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Abstract

The extraction of useful information and removakreflundant noise from data has become a majorroéstzpic in recent
years. Data compression is necessary for all kifidmalysis, and the demand for efficient comprmassechniques has gained
much attention. Digital image correlation is a ceargased measuring system, which has been wideliedpin strain analysis
because of the convenience of measuring displadefieés by simply selecting a region of intereStirrently, there is interest
in applying such methods to engineering structimegynamics. However, one of the major issues edlab the integration of
camera-based systems with dynamic measurementigeheration of huge amounts of data, typicallyerding to many
thousands of data points, because of the requitsnoémigh sampling rate, spatial resolution, amtblduration of recording. In
this paper a new algorithm is presented that addsethe need for efficiency in full-field data peesing. By making use of the
data itself and combining the concept of sparseesgmtation with Gram-Schmidt orthogonalisatiore tlumber of basis
function used to represent the data can be redarceéc concise decomposition established. In botilated and experimental
cases, the compression ratios for data size andbeofi signals used in operational modal analysissabstantially diminished,
thereby demonstrating the effectiveness of the ggeg algorithm. A reduced number of new basis fanstis determined for
the representation of data under the condition thatreconstructed displacement map reproducesatiemeasured data to
within a chosen threshold on the coefficient ofretattion.

Keywords: Shape descriptor, Dictionary updating, K-SVD, Spaepresentation, Kernel function, Operational ahadalysis

1. Introduction

With the ever-growing size of data, the problemprottessing and storage have greatly increasedtoan extent
that data cannot be processed by personal computérémited computational capacities directly.eaxtraction of
useful information and removal of redundant data bacome a major research topic in recent yearta Da
compression is now seen to be a necessity for sisalgnd the demand for efficient compression tieglas has
gained the attention of numerous researchers. #icptar aspect of this phenomenon occurs in thegssing of large
volumes of full-field vibration data by photogramime In an extensive review, extending to some ti3étions,
Bagersad et al. [1] listed four main approacheglypamic (vibration) measurement, namely the coneeat
point-wise sensor measurement (e.g. Ewins [2]grfatometry, laser Doppler vibrometry and photogreetry. The
advantages of photogrammetry over other methodsaidgo include the ease of extracting rigid bowdes and its
suitability for highly-flexible or rotating structes. Further sub-classification of photogrammetrgluded point
tracking, digital image correlation (DIC) and tarfess approaches, with DIC [3] being the most Widgplied. In a
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review of 3D high-speed DIC for vibration measurem@&eberniss and Ehrhardt [4] pointed to a difficat high

frequency because of low out-of-plane sensitivithis was overcome separately by Poozesh et al.affs]

Molina-Viedma et al. [6] using phase-based moticagnification and results are reported in [7] for 8erational
deflection shapes in the range from 1500 Hz to 872 @vithout the need for high levels of excitati®nozesh et al.
[8] and Paitil et al. [9] developed methods fordlieching of DIC images of sub-areas of very lasgectures to obtain
complete images of vibration modes. Javh et al fie@eloped an efficient gradient-based opticaiflnethod and
reported displacement resolutions of less thamaséindth of a pixel. They demonstrated the appicadf their

method on the vibration modes of a cymbal up to32BZ. The numerous applications include the disptaent

measurement of the blade of a toy helicopter uBilg by Sousa et al. [11], model updating of hyparsaircraft

panels by Perez et al. [12] and low-velocity impastcomposite plates by Flores et al. [13]. Howgoee of the
major issues related to the integration of camersetl systems and dynamic measurement is the geneshhuge

amount of data, often extending to several thousafdata points, because of the requirement d&f ségnpling rate
up to the Nyquist frequency, spatial resolutioratedl to number of pixels in images, and frequermsplution

requiring long durations of recording.

One of the difficulties of using data from photagrmetry is its comparison with finite element (FiEdictions,
since DIC grids are different from FE nodes. Leclet al. [14] directly compared the measured dispieent field
with simulated numerical results and implementediehapdating by minimizing the difference betweleam. Other
than the direct comparison, Wang et al. [15-19] Batki and Patterson [20] developed image procgssid pattern
recognition techniques capable of extracting imgartfeatures from displacement fields through pesdened
kernel functions, such as geometric polynomial§,[2&rnike [22], Tchebichef [23], or Krawtchouk [Pdolynomials
or wavelets [25]. With the use of such basis fuori(or kernels), large amount of full-field dataynibe represented
by just a few shape descriptor (SD) terms (alstedahoments) with high-fidelity. Each type of kelrfnctions is
suitable for a particular geometric domain. Formagke, the Zernike polynomials are widely applieddomains with
circular geometry, and Tchebichef polynomials octaegular domains. Wang et al. [26] developed ariegie
known as the adaptive geometric moment descrigt@MD) to deal with the issue of selecting kern@sdifferent
domains with three-dimensional irregular geometnyg &oles. They carried out modal tests on a candtoliner
entirely in the SD domain and reconstructed thst fileven mode shapes in the physical domain fieen3D
contributions.

For computer scientists in the field of image @ssing, the terminology used to describe deconipnosis
different from that used in structural dynamicst Example, basis functions or kernels are knowttie®naries, and
an atom or word describes an element contained dictéonary. Current research on decomposing imagé#s
overcomplete dictionaries (i.e. more atoms thardthension of image) has applications that beffiefih sparsity of
representation, such as image denoising [27, 28flesimage super-resolution reconstruction [29], 3Mage
inpainting [31, 32], and image compression [33}fefiew of sparse representation in dictionary legyand image
fusion (by using multiple sensors) was carried muZhang et al. [34]. One of the most cited aldonis, K-SVD,
proposed by Aharon et al. [35] is a method for dipdaan initial dictionary with targeted data. Aftgpdating, the
representation of the data will become sparser shillt satisfying the representational-error reqoiemt. This
algorithm is inspired by K-means (also known asltleg/d-Forgy method [36]) and the dictionary leargimethod
proposed by Lesage et al. [37]. The well-known caraged sensing, proposed by Donoho [38], is bagsed the
concept of sparse representation and suggestshinaequired number of samples for reconstructindeu mild
conditions can be fewer than that predicted byNiguist-Shannon theorem.

The motive of the research is that AGMD as propdsed/ang et al. [26] might not provide the bestataposition
of a full-field image, because the data are notsitared in the generation of the basis. In thisespagn updating
algorithm for the basis or dictionary, which isliseéd to decompose huge amounts of raw data, isoged, and a
comparison of the results from AGMD and the newhudtis made on real engineering structures. Wighfimite
number of iterations, a more succinct or represiatalescription of data is generated, i.e. a femanber of SD
terms than the number of AGMD terms containing shene amount of information. The mathematical detaifl
AGMD are reviewed in §2 and the proposed basisipglalgorithm is presented in 83. §4 briefly exptasome of
the details of a number of Operational Modal Analy©®MA) methods to be applied in later sectiond dinstrates
the analysis procedures in a flow chart. Two dats, simulated and experimental, are describe8.iifBe results of
identification with AGMD signals and those genedafeom the proposed method are shown and discuasgél.
Conclusions are drawn in 87.
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2. Initial basis and shaperepresentation

There are several different kernel functions atdéldor the decomposition of shapes. Of theseABMD [26] is
suitable for any geometry or discontinuity andasdd upon geometric monomials [21]. Both are ptegdoriefly in
this section with mathematical formulae and exasple

2.1 Geometric monomials

The idea of using geometric monomials for visudteya recognition and the computation of correspand
geometric moments was first proposed by Hu [21E Witain advantage of the geometric moment is itariaxce in
respect to properties, such as rotation, translatiod scale. The geometric monomials may be wréte

Gpg = xPy1 €h)

where x and y arecoordinates,and p and g are monomial orders.

2.2 Adaptive geometric moment descriptor (AGMD)

Wanget al. [26] proposed the AGMD as a solution to the probte finding basis function applicable to general
shapes as encountered in engineering. For curvéatss, it is firstly necessary to carry out amisophic mapping
from the 3D surface to a 2D plane. In [26], thissveehieved by bijectively using discrete conformalpping as
described by Desbrun et al. in [39]. This proces®lves meshing of the surface so that the diffezein angle of
individual triangular-element vertices on the cuaheeirface and flat plane is minimized (Pinkall &adthier in [40]).
To establish a compact decomposition, Wang e18].groposed an orthonormal basis achieved usiagncgchmidt
orthonormalisation (GSO).

Before the explanation of GSO, the definition afién product is first given. The inner product obtarbitrary
functionsu and v in a continuous domain () is defined by,

w,v) = [, uGOv(n dx @

and the orthogonality of the functions is confirmvalden the inner product is zero.
For a discrete domain, the inner product of twateaty functionsu and v can be represented by the discrete
version of Eq. (2),

(w,v) = X ubx)v(x)dx (3)
The GSO of a set of kernel functiof@,, Q,, ..., @,,} in a discrete domain may be expressed as,

Ry =0, .
—1 {Rr.Qk)
Re= Q= ZHL (R Rk =2 m @

where{Ry, R,, ..., R, } is an orthonormal set of kernel functions.
By the procedures explained herein, an orthonob@sis may be formed for any 3D surface. In Figad lig. 2, a
comparison of geometric monomials and the polyntsganerated from AGMD is illustrated.
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2.3 Shape representation

The shape descriptor, or coefficient, of a dispiaeet mapW, as well as the reconstructed displacemiéht
may be written together as,

<W,S;>
SDi - <S5;S;> (5)
W = ZiSDi - Si

where i, SD; and S; are the index of polynomial, the i-th shape descriptor and the i-th polynomial,
respectively.
3. Basis-updating algorithm

As can be seen from the procedure described altbeeformulation of the AGMD is done completely
independently of the displacement map that it séek®produce. Hence, by taking inspiration frora #-SVD
algorithm as proposed by Aharon et al. in [35] "#reutilisation of GSO, a new algorithm for baspsdating for DIC
displacement maps is proposed herein. The proceduhe algorithm is described below:

1. Generate an initial basis (dictionarg)= [4,, ..., A;;] representing data with corresponding coefficients
S=1S,,..,5,] and set a tolerance on the representation error.

2. Sequentially update each kernel function (ateitt) data X:

(i) Calculate the complement, (1 <k <m),

j#k
(ii) Apply singular value decomposition aokj,,
X, =UsvT
(i) Update A, using the first column olJ,
Ak = Ul

3. Apply the GSO process to updatdd= [4,, ..., A,,] to ensure orthogonality and remove repeated kernel
functions.

4. Calculate the updated coefficierfis= [S;, ..., S,,,].
5. SortS and A according to the significance of eaéh.

6. If ||X — AS|| > €, go to step 2, else remove the most insignificaetficient and corresponding shape and go to
step 2.

7. Repeat steps 2 to 6 until convergence is actieve

In step 5, the significance of each SD te(rSDi o 21,2,...) is determined according to its absolute value in

descending order. Thus, the kernel function thatast represented in the displacement map is ceresido be the
most significant. In what follows the algorithm debed above is applied to operational (or outmuifpomodal data.
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4. Operational modal analysis (OMA)

Due to the generally high physical dimensions aochmgaratively low frequency range of civil structsir¢he
identification of modal properties by conventiomabdal analysis techniques is a relatively troubiesdask. The
excitation of such structures cannot be easily é@manted and usually demands specially designely clestices for
the generation of programmable and measurablécatiforces. In response to this problem, researsin civil
engineering have turned to OMA. Relative to thelitranal input-output techniques, OMA makes good o$ the
obtainable ambient excitations as input and detegsmodal properties (natural frequencies, modpeshanodal
damping etc.) from measured responses with thargsn that the excitation has constant spectrakitig in the
form of white noise, which is often approximatelyd for natural excitations, such as wind gustswaades. Hence,
OMA has become an established procedure for megthg in civil engineering. For mechanical engise©MA
can also serve as an alternative method for maldaitification. There are two classes of OMA methadds the
frequency-domain and time-domain techniques.

4.1 Time-domain method

Temporal signals are directly processed when uing-domain OMA methods, which may be separated int
three main approaches as: stochastic subspacéfichdinn (SSI) [41], random decrement Ibrahim tidemain
(RD-ITD) method [42-44], and blind source separa(BSS) [45].

RD-ITD and BSS are not included in the presentudision, because of the requirement for an addititttiag
procedure to identify the modal parameters. PeeaigiisDe Roeck [41] described the first step of38¢ method as
the construction of a Hankel matrix composed ofsuead data. The main difference between SSI-CO\GS8ieData
is how the data is processed, i.e. the covariangeapection matrix between ‘future’ and ‘past’ fsaof the Hankel
matrix. Both methods apply singular value decomms(SVD) on the covariance or projection matmestablish a
matrix of observability, from which the system npatnay be determined using conventional controbtie

By altering the dimensions of observability mattixe dimensions of system matrix changes, andhalistion
diagram can be formed by plotting all the polesdgstem matrices of different dimensions. Fromdtadbilisation
diagram and with the help of clustering technigeesh as hierarchical clustering as described6i gtable poles,
which corresponds to modes, may be selected.

The mode shapes found by SSI have complex valugsrery be converted to real mode shapes [47]. When
working in the SD domain, real mode shapes in tfaial domain may be obtained by the linear contiwnaof
kernel functions and corresponding SDs.

4.2 Frequency-domain method

Frequency-domain methods make use of the matrbugfut auto- and cross-spectral densities. Thexrdaur
main types of frequency-domain method: frequenayaa decomposition (FDD) [48], the transmissibifityction
method [49, 50], poly-reference least-squares cexipbquency domain (P-LSCF) method [51], and Biayesiodal
identification [52-54].

In this section, the details of three differengitency-domain methods are briefly explained, aeg #re FDD,
Bayesian, and P-LSCF methods. The Bayesian appisdmdsed upon the first singular value spectruloutated
from FDD, which is included for that reason, evieaugh additional SDOF curve fitting is necessary.

Before the application of frequency-domain methaaisextra discrete Fourier transform (DFT) stepeisessary.
A 3D matrix of frequency spectra is formed, wheaehe2D submatrix contains auto- and cross- spatissspecific
frequency and the third dimension correspondsdalibcrete frequency points of the DFT. By apply#\y{PD on each
2D submatrix, the envelope of the sum of all faisigular value spectra is formed. From this specttine potential
modes of system may be selected by peak-pickiny (PP

The identification of modes by the Bayesian methktadts with the choice of peaks and frequency raadehe
singular value spectrum. Optimisation is based upergradient descent, and the modal parameteidartfied by
minimising the negative log of an objective funati®ther than the selection of initial conditioasgconvergence
condition is also selected by the user.

In the P-LSCF method, the determination of modesnislar to SSI, which relies on the stabilisat@tiagram and
hierarchical clustering. However, the main diffareris the computation of system poles, which depgmh the
system matrices formed by a right matrix fractioeer-chosen parameters are the length of eaclsgégraent and the
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time lag between segments. The longer the time segand time lag, the more the frequency linesfamer the
segments, and vice versa.

Applications of OMA methods are described by nurasrauthors, including Oliveira et al. [55] who rejgd on
the continuous monitoring of an onshore wind tughiising the SSI-COV and P-LSCF methods, and Chah [&6]
who used the SSI-Data and FDD techniques in the @Wemulti-span concrete bridge. The ESA Vegadhen was
investigated using OMA by De Vivo et al [57], antdinette and Carrou [58] studied the modes of aabarp.
Very recent developments include uncertainty qtiaation applied to the SSI-COV approach by Reyadstral.
[59], and development of the Bayesian approacttéount for asynchronous measurements from mukgtleips by
Zhu et al. [60-62]. A combination of DIC method a@dMA was presented in [63]. The first investigatiand
application of integrated SD and OMA methods onusaited data was provided by Chang et al. [64]. ysialwas
carried out in the SD domain, with mode shapedlfit@nverted to the physical (spatial) domain.

4.3 Analysis procedure

The analysis procedure is illustrated in the floartlof Fig. 3, with steps explained as followsthe first step, a
collection of measured displacement maps servéseasirget of the analysis. These maps are thamgsased into
several SDs and kernel functions, generated byARID method and further updated by the algorithraatibed
in § 3. After decomposition, the SD signals areduas input for OMA in the identification of naturfaéquencies,
damping ratios, and complex mode shapes, and tlie slvapes are further converted to real numbeesaided
previously. Since the analysis is implemented in &inain, another step of conversion is necessarythi®
presentation of mode shapes in spatial domain. i$hdsne by linear combination of mode shapes of 88m step
2 and kernel functions from step 1.

Displacement maps

w g ‘
I

L
Shape descriptors Kernel functions

SD ‘ S wa
Nm\ﬂ‘ ] \W‘ |1 i i Rl

I
——
| i

Operat|onal modal analysis

[ Jo

Natural frequencnes, damping ratios, @
and mode shapes in SD domain

f g

Mode shapes in spatial domain

L¢SD [0) .'

[y ' o et

Fig. 3. Flow chart of analysis.

5. Case Studies

For the validation of the proposed algorithm, b&ithulated and experimental data are analysed.
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5.1 Smulated data

Simulated data is produced by using the ABAQUS &ftec The FE mesh of an irregular plate-like striectuith
fully-fixed and pinned boundary conditions is showiirig. 4. Full details of the FE model and anelyse provided
in Table 1 and the first seven modal frequencieggaren in Table 2.

Fig. 4. FE model: Purple line — fixed in 6 degrees of fil@®; Red line — pinned in 3 degrees of freedom.

Table 1. The parameters of FE simulation.

Material A36 Steel: Young’'s Modulus: 200GPa
Poisson’s ratio: 0.26
Density: 7850 Kgt3
Dimension Width: 1 m Height: 0.5 m Thickness: Ol
Section Solid, Homogeneous
Element size 0.01 mby 0.01 mby 0.01 m
Boundary condition As shown in Fig. 5
Excitation Excitation: Zero-mean Gaussian whiteseq0 ~ 100 Hz)
Sampling frequency 1000 Hz
Number of steps 4000 (4 seconds)
Output 4044 out-of-plane displacement recordings

Table 2. Natural frequencies. (Hz)
Mode 1 2 3 4 5 6 7
FE 35.783 54.863 63.342 71.012 82.858 89.328 94.546

5.2 Experimental PCB circuit board

The circuit board is a real experimental exampl®i& data from an industrial company. It is padlyscured by
other parts so that the camera has only two seppaats of the circuit board in view, as shownim B. The boundary
condition of the circuit board was not known by tbempany, who were able to provide only the follogyi
information. The structure was excited by a randoweitation with a frequency range from 200 to 1600 and the
sampling frequency of the high-speed cameras waats2000 Hz. The total duration of measurement W&39
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seconds, and hence the resulting number of step$S L&8.

(b) part 2
Fig. 5. Circuit board parts 1 (a) and 2 (b).

(a) part 1

6. Result and discussion

In this section, the results of OMA with AGMD angdated kernels in simulated and experimental cases
provided, compared, and discussed.

6.1 Smulated data

The algorithm in 83 allows for a threshold to beaethe coefficient of correlation between theoral data and its
representation by using the updated basis. Intbgept example, the number of modes within thet&timn range is
7, thus at least 7 kernel functions are necessary $uccessful reconstruction of mode shapes6gows that if the
threshold is too low, then over-compression carmpbapi.e. some of the mode shapes might not besssitdly
identified and reconstructed.

Fig. 7 shows the tables of modal assurance cri{pt/&C) values between the original data and ei8@AGMD
terms, 7 AGMD terms and 7 terms of the updatedsbdsie three rows of the figure correspond to fediht OMA
methods (T row: SSI-COV/ 2% row: P-LSCF/ & row: Bayesian). The MAC maps of mode shapes ifiedtfrom
each OMA method with updated SDs are better thasetithat include the 30 most significant terms AGk&nels.
Also, with the same number of kernel functions, samfithe mode shapes were not identifiable usinéilBS, but the
proposed method succeeded in the identificatioprbgerving the important features of the displacemmps. Fig. 8
shows the effect of over-compression, when the murobkernel functions was less than the numbenades, so
that the MAC matrix could not be diagonalised. Eomparison, the compression ratios in terms of data and
number of shape functions are provided in Tablear8] as can be seen, both compression-ratio meaatees
significantly improved by the proposed method.
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Table 3: Compression ratios for simulated data.

10

Data size (bytes)

Compression ratid

Data number

mZession ratio

Original

115 MB

none

4044 data points

none

AGMD

1.76 MB

65.34

30 SD terms

134.80

proposed method

465 KB

253.25

7 SD terms

577.71

Number of kernel functions

.92!

o o

X:0.9832

A7
97

|

0.9

0.92

0.94 0.96

0.98

Threshold of correlation coef ficient
Fig. 6. Number of kernel functions vs. threshold of catiein coefficient.
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Fig. 7. MAC maps for AGMDs and updated SDs. First row:-88IV. Second row: PLSCF. Third row Bayesian
method (x axis - SD, y axis - FE).
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(a) Updated basis of 5 terms by SSI-COV (b) Updated basis of 6 terms by SSI-COV

Fig. 8. MAC maps from over-compressed bases. (x axis -y3js - FE,)
6.2 Printed circuit board (PCB)

For the experiment, the same procedures are appl@gtermine the modal properties, and the data froth parts
of the circuit board are combined in the analysith the resulting identified natural frequencigs\pded in Table 4.

Table 4. Identified natural frequencies of circuit board®$I-COV. (Hz)

Mode 1 2
80 terms of AGMD 534.8856 779.037
Updated basis of 8 terms 535.297 779.0385

Just two modes were identified in the excitatiomgey but because of the effects of noise and otgsaje modes
the number of SDs required to reproduce the dasafeuand to be greater than 2. The compressionsrafiboth parts
1 and 2 of the circuit board are presented in T&blend 6, where the advantages of the proposdubthate apparent.
It is seen in Fig. 9 that eight updated SDs aresgary to achieve a correlation coefficient of 0/98. 10 shows
virtually no difference between 80 AGMD terms and®lated SD for the first mode, whereas slightedéfices can
be seen in the second mode. However, when viewiagwo videos provided in the supplementary infdroma
showing the deflected shapes of the second p#redafircuit board when excited by a sine wave @t %81z and 779.3
Hz respectively, it becomes apparent that the skowde shape from the updated basis is the canect
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Table 5. Compression ratios of circuit board part 1.

12

Data size (bytes)

Compression ratid

Data number

omession ratio

Original 119 MB none 5300 data points none
AGMD 5.14 MB 23.15 80 SD terms 66.25
proposed method 745 KB 163.57 8 SD terms 662.5

Table 6. Compression ratios of circuit board part 2.

Data size (bytes)

Compression ratid

Data number

mession ratio

20

-20

-30

-20

T‘:.' S s o) 8

Fig. 9. Number of kernel functions vs. threshold of catiein coefficient.

-10

Original 51.8 MB none 2791 data points none
AGMD 3.58 MB 14.47 80 SD terms 34.89
proposed method 480 KB 110.51 8 SD terms 348.88
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(c) First mode shape of circuit board part 1: upddtasis (d) Second mode shape of circuit board part 1: iguda
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(e) First mode shape of circuit board part 2: 8tngeof (f) Second mode shape of circuit board part 2:e8th$
AGMD by SSI-COV of AGMD by SSI-COV
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(g) First mode shape of circuit board part 2: upddtasis (h) Second mode shape of circuit board part 2: iguda
of 8 terms by SSI-COV basis of 8 terms by SSI-COV

Fig. 10. The identified scaled mode shapes of both citoodrd parts. (dimensions in mm)
7. Conclusion

A new algorithm has been presented for the comjoress full-field measurements from DIC. It requsran initial
basis as a starting point in an iterative procedBrebably the most suitable initial basis is thedvided by the
AGMD, which is ideal for engineering structures ammnponents, because it is capable of providingrérogonal
basis over an arbitrarily shaped domain. The warkifithe algorithm depends upon the data itselfieisahis feature
that enables it to achieve such significant impnogrts in compression ratio over classical orthobéreanels
(including the AGMD). It is particularly useful tha threshold may be placed on the correlation with raw
measured data to ensure that important featurBf®tlisplacement maps are not lost by truncaticalidation of the
algorithm has been carried out using both simuladsets and physical measurement from a reastinauDIC
investigation.
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