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Abstract 

The restoration of saltmarsh is critical given the importance of the habitat and the 

degradation and losses it faces. However, success of saltmarsh restoration has been 

limited, particularly in replacing plant communities, despite like-for-like replacement 

being a legal requirement. Previous research found elevation in the tidal frame and 

sediment redox potential are important drivers of vegetation communities, and are 

different between restored and natural marshes. However, elevation and sediment redox 

potential together are insufficient to explain differences in plant communities. 

Topographic features are thought to alter redox potential-elevation relationships, though 

its role in plant communities is not currently known. Nutrient concentrations can also 

impact vegetation, however we lack evidence as to the typical concentrations in natural 

saltmarsh or restored sites, and how close these are to detrimental levels. This thesis 

explores these environmental properties in restored and natural saltmarshes, and how 

they may interact to drive plant communities.   

Results indicated that nutrients were highly variable both spatially and temporally. In 

contrast to expectations, there was a negligible effect of former land-use on surface soil 

development in a newly developing marsh. Instead of land-use, a combination of 

sedimentation and elevation appears to be the strongest predictor of nutrient properties, 

thus a better understanding of incoming sediment and elevation changes may lead to 

improved predictions of likely soil development. The results from nutrient analysis also 

indicated that globally saltmarshes are typically Phosphate enriched and thus the 

management of N input at natural saltmarshes should be avoided. 

Restored marshes have different topographic characteristics (flatter, wetter and more 

often concave). A lack of topography existed on both site and local scales, resulting in 

more homogenous plant communities (again at, sites and local-scales). Natural plant 

diversity was driven by elevation, local topography and redox, whereas on MR sites it was 

almost entirely driven by redox potential. The results show that more topographic 

manipulation is required to aid community convergence with natural diversity, and thus 

replicate natural conditions in restored saltmarshes.
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1 Introduction: Saltmarsh ecology and restoration success 

 

1.1 Saltmarsh ecology 

Saltmarsh is a habitat defined by the presence of halophytic (salt tolerant) vegetation and 

alluvial deposition, which is periodically inundated by tidal waters (Allen, 2000). Sites that 

fulfil these criteria are often prograding, occurring primarily within sheltered embayments 

and other areas protected from tidal energy (waves and strong currents) (Allen, 2000; 

Shao, 2014).  

Although nature has an inherent value (Ehrlich and Ehrlich, 1992), there is growing trend 

in assigning ecological and / or monetary values to habitats for the services they provide, 

known as ecosystem services (Costanza et al., 1997; Naidoo et al., 2008). The values 

placed on ecosystems are often used as tools for policy and decision makers, e.g. when 

choosing to restore habitats. As a collection of plants, physical processes and topographic 

features, saltmarshes deliver many valuable ecosystem services (Barbier et al., 2011). The 

delivery of these services is often linked directly to the type of vegetation present, but 

also to the topographic niches and other features the site contains (Costa et al., 1994; 

Pennings et al., 2009; Möller et al., 2014). For example, high ground can be used as 

breeding grounds for wading birds, complex networks of creeks provide nursery grounds 

for fish, and clusters of taller vegetation offer wave protection and shelter. Therefore, 

within the context of biodiversity-ecosystem functioning theory (Soliveres et al., 2016), a 

diverse saltmarsh in both physical form and biota will have the highest value. It is 

important to recognise that vegetation dominates the value provided by saltmarsh as it is 

the fundamental component of the habitat; without encouraging vegetation the marsh 

will not deliver the same level of ecosystem services. 

One of the primary and most quantified values of saltmarsh is as a sea defence (King and 

Lester, 1995; Barbier et al., 2011). Plants cause friction which reduces the energy of 

waves, with nearly 30% of wave energy dissipated by a 100m stretch of healthy saltmarsh 

(Möller et al., 2014). This attenuation means that, in places, saltmarsh outperforms many 

built structures in defending from tidal energies, whilst also offering a two to five fold 

monetary saving (Narayan et al., 2016). This saving comes from the significant costs 

involved in heightening walls (c. £8 million per kilometre), and maintenance that can cost 
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£3,560 km-1 y-1 in the UK. Consequently, saltmarshes present an excellent option for 

sustainable and cost-effective barriers to storm events that are robust to erosion. 

Further to this, the annual growth of vegetation and sedimentation leads to the slow 

burial of Carbon synthesized from CO2. This process traps Carbon in saltmarsh sediments 

leading to improved primary productivity and further Carbon storage. The value of coastal 

Carbon storage is significant, saltmarsh bury nearly 55 times more Carbon per year, per 

unit area, than tropical rainforests, with global averages of 87.2 ± 9.6 Tg C per year, 

although they only occupy just 1% of the global land surface area (Duarte, Middelburg 

and Caraco, 2005; McLeod et al., 2011). However, it is worth noting that this process and 

value is entirely reliant on the continued preservation of those locked soils, and erosion 

will lead to release of formally trapped Carbon (and other chemicals) back into the water 

course. 

Saltmarshes are globally threatened; they have already suffered global historic losses of 

~50% of habitat area due to anthropogenic pressures (Barbier et al., 2011). Reclamation 

has been the biggest cause of loss, and in some regions of the world land claim is 

continuing (Tian et al., 2016). Further to this, alterations to global processes, such as 

climate change and sea level rise, can result in either direct loss through erosion or 

alterations to the ecosystem services delivered by saltmarshes (Gray and Mogg, 2001; van 

der Wal and Pye, 2004). Global mean sea level is predicted to rise by between 0.2 and 1m 

by 2100 (Church et al., 2013) and has recently been accelerating (Hay et al., 2015). 

Coastal habitats are becoming trapped between these rising sea levels and static sea 

defences, in a process known as coastal squeeze (Morris et al., 2004), which prevents the 

natural inland retreat of the habitat. This results in the steepening of the foreshore, 

reducing the horizontal extent of intertidal habitat (van der Wal and Pye, 2004; Firth et 

al., 2014). The consequence of this steepening is perhaps felt strongest in the upper 

intertidal and transition zones, inhabited by upper saltmarsh plant communities and rare 

coastal invertebrates, as these zones are naturally small in area and coastal squeeze may 

threaten their existence (Burd, 1989; UK BAP, 2008). 

Eutrophication (increased nutrient availability) of the world’s coastlines is a growing and 

significant environmental, economic and social concern (Cloern, 2001; Verhoeven et al., 

2006). Chronic eutrophication in saltmarsh soils decreases root mass and increases 
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sediment surface fractures (Feagin et al., 2009; Turner, 2011; Deegan et al., 2012). Root 

growth in the pioneer zone however can also be increased under enriched conditions 

(Johnson et al., 2016). This suggests the consequences of enrichment are location specific 

within the marsh. With nutrient enrichment leading to increased erodibility, only an 

increase in elevation (from accretion) can compensate for lost substrate. Although the 

consequences of nutrient enrichment are well studied, interpreting nutrient data is 

difficult because nutrients are highly stochastic both in time and space (Magalhães, 

Bordalo and Wiebe, 2002; Pott et al., 2014; Smith, Jarvie and Bowes, 2017). Moreover 

most of our current knowledge stems from nutrient addition experiments with very high 

concentrations rather than from the marshes themselves, meaning ‘natural’ baseline 

conditions are poorly quantified. 

In addition to sea level rise and eutrophication, the effects of climate change associated 

with changes in CO2 concentration, temperature, precipitation, and atmospheric regimes, 

pose threats to saltmarsh. A full review of the effects of these on coastal habitats in the 

UK is provided by (Mossman et al., 2015), a publication I co-authored during my PhD 

studies.  



Chapter 1: Introduction 

13 
 

Adaptations of saltmarsh plants 

The halophytic plants that inhabit saltmarshes are adapted to survive the stresses of 

regular saline inundation (Rozema et al., 1985), but their tolerance to these conditions 

vary, leading to the zonation of plant communities regularly observed on saltmarshes. 

Plants have evolved a range of adaptations to high salinity environments, including 

specialist glands and modified transportation pathways to facilitate the loss of salt from 

leaves or roots, and retention of water, sugars and solutes (Colmer and Flowers, 2008; 

Flowers and Colmer, 2015). Despite developing these adaptations, most saltmarsh species 

can grow in non-saline conditions (they are not obligate halophytes), although many are 

restricted to saline conditions because they lack competitive ability in terrestrial 

conditions with low salinity (Janousek and Mayo, 2013). Table 1-1 summarises the key 

adaptations of halophytes to salt and flooding stress. 

 

Table 1-1 Summary of key halophyte adaptations to salinity and flooding 

Adaptation Advantage Reference 
Salinity (stress)   
Succulent leaves Water retention [1] 
Salt exclusion (glands) Reduced Na+ in leaves [2, 3] 
Compartmentation Osmotic regulation [4, 5] 
Reduced stoma Substitute Na+ for K+ [6] 

   
Flooding duration   
Root aerenchyma Enhanced O2 movement [7] 
Long roots Fresh water adventurousness [8] 
Shallow roots Aerobic soils [9] 

Reference Key: [1] (Konnerup et al., 2015), [2] (Munns and Tester, 2008; Nedjimi, 2014), [3] 
(Nedjimi, 2014), [4] (Alhdad et al., 2013), [5] (Slama et al., 2015), [6] (Robinson et al., 1997), [7] 

(Justin and Armstrong, 1987), [8] (Naidoo and Mundree, 1993), [9] (Colmer and Flowers, 2008). 
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Saltmarsh plants also require adaptions to the stresses of prolonged inundation. Some 

species have modified transportation pathways to enable more efficient flow of gasses 

between the emergent and submerged parts of the plant during inundation, whilst others 

alter the local oxygenation of soil, which reduces the pressure of prolonged 

deoxygenation (Clapham, Pearsall and Richards, 1942; Goodman et al., 1969; Gray and 

Scott, 1977). Table 1-2 summarises the specific adaptations of nine saltmarsh plant 

species common in the UK. 

 

Table 1-2 Summary of adaptations to saline conditions and regular flooding of nine of the most 
abundant saltmarsh plant species in the UK (Mossman, Davy and Grant, 2012). Succu. = 
succulent leaves, Comp. = compartments, Redu. Stoma = Reduced Stoma, Aeren. = Aerenchyma. 

 

Reference Key: [1] (Clapham, Pearsall and Richards, 1942), [2] (Gray and Scott, 1977), [3] 
(Goodman et al., 1969), [4] (Davy, Bishop and Costa, 2001), [5] (Davy and Bishop, 1991), [6] 
(Chapman, 1950), [7] (Boorman, 1967), [8] (Woodell and Dale, 1993), [9] (Davy et al., 2006) 

  

Species 
Salt adaptations Flooding adaptations Ref. 

Succu. 
leaves 

Salt 
exclusion 

Comp. 
Redu. 
Stoma 

Aeren 
Long 
roots 

Shallow 
roots 

 

Aster tripolium x  X   X  [1] 
Puccinellia maritima x X X X  x X [2] 
Spartina anglica  X X   x  [3] 
Salicornia europaea agg. x  X X x  X [4] 
Triglochin maritima x   x  x  [5] 
Atriplex portulacoides x     x  [6] 
Limonium vulgare x X    x  [7] 
Armeria maritima x X X   x  [8] 
Sarcocornia perennis x  X x  X  [9] 
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1.1.1 Formation of saltmarsh 

The formation of saltmarsh is conditional upon the stabilization of freshly deposited 

marine sediment. This fresh sediment is stabilised by plant colonisation, and the net 

result is a gradual increase in surface elevation, through a process known as accretion. 

This ‘process’ of accretion is a combination of contain organic matter and mineral 

sediment. Saltmarsh formation can only occur where both suspended sediment is present 

within the water column, and the tidal energy is low enough to allow settlement, for 

example in embayments, estuaries and other sheltered regions (Allen, 2000).  

In the formation of a new saltmarsh, the seabed is initially submerged. With continued 

accretion the surface slowly rises, eventually exposing sediment on a more regular basis. 

When this surface sediment reaches an elevation close to the local level of mean high-

water neap (MHWN) tides, pioneer saltmarsh vegetation, such as Puccinellia maritima, 

Spartina ssp. and Salicornia ssp., begin to colonise (Davy, 2000). These early-colonizing 

plants further slow the flow of tidal waters containing sediment, facilitating additional 

accretion and contributing organic matter to the sediment via trapped algae  caught on 

plant structures, and the decay of the plants themselves (Chapman, 1959; Zhou et al., 

2006). These processes raise the marsh surface in the tidal frame, ameliorating the 

environmental conditions and allowing later successional species, which are less tolerant 

of tidal inundation, to colonise. This process, known as ‘facilitated succession’, is well 

described in the literature, with examples of Spartina spp. trapping sediment and thus 

allowing Puccinellia maritima to colonise (Huckle, Marrs and Potter, 2002), or Spartina 

spp. facilitating Sarcocornia perennis (Castellanos, Figueroa and Davy, 1994).  
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As accretion continues, diverse communities develop in the mid-marsh elevations. Here, 

some species are associated with topographic niches such as creek banks (Chapman, 

1950), and others in more waterlogged conditions around pools (e.g. Triglochin maritima) 

(Chapman, 1959; Davy, 2000). The final steps in accretion are typically slow, represented 

by the narrowing grey band in Figure 1-1. In the highest elevational zone, saline-intolerant 

species can out-compete halophytes. Although elevation is clearly important, the balance 

of nutrient inputs, salinity, interspecific competition and drainage also impact plant 

zonation (Silvestri, Defina and Marani, 2005; Davy et al., 2011).  

 

Figure 1-1 Schematic cross-section of the process of sediment accumulation (grey wedge) during 
saltmarsh development. Greater accumulation is seen nearer the sea, facilitated by plant 
colonisation. (HAT = Highest astronomical tide, MHWN = Mean high water neap). 
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1.1.2 Environmental drivers of plant zonation 

 

1.1.2.1 Elevation & topography 

Elevation in the tidal frame determines the frequency and duration of tidal flooding 

(hydroperiod), and is the major driver of saltmarsh plant distribution (Davy et al., 2011). 

Its role was recognised by early ecologists (Carey and Oliver, 1918; Oliver, 1925; 

Chapman, 1959) and, more recently, researchers have utilised modern technology to 

increase the precision and scale of elevation sampling (Collin, Long and Archambault, 

2012). Elevation is an important driver because saltmarsh species vary in their tolerance 

to the stresses of flooding, resulting in a zoned pattern where zones are closely 

associated with elevation in the tidal frame (Zedler et al., 1999; Davy et al., 2011).  

Elevation, and thus hydroperiod, also play an important role in driving other marsh 

gradients, such as salinity, waterlogging and accretion (Bockelmann et al., 2002; Li et al., 

2013), many of which are correlated. This is not to say all alterations of elevation have a 

consistent effect on hydroperiod because proximity to features such as creeks or poorly 

draining topographic features (e.g. pools) will either exacerbate or reduce this effect. In 

addition, small changes (e.g. ± 15 cm) in elevation, often described as topography, are 

potentially a strong driver of plant community by influencing other environmental 

conditions. For example, a hummock as small as 10-20 cm will experience reduced flood 

inundation, decreases in both organic and mineral material input compared to the 

surrounding areas (Cahoon and Reed, 1995) and will drain more freely, resulting in a 

higher redox potential compared to the surrounding area, regardless of elevation 

(Mossman et al., in prep). Depressions tend to be waterlogged or accumulate fresh 

sediment, which reduces air spaces and therefore lowers redox potential (Varty and 

Zedler, 2008). Although seeming relatively small variations in surface elevation, these 

features represent a significant portion of the elevation range of a marsh. For example, 

natural marshes contained topographic variation c.20 cm over horizontal distances of 50 

m (Brooks et al., 2015), equating to ~ 20% of the entire elevation range present 

(Mossman, Davy and Grant, 2011).  

While elevation per se is well established as a driver of plant communities, relative 

elevation (topography) is less well understood, nor is its implications to other 
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environmental conditions, or the final effect on saltmarsh vegetation. Currently, the 

concept of ‘topography’ in saltmarsh literature often refers to differences in elevation 

between point measurements. More precisely however, topography is the type and 

arrangement of physical features of a surface taking the form of names and numbers 

describing physical features such as orientation (compass bearing), slope (angle) and 

location (e.g. high, low). These descriptions can be qualitative or quantitative and used to 

categorise or describe physical features such as humps, depressions and pannes.  

It is important to recognise the critical role of topography in saltmarsh ecology as it may 

have long-term impacts in both its physical form and biological colonisation. Previous 

models of saltmarsh formation and ecology (e.g. Allen, 2000) have focussed on elevation 

as the primary driver, and do not include the importance of relative elevation 

(topography). However, I hypothesise that topography has important effects on plant 

communities and zonation, within a complex network of drivers. These interactions with 

topography however, have not been well studied. In Figure 1-2, I propose a model of the 

environmental influences on plant distribution. Figure 1-2, illustrates a “trickle down” 

effect of individual drivers on saltmarsh diversity and/or productivity based on key 

literature. However, this literature rarely investigates the interactions between 

environmental variables within this tier (blue boxes). Furthermore, these studies have 

rarely employed multiple environmental variables to describe saltmarsh zonation in field 

conditions, usually experimenting with artificial enrichment or manipulations to study 

impacts. 
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Figure 1-2 Trickle-down effect of topography and surface elevation on other environmental 
gradients and saltmarsh diversity. Key: RTH = relative tidal height. Primary drivers (green 
boxes), Secondary environmental conditions linked to elevation (blue boxes) and tertiary 
mechanisms or consequences of interlinked environmental variables (orange boxes). [1] 
(Wallace, Callaway and Zedler, 2005) [2] (Cahoon and Reed, 1995) [3] (Alhdad et al., 2013) [4 ] 
(Flowers and Colmer, 2008) [5] (Horton and Murray, 2007) [6] (Janousek and Mayo, 2013) [7] 
(Silvestri, Defina and Marani, 2005) [8] (Craft, 2007) [9] (de Groot et al., 2011) [10] (Davy et al., 
2011) [11] (Burden et al., 2013) [12] (Emery, Ewanchuk and Bertness, 2001) [13] (Fox, Valiela and 
Kinney, 2012) 

 

1.1.2.2 Waterlogging and redox potential 

Waterlogging is one the key properties that results in differing plant communities, and 

ultimately results in anoxic conditions (thus low redox potential). This low redox potential 

in turn promotes anaerobic decomposing microbial communities, and the development 

of toxic species of Manganese, Iron and Sulphur that impede plant growth (Sánchez, 

Otero and Izco, 1998; Pezeshki, 2001; Pezeshki and DeLaune, 2012).  

Redox is short for reducing-oxidising reactions and describes the status of electron 

transfer within chemical reactions. Electron transfer is a critical process in organic, 

inorganic and biochemical reactions. Possibly the most visual example of these reactions 

within soil and plant ecology are those that result in changes to the colour of soil. When 

deprived of oxygen, e.g. where soil pores are waterlogged or filled with very small 

sediment particles, oxidising reactions cannot occur leaving the soil a black colour (Figure 

1-3 A). In the presence of oxygen however often soils take on a reddish hue created by 
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the slow oxidation of metals (Figure 1-3 B), notably the dominant redox couple in wet 

soils of Iron to Iron oxide, a reddish mineral (Fiedler, Vepraskas and Richardson, 2007).  

Plants are differentially tolerant of low redox potential and as a result, redox is a powerful 

determinant of plant zonation over the entire marsh surface. For example, Puccinellia 

maritima is tolerant of low redox potentials, which allows it to colonise areas at higher 

elevations than expected where low redox potentials are present (Davy et al., 2011). In 

contrast, Suaeda maritima and Atriplex portulacoides are less tolerant of low redox, 

reducing conditions (Davy et al., 2011). 

 

Figure 1-3 Photographs of reducing conditions in saltmarsh soil A black in colour (typical 
waterlogged anoxic, reducing soil, ~ -200 mV), and oxidation, reddish hue to soil often dryer 
(oxygenated soil, ~ +200 mV). Steart Managed realignment scheme in Somerset. 

We currently know that redox potential is positively correlated with elevation in 

saltmarshes (Mossman, Davy and Grant, 2012). However, this relationship is imperfect 

(Davy et al., 2011). This may be due to the roles of local microtopography, whereby on 

very small scales features may aid drainage on local scales or promote the accumulation 

of fine sediment in very shallow pannes, impinging Oxygen transfer. Figure 1-4 illustrates 

the topography of a typical marsh surface with topographic features, such as creeks and 

hillocks, and hypothesised redox conditions that are directly linked to drainage, 

topography and elevation combined. However, the relationships between topography, 

A B 
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elevation and redox potential have not been clearly tested, and nor have the implications 

of these on vegetation colonisation.  

Figure 1-4 A theoretical interpretation of the relationship between topography, elevation, and 
redox potential. 

 

1.1.2.3 Nutrients 

Saltmarshes are thought to be nutrient-limited environments (Levine, Brewer and 

Bertness, 1998; De Schrijver et al., 2011; Geatz et al., 2013). The theory of nutrient 

limitation in saltmarshes is based on experimental studies that find increased above-

ground biomass and shifts in community composition with enrichment of macronutrients 

such as Nitrogen (Boyer and Zedler, 1999). Nutrient enrichment can also lead to vertical 

expansion of elevational niches in some species (Emery, Ewanchuk and Bertness, 2001; 

Fox, Valiela and Kinney, 2012).  

Nutrient enrichment in saltmarsh has been shown to lead to increases in late-successional 

species and dominance of grasses, such as Elytrigia atherica, thus reducing diversity; 
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increased nutrients appear to release these species from the salinity stress of the upper 

marsh (van Wijnen and Bakker, 1999). It is plausible that increased inundation caused by 

sea level rise may help to mitigate any potential shift towards upper marsh species driven 

by nutrient enrichment. The result of this being that communities shift back towards 

lower marsh species due to the increased inundation and salinity stress (Donnelly and 

Bertness, 2001). Redox potential plays an important and complex relationship with 

nutrient availability and can indicate important ratios of nutrients within the Nitrogen 

cycle, such as Nitrate and Ammonium. We currently have poor estimates of the current 

nutrient status within saltmarsh soils, and we do not fully understand the relationships 

with elevation, salinity and waterlogging, making predictions of nutrient concentrations 

and their roles in saltmarsh ecology extremely challenging. 

 

1.1.2.4 Salinity 

Salinity has an impact on zonation as plants have differential adaptations to this 

environmental pressure (Table 1-1 and Table 1-2). Salinity is often considered a function 

of elevation, with areas experiencing more frequent tidal inundation being more saline. 

However, correlations between salinity and elevation can be weak (Silvestri, Defina and 

Marani, (2005) because salinity is also driven by evaporation (Bertness and Ellison, 1987; 

Pennings, Grant and Bertness, 2005), and freshwater inputs. Thus there are temporal 

patterns, with salinity highest in the summer months when there is increased 

evapotranspiration and irregular tidal flushing; this temporal variability is greatest at mid 

to high elevations (de Leeuw, Olff and Bakker, 1990). Salinity is also highly spatially 

variable, with topographic features such as pannes having hypersaline conditions due to 

the absence of plant cover, which increases evaporation (Pennings and Callaway, 1992). 

  



Chapter 1: Introduction 

23 
 

1.1.2.5 Interactions 

The drivers of the natural zonation of saltmarshes described above. Are often considered 

in isolation and regarded as having direct effects on saltmarsh vegetation. However, I 

hypothesise a more complex set of interactions with both elevation and topography at its 

core (Figure 1-2). As a result, I suggest that all these drivers combined act as a ‘balance 

beam’ between typical communities (Figure 1-5). The beam suggests that the increase of 

any one block will tilt the competitive balance, in this case between pioneers and upper 

marsh species. Experimental studies referred to in the previous subsections have all 

shown that increases in each of these factors (boxes) tip the balance towards either of 

these two typical communities. 

 

Figure 1-5 The ‘balance beam’ I hypothesise of ambient conditions and community abundance 
in a saltmarsh. 
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1.1.3 Further drivers of saltmarsh development 

Although the focus of this thesis will be abiotic and physical properties of saltmarshes. 

The following section will recognise the important roles of plant-plant, animal-plant and 

microbial interactions that themselves may drive the abiotic and physical properties 

observed. 

 

1.1.3.1 Soil-Microbial communities 

Saltmarshes play and important role in global nutrient cycling acting as both a sinks and 

sources for various nutrients (Duarte, Freitas and Caçador, 2012; Shao, 2014). It is in this 

respect that soil microbes influence the form and function of a saltmarsh playing an 

important role in the bio-availability nutrients required for plant growth and within food 

web interactions (Hines et al., 2006). Microbes can be divided in many ways though we 

will consider bacteria, actinomycetes, fungi, algae, protozoa and nematodes. These 

micro-organisms are abundant in soil and if a carbon source is present for energy and 

they produce useful bio-available nutrients though processes of decomposition, 

ammonification, nitrification and mineralisation that can be absorbed by plant roots. 

In the case of saltmarshes, decomposers play an important role at early stages of 

succession prior to vegetation (Schrama, Berg and Olff, 2012). Microbes can also mitigate 

increased environmental pressure on plants that can result in a competitive advantage for 

specific species changing the plant community composition (Machado et al., 2012). 

Interestingly, microbes also benefit from the presence of plants. Colonisation of plants 

can mediate the negative effect of detrimental chemicals that would otherwise slow the 

microbial denitrification processes (Almeida et al., 2014). This symbiotic relationship 

demonstrates the complex nature of a stable saltmarsh where both microbial community 

and appropriate vegetation reinforce each other through a network of mediation and 

microbial facilitation. These findings suggests that pre-sampling of realignment soils may 

be important in tracking microbial and plant communities and also offer a novel method 

of monitoring the consequences of soil evolution regarding the restoration and 

management of saltmarshes  (Caffrey et al., 2007; Laudicina et al., 2009; Duarte, Freitas 

and Caçador, 2012).  
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1.1.3.2 Grazing and food web interacts 

It has been suggested that vegetation succession is only understood in the context of 

food web dynamics (Schrama, Berg and Olff, 2012). An implication of this in terms of MR 

is that only though the provision of complete and comparable food webs can an 

equivalent successional saltmarsh processes occur.  

In Figure 1-6, we provide a visual representation of the potential divergence from a 

reference food web stemming from a divergence from the stable processes. Much of 

saltmarsh food web literature has a focus the consequences of pollution in altering food 

webs and their subsequent impacts upon the saltmarsh health and vegetation succession. 

One such example of this type of study in China that suggests the possible threats of non-

native plants to increased bioavailability of metals in the water column of which the 

consequence is yet unknown (Quan et al., 2007). The pace of change in saltmarsh food 

webs may not be instant due to enrichment, indeed the effect of enrichment may take 

multiple years to be fully revealed (Pascal and Fleeger, 2013). Grazing to can alter 

saltmarsh communities due to physical and chemical pressures that may lead to 

decreased vegetation health, increased soil exposure and alterations in the microbial 

communities (Ford et al., 2013; Schrama et al., 2013; van Klink et al., 2015). The 

implication from studies around the world posed show that food web alterations are 

significant threat saltmarsh development processes. Indeed, the very provision of many 

ecosystem services we rely upon will suffer without an appreciation for the animal-plant, 

plant-plant and microbial interactions and functions within a complete food web. The 

alteration of migratory, seasonal blooms provides a unique insight into the interplay of 

terrestrial and marine systems and the possible threats posed to the marsh itself. This 

interplay is well summarised in an Australian study that depicts the load on saltmarsh, 

microbes and microalgae as primary producers in a complete food web (Laegdsgaard, 

2006).  
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Figure 1-6 Given a reference food web and plant community (green A), we can hypothesis that 
alterations (grey) to the structure and food web will result in differing communities (red, yellow 
and blue B, C and D). 

 

1.1.3.3 Nonlinear events and climate change 

Outside of the biotic unstudied variables within thesis there is a further and possibly less 

linear driver of the status of saltmarshes. Climate, storminess and alterations to wave 

energy can impact saltmarshes. Firstly experimental work has suggested that higher 

temperatures could lead to an expansion of pioneer saltmarsh plants down into mudflats 

(Gray and Mogg, 2001), this would reduce the area of unvegetated sediment available for 

feeding birds (Durell et al., 2006), a significant ecosystem service of considerable value 

(Barbier et al., 2011). It is not only temperature shifts and the consequences of altering 

plant communities that are affected by climatological factors. Periodic formation and loss 

have been reviewed in the Thames estuary (van der Wal and Pye, 2004). In this review 

one of the primary drivers of period of loss is stated as likely prolonged periods of 

changes to wind and waves. This suggestion has gained further support in recent years 

where ‘normal’ weather patterns (i.e. prolonged periods of similar conditions) is can lead 

to more erosion of the saltmarsh than one off far stronger events (Leonardi, Ganju and 

Fagherazzi, 2015). In essence the current observed saltmarsh community is a product of 
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the creation of spatial heterogeneity in physical properties with an added often 

unobserved factor of niche creation via heterogeneity in temporal environmental 

conditions known as ‘regeneration niches’ (Grubb, 1977). 

 

1.2 Countering saltmarsh loss 

Globally, there is a minimum estimate of ~ 55,000 km2 of saltmarsh (Mcowen et al., 

2017), with large areas in temperate land masses such USA and China, but small islands 

with large coastlines also have significant area of saltmarsh. Despite their importance, 

global saltmarsh extent has been in steady decline with losses at a minimum of 1–2 % per 

year (Adam, 2002). Saltmarsh loss has historically been dominated by reclamation for 

various uses, including agriculture, urbanisation and port construction/development 

(Gedan, Silliman and Bertness, 2009). While in Europe the substantial land claim has now 

slowed, this is not the case in other regions losses to industry, housing or agriculture have 

been accelerating in recent years (Tian et al., 2016; Mcowen et al., 2017). In addition, 

many regions are showing a trend towards net erosion of marsh, likely due to climate 

change and eutrophication (Britsch and Dunbar, 1993; Morris et al., 2004).  

Saltmarshes have been offered protection in law in many countries and regions of the 

world (Broome, Seneca and Woodhouse, 1988), with recent legislation requiring 

compensatory habitat to be created to counter losses, e.g. the EU Habitats Directive 

(European Commission, 2007). The Habitats Directive requires replacement for all 

saltmarsh lost with compensatory habitat that has “equivalent biological characteristics”. 

These biological equivalent habitats must also be of “comparable proportions of habitats 

and species” to the saltmarsh negatively affected since 1992, and importantly, created 

prior to any future degradation or development. This places member states in a position 

that proactive restoration is the only method to meet the requirements of the legislation. 

The US Clean Water Act (ca. 1972) also requires no net loss of marsh extent across 

national or state scales, but provides flexibility in the location of compensatory habitat, as 

long as there is minimum ecosystem function locally (e.g. fish nursery and wave 

protection) (Copeland, 1999). 
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Figure 1-7 Cumulative total of the area of saltmarsh restored in the UK (slate grey squares) and 
the cumulative total of target area (140ha per year) (orange triangles). 

 

If the UK government is to reach its expected legal targets as determined by the Habitats 

Directive, there is an ongoing need to create approximately 140 ha per year of biologically 

and functionally equivalent saltmarsh (Rupp-Armstrong and Nicholls, 2007). At the time 

of writing (2018), 53 saltmarsh creation schemes have been conducted, generating ~ 

2,350 ha of intertidal habitat (ABPmer, 2018). This is some 1289ha behind the pace 

required to compensate for the current, and historical losses (see ). The figure of 2,350 ha 

is also generous as it assumes that all the area flooded result in saltmarsh plant 

communities (rather than mudflat) or equally importantly, that the sites have equivalent 

biological and functional characteristics, (something rarely quantified in the literature). In 

recent years, some of the largest schemes have been completed, possibly showing the 

effectiveness of the EU legislation and growing appreciation for saltmarsh habitats, 

including the sites Steart, Medmerry and Wallasea Island (Phase 1), totalling 37% of all 

restored marsh created to date (ABPmer, 2018). 

Attempts to establish or re-establish saltmarshes though restoration techniques have a 

relatively long history. Managed realignment (MR), or ‘de-embankment’, is the deliberate 

breaching of tidal blockades such as sea walls, embankments or levees allowing tidal 
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waters to flood the selected land. This type of scheme often goes hand in hand with the 

construction of new sea walls inland creating a compartment of land allowed to be 

flooded. A similar method of creating marshes is called regulated tidal exchange (RTE). 

This method is much like MR with the exception that tidal inundation is controlled with a 

sluice gate. Success of RTE has been variable because it is difficult to establish an accurate 

simulation of flooding and sedimentation, leading to slow colonisation of plants 

(Masselink et al., 2017). These engineered marshes created through MR and RTE very 

rarely embrace post-restoration intervention, relying on the initial design to fulfil all the 

conditions required for natural colonisation of plants. Planting and seeding are not carried 

out in the UK. Experimental, post-restoration topographic manipulation has been 

undertaken at one site, however these have not been monitored to evaluate the effects 

on the vegetation community. At other sites, topographic manipulation has more recently 

been incorporated into site design (e.g. Steart, Hesketh Out Marsh East and Wallesea), 

but we have limited understanding of the type, size and distribution of topographic 

features in natural or restored marshes, and so the money spent on these groundworks 

may not be as efficient as it could be. 

 

1.2.1 Saltmarsh restoration success 

Restored marshes do not have equivalent vegetation communities to the reference 

marshes they are expected to match, even after 50-100 years (Mossman, Davy and Grant, 

2012). Equivalence is rare in the majority of European restoration schemes (Wolters, 

Garbutt and Bakker, 2005; Chang et al., 2016), and in the US (Boyer and Zedler, 1999; 

Zedler and Callaway, 2000). Plant species richness is lower on restored saltmarshes, 

despite some sites being >50 years old (Garbutt and Wolters, 2008). In UK restored 

saltmarshes, some mid-marsh species (e.g. Triglochin maritima) are underrepresented 

regardless of time since restoration (1-131 years, (Mossman, Davy and Grant, 2012)). In 

contrast, other species were more common. For example, at the older realigned sites (25-

131 years), Atriplex portulacoides and Spartina anglica were more abundant than 

expected. 

The recreation of other ecosystem services and functions, such as Carbon storage or fish 

use, are also less successful (Colclough et al., 2005; Burden et al., 2013), and this may be 
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due to the fact they are linked to vegetation burial (Carbon storage) and habitat 

complexity (fish use), reiterating the importance of equivalent vegetation. In terms of 

creating biologically equivalence for taxa other than plants, restoration sites are usually 

quickly colonised but again rarely reach the same overall structure as natural marshes. 

For example, birds  can quickly colonise (Atkinson et al., 2004), although habitat structure 

may not be suitable for all species (Zedler and Callaway, 1999). Benthic and terrestrial 

invertebrates also quickly colonise but community structure is different (Mazik et al., 

2010), possibly due to the role of below ground biomass (from plants growth) enhancing 

the colonisation potential of some invertebrates (Johnson et al., 2018). 

 

1.2.2 Possible drivers of biological divergence in restoration sites 

There are a range of potential biotic and abiotic causes for the differences in vegetation 

communities between natural and restored saltmarshes. While restored sites may 

immediately provide a range of suitable environmental conditions for colonisation 

(Hughes, Fletcher and Hardy, 2009), differences remain. Here I discuss how these drivers 

occur, interact and result in the current communities we observe. 

MR schemes tend to occur on areas that were formerly reclaimed from saltmarsh for 

agriculture, and which are therefore lower elevation than adjacent natural marshes due 

to the process of dewatering, compaction and relative sea level rise since the 

reclamation. The low initial elevation can result in substantial accretion for example, one 

site (Tollesbury, Essex, UK) there was a mean accretion ~14 cm over the site after five 

years (Garbutt et al., 2006). A consequence of this substantial 14 cm of accretion may be 

reflected within the plant communities. This MR scheme was initially, and still being, 

dominated by pioneer species 19 years after restoration (pers. obs.). It is very likely that 

this may be due to the site remaining too low and excessive accretion causing seedling 

mortality (Bouma et al., 2016). 

Agricultural activities such as ploughing greatly alter the soil chemistry and structure (van 

Klink et al., 2015; Spencer et al., 2017), and increase salinity and waterlogging at plant 

rooting depth (Di Bella et al., 2015). MR schemes are typically created on former arable 

land and so nutrient concentrations are thought to be initially high; indeed total inorganic 
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nitrogen can be 2.5 times higher than adjacent agricultural land on a MR scheme, up to 

15 years after flooding (Burden et al., 2013). However, in other studies nitrogen levels in 

MR could also be were lower that adjacent arable land just four years after flooding 

(Langis, Zalejko and Zedler, 1991). Understanding the status of nutrient levels in restored 

saltmarshes is a challenge because there are limited examples in the literature and they 

are contradictory. Furthermore, many studies do not compare restored systems to 

reference sites, and there is no clear review of the nutrient status of natural marshes, a 

globally important ecosystem.  

Agricultural activities, such as ploughing, also removes topography and flatten the 

surface. Indications from one MR site suggest that natural saltmarshes may be more 

varied in elevation than MRs, particularly at small scales e.g. 1-10 m, and natural marshes 

remain more varied than engineered efforts that we might expect to approximate natural 

surface texture (Brooks et al., 2015). Reduced surface topography will lead to a uniform 

regime of inundation and uniform redox conditions. Natural marshes tend to be more 

oxic at the lower elevations, and have lower redox at the highest elevations in 

comparison to both MR and older accidently created saltmarsh (Mossman, Davy and 

Grant, 2012). We know that low redox potential is expected in local depressions and 

higher redox on well-drained mounds (Castellanos, Figueroa and Davy, 1994; Varty and 

Zedler, 2008),  but these topographic features are likely to be less prevalent in both upper 

and lower areas of MR sites. Consequently, plant diversity across the elevation range of 

restored marshes maybe reduced due of the limitation of niche provision. Moderate and 

upper marsh species in particular, that are tolerant of waterlogging conditions are likely 

to see reduced availability of niches (Varty and Zedler, 2008). Limonium vulgare, 

Triglochin maritima and Plantago maritima,rare on restored saltmarshes of all ages 

(Mossman, Davy and Grant, 2012), this is because they occur at higher elevations and 

moderate redox potentials (Davy et al., 2011; Sullivan et al., 2017). Atriplex portulacoides, 

which is the potential dominant, shares the elevational niche of these species but is most 

abundant in the highest redox potentials – conditions more frequent on MR sites. There is 

however, very limited information on the comparative topography of natural and 

restored sites, or the consequences of these features on redox potential, or in 



Chapter 1: Introduction 

32 
 

conjunction with redox potential in understanding spatial distributions of saltmarsh 

vegetation (zonation). 

Creek networks assist the drainage of saltmarsh, contributing to creating a range of 

environmental conditions and thus niches for species to inhabit. However, density and 

complexity of creeks is lower on MR compared to natural marshes (T. Smith, unpublished 

MSc thesis, Chirol pers. comm.). The creek design of MRs can lead to a more uniform flow 

of water across the sites (Ellis and Atherton, 2003), with consequences for drainage and 

niche availability for plants. Crooks et al., (2002) showed drainage regimes in restored 

saltmarshes could result in significant alterations in plant communities, with the notable 

increases in abundance of Puccinellia maritima in undrained sites and Atriplex 

portulacoides in the drained.  

A final possible source for disparity in species composition between restored and natural 

marshes may stem from the availability of seeds or propagules. Restored marsh 

seedbanks have lower seed counts, and lower probability of germination (Morzaria-Luna 

and Zedler, 2007). Saltmarsh propagules may be dispersed by birds (Soons et al., 2016) or 

by the tide. Wolters, Garbutt and Bakker, (2005) suggest the process of seed movement 

into a realigned site is ‘step-wise’, with pioneer species having the most opportunities for 

dispersal as they are inundated more regularly and therefore accumulate on rising tides. 

This as a result, may increase their dominance in the early colonisation periods. To 

accompany this possible accumulation of pioneers, several mid marsh species, such as 

Limonium vulgare and Triglochin maritima, rare on restored sites, are known to have low 

seed viability (Davy and Bishop, 1991), reducing their colonising ability. While these 

studies may go some way to demonstrate that dispersal may be limiting to colonisation, it 

does not explain why some species remain rarer on restored marshes even after 100 

years, despite being present on adjacent natural marshes. It can be hypothesised that 

some species require a prerequisite ‘window of opportunity’ either in terms of a suitable 

environmental niche or little competition to colonise (Hu et al., 2015; Sullivan et al., 

2017).  
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1.3 Restoration ecology 

The field of restoration ecology has undergone a significant period of growth in the past 

two decades, aiming to conserve, enhance and preserve biodiversity and ecosystems 

(Young, Petersen and Clary, 2005; Choi, 2007). Ultimately the goal of ecological 

restoration is to provide a means for long term repair / recovery of a community or 

ecosystem (Young, 2000; Davis and Slobodkin, 2004). As a result, a successful restoration 

project must be considered the timely production of equivalent habitat, in both form and 

function, when compared to that of a reference, benchmark or a historical baseline 

(Strange et al., 2002; Boorman, 2003). Despite policy requiring equivalence, returning a 

system to a historical state is  challenging  (Palmer, Ambrose and Poff, 1997). 

In order to actively improve restoration outcomes, we must have greater understanding 

of the balance between different stable states (e.g. communities), ecotones (e.g. 

halophyte to terrestrial) and transition zones (gradients), and of ecosystem functions and 

mechanisms (e.g. niche occupation, intraspecific competition, succession) (Young, 

Petersen and Clary, 2005). This information is often lacking in natural, baseline systems 

and so recreating these conditions through restoration is inherently challenging. There 

has been limited development of predictive models in restoration (Brudvig, 2017), which 

impedes our ability to foresee the effects of management decisions making changes risky 

to justify (Zedler, 2017).  

 

1.4 Summary and key knowledge gaps 

Little is known about the topographic diversity of natural or restored saltmarshes, or how 

this topography develops over time. Consequently, we do not understand how any effect 

of topography interacts with the relatively well-studied drivers of vegetation such as 

elevation and redox, or if it has a similar ability to drive communities on its own. Further 

to this, we currently do not know if topographic complexity is related to the spatial 

pattern of plant communities. We know MR sites fail to develop the same biological 

characteristics as natural counterparts but there is no information to describe how 

diversity manifests itself spatially in natural marshes, let alone on MR sites. Filling this 

significant gap in the literature may aid future restoration and highlight the importance of 

encouraging Beta diversity and its drivers to improve restoration of saltmarshes. As there 
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are currently no appraisals of management interventions that have aimed to encourage 

diversity post restoration, we are yet to understand to consequences of management 

decisions or begin to assess their potential value. Despite their importance in the 

structure of vegetation communities, measurements of nutrient levels in restored 

saltmarshes are rare, and studies often lack a comparative natural system. Furthermore, 

our understanding of the baseline nutrient status of natural marshes is weak, making the 

study of temporal changes or restoration challenging.  

 

1.5 Thesis outline and structure 

In this thesis I characterise the relationships between elevation, topography, redox 

potential and sediment nutrient concentrations, and demonstrate how these relate to the 

distribution of plant communities on both natural and restored saltmarshes. I also 

investigate how environmental conditions develop over time on a newly restored site, 

testing for signatures of prior land use.  Specifically, I aim to: 

1) Characterise typical topographic structure of natural and MR saltmarshes and 

investigate differences between them. 

2) Quantify the nutrient status of natural and restored saltmarshes, relating these 

concentrations to known levels of eutrophication.  

3) Quantify the temporal changes in soils conditions following restoration of tidal flooding 

and investigate their evolution in relation to natural saltmarsh and permanent 

agricultural soils, examining the roles of former land-use and topography as potential 

drivers of any differences observed. 

4) Determine the relationships between elevation, topography and redox potential, and 

the effects these have on vegetation diversity.  

5) Investigate the potential for topographic manipulation as a management tool to 

improve vegetation diversity, thus increasing restoration success.  

  



Chapter 1: Introduction 

35 
 

1.5.1 Chapter outlines 

 

Chapter 2: Restored saltmarshes lack the topographic diversity found in natural habitat. 

Accepted for publication in Ecological Engineering 

In this chapter I use LiDAR and GIS to quantify site-level topography across natural 

reference saltmarshes and restored sites of various ages. I also compare restored sites to 

coastal agricultural fields, which represent conditions prior to restoration. This allows the 

detection of transitions from pre-restoration agricultural conditions towards those in a 

natural habitat.  

 

Chapter 3: Global analysis of the nutrient status of natural and restored saltmarshes 

In this chapter I conduct a systematic review of global measurements of nutrient 

concentrations in natural and restored saltmarshes. I aim to assess the extent to which 

saltmarshes are nutrient enriched beyond levels at which erosion is known to occur and 

investigate if restored sites are more enriched due to their prior agricultural use.  

 

Chapter 4: Temporal changes in soils conditions following restoration of tidal flooding in 

a new managed realignment scheme: signatures of time, space and land use  

In this chapter I investigate the developing sediment characteristics of a newly flooded 

MR site. I sampled prior to flooding to create an initial baseline and then quarterly for 2.5 

years to investigate temporal changes, and in four differing land uses to detect spatial 

variability and signatures of agricultural land use.  
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Chapter 5: Lack of local topography results in homogenous vegetation communities on 

restored saltmarshes 

Here I investigate the differences in topography, redox and plant diversity between 

natural and MR saltmarshes. I examine the spatial arrangement of heterogeneity in the 

two types of saltmarshes, with additional analysis of recently constructed topographic 

manipulations designed to aid increased vegetation diversity. 

 

Chapter 6: Discussion and management implications 

In this final chapter, I consolidate the lessons learned in this project. I will start by 

discussing briefly the key findings regarding the roles of topography, redox and nutrients 

independently and together within natural and MR systems. I will make 

recommendations for further research discussing current barriers to my findings. I will 

conclude by discussing the management implications of my research within restoration 

science and the restoration of saltmarshes.  
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2 Restored saltmarshes lack the topographic diversity found in natural habitat 

 

Accepted for publication in Ecological Engineering as Lawrence P.J., Smith G.R., Sullivan 

M.J.P., Mossman H.L. (in press) Restored saltmarshes lack the topographic diversity found 

in natural habitat. Ecological Engineering 

Abstract 

Saltmarshes can be created to compensate for lost habitat by a process known as 

managed realignment (MR), where sea defences are deliberately breached to flood low-

lying agricultural land. However, the vegetation that develops on MR sites is not 

equivalent to natural habitat. In natural sites, surface topography and creek networks are 

drivers of vegetation diversity, but their development on restored sites has not been well 

studied. We investigate the topographic characteristics of 19 MR areas, and compare 

these to nearby natural saltmarshes (representing desired conditions) and to coastal 

agricultural landscapes (representing conditions prior to MR). From high-resolution LiDAR 

data, we extracted values of elevation, six measures of surface topography (although two 

were later excluded due to colliniarity), and three measures of creek density. MR and 

natural marshes differed significantly in all surface topographic indices, with MR sites 

having lower rugosity and more concave features, with greater potential for water 

accumulation. MR sites also had significantly lower creek density. MRs and coastal 

agricultural landscapes were more similar, differing in only one topographic measure. 

Importantly, there was no relationship between age since restoration and any of the 

topographic variables, indicating that restored sites are not on a trajectory to become 

topographically similar to natural marshes. MR schemes need to consider actively 

constructing topographic heterogeneity; better mirroring natural sites in this way is likely 

to benefit the development of saltmarsh vegetation, and will also have implications for a 

range of ecosystem functions. 
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2.1 Introduction 

Saltmarsh is a valuable intertidal ecosystem that provides habitat for rare species, as well 

as important ecosystem services such as water regulation, wave attenuation, and 

recreation (Barbier et al. 2011). Loss of saltmarsh, particularly due to agricultural 

reclamation, has been substantial, with less than 50% of the extent of historic habitat 

remaining worldwide (Adam 2002; Barbier et al. 2011). Although land claim still occurs, 

one of the major threats currently affecting saltmarsh is sea-level rise (Adam 2002; Hay et 

al. 2015; Nicholls et al. 1999), exacerbated by the construction of static, hard sea 

defences, which prevent the natural landward migration of marshes, so that marshes are 

trapped between sea defences and rising sea-levels. This coastal squeeze results in loss of 

saltmarsh (Morris et al. 2004).  

New saltmarsh is being created to combat this loss of habitat (Callaway 2005; Zedler 

2004), partially motivated by legislation requiring its replacement (e.g. European 

Commission 2007, USA Clean Water Act). Saltmarsh can be created through the process 

of managed realignment (MR), where sea defences are deliberately breached following 

the construction of new defences further inland, to allow tidal waters to flood the land 

between (French 2006). Low-lying, coastal agricultural landscapes provide a key location 

for the restoration of saltmarshes, because much of this was saltmarsh prior to land 

claim.  

Saltmarsh plant and invertebrate species can quickly colonise newly established MR sites 

(Garbutt et al. 2006; Mazik et al. 2010; Wolters et al. 2005), but community composition 

and function are often different to that found on natural saltmarshes. For example, plant 

communities that develop on MR sites are not equivalent to those found on natural 

saltmarshes (Mossman et al. 2012a). Furthermore, the vegetation on sites established on 

agricultural land accidentally breached during storm surges remains different to that on 

natural marshes, even 100 years post flooding (Mossman et al. 2012a). These differences 

in plant assemblages reduce biogeochemical functions such as carbon storage (Moreno-

Mateos et al. 2012) and are likely to have knock-on effects on other plant-influenced 

ecosystem functions such as wave attenuation (Möller and Spencer 2002; Rupprecht et 

al. 2017) and sediment erosion/ deposition dynamics (e.g. Ford et al. 2016), meaning that 

restored marshes are unlikely to satisfy legal requirements for biological and functional 
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equivalency with natural marshes (Mossman et al. 2012a). Elevation (height above sea-

level) is a key determinant of the vegetation communities that colonise restored sites 

because saltmarsh plants have clear elevational niches (Masselink et al. 2017; Sullivan et 

al. 2017; Zedler et al. 1999). Some restored sites were initially at low elevations because 

of relative sea-level rise and shrinkage of the land during the years of reclamation, and 

this may have limited vegetation colonisation (Garbutt et al. 2006).  

Plant species also vary in their tolerance of poorly drained, waterlogged sediments (Davy 

et al. 2011; Huckle et al. 2002), with these conditions more frequent in some MR sites 

(Sullivan et al. 2017). However, the drivers underlying this increased waterlogging are 

poorly understood, although in some sites this appears to be due to poor drainage 

(Masselink et al. 2017). Local variation in surface elevation and shape, i.e. topography, 

can influence sediment drainage, with flat surfaces draining poorly. Increased 

topographic variation and complexity could increase the range in potential niches 

available and thus increase plant diversity (Kim et al. 2013; Moffett and Gorelick 2016; 

Morzaria-Luna et al. 2004), which could influence the provision of ecosystem services 

such as flood defence (Rupprecht et al. 2017). Furthermore, topographic features such as 

creeks are important to saltmarsh functioning, as they supply sediment and water across 

the marsh, and provide nursery habitat for juvenile fish (Cavraro et al. 2017; Desmond et 

al. 2000; Peterson and Turner 1994). Topography on natural saltmarshes can take many 

forms, such as hummocks, pans, creeks and levees (Figure 2-1; Goudie 2013). Land 

management during reclamation, such as ploughing, trampling and channelization of 

creeks, may reduce surface topography prior to restoration. For example, research at one 

MR site found reduced heterogeneity in surface elevation compared to natural marshes 

(Brooks et al. 2015). However, little is known about the topographic diversity of other 

restored marshes or how this topography develops over time.  

We assess the surface elevation, topography, and creek network density and diversity of 

19 MR areas, comparing these to natural saltmarsh and local agricultural reference sites. 

To do this, we use remote sensing (specifically, Light Detection And Ranging [LiDAR]) 

derived digital elevation models (DEMs), from which we calculate a range of topographic 

indices and creek network measures that describe the characteristics of the marsh 

surface. Using this data, we investigate the following questions: 1) Does topography differ 
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between natural saltmarsh, restored saltmarsh (MR), and adjacent agricultural 

landscapes; 2) Does topography vary with age since restoration and with former land-

cover; 3) Are any differences in topography between MR and natural saltmarshes 

consistent across the intertidal elevational range? 

 

Figure 2-1 (A) A sample digital elevation model from Tollesbury (Essex) showing elevation (m 
ODN). Topographic variables have been illustrated along a seaward transect represented by a 
dashed line. The five plots below show measurements every 5 m along this transect. From top 
to bottom these are Elevation, vector rugosity measure (VRM), rugosity (s.d. elevation), 
topographic wetness index (TWI) and profile curvature. For profile curvature, the dotted line 
separates convex (-ve) and concave (+ve) scores. Photos illustrate (B) a concave salt pan with 
high TWI and low rugosity; (C) a creek with variable TWI, concave profile curvature and high 
rugosity; (D) a constructed hillock at a MR that has low TWI, higher rugosity and convex profile 
curvature. 
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2.2 Methods 

 

2.2.1 Study sites 

Seventeen MR sites, ranging from 4-23 years since the date of breach, were selected 

along the south and east coasts of the UK (Figure 2-2 and Table A2-1). Two of the MR sites 

were divided into two hydrologically distinct areas by sea walls or other landscape 

features, which resulted in a total of nineteen MR areas. MR sites were identified using 

the ABPmer online database (ABPmer Online Marine Registry 2014) and aerial 

photography, and later selected based on the availability of LiDAR data after restoration, 

as well as to ensure coverage of a range of geographic locations and site ages. Twelve 

natural saltmarshes and fourteen agricultural plots were sampled as reference sites, 

representing respectively the desired end-conditions and likely starting conditions of 

restored sites. Natural saltmarshes were selected to minimise the distance to MR sites 

(mean distance to MR site = 6.95 km) while ensuring that they were large enough for 

reference plots of similar size to MR sites to be created. In some areas of the UK, natural 

saltmarsh is currently undergoing substantial erosion (Cooper et al. 2001). This type of 

erosion is easily identified by interpretation of aerial photography due to substantial 

internal dissection and limited vegetation cover; these areas were not sampled. Sites 

affected by significant anthropogenic structures other than sea walls, such as slipways 

and groins, were also not selected. Areas of natural saltmarsh were often larger and 

lacked the clear boundaries of MR sites, which were enclosed by seawalls. In this study, 

we defined the extent of the sampled natural saltmarshes by using the mean shoreline 

length of the 19 MR areas. The extent of the marsh perpendicular to the shoreline was 

defined as the seaward edge of the vegetation, identified from aerial photography. Using 

these rules, a polygon was digitised within a GIS environment to establish site area of 

each natural marsh. The mean size of MR areas was 16.5 ha and natural saltmarsh was 

18.2 ha. Agricultural reference areas were selected based on the criteria that sites should 

be as close as possible to MR areas (mean distance = 1.97 km), be adjacent to the coast/ 

estuarine system and be continuous fields (not surrounded by walls or roads as these can 

be problematic for the flow models used to construct some topographic metrics) that 

were large enough to create plots of similar size to MR areas (mean size of agricultural 
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areas = 13.8 ha). MR is carried out on both arable and grazed land, so both were included 

as agricultural reference areas (topography was similar between arable and grazed 

reference areas, Fig. A1). Each estuarine complex containing a MR area had at least one 

natural reference (with the exception of the Clyst Estuary where no suitably sized natural 

reference marsh was available) and one agricultural reference area, ensuring that 

regional variation in variables such as tidal range and plant community composition were 

similarly represented in both MR sites and reference sites. Sampling multiple sites this 

way also enabled us to capture variation in reference conditions (Vélez-Martín et al. 

2017). 

 

 

Figure 2-2 Location of study sites. Pie charts are positioned at the centroid of clusters of sites 
within 0.5 degrees of each other, and show the proportion of sites that were natural marshes, 
managed realignments (MR) and agriculture. The size of each pie chart is proportional to the 
number of sites sampled. Coordinates of each study site are given in Table A2-1. 
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Previous land cover of MR sites was identified using the land-cover datasets for 1990 and 

2007 (Morton et al. 2011), enabling the comparison of topographic variation between 

different former land covers. Of the nineteen MR areas, we found eleven were formerly 

defined as dominated by grazing practises (mown or grazed turf, meadow and semi-

natural swards) and eight as ‘arable’ use prior to breaching (arable and horticulture).  

 

2.2.2 Quantifying topography 

One-metre resolution LiDAR-derived DEM data were downloaded for all sites on 11th 

February 2016 from the free UK LiDAR resource (UK Government 2016). These were 

mosaicked into a continuous gridded raster surface (one for each site rather than a 

complete coastal DEM for England) in ArcGIS © version 10.2 (ESRI 2013). The date of the 

LiDAR survey was noted during download in order to calculate the number of years since 

restoration that the LiDAR data were collected, i.e. the age of the restored site (Table A2-

1). The stated vertical accuracy (root mean squared error) of the UK LiDAR dataset was 

between ± 5 cm and ± 15 cm, with values tending to be lower in more recent surveys 

(Environment Agency 2016). For each location area, a site boundary polygon was 

digitised. We then randomly selected 10% of the cells contained within each polygon as 

our sampling points using a (minimum) separation between points of 1.4 m to ensure no 

resampling of values. At each sampling point, six measures of topography (including 

measures of rugosity, curvature, slope and topographic wetness) and three measures of 

the creek network density and diversity were initially calculated and extracted, with 

measures selected for their ecological interest whilst also limiting redundancy between 

measures (Table 2-1, Figure 2-1). 
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Table 2-1 Description of topographic variables selected and their form and functional 
importance. Note that slope and total curvature were not included in subsequent statistical 
analyses as they were strongly correlated with other topographic variables. 

Reference key: [1] (Bockelmann et al. 2002), [2] (Brooks et al. 2015), [3] (Hladik and Alber 2014), 
[4] (Collin et al. 2010), [5] (Sappington et al. 2007), [6] (Moore et al. 1991), [7] (Sörensen et al. 
2006), [8] (French and Stoddart 1992), [9] (Christiansen et al. 2000), [10] (Sanderson et al. 2000), 
[11] (Moffett and Gorelick 2016) 

 

We employed a 3 x 3 cell neighbourhood (3 m2) with a moving-window to calculate six of 

the topographic variables. We did not use a larger window as this would artificially 

smooth the landscapes losing the impact of smallest features (Liu et al. 2015), such as 

small creeks often < 1m in width, thus reducing the biological relevance of values 

obtained (Grohmann et al. 2011). From this, two indices of local surface heterogeneity, 

commonly known as rugosity, were extracted. The first measure of rugosity (RUG) was 

obtained using the standard deviation of elevation in the local 3 x 3 window (Grohmann 

et al. 2011; Hobson 1972). The second was the vector rugosity measure (VRM), a 3-

dimensional measure of rugosity, calculated as the summed magnitude of variation along 

x, y and z vectors producing a ruggedness value on a scale of 0 - 1, with 0 being flat and 1 

equating to maximum ruggedness (Hobson 1972; Sappington et al. 2007).  

ܯܴܸ =
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୬
, where Xi = sin(slope) x cos(aspect), Yi = sin(slope) x 

sin(aspect) , Zi = cos(slope) and n = cell neighbourhood. VRM has been shown to not be 

DEM variable Topographic relevance Ecological importance 
Elevation 1,2 Flooding duration Zonation / sea-level change mitigation 

Slope (deg.) 3 Drainage and niche Soil hypoxia 

Vector rugosity measure 
(VRM) 4, 5 

Micro topography Metre scale niche detection 

Rugosity (RUG) 4, 5 Micro topography Metre scale niche detection 

Total curvature 6 Creek detection Creek development, drainage 

Profile curvature 6 Creek detection Creek development, drainage 

Topographic wetness index 
(TWI) 7 

Local soil moisture Soil hypoxia independent of slope 

Distance to creek 8, 9, 10 Drainage Bio/Chemical sediment transfer 

Creek order 8 Network complexity Erosion and levee creation (plant niche) 

Creek density 11 Drainage Vegetation configuration 
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strongly correlated with other topographic variables, thereby helping to avoid collinearity 

(Sappington et al. 2007). The third index obtained using the 3 x 3 cell neighbourhood was 

the topographic wetness index (TWI). TWI is defined as the number of cells draining 

through each point in the context of the local slope, and calculated as TWI = ln (a / tan b) 

where a = local upslope area and b = local slope in radians. High TWI values indicate 

drainage depressions and the lowest values centred on the top of ridges (Beven and 

Kirkby 1979; Sörensen et al. 2006).  

Inbuilt functions within ArcGIS were used to calculate surface slope and two measures of 

surface curvature. Slope is a useful topographic variable measuring in degrees the angle 

of maximum elevation change within a pre-defined window, in our case 3 x 3 cells. 

Curvature is also calculated at local-scale and can be derived in several ways. Here, we 

use curvature following the direction of maximum slope (profile curvature), and an 

aggregated curvature in all directions (total curvature) (Moore et al. 1991). Negative 

values of curvature indicate a convex feature, zero a planar surface and positive values a 

concave feature.  

The elevation relative to Ordnance Datum Newlyn (ODN, approximately mean sea-level) 

was extracted from the DEMs. However, elevation relative to mean sea-level does not 

account for the variation in tidal amplitude between regions. In order to place the 

elevation relative to ODN in the context of the local tidal regime, we transformed 

elevation into relative tidal height (RTH) on a scale of 0 - 1, where 0 = mean high water 

neap tide level (MHWN) and 1 = mean high water spring tide level (MHWS). Data for 

MHWN and MHWS levels were obtained from local port data and those published in 

Mossman et al. (2012b). 

To describe the creek networks, we calculated distance to nearest creek (measured from 

each sampled point) and two site-scale measures, total creek density and the density of 

different creek orders. Creek metrics were not calculated for agricultural sites due to the 

lack of functional comparability with marsh creek networks. To delineate creeks from a 

DEM, we used flow accumulation threshold set at 1000 cells, as this value resulted in the 

most reliable delineation of creeks (i.e. without including relic creeks and salt pans). Flow 

accumulation-based networks can be subject to erroneous creeks in flat areas, so we 

used semi-automated methodology to increase accuracy (Lang et al. 2012; Liu et al. 
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2015), as a result  aerial photography and satalite imagery were used to post-process the 

flow accumulation model as they have been shown to be effective at identifing creek 

networks (Goudie 2013; Moffett and Gorelick 2016). The creek networks were classified 

according to Strahler (1957) stream order, with the smallest (source) creeks assigned to 

first order, and order increments with each downstream intersection. In each site, lengths 

of all creeks were summed and the total creek density calculated. Creeks were split into 

the relevant stream order category and the density of each order of creek per site 

calculated.  

Figure 2-1 visualises how the surface topographic measures relate to DEM and gives 

examples of topographic features in situ. Figure 2-1B shows a salt pan, which would have 

a positive profile curvature value, indicating it is a concave feature, and a high value for 

the topographic wetness index. Figure 2-1C shows a small creek and Figure 2-1D shows a 

constructed hillock on a MR site, a convex feature with negative profile curvature and low 

topographic wetness index.  

 

2.2.3 Statistical analysis  

Topographic variables were calculated from the DEMs in the R environment (R 

Development Core Team 2012) using the packages ‘raster’ (Hijmans 2015), ‘rgdal’ (Bivand 

et al. 2016) and ‘rgeos’ (Bivand and Rundel 2016). Pearson’s product moment correlations 

were used to identify collinearity between topographic variables; total curvature was 

omitted due to strong correlation with profile curvature (r = 0.92), and local slope omitted 

due to correlations with rugosity (RUG, r = 0.97), vector rugosity (VRM) and profile 

curvature (both r >0.5).  

All variables were not normally distributed (Shapiro-Wilks, all p > 0.05), so non-parametric 

analyses were used where possible. Kruskal–Wallis (K-W) tests were used to identify 

significant differences in the total creek density and densities of each creek order 

between landscape types. Site averages for each topographic variable were calculated 

and these were compared between pasture and arable former land covers with Kruskal–

Wallis tests. Spearman’s rank correlations were used to test for correlations between the 

surface topographic variables and site age, site size, 1st order creek density, total creek 
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density, and distance to nearest creek of MR sites. Linear mixed-effects models (LMMs) 

were used to test for differences in topographic variables between the three landscape 

types (natural marsh, MR and agriculture), with site as a random effect, using the R 

packages ‘nlme’ (Pinheiro et al. 2009) and ‘multcomp’ (Hothorn et al. 2008). Although 

these assume normality, they are robust to violations of this assumption when sample 

sizes are large (e.g. Arnau et al. 2013), as is the case with this analysis where tens to 

hundreds of thousands of data points were used in each analysis. LMMs were used to test 

whether differences in topography between natural and MR marshes varied across their 

elevation range, using the R package ‘lme4’ (Bates et al. 2015). To do this, we constructed 

a LMM with landscape type, relative tidal height and their interaction as fixed effects, and 

site as a random effect. We assessed the significance of this interaction term by 

comparing it to a nested model lacking the interaction term using a likelihood-ratio test. 

Likewise, we tested whether landscape type had a significant additive effect on 

topography while controlling for the effect of relative tidal height, by comparing a LMM 

with landscape type and relative tidal height as fixed effects with the nested model only 

containing relative tidal height as a fixed effect. Finally, we use LOWESS regressions to 

visualise relationships between topography and elevation in natural and MR marshes. All 

data were used to calculate LOWESS relationships, but data visualised are between 

relative tidal heights of -0.5 and 1.5 (97.8 % data) for clarity (total RTH range = -2.54 to 

5.23). Confidence intervals around these relationships were calculated by taking 1000 

resamples of the data with replacement.  
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2.3 Results 

 

2.3.1 Comparison of topography between landscape types 

All topographic measures, extracted at the randomly located sample points, differed 

between natural saltmarsh and MR landscape types, except for distance to the nearest 

creek and relative tidal height (RTH) (Figure 2-3). Both measures of rugosity were 

significantly lower on MR sites (VRM: z = -3.49, p =0.001; RUG: z = -2.40, p = 0.043) and 

MR sites had significantly higher values of topographic wetness index (TWI: z = 2.50, p = 

0.032), indicating they are flatter and have a greater potential for water accumulation. 

Profile curvature differed significantly between natural marsh and MR landscape types 

(Profile curvature: z = 3.899, p < 0.00.1), with MR being concave on average (mean ± s.e, 

0.154 ± 0.107) and natural marshes convex (-0.264 ± 0.081) in the direction of the 

maximum slope. Total creek density was significantly lower in MR marshes (Table 2-2, χ2 = 

4.62, p = 0.03). This difference was greatest for the smallest creeks (1st order), although 

differences were not statistically significant for any individual creek order (p = 0.51 for 1st 

order creeks, p >= 0.257 for other creek orders). Topographic wetness index and profile 

curvature values for the agricultural landscape were between those recorded for MR and 

natural landscapes respectively (Figure 2-3). VRM and RUG were both significantly 

different between MR and agricultural landscapes, with MR sites having higher rugosity 

(VRM: z = -6.23, p <0.001; RUG z = -2.64, p = 0.022).  

Rugosity was positively correlated with total creek density (rs = 0.67, p = 0.001) and 

density of the 1st order (smallest) creeks (rs = 0.74, p < 0.001), but negatively correlated 

with distance to nearest creek (rs = -0.66, p = 0.001). The density of 1st order creeks was 

negatively correlated with topographic wetness (TWI rs = -0.47, p = 0.033), suggesting 

these smaller creeks must also play a role in reducing up-slope catchments and flat areas. 
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Figure 2-3 Mean (± SE) calculated via a GLMM of six topographic indices: (a) Vector rugosity 
measure, (b) Rugosity (s.d. elevation), (c) Topographic wetness index, (d) Profile curvature the 
dotted horizontal line in this graph represents a switch from convex (-ve) and concave (+ve) 
scores, (e) Relative tidal height and (f) Distance to nearest creek. Letters indicate significant 
differences (p < 0.05) between the landscape types. 

 

Table 2-2 Mean (± standard deviation) density of creek orders (m.ha-1) for the natural marsh 
and managed realignment  

Density of creeks Natural marsh (n = 
12) 

Managed realignment (n = 
19) 

χ2 p 

1st order 127.26 ± 33.33  96.54 ± 42.98  3.78 0.051 

2nd order 63.14 ± 21.17  65.43 ± 39.37  0.25 0.611 

3rd order 35.07 ± 20.56  27.84 ± 21.17  1.28 0.257 

4th order 18.55 ± 19.21  11.45 ± 6.45  0.03 0.855 

Total density 233.21 ± 55.81  182.18 ± 71.31  4.62 0.030 

One MR site contained a 5th order creek at a density of 1.62 m ha-1 omitted from table 
due to lack of comparison 
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2.3.2 Does topography differ with age since restoration and former land cover? 

The age (time since restoration) and area of MR sites were not significantly correlated 

with any topographic variable (Figure 2-4; Table A2-3). Some individual restored sites 

overlapped with natural marshes in their characteristics, but there was no trend over 

time in these characteristics (Figure 2-4). There were no significant differences in any 

topographic variables between pasture and arable land covers prior to restoration 

(Kruskal-Wallis, all p > 0.05; Table A2-4).  

 

 

Figure 2-4 MR site means plotted against time since restoration in years for each of the six 
topographic indices: (a) Vector rugosity measure, (b) Rugosity (s.d. elevation), (c) Topographic 
wetness index, (d) Profile curvature the dotted horizontal line in this graph represents a switch 
from convex (-ve) and concave (+ve) scores, (e) Relative tidal height and (f) Distance to nearest 
creek. No relationships were statistically significant. 
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2.3.3 Consistency of topographic differences across elevations 

There was a statistically significant interaction between landscape type and elevation for 

all topographic variables (Table 2-3). At RTH below zero, MR were flatter (demonstrated 

by lower VRM and RUG) than natural marshes and with substantially greater potential for 

water accumulation (higher TWI) (Figure 2-5). At these elevations, both natural and MR 

landscapes were dominated by concave features, with MR being less concave. 

Furthermore, distance to the nearest creek was the same in both landscapes, but as 

elevation increased there was divergence between the landscape types, and distance to 

the nearest creek was substantially greater in MRs than natural marshes above 0.5 RTH. 

Both rugosity measures were higher in natural than MR marshes between 0 and 1 RTH, 

but became similar at higher elevations. Between 0 and 0.5 natural marshes were 

dominated by convex features, whilst MR sites remain dominated by concave features. 

MR briefly become less concave than natural marshes above 0.5 RTH, but above 1.0 RTH 

MR became strongly concave compared to natural marshes that were moderately 

concave. MR showed higher potential for water accumulation than natural marshes, 

except between RTHs of 0.75 and 1.2.  

 

Table 2-3 Effect of landscape type (restored or natural saltmarsh) and elevation above sea level 
(relative tidal height RTH) on topographic variables. This is examined as an interaction with 
relative tidal height, and as an additive term controlling for relative tidal height. The 
significance of each term was assessed using likelihood ratio tests between a LME model 
containing the term and a nested model without the term. 

DEM variable 
Interaction between 

landscape and RTH 

Additive effect of 

landscape 
 

χ2 p χ2 p 

Vector rugosity measure 13364 < 0.001 5.593 0.018 

Rugosity (s.d. elevation) 10795 < 0.001 7.551 0.005 

Topographic wetness index 1481 < 0.001 0.812 0.367 

Profile curvature 10564 < 0.001 0.300 0.584 

Distance to creek 615.96 < 0.001 1.552 0.212 
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Figure 2-5 Relationships (Lowess regressions) between elevation and topographic variables for 
natural and restored (MR) landscapes. (a) Vector rugosity measure, (b) Rugosity (s.d. elevation), 
(c) Topographic wetness index, (d) Profile curvature the dotted horizontal line in this graph 
represents a switch from convex (-ve) to concave (+ve) scores, (e) Relative tidal height and (f) 
Distance to nearest creek. The elevations at which saltmarsh plants typically occur, 0 and 1 
relative tidal height, are marked. 
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2.4 Discussion 

 

2.4.1 Topography on restored saltmarsh 

Saltmarshes restored through managed realignment differ in their topography to natural 

marshes, and are more similar to the agricultural landscapes they originate from. 

Compared to natural marshes, they have an enhanced potential for water accumulation 

(higher topographic wetness index) and lower densities of creeks. Importantly, there was 

no relationship between age of the restoration and any of the topographic variables. This 

indicates that, although some individual restored sites overlapped with natural marshes 

in their characteristics, overall, restored sites are not on a trajectory to become 

topographically similar to natural marshes over time. We note that, despite the absence 

of a linear trend, marsh development may exhibit non-linear dynamics (van Belzen et al. 

2017); for example, large-disturbance events could alter trajectories of topographic 

development The lack of convergence of topography in our dataset is notable as it is 

mirrored in some other physical, chemical and biological components of restored 

saltmarshes such as vegetation establishment (Mossman et al. 2012a) and soil edaphic 

conditions (Hazelden and Boorman 2001); indeed, topography may act as a driver for 

these variables (Varty and Zedler 2008).  

Previous studies have found restored marshes to be lower in the tidal frame, on average, 

than natural marshes (e.g. Garbutt et al. 2006). In contrast, we found that elevation did 

not differ between restored and natural marshes. However, all measures of topography 

varied with elevation and these relationships differed between the landscape types. At 

low elevations, MRs were dominated by local depressions (e.g. those surrounding the 

hillock in Figure 2-1D) that often take the form of permanent pools of water or poorly 

drained areas (indicated by high topographic wetness index), in contrast to natural 

marshes. This could explain the previous observation that, at low elevations, sediment 

redox potentials are lower in MR sites than at equivalent elevations on natural marshes 

(Mossman et al. 2012a). This is because drainage, in addition to tidal inundation, has 

substantial influence on sediment aeration (and hence redox potential (Armstrong et al. 

1985)), and depressions and concave features retain water at low tide, resulting in lower 

redox potentials at the sediment surface (Varty and Zedler 2008).  
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2.4.2 Implications for vegetation development and ecosystem functioning 

Elevation in the tidal frame and redox potential are the major determinants of the niches 

of saltmarsh plants (Davy et al. 2011). Our finding that restored marshes are flatter will 

equate to fewer elevational niches being available, and could lead to more homogenous 

vegetation observed on MR marshes (Collin et al. 2010). Even very small variations in 

elevation at restored sites resulted in differing vegetation communities (Ivajnšič et al. 

2016). This is likely due to changes in immersion time (Masselink et al. 2017), known to 

impact plant mortality (Hanley et al. 2017). The concave-dominated environments of 

restored landscapes will generate poorly-drained conditions expected to be suitable for 

pioneer species, such as Spartina anglica and Salicornia spp. (Sullivan et al. 2017). Indeed, 

these species dominate restored marshes (Masselink et al. 2017; Mossman et al. 2012a; 

Zedler et al. 1999). 

 In contrast, we find that at elevations typically suitable for mid and upper marsh plants 

(e.g. RTH 0.75 -1.0), natural marshes have a higher potential for water accumulation than 

restored marshes, with an increase in concave features. These landscape features 

between RTHs of 0.75 and 1 can increase vegetation diversity by excluding dominant 

upper-marsh species, allowing plant species more tolerant of harsh conditions to colonise 

gaps (Sullivan et al. 2017; Varty and Zedler 2008). The absence of such environmental 

features at this elevation range on restored marshes may be limiting the establishment 

and persistence of waterlogging-tolerant mid and upper marsh species, such as Triglochin 

maritima (Fogel et al. 2004), that are rare or absent on restored marshes (Mossman et al. 

2012a).  

Plant species richness is higher in the areas immediately around creeks (Sanderson et al. 

2000), presumably due to the resulting modifications of the abiotic environment, which 

gives a greater diversity of resulting niches. Our finding that restored landscapes have 

lower creek densities will therefore have consequences for saltmarsh vegetation. 

Moreover, creek networks are essential to the use of saltmarshes by fish and crustaceans, 

including commercially important species (Callaway 2005; Crinall and Hindell 2004; 

Peterson and Turner 1994). The lower creek density of restored marshes is therefore 

likely to reduce their ecosystem function as fish nursery grounds (Desmond et al. 2000).  
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Topographic heterogeneity is likely to influence ecosystem functioning both directly, and 

indirectly by affecting plant diversity and community composition (Callaway 2005). 

Diverse plant communities can enhance sediment stability (Ford et al. 2016) and may 

increase aboveground biomass production (Doherty et al. 2011), both of which would 

increase carbon storage. Furthermore, plant species differ in the extent to which they 

attenuate or withstand wave energy  (Rupprecht et al. 2017), so diverse assemblages may 

enhance flood protection. Topography may also have direct effects on ecosystem 

functioning. Waterlogging associated with concave topography influences carbon cycling 

by microbes (Li et al. 2010), while these anoxic sediments are important locations for 

methane production (Oremland et al. 1982). Finally, wave energy is better dissipated by 

convex marsh profiles than concave ones (Hu et al. 2015), while the greater rugosity of 

natural marshes is also likely to increase wave attenuation (Moeller et al. 1996). It is 

important to note that while these likely differences in functioning would mean that 

ecosystem service provision by restored marshes is less than by natural marshes, restored 

marshes will still provide important ecosystem services relative to agricultural land 

(MacDonald et al. 2017).   

 

2.4.3 Developing topographic heterogeneity on restored saltmarshes 

There are a number of potential explanations for variation in topographic diversity 

between saltmarsh landscape types. We found no difference in the topography between 

sites that were arable or pasture prior to restoration. However, other research has found 

signals from pre-restoration land cover in poor surface drainage and changes to sediment 

structure, such as the formation of an impermeable layer (aquaclude) (Spencer et al. 

2008; Spencer et al. 2017). This impermeable layer is an effective barrier to erosion, 

preventing the scouring required for creek formation (Chen et al. 2012), thereby 

potentially reducing creek density. This could limit the development of other topographic 

features in restored landscapes to the depth of newly deposited sediment. Furthermore, 

high sedimentation rates, as observed in many restored marsh landscapes (Garbutt et al. 

2006; Mazik et al. 2010), may fill any existing depressions (Elschot and Bakker 2016) 

resulting in a smoothing of the marsh topography. In natural marsh landscapes, the 

patterns of topography are defined by the accretion of sediment at low elevations very 
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early in marsh development (Elschot and Bakker 2016). Restored landscapes that are not 

at suitably low elevations at the time of flooding may miss this window of opportunity for 

topographic development. Furthermore, limited tidal exchange (e.g. single breaches, 

regulated tidal exchanges) may impair creek development by reducing scour and 

sediment accretion (Masselink et al. 2017). 

We have shown that topographic differences can be detected from LiDAR-derived digital 

elevation models across multiple restoration sites, which provides us with the 

opportunity to use space-for-time substitution to learn lessons from former MR schemes 

and guide the design of future restored landscapes. Our results suggest that the 

construction of additional topographic features will be needed to create marshes that are 

more similar to natural sites, since these features do not develop over time at MR sites. 

The creation of small creeks and hillocks are likely to be most useful in improving 

outcomes for vegetation development, as hillocks are likely to be preserved despite high 

sedimentation and networks of small creeks will increase drainage within sites. Recently 

constructed managed realignments have included the creation of these topographic 

features, e.g. hillocks at Steart Marshes, UK (Figure 2-1D), and at Hesketh Out Marsh East, 

UK, small sinuous creeks with bank incisions to promote secondary formation and raised 

infill areas on the marsh to promote topographic variation (R. Shirres, pers. comm.). The 

functioning and longevity of these features should be monitored. 

 

2.4.4 Conclusions 

We find that within the time scales studied, restored saltmarshes are not on a trajectory 

to develop topography or creek densities equivalent to those of natural landscapes, and 

remain similar to the agricultural areas they originate from. These differences have 

implications for vegetation development and other aspects of restored marsh 

functioning, such as provision of fisheries habitat. Creation of more topographic features, 

including hillocks and small creeks, prior to restoration appears to be necessary to ensure 

restored saltmarshes develop topographic heterogeneity.   
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2.6 Appendices 

 

Figure A2-1. Comparison of topography between grassland and arable agricultural reference 
sites. Each point shows the mean per site.  
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Table A2-1. Description of study sites from natural saltmarsh (N), restored saltmarsh (managed 
realignment (MR) and agricultural (F) landscape types, with site width (m), seaward extent (m) 
and resulting area (ha).  For restored sites, the year of restoration through the breaching of the 
sea wall and resulting reinstatement of tidal inundation, and the age of the site (years since 
restoration) at time of most recent LiDAR sample (Age), are given. 

 

Location Estuary Type Width Seaward 
extent Size  Date of 

breach Age Lat Long 

Alnmouth Aln F 191 334 6.2 
 

 55.3984 -1.6115 
Alnmouth 1 Aln MR 180 187 4.3 2006 6 55.3911 -1.6222 
Alnmouth 2 Aln MR 136 46 0.4 2008 4 55.3953 -1.6146 
Alnmouth Aln N 251 171 2.6 

 
 55.394 -1.6138 

Chowder Ness Humber F 355 481 10.5 
 

 53.6891 -0.4847 
Welwick Humber F 1068 520 63.4 

 
 53.6484 -0.0005 

Chowder Ness Humber MR 557 279 9.5 2006 9 53.6916 -0.4815 
Paull Holme Humber MR 2541 246 79 2003 12 53.7086 -0.2187 
Welwick Humber MR 1247 531 50.5 2006 9 53.6471 0.0095 
Paull Holme Humber N 1673 238 30.1 

 
 53.6795 -0.1713 

Brancaster Norfolk F 268 256 6.8 
 

 52.9653 0.6555 
Brancaster Norfolk MR 320 240 6.1 2002 12 52.9722 0.6314 
Brancaster Norfolk N 342 893 27.3 

 
 52.9682 0.5955 

Holme Norfolk N 216 413 7.3 
 

 52.9716 0.564 
Freiston The Wash F 388 434 15.6 

 
 53.0109 0.1424 

Freiston The Wash MR 1380 503 65.6 2002 10 52.9646 0.0923 
Freiston The Wash N 618 526 29.5 

 
 52.9735 0.1065 

Abbotts Hall Blackwater F 471 377 15.2 
 

 51.7838 0.8332 
Northey Island Blackwater F 233 213 4.6 

 
 51.7208 0.714 

Orplands Blackwater F 332 350 11.4 
 

 51.7167 0.8636 
Tollesbury Blackwater F 411 444 14.3 

 
 51.766 0.8341 

Abbotts Hall Blackwater MR 843 257 22.5 2002 10 51.7846 0.8455 
Northey Island Blackwater MR 203 53 1 1991 23 51.719 0.7148 
Orplands A Blackwater MR 577 259 10.2 1995 14 51.7197 0.8676 
Orplands B Blackwater MR 1066 271 14.3 1995 14 51.7223 0.8728 
Tollesbury Blackwater MR 582 390 18.3 1995 17 51.7673 0.8402 
Dengie nr Blackwater N 738 505 35.4 

 
 51.6881 0.9398 

Sheppy Thames* N 647 359 21.2 
 

 51.3632 0.8715 
West Itchenor Chichester F 370 171 5.3 

 
 50.8061 -0.8736 

Wittering Chichester F 437 465 18.4     50.7879 -0.8989 
Chalkdock Chichester MR 293 48 1.2 2000 14 50.8072 -0.8775 
Thornham Chichester MR 295 193 5.4 1997 17 50.8332 -0.9149 
Chichester  Chichester N 391 126 3.9 

 
 50.7893 -0.9000 

East Head Spit Chichester N 411 348 7.1 
 

 50.7841 -0.9113 
West Thorney Chichester N 933 257 22.4 

 
 50.8163 -0.9006 

Goosemoor Clyst F 268 111 2.6 
 

 52.9735 0.1065 
Goosemoor Clyst MR 260 263 5.5 2004 8 50.6819 -3.4535 
St. Germans Plym/ Lynher F 468 186 8.4 

 
 50.3843 -4.2821 

Saltram Plym/ Lynher MR 248 275 5.6 2003 10 50.3848 -4.0857 



Chapter 2: Restored saltmarshes lack topography 

77 
 

St. Germans Plym/ Lynher N 344 205 11.3 
 

 50.3881 -4.283 
Landcross Torridge F 313 188 4.1 

 
 50.9876 -4.1905 

Annery Kiln Torridge MR 586 155 7 2000 15 50.9872 -4.1948 
Pillmouth A Torridge MR 306 136 2.9 2001 14 50.9979 -4.1802 
Pillmouth B Torridge MR 373 149 4 2001 14 50.9928 -4.1832 
Bideford Torridge N 1400 100 13.5 

 
 51.0069 -4.2031 

* reference for Blackwater due to shortage of non-eroding natural sites 

 

 

Table A2-2. Summary of mean values (± standard error) of topographic variables for the three 
saltmarsh landscape types. Superscripts indicate significant (p-value < 0.05) based upon the 
GLMMs. 

Topographic 
variables 

Natural marsh 
n =212210 

MR 
n =314493 

Agriculture 
n = 187457 

Site effect 

Vector rugosity 
measure 

0.003 ± 0.000 a 0.001 ± 0.000 b 0.001 ± 0.000 c 0.000 ± 0.005 

Rugosity (s.d elevation) 0.066 ± 0.005 a 0.050 ± 0.007 b 0.047 ± 0.007 b 0.019 ± 0.065 

Topographic wetness 
index 

5.029 ± 0.144 a 5.492 ± 0.184 b 5.246 ± 0.197 ab 0.500 ± 2.482 

Profile curvature -0.264 ± 0.081 a 0.155 ± 0.107 b -0.039 ± 0.112 ab 0.260 ± 11.399 

Relative tidal height 0.740 ± 0.122 a 0.607 ± 0.155 a n.a. 0.422 ± 0.338 

Distance to creek 14.316 ± 16.811 a 39.591 ± 21.476 a n.a. 58.239 ± 46.360 

 

 

Table A2-3. Spearman rank correlation coefficients from managed realignment sites (n = 19) 
between variables of topography and the site measures of restoration age, seaward extent, site 
area and measures of creek density. 

Remote sensing  
variables 

Site drivers of topography 
Age 
 

Seaward  
extent 

Area Site creek 
density 

1st order  
creek density 

Distance to  
creek 

Vector rugosity 
measure 

-0.045  0.061  0.257  0.350  0.415 -0.173 

Rugosity (s.d. of 
elevation) 

-0.012 -0.333 -0.070  0.672 **  0.742 *** -0.668 ** 

Topographic wetness 
index 

-0.060  0.024 -0.154 -0.350 -0.476 *  0.391 

Profile curvature  0.269 -0.122 -0.129  0.413  0.330 -0.354 
*** p < 0.001, ** p < 0.01, * p < 0.05    
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Table A4. Mean (± standard deviation) of topographic variables from managed realignment 
sites that were pasture or arable prior to restoration as saltmarsh. 

Remote sensing  
variables 

 Grazing (n = 11) Arable (n = 8) χ2 p 

Vector rugosity measure  0.001 ± 0.000  0.002 ± 0.000 1.534 0.215 
Rugosity (s.d. of elevation)  0.049 ± 0.015  0.049 ± 0.017 0.000 1.000 
Topographic wetness index  5.614 ± 0.397  5.323 ± 0.387 1.336 0.247 
Profile curvature  0.229 ± 0.272  0.066 ± 0.171 0.981 0.321 
Relative tidal height  0.774 ± 0.440  0.377 ± 0.383 3.606 0.057 
Distance to creek  19.770 ± 11.488  62.837 ± 111.131 1.336 0.247 
 

 

 

Table A5. Parameters of LME models of each topographic variable as a function of RTH, 
landscape type and their interaction. 

DEM variable 
Fixed effects 

RTH s.e. Natural s.e. MR : RTH s.e. 
Vector rugosity measure (VRM) -0.008 0.000 -0.006 0.001 0.006 0.000 
Rugosity (s.d. elevation) (RUG) -0.096 0.000 -0.071 0.010 0.069 0.000 
Topographic wetness index (TWI) -2.030 0.020 -0.355 0.339 0.900 0.023 
Profile curvature -16.774 0.010 -9.109 1.522 11.970 0.115 
Distance to creek 10.120 0.378 20.054 22.864 10.810 0.435 
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3 Global analysis of the nutrient status of natural and restored saltmarshes 

 

Abstract 

Eutrophication is a serious global issue in both marine and terrestrial environments. 

Coastal habitats, such as saltmarshes, are known to be impacted by nutrient enrichment 

in several ways, including changes in plant communities and erosion of habitat. However, 

the status of nutrients in saltmarshes is not known, yet restoration and creation of 

naturalistic marshes is both expected and required by law. It is therefore important to 

acknowledge the current levels in natural marshes to understand the nutrient levels 

present in restoration schemes. Here we provide the first attempt to analyse and 

synthesise global nutrient concentrations in saltmarshes. We use a systematic literature 

review, supplemented with our own field observations, to investigate: 1) the status of the 

literature; 2) typical values present in natural saltmarshes and how these compare to 

levels known to impact marsh health and, finally, 3) the differences between natural 

saltmarshes and those restored or created from agricultural land. We found that there 

was not a clear picture of the nutrient status of natural saltmarshes.  Variation in nutrient 

concentrations within and between sites was high (several orders of magnitude). In 

addition, a very large number of analytical methods have been utilised all with their own 

limitations and implications for interpretations. Not only this but troubles with 

interpretation is compounded within the literature by numerous units presented. We 

report a significant regional bias in global measurements, with no or extremely limited 

data from the southern hemisphere, despite some areas having substantial saltmarsh 

area. We also find temporal studies of nutrients are also rare, thus little evidence 

currently exists to define seasonality or the characterisation of soil development in all 

types of saltmarshes. Restored marshes had nutrient concentrations similar to natural 

sites, with the exception of typically lower Phosphate levels, indicating a limited signature 

of prior land use. We find consistent evidence in our field sampling and the literature to 

suggest many natural saltmarshes were Phosphate enriched, although the N:P ratios were 

usually lower than the threshold seen in experiments to cause erosion. In conclusion, we 

strongly support increased data sharing and availability of nutrient data and a drive 

towards more consistency in analytical methods and units. 
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3.1 Introduction 

Eutrophication is well recognised as a serious global environmental, economic and social 

concern (Cloern, 2001; Verhoeven et al., 2006). The issue is wide spread, In the US for 

example, 65% of estuaries  are considered highly eutrophic (Bricker et al., 2008). 

Saltmarsh is often considered to be an effective sink of water-borne nutrients and other 

pollution (Barbier et al., 2011), and so, it has been suggested saltmarsh may help mitigate 

eutrophication. Although this may be the case for short term events nutrient enrichment 

can have significant negative impacts on saltmarshes through erosion and changes to 

plant communities, and so there is an extremely serious and often understated 

implication of viewing saltmarsh as a nutrient sink.  

One mechanism whereby increases in soil nutrient concentrations causes saltmarsh 

erosion is due to preferential above ground biomass production by saltmarsh plants, with 

corresponding decreases in root production, in turn reducing soil stability (Deegan et al., 

2012). It is not just loss via reduced stability but increased nutrient concentrations can 

also result in either more late-successional (and upper marsh) species such as Elytrigia 

atherica (van Wijnen and Bakker, 1999), or lower marsh species such as Spartina ssp. 

(Levine, Brewer and Bertness, 1998). These two community shifts combined could result 

in the constraint of the diverse mid-marsh to smaller areas. It is plausible that this 

extending range of upper and lower communities may be a consequence of mid marsh 

plants performing poorly in enriched conditions (van Wijnen and Bakker, 1999). The loss 

of the diverse communities in the mid marsh may contribute to saltmarsh loss as diverse 

communities appear less susceptible to erosion (Ford et al., 2016).  

In recent decades, significant effort has been made to restore valuable saltmarsh habitat 

(Cui et al., 2009; ABPmer, 2018). However, efforts to compensate for lost saltmarsh are 

yet to result in equivalent plant communities (Mossman, Davy and Grant, 2012). 

Vegetation communities in MR differ from natural marshes in a manner consistent with 

the effects of nutrient enrichment as they contain less plants typical of the mid-diverse 

marsh. As many restored marshes are typically created on former arable or other 

agricultural land we might expect elevated nutrient concentrations resulting from this 

former land use as a reason for reduced diversity in place. In addition, new saltmarshes 

are thought to accumulate more nutrients than established marsh (Craft, 1996). However, 
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the nutrient status of restored systems has rarely been studied, and where it has, studies 

often lack a natural reference site for comparison or much reference to other literature.  

There is currently a limited overview of natural or ambient nutrient conditions on 

saltmarshes, or whether these are impacted by eutrophication or not. Not only this but 

we also lack a global perspective of how eutrophic water may differ in its impacts on 

differing geological and species settings present in global saltmarsh distributions. One 

approach used to estimate the eutrophication status of the estuary or coastal water, can 

result from the interpretation of short-lived acute events and observations of biological 

events, such as algal blooms (Diaz, Selman and Chique, 2011). However, this may not 

translate well to the study of saltmarsh habitat because the elevation gradient means 

areas of the saltmarsh are flooded by this coastal water differentially, with some parts 

only receiving coastal water inputs once a year. If saltmarsh is a sink of nutrients, the 

current nutrient levels in the soil may not necessarily be well correlated with the acute 

levels in the estuary. Instead therefore we must turn to the literature to obtain a better 

appreciation of what ambient conditions maybe. However, much of our current 

understand from literature stems from the study of acute enrichment from pollution 

incidents such as (Mucha et al., 2013) or experimental additions as per (Levine, Brewer 

and Bertness, 1998). To our knowledge only one study has thus far has developed a 

realistic and grounded experimental addition based on field observations of sites as 

identified as ‘not-impacted’ and ‘impacted’ by eutrophication due to visual evidence. The 

use of a treatment mirroring nutrient concentrations of a eutrophic site at currently ’non-

impacted’ saltmarsh shows that such enriched experiment produces significant shifts 

from below to above ground plant biomass and consequent erosion of the marsh (Deegan 

et al., 2012). Although there is room for this experiment to be repeated in multiple 

continents it is reasonable to assume these levels cause an impact as many saltmarshes 

species stem from the same genus and thus likely similarly impacted by enrichment. 

Here we provide a systematic review of published concentrations of soil-available forms 

of Nitrogen and Phosphorous from natural saltmarshes. We use values from Deegan et al. 

(2012), to place our study in the context of ‘un-impacted’ and habitat-altering nutrient 

levels. We extend our review to review the current nutrient levels of created saltmarshes 

looking at a range of soil properties including Nitrogen and Phosphorous using the natural 
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levels in each study as a baseline for the local created marshes to test for differences 

between these two systems in terms of soil nutrition. We hypothesise that restored 

saltmarshes will be comparatively nutrient enriched due to their prior agricultural land 

use. This study provides the first overview of the nutrient status of multiple natural and 

restored saltmarshes, the methods used by scientists and provides an early indication and 

guide to future the understanding nutrient driven consequences in saltmarsh habitat. 

 

3.2 Methods 

 

3.2.1 Literature search 

A systematic literature review was conducted using the methods outlined in Pickering and 

Byrne, (2014). The systematic literature search was designed to identify original research 

that measured nutrient concentrations in saltmarsh. The search was performed in the 

electronic database Web of Science using the term: (tidal OR salt OR coastal) AND (marsh) 

AND (nutrient* OR nitrate OR nitrite OR ammonium OR phosphate) AND (sediment OR 

soil OR mud). This search returned 1298 papers on the 1st November 2017. An additional 

eight sources were obtained from Google Scholar and unpublished manuscripts 

(accredited in acknowledgements), resulting in 1304 sources after duplicates were 

removed.  

 

3.2.2 Extraction of data for analysis 

To ensure we only included articles appropriate to our aim, two levels of screening were 

utilised. The first level of screening used abstracts to ensure the paper 1) had a focus on 

saline saltmarshes (rather than tidal freshwater), with evidence of salinity from direct 

measurements or the presence of halophytic communities; 2) measurements of one or 

more of Nitrogen or Phosphorous concentrations, importantly under unaltered conditions 

i.e. not those from experimental manipulation studies or the monitoring of discrete, often 

acute, events as these are unlikely to represent the baseline conditions and; 3) 

measurements presented were taken from saltmarsh soil. If the paper met these criteria, 

then full text articles were obtained. Then the second level of screening was conducted. 
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The full text papers were excluded from the study if any of the following statements were 

true; 1) no data presented; 2) not primary source of the data; 3) inappropriate depth of 

samples (we required samples from a depth of 10cm ± 5cm, as this is commonly referred 

to as the rhizosphere (Caetano et al., 2008). We recorded the numbers of studies 

excluded according to the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) Statement (Moher et al., 2009) seen in Figure 3-1. 

 

Figure 3-1 PRISMA literature search flow diagram. 

 

From each paper, the concentrations of soluble forms of N and P (SN and SP) were 

extracted, including Ammonium, Nitrate, Nitrite and Phosphate. We also obtained the 

total mineral forms of N and P (TN and TP). To complement this data, we included other 

ecologically important variables measured in these papers, including Carbon (as organic 
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(OC) and total (TC)), water content, bulk density and redox potential. This resulted in a 

collated dataset of a total of 11 soil variables. Where numerical values of the soil 

properties were not stated in the paper, values were extracted from graphs using 

WebPlotDigitizer v3.9 (Rohatgi, 2015). 

To our database of soil measurements, we added meta-data for each study including the 

location (country, estuary/river, study site), laboratory techniques, analytical equipment, 

the units of measurement, and the sampling strategy used (spatial / temporal / both). 

Once all the studies were collected, we defined 13 broad geographic regions (BGRs) to 

better visualise and interpret the data. Here we divided the USA into six coastal 

watersheds as defined by EPA (EPA, 2017). Studies from China were distributed within 

three water bodies, Bohai Sea, Yellow Sea and the East China Sea. Finally, Europe was 

divided in two regions, ‘Northern Europe’ including studies at latitudes higher than the 

Bay of Biscay, and the ‘Southern Europe’ at lower latitudes than this. Studies from with 

India and Argentina were not divided due to close proximities of the study sites. 

 

3.2.3 Allowing comparison of concentrations between studies 

In order to compare nutrient levels between studies, we converted readily unifiable units 

such as gravimetric (e.g. g/kg, mg/g and µg/g), volumetric (e.g. ml/L and µl/ml) and 

Molarity based units (e.g. mM and µM) to the most prevalent unit of each type.  

Of the 80 studies that contained suitable data ( 

Figure 3-1), 11 of these contained data from both restored and natural systems. These 

papers used a variety of units, methods and sampling designs and so we calculated ratios 

of natural to restored concentrations. Within each paper, this ratio was calculated from 

measurements of that occurred on both marsh types at either the same time or within 

the same treatment (e.g. elevation). This normalised the data on a per paper basis, 

allowing all the papers to be included in the comparison on natural and restored systems. 

To compare soil redox potential a ratio cannot be used as negative values result such as -

300 mV and + 300 mV would result in rations of 1 or -1. As a result, the difference 

between natural and MR was obtained via subtraction rather than a ratio, with values of 
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0 indicating no difference. This resulted in a total of 43 observations across 11 papers for 

the local ratio between natural and restored marshes. 

As enriched waters can detrimentally effect saltmarsh, we compare concentrations 

obtained from the literature to those of Deegan et al., (2012), where 4.65 ppm and 0.47 

ppm for Nitrate and Phosphate respectively, indicate erosion-inducing levels, and 0.31 

ppm and 0.09 ppm indicate unimpacted, reference conditions. Additionally, we add a 

further reference level of Phosphate of 37 mg/kg as this is deemed to represent nutrient 

enriched conditions in terrestrial grasslands (Brearley pers. comm.). In addition to the 

importance of actual concentrations of nutrients, the ratio of N:P is known to impact 

plant growth (Ryther and Dunstan, 1971). We therefore calculated the ratio of available N 

and P from our collated literature and compare these to that of Deegan et al. (2012). We 

also categorised the nutrient status of the closest estuary to the sampling sites in our 

database using Diaz, Selman and Chique, (2011) (eutrophic, hypoxic and improved), then 

compared the nutrient concentrations between these estuary categories. 

 

3.2.4 Study sites and soil sampling 

We selected three sites along the east coast of the UK where there was both a natural 

and MR scheme immediately adjacent and of similar ages (Tollesbury: 51.7671 N; 0.8378 

E, 21 years since restoration, Orplands: 51.7191 N; 0.8631 E, 21 years since restoration 

and Freiston 52.9623 N; 0.0898 E, 14 years since restoration). All sites had no current 

grazing by livestock and were not experiencing widespread erosion. This resulted in three 

natural plots and three MR plots. In order to quantify the typical environmental 

conditions, we established a fractal sampling scheme, similar to that of (Brooks et al., 

2015). In each area, we set up one 50 x 50 m grid, with sampling points at every 10 m 

(n=36). At each sampling point the redox potential was measured with a Campbell 

Scientific calibrated ORP Probe (-700 to +1100 mV) at a depth of 5-8 cm, and until the 

reading stabilised (~ 5 mins). Where the substrate was too dry for insertion of the probe, 

a proxy value of 300 mV was used to represent the most aerated values in the dataset. 

Prior to field work, the probe was calibrated with Zobells solution. Approximately 30 g of 

soil was taken from ~5-8 cm depth at all sampling points, placed into a sealed polythene 

bag and stored at 4°C as soon as possible. The soil samples were homogenised for two 
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minutes, and two 5 g subsamples were taken from each to measure soil water content 

(gravimetric weight loss at 105°C) and organic matter (percentage loss on ignition at 

550°C), (Allen, 1989; Rowell, 1994). Using a 3 g subsample of soil we measured the water 

extractable nutrients in the form of the ions and cations of Ammonium, Nitrate and 

Phosphate. All concentrations were determined by agitating a 1:10 mixture of soil and 

deionised water for 1 hour in an orbital shaker, followed by centrifuging and 0.2 μm 

filtration. Then the samples were quantification using ion chromatography (Dionex ICS-

5000). 

 

3.2.5 Statistical analysis 

All statistical analyses were conducted using R version 1.1.414 (R Development Core 

Team, 2011). To investigate differences between restored and natural marshes in nutrient 

concentrations collated from the literature, we tested if the distribution of ratios was 

different to 1, where 1 would indicate equivalent concentrations and <1 higher in 

restored marshes. As we could not calculate a ratio for redox potential, the difference in 

redox were tested against 0. We used single sample t-test or Wilcoxon signed rank test 

depending on normality (tested using Shapiro–Wilk’s tests). 
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3.3 Results 

 

3.3.1 Distribution of studies 

Globally, there was a strong bias in research towards the northern hemisphere, and the 

Atlantic on both the US and European coasts (Table 3-1). Despite substantial saltmarsh 

area, there was no data available from Australasia and Africa and only a single study in 

South America (Figure 3-2). Although there were 30 sites studied in both northern and 

southern Europe, there was an under-representation of repeated visits and 

measurements from the Baltic and Mediterranean Seas. There was also very limited 

opportunity to assess nutrient concentrations in the same area, since very few papers 

(18%) repeated sampling at the same sites as previous literature, with the majority of 

these being in China (Table 3-1). 

 

Table 3-1 Distribution of saltmarshes studied, and the number of sites revisited within further 
studies. 

Broad geographic region (BGR) Marshes studied Sites revisited between studies 
USA (North Atlantic) 7 1 
USA (Mid. Atlantic) 6 0 
USA (South Atlantic) 22 4 
USA (Gulf of Mexico) 6 0 
USA (Pacific Northwest) 2 0 
USA (California) 1 1 
Europe (Northern) 30 1 
Europe (Southern) 9 3 
China (Bohai Sea) 8 5 
China (Yellow Sea) 13 5 
China (East China Sea) 2 0 
India 13 1 
Argentina 1 0 
Total 120 21 
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Figure 3-2 Global distribution of studies (n = 120) investigating nutrient concentrations in salt 
marshes overlaid up on the global distribution of saltmarshes (Mcowen et al., 2017). 

 

3.3.2 Sampling designs used 

The majority (73%) of the papers had the primary focus on spatial differences between or 

within saltmarshes, i.e. all samples were collected at a single point in time (Table 3-2). 

Examples of this spatial sampling include investigation of differences between 

management treatments, estuaries or consequences of elevations along the saltmarsh. 

There were 15 studies focused on changes in concentrations over time and 12 using both 

time and space to investigate saltmarsh nutrient dynamics.  

 

Table 3-2 The distribution of papers studying nutrient concentrations divided by sampling 
strategy.  

Sampling strategy Observations Papers * 
Spatial 386 58 
Temporal 84 15 
Spatial / Temporal 247 12 

 

* Note: The total ‘papers’ here is 85, as five of the studies contain data from multiple study 
designs e.g. the inclusion of a single sampling time point prior to principle investigation of the 
study. 

 



Chapter 3: Nutrient status of saltmarsh 

89 
 

3.3.3 Methods used in quantification 

The methods and units used to quantify nutrient concentrations in the soil were highly 

variable, likely due to equipment availability at differing institutions. Forms of Nitrogen 

were the most commonly studied nutrients, with 65 % of papers studying a Nitrogen 

species compared to 48 % Phosphate (Table 3-3).  

As tidal water is variable and key component of the saltmarsh soil composition, it is 

important to acknowledge this variable moisture when presenting results. The authors in 

the collated studies used various methods to standardise their results for the soil water 

component, such as normalising for moisture (mg/kg-1 of fresh or dry soil), or 

volumetrically, using soil bulk density as mg/cm3 or mg/ml. Most of these methods 

compensated for water content using various temperature and durations taking weight 

ratios from before and after adding yet more methodological divergence. These various 

methods make the normalisation values extracted extremely complex and the 

interpretation between studies almost impossible. Indeed, we find a minimum of eight 

unique units for any given form of N or P. In the extreme cases, as for the soluble forms of 

Nitrogen and Phosphorous the literature contained 11 units each (Table 3-3).  

 

Table 3-3 The numbers of units, analytical methods and laboratory techniques used for 
quantifying the soluble forms of Nitrogen (Ammonium, Nitrate and Nitrite) and Phosphorous 
(Phosphate) and the total mineral forms (total Nitrogen and Phosphate). Additionally, the units 
and number of observations associated with these various analytical methods are provided as 
the final two columns on the right. (Key: Comb. = combustion, Unspec. = Unspecified, Obs. = 
observations). 

Nutrient 
Extractant used  

Acids Water Comb. Unspec. Units Obs. 
Soluble Nitrogen * 21 3 1 24 11 533 
Total Nitrogen 14  33 8 10 319 
Phosphate 14 6  18 11 298 
Total Phosphorous   1 9 8 212 

* Soluble Nitrogen includes (Ammonium, Nitrate and Nitrate) 
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As the majority of the studies investigated the soluble forms of Nitrogen (not least 

because there are three of them here), the laboratory preparation and analytical 

methods were dominated by variation in quantifying these Nitrogen forms. The most 

common of these methods were the use of various acids, but the concentrations of these 

acids and the equipment used were inconsistent. We found extraction by water the 

second most common method, followed by alternative methods such as soil probes and 

combustion. A full list of these extractants, methods and units are provided in Appendix 

3-1, section 3.9. 

 

3.4 Results - nutrient status of saltmarshes 

Using the thresholds set out in Deegan et al., (2012) to indicate ‘unimpacted’ and 

‘impacted’ conditions, we plotted all the comparable data from units that are equivalent 

to ppm, namely mg/kg usually from solid soil extracts, and mg/l. We found that most of 

global marshes exceed levels of Phosphate shown to be detrimental to soil stability. In 

terms of Nitrate, much of evidence suggests elevated levels above that of an unimpacted 

threshold but current rarely exceeds the erosion-inducing level (Figure 3-3). However, the 

N:P ratio in most studies was below that of the impacted treatment in Deegan et al. 

(2012), and where the Phosphate concentration was the highest (red), the N:P ratio was 

typically below 1 (Figure 3-4). Nitrate can have an impact independent of the ratio with P, 

but its impacts are exacerbated to its maximal effect towards likely erosion forming 

conditions where N is both high (red) and the N:P ratio is > 1:10. Nitrate concentrations 

were typical lower than Phosphate, but still often above the levels of erosion-forming 

treatments (Figure 3-3). Plotting the concentrations of Nitrate within the N:P (Figure 3-4), 

we see that the majority of the highest Nitrate levels (red) are typically beneath the green 

horizontal dashed line ‘not impacted’. 
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Figure 3-3 Nutrient concentrations in saltmarsh sediments (extractable (extr.) and porewater 
(pore)). Only units comparable to ppm were plotted. Symbols denote the analytical techniques 
used to measure the concentrations. Dashed lines indicate the ‘impacted’ (orange) and green 
the ‘unimpacted’ nutrient concentrations from (Deegan et al., 2012). Blue horizontal line 
indicates levels present in enriched terrestrial grasslands. 
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Figure 3-4 N:P ratios (Nitrate to Phosphate) in saltmarsh sediments. Only comparable units to 
ppm are plotted. Squares are coloured on a heat-ramp from yellow (low) to red (high) based 
upon the Nitrate (right hand plot) concentrations. The heat ramp is based on five categories 
separating data at 0.2, 0.4, 0.6, 0.8 quartiles. Dashed lines indicate the ‘impacted’ (orange) and 
green the ‘unimpacted’ N:P ratios from (Deegan et al., 2012). 
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3.4.1 Natural and restored comparisons 

Using the ratios of soil measurements in natural saltmarsh to restored saltmarsh, we 

found that water content, total Phosphorous and total Carbon were all significantly 

higher in natural marshes compared to restored marshes (Figure 3-5) and (Figure 3-6). 

Redox potential was also significantly different between the two marsh types, but the 

direction of the difference could not be obtained as we had to use the absolute difference 

between measurements.  

 

Figure 3-5 The ratios of soil conditions in natural to restored saltmarshes (water content, redox 
potential, total carbon (TC), organic Carbon. Median divides the box; box sides drawn at 25th 
and 75th quartiles; whiskers at 1.5 times the box width. The red dashed horizontal line in all 
plot represents a ratio/difference of zero, i.e. where the measurements are the same in both 
natural and restored marshes; values below this indicate higher levels on the natural marsh. 
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Figure 3-6 The ratios of soil conditions in natural to restored saltmarshes, total Phosphorous 
(TP), total Nitrogen (TN), Phosphate (SP), Soluble Nitrogen (Ammonium), Soluble Nitrogen 
(Nitrate) and C:N). Median divides the box; box sides drawn at 25th and 75th quartiles; 
whiskers at 1.5 times the box width. The red dashed horizontal line in all plot represents a 
ratio/difference of zero, i.e. where the measurements are the same in both natural and 
restored marshes; values below this indicate higher levels on the natural marsh. 
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3.5 Discussion 

We aimed to establish the current levels of nutrients within natural saltmarsh to assess 

the potential eutrophication status. In doing so we have appraised the current state of 

the literature, finding inconsistences in the methods of nutrient quantification, reported 

units and spatial coverage of sampling. The consequences of these inconsistences make 

conclusions regarding the likely nutrient status of natural saltmarshes extremely 

challenging.  

We find that nutrient concentrations vary greatly, with values ranging over four orders of 

magnitude, that may indicate some sampling bias and error in the literature. However 

even within the same location and study similar variation can be observed with nutrient 

concentrations ranged over 2-3 orders of magnitude. This variation may stem from 

several sources that include:  

1. The eutrophication status of the estuary/coastal waters. Large numbers of these 

waterbodies are deemed to be eutrophic by Diaz, Selman and Chique, (2011) and so 

we would expect this to be reflected in the nutrient concentrations of the saltmarsh. 

However, when we compared the collated concentrations from the literature against 

their local estuary condition, we found no clear patterns (Appendix 3-2). There are a 

few possible reasons for this, including the proximity of the categorized estuary to 

sampling location, with some of these being over 30 km apart. Furthermore, the most 

recent update to the status maybe several years adrift and often stems from other 

biological observations or acute events that are often used to provide a eutrophic 

status, such as the presence of algal blooms. 

2. Differential runoff and acute events, such as rainfall, between sites and sampling 

times. These are known to impact soil conditions within small time window (Pott et 

al., 2014). This variation can be detected between individual tributaries of the same 

estuary that may reflect localized agricultural practices and urbanisation (Smith, Jarvie 

and Bowes, 2017). 

3. The number of inundations per year a sampling point is exposed. This may be 

important because many estuarine and coastal waters are eutrophic and so the 

number of times a point is exposed to these enriched waters is likely to be reflected in 

the local nutrient concentrations. However, most studies do not present nutrient data 
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with matched elevation data in the context of local tidal regime and so the 

importance of this in our database cannot be quantified. 

Concentrations of both Phosphate and Nitrate ranged from almost non-existent in the soil 

(<0.01 ppm equivalent) to levels that are extremely high (100 ppm equivalent) (Figure 

3-3). In general, Phosphate concentrations tended to be higher than the level known to 

contribute to saltmarsh erosion (Deegan et al., 2012). Nitrate was also regularly 

measured at levels above that of unimpacted marsh, but with fewer occurrences greater 

than the impacted level, suggesting marginally less Nitrate enrichment. In experimental 

enrichments, the addition of Phosphorous alone often does not increase the above 

ground biomass of plants, however Nitrogen addition on its own does, and the 

combination of both results in additional biomass above that of Nitrogen addition alone 

(Patrick and Delaune, 1976; Cargill and Jefferies, 1984; Sundareshwar, 2003). This 

requirement for a combination of nutrients to have an impact likely explains why the 

saltmarshes in this study remain despite the very high phosphate concentrations present. 

Thus, both the actual concentrations and the relative proportions of N and P are 

important. Typical N:P ratio in coastal waters is 15:1 (Ryther and Dunstan, 1971). Here we 

find that saltmarsh typically have lower N:P ratios than coastal water (15:1) and both the 

treatments present in Deegan et al., (2012) (~10:1 and ~5:1). This would suggest a 

proportional lack of N compared the very high phosphate levels. Although this does not 

take in to account that increased N alone will impact the saltmarsh vegetation 

(Sundareshwar, 2003).  

We found that the highest (> 80 percentile) Phosphate concentrations typically occur at 

the lowest N:P ratios (<1). Although this may seem intuitive, this reflects a serious threat 

to these saltmarshes because any increase in Nitrogen will drive the N:P towards that of 

Deegan et al., (2012), known to result in erosion. These findings highlight two important 

management issues; first, many marshes are Phosphate-enriched and thus action is 

required to decrease Phosphate run-off, and secondly, further Nitrogen enrichment of 

saltmarsh soils will almost certainly lead to shifts in community or growth form (Smith 

and Schindler, 2009; Johnson et al., 2016), and further erosion of existing saltmarsh 

(Deegan et al., 2012). 
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Our understanding of the effects of realistic nutrient enrichment in saltmarshes remains 

limited. Experimental work, such as that of Deegan et al. (2012), has provided a first step 

in understanding of impact of this in the field.  We strongly support continued effect-

based research to establish context-dependent measurements of saltmarsh nutrient 

concentrations. We also suggest the use of both concentrations and ratios may lead to 

more informative characterisation of eutrophic status. 

Consequences for saltmarsh restoration 

We find that restored saltmarshes contain less Phosphate (and total Phosphorous) than 

natural marshes (Figure 3-5 and Figure 3-6), with some restored sites containing almost 

no Phosphate. In contrast, Nitrate and Ammonium levels on restored and natural 

marshes were not different. This indicates that restored marshes have higher N:P ratios, 

and thus although lower in total concentrations of nutrients (P), the N:P would be closer 

to those of Deegan et al., (2012). While there may be potential negative impacts of the 

higher N:P ratio, our findings do not support our hypothesis that nutrient concentrations 

would be higher in restored sites due to their former agricultural land use. Although there 

may be other impacts of former land use, such as reduced sub-surface porosity (Spencer 

et al., 2008, 2017). 

One of the ecosystem services provided by saltmarshes is carbon storage under newly 

deposited sediment. Previous work suggests carbon storage in created marshes is not as 

effective as a natural marsh (Moreno-Mateos et al., 2012; Burden et al., 2013). Our 

synthesis of the literature finds that restored marshes tend to have less Carbon in their 

sediments (Figure 3-5). Restored sites are often low and thus have very rapid accretion 

rates, so the carbon may be less dense per unit of volume, not necessarily less carbon in 

total. Carbon measurements therefore need include sedimentation rates or bulk density 

in calculations. This finding has some practical restoration design implications as there 

tends to be more Carbon sequestration in the upper marsh (Burden et al., 2013). Thus, 

creation of upper marsh could enhance carbon storage.  

This work marks a first attempt to unite and synthesise the current knowledge of nutrient 

concentrations within natural and restored marshes. However, we are yet to develop a 

clear picture of these concentrations as much of the data are not comparable. We 
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strongly support a systematic approach to the presentation of units in the literature, the 

methodologies used, and further encourage the open access to data with the additional 

provision of meta/contextual data to each measurement, such as elevation or current 

erosion levels. 

 

3.6 Conclusions and recommendations 

Nutrient concentrations in saltmarshes are highly variable, but with a tendency to be 

Phosphate enriched. The exception to this is in restored marshes where Phosphate 

concentration are low, this is in contradiction to our expectation of nutrient enrichment 

due to prior land use. This may suggest different management techniques are required to 

deal with nutrient related issues. Overall our understanding of nutrient levels is poor due 

to a lack of comparable methods and units and large geographic regions currently 

unstudied. 

To address these key issues with interpretation of the variable and inconsistent status of 

the literature we conclude with four key recommendations and directions for future 

research in terms of nutrients on saltmarsh ecosystems. 

1. The use of the same treatment concentrations as Deegan et al. (2012), to be used on 

multiple continents to assess inter species and geological setting impacts to ensure a 

global ‘enriched’ and damaging level of Phosphate and Nitrate be established. 

2. A collaborative effort between professional bodies such as Natural England, 

Environmental Protection Agency (USA) alongside coastal researchers. This is 

important as saltmarsh is unlike all other soils due to its pre-existing and dynamic 

concentration of salts that already exceed or mirror the chemicals used in many 

extraction methods. The goal of this workshop would be to establish a readily 

repeatable method of extraction that is not dependent on apparatus available. 

3. A collaborative effort between soil and coastal journal editors is required to establish 

an expected reporting standard such as ppm equivalent in the supplementary 

information or paper itself. We also strongly support the open access to raw data 

rather than visual representation of data as raw data will assist in statistical power 

and future data sharing. 
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4. The establishment of online, website repository for nutrient data in saltmarsh 

ecosystems to be started by this meta-analysis and freely available to the saltmarsh 

community to both added too and use freely in future manipulation studies. 
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3.8 Appendix 

Appendix 3-1 Tabulated analytical methods, equipment and extractants used in saltmarsh 
nutrient studies. (Key: Unspec. = Unspecified, conc. = concentration, ICP = Inductively couple 
plasma spectrometry, IC = Ion chromatography) 

 

Analytical method Equipment Used Extract 
Colourimetric 71 Flow injection 21 KCl (Unspec. conc.) 18 
Combustion 36 Spectrophotometry 8 Acid digest (Unspec.) 21 
ICP 9 Elemental analysers 27 Water 9 
IC 9 ICP 9 Olsen P 7 
Field equipment 2 IC 9 2M KCl 3 
Literature reference 10 Electrodes 2 1M HCl 3 
Unspec. equipment 27   3.5M HCl 2 
    Mehlich 3 2 
    Morgan’s solution 2 
    Bray-2 1 
    Nessler’s 1 
    0.5M K2SO4 1 
    HCl (Unspec. conc.) 1 

 

There several often-unmentioned analytic issues with the use of each sampling method 

for soil nutrient composition. The use of colourimetric devices measure the absorption of 

light on a specific wavelength and included such analytical equipment such as continuous 

flow analysis; segmented flow analysers; spectrophotometry and atomic absorption 

spectroscopy is common. However colourimetric determination requires precise mixing 

times, colour development and temperature between batches, which can be a sources of 

error (Allen, 1989; Rowell, 1994). Away from the individual nutrient quantification 

methods a broader array of ions, cations and elemental metals have been simultaneously 

measured using ion chromatography (IC) and inductively coupled plasma spectrometry 

(ICP). Reasons for wide ranging methods include lower detection limits, savings in labour, 

time and storage reagents, and no use of carcinogens in IC (Jackson, 2000; Miranda, 

Espey and Wink, 2001). Some downfalls to IC also exist, most notably, Chloride peaks can 

sometime obscure Nitrate on the chromatograph particularly when 2 mol-1 L KCl is used 

as an extractant. 
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Appendix 3-2 Comparison of the nutrient concentrations (total Phosphorous, total Nitrogen, 
Phosphate, Ammonium, Nitrate, and organic Carbon) in saltmarsh sediment and the status of 
the estuary (Eutrophic, red; Hypoxic, yellow; Improved, green). Median divides the box; box 
sides drawn at 25th and 75th quartiles; whiskers at 1.5 times the box width. 
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4 Nutrient, sedimentation and soil oxygenation dynamics in a newly inundated 
managed realignment scheme 

 

Abstract 

In September 2014, one the largest managed realignment (MR) schemes in the UK, Steart 

Marshes, was breached, creating 262 hectares of new intertidal habitat. The creation of 

new habitat in this manner can play an important role in future flood defence and aid 

governments to reach legal targets that require them to create compensatory habitat for 

that which has, and is being, lost. Despite obligations that this habitat must be similar to 

natural marshes, MR has thus far have failed to deliver the same plant communities as 

natural saltmarsh. Many restored saltmarshes, including Steart Marshes, are created on 

former agricultural land. Prior agricultural land use is known to impact the physical 

properties of the developing soils on restored marshes, such as porosity. Such prior land 

use might also be expected to lead to a legacy of high nutrient concentrations in the 

newly restored habitat. However, only limited research has investigated the development 

of soil nutrient concentrations following restoration, and this is limited to short time 

scales. As a result, our understanding of nutrients and other soils properties in a newly 

developing restored saltmarsh is lacking in both temporal and contextual detail.  

Here we investigate the roles of former land use on the development of soil properties in 

Steart Marshes managed realignment over a 31-month period, starting immediately prior 

to flooding. We compare these soil properties to those on both agricultural and natural 

saltmarsh reference sites. We found that, although land use initially may have an impact 

on some nutrient concentrations, this is quickly lost due to stark changes caused by the 

reinstatement of tidal flooding. Soil properties were highly variable between sampling 

periods, with strong seasonality especially in summer, but there was no clear 

chronological pattern in the soil properties, an indication of no directional development. 

However, we did find that there was a relationship between elevation of the quadrats 

including the change due to recent sedimentation and soil properties. This is likely 

because of former land use being lost underneath high rates of sedimentation.  
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The signature of former land use on the surface soil chemical composition is rapidly lost 

and replaced by the roles of seasonality and changing elevation as a function of 

sedimentation. The impacts of seasonality have the greatest impact on dissimilarity from 

the natural marsh once restoration of tidal flooding is established. Smoothing these 

seasonal disparities in soil conditions therefore should equate to a more natural variation 

in nutrient concentration. This could be achieved via the added drainage in winter 

months or the encouragement of vegetation in summer to assist the maintenance of soil 

moisture. 

 

4.1 Introduction 

Saltmarshes are valuable intertidal habitats providing a range of ecosystem services, such 

as wave attenuation and recreation (Barbier et al., 2011). Saltmarsh has faced centuries 

of loss and damage due to land claim for agriculture, and is currently at risk from erosion 

driven by eutrophication (Cloern, 2001; Deegan et al., 2012) and sea-level rise (Hay et al., 

2015). Since the early 1990s, legislation (e.g. Copeland, 1999; European Commission, 

2007), has required the creation of new saltmarsh habitat, prior to the loss occurring. To 

achieve this, many countries have utilised a method called “managed realignment” (MR) 

or “de-embankment” to generate new habitat. During MR, existing sea defences are 

breached, usually proceeding the construction of new landward defences. This allows for 

the controlled tidal flooding of carefully selected packets of terrestrial, usually 

agricultural, land. 

However, MR sites have failed to deliver the same plant communities, bird species and 

invertebrates (Zedler and Callaway, 1999; Mazik et al., 2010; Mossman, Davy and Grant, 

2012). The use of former agricultural land as a base for a new saltmarsh may influence 

the restoration success, as agriculture is known to result in changes in soil structure and 

chemistry, which can also prevent subsurface drainage and alter plant communities 

(Crooks et al., 2002; Spencer et al., 2011; van Klink et al., 2015). The combination of 

compaction and reduced subsurface drainage may result in greater proportion of areas of 

waterlogging and lower redox potential. This in turn may lead to differences in plant 

communities, as species are differentially tolerant of anoxia (Colmer and Flowers, 2008; 

Sullivan et al., 2017). The former agricultural use may also result in higher nutrient 
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concentrations on restored sites. However, the legacy of potential soil enrichment has 

been little studied in saltmarsh restoration ecology. We also know that such changes in 

these nutrients can have significant impacts on the saltmarsh communities present 

(Levine, Brewer and Bertness, 1998). This may lead to a loss of diversity, which in turn can 

lead to reduced soil stability (Ford et al., 2016). Indeed when these nutrients are present 

at levels considered moderate in terrestrial environments, this can lead directly to the 

erosion and loss of habitat we are aiming to restore or protect (Deegan et al., 2012).  

It is therefore very important to understand the conditions present in MR schemes, but 

very few papers have attempted to track the development of soil in restoration schemes. 

Blackwell, Hogan and Maltby, (2004) studied the short-term changes in soil conditions 

(e.g. Conductivity and Nitrate) immediately before and after restoration (total duration of 

the study was 6 months). They found that within the first four months of restoration 

there were no consistent patterns in Phosphate or Nitrate, but there was a large spike in 

Ammonium immediately following flooding. However, since this study was short term, it 

could not track this trajectory to see if it was a seasonal effect.  

Despite the importance of nutrient and soil conditions within the colonisation of new 

saltmarshes, very little research has attempted to characterise the soil development as a 

using a wide range of soil chemistry and other properties, and temporal studies have 

rarely exceeded the first-year post restoration making our knowledge of temporal 

development extremely limited. As a result, there is a lack of understanding of how 

restored marshes develop, if they are nutrient enriched, and what drives the variation in 

these soil conditions such as elevation, land use or seasonality. Furthermore, there is 

limited understanding of the nutrient status of natural marshes (Chapter 3) and, as such, 

limited evidence against baseline conditions to compare the development of restored 

systems, reiterating the need for studies containing effective reference conditions. In this 

study we aim to assess the primary components of soil composition over a three-year 

period. We will review the trajectories of soil convergence or divergence within the 

developing MR site against natural and agricultural defences, discussing possible sources 

of dissimilarity between the habitats. Further to this, we will investigate the likely drivers 

of variation in important soil nutrients such as former land use, elevation and seasonality, 

discussing likely management implications.  
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4.2 Methods 

 

4.2.1 Study site and sampling design 

Steart marshes is situated at the mouth of the River Parrett, on the south bank of the 

Bristol Channel in Somerset, UK (51.191870 °N, -3.068518 °E). Tidal flooding was 

reinstated to the site in September 2014 via a single breach in the seawall. The new 

intertidal site covers 262 hectares, making it one of the largest MR in the UK. The site 

aims to providing enhanced flood risk management and aimed to generate intertidal 

saltmarsh and mudflat habitats (ABPmer, 2018). 

Within Steart peninsula a total of 16 permanent quadrats were established. Twelve of 

these quadrats were within the MR site, stratified to capture the elevation range present 

within four different former land-uses. These land uses, arable (cereal or maize), pasture, 

grass ley and a disturbed plot with topographic manipulations that was formerly pasture, 

were identified from historical maps (Halcrow, unpublished report). To monitor reference 

conditions, one permanent quadrat was established on an adjacent agricultural field that 

remained pasture for the duration of the study. Finally, a further three quadrats were 

located on an adjacent natural saltmarsh (high, moderate and low marsh), identified by 

the presence of Elytrigia atherica (High), Aster tripolium, Puccinellia maritima and 

Triglochin maritima (mid marsh) and bare earth and Salicornia spp. (low marsh) 

respectively, (Figure 4-1 and descriptions in Appendix 4-3). Permanent quadrats were 

located a minimum of 50 m apart within land uses, except for the natural marsh where 

the elevation range present was confined to a small area, and as such samples were <5 m 

apart. All quadrats were revisited approximately every three months on a total of ten 

occasions (missing the winter of 2015) to track the development of the restored site 

through time. The ten survey visits were conducted between August 2014 (1 month prior 

to restoration, t = 0) and January 2017 (t = 31), all on neap tides.  
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Figure 4-1 Map of Steart marshes, showing the locations of sampling quadrats within the 
managed realignment site (Arable = light green, Disturbed = white, Grass ley = orange, Pasture = 
purple) and both the agricultural (yellow) and natural (blue) reference quadrats. 

 

4.2.2 Soil and surface monitoring 

Within each of the quadrats, soil redox potential was measured with a single reading at 

the central stake at approximately 8 cm below the surface using a VWR redox electrode, 

beginning at t = 10 months post restoration, when sufficient moisture allowed for the 

insertion of the probes to the appropriate soil depth. The measurement of redox 

potential was not possible at the agricultural reference as the surface was often too dry 

for proper application, and so, we used a proxy value of 300 mV to represent well aerated 

conditions. Approximately 50 g of soil was taken from the surface 8 cm at all quadrats on 

all sampling occasions and placed into a sealed polythene bag and stored at 4 °C as soon 

as possible. These samples were analysed for soil moisture, organic Carbon and additional 

eight soil nutrients (Chloride, Sulphate, Nitrate, Phosphate, Sodium, Ammonium, 

Potassium and Calcium) as per the methods outlined in Chapter 3. A further 0.5 g sample 

of dry soil was used to obtain the total Nitrogen % and Carbon % with a LECO TRUESPEC 

carbon and nitrogen analyser.  
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At 13 of the quadrats, we inserted a 1.5 m metal stake to the soil to a depth of 1 m (to 

avoid movement) to measure the sedimentation rate. Stakes were not inserted into the 

permanent agricultural reference quadrat or at the mid and low natural marsh sites. The 

location and the initial elevation of the stakes was measured relative to the UK national 

datum, Ordnance Datum Newlyn (ODN, based on mean sea level) using a RTK GPS 

(Trimble R10 GNSS, ± 1.5 cm vertical and ± 1 cm horizontal accuracy) at both the start of 

the study (hereafter ‘initial elevation’). 

We measured the sedimentation between each visit, using the central stake at each 

quadrat. To this stake, we placed plate of 30 cm length containing ten holes spaced 2 cm 

apart onto a fixed washer approximately 6 cm down the central stake. We ensured a 

consistent sampling of sedimentation using a compass and reference points on the 

horizon to ensure consistent bearing and a spirit level for horizontal repeatability. 

Through the holes in the plate we lowered 50 cm pins obtaining ten measurements of 

elevation above the marsh surface using a ruler measuring the length of pin to the 

horizontal bar. Sedimentation baseline measurements were established at t = 4 as soon 

as possible after restoration, the use of a dGPS measurement upon deployment of these 

stakes abled us to derive an elevation measurement of the quadrats at each visit via the 

addition / subtraction of average sedimentation from the initial baseline elevation 

(hereafter ‘current elevation’). 

 

4.2.3 Statistical analysis  

All statistical analysis was conducted using R (R Development Core Team, 2011). Prior to 

analysis Shapiro–Wilk’s tests were used to test for normality of the soil chemical 

concentrations and other environmental variables, finding only organic Carbon to be 

normally distributed. We plotted the temporal pattern of mean soil conditions using two-

way interaction proceeded by analysis of variance models to test for significant drivers of 

variance in each of the nutrients though time, either: land-use (arable, disturbed, grass 

ley, pasture and saltmarsh); season (spring, summer, winter or autumn); elevation of the 

quadrat; or time since restoration in months. Alongside this, the mean sedimentation at 

the four land-uses and natural marsh for each visit was calculated and presented as both 
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mean sedimentation since t = 0 and since previous visit, to identify trends and spikes in 

sedimentation. 

Prior to ordination using Nonmetric Multidimensional Scaling (NMDS) using Euclidean 

distance and scaling to asses the similarity in quadrats through time, we tested for 

collinearity using Pearson correlation tests and removed highly correlated variables 

(threshold of r2 > 0.75). This resulting in the removal of Sodium, Potassium, Calcium, and 

Elevation (current) from the subsequent NMDS. The NMDS were performed on sequential 

sampling visits for the uncorrelated soil physical and chemical properties to assess the 

differences in total soil conditions between the source land uses and elevations of the 

soils in natural and restored and agricultural soils. We further demonstrate the changes 

to soil conditions during the restoration process and natural temporal variance we use 

Procrustes test to assess correlation between time points. To test for significant 

differences in the soil conditions between our explanatory variables (former land use, 

time since restoration and elevation) we use a PERMANOVA within the ‘vegan’ package 

(Oksanen et al., 2013). We finally used linear mixed-effects models (in the package 

‘lmer.Test’ (Kuznetsova, Brockhoff and Christensen, 2017) to investigate the effect of land 

use and elevation on individual nutrients (Chloride, Sulphate, Nitrate, Phosphate, 

Ammonium, soil moisture, total Nitrogen, total Carbon and the C:N), accounting for site 

as a repeated measure. 
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4.3 Results 

 

4.3.1 Seasonality and temporal signatures within land-uses. 

Prior to restoration (t = 0) there were differences in soil chemical concentrations between 

the MR and natural sites (Appendix 4-1). Ammonium, Magnesium, Moisture, Chloride, 

Sulphate, and the C:N ratio were all higher on the natural saltmarsh than on the pre-

restoration (t = 0) MR site. These significant differences are lost post restoration 

(Appendix 4-1). Following restoration of the site, there were peaks in all the soluble 

nutrients within both the MR and natural marsh. This is particularly noticeable from the 

first summer (t = 7) and first autumn (t = 10) after restoration Figure 4-1 and Figure 4-2. 

From the second winter (t = 13) onwards, conditions begin to stabilise and from after 

month 20, all the soluble nutrients are similar, in terms of actual values and levels of 

variation, in both the MR site and the natural saltmarsh. There was however, consistently 

lower redox potential within the MR compared to the natural marsh. 
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Figure 4-2 Mean for each sampling visit between the Natural saltmarsh (green) and MR site 
(purple dashed). Plot generated via interaction plots using two-way combinations of factors. 
Plots clockwise from top left: Nitrate, Ammonium, magnesium, Organic Carbon, Soil moisture 
and Phosphate.  
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Figure 4-3 Mean for each sampling visit between the Natural saltmarsh (green) and MR site 
(purple dashed). Plot generated via interaction plots using two-way combinations of factors. 
Plots clockwise from top left: Chloride, Sulphate, Total Carbon and Total Nitrogen. 
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The drivers of each soil property during this study was inconsistent (Table 4-1). Two of the 

nutrients, both forms for bioavailable Nitrogen (Nitrate and Ammonium) seemed 

dominated by the roles of temporal factors such as seasonality and time since 

restoration. This differed however to possible less dynamic total nitrogen and carbon that 

was driven by spatial factors of former land-cover and elevation of the quadrats (Table 4-

1). All the other properties can include Chloride, water content and Phosphate were 

dominated by a mix of spatial and temporal factors. 

 

Table 4-1 Summary of significant drivers within analysis of variance models of the effects of 
former landcover (arable, disturbed, grass ley and pasture), season (spring, summer, winter and 
autumn), elevation (initial and sedimentation adjusted) and months (time since restoration) for 
each of the soil properties. p < 0.01 = ** and p < 0.05 = * 

Soil properties Landcover Season Elevation Months Summary 
Nitrate 

 
* 

 
** temporal 

Ammonium 
 

** 
 

** temporal 
Phosphate 

  
** ** mix 

Magnesium 
 

** ** ** mix 
Water % * ** ** 

 
mix 

Organic Carbon ** * ** ** mix 
Chloride 

 
** ** ** mix 

Sulphate * ** ** ** mix 
Total N 

  
** 

 
Spatial 

Total C ** 
 

** 
 

Spatial 
 
Model summary 

     

Df 1 3 13 6 
 

Residuals 124 
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4.3.2 Accretion 

We found notable periods of accretion, particularly in the second spring (t = 20), and very 

clear dewatering in all former land uses in t = 10, 23 and 25 (summer months) (Figure 4-

4). It is worth noting that the natural saltmarsh also experienced similar periods of both 

accretion and erosion during this 31-month study, suggesting potential hydrodynamic 

impacts of managed realignment on existing saltmarshes, which may also explain some of 

the variation seen in Figure 4-2 and 4-3. By the end of the study however there was far 

higher levels of accretion in the MR than the natural marsh, with a peak sedimentation 

level of 246 mm within the “Disturbed” land use during the 20th month since restoration. 

In the natural marsh we saw the opposite and in fact after 31 months the accretion in far 

less drastic < 40 mm. Pasture and Disturbed experienced the highest rates of 

sedimentation (between t = 13 and t = 20). Average accretion rates within the MR site 

were approximately 4.2 cm yr -1. 

Figure 4-4 Total sedimentation (mm) since the initial (t=0) last visit on land-uses of the Steart 
Marshes managed realignment site and the reference natural saltmarsh.  
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4.3.3 Soil ordination, and the roles of time, space and land use. 

In Figure 4-5, we present the NMDS for pre-restoration (t = 0, months), the initial post 

restoration time point (t = 7), the second spring (t = 20) and the third spring visits (t = 31, 

months). From the t = 0 to t = 7 there was not a significant correlation between the 

ordinations (m2 = 0.88, p = 0.32). As the restoration process continued a strengthening 

and significant collation develops between the spring samples t = 7 and t =20 (m2 = 0.39, 

p = 0.001) and between t =20 and t = 31 (m2 = 0.59, p = 0.002).  

Within the ordinations we find that initially the soil properties of the saltmarsh (yellow) is 

separate from the land-uses within the MR scheme drive mostly by increased Chloride, 

Ammonium, Magnesium and Sulphate. When the MR is introduced to the effects of 

flooding much of this difference is lost and variation within the saltmarsh itself becomes 

alongside huge variation in the MR in first spring (t = 7). By the proceeding spring (t = 20) 

most of the MR land uses have begun to cluster apart from arable (red) that remains 

more akin to the agricultural reference (orange) and driven by Ammonium. At the final 

sampling visit variation in the MR and natural saltmarsh is broadly similar though it is 

worth noting that throughout the time series one of the saltmarsh plots remains distinct 

from all the others, this is the mudflat or lowest part of the natural reference. This is an 

interesting finding as we may have expected this quadrat to be most convergent with the 

MR due to the pooling and accretion present in the MR. 
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Figure 4-5 NMDS of soil parameters in the natural saltmarsh, agricultural reference and four 
former land uses (arable, disturbed, grass ley, pasture) on the managed realignment site. Soil 
parameters included in the NMDS were; Chloride, Sulphate, Nitrate, Phosphate and Ammonium 
concentrations, and percentage soil moisture content, total Nitrogen, total Carbon and the C:N 
ratio. 
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4.3.4 Drivers within the development 

Despite starting conditions being different, we found that during restoration (t = 4 to 31), 

land use no longer presented significant effect on the developing soil conditions during 

the three years after restoration (PERMANOVA: F = 2.51, p = 0.079). Indeed, by the end of 

sampling, there was not a significant difference between the natural marsh and MR in 

terms of nutrient composition (PERMANOVA: F = 0.002, p = 0.997). We also found the 

initial elevation of the quadrats had no significant influence on the soil chemistry 

(PERMANOVA: F = 3.02, p = 0.07). Interestingly, the current elevation, which included the 

sedimentation adjustments per visit, was significant (PERMANOVA: F = 0.449, p = 0.02). A 

full table or results for the PERMANOVA analysis is provided in section 4.6, Appendix 4-2. 

Finally, when individual soil parameters were tested for the effects of land use and 

elevation, we found that only total Nitrogen differed significantly between the arable and 

other former land uses, Table 4-2. 

 

Table 4-2 Summary of the linear mixed effects model for total Nitrogen on the Steart managed 
realignment site, with land use and elevation including sedimentation (current elevation) (site 
was included to account for repeated measures) 

Fixed effects Estimate S.E. Df t value p 
Arable 0.730 0.220 9.38 3.311 < 0.01 
Disturbed -0.028 0.062 6.74 -0.460 0.659 
Grass Ley 0.117 0.065 6.93 1.795 0.116 
Pasture -0.027 0.062 6.76 -0.442 0.671 
      
Elevation ± sedimentation -0.094 0.046 9.53 -2.017 0.072 
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4.4 Discussion 

Our results demonstrate that differences in prior land use do not result in differences in 

soil chemistry following restoration. However, the elevation of the quadrats including 

recent sedimentation was a significant factor on soil chemistry. Few previous studies have 

investigated the role of prior land use in marsh development. Garbutt et al., (2006) found 

higher plant colonisation in cereal stubble fields compared to ploughed and cultivated, 

although this was short-lived. They also did not study soil chemistry or account for 

changing elevation (via sedimentation) in their relationships. Ploughing is thought to alter 

sub-surface sediment properties, such as porosity, reducing sediment drainage (Spencer 

et al., 2017). Three of the land uses in our study have experienced long term ploughing or 

major disturbance during site construction, and we found that redox potential was lower 

in the managed realignment compared to the natural marsh. While land use activities 

during reclamation can influence marsh development, e.g. altered topography (Chapter 2) 

and sub-surface sediment structure, we find that this is not reflected on plant-available 

nutrient concentrations. This is likely to be due to increased sedimentation covering the 

previous agricultural surface, thus reducing its influence. With no impact of former land 

use on the developing soil chemistry, it is important to recognise it is the nutrient levels in 

the fresh sediment or estuarine waters that must dictate the observed conditions. 

Therefore, the timing of restoration and location of the MR site will drive the soil 

chemistry at least for the first two and half years of development. 

In our study we observe massive seasonal variation in the soil chemistry (Figure 4-2), but 

with no trend over time. In a similar but shorter study with fewer soil variables, Blackwell, 

Hogan and Maltby, (2004) observed comparable variation but only in Ammonium, and 

not in the other soil properties they measured. Interestingly, our long-term study allows 

us to detect that this variation in multiple soil properties did in fact tail off over time, thus 

demonstrating the value of long term studies. We also find similar temporal patterns in 

the natural marsh as in the MR, further strengthening the need for spatial and temporal 

reference to soil development studies. During the first spring and summer (t = 7 and 10) 

of restoration, typically the periods of maximum plant growth, we found very high 

concentrations of Sodium, Chloride and both Nitrate and Phosphate. These enhanced 

concentrations will favour pioneer species that can tolerate the salts and outcompete mid 
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marsh species when in competition due peaks in nutrient conditions (Emery, Ewanchuk 

and Bertness, 2001; Pennings, Grant and Bertness, 2005). Evaporation rates are known to 

be higher on bare ground and at the higher elevations present in the Steart MR site, so 

potentially causing increased concentrations. However, these high concentrations were 

also observed on the well vegetated natural marsh. We can hypothesis this is due to 

repeated sedimentation and de-watering events leaving behind concentrated nutrients, 

and we have observed evidence of this in thin laminations of sequential deposition 

(Appendix 4-3).  

Initial quadrat elevation was not a significant driver of variation in soil chemical 

composition. However, when we adjusted the elevation by sequential sedimentation 

measurements we find it is an important predictor. Sedimentation per se is also has an 

important impact on marsh development as accretion between years of greater than 2 

cm begins to have an impact on seedling survival (Bouma et al., 2016). Our average 

sedimentation rate on the MR site of 4 cm per year far exceeds this, possibly explaining 

why we see very limited vegetation colonisation at our quadrats (pers. obs.). Differential 

sedimentation is known to occur in topographic features, such as depressions and hillocks 

(Elschot and Bakker, 2016). As a result, increasing elevational heterogeneity through 

topographic features could result increased nutrient variation and possibly more niches.  

To conclude, in contrast to our earlier hypothesis, land use only had an impact on soil 

conditions prior to the breach. We did however observe a catastrophic impact of tidal 

flooding on the early soil-forming nutrient conditions in the MR. As the sediment was 

deposited the role of former land use was removed and replaced with the importance of 

both seasonality and alterations in elevation. Soil nutrient concentrations and 

composition in the MR site at the end of our study were not different from those on 

natural marshes, therefore, if the same plant communities do not develop post t = 31 we 

must assume there further yet unexplored drivers of these plant communities outside of 

elevation, nutrient dynamics and time. 
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4.6 Appendix 

Appendix 4-1 Kruskal-Wallis analysis of the effects of difference between the MR and natural 
marsh and within the MR at selected time points. 

Df = 1 t = 0 t = 4 t = 7 t = 20 t = 31 
χ2 p χ2 p χ2 p χ2 p χ2 p 

Nitrate 3.52 0.06 4.68 0.03 * 0.18 0.66 1.02 0.31 0.57 0.44 
Ammonium 7.50 0.01 * 0.02 0.88 1.51 0.21 0.86 0.35 0.33 0.56 
Phosphate 2.12 0.14 0.02 0.87 3.52 0.06 1.90 0.16 2.08 0.14 
Magnesium 6.75 0.01 * 1.68 0.19 0.02 0.88 0.02 0.88 0.33 0.56 
Water % 5.33 0.02 * 1.02 0.31 0.00 1.00 0.02 0.88 0.08 0.77 
Organic C 2.52 0.11 0.33 0.56 0.33 0.56 0.08 0.77 2.52 0.11 
Chloride 6.75 0.01 * 1.68 0.19 0.18 0.66 0.00 1.00 0.02 0.88 
Sulphate 6.75 0.01 * 2.52 0.11 1.02 0.31 0.85 0.47 0.08 0.77 
Total N 1.03 0.31 0.01 0.94 0.88 0.34 0.64 0.42 2.79 0.09 
Total C 3.00 0.08 4.68 0.03 * 1.02 0.31 3.00 0.08 2.30 0.12 
Ratio 4.68 0.03 * 1.33 0.24 0.18 0.66 0.33 0.56 0.00 1.00 
Redox 

    
2.57 0.10 0.52 0.46 1.14 0.28 
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Appendix 4-2 PERMANOVA analysis of the effects of former land-use (arable, disturbed, grass 
ley and pasture), elevation (initial and sedimentation adjusted) and time (continuous and 
between visits) between the MR and natural marsh and within the MR. 

MR vs Natural saltmarsh Df µ2 F R2 p 
Pre-restoration (t = 0)      
Former land-use 3 1696.9 4.25 0.614 0.012 * 
Residuals 8 399.63    
      
Pre-restoration (t = 4 to 31)      
Former land-use 3 241041585 2.51 0.067 0.079 
Between visits (time) 8 409208238 5.44 0.305 0.001 * 
Months since restoration 1 23581181 0.23 0.002 0.617 
Elevation 1 298226061 3.02 0.027 0.073 
Elevation ± sedimentation 1 482049416 4.99 0.449 0.025 * 
Residuals 94 59858246    
      
Land use with MR      
Pre-restoration (t = 0)      
Former land-use 1 253343408 278.45 0.955 0.002 * 
Residuals 13 909820    
      
Final survey (t = 31)      
Former land-use 1 39668 0.002 < 0.001 0.997 
Residuals 13 17620837    
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Appendix 4-3 Descriptions of sampling permanent quadrats at Steart marshes (MR) and 
adjacent agricultural and natural saltmarsh reference areas. 

MR 
land use Ele. Typical quadrat soil conditions during restoration Photography 

(Appendix 4-4) 
Arable 4.04 

to  
5.54m 

Strong elevation gradient present. Highest plot rarely 
flooded with terrestrial vegetation still present at t=31. Mid 
and low elevation plots typically waterlogged in winter 
months. Friable and de-watered in summer. Distinct anoxic 
layer ~15 cm deep with rotting vegetation in first/second 
year at two lowest quadrats. 

Soft sediment in 
winter. Summer 
dewatering. 
Anoxic black 
substrate. 

    

Disturbed 4.09 
to  
5.06m 

Variable conditions with land use. Disturbed high extremely 
rarely flooded if ever. Disturbed low with signs of 
alternating scour. Disturbed hump well vegetated in local 
vicinity but the quadrat itself was unvegetated and 
accreting rapidly. 

Significant 
accretion and 
summer drying. 
Collonistion on 
high ground. 

    

Grass Ley 4.56 
to  
5.26m 

Strong elevation gradient present. Lowest quadrat (C) very 
poorly drained with pooled water for first year of 
restoration. The higher quadrats showed evidence of 
flooding into the second year and minimal sedimentation. 
Moderate and lower quadrats showed signs of colonisation. 

Winter 
accretion. 
Examples of 
rotting 
vegetation. 

    

Pasture 4.65 
to 
4.70m 

Land-use typically waterlogged in winter months and 
entirely de-watered in summer with signs of laminations 
and soil friability and salt deposits. Broadly homogenous in 
the land use, some added drainage near Pasture C (near 
creek head). Clear anoxic layer ~15 cm deep and rotting 
vegetation in first year. 

Pooling in 
winter / salt 
deposit in 
summer. 
Erosion in fresh 
sediment. 

    

References    
Saltmarsh 3.03 

to  
5.05m 

Some signs of seasonality. The mudflat (lowest elevation) 
quadrat dewatered and became laminated in the summer 
months like the MR land uses. However, the mid and upper 
elevations present remained vegetated and moist. 
Observable migration of drainage pathways along the 
estuary and periodic sedimentation inputs. 

 

    

Agricultural 5.35m Remained short grazed grass for the entire sampling 
campaign with some signs of seasonal variability in the 
texture with loss of moisture in summer and autumn 
months. 
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Appendix 4-4 Matrix of photography taken of the four land uses within Steart MR top to bottom 
(Arable, Disturbed, Grass Ley and Pasture). Photographs of the land uses separated by typical 
winter, summer and sedimentation / anoxia examples (left to right). (Photographs taken by 
Peter Lawrence and Hannah Mossman). 
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5 Surface complexity in saltmarsh: a driver for vegetation community diversity 
and redox potential 

 

Abstract 

Restoration of saltmarshes does not create plant communities like those on natural 

reference sites, even many years after restoration. Elevation and redox potential are key 

drivers of vegetation colonisation, but alone are not sufficient to account for these 

differences. Relative elevation (topography) can alter local environmental conditions and 

thus potentially vegetation colonisation, but its role is poorly understood. The role of 

elevation, redox potential and local topography as drivers of vegetation diversity were 

investigated in four natural saltmarshes and four restored through managed realignment 

(MR), plus one area where topographic manipulation has been conducted post-

restoration. 

Here for the first time we provide multiple site evidence that plant composition is 

spatially more homogenous on MR sites (indicating lower beta diversity) than natural 

marshes, and this is reflected in equally homogenous environmental conditions at local 

scales (elevation and redox). For land manages we also provide the first evidence that 

topographically manipulation can result in greater heterogeneity in environmental 

conditions and vegetation diversity. 

Supporting these findings, we investigate the drivers upon vegetation communities 

behind results suggesting that MR marshes have lower redox potential and reduced 

topographic variability (rugosity). Here we find that there are different mechanisms 

driving vegetation diversity in MR than natural sites. Plant diversity on MR sites is driven 

predominantly by redox potential, which in turn is almost entirely driven by elevation. In 

contrast, natural saltmarsh diversity was driven by a more complex relationship of 

elevation, redox and local topography.  

Limited topographic diversity may impair restored sites attaining vegetation communities 

similar to those on natural sites. The greater diversity in the topographically manipulated 

area indicates the potential for post-restoration surface manipulation as a management 

tool to encourage increase plant diversity at restored sites.   
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5.1 Introduction 

The restoration of coastal ecosystems, such as saltmarshes, is an important activity if we 

are to maintain the services they provide in the face of sea level rise, erosion and 

economic development (Cooper, Cooper and Burd, 2001; Tian et al., 2016). The goal of 

this restoration process is to mimic the biological and physical properties of a natural site 

(Copeland, 1999; European Parliament and the Council of the European Union, 2000). 

One method of creating new saltmarshes is through the deliberate breaching of sea 

defences, allowing parcels of land to be reconnected with the sea; a process known as 

managed realignment (MR). However, MR has had limited success in creating the same 

biological and physical characteristics as natural sites. For example, Mossman, Davy and 

Grant (2012) have shown that mature restored marshes (> 100 years old) still exhibit 

different plant community characteristics to natural marshes (see also Section 1.2.1).  

To encourage natural vegetation to develop in restored saltmarshes we need an 

understanding of the environmental drivers of plant communities, and how these vary 

between MRs and natural marshes. Elevation in the tidal frame is probably the most 

important factor determining the distribution of saltmarsh plants because species vary in 

their tolerance of the ecophysiological the pressures associated with tidal inundation 

(Colmer and Flowers, 2008; Janousek and Mayo, 2013). Other environmental factors that 

also influence the distribution of plants, such as redox potential, vary across the elevation 

gradient, but these relationships are inconsistent (Davy et al., 2011). Local topography 

(scales of several meters) may influence redox potential, for example, poorly drained 

depressions at high elevations may be waterlogged (Varty and Zedler, 2008), leading to 

low redox potential (Pearsall and Mortimer, 1939; Fiedler, Vepraskas and Richardson, 

2007). However, the links between redox potential and ‘local’ topographic attributes have 

not been widely studied, with topography an understudied variable in saltmarsh plant 

ecology. 

The topography of restored sites is less complex in comparison to natural saltmarshes 

(Chapter 2), and this might impact vegetation colonisation (Masselink et al., 2017). Our 

current understanding of the effect of topography on plants is however focused primarily 

upon coarse topographic features, such as creeks or pools. For example, some species, 

such as Triglochin maritima and Salicornia spp., are associated with pools (Davy and 
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Bishop, 1991; Bakker et al., 2002), whilst others, such as Atriplex portulacoides, are found 

on creek banks (Chapman, 1950). While features such as creeks are clearly important, 

these are not the limits of topography as there is variation in the surface elevation of the 

marsh plateaux (Brooks et al., 2015), where many plant communities occur, but the 

magnitude and effect of this is poorly understood. Differences in topography may have an 

important influence on the spatial arrangement of plant communities, with diverse 

topography across the marsh plateaux linked to greater spatial turnover in plant species. 

However, differences in the diversity between locations (beta diversity) is rarely 

considered in assessing the success of habitat restoration (Passy and Blanchet, 2007). To 

summarise, we know elevation has a direct impact on plant communities but is 

imperfectly correlated with other drivers of saltmarsh plant communities, such as redox 

potential. However, little is currently known about the relationships between local 

topography, elevation and redox potential, or if these three drivers act independently or 

in conjunction with each other to drive the communities present in natural marshes. 

Furthermore, is not understood if these relationships are the same in restored marshes 

which we may expect are different as communities are typically also different. Finally, the 

spatial arrangement of variation in these properties is poorly understood making 

designing for natural conditions on local scales impossible. 

As MR sites lack equivalent biological characteristics, management and design practices 

have been developing to try improving the design or intervene post restoration. If 

topographic diversity is linked to plant diversity, manipulation of topography may 

encourage more natural communities. Evidence from one restored site (Abbotts Hall, 

Essex) suggests that topographic manipulation can enhance local heterogeneity in surface 

elevation (Brooks et al., 2015). However, the effectiveness of these interventions on plant 

and other environmental characteristics are poorly understood.  

Here we investigate the role of elevation and local topography as drivers of saltmarsh 

plant richness and diversity, in four restored and four natural saltmarshes. Furthermore, 

we investigate the role of elevation and topography as a driver of redox potential, and its 

implications for plant richness and diversity. We establish the spatial heterogeneity in 

elevation, redox and vegetation in natural and MR sites. Finally, we assess the 
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effectiveness of topographic manipulation at one restored site in terms of aiding a more 

natural arrangement of marsh conditions and vegetation.  

 

5.2 Methods 

 

5.2.1 Study sites 

We selected four MR sites along the east coast of the UK, varying in age from 6-21 years. 

Sites were selected for geographic proximity to natural saltmarsh, practicalities in 

sampling and for consistency of species pool between sites. Furthermore, none of the 

sites had evidence of current grazing by livestock or widespread erosion. The sites were 

Tollesbury (51.7671 N; 0.8378 E, age at sampling = 21 years), Orplands (51.7191 N; 0.8631 

E, age at sampling = 21 years), Freiston (52.9623 N; 0.0898 E, age at sampling = 14 years) 

and Deveaux (51.8564 N; 1.2478 E, age at sampling = 6 years). Immediately adjacent (< 

500 m) to each MR, we sampled an area of natural reference marsh in an identical 

manner. Additional to the MR and natural references, we also studied an area of 

topographically manipulated land within one MR site (Freiston), where topographic 

manipulation (TM) was conducted as part of management intervention. The 

manipulations at Freiston occurred 12 years after restoration, and 2 years prior to 

sampling. The topographic manipulation included the creation of shallow creeks and 

pannes and small hillocks, and in places, infilling creeks. The scale of these manipulation 

varied in size from approximately 1m by 5m micro creek extensions, to the largest hillock 

of c. 10 m2, with the aim of creating a more heterogenous surface than the rest of the MR 

site. This resulted in a total of nine areas sampled (four MR, four natural and one TM), 

across four sites. 
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5.2.2 Survey design 

In order to quantify differences in local vegetation composition and environmental 

conditions, we established a fractal sampling scheme, similar to that of Brooks et al., 

(2015). In each area (natural, MR and TM), we established one 50 x 50 m grid, with 

sampling points at every 10 m (labelled alphabetically A to AJ). Eight of these points were 

randomly selected (C, G, P, Q, S, AA, AD and AH) and additional sampling points in the 

four cardinal directions were established 1 m and 2 m from the central point creating a 

cross formation with nine sampling points inclusive of the formally established position. 

This resulted in 100 sampling points per grid, with good replication across all horizontal 

distances, from 1 - 72.5 m.  

To quantify the local topography of each sampling point, the elevation was measured at 1 

m distances (horizontally) from each sampling point in the four cardinal directions. A 

further elevation measurement was obtained in the central location of each 10 m square 

within the 50 x 50 m grid to add further topographic detail. This sampling strategy 

resulted in a total of 100 sampling points (quadrats, redox and soil) and 365 elevation 

observations per grid. The grids were established haphazardly on the marsh, avoiding 

artificial features (walls, paths etc.). Grids were orientated from A to AE in the direction of 

the estuary i.e. largest channel or breach.  

 

5.2.3 Field methods  

At each sampling point, data on vegetation, soil conditions and elevation were collected. 

A single 0.25 m2 quadrat was placed at the centre of each sampling point, obtaining 

abundance (% cover) of all higher plant species and bare ground. Species cover was 

estimated to the nearest 5%, with occasions where a species was present but in less than 

5% cover it was assigned 1% cover. The 0.25 m2 sized quadrat was selected to ensure no 

overlap in quadrats within the nested plots (1 m spacing) and as this size has proven an 

effective size for studying saltmarsh plant communities (Zedler et al., 1999; Mossman et 

al., 2012). The redox potential at the centre of each quadrat was measured with a 

Campbell Scientific calibrated ORP Probe (-700 to +1100 mV), at a soil depth of 

approximately 5 cm, left until the reading stabilised (~ 5 mins). Prior to field work, the 

probe was calibrated with Zobells solution. 
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Elevation relative to the UK reference mean sea level (Ordnance Datum Newlyn, ODN) 

was measured at each location using a differential GPS (Trimble R10, Sunnyvale, CA), with 

typical accuracy of < 1 cm and precision of < 1 cm in both horizontal and vertical 

dimensions. Using the four elevation measurements taken 1 m from each sampling point, 

we derived two topographic indices: rugosity and relative elevational position. Rugosity 

was calculated as the standard deviation of elevation of the central and surrounding four 

points. The relative position of the quadrat to its local surroundings was calculated by 

subtracting from it the mean of the point and its four nearest neighbours (1 m max 

distance), modified from Wilson and Gallant, (2000). The resulting value, herein called 

relative elevational position (REP), is measured in metres and can be either negative or 

positive, reflecting small scale concave or convex features respectively.  

Elevation above ODN was converted to the local datum (relative tidal height (RTH)), 

where, 0 equates to mean high water neap and 1 mean high water spring tide level, to 

enable comparisons between sites as tidal variation can change dramatically over small 

geographic distances (Mossman, Davy and Grant, 2011).  

 

5.2.4 Data analysis 

All analysis for this study was performed in R Studio version 1.1.414 (R Development Core 

Team, 2011). Shannon-Wiener diversity and richness per quadrat, omitting bare earth, 

was calculated using R package ‘vegan’ (Oksanen et al., 2013). Linear models (LM) were 

used to test for differences in elevation, redox, topographic measures and species 

composition between natural and MR marshes, whilst accounting for site effects by using 

site as a fixed effect.  

The factors affecting the species diversity and richness (at quadrat level) in natural and 

MR marshes separately, were examined using a linear model and generalised linear 

model (GLM) with a Poisson distribution respectively, with RTH, rugosity, REP and redox 

as explanatory variables. Similarly, we examine the drivers of redox potential using LM 

with RTH, rugosity and REP as the explanatory variables. In these analyses, data were 

pooled from sites because we were interested in the drivers of species richness, diversity 

and redox potential across sites. All species present in the dataset had a UK distribution 
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that covered all sampling sites (Botanical Society of Britain & Ireland, 2018), thus ensuring 

comparable diversity scores between sites. 

As collinearity between environmental variables is expected, correlation within the 

explanatory variables (RTH, REP, rugosity and redox) was examined using Pearson 

correlation tests. Significant correlations were found between all variables except redox 

and rugosity, although most were weak. Only the relationship between RTH and redox 

was strong (rho = 0.58), Table 5-1. 

Table 5-1 Summary of Pearson correlations between explanatory variables. Asterisks denote 
statistical significance where p < 0.05 

 Rugosity REP Redox 
Relative topographic height (RTH) -0.25 * 0.23 * 0.58 * 
Rugosity (s.d. of elevation)  0.08 * -0.03 
Relative elevational position (REP)   0.16 * 

 

Due to this collinearity, we used hierarchical partitioning (HP) in the package ‘hier.part’, 

with a log link function, to identify the independent effects of the explanatory variables in 

the LM / GLMs described above.  

We wanted to quantify the patterns in surface elevation, redox potential and vegetation 

community variation over different distances in natural, MR and TM marshes. To do so, 

we calculated the differences in elevation (n = 66430), redox and vegetation communities 

(Jaccard dissimilarity) (n = 4950). For each plot, these differences were plotted against the 

horizontal distances between points, using local polynomial regression fitting (LOESS) to 

visualise the relationships, with boot-strapping to calculate the mean and upper/lower 

confidence intervals (97.5% and 2.5%). In the calculation of Jaccard dissimilarity, bare 

earth was included the measure cannot be calculated where no species are present we 

wished to know the difference between quadrats with no species and those of most 

diversity, ultimately this provides a maximum value of local dissimilarity. Finally, Mantel 

tests were employed with 100 permutations to test for correlations in the distance 

matrices between the elevation, redox and vegetation dissimilarities within each type of 

marsh.  
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5.3 Results 

Overall, species diversity and richness were significantly higher in natural marshes than in 

the MR sites (diversity, t = -5.681, p < 0.01 (Figure 5-4); richness, t = -5.031, p < 0.01). 

However, there was a significant effect of site. At Freiston, species diversity and richness 

were higher in the MR than on the natural, and diversity was marginally higher at 

Orplands MR than the natural site (Figure 5-1). Relative tidal height was significantly 

higher in natural marshes (t = -9.025, p < 0.01), although Freiston MR was slightly higher 

than the natural site. Redox potential was significantly higher in natural sites (t = -7.118, p 

< 0.01) overall, but very variable between sites (Figure 5-1) and the mean was higher at 

Orplands and Freiston MRs compared to the natural sites. Rugosity was consistently and 

significantly higher (t = -1.366, p < 0.01) in all the natural marshes compared to MR sites 

(Figure 5-1). There was no significant difference in REP between marsh types, however 

there were more observations of flat or hollows (score below 0) in MR sites, compared to 

typically higher values (scores above 0) in natural marshes, suggesting localized hills were 

more dominant in natural sites (Figure 5-1). 
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Table 5-2 Summary of topographic, environmental and species richness and diversity, measured 
at each restored (MR) and natural site surveyed. Mean (μ) and standard deviation (s.d.) for the 
tidal height adjusted elevation (RTH), redox (mV), derived microtopography (rugosity and 
relative elevational position (REP) and plant species diversity (Shannon-Wiener) and richness. 
Toll = Tollesbury, Orp. = Orplands, Frei = Freiston and Dev = Devereaux 

Site 
RTH Redox (mV) Rugosity REP (m) Diversity Richness 

μ s.d. μ s.d. μ s.d. μ s.d. μ s.d. μ s.d. 

Toll.             
Nat. 0.54 0.40 95.95 77.9 0.15 0.16 0.019 0.14 0.88 0.48 3.40 1.74 
MR 0.38 0.13 -90.42 156.3 0.03 0.07 <0.001 0.04 0.56 0.54 2.41 1.39 
Orp.             
Nat. 0.85 0.24 65.73 108.4 0.11 0.10 0.018 0.11 0.85 0.57 3.56 1.96 
MR 0.79 0.17 79.40 108.6 < 0.01 < 0.01 0.003 <0.01 0.87 0.49 3.51 1.52 
Frei.             
Nat. 0.54 0.13 35.18 91.9 0.05 0.08 <0.001 0.07 0.82 0.44 3.17 1.41 
MR 0.59 0.25 95.03 66.8 0.02 0.03 <0.001 0.03 1.25 0.42 4.98 1.33 
TM 0.62 0.14 -24.5 174.9 0.04 0.03 -0.002 0.05 0.81 0.55 3.13 1.70 
Dev.             
Nat. 0.61 0.36 127.15 86.4 0.07 0.10 0.005 0.09 1.32 0.43 5.25 1.71 
MR 0.40 0.39 -30.38 222.0 0.03 0.03 0.004 0.02 0.33 0.43 1.83 1.63 

             
Nat. 0.63 0.33 82.00 97.9 0.09 0.12 0.01 0.11 0.97 0.52 3.84 1.90 
MR 0.54 0.30 14.07 167.1 0.02 0.04  0.01 0.02 0.75 0.59 3.18 1.90 
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Figure 5-1 Comparison (mean ± SE) of quadrat level elevation, redox potential, topography 
(rugosity, relative elevational position) and species richness and diversity between restored 
(MR) and natural saltmarshes. Mean and SE were calculated via linear models (generalized 
linear model with a Poisson distribution for species richness), accounting for site as a fixed 
effect. Letters indicate significant differences (p < 0.05) between natural and MR marshes. 
Dotted horizontal line in relative elevation position indicates a threshold between a positive 
position (e.g. a hillock) and a negative position (e.g. a depression). 
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5.3.1 Do natural and MR have different drivers of species diversity, richness and 
redox? 

Relative tidal height, rugosity, REP, and redox potential predicted 33 % and 28 % of the 

variation in species diversity in natural and MR marshes, respectively (Table 5-3). There 

were differences in which explanatory variables were important between the MR and 

natural models, confirmed by Hierarchical Partitioning (HP), which provides estimates of 

the independent contribution of the terms within each model. We found that both 

rugosity and redox had significant effects on species diversity in both natural and MR 

systems. However, RTH and REP were also significant drivers of species diversity in 

natural marshes (Table 5-3).  

Table 5-3 Summary of the relationships between the dependent variables vegetation richness 
and diversity and redox, and the explanatory variables relative tidal height (RTH), rugosity, 
relative elevational position (REP) and redox (only for vegetation models) in natural and 
restored (MR) saltmarshes. Linear models (LM) were used to test for the relationships of 
vegetation species diversity and redox potential, and a generalized linear model (GLM) with 
Poisson distribution used to test for relationships of species richness. Values are the modelled 
estimate and those in brackets are the standard error. Asterisks indicate significance levels, p < 
0.05 = * and p < 0.01 = **

. 

 

Explanatory variables LM 
RTH 
(SE) 

Rugosity 
(SE) 

REP 
(SE) 

Redox 
(SE) 

R2 
(%) df F p 

Div.         
Nat. 0.18 (0.09) * - 1.22 (0.23) ** 0.77 (0.27) ** 0.001 (< 0.01) ** 32.9 (4,395) 48.3 ** 

MR 0.20 (0.15) - 1.82 (0.66) ** 1.79 (1.01) 0.001 (< 0.01) ** 27.7 (4,388) 37.1 ** 

Redox         

Nat. 70.04 (16.98) ** -151 (43.89) ** 325 (49.41) ** - 29.8 (3,396) 56.13 ** 

MR 491 (18.86) ** -98.65 (132.94) 7.42 (201.65) - 64.3 (3,389) 233.3 ** 

Rich.     GLM 

Nat.l 0.32 (0.12) ** - 1.36 (0.31) ** 0.85 (0.35) * 0.002 (< 0.001) ** AIC 

MR 0.25 (0.16) - 3.34 (1.38) * 2.32 (1.36) 0.002 (< 0.001) ** 1526.9 

 

All four environmental factors had significant independent effects on species diversity in 

natural saltmarshes (RTH 25%, Rugosity 26%, REP 12% and Redox 38%), whereas on MR 

sites vegetation was driven by only Redox (58%) with only a minor contribution from 

surface rugosity (6%) (Figure 5-2). The independent predictors of species richness were 

very similar to those for species diversity, see Appendix 5-1. 
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Substantially more variation in soil redox was explained in MR saltmarshes (64 %) 

compared to natural ones (30 %) (Table 5-3). Much like the models of species diversity, 

there were differences in which explanatory variables were significant between the 

natural and MR models. Within the natural marsh, RTH, rugosity and REP were all 

significant explanatory variables (Table 5-3), having independent contributions of 43%, 

13% and 43%, respectively (Figure 5-2). In contrast, rugosity and REP were not significant 

predictors of redox potential in MR marshes, where only RTH had a significant 

independent contribution (99%). 

Figure 5-2 The natural and restored (green and orange plots respectively) independent effects in 
of the explanatory variables (RTH, Rugosity, REP and Redox), calculated using hierarchical 
partitioning for the prediction of response variables vegetation diversity and soil redox 
potential (top row and bottom row respectively). 
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5.3.2 Is there variation in saltmarsh homogeneity between sites?  

The spatial heterogeneity of three components of the saltmarsh, elevation (structure), 

redox potential (chemical) and species diversity (biological) was measured. Heterogeneity 

in elevation was greater in natural saltmarshes than in MR sites, with the greatest 

differences at small spatial scales (0–20 m, Figure 5-3, top row). In two of four sites 

(Tollesbury and Freiston), the natural marsh was consistently more heterogenous in 

surface elevation at all spatial scales.  

In natural saltmarshes, the heterogeneity in redox potential was consistent across spatial 

scales and between sites (Figure 5-3), with an average difference of approximately 90 mV 

between sampling points. In contrast, MR sites were more varied, with variation at three 

of the four sites being greater than on natural marshes, particularly at distances > 40m. 

Trends in vegetation dissimilarity (Jaccard) between quadrats followed very similar 

patterns as those of elevation heterogeneity. This is supported by the Mantel tests, where 

elevation had consistently the strongest correlations with Jaccard dissimilarity for both 

natural and MR sites (Table 5-4). In all four natural sites there was higher vegetation 

dissimilarity at a scale of 0–20 m than in the MR sites, with both Tollesbury and Freiston 

natural sites possessing greater heterogeneity across the entire spatial sampling range. 

Differences in vegetation and elevation were weakly correlated with distance in natural 

marshes but more strongly correlated in MRs (Table 5-4), indicating that the gradients in 

the environment and plant communities were longer in MRs than in natural marshes. 
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Figure 5-3  Heterogeneity of elevation, soil redox and vegetation diversity across spatial scales 
in natural saltmarsh (green) and restored saltmarsh (orange), and an area at one site that had 
experienced topographic manipulation (blue). Solid lines are LOESS regressions fitted to all 
pairwise differences in e.g. elevation and the distance between the two sampling points. Dotted 
line shows upper and lower confidence intervals (97.5 and 2.5 %) for each relationship. Note 
that Devereux (bottom row) scales for redox and elevation heterogeneity are different to the 
other sites. 
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Table 5-4 Correlations (Kendall’s tau) between Jaccard dissimilarity (left side) matrices and 
matrices of elevation, distance and redox potential, and correlations between redox difference 
and both elevation and distance matrices. Values presented are Mantel r statistic, based on 100 
permutations; all p values = 0.0099. 

p = 0.0099 
Jaccard diss. matrix vs. Redox diff. matrix vs. Distance diff vs. 

Distance Elevation Redox Distance Elevation Elevation 
Tollesbury       
Natural 0.066 0.519 0.256 0.034 0.356 0.064 
MR 0.238 0.503 0.381 0.211 0.413 0.336 
Orplands       
Natural 0.091 0.296 0.215 -0.018 0.225 0.086 
MR 0.302 0.542 0.287 0.250 0.395 0.417 
Freiston       
Natural 0.084 0.184 0.113 0.003 0.132 0.136 
MR 0.128 0.150 0.098 0.051 0.174 0.146 
MT 0.071 0.275 0.377 0.102 0.249 0.067 
Deveraux       
Natural 0.143 0.346 0.159 0.053 0.177 0.323 
MR 0.228 0.459 0.288 0.288 0.383 0.454 

 

5.3.3 Effectiveness of topographic manipulations 

There were clear indications that topographic manipulations at Freiston resulted in a 

more natural heterogeneity in elevation and redox potential. There was a concurrent 

marked increase in vegetation dissimilarity at distances of >5 m compared to the MR 

(blue line in Figure 5-3), resulting in vegetation heterogeneity more like natural marshes. 

Differences in vegetation and elevation were more weakly correlated with distance in the 

topographically manipulated area compared to the MR (Table 5-4). 
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5.4 Discussion 

This study shows that quadrat-level diversity (alpha) and richness is higher on natural 

marshes compared to MR sites. The differences in richness found between natural and 

MR that are very similar other studies, with a reduction in richness from natural to MR 

quadrats of 22 % shown both here and by Garbutt and Wolters, (2008). These results 

indicate that diversity is very likely to be lower at any given sampling point within a MR 

site, despite the majority of the species pool being present at a site level (Mossman, Davy 

and Grant, 2012). This suggests that MR must lack proportional representation of some 

species spatially, and thus are less heterogeneous in terms of vegetation at local scales 

(further supported by our LOESS regressions in (Figure 5-3); until now, comparisons of 

within-site environmental heterogeneity have never been studied. Along with vegetation 

diversity and richness, MR sites also have significantly lower elevation and redox 

potential. These findings mirror those of Garbutt et al., (2006), who also found MR sites 

tend to have low elevations; and Brooks et al., (2015) who, also, demonstrate a 

differences in soil redox potential. Possibly most interestingly, we show that MR sites 

have reduced surface topography compared to natural saltmarshes, which is consistent 

with results from the analysis of remote sensing derived data at site-scales (Chapter 2) 

and that topography is a key driver of natural diversity.  

These differences in the local topography between natural and MR sites are reflected in 

the key drivers of plant diversity. The more diverse structure of natural marshes resulted 

in local topography acting as an important driver of plant richness and diversity. In 

contrast, MR sites have a typically flatter surface, whereby MR diversity and richness is 

driven almost entirely by redox potential and elevation. Furthermore, topography was a 

key driver of redox potential on natural marshes, but not in restored saltmarshes. This 

suggests that topography may act as both a direct and indirect driver (via redox) of 

vegetation. Its direct effects might be felt on vegetation communities through reduction 

of seedling survival in depressions due to high levels of sedimentation (Bouma et al., 

2016), or via the increased accumulation of salts in flat, water collecting areas with high 

evaporation (Largier, Hollibaugh and Smith, 1997; Hladik and Alber, 2014), or via 

droughting pressure on raised humps. It is quite likely that these impacts are felt most 

strongly as early stages of regeneration and establishment where plants are most 
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vulnerable to mortality, thus intervention that intervenes prior to germination periods 

would be most timely. 

Topography was more heterogeneous at local scales on natural marshes than on MR 

sites, indicated both by the higher mean local rugosity (Figure 5-1) and greater 

differences in elevation between sampling points on natural sites (Figure 5-3). In contrast, 

there were stronger relationships of local topography with elevation and distance 

(indicated by stronger Mantel correlations) in MR sites, suggesting local topography was 

associated with other factors. Elevation on natural marshes varies over short spatial 

scales, whereas MR sites had smoother gradients over the same distances (Figure 5-3). 

Over these distances (0-72.5 m), topographic heterogeneity was an important driver of 

plant community heterogeneity. The results demonstrated that pairs of quadrats with 

more dissimilar elevations also had more dissimilar species compositions, and as natural 

marshes were more topography diverse this resulted in natural marshes having more 

heterogeneous plant communities. In contrast, MR sites had more homogenous 

vegetation, only approaching the heterogeneity of natural marshes at the largest spatial 

scales. This is the first time that differences in the heterogeneity of plant diversity 

between restored and natural saltmarshes has been shown.  

These differences in the heterogeneity of plant communities on restored marshes are 

important because beta diversity per se is desirable in establishing equivalent habitat to 

natural saltmarshes, yet it is not commonly studied (Passy and Blanchet, 2007). 

Differences in diversity between natural and restored marshes are likely to impact the 

provision of ecosystem services. However, it is unclear how the importance of plant 

diversity varies with spatial scale. For example, species are known to differ in their 

interaction with wave energy (Möller et al., 2014), but is unknown how the arrangement 

of species across the marsh impacts wave attenuation. Likewise, plant diversity enhances 

sediment stability at the scale of a sediment core (Ford et al., 2016), but it is not known 

how the arrangement of species with different root morphology across the marsh affects 

erosion dynamics. 

The greater environmental heterogeneity in natural marshes could enhance species 

coexistence through spatial niche partitioning (Chesson, 2000). In this, variation in the 

environment tips the balance of competitive interactions in favour certain species 
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differentially over space (Amarasekare, 2003). Although we did not test whether the 

differences in environmental conditions were sufficient to alter competitive interactions, 

it is likely that they would be, given the relatively subtle variation in the niches of 

different saltmarsh plant species (Sullivan et al., 2017). However, our results suggest a not 

so subtle difference in environmental conditions, with differences in the site means of 

redox of over 60 mV between natural and restored sites (Figure 5-1). In addition, MR and 

natural sites have very different spatial patterns in redox potential, whereby natural 

marshes are relatively consistent, but MR have variation of 600 mV over distances of 70 

m (Figure 5-3). The potential for environmental heterogeneity to enhance the local-scale 

coexistence of species may be especially high in saltmarshes where several dominant 

species (e.g. Atriplex portulacoides, Puccinellia maritima and Spartina anglica) spread by 

vegetative growth (Chapman, 1950; Hill, Preston and Roy, 2004). The expansion of clones 

of these species is likely to be limited in natural marshes by encountering patches of 

unsuitable environmental conditions, whereas the more homogenous environment in 

restored marshes is likely to allow them to expand more widely as their niches are 

continuously connected on a flat surface. The potential for topographic heterogeneity to 

create more niches for plants and thus increase diversity is illustrated in Figure 5-4. 

This highlights the potential importance of the landscape-scale arrangement of niches. 

Further work is needed to see if diversity patterns can be predicted from modelling the 

spatial arrangement of niches and to test if the fragmentation of niches is important in 

constraining dominant species. 
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Figure 5-4 Hypothetical relationships between elevation and topographic in MR and natural 
marshes and their relationship with heterogeneity in redox potential. The top left shows an 
elevation gradient. MR sites lack topographic heterogeneity and so maintain the elevation 
gradient only (bottom left). In contrast, natural marshes contain localized topographic 
heterogeneity (central image). When this is combined with the underlying elevation gradient 
(right image), there is a complex pattern elevation that reflects both the surface heterogeneity 
and elevation gradient present. If the green colour was to represent the niche of a dominant 
species, such as Atriplex portulacoides, the species is isolated in patches on the natural marsh 
by sizable barriers unsuitable habitat that may prevent vegetative spread; this is not the case in 
the managed realignment (bottom left). 
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Implications for restoration management   

The results show that topography is important in driving vegetation diversity and its 

spatial patterns. Manipulation of topography thus could be a useful management tool for 

increasing diversity on restored sites. At one site where this has been conducted 

subsequent to restoration, we found that the areas of topographic manipulation led to a 

surface topography more like natural marshes (at scales of >2 m) and more importantly 

similar vegetation (at scales of >5 m). The manipulations at Freiston were only 2 years old 

at the time of sampling so further monitoring is required to demonstrate the 

effectiveness of such features over time. Our results suggest that there is a higher 

proportion of convex (hillock) features on natural marshes (supported by the results in 

Chapter 2). The typical disparities in elevational heterogeneity between natural and MR 

marshes tends to be 10 cm or more, particularly on local scales from 0 - 20 m. To increase 

heterogeneity by this much, restored sites would require enhanced topographic 

heterogeneity much larger than existing features. These enhancements may be formed 

via combinations of features, such as hillocks with a peak at least 50 cm vertically taller 

than the marsh surface within a 10 m2 area. Alternatively, a series of undulations 10-20 

cm vertically and separated by distances of 1-2 m would increase heterogeneity by the 

same magnitude. Subtle features of this size should not be underestimated in enhancing 

local diversity where it can be preserved as 10 – 20 cm vertical change can generate 

significant, community altering  environmental conditions (Cahoon and Reed, 1995; Varty 

and Zedler, 2008). As undulations in terrain require less vertical change, it would perhaps 

be preferable to use such alteration where sedimentation is lower. Lower sedimentation 

occurs both at the upper elevational zone and upon hillocks (Elschot and Bakker, 2016). 

As such it may be preferable to use of hillocks (convex) instead of pannes (concave), that 

will also increase REP values, currently lower in MR (Figure 5-1).  

Restoration that has involved using bunds to encourage sedimentation and targeting 

more natural successional processes has resulted in vegetation more similar to natural 

marshes (Van Loon-Steensma et al., 2015). This may be due to the creation of more 

similar environmental conditions, including the development of topographic features as 

the sediment builds up. In contrast, some areas of MR sites are created at levels already 

suitable for colonisation (Mossman et al., 2012) but may have more homogenous 
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surfaces due to former agricultural practices, such as ploughing. More natural topography 

may not re-establish here due to different accretion and erosional processes (e.g. hard 

sub-surface layers (Spencer et al., 2017). These sites are not aided in reaching similar 

topography through post-restoration management, relying on the initial design to 

generate similar environmental conditions, which do not appear to be successful. 

In conclusion, it is likely that in both natural and created saltmarshes environmental 

heterogeneity creates more niches and thus increased plant diversity across various 

spatial scales. However, current MR design does not allow for the localised heterogeneity 

that could increase diversity. Our results lend support to suggestions that future MR site 

selection and design may require post-restoration intervention and certainly the 

continued monitoring to facilitate design practice. 
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5.6 Appendix 

 

Appendix 5-1 Bar plots of the independent effects of the explanatory variables from hierarchical 
partitioning in predicting species richness. Asterisks indicate significant terms from the GLMs. 
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6 Discussion and synthesis of PhD 

 

6.1 General conclusions 

Saltmarsh habitats are an important and valuable coastal ecosystem. Due to historic 

losses saltmarsh restoration is critical to replace lost habitat and becoming an important 

way of managing the coastline for the future, whilst fulfilling legal obligations to counter 

losses. Thus far there is little evidence that restored systems reach the same biological 

characteristics expected by law (Mossman, Davy and Grant, 2012). Many avenues of 

research have investigated differences between natural and managed realignment (MR, 

restored) systems in the parameters known to affect the development of natural 

saltmarsh, such as the provision of appropriate elevation, accretion and salinity gradients 

(Bertness and Ellison, 1987).  

On local scales we know surface texture can impact soil conditions, such as salinity and 

waterlogging (redox potential) (Varty and Zedler, 2008), and that these soil properties can 

indicate different communities of saltmarsh species (Silvestri, Defina and Marani, 2005; 

Davy et al., 2011). However, until now nobody has attempted to characterise the whole 

of a saltmarsh in terms of the topographic characteristics nor the development of soil 

conditions on a MR site. Further to this, very few papers have attempted to unite multiple 

physical and chemical characteristics and how these relate to the biological communities 

in either natural or restored saltmarshes. 

In this Chapter 1 of this thesis I discussed the roles of lesser-studied factors that play 

critical roles in the development of a natural saltmarsh. Here I hypothesised that an 

interplay might exist between topography, redox and nutrient dynamics, and that these 

could improve our elevation-focused current understanding of plant zonation in 

saltmarsh. To investigate the importance of these I posed several questions: 
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1. What is a typical topographic characteristic of natural saltmarsh and MR sites, and do 
they differ? 

2. What is a typical nutrient concentration saltmarshes and MR schemes, and do these 
also differ? 

3. How, and in what direction, do MR soils develop against natural and agricultural 
baselines? 

4. Does former land use, time or elevation play the biggest role in MR soil development? 

5. What relationships exist between elevation, topography and redox potential, and 
what are the effects of these have on vegetation diversity?  

 

Topography on restored saltmarshes is reduced at both site and plot scales compared to 

natural marshes (Chapters 2 & 5). Managed realignment sites, as a result, are flatter, 

concave in nature, wetter and with fewer creeks than natural marshes; this is more like 

the agricultural land that they likely derived from. This difference may be due to the 

impacts of former agricultural activities, e.g. ploughing, removing the topography that 

existed prior to reclamation, which originated from saltmarsh. MR sites that were 

formally reclaimed for shorter periods of time may therefore have lost less of their 

topography than those reclaimed for centuries. Freiston MR site for example, was only 

reclaimed for approximately 20 years, and it had a more similar suite of characteristics to 

its natural marsh, including elevation, redox and rugosity, than other sites that had been 

reclaimed longer (Chapter 4). Although this may warrant further investigation, identifying 

the date of initial reclamation is extremely difficult due to the large time gaps in historic 

maps, thus losing temporal resolution. The flatness of the MR sites will tend to allow 

uniform flow across the marsh surface, and this may impede the ability for hydrological 

processes to create its own drainage pathways within the substrate – perhaps further 

exacerbated as MR sites are typically dissected by few very large creeks, rather than a 

more dendritic network (Chapter 2). The issues surrounding reduced hydrological flow are 

best observed in regulated tidal exchange sites, where flow is highly controlled (Masselink 

et al., 2017). Former agricultural land use can also reduce the hydrological processes that 

would assist the development of topography (via erosion and deposition) as compaction 

and other structural changes to the sediment can lead to layers of impermeability, 
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reduced porosity and increased shear strength (Crooks et al., 2002; Tempest, Harvey and 

Spencer, 2015; Spencer et al., 2017).  

Reduced surface topography on MR sites results in the dominance of redox potential (as a 

function of elevation) becoming the sole driver of plant diversity. This differs from natural 

marshes where the drivers of plant diversity on a local scale are more complex, with 

equal roles of elevation, topography and redox. This would suggest therefore that in MR 

there is heightened impact of redox potential and thus we may expect a MR to conform 

better to expected niches of redox potential of saltmarsh species (Sullivan et al., 2017); 

this warrants further investigation.  

Previous research has identified that MR and natural marshes have different vegetation 

communities (Mossman, Davy and Grant, 2012). However, the spatial distribution of 

communities, and how this impacts the diversity within a site (Beta diversity) is rarely 

studied in any restored system, and never in saltmarshes. The results from Chapter 5 

indicate that restored saltmarshes are more homogenous in terms of community 

structure and that vegetation turnover spatially (beta diversity) is at its most different 

between natural saltmarsh and MR sites at localised scales (0 – 20m). These differences in 

spatial structure between MR and natural marshes relate to the topography present in 

each system. Without the added topography present in natural marshes, MR sites contain 

a smaller number of elevational niches but each covering a larger area and thus also likely 

more connected. Here, the opportunity of colonising species to dominate large and linked 

patches in MR is not hindered by complex terrain and barriers to expansion, such as 

unfavourable niches. This may explain why older restored marshes can still be dominated 

by the early colonisers (Mossman, Davy and Grant, 2012). Habitat and niche connectively 

in saltmarshes and MR schemes on local, moderate or site scales has never been studied 

and warrants further investigation. Also, yet to be studied are the consequences of 

homogenous vegetation created via the expansion of a few individuals into the large area 

of a given niche. Given the potential expanse of just a few individuals, there may be low 

genetic diversity on restored sites (Edge, unpublished data), potentially leading to less 

resilience to cope with changing conditions or disease.  

Unsurprisingly, soil conditions between former agricultural land uses prior to tidal 

inundation were different. However, after three years this was no longer the case and so 
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other factors must have superseded the former land use in the development of this soil. 

Previous research has shown that there are differences in soil structure between natural 

and restored marshes as a result of agricultural activities (Spencer et al., 2017), but 

nobody thus far has compared the impact of these different types of agricultural activities 

to each other. Although there may be differences in the sub-surface soil structure 

(Spencer et al., 2017), we know some MR sites can accrete rapidly, and seasonally and 

spatially differently within a site (Chapter 4; (Elschot and Bakker, 2016; Oosterlee et al., 

2017). The signature of former land use appears to be lost under the input of freshly 

deposited marine sediment, with no difference in most soil conditions between restored 

and natural marshes (Chapter 3 & 4). This result suggests that there may be very little 

leaching of nutrients from the agricultural soils in to the newly deposited sediment or 

very little mixing/reworking, resulting in distinct layers (Tempest, Harvey and Spencer, 

2015), with an interface of trapped, rotting vegetation between the two (Chapter 4 ). As a 

result, the impact of former land use on surface soil chemistry is negligible, but there may 

be an impact of this distinct interface in changes to other properties, such as lower redox 

potential (observed in Chapter 4) or trapped water. Investigation of this would require 

further sampling with deeper cores. However, the depth of fresh sedimentation can often 

exceed that of typical plant rooting depth (8 cm) (Chapter 4);  (Garbutt et al., 2006), and 

so the relevance of deeper cores may be hard to interpret in terms of plant colonisation.  

Soil conditions at the managed realignment at Steart were similar to those on natural 

marshes after 31 months. Sedimentation rates were high in our plots (c. 4 cm year-1), but 

are in line with those on other managed realignment sites (e.g. 2.3 cm year-1 at Tollesbury 

(Garbutt et al., 2006), and between 0.1 and 10 cm year-1 at Lippenbroek (Oosterlee et al., 

2017). This high sedimentation rate may be the reason for the delayed plant colonisation 

observed in our plots. This, combined with the high variability in soil conditions observed 

in the first year of restoration, highlights the importance of monitoring site development 

beyond the first three years, and possibly delaying the start of monitoring until as late as 

year 2.  

In our study we adjusted the temporal resolution and breadth of nutrients monitored at a 

newly restored saltmarsh compared to the shorter term study of (Blackwell, Hogan and 

Maltby, 2004). This extended duration of the study allowed us to detect both the first-
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year peak in variability of soil characteristics, also observed by Blackwell, Hogan and 

Maltby, (2004), and the convergence of the MR site conditions to that of natural 

saltmarshes in terms of variation and concentrations in the whole suite of properties 

sampled. Temporal sampling is rarer than spatial sampling (Chapter 3). However, our 

focus on temporal development in the site constrained our spatial sampling. It is possible 

that a greater number of samples within the elevations or land uses would have given 

more power to detect differences and allowed us to have investigated the relationships 

within land uses and between environmental conditions (e.g. elevation and nutrient 

concentrations). So, due to the strong spatial and temporal variability observed in 

nutrient concentrations, we would strongly recommend that any future sampling effort 

either 1) is focused on understanding relationships in specific points in time (e.g. growing 

season) with many replicates of years and within spatial contexts; or 2) aims to quantify 

temporal stochasticity and its drivers, e.g. local weather, nutrient inputs or external 

sediment input, as this sedimentation dominates nutrient concentration development on 

restored sites.    

In order to provide context to the nutrient concentrations at Steart, a baseline was 

required to understand the current nutrient levels within saltmarsh habitats. A systematic 

literature review of saltmarsh nutrient concentrations (Chapter 3) found that there was 

not a clear picture of the nutrient status of saltmarshes, due to inconsistent analytical 

methodology, incomplete reporting of methodologies and large numbers units presented. 

Our knowledge of saltmarsh nutrients may be improved through the establishment of a 

set of guidelines setting out recommended methods and units for presentation. Despite 

these challenges, we found that natural saltmarshes are typically Phosphate-enriched, 

unlike restored marshes. However, N:P ratios tend to be lower, than those that 

potentially have detrimental effects (Chapter 3; (Deegan et al., 2012). This suggests that 

any enrichment of Nitrogen could pose a significant impact as it is detrimental on its own 

and is its effect is enhanced by presence of excess Phosphate (Sundareshwar, 2003), 

which we know to already be in natural marshes.  
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6.2 Future directions 

The results presented in Chapter 2 and 5 suggest that there is a very strong and significant 

role of topography in the development of saltmarsh diversity. However, current 

knowledge is limited to correlative studies, such as this one, or small scale manipulations 

(e.g. Mossman in prep; Varty and Zedler, 2008; Wigand et al., 2016). We need an 

understanding of the consequences of topographic manipulations in circumstances that 

mirror those that are practically possible to create in a MR scheme. More medium scale 

manipulations, such as that at Freiston MR, should be conducted and these should seek 

to test a variety of topographic features at all elevations within a site. In addition to this, 

we should seek opportunities to work with coastal engineers to modify site design before 

restoration, or work with site managers post-restoration to manipulate existing sites. 

Early evidence from this thesis suggests that manipulation may be beneficial and, as a 

result, with limited opportunities to influence site design (because there are not many 

sites), it is important to trial large-scale topographic manipulations whenever possible. To 

evaluate the cost effectiveness of differing topographic designs, any trials should be 

monitored regularly and consistently for vegetation colonisation and longevity of the 

features, e.g. erosion or sedimentation.  

The importance of soil nutrient concentrations on the development of MR sites and in 

natural saltmarsh zonation remains a significant knowledge gap. There is evidence of 

Phosphate enrichment in many natural saltmarshes (Chapter 3). However, current 

understanding of the effects of such enrichment from experiments is still based on very 

high levels of N and P, and not the critical tipping point between different ratios of these, 

or the concentrations at which they become detrimental. Experimentation should focus 

on manipulating the N:P ratio at different concentrations. This is possibly best achieved in 

laboratory conditions to control remaining soil properties. Such design would also allow 

other stressors to be tested, e.g. those that will alter with climate change (temperature, 

sea level and CO2) and how this will influence interspecific competition in existing 

saltmarsh. Furthermore, nutrient experiments tend to administer doses once or 

constantly. This thesis found evidence of high temporal variability in nutrients and this 

should also be incorporated into experiments. 
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Nutrient concentrations were highly variable between estuaries, within sites, through 

time and were poorly correlated with other environmental properties, such as redox 

potential and elevation (Chapters 3 & 4, Lawrence, unpublished data). This makes the 

interpretation of their independent relationships with plants or other variables difficult to 

predict, and their integration into models of the environment or plant communities very 

challenging. As a result, the optimisation of field and laboratory effort may be better 

spent investigating possible proxies for these soil properties. For example, can 

conductivity accurately predict the proportions of total anion and cations in the soil? It 

maybe not just the use of a single variable or measurement that can act as an effective 

proxy. Indeed, this study showed total Nitrogen was more stable temporally and spatially 

removing some of this challenging variability. It is worth investigating therefore, if factors 

such as total Nitrogen, in conjunction with other properties such as redox, may be able to 

act as an effective proxy for many other soil properties. Since understanding of nutrient 

status is poor yet so important for ecosystem resilience, the development of quick and 

easy to measure proxies would allow for the rapid assessment of status, globally. In 

addition to proxies, a standardised set of methodologies for nutrient measurement 

should be developed to allow a global study of nutrient status.   

The ability to predict plant zonation through the use of species distribution modelling and 

spatial analysis can assist with better plant community convergence between restored 

and natural systems (Brudvig, 2017; Brudvig et al., 2017). This analysis could identify 

areas where edaphic conditions are detrimental and where there are niches suitable to 

specific species that are slow to colonise, thus informing the design of future 

compensatory habitat. Elevation, soil moisture, redox potential and salinity have been 

used with some success in predicting plant communities (Moffett, Robinson and Gorelick, 

2010; Sullivan et al., 2017), but such models have not been fully exploited in restored 

systems to predict restoration success or guide management. Furthermore, topography 

and its link to redox potential, such as locally low or high terrain, have yet to be included 

in such models. The role of redox potential is particularly important in managed 

realignments, where it is currently the dominant driver of vegetation diversity. 

Incorporation of topography into niche models may increase their ability to predict 

species distributions.   
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The results in this thesis indicate that in MR sites redox potential is driven by elevation 

and not by topography. However, this was found over a limited elevation range and this 

did not hold in natural marshes. A first step would be expanding sampling to encompass a 

wider sample both spatially and over elevations on restored and natural sites. This redox 

dataset should then be modelled as a function of elevation and topography; crucially both 

elevation and topography can be derived from remote sensing data, allowing scaling up. 

This approach will allow construction of high resolution redox potential maps, which can 

in turn be used to predict plant distribution. Prediction of plant communities could be 

used on a restored site prior to restoration, or under different sedimentation, sea level 

rise or topographic manipulation scenarios.  

While the above modelling would increase our understanding of the physical niche of a 

given species, a key aspect has not been accounted for is the differential dispersal and 

colonisation abilities of species, and their interactions with each other. Currently our 

knowledge of species coexistence is limited to abiotic drivers and there is much overlap 

between species in tolerances (Sullivan et al., 2017). A recent development in community 

ecology is joint species distribution models (Pollock et al., 2014), and these could be used 

to investigate the potential facilitative and competitive interactions between species 

within shared niches. This would move forward our understanding of the communities a 

found in managed realignments since many appear to be dominated by a few species.  

The results of this thesis found that homogenous environmental conditions leads to 

homogenous plant communities and I have hypothesised that this is due to large 

connected niches that allow vegetative spread of dominant species. This hypothesis 

requires testing. One way to do this would be to investigate the genetic similarity to 

identify if the patches are clonal, and thus the mechanism of spread. If this mechanism 

was supported, we may be able to hinder the dominance of one species within a niche by 

planting or encouraging other species that share the niche. 
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6.3 Implications for restoration 

The results of this thesis suggest that MR sites currently lack the same abiotic drivers of 

vegetation community development in natural saltmarshes. The results also show that 

time since restoration does not lead to a trajectory towards similar topographic 

characteristics. As such, the only means to achieve similar physical drivers is via the 

creation, prior to breaching, of substantially more topographic manipulations than 

previously used. The results suggest than convex, hummock-like features are rare in MR 

schemes, that there are less dendric creek networks reaching the upper marsh and finally 

that they are typically flatter. Manipulations of the surface topography to create features 

similar to those in natural marshes is needed, as it will help drive the establishment of 

more natural vegetation and reduce dominance of specific species. 

Opportunities to aid restoration is not limited to pre-restoration design. Encouragingly for 

site managers, post restoration manipulations have provided some extremely 

encouraging results in altering soil redox potential and driving plant diversity towards a 

more natural community composition. We also found that the impact of the restoration 

of tidal flooding within MR sites in the first year is so overwhelming that site managers, 

and policy makers should consider that a site does not appear to settle chemically and 

physically (sedimentation) for at least a year after restoration. Observations of site 

development in the first year could provide an indication of longer-term topographic 

development or loss. We observed large areas of de-watered fresh sediment in the first 

summer, which was hard underfoot (although this is elevation and weather dependent), 

and this time period also coincides with high variability in soil chemistry and is prior to 

large-scale vegetation establishment.  It is therefore proposed that this is an ideal time to 

continue or aid further topographic development, based on the prior observations. 

Additional to this site managers can begin to appraise the longevity of depressions at low 

and moderate elevations within MR site, that may be filling in and are thus losing value 

for money. At this time point it may be possible to use the newly deposited sediment as a 

resource to create further topography, e.g. hillocks, small banks, and levees that 

encourage drainage development, thus reducing the expense of sourcing earth for these 

features prior to restoration.  
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As we find topography is particularly lacking at local scales on restored sites, it may not 

necessarily be a requirement to use large-scale, heavy plant and machinery to create 

post-restoration topography, and could possible be completed by site managers and with 

smaller plant. Finally reserving funding for intervention within this time window may also 

allow the investigation of dedicated, landscape sensitive planting or seeding programs. 

The success or failure of these experiments within topographically designed niches for 

those species will prove extremely informative about potential of such targeted planting 

in the future. 
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