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A B S T R A C T

Amputees are known to walk with greater metabolic cost than able-bodied individuals and establishing
predictors of metabolic cost from kinematic measures, such as centre of mass (CoM) motion, during
walking are important from a rehabilitative perspective, as they can provide quantifiable measures to
target during gait rehabilitation in amputees. While it is known that vertical CoM motion poorly predicts
metabolic cost, CoM motion in the medial-lateral (ML) and anterior-posterior directions have not been
investigated in the context of gait efficiency in the amputee population. Therefore, the aims of this study
were to investigate the relationship between CoM motion in all three directions of motion, base of
support and walking speed, and the metabolic cost of walking in both able-bodied individuals and
different levels of lower limb amputee. 37 individuals were recruited to form groups of controls,
unilateral above- and below-knee, and bilateral above-knee amputees respectively. Full-body optical
motion and oxygen consumption data were collected during walking at a self-selected speed. CoM
position was taken as the mass-weighted average of all body segments and compared to each individual’s
net non-dimensional metabolic cost. Base of support and ML CoM displacement were the strongest
correlates to metabolic cost and the positive correlations suggest increased ML CoM displacement or Base
of support will reduce walking efficiency. Rehabilitation protocols which indirectly reduce these
indicators, rather than vertical CoM displacement will likely show improvements in amputee walking
efficiency.
ã 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

It is known that lower limb amputees walk less efficiently than
able-bodied individuals, with progressively worse efficiency as the
level of amputation increases [1–4]. To assess walking, and in
particular walking efficiency in lower limb amputees, a range of
biomechanical and physiological parameters have been used,
including Centre of Mass (CoM) displacement and various
respiratory measures [5]. Specifically, the respiratory measure
considered most related to walking efficiency is the metabolic cost
of walking and has been used to assess over-ground and treadmill
walking [6–8] when comparing between able-bodied individuals

or between amputee groups [1,2,9–11] or between different
prosthetic devices within amputee groups [12–15]. To avoid
confusion, this study considers more efficient gait to be when the
metabolic cost, defined as the metabolic energy expended to move
a unit distance, decreases.

As it is not always possible to obtain metabolic data, studies
have sought to establish other predictors of the cost of walking,
such as walking speed [16] or vertical CoM displacement [17,18].
This follows the work of Saunders et al. [19] who presented the six
determinants of gait which were seen to influence CoM motion, the
main biomechanical parameter historically believed to be related
to the energetic cost of walking. This idea was based on the
observation that pathological gait deviated from what was
considered “normal”. In particular, the observed greater CoM
displacements in pathological gait suggested more mechanical
work was being performed compared to a “normal” gait pattern,
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and therefore more energy would be required to achieve this.
While excessive CoM motion in the medial-lateral and anterior-
posterior directions were also considered undesirable, the focus of
these determinants tended to be on avoiding excessive vertical
CoM displacement. This is somewhat simplistic in that displace-
ments of the CoM in a vertical direction allow for an interchange
between kinematic and potential energy which almost certainly
reduce the requirement for work to be done and thus the metabolic
cost. While it is reasonable to assume excessive vertical displace-
ment would be indicative of increased cost of walking, there is no
obvious reason to assume minimising it would minimise energy
cost. Recent studies have indeed shown that deliberately reducing
CoM motion actually increases metabolic cost [17,18]. Studies have
also shown that several of the determinants make negligible
difference to CoM motion [20–22]. Additionally, the determinants
have recently been assessed in the context of inverted pendulum
walking [23], and have found the major cost of walking was
attributed to redirecting the CoM during the step-to-step
transitions [24]. There have been few studies attempting to relate
metabolic cost of walking to biomechanical factors in people with
pathologies but the most comprehensive suggested that vertical
centre of mass excursion was not a good indicator of metabolic cost
in people with myelomeningocele [25].

In addition to vertical CoM displacement and sagittal plane
measures of walking in general, mediolateral (ML) measures have
also been investigated, including ML CoM displacement and ML
base of support in lower limb amputees who are known to be at
greater risk of falling because they are less stable than able-bodied
individuals [26–28]. However, while ML CoM displacement has
been investigated in relation to stability and falls, this has not been
investigated in relation to walking efficiency in lower limb
amputees. Given that only vertical CoM displacement is considered
unrelated to walking efficiency, which can be explained by energy-
conserving theories such as the inverted pendulum model of
walking [23], the relationship between ML as well as anterior-
posterior (AP) CoM displacement and walking efficiency should be
established as this may provide further insight into the biome-
chanics of efficient walking. In fact, lower limb amputees are
known to walk with a wide base of support (BoS) [29,30], which is
likely to affect ML CoM displacement and hence may influence
walking efficiency and therefore warrants further investigation.

Therefore, the primary aim of this study was to investigate
whole-body CoM displacement in all 3 directions in relation to the
metabolic cost of walking in amputees with different levels of
lower limb amputation as well as in a control group of able-bodied
individuals. Also, as there may be a link between metabolic cost
and CoM displacement as well as between CoM displacement and
the BoS, a secondary aim of this study was to investigate the
relationship between BoS and metabolic cost. Finally, as walking
speed is also considered an indicator of gait quality, investigating
the relationship between walking speed and metabolic cost was a
final aim.

2. Methods

2.1. Participant information and study protocol

The required walking data came from another study on walking
of amputees and able-bodied individuals, which was recently
completed in part by 2 authors of the current study and gives all
the details of the data collection protocol [4]. In brief, this involved
thirty amputees to form 3 groups of ten unilateral trans-tibial
(UTT), ten unilateral trans-femoral (UTF) and ten bilateral trans-
femoral (BTF) amputees, as well as ten able-bodied individuals. For
the amputees, the study inclusion criteria were: aged eighteen to
forty, lower limb amputation as a result of trauma, attending

Defence Medical Rehabilitation Centre (DMRC) Headley Court for
routine prosthetics treatment, at least 6 months after receiving
their definitive prosthesis, no pain consequent to prosthesis usage
(minor “discomfort” was acceptable), and capable of walking
comfortably for twelve minutes continuously. Study exclusion
criteria were: any neuromusculoskeletal pathology (except for the
amputation) that may affect the participants’ walking. Each
amputee’s definitive prosthesis was chosen and set up on an
individual basis, but broadly, amputees were provided with energy
storage and return (ESR) feet and micro-processor knees for the
trans-femoral amputees. Complete details of the prosthesis
prescription for all amputees can be found in the Supplementary
materials. Ten able-bodied military individuals needed to be
asymptomatic and were also recruited from DMRC Headley Court
to provide age- and height-matched control data for comparative
purposes (Table 1).

All participants followed the same protocol, which began with
5 min quiet standing while a baseline of oxygen consumption was
established using a portable breath analyser (MetaMax 3B, Cortex,
Leipzig, Germany). Steady state breathing was verified during data
collection by visual inspection of the oxygen consumption data not
varying significantly in the final minute compared to the preceding
minutes and confirmed retrospectively by comparing the mean
and standard deviation of each minute of quiet standing oxygen
consumption data to the preceding minute. They then walked for
2 min back and forth along an approximately ten-metre long
overground laboratory walking path to establish their self-selected
walking speed. Next, they walked for 5 min at their self-selected
walking speed to record their oxygen consumption data as well as
forceplate data at 1000 Hz (Kistler, Winterthur, Switzerland) and
optical motion data at 100 Hz (Vicon, Oxford, U.K.). Due to
participant discomfort with the oxygen consumption breathing
mask and a failed calibration of the MetaMax system, 3
participants were unable to provide oxygen data and hence their
data were excluded from analysis.

A minimum of 5 clean foot contacts were recorded for each limb
and analysed separately, with outputs from each gait cycle time-
normalised to 100%. A clean foot contact was defined as fully
within the boundary of the forceplate. A gait cycle was defined as
the time between ipsi-lateral heel contacts, with heel contact
being defined by a vertical force greater than 20N applied to the
forceplates within the walkway. For all participants, data from the
left and right limb were averaged. The mean oxygen consumption
from the final minute of both the static trial and walking trial were
used to calculate net non-dimensional cost of walking between
groups [31,32].

The body was represented as a linked thirteen-segment model
consisting of the head, trunk and pelvis, and the left and right
upper and lower arm, thigh, shank and foot. Body CoM position
was based on the mass-weighted average of body segment
parameters scaled according to subject mass and height using

Table 1
Participant demographic information. Values given as mean (S.D.). Note: UTT and
UTF groups had fewer than the originally intended 10 participants per group due to
problems with the metabolic cost measuring system.

Participants Mass [kg] Height [m] Age [years]

control
(n = 10)

78.0 (7.6) 1.82 (0.05) 29 (4)

UTT
(n = 8)

88.1 (15.2) 1.83 (0.05) 30 (3)

UTF
(n = 9)

88.1 (6.9) 1.80 (0.07) 28 (4)

BTF
(n = 10)

86.7 (19.2) 1.81 (0.08) 29 (4)
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the anthropometric measures of de Leva [33] and all segments’
marker-derived CoM positions.

CoM displacement was defined as the deviation, in all three
directions, between the measured body CoM position and the
position the CoM would have had if travelling at a constant velocity
from the beginning of the gait cycle to the end of the gait cycle
(Fig. 1) [34]. BoS was defined as the distance in the ML direction
between the left and right fifth metatarsal head marker at heel-
strike [28]. It should be clarified that while ML and vertical CoM
displacements arise from the body not moving in a straight line, AP
displacements arise from the accelerations and decelerations of
the CoM in the AP direction over the gait cycle.

2.1.1. Statistical analysis
Linear correlation coefficients were used to determine if there

was an association between an individual’s metabolic cost and
their corresponding CoM displacements. The overall change in
CoM displacement was calculated (in each of the vertical, AP and
ML directions) for each gait cycle for a subject and was averaged
across all gait cycles to give a mean CoM displacement in each of
the 3 directions for that subject to be used in the subsequent
correlation analysis. p-values are reported if less than 0.05. To

determine if differences in CoM displacement were statistically
significant between amputee groups, a one-way ANOVA was used
with the alpha level set at 0.05, and if the initial test was significant
a Bonferroni correction was applied to determine which pair-wise
comparisons were different using a paired t-test.

3. Results

3.1. Metabolic cost and its correlation with CoM displacement, BoS and
walking speed

Metabolic cost was found to increase with amputation level
(P < 0.001), but was only significantly different when comparing
BTF amputees to controls (P = 0.001, after Bonferroni correction)
and UTT (P = 0.002) amputees (Fig. 2).

When comparing metabolic cost to CoM displacement, a
significant moderate correlation (P < 0.001) was observed with
ML CoM displacement (Fig. 3A), but vertical and AP CoM
displacement were not correlated to metabolic cost (P = 0.20 and
P = 0.77 respectively) (Fig. 3 B and C). Metabolic cost was found to
correlate moderately with BoS (P < 0.001) (Fig. 3D) and weakly to
walking speed (P = 0.019) (Fig. 3E).

Fig. 1. Definition of CoM displacement. The black lines with equally spaced points represent the trajectory that the CoM would have had if it had travelled from its position at
the start of the gait cycle to that at the end at constant velocity. The red lines represent the measured position of the CoM at the same time points. CoM displacement, as
defined for this paper, is the distance from a red point to a black point for the corresponding time interval. Note that because all three components of speed vary through the
gait cycle that all three components of CoM displacement also vary across the gait cycle. Idealised and exaggerated CoM measured CoM trajectories (red) have been used here
to clarify the figure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.2. Group differences in CoM displacement and BoS

ML CoM displacement varied between groups (P < 0.001)
(Fig. 4), with BTF amputees showing increased ML CoM displace-
ment compared to all other groups. UTF amputees also displayed
greater ML CoM displacement compared to controls and UTT
amputees. In vertical direction, CoM displacement was also found
to be different between groups (P = 0.001), with UTT amputees
showing increased displacement compared to controls and BTF
amputees (Fig. 4). Along the AP axis, no difference in CoM
displacement was observed between any of the groups (P = 0.137).
BoS was also found to increase with amputation level (P < 0.001),
but was only significantly increased for BTF amputees in
comparison to all other groups. The increase in BoS between

UTF and controls was approaching statistical significance
(P = 0.019).

4. Discussion

The primary aim of this study was to investigate whole-body
CoM displacement along all 3 axes in relation to the metabolic cost
of walking in amputees with different levels of lower limb
amputation as well as in a control group of able-bodied individuals.
The strongest correlation to metabolic cost was with base of
support, with ML CoM displacement showing moderate correla-
tion to cost and walking speed showing a weak correlation to cost.

While ML CoM appeared to be less correlated to metabolic cost
than base of support (R2 = 0.36 compared to R2 = 0.56), this can be
attributed to two data points in the BTF dataset that lie on the
extremes of the dataset in terms of metabolic cost and the
normalisation procedure used here. Considering the BTF amputee
with the lowest metabolic cost first, while their oxygen
consumption at rest and during walking (3.8 and 13.3 ml/min/kg
respectively), was in line with the group as a whole (4.1 �0.6 and
15.3 � 2.6 ml/min/kg respectively), this amputee weighed approx-
imately 50 kg more than the group average, which resulted in a
substantially lower normalised metabolic cost, despite them
walking with a wide base of support and a correspondingly large
ML CoM displacement. In contrast to the first individual, the BTF
amputee with the highest metabolic cost in the group weighed
approximately 15 kg less than the group mean and was approxi-
mately 10 cm shorter, but consumed 47% more oxygen at rest and
71% more when walking compared to the group average. If these
two individuals are excluded from the group, the correlation
between ML CoM displacement and metabolic cost strengthens to
0.55 (from 0.36), which suggests both ML CoM displacement and
BoS could be considered equally good indicators of metabolic cost.

Fig. 2. Comparison of the mean metabolic cost. Note: p-values only given if less
than 0.05. Error bars represent standard deviation.

Fig. 3. Correlation of metabolic cost with: ML (A), vertical (B), AP (C) CoM displacement, BoS (D) and Walking speed (E). Note: Dashed lines represent within-group linear
regression lines and solid lines represent linear regression lines for all data pooled data. In (D), the trend line for UTF amputees (yellow) lies under the overall trend line for all
groups (black). * signifies P < 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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This is supported by the strong correlation between ML CoM
displacement and base of support (R2 = 0.73, see Supplementary
material), which suggests ML CoM displacement may be a result of
the wider BoS, an idea further supported by the consistent
moderate to strong within-group correlates shown here.

While lacking statistical power due to the relatively small group
sizes and small spread in the measured parameters, it should be
noted the within-group correlations for ML CoM displacement and
BoS did not always coincide with the overall correlate. However,
the UTF and BTF groups demonstrate trends that are representative
of the overall dataset and do suggest that in these amputees at
least, BoS is a good indicator of metabolic cost. It is worth noting
the apparent lack of correlation between ML CoM displacement
and metabolic cost in BTF amputees is also attributable to the two
data points discussed above, as excluding these points results in a
positive correlation coefficient of 0.19 (from 0.01).

Despite base of support correlating most strongly with
metabolic cost, this result should be treated as an association
between base of support and metabolic cost, rather than one
where changing base of support will implicitly change an
individual’s metabolic cost. Rehabilitation protocols which indi-
rectly reduce base of support will likely show corresponding
decreases in metabolic cost, whereas asking amputees to walk
with a narrower base of support will likely have the opposite effect,
as previous investigations in able-bodied individuals suggests [35].
Despite walking speed being considered an indicator of gait quality
and generally being the target of rehabilitation protocols, this was
found to have only a weak negative correlation to metabolic cost, a
result supported by previous work investigating walking speed as
an indicator of metabolic cost (r = �0.38 in this study, r = �0.36 in
Kark et al.) [16].

Also, given the debate around the relationship between vertical
CoM displacement and metabolic cost, two observations from the
vertical CoM displacements should be highlighted. The first was
the lack of increased vertical CoM displacement with amputation
level, and the second was the lack of correlation between vertical
CoM displacement and metabolic cost, with the exception of UTT
amputees, who demonstrated a greater metabolic cost of walking
with increased vertical CoM displacement. However, this observa-
tion should be considered specific to this amputee group, as
controls and above-knee amputees all displayed no relation
between vertical displacement and metabolic cost of walking.
These findings complement those from previous studies investi-
gating the relationship between metabolic cost and vertical CoM
displacement [17,18], as this study did not aim to change an
individual’s gait to minimise CoM displacement, but instead
correlated an individual’s natural displacement with their
metabolic cost. The lack of correlation between vertical CoM

displacement and metabolic cost supports previous studies that
found an increased metabolic cost when deviating from a preferred
gait pattern and adds to the evidence suggesting there is no
underlying reason why minimising vertical CoM displacement
should minimise the metabolic cost. Whilst base of support and M-
L CoM displacement both show some correlation with metabolic
energy cost it is not possible to say whether the relationship is
causal or simply indicative of compensatory adaptations to
walking with a prosthesis which affect metabolic energy cost.

The current study has some limitations, which need to be
considered as they may impact on the applicability of this study to
other work. First, relatively small amputee and able-bodied groups
were recruited to form the total participant group, which limits the
statistical power of this study and limits the ability to reliably
compare trends between groups. However, the aim of this study
was to investigate the correlation between metabolic cost and CoM
displacement, which is an exercise that allows all 37 participants to
be pooled. Naturally, for a correlative study, more subjects in all
groups are desirable to provide stronger statistical support for the
correlate. Second, all amputations were a result of trauma and may
limit the applicability of the results to amputations not caused by
trauma, such as peripheral vascular disease. The third limitation of
the study is the use of able-bodied anthropometric measures to
derive the body CoM position. While the use of device-specific
anthropometric measures is ideal, the effect of using able-bodied
equations likely resulted in only minor differences in the overall
body CoM position, given the relative mass of the prosthesis to the
remaining musculature. The final study limitation pertains to the
fact only military personnel were tested here. It is likely these
individuals are in better physical condition than the average age-
matched civilian and as such, this may restrict comparisons to
studies assessing civilian cohorts.

5. Conclusions

This study investigated the relationship between CoM dis-
placement, base of support and walking speed to metabolic cost
and found the strongest correlation between base of support and
metabolic cost, followed by ML CoM displacement. No correlation
between vertical CoM displacement and metabolic cost was found.
The positive correlations between base of support and ML CoM
displacement and metabolic cost suggests increased ML CoM
displacement or base of support will reduce walking efficiency.
However, this result should be treated as an associative relation-
ship, rather than a causative one. Rehabilitation protocols which
indirectly reduce these indicators, rather than vertical CoM
displacement will likely show improvements in amputee walking
efficiency.

Fig. 4. Across amputee groups, comparison of the mean peak CoM displacements along all 3 axes and of the BoS (right). Note: Error bars represent standard deviation and
horizontal bars denote statistically significant differences between specific groups; the right hand y-axis (“Distance”) is used for the BoS chart only.
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