
Please cite the Published Version

Ryan, Declan J, Wullems, Jorgen A, Stebbings, Georgina K, Morse, Christopher I , Stewart,
Claire E and Onambele-Pearson, Gladys L (2018) Segregating the Distinct Effects of Sedentary
Behavior and Physical Activity on Older Adults’ Cardiovascular Profile: Part 2-Isotemporal Substi-
tution Approach. Journal of Physical Activity and Health, 15 (7). pp. 537-542. ISSN 1543-3080

DOI: https://doi.org/10.1123/jpah.2017-0326

Publisher: Human Kinetics

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/620840/

Usage rights: In Copyright

Additional Information: This is an Author Accepted Manuscript of an article in Journal of Physical
Activity and Health published by Human Kinetics.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-5261-2637
https://doi.org/10.1123/jpah.2017-0326
https://e-space.mmu.ac.uk/620840/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Segregating the Distinct Effects of Sedentary Behavior and
Physical Activity on Older Adults’ Cardiovascular Profile:

Part 2—Isotemporal Substitution Approach
Declan J. Ryan, Jorgen A. Wullems, Georgina K. Stebbings, Christopher I. Morse, Claire E. Stewart,

and Gladys L. Onambele-Pearson

Background: The aim of the study was to provide an isotemporal substitution model to predict how changes in physical behavior
may affect the cardiovascular parameters (CVPs) of older adults.Methods: Participants wore a thigh-mounted accelerometer for
7 days. Phenotype of the carotid, brachial, and popliteal artery was conducted using ultrasound. Isotemporal substitution was
used to simulate the degree to which replacing 1 hour of physical behavior with another would affect CVP.Results: Substitution
of sedentary behavior with Standing and sporadic moderate- to vigorous-intensity physical activity (MVPA accumulated in bouts
<10 min) would reduce resting heart rate [−6.20 beats per minute (−12.1 to −0.22) and −3.72 beats per minute (−7.01 to −0.44),
respectively]. Substitution of sedentary behavior with light-intensity physical activity would reduce carotid artery diameter
[−0.54 mm (−1.00 to −0.07)]. Substitution of Standing with sporadic MVPA would increase popliteal artery diameter [1.31 mm
(0.11 to 2.51)].Conclusions: Our modeling suggests that an accumulation ofMVPA bouts that are shorter than the recommended
10-minute minimum may still improve CVP, with lower intensity physical activity also influencing CVP. Our findings are a
promising avenue for lifestyle interventions in older adults to reduce the aging effects on CVP for those who cannot engage or
sustain sufficient MVPA.

Keywords: accelerometry, sitting/standing, epidemiology, gerontology

It is becoming evident that sedentary behavior (SB) affects a
number of physiological parameters independent of the amount of
moderate- to vigorous-intensity physical activity (MVPA) engage-
ment.1,2 With time being finite within a day (ie, 24-h end point),
engagement in one physical behavior (PB)3 will offset the amount
of time that can be spent performing another. Standard regression
modeling fails to recognize the time constraints, and therefore, the
use of multiple measures of PB within a regression model will not
account for the time that is displaced by engaging is a specific bout
of PB.

Isotemporal substitution regression models recognize that time
is finite by including a measure of total PB [eg, sum of waking
hours SB and physical activity (PA)], which is kept constant and
therefore provides the opportunity to substitute one PB for another,
thereby reflecting the realities of daily life.4 Rather than prediction,
per se, isotemporal substitution reflects the decisions people have
made (eg, prolonged SB) and offers an extrapolation of what would
happen should they decided to do something different (eg, MVPA).
Therefore, this analysis may be more advantageous to public health
PB action plans, as it clearly illustrates what will happen to markers
of health if habitual PB levels and/or patterns are changed. In older
adult populations, isotemporal substitution has mainly been used to
assess the effect on cardiometabolic5–7 rather than cardiovascular
parameters (CVPs).8 However, in the one study to date, to the
authors’ knowledge, in which CVPs have been assessed, it has

demonstrated promising results, for instance, suggesting the sub-
stitution of SB with light-intensity PA (LIPA) would reduce the
relative risk of cardiovascular disease (CVD) prevalence within
older adult cohorts.8 LIPA is a promising intervention to reduce
SB for older adult populations as it can arguably prove to be easier
(in comparison with MVPA) to comply with and be accumulated
to consist the greater majority of a 24-hour simplex.9

Moreover, the 10-minute minimum threshold for an MVPA
bout (10MVPA), highlighted in the PA guidelines,10 to show
clinically beneficial outcomes, has not been examined using iso-
temporal substitution. If sporadic MVPA (sMVPA, accumulated
in bouts of less than 10 continuous minutes) has beneficial effects
on cardiovascular health, this alternative mode of accumulating
MVPA would likely allow older adults to improve their health
within their physical capacities and maintain this PB profile in the
long term. Therefore, the objective of part 2 of this series was to
simulate the degree to which the substitution of SB and lower
intensity PA with MVPA would have positive effects on cardio-
vascular health markers and vice versa in older adults. The aim was
to provide a time-constrained, alternative to bivariate/multivariate
regression modeling, tool to predict how changes in PB may affect
the cardiovascular health of older adults. It was hypothesized that
substituting SB with any intensity of PA would improve CVPs
and that substituting a PB with a higher intensity would improve
cardiovascular profile. It was also hypothesized that substituting
SB with 10MVPA would have a greater effect on CVPs than seen
with sMVPA substitutions.

Methods
Ninety-three older participants [73.8 (6.22) y, 60–89 y, 55%
female; Table 1], who did not suffer from an untreated CVD,
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had not sustained a PB limiting injury within the last 3 months,
were independently mobile, and deemed generally healthy, were
recruited for the study. Participant approval for study inclusion
was provided with a written informed consent, and the study
was granted approval by the Manchester Metropolitan University
Ethics Subcommittee. Participants visited the laboratory on 2
occasions separated by at least 7 days.

First Laboratory Visit

The methods follow that of part 1 of the current series of papers.
In brief, participant demographics (Table 1) were collected during
the first laboratory visit. Medication use was provided through hard
copies of current prescriptions, with hard copy medication later
categorized as primarily used to target CVD or could indirectly
target CVD. This information is reported as primary CVD medi-
cation (number of drugs primarily targeting CVD) or (in)direct
CVD medication (sum of primary CVD medication and drugs that
may indirectly affect CVD). Participants were fitted with a com-
mercially available, dominant leg, thigh-mounted (anterior aspect,
at 50% of greater trochanter to femoral condyle distance) triaxial
accelerometer (GENEA, GENEActiv Original; Activinsights Ltd,
Kimbolton, UK) using a waterproof adhesive patch (Tegaderm
Film; 3M, North Ryde, Australia), for 7 consecutive free-living
days. Residual G (Residual G =

p
[(SD x)2 + (SD y)2 + (SD z)2]),

adapted from our previous work on older adults total movement,11

was used to analyze the 10-second epoch (60.0 Hz) GENEA data
and termed The Cheshire Algorithm for Sedentarism. The Cheshire
Algorithm for Sedentarism was developed using cutoff points
developed in our laboratory calibrated against the expired gas
samples of a subsample of 20 older adults for 10 PBs. SB was
recognized as any seated or reclined posture, using the GENEA
axes orientation, similar to that of the “sedentary sphere,”12

whereas Standing was recognized as any standing posture that

had a Residual G11 value below the SB–LIPA cutoff point of 0.057
G [representing 1.50 metabolic equivalent tasks (METs)]. Remain-
ing standing postures were then classified into LIPA or MVPA
dependent on whether they met the LIPA–MVPA cutoff point of
0.216 G (representing 3.00 METs). MVPA was categorized as
sMVPA if bouts were less than 10 continuous minutes in duration
or 10MVPA if bouts were greater than or equal to 10 continuous
minutes in duration. One MET was equal to the resting metabolic
rate (while seated) of the participants to account for individual
differences in physical fitness. There was a strong association
between Residual G and METs (r2 = .89, P < .01). Postural identi-
fication showed a perfect agreement with known time spent
performing SB and PA [Cohen’s κ = 1.00; 95% confidence interval
(CI), 1.0 to 1.0; P < .01]. Residual G cutoff points and MET
thresholds had a strong agreement for PB intensity classification
(Cohen’s κ = 0.81; 95% CI, 0.49 to 1.31; P < .01). Sleeping hours
data were collected through a self-reported sleep diary (wake-up
time, lights-off go to sleep time, and naps not included) throughout
the monitoring week.

Second Laboratory Visit

Upon arrival of the second laboratory visit in a fasted and hydrated
state, a standardized meal (30.0 g of carbohydrate, 24.0 g of
protein, and 8.0 g of fat) was provided before continuation with
the testing session.

Participants were fitted with a 3-lead electrocardiogram, as
described in part 1 of the current series, and rested in the supine posi-
tion for 15 minutes to minimize the impact of orthostatic change.13

Room temperature (22.0°C) and light intensity (20.0 lm·ft2) were
kept constant throughout the testing. Hydration status, represented
as a percentage of total body mass, was determined using right
wrist to right ankle bioelectrical impedance (Bodystat 1500;
Bodystat, Douglas, UK).

Echo Doppler ultrasound (model AU5; Esaote, Genova, Italy)
using a 7.50-MHz broadband linear array transducer was used to
perform vascular assessments (angle of insonation: 60.0°, bright-
ness gain: 75.0, Doppler gain: 49.0, color flow mode gain: 47.0,
depth of penetration: 49.3 mm, and depth of focus: 27.0–31.0).
Live streamings were collected on a Hewlett-Packard computer
running video capture software through an analog to digital
converter (Pinnacle; Corel Inc, Ottawa, Canada) at 25.0 Hz.
Left common carotid artery and right brachial artery assessments
were performed in the supine position, whereas left popliteal artery
assessments were performed in the prone position. Baseline sys-
temic peak blood velocity, intima-media thickness (IMT), artery
diameter, calculation of shear rate, and resistance index (carotid
artery only) measures were collected over 10 cardiac cycles for all 3
arteries (definitions provided in part 1 of this series). All measure-
ments occurred within a 10-mm region of interest, 10-mm distal of
the carotid bulb in the anterior longitudinal (AL) and posterior
longitudinal plane, 10-mm distal of the superior medial genicular
bifurcation of the popliteal artery, and 65.0% of upper arm length
(acromion process to lateral radial head) distal of the glenohumeral
joint for the brachial artery.13–17 These CVPs were selected due to
the exploratory nature of this study in an attempt to distinguish any
limb-specific associations between PB and CVPs.

Offline analyses of diameter measures for all arteries were
performed using Brachial Analyzer (Medical Imaging Application
LLC, Coralville, Iowa), and IMT measures of all arteries were
performed with Carotid Analyzer (Medical Imaging Application
LLC). Data were R-gated to ensure artery diameter, and IMT were

Table 1 Participant Demographics

Variable Mean (SD)

Age, y 73.8 (6.22)

Height, m 1.65 (0.08)

Mass, kg 75.9 (13.1)

BMI, kg/m2 27.9 (4.71)

Primary CVD medication,a % 48.0

(In)direct CVD medication,b % 59.0

Hydration, % 50.6 (7.15)

SB, h/d 9.68 (1.30)

Standing, h/d 1.10 (0.40)

LIPA, h/d 1.95 (0.60)

sMVPA, h/d 2.58 (0.66)

10MVPA, h/d 0.08 (0.18)c

Total PB, h/d 15.4 (4.77)c

Abbreviations: BMI, body mass index; CVD, cardiovascular disease; LIPA, light-
intensity physical activity; 10MVPA, 10-minute moderate- to vigorous-intensity
physical activity (accumulated in bouts ≥10 min); PB, physical behavior; SB,
sedentary behavior; sMVPA, sporadic moderate- to vigorous-intensity physical
activity (accumulated in bouts <10 min).
aParticipants are currently prescribed an amount of medication that reduces the risk
or treats CVD (ie, statins, warfarin).
bParticipants are currently prescribed amedication that may affect the cardiovascular
system either directly or as a side effect.
cData are presented as median (interquartile range).
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measured during the diastolic phase only. Frame-to-frame mea-
surements were filtered from final analysis if they did not use
70.0% of the region of interest and/or were more than 1 SD from
the mean artery diameter or IMT. All automated processes were
assessed for error by one researcher. Intraday coefficients for
variation (CV) ranged from 2.34% to 4.97%, whereas interday
CV ranged from 1.57% to 5.33% for artery diameter. Intraday CV
ranged from 3.04% to 7.04%, whereas interday CV ranged from
1.45% to 11.3% for IMT. Blood velocity interday and intraday CV
were below 20.0% for all arteries. Shear rate interday and intraday
CV were below 16.0% for all arteries. Carotid resistance index
interday and intraday CV were below 12.0%. All CV measures
indicated that there was sufficient sensitivity to detect changes in
cardiovascular health based on observed changes in these variables
following PB interventions.18–20

Statistical Analyses
SPSS version 22 (IBM, New York, NY) was used for statistical
analyses. Pearson correlation was used to assess multicollinearity
between PB parameters and total PB; no adjustment was made to
the data if multicollinearity was present. Isotemporal substitution
regression modeling (forced entry) was implemented to examine
the impact of 1 hour of PB substitution.4 Isotemporal substitution
modeling is performed by removing one PB (hereafter referred to as
the substituted PB) from the regression model [ie, substituted SB
model = Intercept + (β1 × Standing) + (β2 × LIPA) + (β3 × sMVPA)
+ (β4 × 10MVPA) + (β5 × Total PB) + Covariates + Error]. Signifi-
cant PB predictors within the isotemporal substitution model
illustrate that replacing 1 hour of the substituted PB (as data are
measured in hours per day) with the significant PB would have an
effect on the respective CVP [magnitude of unit change illustrated
by beta coefficient and 95% CI(s)]. Including total PB at the end of
the isotemporal substitution model represents the time-constrained

hours within a waking hours day, which standard linear regression
modeling does not account for. Isotemporal substitution models
were conducted without (model 1) and with (model 2) adjustment
for covariates to determine how hydration status and medication
affect the relationship between PB and cardiovascular profile.
Hydration status was used as a covariate as it has been shown
to affect artery diameter,21 whereas medication use was used as a
covariate as it has been shown to effect CVPs.22–24 Hydration,
primary CVD medication, and (in)direct CVD medication were
used for covariate adjustment where preceding bivariate linear
regressions had shown that they were significantly associated with
specific CVPs. Cardiovascular data were natural log transformed
if they violated normal distribution. Data are presented as beta
coefficient (95% CI) unless otherwise stated.

Results
Isotemporal Substitution

Isotemporal substitution showed that changes in PB levels would
significantly affect 3 out of the 19 assessed CVPs (Online
Supplementary Material), these being resting heart rate, carotid
AL artery diameter, and popliteal artery diameter. The significant
substitutions are shown in Figure 1.

Substitution of SB with Standing and sMVPA was suggested to
reduce resting heart rate [Figure 1; −6.20 beats per minute (−12.1 to
−0.22) and −3.72 beats per minute (−7.01 to −0.44), respectively],
which is clinically relevant as a 5 beats per minute increase in resting
heart rate increases the risk of cardiovascular mortality by 3% (2.0%
to 4.0%).25 After the substitution of SB with LIPA, carotid AL artery
diameter was predicted to reduce [Figure 1; −0.54 mm (−1.00 to
−0.07)] and vice versa [Figure 1; 0.54 mm (0.08 to 1.00)], which is
clinically relevant as a 0.78-mm increase is associated with a 2.1 (1.3
to 3.3) hazard ratio risk of all-cause mortality.26 Substitution of
Standing with sMVPA [Figure 1; 1.31 mm (0.11 to 2.51)] would

Figure 1 — Significant physical behavior isotemporal substitutions and their impact on cardiovascular parameters. Markers indicate (left to right)
−95% CI, beta coefficient, and +95% CI. SB indicates sedentary behavior; LIPA, light-intensity physical activity; sMVPA, sporadic moderate- to
vigorous-intensity physical activity (accumulated in bouts <10 min); AL, anterior longitudinal plane; bpm, beats per minute; CI, confidence interval;
CVD, cardiovascular disease. aNormalized for primary CVD medication.
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increase popliteal artery diameter and vice versa [Figure 1; −1.52 mm
(−2.83 to −0.22)]. This result is clinically relevant as an 8-week
interval training program increased popliteal artery diameter by
0.14 mm per hour of training27 as well as the popliteal artery diameter
of healthy controls being 0.6 mm (P = .11) larger than those with
coronary artery disease (males aged 40–70 y).28

Within model 2, the results for all cardiovascular variables
remained the same after covariate adjustment suggesting that
covariates had no effect on the relationship between PB and
cardiovascular profile.

Multicollinearity

The largest correlation coefficient within the multicollinearity
matrix was between SB and LIPA, sMVPA (both r = −.69), while
the remaining variables only had weak correlations suggesting low
influence of collinearity on the results (Table 2).

Discussion
The objective of this study was to determine whether the substitu-
tion of SB and lower intensity PA with MVPAwould have positive
effects on cardiovascular health and vice versa, in older adults.
The aim was to provide a time-constrained tool, alternative to
bivariate/multivariate regression modeling, to simulate how
changes in PB would affect the cardiovascular profile of older
adults. It was hypothesized that substituting SB with any intensity
of PA would improve CVPs and that substituting a PB with a
higher intensity would improve cardiovascular profile. It was also
hypothesized that substituting SB with 10MVPA would have a
greater effect on CVPs than seen with sMVPA substitutions.

Heart rate is controlled by the central nervous system, which is
compromised of the sympathetic and parasympathetic pathways.
The simulation of the replacement of SB with Standing or sMVPA
suggested that it would reduce resting heart rate. Physiologically,
this could be achieved through improved baroreceptor function,
which naturally declines with age.29 Given that 6 weeks of yoga
[consisting mainly of static postures (and breathing exercises)] has
been reported to improve high-frequency baroreceptor sensitivity
and to reduce resting heart rate in older adults (whereas prolonged
aerobic training did not),30 a similar effect may be at play in the
Standing PB within our current modeling. High-frequency baro-
receptors represent the sympathetic nervous system, suggesting
that vasoconstriction response was improved to counteract the
natural fall in blood pressure with standing activities.31 Subse-
quently, increased vasoconstriction would increase venous return
and stroke volume, which would result in the need for a lower heart

rate to maintain resting cardiac output. On the other hand, the
modeling of reduction in heart rate through increased sMVPA may
be achieved via improvements in the parasympathetic pathway.
Interval training consisting of nine 5-minute repeated bouts at 65%
of maximum heart rate (MVPA) over 14 weeks improved markers
of parasympathetic activity [PNN50 (percentage of successive
normal sinus heart rate variability intervals >50.0 ms) and RMSSD
(root mean square of the successive normal sinus RR interval
difference)] and subsequently decreased 24-hour mean heart rate
within older adults.32 Therefore, the simulations from real data in
our current study suggest that reducing SB with PA, such as Stand-
ing (arguably easy to accumulate, due to limiting the common
socioeconomic-volition barriers to structured exercise normally
reported in older persons33), could yield health benefits. However,
engagement in MVPA is also important, as it would appear that
different pathways are targeted by the 2 distinct PA intensities.

The reduction in resting heart rate may also be a result of
vascular remodeling within compliant blood vessels, such as the
carotid and popliteal arteries, but not the stiffer brachial artery. With
aging, artery diameter increases as elastin stiffness decreases causing
the load bearing to shift to collagen fibers within the vascular smooth
muscle.34 This structural change may not be due solely to aging but
also due to increased SB, as the substitution of LIPA with SB
suggested it would increase carotid AL artery diameter in our
modeling. The opposite association was shown when the reverse
substitution between SB and LIPA was made. These inferences are
in line with previous older adult research that found an increase and
decrease in carotid–femoral pulse wave velocity with increased
engagement in LIPA and SB, respectively.35

The increase in arterial stiffness with aging is also a determinant
for the fall in orthostatic blood pressure, which begins before
baroreceptor mediated reflexes.36 Orthostatic posture increases
lower limb blood pressure, which subsequently leads to an increase
in total peripheral resistance and declined cardiac output. With
the substitution of Standing with sMVPA, it was suggested that
popliteal artery diameter would increase. This, in line with
Poiseuille’s law of flow, would decrease local blood pressure and
thus total peripheral resistance. However, sMVPA engagement
would also acutely increase blood flow.37 Blood flow declines
with age in the legs due to increased sympathetic activity,38 the
latter which could increase total peripheral resistance. Training
interventions within physically inactive have shown that the acute
vascular responses to interval training (MVPA bouts <10 min,
representative of sMVPA) stimulate baroreceptor activity32 and
increase artery diameter,27 subsequently leading to improved popli-
teal endothelial function and distensibility.39 Overall, our results
suggest a potential for older adults who cannot/choose not to sustain
MVPA for 10 continuous minutes to still attain positive vascular
adaptations (reduced resting heart rate and increased popliteal artery
diameter). This is relevant given the sample population averaged less
than 1 10MVPA bout per day [0.28 (0.71) n per day] and only 34.2
(81.6) minutes per week of 10MVPA, suggesting the majority of the
study population could not/chose not to sustain MVPA for 10
continuous minutes (see part 1 of this series).

Conclusion
Our isotemporal substitution modeling suggests that an accumula-
tion of MVPA bouts that are shorter than the recommended
10-minute minimum would improve CVPs (including resting heart
rate and popliteal artery diameter), with lower intensity PA also
influencing CVPs. Our findings are therefore a promising avenue

Table 2 Collinearity Statistics for PB Parameters

SB Standing LIPA sMVPA 10MVPA Total PB

SB – −.58*** −.69*** −.69*** −.23* .32**

Standing - .64*** .35** .01 .24*

LIPA - .45*** −.02 .13

sMVPA – .19 .23*

10MVPA – .05

Note. Data are Pearson correlations.
Abbreviations: LIPA, light-intensity physical activity; 10MVPA, 10-minute
moderate- to vigorous-intensity physical activity (accumulated in bouts ≥10 min);
PB, physical behavior; SB, sedentary behavior; sMVPA, sporadic moderate- to
vigorous-intensity physical activity (accumulated in bouts <10 min).
*P ≤ .05. **P ≤ .01. ***P ≤ .001.
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for lifestyle interventions in older adults to reduce the aging effects
on cardiovascular health, especially those end users who cannot
engage or sustain sufficient MVPA to be classed as physically
active. The replacement of SBwith PA influenced 2 of the 19 CVPs
(resting heart rate and carotid AL artery diameter), whereas the
replacement of sMVPA with a lower intensity PB influenced 1
CVP (popliteal artery diameter). Our findings suggest that the
reduction of SB is just as important as the need to be physically
active for older adults.

Finally, the current study illustrates the usefulness of iso-
temporal substitution modeling in simulating the different effects
(and/or physiological pathways) that a PB outcome of interest may
have on a unique (or a set of) CVP(s), dependent on the PB it
is displacing. This is the first study, to the authors’ knowledge,
to demonstrate changes in cardiovascular phenotype within an
isotemporal substitution model for an older adult cohort using
objective measures of PB and CVPs.

Intervention studies are needed to determine the time course of
the suggested temporal changes shown in isotemporal substitution
modeling in older adult populations.
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