L. Onambélé, 2016. Axevxewofﬂlepmvalmceofsedmtmmmolde(adtms its
phys:ologyfhealth impact and non-exercise mobility BSRA
issue of the joumal Biogerontology. 17(3):547-63. ‘doi 10.1007/510522-016-9640-1

¢ RyanD, Stebbings G and Onambele GL, 2015. The emergence of sedentary behaviour
physiology and its effects on the cardiometabolic profile with ageing. [Age (Dordr). 2015
Oct;37(5):89. doi: 10.1007/511357-015-9832-7. Epub 2015 Aug 28]

- KEY ARGUMENTS

o The adherence and palatability of exercise is an important factor to consider when
choosing the comrect modality for older individuals.

o The dropout rate from structured exercise programs following 6 months has shown
to be as high as 50% (Hong, Hugh Prohaska, 2008; Picorelli et al , 2014) in this
age group.

o When companing the compliance to, and palatability of, PRT vs. aerobic/endurance
training, PRT is reported to be more retentive in elderly participants (Hong et al_,
2008).

e It is suggested that the lower impact forces on joints during PRT compared to
aerobic traming and hence relatively lower discomfort, especially in ict
who had osteoarthritis, may explain this retention (Picorelli et al., 2014).

o Further research should focus on understanding the key to exercise adherence in
elderly individuals to ensure structured exercise continues for long-term sustainable
success

e It is clear that a holistic approach (i.e. understanding the individual’s physical,
social and emotional reasoning for taking up or dropping out) is required in any
exercise prescription in the elderly.
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A novel triaxial accelerometer data algorithm for quantifying physical activity and

sedentary behaviour both in young and older adults.
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Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.

Background: Accelerometry is a promising avenue to quantify accurately total daily activity,
classified as physical activity (PA) and sedentary behaviour (SB). Both PA and SB
independently have distinct health effects. Therefore, accurate measurement of PA and SB
is key to designing individualised lifestyle recommendations. Although a non-age-specific
algorithm would be ideal for this purpose, it is a challenge to develop a highly accurate one

due to differences between age groups in energy expenditure levels per type of PA and SB.

Objective: To examine the feasibility of applying a novel, non-age-specific algorithm using

both cut-off points and postural orientation, to monitor PA and SB objectively.

Methods: Triaxial accelerometer (thigh-mounted) and gas analysis data were collected
from two participants (aged 23 and 73, respectively) during a set of laboratory-based
standardised activities of daily living (e.g. lying down, sitting, standing and walking). In
addition, 24-hour accelerometer data was collected for both participants. A novel
algorithm that includes total movement (TM) calculation, TM cut-off points and postural
orientation was applied to the laboratory-based accelerometer data to determine the
accuracy in assessing activities when using either age-specific (young or old) or non-age-
specific (pooled) cut-off points. The 24-hour samples were used to identify differences in

PA and SB outcomes between the different cut-off points.
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Results: The novel algorithm showed high accuracy and minimal between-subject
differences when applied to the laboratory-based accelerometer data using either age-
specific or non-age-specific cut-off points. Moreover, excellent absolute agreement per
each participant existed between the 24-hour sample-based PA and SB outcomes using the

different cut-off points.

Conclusions: Based on this preliminary study, a novel algorithm that includes non-age-
specific cut-off points and postural orientation is a promising development towards
objective computation of daily PA and SB levels. Ultimately, this algorithm would help
quantify the effects of ageing on physiological function, independent of daily activity

factors.
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2015, Regensburg, Germany.

Algorithm development for objectively monitoring physical activity and sedentary

behaviour.
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Background: Total daily activity can be classified as either physical activity (PA) or sedentary
behaviour (SB) [1]. Each is thought to have health effects, independent of the other [2]. To
obtain insight into a person’s long-term health prognosis, it is important to monitor daily
behaviour accurately, accounting for both PA and SB. Accelerometry is a promising avenue
to accurately quantify both PA and SB [3]. Nevertheless, this technique has its limitations

in that there is no current consensus for a gold-standard device or method of data analysis

[3].

Objectives: To develop an algorithm using both cut-off points and postural orientation to

monitor PA and SB objectively.

Methods: Triaxial accelerometer data of a 73-year old woman was collected using a thigh-
mounted device during a standardised gas analysis protocol of free-living activities in a
laboratory setting and during 24 hours in free-living conditions. These data were used to
develop an algorithm that calculates multiple accelerometer outcomes; activity counts (AC;
generally accepted and most commonly used), sum of vector magnitudes (SVM; software-
based outcome of the device) and total movement (TM; derived from the standard
deviation values of the three accelerometer axes at discrete time points). All outcomes

were used to create different algorithms according to the following steps: 1) The three
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outcomes were correlated to energy expenditure (EE); 2) Cut-off points (SB vs. PA) for each
outcome were defined using two different methods (receiver operating curve (ROC) vs.
line-of-best-fit); 3) The impact of using postural orientation (thigh inclination) as a filter
before or after the cut-off point analysis in the algorithm, was determined. As a result,
twelve different algorithms were created. To determine the most accurate algorithm, all
were applied to the laboratory-based data sample. The 24-hour data sample was used to
present potential outcomes based on the optimal algorithm, including time in PA and SB,

and number of SB breaks.

Results: TM correlated best with EE, whilst cut-off points were most accurately calculated
with the line-of-best-fit. Using postural orientation as a filter before cut-off point analysis
removes most of the noise and increases algorithm accuracy. When applying all twelve
algorithms to the 24-hour data sample, the algorithm using TM, the cut-off points
calculated with the line-of-best fit and using postural orientation as a filter before cut-off
point analysis, proved optimal. Based on this algorithm, an overview of daily PA and SB

pattern was calculated (Figure 1).
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Figure 1. Bar chart representing 24-hour PA & SB pattern.

Conclusions: Cut-off points and postural orientation are important factors in objectively
monitoring PA and SB, especially when added to an algorithm using TM, which results in

high accuracy. This finding is important not only for investigating total daily activity in
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humans, but also improved understanding of the exact health benefits of both PA and SB.

Since this was a preliminary study, the algorithm should be further tested and defined.
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WHAT IS A PHYSIOLOGICALLY RELEVANT OUTCOME MEASURE AND EPOCH LENGTH IN
OBJECTIVELY QUANTIFYING SEDENTARISM?
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Relevance of the research. Total daily activity can be classified in terms degree of sedentary

behaviour (SB) or physical activity levels (PA). Both SB and low PA have distinct negative
effects on health and it is therefore important to accurately monitor daily mobility
behaviour to obtain insight into a person’s long-term health prognosis (1,2). Although
accelerometry is preferred in most studies, there is no current consensus for a gold-
standard device, or method of data analysis (3). Indeed, use of inappropriate devices or
data analysis has the potential danger of misinterpreting the true pattern of daily behaviour
(2). Accurate measurement of SB and PA is key to designing individualised lifestyle
recommendations (4). This is of importance in older adults (265 years of age) since they are
the most sedentary and less physically active age group (5). We believe that using thigh-
mounted triaxial accelerometry combined with an algorithm that includes a physiologically
relevant outcome measure and epoch length can monitor objectively and accurately SB
and PA. This objective approach will eventually help to understand how SB and PA are

related to healthy ageing (6).

The aim of the research is to refine an algorithm to monitor objectively SB and PA in elderly,
and the objective is to determine the physiologically relevant outcome measure and epoch

length to be included.

Research methods and organization. Triaxial accelerometer data (thigh-mounted

bilaterally; 60 Hz sampling rate) and expired gas were collected from six participants
(algorithm-refining group: n=5, aged 67-82 years; 2 women; body mass index (BMI) 21.6-
35.8 kg'-m? & algorithm validation group: n=1, aged 72 years; female; BMI 23.8 kg-m?)
during a set of laboratory-based standardised activities of daily living (three minutes each)

of different intensities; such as lying down, sitting, standing and walking. Expired gas was
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collected during the final minute of each activity. These samples were used to estimate
energy expenditure (EE) and calculate the metabolic equivalent (MET) of the simulated
activities of daily living. The accelerometer data acquired during the same minute was
analysed using 18 different combinations of epoch lengths (1, 5, 10, 15, 30 and 60 seconds)
and outcome measures (activity counts (AC; summed acceleration signals divided by device
resolution)), sum of vector magnitude (SVM) and total movement (TM)). The outcome of
each combination was plotted against EE to 1) explore correlations, and 2) calculate
algorithm cut-off points according to 1.5 and 3.0 MET thresholds. For these purposes, data
from the algorithm-refining group was used only. Next, all 18 algorithms (using both thigh
orientation and cut-off points) were applied to the accelerometer data from the algorithm
validation group only. The applied algorithms classified each epoch as either, SB, standing,
light-intensity PA (LIPA) or moderate-to-vigorous PA (MVPA). To investigate which
algorithm (and thus outcome measure and epoch length) was most valid, agreement with

the actual performed activity per epoch was determined.

Results and discussion. Correlations coefficients found for SVM and TM were >0.70

regardless of epoch length, whilst AC showed a correlation coefficient of 0.79 for the 1
second epoch length, but <0.56 for the others. Excellent agreement (100%) with the actual
performed activity per epoch was shown when classifying SB, irrespective of outcome
measure or epoch length. Standing was difficult to detect when using AC (highest
agreement 7%, while 100% agreement was found for both SVM and TM regardless of epoch
length, with the exception of using TM/30 seconds epoch (75%). High agreement was found
for classifying PA, independent of epoch length (AC: 75-86%; SVM: 96-100%; TM: all 100%).
When focusing on PA intensity, LIPA seems more difficult to correctly classify than MVPA,
regardless of epoch length (AC: 0-34% vs. 85-100%; SVM: 37-75% vs. all epochs 100%; TM:
0-36% vs. all epochs 100%). Inferior results when using AC could be due to the lack of overall
variation in outcome measure, resulting in overlapping activity type clusters. The fact that
preliminary data were used might explain the under- and overestimation of LIPA and MVPA

respectively.

Conclusions. The preliminary results of this study suggest that the optimal epoch length for

determining sedentarism is dependent on the eventual outcome measure.
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