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Abstract

We present our submission to the Semeval
2018 task on emoji prediction. We used a
random forest, with an ensemble of bag-of-
words, sentiment and psycholinguistic fea-
tures. Although we performed well on the
trial dataset (attaining a macro f-score of
63.185 for English and 81.381 for Spanish),
our approach did not perform as well on
the test data. We describe our features and
classification protocol, as well as initial ex-
periments, concluding with a discussion of
the discrepancy between our trial and test
results.

1 Introduction

Written digital communication is increasingly
pervaded by the use of emoji. Classic NLP sys-
tems are not well geared to handle them. Lin-
guists are still working out how to treat them
(Stark and Crawford, 2015; Danesi, 2016).
Even their users may disagree on meaning
(Tigwell and Flatla, 2016; Miller et al., 2016).
A simple approach could be to ignore all emoji
and concentrate on the words of a text, how-
ever this approach may miss valuable meaning
that can be obtained by treating the emoji as
semantic units.

The emoji prediction task (Barbieri et al.,
2018, 2017), encourages research into the cre-
ation of text classification systems which can
identify which emoji was present in a tweet.
This could lead to automated suggestion sys-
tems for emoji, as well as improving the NLP
communities understanding of how to deal
with emoji computationally.

2 Data Acquisition + Preprocessing

The dataset was compiled between October
2015 and May 2016 (Barbieri et al., 2018).

Matthew Shardlow
School of Computing, Mathematics
and Digital Technology
Manchester Metropolitan University
m.shardlow@mmu.ac.uk

Training, trial, and test data emerge from a
80:10:10 split based on chronological order.
We followed the organisers instructions to ob-
tain the training data, however we were only
able to extract 491,486 tweets as some had
been removed by their authors. We tokenised
the tweets using the NLTK tweet tokeniser
(Bird et al., 2009), but did not perform any
further normalisation.

3 Features

3.1 Word-Class Occurrences

We created a set of features that describe
which words occur with each emoji. We cre-
ated a map describing how often each token
occurred alongside each class. Let V be the
vocabulary in terms of tokens. Let C' be the
number of total classes, where each class repre-
sents one emoji. We created a matrix M with
size |V'| x |C| such that each element M, ; indi-
cates the number of times that token V; occurs
with class Cj. This allowed us to see whether
one token occurred mostly in the context of
one or two classes, or whether it occurred with
similar frequency across all classes. This met-
ric is similar to document frequency in infor-
mation retrieval.

To further improve our metric, we applied
a normalisation transformation to the rows
(scaling each row by the total size of the row):

r Mi'
EATe]
> M
k=1

This method favoured lower frequency
terms (i.e., a hashtag that occurs only a few
times with one emoji), so we applied a further
transformation to multiply each row by the log



Table 1: The top 5 words according to our class
occurrence features for each emoji.

Emoji | top 5 words

v love heart my family ve

© obsessed wew heaven foodporn view

& Imao funny Imfao lol hilarious

v’ pink breast sanfranciscoengagement
lovealwaysyje strides

) lit fire mixtape heat flames

© 802-3037  dickensfranklin  dickenso-
fachristmas bagsbycab 7171

© sunglasses shades cool risky coolin
sparkle magical pixie magic getonshim-
mur

royals autism bbn autismspeaks
foreverroyal

s kisses kiss princessmailyana smooches
smooch

: :@ bvillain shredforaliving gdlfashion

= merica usa ivoted imwithher elec-
tion2016
sunshine sun sunny soakin beachin

L 4 purple endalz purplerain alzheimer’s
relay

© mividaesunatombola multi-level silver-
criketgentlemensclub azek wink

1w facts rns realtalk salute t3t

< djsty cheesin braces strasberg fcpx

A christmas merry christmastree tree tis

Ll opus : :@ grigsby cred

@ martian neh silly cray jewelrydesigner

frequency of occurrence of the token:

c|
M= Mj; x> In My,
k=1

These features produced intuitive results.
The top words for a few select classes are as
follows (@: love, heart, my, family; ®: sun-
glasses, shades, cool; #: christmas, merry,
#christmastree)

These features are at the token level, how-
ever our classification labels are at the level of
the sentence. To convert these features to the
sentence level, we used two strategies: average
and max. We calculated the average vector as
the mean of all token vectors in a tweet. We
calculated the max vector by taking the high-
est value across all tokens for each class. This
led to 40 features (20 for average and 20 for
max).

3.2 Sentiment

We employed Vader (Gilbert, 2014), a lexicon-
and rule-based sentiment detection system to
derive a set of sentiment features. Vader fash-
ions features, at sentence level, for positive,
neutral, and negative polarities ranging from
0 to 1 and representing intensity. It also pro-
duces a combined sentiment score, with values
between -1 (negative) and 1 (positive), where
values in [—0.5,0.5] denote neutrality.

3.3 Psycholinguistic Features

We used the MRC psycholinguistic norms (im-
agery, concreteness, familiarity, meaningful-
ness, age of acquisition) (Coltheart, 1981) as
token level features. These were averaged to
give tweet level features in our classification
scheme.

3.4 LIWC

We used the latest version of the Linguistic In-
quiry Word Count (Tausczik and Pennebaker,
2010) system, LIWC2015, to produce a large
set of features, at sentence level, concerning
emotional, cognitive, and structural compo-
nents derived from the texts. As shown in
Table 2, our experiments with those features,
arranged into different subsets, did not pro-
duce any significant improvement; therefore,
we decided not to include those in our submis-
sions.

4 Results

We performed subset analyses to determine
the best feature grouping. In Table 2, we
show our results for different feature sets when
training on the training data and testing on
the trial data.

We also optimised the number of trees in
our random forest, finding 225 to be the best
value for this parameter.

Table 3 shows the detailed classification
report (precision, recall, F1, and support,
by class), and Figure 1 displays the confu-
sion heatmap for our best submission on the
English test dataset. Our system ranked
24th with a macro-averaged Fl-score of
24.982 (n=48, median=23.919, min=2.038,
max=35.991, Q1=18.278, Q3=28.410).0n the
Spanish challenge, our best submission (us-
ing only the average class-occurrence features)



Table 2: Analysis of different feature subsets. Score is reported as Macro F1 throughout. The best
performing feature subset (which we used in our experiments) is marked with an asterix.

Features Macro F1
Avg class occurrence, Vader, Topic-20, Avg MRC 0.6299
Avg class occurrence 0.6273
Max class occurrence 0.6266
Vader 0.1290
Topic-20 0.1126
Avg MRC 0.4922
LIWC 0.0425
Vader, Topic-20, Avg MRC 0.3530
Avg class occurrence, Topic-20, Avg MRC 0.6295
Avg class occurrence, Vader, Avg MRC 0.6319
Avg class occurrence, Vader, Topic-20 0.6287
Avg class occurrence, Vader 0.6301
Vader, Avg MRC 0.5211
Avg class occurrence, Avg MRC 0.6287
Max class occurrence, Avg class occurrence, Vader, Avg MRC *0.6358
Max class occurrence, Avg class occurrence, Vader, Max MRC, Avg MRC 0.6352
Max class occurrence, Avg class occurrence, Vader, Max MRC 0.6355
Max class occurrence, Avg class occurrence, Vader, Avg MRC, LIWC 0.5400

ranked 8", with a macro-averaged Fl-score
of 16.338 (n=21, median=14.912, min=3.896,
max=22.364, Q1=10.892, Q3=16.696) (see
Table 4 and Figure 2 for detailed perfor-
mance). For lack of space, we restrict our sub-
sequent error analysis and findings to the En-
glish challenge. However, these generalise to

Spanish. Figure 1: Confusion Heatmap For English Test
Data
Table 3: Detailed Precision, Recall, F-measure, 7 |
and Support for English Test Data ©
Emo| P R __FI [ % v, H
VO | 3523 6297 4518 | 216 8 |
@ | 279 2551 26.65 | 9.66 -
& | 330 5064 39.96 | 9.07 _
¢ 2041 418 694 | 5.21 2 f
& | 5171 45106 4821 | 7.43 T:’ - B
@ |1036 57 736 |3.23 =i .W
= | 1963 13.33 15.88 | 3.99 v
3049 17.06 21.88 | 5.5 @
2481  6.33 10.08 | 3.1 @
8 | 1745 409 6.62 | 2.35 > |
= | 2634 37.99 31.11 | 2.86 ': =
= | 6064 528 5645 | 3.9 Voeoddoo rPeEEPolo4@o
Predicted label
32.76  40.47 36.21 | 2.53
V | 2628 646 1037 | 2.23
@ | 1327 559 7.87 | 261
128,65 20.34 23.79 | 2.49
& | 1345 5.2 75 | 231
& | 59.81 7243 6552 | 3.0
&8 3789 21.1 27.11 | 4.83
® | 868 347 4.95 | 2.02




Table 4: Detailed Precision, Recall, F-measure,
and Support for Spanish Test Data

Emo P R F1 %
VO | 3254 4844 3893 | 2141
© | 2777 3082 29.22 | 14.08
& | 4211 5377 4723 | 14.99
¢ | 88 54 67 | 352
@ | 1113 1128 11.21 | 5.14
G | 200 11.08 14.26 | 3.97
L | 3093 4332 36.09 | 3.07
@ | 1348 949 11.14 | 453
S 1126 944 1027 | 1.8
B | 4763 35.61 40.76 | 4.24
= | 1626 973 12.18 | 3.39
@ | 1512 315 521 | 413
@ | 303 08 133 | 235
& | 788 474 592 | 274
@ | 351 215 267 | 0.93

2042  9.38  12.85 | 4.16
D1 1893 184 18.66 | 2.12
® | 15 075 1.01 | 1.34
@ | 64 383 479 | 2.09

The Fl-score on the test data was much
lower than that on the trial data (63.185).
We hypothesise that this discrepancy might
be largely due to (1) our system overfitting
the training data and to (2) a test dataset
whose class distribution and discriminant fea-
tures differ in some measure from those of
training and trial.

Figure 4 shows the class (i.e., emoji ranks)
distributions on trial and test data. With re-
spect to training (omitted here for brevity)
and trial data, the shape of the distributions
match almost perfectly. Also, to a large de-
gree, they are rank-preserving! . This is in
contrast to the class distribution of the test
data, which is not rank-preserving, particu-
larly for those labels in the long tail (i.e., below
the three most frequent).

From the classification report (Table 3) and
the confusion heatmap (Figure 1) on the test
data, one could infer, firstly, that our sys-
tem revealed a propensity for predicting the
most frequent emoji, particularly @, @ and

There a few discrepancies; for example, in the
trial data’s class distribution, contrary to the ranking

in Figure 3, (14,%) occurs slightly more often than

(13,9).

Figure 2: Confusion Heatmap For Spanish Test
Data

8
= ..
'v'.
@
2 |
2.
]
o = [ |
)
-
HV ‘
L 4
¢
»
N
V/W:—:@v' TXFNAEIN A A XK 2N
Predicted label

& (accounting for about 40% of the data),
which can be noticed from the consistent high
values on the three left-most columns of the
heatmap. Consequently, those within the sur-
roundings of the peak of the class distribu-
tion, almost consistently, had recall signifi-
cantly higher than precision.

For the majority of lower-support emoji, the
system had a hard time in separating classes
and quite frequently opted for higher-support
ones. Secondly, it conflated classes into groups
which, intuitively, could be seen as clusters
of semantically-similar emoji, taking into ac-
count aspects such as emotions (e.g., joy),
concepts (e.g., Christmas tree), and occasions
(e.g., Christmas), to mention a few.

For instance, most of those associated with
affection, elation, and other positive emotions
and emotional states (e.g., v, @, @, v @)
presented extremely low recall and, frequently,
were misclassfied as €. As an example, ¥ had
a recall of 4.18%, with about 64% of its tweets
predicted incorrectly as 9.

Our system performed better at sep-
arating other seemingly distinct clusters,
such as sunny weather (+,%), patrio-
tism/national holidays/travelling (%), occa-
sions/special events/holidays (4 ), being hu-
morous (&), photography (¥ &) to name
a few. For example, #s recall was 37.99%,
with most of its misclassified instances (18%)



Figure 3: Emoji Rankings For English (USA) and Spanish (ESP) (from (Barbieri et al., 2018))
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Figure 4: Class Distributions For English Trial and Test Data. The x-axis shows the classes (i.e., the
emoji ranks in Figure 3), and the y-axis represents support (i.e., normalised frequencies)
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being assigned to &8, Conversely, ¥’s recall

was 21.1%, with about 32% wrongly predicted
as el

5 Conclusions

We presented a system for the prediction a
single emoji, out of a set of the twenty most-
frequent, for Twitter datasets for (1) English
and (2) Spanish. Our best model was based
on a random forest (n=225) employing an en-
semble of (a) max- and mean-aggregated nor-
malised word-class occurrences, (b) sentiment
and (c) psycho-linguistic features.

Our scores on the test data were signifi-
cantly lower than those on the trial data, and
we postulated that reasons for so were (1) a
random forest that overfitted the training data
and (2) large variance between trial and test
data. It is worth investigating to which ex-
tent, and how, different periods of time explain
that variance. For example, trial and test
might have captured different, emerging trend-
ing topics and events; reflect drift in emoji us-
age; among others. It is reasonable to assume
that, given the nature and the sparsity of the
data, more representative samples might re-

test
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quire much larger number of instances (say,
billions of tweets) and time periods covered.

F1-scores were consistently low for all par-
ticipants, which demonstrates the difficulty of
the task. We are conscious that idiosyncrasies
of Twitter-specific data (e.g., data sparsity,
neologisms, informality, lack of grammatical
structure) make it all more problematic, and
some of our current research involves devis-
ing and incorporating features to address those
challenges.

We believe it would be fruitful to investi-
gate evaluation metrics that, rather than all-
or-nothing (e.g., misclassification rate), reflect
the semantic similarity (or distance) between
labels and predicted classes.
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