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Abstract 

Kidney disease affects 8.8% of people over the age of 18 in the UK and represent a significant public 

and a financial burden for the National Healthcare Service (NHS). Untreated Chronic kidney disease 

(CKD) can develop into end-stage renal failure, leading to costly dialysis or kidney transplantation.  

One of the major causes of CKD is diabetic nephropathy, which is characterised by the progressive 

degradation of nephrons within the kidney as a result of type 1 and type 2 diabetes. One of the major 

pathways that drives the progression of CKD is Tubulointerstitial Fibrosis (TIF), which is linked to 

excessive Extracellular Matrix (ECM) accumulation in the tubules of the kidney nephrons and is 

considered an irreversible process. Currently there is no treatment for TIF and research needs into 

new targets and treatment strategies that can lead to prevention or even reversal of TIF. MicroRNAs 

(miRNAs) regulate protein expression by forming a RNA-induced silencing complex (RISC) and 

targeting specific mRNAs for degradation, the up or downregulation of miRNAs can heavily influence 

the progression of diseases making them a crucial area of research, as the inducing or blocking the 

activity of certain miRNAs could slow or halt disease progression. 

Therefore, the aim of this project was to identify novel fibrosis-related miRNA targets for treatment 

of CKD by exposing Renal Proximal Tubular Epithelial Cells (RPTEC) to sera of patients with different 

stages of diabetic nephropathy. 

To investigate the effect of serum factors in patients with diabetic nephropathy on initiating TIF, 

human renal proximal tubular (HK-2) cells were exposed for 24h or 48h to sera from 16 patients at 

different stages of CKD or sera from age and gender matched healthy volunteers. Then the effects of 

1% human serum on cell viability, Plasminogen activator inhibitor-1 (PAI-1) reporter gene assay, PAI-

1 and collagen 1 protein expression, and the regulation of 84 fibrosis-related miRNAs were studied. 

The results demonstrated that progressive stages of CKD reduced cell viability, increased the protein 

expression of PAI-1 and collagen-1 (in particular by stage 4 CKD sera), and dysregulated the expression 

of a number of fibrosis related miRNAs at 24h or 48h of exposure to serum. A number of miRNAs were 

up- or down-regulated by sera from patients with different stages of CKD, particularly those related 

to signal transduction and transcriptional regulation, as well as pro-fibrotic miRNAs. Of particular 

interest for further investigations are the following miRNAs that were upregulated both at 24h and 

48h: miR-449b-5p (the only miRNA upregulated by all patient sera), miR-122-5p (the only miRNA 

upregulated by sera of CKD 3a stage patients) and miR-217 (the miRNA down-regulated much more 

severely than any others).  

In conclusion, this project demonstrated that the increasing stage of CKD in patients with diabetic 

nephropathy has a detrimental effect on proximal tubular cells in vitro and dysregulates the 

expression of fibrosis-related miRNAs. Further research is required to identify the genes regulated by 

key miRNAs and to determine their suitability as therapeutic targets in treating TIF and CKD.  
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1 Introduction 

1.1 Kidney disease 

Acute and chronic kidney diseases are costly for the NHS. They affects 8.8% of people aged 18 and 

over in the UK, and about 1.3% of the NHS budget is spent on treating kidney disease.  

Chronic kidney disease (CKD) is caused by different factors, the main being diabetes mellitus and 

hypertension (Nasri and Rafieian-Kopaei, 2015). These can lead to kidney damage by inducing the 

progressive loss of functioning nephrons, which is one of the main characteristics of CKD (Schnaper, 

2014). If left untreated, CKD can develop into end-stage renal disease (ESRD), which requires costly 

and life altering treatments such as dialysis or a kidney transplant. The hallmark of CKD is the 

progressive destruction of the renal tubules in the process of tubulointerstitial fibrosis. 

 

1.2 The Nephron and the Renal proximal tubular epithelial cell  

Within the kidney the process of filtering waste products from the blood occurs in independent units 

called nephrons (Kurts et al., 2013). There are about a million nephrons in each kidney, and each one 

consists of a glomerulus and tubules. The glomerulus contains a mesh of fine capillaries wrapped up 

by podocytes, glomerular basement membrane, intercalating mesangial cells, and the Bowman’s 

capsule (Figure 1). The main function of the glomerulus is the filtration of primary urine. The content 

of the primary urine in healthy people is close to serum plasma with the exception of proteins with 

molecular weight higher than 60-100 kDa (Tojo and Kinugasa, 2012). The primary urine is concentrated 

to final urine as it passes through a single tubule that leaves each glomerulus. The tubule consists of 

several segments (proximal tubule, loop of Henle, and distal tubule), each with defined functions.  

 

Fig.1: Basic kidney morphology (Kurts et al., 2013) 

A: Gross morphology of the kidney showing the renal cortex, renal medulla, renal pelvis and ureter. B: Structure 

of the nephron: glomerulus with afferent and efferent arterioles, proximal convoluted tubules, loop of Henle, 

distal convoluted tubules and collecting duct. C: A cross section of the glomerulus demonstrates the structure 

of the Bowman’s capsule and the location of the capillaries, podocytes, glomerular basement membrane, and 

mesangial cells in relation to the proximal tubular epithelial cells. 

A 

B 

C 
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Located within the nephron between the Bowman’s capsule and the loop of Henle, the renal proximal 

tubular epithelial cells (RPTEC) are essential in normal kidney function. They play a major role in 

reabsorption of glucose, proteins and amino acids, and substances such as calcium and magnesium 

and excretion of metabolic waste and xenobiotics. The RPTEC also maintain the pH homeostasis by 

excreting bicarbonate and synthesising of ammonia (Van der Hauwaert et al., 2013). The important 

homeostatic function of the RPTEC is underlined by the fact that damage to the proximal tubular cells 

that leads to tubulointerstitial fibrosis is the key factor driving the progression of CKD to ESRD. 

Injury to the proximal tubular cells can induce them to secrete pro-inflammatory and a pro-fibrotic 

effectors. Proteins such as albumin and immunoglobulin G (IgG) which can be present in the urinary 

filtrate are able to stimulate the proximal tubular cells to express inflammatory molecules and 

chemokines (Tang and Neng Lai, 2012). This can happen through the activation of several pathways, 

including nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinases. The activation of 

these pathways can result from hyperglycaemia (Duran-Salgado and Rubio-Guerra, 2014), which is a 

hallmark symptom of diabetes. Prolonged hyperglycaemia causes generation of Advanced Glycation 

End products (AGE) and increases oxidative stress within the kidney, leading to production of reactive 

oxygen species and the activation of the renin-angiotensin system. This activation increases the levels 

of angiotensin-II, endothelin-1 and urotensin-II (Lim, 2014), the imbalance of levels leads to 

vasoconstriction and the production of pro-inflammatory and pro-fibrotic molecules through the 

MAPK signalling cascades. 

1.3 Diabetes and kidney disease 

Both type 1 (insulin-dependent) and type 2 (insulin-resistant) diabetes can cause renal damage, which 

can lead to diabetic nephropathy. Diabetic nephropathy (DN) is characterised by the abnormal levels 

of urinary albumin and structural and functional changes within the glomeruli (Lim, 2014). The damage 

to the nephrons causes increased proteinuria (excessive amount of protein in the urinary filtrate) and 

decreasing glomerular filtration rate. The increased amount of filtered protein directly (by inducing 

harmful signalling cascades) or indirectly (through increased protein reabsorption and catabolism) can 

damage the RPTEC, thus leading to decreased kidney function. 

DN causes mesangial expansion and nodular glomerulosclerosis which cause the basement membrane 

to thicken (Lim, 2014). A significant reason for this change is the increased recruitment and activation 

of immune cells within the kidney. Tubular epithelial cells produce chemokines such as Monocyte 

Chemoattractant Protein-1 (MCP-1), Colony Stimulating Factor-1 (CSF-1) and Intracellular Adhesion 

Molecule-1 (ICAM-1) in response to specific cell signalling cascades. These cascades include Mitogen-

Activated Protein Kinases (MAPK) and Protein kinase C-β and activate nuclear factor kappa B (NF-κB). 

The chemokines released attract and promote infiltration of monocytes from the circulating blood as 

well as differentiation of monocytes into macrophages. Once activated the macrophages assist to 

progressive DN by the release of inflammatory cytokines and profibrotic cytokines leading to factors 

such as oxidative stress, fibroblast activation and further inflammation, all of which will cause renal 

injury and contribute to the development of CKD. 

Chronic kidney disease can be classified into stages according to estimated glomerular filtration rate 

(eGFR) which is the rate of ultrafiltration of plasma from blood into Bowman’s space as it traverses 

the glomerular capillaries (Levey et al., 2015). The stages of CKD are numbered from 1 to 5  (Thomas 

et al., 2008): 

 Stage 1: normal eGFR ≥ 90ml/min per 1.73m2   

 Stage 2: eGFR between 60 to 89ml/min per 1.73m2 
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 Stage 3a: eGFR between 45 to 59ml/min per 1.73m2 

 Stage 3b: eGFR between 30 to 44ml/min per 1.73m2 

 Stage 4: eGFR between 15 to 29ml/min per 1.73m2 

 Stage 5: eGFR of < 15ml/min per 1.73m2  

CKD causes many complications during its progression to end stage renal failure, which increase in 

effect as the stages advance. A normochromic, normocytic anaemia usually accompanies CKD 

(Thomas et al., 2008), this can arise from the decreased secretion of the hormone erythropoietin from 

the kidney which is essential to the growth of red blood cells. The tubular atrophy caused by the 

progressing CKD leaves less capacity for erythropoietin synthesis, which then leads to anaemia. 

Another issue CKD can cause is hyperphosphatemia, this results from renal phosphate excretion being 

decreased due to reduced production of vitamin D (Hruska et al., 2008). This is generally observed in 

stage 3 patients and will lead to bone and mineralisation issues such as renal osteodystrophy. 

Cardiovascular disease risk is also increased with increasing stage of CKD due to low eGRF and 

increased albuminuria (Gansevoort et al., 2013). The lower eGFR leads to left ventricle hypertrophy, 

which is thought to be caused also by increased inflammation and high levels of C-reactive protein 

and fibrinogen. The increased risk is also partially assisted by CKD complications such as hypertension 

and diabetes (Dervisoglu et al., 2012).  

 

1.4 Tubulointerstitial fibrosis 

Tubulointerstitial fibrosis (TIF) is the hallmark of CKD progression, regardless of the initial cause 

(Efstratiadis et al., 2009). It is characterised by the abnormal accumulation of extracellular matrix 

(ECM) proteins (e.g. collagens) in the renal interstitium, which is the space between the tubules. The 

excessive ECM deposition leads to a cycle of inflammation where the macrophages cause the epithelial 

cells to secrete inflammatory chemokines such as Interleukin-1 (IL-1), IL-6 and TGF-β, which will 

further increase inflammation leading to the decreased function of the kidneys (Michael Zeisberg and 

Neilson, 2010). Other elements of ECM contribute to TIF development, such as the increased 

expression of tissue transglutaminase which is involved in stabilising and increasing protease 

degradation resistance in the ECM (Farris and Colvin, 2012).  

TIF can undergo 4 phases (Loeffler and Wolf, 2014): first, the injury phase when cells are activated and 

populate the interstitium where they release pro-inflammatory and injurious molecules, followed by 

the second phase when fibrosis promoting factors like TGF-β1 are produced. The third phase is when 

ECM production is increased and matrix degradation is decreased which leads to the final phase when 

nephrons are continuously destroyed and renal function declines.  

In diabetes the major triggers of TIF are hyperglycaemia and inflammation coming from the kidney 

injury. Hyperglycaemia promotes the production of TGF-β1 through activating the protein kinase-C 

pathway, increasing AGE production and oxidative stress. They activate the renin-angiotensin system 

and lead to the production of further pro-fibrotic factors (Wolf, 2006). The infiltration of macrophages 

in the tubulonterstitium causes the recruitment of more macrophages through the activity of 

chemokines such as ICAM-1 and MCP-1. The macrophages also recruit fibroblasts which altogether 

leads to the excessive build up of ECM. These triggers are apparent in DN patients which affected all 

the patients involved in this research. 

 

 



 

5 
 

1.5 Epithelial to Mesenchymal Transition (EMT) 

Fibroblasts are connective tissue cells which are derived from the mesenchyme (Brohem et al., 2013) 

and contributes heavily to the increased ECM. They represent a large portion of the cells in the renal 

interstitium, alongside dendritic cells, macrophages and lymphocytes (M. Zeisberg and Kalluri, 2015). 

Fibroblasts can attach to injured tubular basement membrane and change phenotype into 

myofibroblasts which are responsible for the production and accumulation of Collagen-I and Collagen-

III (Fujigaki et al., 2005). As well as fibroblasts, bone marrow fibrocytes that are circulating in the blood 

are recruited to the interstitium (Yan et al., 2016). The recruitment is due to chemokines such as 

Chemokine Ligand-2 (CCL2) which is  secreted by injured cells and macrophages, the fibrocytes express 

a certain chemokine receptor Chemokine Recptor-2 (CCR2) which is found to be a receptor to CCL2 

(Sakai et al., 2010). Fibrocytes produce ECM due to stromal cell markers such as Collagen-1 and CD34 

that can be detected on the cells and fibrocytes are found in injured kidneys (Meran and Steadman, 

2011). TGF-β1 and MCP-1 is also thought to be produced by fibrocytes but the action of fibrocytes is 

still not fully explored but may be an important contributor to fibrosis. 

A major mechanism contributing to TIF is Epithelial-Mesenchymal Transition (EMT) where epithelial 

cells are transitioned into mesenchymal myofibroblast cells (Zhao et al., 2013). The mechanism 

involves epithelial cells losing markers such as E-Cadherin and cytokeratin and then expressing 

mesenchymal markers such as α-smooth muscle actin (α-SMA).  The mechanisms of this process have 

not been fully understood but it is thought that certain transcriptional factors and signalling pathways 

play a role, particularly those that repress E-Cadherin. The activity of Snail1 is one such protein that is 

theorised to cause E-Cadherin suppression as it binds to E-Cadherin promoter regions and represses 

expression of it (Michael Zeisberg and Neilson, 2009). The expression of Snail1 depends on β-Catenin, 

which plays a role within EMT, it controls the expression of Snail1 through the formation of a complex 

with T cell factor. 

The increased accumulation of ECM is also aided by the induced expression of the matrix 

metalloprotease 9 (MMP-9) gene; this disrupts tubular basement membranes by the cleaving of 

Collagen-IV and Laminin. It is also thought that MMP-9 is involved in the activation of TGF-β1 which 

as discussed is pivotal in the mechanisms of TIF such as inducing EMT (Zhao et al., 2013). This induced 

gene expression is thought to be caused by tissue plasminogen activator (tPA) (Farris and Colvin, 

2012). 

Tubular epithelial cells are thought to contribute to increased extracellular matrix with the process 

EMT (Farris and Colvin, 2012) due to acute damage to the cells from the increased oxidative stress 

(Meran and Steadman, 2011). During this process cells lose epithelial markers and acquire 

mesenchymal markers which increases the motility of the cells and allows them to move into the 

interstitium where they add to the ECM. 

 

1.6 PAI-1 and Tubulointerstitial Fibrosis 

The Plasminogen activator inhibitor-1 (PAI-1) gene is located on the chromosome 7q21.3-q22 in 

humans (Ghosh and Vaughan, 2012) and produces a protein of 45 kDa. PAI-1 can be synthesised by 

different cell types such as macrophages, cardiomyocytes and also renal proximal tubular epithelial 

cells. There are other forms of PAI (e.g. PAI-2 and PAI-3), which have more localised expression. For 

example, PAI-2 is found in high levels in placental matter (Ghosh and Vaughan, 2012) and is thought 

to be important in placental tissue homeostasis and foetal growth regulation. PAI-3 is synthesised in 

the liver and may be important in regulating male reproductive tissue. 
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PAI-1 protein expression is upregulated by high glucose and TGF-β1 (Lee and Ha, 2005). TGF-β1 effect 

on PAI-1 expression is mediated by reactive oxygen species (ROS) which, as discussed before, are a 

major factor in the progression of diabetic nephropathy. TGF-β1 induces PAI-1 expression via the 

action of p53 and Smads which form a complex to activate the transcription of the PAI-1 gene 

(Kawarada et al., 2016). 

PAI-1 protein is expressed as a stable inactive form, and when activated, it binds to the active sites of 

the urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA) (Eddy and Fogo, 

2006). uPA and tPA are the primary activators of plasminogen into plasmin and facilitate fibrinolysis. 

Inhibition of uPA and tPA inhibits the degradation of ECM components, leading to accumulation of 

ECM. As shown in Figure 2, on tissue level the main role of PAI-1 is to assists wound healing by 

preventing the degradation of ECM through the inhibition of tPA and uPA (Ghosh and Vaughan, 2012). 

 

 

Fig.2: Role of PAI-1 in plasminogen activation and regulation of ECM turnover  

PAI-1 regulates the ECM turnover by inhibiting the activity of t-PA and u-PA. t-PA and u-PA activate plasminogen 

into plasmin which causes the degradation of ECM by several mechanisms, including the activation of matrix 

metalloproteinases. The inhibition of t-PA and u-PA by PAI-1 causes the excessive build-up of ECM by inhibiting 

plasmin activation. 

 

The build-up of ECM proteins is a key feature of TIF and is exacerbated by higher level of PAI-1 thus 

making PAI-1 a suitable marker for tissue fibrosis. It has been found that PAI-1 is overexpressed in the 

glomerular mesangial cells of diabetic nephropathy patients (Lee and Ha, 2005). The high levels of 

glucose and the increased TGF-β lead to overexpressed PAI-1 within the kidney making it an important 

marker in research involving diabetic nephropathy.  

 

1.7 Collagen-I and Tubulointerstital Fibrosis 

Collagen-I is a major component of the ECM accumulated during fibrosis in general so it can be used 

as a marker of fibrosis. The cause of the increased collagen during fibrosis is thought to be from 

myofibroblasts arising from processes such as EMT (Chen and Raghunath, 2009) and endothelial-to-

mesenchymal transition (EndMT). EndMt is stimulated by TGF-β2 with TGF-β3 being involved in the 

invasion and migration of the cells into the underlying tissue. EMT and EndMT are also thought to be 

induced by the Collagen-1 by the activation of the signalling receptors α2β1 integrin, discoidin domain 
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receptor 1 and 2 (Medici and Kalluri, 2012). Within glomerulosclerosis, there is Collagen-I and III 

expression that’s thought to be related in the late stages of glomerulosclerosis and the development 

of the Kimmelstiel-Wilson nodules which are large deposits of matrix within the nephron (Mason and 

Wahab, 2003). 

 

 

 

1.8 The effect of Cytokines on ECM production 

Cytokines are proteins produced by a broad spectrum of cells and can influence cell actions and cell 

interactions (Zhang and An, 2007) in an autocrine, paracrine or endocrine way. In CKD cytokines are 

produced by a variety of renal and endothelial cells and paly an essential role in renal fibrosis. 

The key cytokine that drives renal fibrosis is Transforming Growth Factor beta (TGF-β). TGF-β is 

essential for the process of tissue repair. However, overexpression of TGF-β has been linked to 

abnormal ECM accumulation by renal and endothelial cells (Loeffler and Wolf, 2014). In endothelial 

cells, TGF-β can regulate cell proliferation and cell apoptosis, and contributes to the production of 

myofibroblasts by the process of EndMT (Loeffler and Wolf, 2014), which leads to increased ECM in 

the interstitium. TGF-β has also been shown to cause injury to tubular cells through transcriptional 

regulation of apoptotic factors, increasing the levels of reactive oxygen species which precedes 

apoptosis (Gentle et al., 2013). RPTECs have been shown to secrete TGF-β when stimulated by 

albumin, which in kidney disease high levels of albumin is a hallmark (Tang and Neng Lai, 2012). As 

discussed before the production of TGF-β is heavily linked with diabetic nephropathy with the redox 

imbalance causing a cycle of TGF-β1 activation and production and also affecting PAI-1 production 

through via the action of p53 and Smads which form a complex to promote the activity of PAI-1 gene 

(Kawarada et al., 2016). 

 

1.9 MicroRNAs and Tubulointerstital Fibrosis 

MicroRNAs (miRNAs) regulate protein expression by forming a RNA-induced silencing complex (RISC) 

and targeting specific mRNAs for degradation (Wahid et al., 2010). miRNAs are organised in genes, 

which transcribed to a primary miRNA. The primary miRNA is cut into precursor miRNAs (pre-miRNA) 

within the nucleus by the class 2 RNase III enzyme Drosha (Wahid et al., 2010). The pre-miRNAs are 

then transported into the cytoplasm by the nuclear transport receptor exportin-5 and processed into 

21-25 nucleotides long mature miRNA by RNase III Dicer. RISC is formed in expectation of a target 

complementary mRNA for silencing (Ha and Kim, 2014). 

The expression of miRNAs is highly regulated and they can affect different processes such as cell 

proliferation, death, immunity and fibrosis. The general function of miRNAs are in gene regulation by 

targeting and inhibiting the translation of specific complementary mRNAs leading to decreased 

translation of the target protein. Furthermore, evidence suggests that miRNAs can also upregulate 

gene expression (Orang et al., 2014), but this is specific to cell type and the presence of certain factors. 

miRNAs are essential for normal kidney homeostasis. It has been shown that podocyte specific 

inactivation of Dicer can induce kidney failure through proteinuria and glomerulosclerosis (Patel and 

Noureddine, 2012). While the miRNA involvement in this process is not fully understood, it has been 

suggested that they play a role in preventing it. Furthermore, particular miRNAs seem to be involved 
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in TIF, either by being up- or down- regulated by TGF-β or by regulating the TGF-β axis. It has been 

demonstrated that TGF-β1 induced miR-192 up-regulation increased collagen production in diabetic 

mice (X. Jiang et al., 2010), while down-regulation of miR-200 promotes the expression of TGF-β2 

which leads to EMT (Patel and Noureddine, 2012). Research has been conducted into the expression 

of miRNAs with proximal tubular cells (Kito et al., 2015). It was found as discussed that miR-200 and 

miR-192 were found to be significantly increased after acute kidney injury. 

 

 

1.10 miRNA Potential therapies 

As miRNAs are involved in TIF progression there could be potential in suppressing or delivering specific 

miRNAs to reduce ECM production and slow the progression of CKD or even reverse kidney disease. 

As mentioned above, specific fibrosis-related miRNAs have been found to be upregulated in kidney 

injury. Although blocking the activity of these specific miRNAs can halt the progression of CKD, 

research in this area is still limited. There is evidence that specific antibodies can block the action of 

miRNAs, and inhibition or delivery of miRNAs can suppress adverse effects in cultured cell models (Shi 

and Shi, 2011). Despite obstacles in the delivery of miRNA and antibodies to the target cells due to 

their instability in the circulation (Baumann and Winkler, 2014), it is important to continue the 

research into novel mechanisms leading to TIF and CKD. 

 

1.11 Aims and objectives 

The aim of this study is to identify novel fibrosis-related miRNA targets for treatment of CKD by 

exposing RPTEC to sera of patients with different stages of diabetic nephropathy.  

To achieve that, the following objectives were pursued in this research project: 

1. To develop and validate a cell based system for high-throughput screening of fibrosis using 

immortalised human RPTECs (HK-2 cells) transfected with a soluble luciferase reporter gene under 

the transcriptional control of PAI-1 promoter. 

2. To test the effects of sera from volunteers and patients with CKD on the transcriptional activation 

of PAI-1 promoter and the protein expression of collagen-1 and PAI-1 in HK-2 cells. 

3. To examine the dysregulation of fibrosis-related miRNA expression in response to patient sera in 

HK-2 cells. 
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2 Methods 

2.1 Human serum samples from patients and volunteers 

2.1.1 Patient serum samples 

Anonymised sera from 16 patients with diabetic nephropathy and kidney disease stages from 3a to 5 

were provided by the Nephrology Department of the Salford Royal Trust (Table 1). NHS ethical 

approval and informed consent were obtained for this study by the Salford Royal Trust. The samples 

were collected in 3.5ml silica coated BD Vacutainer bottles with Hemogard stops. The samples were 

then centrifuged for 10 minutes at 2000g and then stored at -80°C.  

Table 1: Patient age and CKD stage 

Patient number Age CKD stage 

P-01 40 3a 

P-02 50 3a 

P-03 56 3a 

P-04 59 3a 

P-05 46 3b 

P-06 58 3b 

P-07 42 3b 

P-08 53 3b 

P-09 38 4 

P-10 55 4 

P-11 40 4 

P-12 45 4 

P-13 57 5 

P-14 59 5 

P-15 61 5 

P-16 58 5 

Mean age  51 (± 8)  

 

2.1.2 Volunteer recruitment and specimen collection 

The study was approved by the MMU ethics committee. Age and gender matched healthy volunteers 

were recruited at the MMU campus and a screening questionnaire was used to select suitable 

volunteers. Informed consent was provided by the volunteers before blood and urine collection. The 

samples were anonymised and all the volunteer and patient details were kept confidential.  

Seven gender and age matched volunteers were selected for the study and serum and urine samples 

were collected after overnight fasting. The height and weight of the participants was measured, and 

the fasting blood glucose levels were measured using the Accu-chek Aviva Blood glucose meter 

(Williams Medical: W707) (Table 2). Twenty ml of blood were taken from each volunteer via 

venepuncture by a trained phlebotomist in 2 BD Vacutainer® plastic serum tubes (BD: 367895). The 

tubes were inverted 5-6 times then left at room temperature for 60 minutes. The blood was 

centrifuged at 1,300g for 10 minutes at 25°C and serum aliquots of were stored at -80°C.  

Urine samples were provided by the volunteers in sterile containers. The urine was centrifuged for 10 

minutes at 1,000g and pH, protein concentration and glucose were measured using the Valutest 13 
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Parameter Urinalysis Reagent Strips (Williams Medical: D2207). The values for each volunteer were 

within the normal range of the tests.  Aliquots of urine were stored at -80°C. 

 

Table 2: Volunteer age, fasting blood glucose and Body Mass Index 

Volunteer Number Age Blood glucose level (mM) Body Mass Index (BMI) 

V-01 42 5.1 29.8 

V-02 57 5.1 20.9 

V-03 35 4.9 29.4 

V-04 45 4.6 20.8 

V-05 60 5.3 25.0 

V-06 60 5.6 25.1 

V-07 53 5.9 23.5 

Mean age 50 (± 9.75)   

 

2.2 Cell culture 

2.2.1 Cells and media 

Commercially available human renal proximal tubular cell line HK-2 cells (ATCC® CRL-2190™) were 

used in all experiments. The cells were maintained in growth media consisting of 6-10% Foetal Calf 

Serum (FCS), 50:50 DMEM (Dulbecco’s Modified Eagle Media):Ham’s F12 Medium, 500U/ml Penicillin 

Streptomycin and 2mM Glutamine. The media were prepared within a sterile environment and stored 

at 4°C. The cells were supplemented with fresh medium every 2-3 days until the cell confluence 

reached 80-90%. 

Serum free media (SFM; DMEM:Ham’s F-12 supplemented with penicillin/streptomycin) was used to 

growth arrest the cells when they had reached appropriate confluency.  

 

2.2.2 Splitting and seeding cells 

The HK-2 cells were grown in a T75 flask at 37°C with 5% CO2 and 10 ml of growth medium. Upon 

reaching around 80-90% confluency, the cells were rinsed twice with sterile Phosphate buffered saline 

(PBS) to remove any cell debris. The cells were detached using 0.25% trypsin-EDTA with Phenol red 

(Gibco; 25200-056) and the detachment process was monitored using a light microscope. 

The detached cells were then re-suspended in growth medium and were counted using a 

haemocytometer. The number of cells seeded depended on the type of plate used. For 6-well plates 

75,000 cells were seeded with 2 ml of growth medium per well; 16,600 cells were seeded with 1ml of 

growth media per well in 24-well plates; 8,000 cells were seeded with 200µl of growth media per well 

in 96-well plates. 

 

2.2.3 In vitro model of Acidosis  

The HK-2 cells were grown to around 80% confluency and then the growth medium was changed to 

(SFM) for 24 hours to growth arrest the cells. The media were then replaced with SFM of different 

pHs. 
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Bis-Tris solution composed of 0.625M bis-Tris (Fluka 14880) and 0.625M bis-Tris hydrochloride (Sigma 

136032) was used to adjust the media to pH 7.4, 7.0 or 6.7. For pH 7.4 the composition of the bis-Tris 

mixture was 83% bis-Tris and 17% bis-Tris hydrochloride; for pH 7.0 - 35% bis-Tris and 65% bis-Tris 

hydrochloride; for pH 6.7 the mixture contained 17% bis-Tris and 83% bis-Tris hydrochloride. The SFM 

was mixed with the respective bis-Tris solution in a 50:1 ratio. The pH was then adjusted using a pH 

meter to achieve target pHs of 7.4, 7.0 or 6.7 and the media were sterile filtered. For any assays with 

time points over 24 hours the media were refreshed daily. 

 

2.2.4 Exposure of HK-2 cells to human serum  

For western blots and miRNA array experiments 75,000 cells were seeded per well in 6 well plates and 

3,000 cells were seeded per well in 96-well plates for viability assays. When the cells reached around 

80% confluency, the growth medium was removed, the cells were rinsed with PBS, and growth 

arrested using SFM. After 24 hours, the cells were rinsed with PBS and were exposed to SFM alone or 

1% human serum for 24 or 48. 

 

2.2.5 Cell viability 

Cell viability was measured using the Cell Counting Kit-8 (Dojindo, Japan; CCK-8) according to the 

manufacturer’s protocol. Briefly, 3,000 cells were seeded per well in 96-well plates and were cultured 

in grow medium until reaching 80% confluency. The cells were then exposed to either SFM or 1% 

human serum for 24h or 48h. After 23 or 47 hours, 10 µl of the kit reagent was added to the cell media 

and absorbance was measured at 450nm and 650nm every hour for 3 hours using the Multiskan GO 

plate reader (ThermoScientific; 51119200). The reagent added forms an orange dye when reduced by 

dehydrogenase activities within the cells. The amount of the dye is proportional to the number of 

living cells.  

 

2.3 PAI-1 Reporter gene construct and assays 

2.3.1 Amplification of PAI-1 promoter sequence and cloning into a luciferase reporter vector 

The PAI-1 promoter sequence (955bp long: upstream of the start codon -853bp; downstream +82bp) 

was amplified using Q5 high fidelity PCR kit (New England Biolabs) and specific primers (Table 3A). The 

PCR products were separated by after agarose gel electrophoresis, the amplified fragment was excised 

from the gel and purified, and restriction sites were introduced at the ends using the primers shown 

in Table 3B. 

Restriction enzymes Kpnl and XhoI (New England Biolabs: R3156, R0146 respectively) were used to 

linearise by double digestion the luciferase reporter vector pNL 2.3 and to create the cohesive ends in 

the PAI-1 fragment. Small restriction fragments were subsequently removed from the reaction using 

the Purelink PCR micro kit (Invitrogen: K310010) according to the manufacturer’s protocol.  

Quick-Stick Ligase kit from Bioline (BIO-27027) was used to ligate the purified restriction digested PAI-

1 products and the pNL 2.3 vector and the efficiency of the reaction was determined via agarose gel 

electrophoresis. 

A heatshock transformation was used to clone the recombinant plasmids in High efficiency competent 

Escherichia coli DH5α bacteria (New England Biolabs, UK). The ligation products were added to the 
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DH5α bacterial suspension and placed on ice for 30 minutes followed by 30 seconds at 42°C, then back 

on ice for 5 minutes. Successful transformants were selected at 37°C on Luria-Bertani agar with 100 

µg/ml ampicillin. Selected colonies were amplified and recombinant plasmid DNA was isolated using 

the QIAPrep Miniprep kit from Qiagen (27104) according to the manufacturer’s protocol. 

 

Table 3: PAI-1 Sequences of PAI-1 amplification and restriction sites primer sequences 

A) PAI-1 amplification primers; B) Restriction site primers: GGTACC - Kpnl restriction site; CTCGAG - 

Xhol restriction site; TATGGAC and TAAGCTTT: mismatch sequences which facilitate restriction 

digestion. 

 

A)Amplification Primers  Primer sequence (5’ to 3’) 

Forward Primer GCA GCT CGA AGA AGT GAA AC 

Reverse Primer GTG TGG GTC TTC TTG ACA GC 

B) Restriction site Primers Primer sequence (5’ to 3’) 

Forward Primer TATGGAGGTACCGCAGCTCGAAGAAGTGAAAC 

Reverse Primer TAAGCTTCTGAGCGTCAGGAATTCAGCTGCTG 

 

 

2.3.2 Transfection of plasmids into HK-2 cells 

Confluent HK-2 cells (80%) were transfected in 6 well plates with a mixture of 12µl Lipofectamine, 150 

µl of antibiotic-free SFM and 2.5 µg of the PAI-1 reporter construct or native pNL 2.3 vector. The cells 

were then incubated for 2 hours at 37°C after which 1 ml of antibiotic-free growth medium was added 

to each well and the cells were incubated overnight at 37°C in 5% CO2.  

The medium was then replaced with growth medium supplemented with 50 µg/ml of Hygromycin and 

the cells were incubated for 48 hours. Following this the medium was replaced with growth medium 

supplemented with 500µg/ml of Hygromycin. The medium was refreshed every 3-4 days while the 

cells were examined for the formation of foci. Selected recombinant and native pNL 2.3 clones of HK-

2 cells were expanded and tested for luciferase expression. 

 

2.3.3 Luciferase Reporter Gene Assay 

2.3.3.1 Promega End-point Luciferase assay 

Luciferase activity was measured in media from cells transformed with PAI-1 luciferase reporter gene 

construct. The cells were seeded into 6-well plates and grown to 80% confluence after which the cells 

were exposed to SFM for 24 or 48 hours. At the end of the treatment the plates were gently swirled 

and the medium from each well was transferred to an Eppendorf tube. The cells were rinsed with PBS 

and any residual PBS was removed from the wells. The plates were then stored at -20°C until analysis 

for total cellular protein was carried out. 

The harvested media samples were centrifuged at 900 g for 10 min at 4°C. Distilled water (40 µl) and 

10 µl of supernatant were mixed and applied to white 96 well plates suitable for luminescence 

measurements. 

Nano-Glo® Luciferase Assay system (Promega, UK; N1120) was used according to the manufacturer’s 

protocol to measure luciferase activity. Briefly a luciferase buffer solution consisting of Luciferase 
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buffer and Nanoluc substrate (50:1) were added to each well and left to incubate for 2 minutes at 

room temperature. The luminescence was measured using a Synergy HT microplate reader (BioTek) 

and the luciferase intensities were normalised to the total protein content of each well, as measured 

by a BCA assay. 

 

2.3.3.2 Time course of Luciferase secretion using Nano-Glo assay kit  

To be able to analyse the PAI-1 expression in a time course experiment 20 µl of media were removed 

from each well at the respective time point and luciferase activity was measured as described above.  

 

2.3.3.3 Luciferase activity measured using Coelenterazine substrate 

In the course of the experiments, the Nano-Glo® Luciferase Assay system kit was replaced by the 

coelenterazine luciferase substrate (Gold bio, CZ10) due to its cost-effectiveness. Experiments 

demonstrated that the two approaches produced similar results although lower luciferase intensity 

was observed using coelenterazine (data not shown). 

One mg/ml stock solution of coelenterazine in methanol was diluted 1:10000 in PBS. The content of 

the luciferase assay buffer is listed in Table 4.  

 

Table 4: Composition of Luciferase Assay Buffer  

Master Luciferase Buffer Luciferase Assay Buffer  

50mM Tris Phosphate, pH 7.8 5ml Master Luciferase Buffer 

2mM DTT 3ml Glycerol 

2mM EDTA 2ml 10% Bovine Serum Albumin (BSA) 

2% Triton X-100  

16mM MgCl2 (added last)  

 

Prior to the assay, 20 µl of luciferase assay buffer and 40 µl of the coelenterazine substrate solution 

were mixed and added to 20 µl of undiluted sample per well in a white 96 well plate. The luminescence 

was read and normalised as described above. 

 

2.4 Serum protein fractionation and Western Blotting    

2.4.1 Human Serum fractionation 

Human serum was fractionated according to molecular size by the use of two different filter devices: 

a 100kDa Centrisart 1 Centrifugal ultrafiltration unit (Sigma-Aldrich; 13269E) and a 50kDa Vivaspin 2 

ultracentrifuge tube (GE Healthcare; 28-9322-57). The filters were used according to their 

manufacturer’s handbooks. Briefly, 100µl of PBS were applied on the filters and the devices were 

centrifuged at 1,000g for 5 minutes to remove any trace amounts of glycerine, which could interfere 

with the results.  

Using the 100kDa filter, 600 µl of whole serum was centrifuged at 1,000g for 5 minutes, followed by 

20 minutes of centrifugation at 2,000g at 15°C. The filtrate and the concentrate obtained were 

reconstituted to 600 µl with PBS. The 100kDa filtrate was then filtrated through the 50kDa filter using 
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the same centrifugation conditions, with the concentrate and filtrate being reconstituted to 600 µl 

with PBS. The samples were then diluted as required either for subsequent silver protein staining of 

SDS-PAGE gels. 

 

 

2.4.2 Silver staining of SDS-PAGE gels 

The ProteoSilver™ Silver Stain kit (Sigma-Aldrich; PROTSIL1) was used according to the manufacturer’s 

protocol to evaluate the quality of serum fractionation by detecting proteins separated on SDS-PAGE 

gels. Briefly, 1 µg of total protein from serum filtrate was mixed with loading buffer, loaded into the 

wells of 12% discontinuous gels and separated as described in section 2.4.3.2. Upon completion of the 

SDS-PAGE, the gels were placed into 100 ml of fixing solution for 20 minutes: 

Fixing solution: 

 50 ml Absolute ethanol 

 10 ml Glacial Acetic acid (≥99.85%) 

 40 ml Ultrapure water 

The gels were developed according to the kit’s instructions and images were taken using the 

ChemiDoc™ Imaging system (BioRad; 17001401). The gels were dried using a gel drying frame (Hoefer: 

SE1210) as per the manufacturer’s handbook. 

 

2.4.3 SDS-PAGE and Western Blot  

2.4.3.1 Harvesting of cells in Radio Immunoprecipitation Assay (RIPA) buffer 

Following the exposure of HK-2 cells to human serum, the cells were rinsed twice in ice-cold PBS. The 

cells were then harvested on ice using 160 µl of RIPA buffer composed of: 

 20mM Tris-HCL (pH 7.5) 

 150mM NaCl 

 1% NP-40 

 1% EDTA 

 1% 100x Protease inhibitors (ThermoScientific: 1862209) 

 1% Phosphatase inhibitors (Sigma: P5726) 

Following the harvesting procedure the samples were sonicated in an ice-water bath at amplitude 20 

twice for 5 seconds using a Vibracell™ ultrasonic processor (Sonics and Materials: VCX-130PB). The 

cell lysates were centrifuged for 10 minutes at 14,000 g at 4°C, the supernatant was aliquoted and 

stored at -80°C prior analysis. 

 

2.4.3.2 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Acrylamide gels were either commercially available or cast in the laboratory. The discontinuous in-

house gels were composed of a 12% resolving gel and a 4% stacking gel: 

12% Resolving gel (20 ml):  
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 8ml Protogel 30% (w/v) Acrylamide, 0.8% (w/v) Bis-acrylamide stock solution (37.5:1) 

(National Diagnostics: EC-890)  

 5ml Resolving gel buffer (1.5M Tris-HCL, 0.4% SDS, pH 8.8; Natural Diagnostics: EC-892) 

 6.8 ml distilled water 

 200µl 10% Ammonium persulphate (APS) 

 20µl Tetramethylethylenediamine (TEMED) 

 

4% Stacking gel (10 ml): 

 1.3ml Protogel 

 2.5ml Stacking gel buffer (0.5M Tris-HCL, 0.4% SDS, pH 6.8; Natural Diagnostics: EC-893) 

 6.1ml distilled water 

 100µl 10% APS 

 10µl TEMED 

In some experiments commercial continuous gradient gels were used (BioRad; 4561083) where the 

gel percentage ranged from 4-15%.  

Between 20 µg and 30 µg of total protein were separated per well for Western blotting experiments. 

The protein samples were mixed with 4x non-denaturating loading buffer, heated to 95°C for 5 

minutes, and then cooled on ice.  

The 4x non-denaturating loading buffer was comprised of: 

 0.5 Tris HCL, pH 6.8 

 4% SDS (w/v) 

 40% Glycerol (v/v) 

 trace of phenol blue 

 

Two µl of pre-stained protein ladder standard per gel was used as molecular weight marker 

(ThermoScientific; 26619). 

Using a Mini Protean Tetra cell (Bio-Rad; 1658004EDU), the gels were submerged in running 

electrophoresis buffer (25mM Tris/HCl; 0.1% SDS; 0.192M Glycine). The samples and protein standard 

were loaded on the gels and current of 12mA per gel was applied until the protein has surpassed the 

stacking gel at which point the current was raised to 20mA. 

 

2.4.3.3 Western blot  

Proteins were transferred from gels onto nitrocellulose membranes by semi-dry electro-blotting 

apparatus (Biorad; 1703940) using two pieces of thick filter paper soaked in transfer buffer (48mM 

Tris, pH 9.2; 39mM Glycine; 20% Methanol) along with the gel and an equal sized piece of 

nitrocellulose membrane (Figure 3).  

The electroblotting was carried out for 90 minutes at 45mA per gel. Upon completion of the transfer, 

the nitrocellulose membranes were submerged for at least an hour at room temperature in blocking 

buffer that consisted of PBS-Tween 20 (PBS-T) buffer (0.05% (v/v) Tween 20; 1x PBS) and 1% BSA. 
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Fig.3. Electrotransfer “sandwich” diagram 

 

 

2.4.3.4 Detection of target proteins by Western blot 

The blocked nitrocellulose membranes were exposed for 90 minutes at room temperature or 

overnight at 4°C on a seesaw rocker to fresh blocking buffer and primary antibodies to target proteins 

as shown in Table 5:  

 

Table 5: Primary antibodies used in Western blot 

Primary Antibody Dilution 

Mouse IgG against human PAI-1 (BD Biosciences: 612024) 1:1000 

Rabbit IgG against human GAPDH (Sigma:G9545-25UL) 1:3000 

Rabbit IgG against human Collagen I (abcam:AB34710) 1:3000 

 

The membranes were rinsed 5 times with PBST for 5 minutes to remove any unbound antibody and 

were then exposed for 45 minutes at room temperature to fresh blocking buffer with a secondary 

antibody labelled with Horse Radish Peroxidase (HRP) as shown in table 6: 

 

Table 6: Secondary antibodies used in Western blot 

Secondary antibody Dilution 

Goat IgG against Mouse (Fab specific)– HRP antibody (Sigma: A9917) 1:5000 

Goat IgG against Rabbit (whole molecule)-HRP antibody (Sigma: A0545-1ML) 1:5000 

Goat IgG against Rabbit (whole molecule)-HRP antibody (Sigma: A0545-1ML) 1:5000 

 

The membranes were rinsed 5 times with PBST as described before and target proteins were visualised 

by chemiluminiscence. 

 

Thick filter  paper  

Thick filter paper 

Nitrocellulose membrane 

Polyacrylamide gel 
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2.4.3.5 Enhanced Chemiluminescence (ECL) detection 

To visualise target proteins, nitrocellulose membranes were exposed for 1 min to 2ml of ECL solution 

(ThermoFisher Scientific Pierce™ ECL Western Blotting Substrate kit;32106) as per manufacturer’s 

protocol. Bands were visualised using ChemiDoc™ Imaging system (BioRad; 17001401). Band 

intensities were measured using Image lab software (BioRad ) and analysed with Microsoft Excel.  

 

2.4.4 Protein estimation by BCA assay  

Total protein content was measured using a BCA assay kit (Novagen; 71285-30). Cells were harvested 

in 0.2M NaOH and the lysates were incubated for 2 hours at 37°C. The samples were then centrifuged 

at 14,000g for 10 minutes at 4°C and were diluted with distilled water. BSA was used as a standard at 

concentrations of 0, 0.05, 0.1, 0.2, 0.25 and 0.4 mg/ml.  

In a 96 well plate 20 µl of standards or samples were added in duplicate were incubated with 200 µl 

BCA reagent for 30 minutes at 37°C as per manufacturer’s recommendations. The absorbance was 

measured at 570nm on the Multiskan GO plate reader (ThermoScientific; 51119200). 

 

2.5 miRNA expression analysis 

2.5.1 miRNA Isolation and purification 

mRNeasy mini kit (Qiagen; 217004) was used to isolate and purify miRNA according to the 

manufacturer’s protocol. Briefly, cells exposed to SFM or 1% human serum for 24 or 48 hours in 6-

well plates were rinsed with PBS. Cells from 2 wells exposed to the same condition were lysed in 700µl 

of QIAzol lysis reagent. The lysates were homogenised by pipetting and vortexing, and were stored at 

-80°C prior to RNA isolation 

The lysates were defrosted and 140 µl of chloroform were added to the homogenate. The mixture 

was shaken until the homogenate and the chloroform were thoroughly mixed, and then it was 

centrifuged at 12,000g for 15 minutes at 4°C. The upper phase was transferred to a new tube and 

mixed with 100% ethanol before being pipetted into an RNeasy Mini spin column and centrifuged for 

15 seconds at 8,000g. The flow-through was discarded and this step was repeated again. 

Then 500 µl of buffer RPE were added to the spin columns and the columns were centrifuged at 8,000g 

for 15 seconds. The flow through was discarded, another 500 µl of buffer RPE were added and the 

column was centrifuged again at 8,000g but for 2 minutes. The spin column was transferred to another 

collection tube and 30 µl of RNase-free water was pipetted directly onto the membrane. The RNA was 

then eluted by centrifuging at 8,000g for 1 minute and the total RNA content was measured using the 

NanoDrop™ Onec  (ThermoScientific; ND-ONEC-W). 

 

2.5.2  Reverse transcription of miRNA 

Using the miScript® II RT kit from Qiagen (218160) miRNA-specific cDNA was synthesised from total 

RNA as per the manufacturer’s protocol. Briefly, 20 µl of the reverse-transcription master mix was 

prepared with: 

 4 µl of 5x miScript HiSpec Buffer 

 2 µl of 10x miScript Nucleics mix 
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 2 µl of miScript Reverse Transcriptase Mix 

 1 µg of total RNA 

The tubes were mixed gently and briefly centrifuged before being incubated at 37°C for 60 minutes, 

followed by 5 minutes at 95°C to inactivate the Reverse Transcriptase mix. The samples were were 

cooled on ice and stored at -20°C. 

 

 

2.5.3 miRNA qPCR fibrosis arrays  

Fibrosis qPCR array (Qiagen; MIHS-117Z, plate diagram shown in appendix 1) was used with miScript® 

SYBR® Green PCR kit (Qiagen; 218073) to determine the miRNA expression pattern according to the 

manufacturer’s protocol. The following master mix was prepared: 

 1375 µl of 2x Quantitect SYBR Green PCR Master Mix 

 275 µl of 10x miScript Universal Primer 

 1000 µl of RNase-free water 

 100 µl of Template cDNA 

 

All template cDNA obtained from samples exposed to volunteers’ serum were mixed together in equal 

proportions as shown in Table 7 and analysed in a single 96-well qPCR array plate. The cDNA from 

samples exposed to patient serum were mixed together according to the stage of CKD (i.e. 4 patient 

samples per 96-well qPCR array plate). 

 

Table 7: Composition of cDNA mixtures for fibrosis PCR arrays 

Samples Number of samples 
mixed per qPCR array 

plate 

µl of cDNA from 
individual sample 

Total µl of 
cDNA template 

µl of RNase-
free water 

SFM 1 7 µl 7 µl 100 µl 

Volunteers 7 2 µl 14 µl 200 µl 

Patients 4 3.5 µl 14 µl 200 µl 

 

The reagents were mixed and 25 µl of the mixture was added to each well in the MIHS-117Z PCR array 

plate using a multichannel pipette. The plates were tightly sealed using optical adhesive film and were 

centrifuged at 1,400g for 2 minutes at room temperature before being placed into the StepOnePlus™ 

Real-Time PCR System (Applied Biosciences; 4376600). The qPCR was carried out following an 

activation step (15 minutes at 95°C) and 40 cycles at the following settings: 

 15 seconds at 94°C 

 30 seconds at 55°C 

 30 seconds at 70°C 

The qPCR programme was followed by the standard for the instrument melting curve programme. The 

results were analysed using the StepOnePlus™ software v2.3 (Applied Biosciences). 

 



 

19 
 

2.5.4 PCR fibrosis array analysis 

Amplification and heatmap curves were used to determine the threshold cycle (CT) for each sample or 

standard. The baseline and the threshold were determined first and were consistent across all the 

arrays.  The baseline is a section of the cycles which contain only background noise. The baseline start 

in the analysis was set to cycle 2 and ended at 2 cycles before the earliest noise-free fluorescence 

increase that could be observed on the linear graph in all array plates. The earlies such fluorescence 

was detected at cycle 9, therefore, all baseline across all the arrays was set between cycles 2 and 7. 

The threshold was set to 1000 which positioned it above any background noise in any of the arrays. 

Once all the CT values for all the arrays were calculated, the fold increases for all of the individual 

miRNA primers were calculated using the miScript miRNA PCR Array Data Analysis program 

(SabioSciences). 

 

 

2.6 Statistical analysis 

The program SPSS was used to carry out One Way ANOVA with a post hoc Tukey’s test which were 

used to estimate statistical differences between more than 2 independent groups of data. P values of 

less than 0.05 were considered significant. 
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3  Results 

 

3.1 PAI-1 reporter gene system 

PAI-1 reporter gene system was generated and expressed in HK-2 cells to create a high-throughput 

approach to testing for the presence of pro-fibrotic factors in a specimen. As the gene reporter system 

required initial verification and optimisation, first, transfected HK-2 clones were selected and tested 

for their ability to secrete luciferase. 

 

3.1.1 Selection of pNL2.3 and PAI-1-pNL2.3 HK-2 clones 

Following the transfection of HK-2 cells with native pNL2.3 vector or PAI-1-pNL2.3 vector construct, 

five pNL2.3 clones and twelve PAI-1-pNL2.3 clones were selected, expanded and tested for luciferase 

expression in serum-free medium (SFM). 

As shown in Figure 4A, pNL2.3 clone 1 (pNL1) secreted the least amount of luciferase and was selected 

as a negative control in all reporter gene experiments. Seven of the twelve HK-2 clones  transfected 

with PAI-1-pNL2.3 construct(PAI1, PAI2, PAI4, PAI5, PAI6, PAI7, PAI9, PAI10 and PAI12) demonstrated 

a lack of luciferase secretion (Figure 4B). PAI-1-pNL2.3 clones 3, 8 and 11 secreted high levels of 

luciferase and clone 8 (PAI8) was used in all further reporter gene experiments.  

 

A 

 

 
 
 
Fig.4. Luciferase activity in 
media from HK-2 cell clones 
transfected with pNL2.3 
native vector (A) or PAI-1-
pNL2.3 vector construct (B) 
Cells grown in 24-well plates 
reached 90% confluency 
and were exposed to SFM 
for 24 hours. Luciferase 
activity was measured using 
an end-point luciferase 
assay. The data were 
normalised to total protein 
content and expressed as 
percent from the luciferase 
activity of the most potent 
clone (pNL2 or PAI8). The 
raw fluorescence data 
ranged 0-22,000,000 
relative light units (RLU) for 
the native pNL2.3 clones 
and 0-1,720,000,000 RLU 
for the PAI-1-pNL2.3 vector 
construct. 
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3.1.2 Time course of Luciferase secretion pNL2.3 clone 1 and PAI-1 clone 8 in response to 

acidosis 

To determine the responsiveness of the reporting gene construct to activation stimuli, cells 

transfected with pNL2.3 clone 1 or PAI-1-pNL2.3 clone 8 were exposed to SFM with pH 7.4, 7.0 or 6.7 

for up to 48 hours. The treatment media were refreshed after 24 hours. 

The luciferase activity in cell media increased steadily over the two 24 hours incubation periods 

regardless of the pH (Figure 5). During the first 24 hours, acidosis (especially pH 6.7) appeared to 

increase the luciferase expression. However, this effect wasn’t observed during the second 24 hour 

exposure. On the contrary, it appeared that pH 6.7 had a slight inhibitory effect on the expression of 

luciferase. 

 

 

 

Fig.5. Luciferase activity in media from pNL2.3 clone 1 and PAI-1-pNL2.3 clone 8 cells exposed to pH 7.4, 7.0 

or 6.7 for up to 48 hours. 

Cells were grown in 6 well plates and luciferase activity was measured in aliquots of treatment media collected 

at 1, 2, 4, 6, 24, 25, 25, 28, 30, and 48 hours. The luciferase activity was normalised to total protein content and 

the data are presented as percent from the highest value which was 5,380,000,000 RLU (n=4). 
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3.1.3 PAI-1 Reporter gene assay in response to human serum 

To establish the effect of human serum on PAI-1 promoter activation, PAI-1 clone 8 HK-2 cells were 

exposed to SFM or 0.1% or 0.5% of volunteer serum for 24h and 48h at which points luciferase activity  

Exposure to serum, regardless of the concentration, induced a significant stepwise activation of the 

PAI-1 promoter as compared to control cells exposed to SFM alone (Figure 6). This effect was observed 

both at 24h and 48h. 

There was no significant difference between the effect of 0.1% and 0.5% serum at 24 hours. However, 

at 48 hours 0.5% serum significantly increased the secretion of luciferase as compared to 0.1% serum. 

 

Fig.6. Activation of PAI-1 promoter by human serum 

PAI-1 clone 8 cells were exposed to 0.1% or 0.5% human volunteer serum, and media and cells were harvested 

either at 24h or 48h. The media were refreshed daily. The luciferase activity was measured using the end point 

luciferase assay method and the data were normalised to total cellular protein in each well. The data are 

presented as a percentage of the highest value (0.5% serum treatment at 48h) which was 1,084,000,000 RLU. 

(n=4; *p≤0.05).  
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3.1.4 PAI-1 Reporter gene assay in response to whole and 100kDa fractionated human serum 

To identify the size of serum factors that induced the activation of PAI-1 promter, volunteer serum 

was fractionated using a 100kDa Centrisart 1 Centrifugal ultrafiltration unit. The resulting <100kDa 

filtrate and the >100kDa concentrate were diluted to 0.5% or 1% with SFM and exposed to PAI-1 clone 

8 cells. Luciferase activity was measured after 24 hours.  

As shown in Figure 7, exposure to either 0.5% or 1% of 100kDa concentrate fractions lead to a 

significant increase in PAI-1 promoter activation, in comparison to SFM, 0.5% filtrate or 1% filtrate 

fractions. However, there was no significant difference between the effects of 0.5% or 1% 100kDa 

concentrate fractions. 

 

Fig.7. Activation of PAI-1 promoter by  fractionated human volunteer serum (100kDa) 

PAI-1 clone 8 HK-2 cells were exposed to SFM, 0.5% or 1% of 100kDa fractions of human volunteer serum. Media 

and cells were harvested at 24h. The luciferase activity was measured using the end point luciferase assay 

method and the data was normalised to total cellular protein in each well. The data are presented as a 

percentage of the control value (SFM exposure) which was 119,000,000 RLU. (n=4, *p≤0.05).  
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To verify the 100kDa fractionation results, serum from another volunteer was fractionated following 

the same protocol as above. The cells were exposed to SFM treated with either 0% serum, 1% whole 

serum, 1% >100kDa concentrate or 1% <100kDa filtrate for 24 hours. 

The results were similar to the data shown in Figure 5: the >100kDa concentrate fraction caused a 

significant increase in PAI-1 promoter activity in comparison to the filtrate fraction (Figure 8). 

Furthermore, the whole serum tested in this assay demonstrated reduced ability to activate the PAI-

1 promoter in comparison to the >100kDa concentrate fraction. 

 

Fig.8. Activation of PAI-1 promoter by whole and 100kDa filtrated human serum  

PAI-1 clone 8 cells were exposed for 24h to 1% of fractionated or whole serum from a volunteer. The luciferase 

activity was measured using the end point luciferase assay method and the data were normalised to total cellular 

protein in each well. The data are presented as a percentage of the control value (SFM) that was 19,500,000 

RLU. (n=4, *p≤0.05).  
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3.2 PAI-1 Reporter gene assay in response to 50kDa fractionated human serum  

To further fractionate serum proteins according to their size, a 50kDa vivaspin 2 ultracentrifuge tube 

was used to produce >50kDa concentrate or <50kDa filtrate fractions. PAI-1 clone 8 HK-2 cells were 

exposed for 24 hours to SFM, 1% whole serum, 1% >50kDa concentrate or 1% <50kDa filtrate fractions. 

The serum fractions produced a similar effect to the 100kDa fractionation assays with the >50kDa 

concentrate causing a significant increase in PAI-1 promoter activity when compared to the <50kDa 

filtrate fractions (Figure 9). In contrast to the results shown in Figure 8, the effect of the >50kDa 

concentrate fraction was lower than the effect of the whole serum. 

 

Fig.9. Activation of PAI-1 promoter by 50kDa filtrated human serum 

PAI-1 clone 8 HK-2 cells were exposed to SFM, 1% of fractionated or whole human volunteer serum. Media and 

cells were harvested at 24h. The luciferase activity was measured using the end point luciferase assay method 

and the data were normalised to total cellular protein in each well. The data is presented as a percentage of the 

control value (SFM) that was 1,125,000,000 RLU. (n=4, *p≤0.05).   
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3.3 SDS-PAGE and silver staining of human serum fractions 

Silver staining of SDS-PA gels was carried out to examine the protein composition of the different 

serum fractions. The silver staining demonstrated that the 50 kDa and 100 kDa concentrate fractions 

contained a protein band of approximately 29kDa with intensity similar to that in the whole serum 

(Figure 10). Furthermore, the 50 kDa filtrate fraction contained traces of proteins with molecular size 

greater than >60 kDa but did not display the presence of the 29 kDa band. Similarly, the 100 kDa 

filtrate contained protein bands with molecular size greater than 100 kDa but did not contain the 29 

kDa protein.  

These results suggested that the filtration method chosen to fractionate serum was ineffective and all 

further experiments were carried out using whole serum. 

 

 

 

Fig.10. Silver stain SDS-PAGE of human serum fractions 

Serum fractions or whole serum (1µg of total protein) were loaded onto a 4-15% continuous gradient gel and 

subjected to SDS-PAGE and silver staining.   
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3.4 PAI-1 Reporter gene assay in response to whole and heat-inactivated human serum 

To evaluate the effect of the complement on the activation of PAI-1 promoter, heat-inactivated and 

the respective native human sera were incubated with PAI-1 clone 8 HK-2 cells and the secretion of 

luciferase in the m medium was measured. Whole serum was heated at and then mixed with SFM to 

produce 0.5% inactivated human serum treated media. 

Heat inactivation of the serum caused a reduction in PAI-1 promoter activity by two fold when 

compared to native serum (Figure 11A). This indicated that the complement or other pro-fibrotic 

factors degraded during the heat-inactivation can up-regulate PAI-1 expression.  

To visualise the integrity of the proteins in native and heat-inactivated sera, samples were separated 

on SDS-PA gels and the proteins were visualised using silver staining (Figure 11B). The results 

demonstrated no difference in the pattern of major serum proteins between native and heat-

inactivated serum. 

 

A B 
 
 

 
 
 

 

 

Fig.11. PAI-1 promoter activation (A) and silver stained SDS-PA gel of native and heat-inactivated human sera 

(B) 

A: PAI-1 clone 8 cells were grown to 80% confluency in a 24 well plate, growth arrested for 24 in SFM and washed 

prior exposure to eithier 0.5% native or 0.5% heat inactivated serum (56°C for 30 minutes). Media and cells were 

harvested at 24h. Luciferase activity was measured using the end point luciferase assay method with the 

coelenterazine substrate and the data were normalised to total cellular protein in each well. The data is 

presented as a percentage of the control value, which in this assay was the 0% value that was 1,241,325 RLU. 

(n=4, *p≤0.05).  

B: 1µg of native or heat-inactivated serum were separated on a 12% discontinuous gel and protein bands were 

detected using a silver staining methods.                          

  

* * 
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3.5 Western blot of HK-2 cells exposed to native and inactivated human serum 

Western blotting was carried out to evaluate the levels of PAI-1 protein expressed by HK-2 cells 

exposed for 24 hours to SFM, 0.5% or 1% native or inactivated serum (Figure 12a). Densitometry of 

the bands demonstrated an increased PAI-1 expression in response to 1% native and inactivated 

human serum in comparison with cells exposed to SFM (Figure 12B). 

Based on these results, native, non-fractionated sera were used in all further experiments.     

 
A 

 

 
 
B 

 

 
 

 

Fig.12. Expression of PAI-1  in HK-2 cells exposed to native or heat-inactivated serum 

Cells were harvested using RIPA buffer, sonicated and 10µg of total protein were loaded per SDS-PAG well. 

Nitrocellulose membranes were exposed to antibodies for PAI-1 and GAPDH (A). The intensity of each band was 

measured using densitometry and the expression of PAI-1 was normalised to GAPDH band intensity (B). The data 

were presented as a percentage of the control value (cells exposed to SFM (0%)) (n=2, *p≤0.05 vs. 0%) 
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3.6 Viability assay of HK-2 cells exposed to serum 

HK-2 cells were grown to 80% confluency and then exposed to SFM, or 1% of either volunteer or 

patient sera (stage 3a, 3b, 4 or 5) for 24 h (Figure 13A) or 48 hours (Figure 13B).  

The results suggest that there is an increase viability in the presence of serum as compared to cells 

exposed to SFM. This effect could result from increased cell numbers (proliferation) in response to 

growth factors in the sera. However, it appears that increasing CKD stage impairs the viability of the 

cells, as compared to volunteer samples. The most profound effect was observed in particular with 

sera from patients with CKD stage 4 and stage 5.  

 

A

 

B 

 

 

Fig.13. Viability of HK-2 cells exposed to SFM, volunteer or patient sera  

The viability was estimated in cells grown in 96 well plates at 24h (A) and 48h (B) by measuring the accumulation 

of the highly water-soluble tetrazolium salt WST-8 in the medium. The data are presented as a percentage of 

the viability of cells exposed to SFM (n=4, *p≤0.05).  
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3.7 PAI-1 Reporter gene assay in response to CKD patient serum 

PAI-1-pNL2.3 clone 8 cells were exposed for up to 48 hours to SFM, 1% of each of the 16 CKD patient 

sera or 1% of 7 healthy volunteer sera. Media were harvested at 4h, 24h, 30h and 48h and luciferase 

activity was measured using the time course luciferase assay method. 

The exposure of the volunteer and patient serum significantly increased the luciferase secretion 

compared to the SFM but there was no significant difference observed between the volunteer serum 

and any stage of CKD patient serum throughout the time course.  

 

A:  4h 

 

       B:  24h 

 
 

     C:   30h 

 

      D:   48h 

 
 

 

Fig.14. Activation of PAI-1 promoter by CKD patient serum over 48h 

Activation of PAI-1 promoter by CKD patient serum after A) 4 hours, B) 24 hours, C) 30 hours,  D) 48 hours. PAI-

1 clone 8 HK-2 cells were exposed to either healthy volunteer or CKD patient human serum of either stage 3a, 

3b, 4 or 5. Media were harvested at 4h, 24h, 30h and 48h. The luciferase activity was measured using the time-

course luciferase assay method with the coelenterazine substrate and the data was normalised to total protein 

content in each well. The data were presented as a percentage of the control value (SFM) (n=4. *p≤0.05 vs. SFM; 

#p≤0.05 vs. SFM, stage 3a, 3b, 4 and 5) 
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3.8 Expression of markers of fibrosis in response to CKD patient serum 

The effect of volunteer and patient sera on the protein expression of the markers of fibrosis was 

studied using Western blot. Figure 15 shows the intensity of PAI-1 and collagen 1 bands after exposure 

to SFM, volunteer or patient sera (Stage 3a, 3b, 4 and 5) for 24h or 48h.  

 

24 h  48 h 

       A  

 

Stage 3a  
E 

 

       B 

 

 Stage 3b 
F 

 

       C  

 

 Stage 4 
G 

 

       D 

 

Stage 5 
H 

 

 

Fig.15. Western blot image and expression graphs of HK-2 cells exposed to Volunteer and CKD patient sera   

Western blot images PAI-1, collagen 1 and GAPDH levels in HK-2 cells exposed to volunteer sera and A) stage 3a 

CKD patient sera (24h; B) stage 3b CKD patient sera (24h), C) stage 4 CKD patient sera (24h), D) stage 5 CKD 

patient sera (24h), E) stage 3a CKD patient sera (48h), F) stage 3b CKD patient sera (48h), G) stage 4 CKD patient 

sera (48h), H) stage 5 CKD patient sera (48h). HK-2 cells were grown in 6 well plates and were exposed to SFM 

or 1% of either volunteer or patient sera (CKD 3a, 3b, 4 or 5) for either 24 or 48 hours. 30µg of total protein were 

loaded into 4-15% continuous gradient gels with volunteer and patient sera being matched by age and sex (n=2).  

 

 

The results of densitometry analysis of the target bands (Figure 16) show that after 24 h of exposure 

to sera, the level of PAI-1 expression increases with the progressive CKD stages, reaching a maximum 

at stage 4 of CKD (Figure 16A). In contrast, sera from patients with stage 5 CKD demonstrated reduced 

levels of PAI-1. Similar pattern of expression was observed in cells exposed to sera for 48 h (Figure 

16C). 
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Although the magnitude of change was lower, the pattern of collagen-1 expression mimicked the 

pattern for PAI-1, both at 24h and 48h (Figure 16B and D). Interestingly, the collagen-1   levels in 

response to exposure for 48 h to sera from patients with CKD stage 4 were significantly higher in 

comparison with volunteer or patient sera.  

 

 PAI-1 expression Collagen-1 expression 

24h 

A  

 

B  

 

48h 

C  

 

D 

 
 

 

Fig.16. PAI-1 and Collagen-1 expression in response to 24 or 48h exposure to volunteer or patient sera 

Densitometry analysis of PAI-1, collagen-1 and GAPDH protein expression in response to volunteer and patient 

sera as detected by Western blotting: A) PAI-1 after 24h, B) Collagen-1 after 24h, C) PAI-1 after 48h, D) Collagen-

1 after 48h. The intensity of each band was measured using ImageLab software and the expression of PAI-1 and 

Collagen-1 was normalised to the respective GAPDH levels. The data are presented as a percentage of the control 

value (SFM), (*p≤0.05 vs. SFM, volunteers, stage 3a, 3b and 5; #p≤0.05 vs. stage 5; n=4) 
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3.9 miRNA analysis of HK-2 cells exposed to CKD patient serum 

HK-2 cells were exposed for 24 or 48 hours to SFM or 1% of either volunteer or CKD patient serum 

(stage 3a, 3b, 4 or 5). Total RNA was isolated, reverse transcribed to complementary DNA (cDNA) and 

qPCR fibrosis arrays were carried out to measure changes in miRNA levels of 84 fibrosis-related 

miRNAs. 

 

3.9.1 Scatter plots of miRNA up and down regulation in CKD patient serum exposed cells when 

compared to volunteer serum 

The fibrosis-related miRNAs fold-increase in response to exposure of HK-2 cells to patient sera of 

different CKD stage when compared to volunteer sera are presented as scatter plots in Figure 15.  

Six miRNAs were upregulated and 5 miRNAs were downregulated after 24 hours in CKD stage 3a when 

compared to the volunteer sera (Figure 17A). When results from exposure to stage 3b sera was 

analysed, there were 15 upregulated miRNAs but only 1 downregulated (Figure 17B). For stages 4 and 

5 (figures 17C and 17D) there were 8 and 7 upregulated miRNAs respectively when compared to the 

effect of volunteer sera, and for both stages there were 4 miRNAs downregulated. 

After 48 hours the numbers of miRNAs upregulated by patient vs. the volunteer sera were generally 

lower. For stage 3a, 3b, 4 and 5 there were 5, 6, 9, and 5 upregulated miRNAs respectively. For 

downregulated miRNAs the numbers were 4, 2, 3, and 4, respectively.  

Tables 8 and 9 list the miRNAs that demonstrated a significant upregulation or downregulation (above 

or below factor of 2) after 24 hours or 48 hours respectively, as compared to HK-2 cells exposed to 

volunteer sera.  

When comparing the 24 and 48 hour miRNA expression across the stages it appears as though more 

miRNAs were expressed after 24 hours rather than after 48 hours. 
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A) Stage 3a (24h) 

 

B) Stage 3b (24h) 

 

C) Stage 4 (24h) D) Stage 5 (24h) 
 

E) Stage 3a (48h) F) Stage 3b (48h) G) Stage 4 (48h) H) Stage 5 (48) 

 

Fig.17. Scatter plots showing fold increase or decrease of individual fibrosis related miRNAs of CKD patients compared to volunteers 

Scatter plots of miRNA expression after 24h exposure of HK-2 cells to CKD patient sera as compared to volunteer sera: stage 3a (A); stage 3b (B); stage 4 (C); stage 5 (D) or  

after 48h exposure to CKD patient sera as compared to volunteer sera: stage 3a (E); stage 3b (F); stage 4 (G); stage 5 (H). The data analysis was carried out using StepOnePlus™ 

software v2.3 and the miScript miRNA PCR Array Data Analysis program (SabioSciences).



 

35 
 

 

Table.8. Fold increase and decrease of fibrosis-related miRNA in HK-2 cells exposed for 24h to 1% serum from 

CKD patients, as compared to miRNA expression in HK-2 cells exposed to volunteer sera 

 

 

  

 
miRNA Upregulation miRNA Downregulation 

miRNA 
Stage 

3a 
Stage 

3b 
Stage 

4 
Stage 

5 
Stage 

3a 
Stage 

3b 
Stage 

4 
Stage 

5 

hsa-miR-101-3p - 2.064 - - - - - - 

hsa-miR-122-5p 3.427 - 2.321 3.696 - - - - 

hsa-miR-129-5p - 2.155 - - - - - - 

hsa-miR-150-5p - 7.718 - 2.276 - - - - 

hsa-miR-18a-5p - - 2.797 - - - - - 

hsa-miR-199a-5p - - - - -2.478 - - - 

hsa-miR-199b-5p - - - - -2.691 - - - 

hsa-miR-204-5p - 2.639 - - - - - - 

hsa-miR-208a-3p - - 3.993 - - - - - 

hsa-miR-216a-5p - - - - - - - -2.554 

hsa-miR-217 - - - 2.164 -403.6 -29185 -260.1 - 

hsa-miR-223-3p 3.424 4.519 - 2.744 - - - - 

hsa-miR-31-5p - 3.001 - - - - - - 

hsa-miR-32-5p - 2.110 - - - - - - 

hsa-miR-335-5p - 2.885 - - - - - - 

hsa-miR-338-5p 2.730 7.089 - - - - - - 

hsa-miR-372-3p - - - - -2.358 - - -2.891 

hsa-miR-375 - 2.514 2.482 - - - - - 

hsa-miR-377-3p 3.050 - 4.152 5.029 - - - - 

hsa-miR-382-5p - 2.365 - - - - - - 

hsa-miR-449a - 3.338 - - - - - - 

hsa-miR-449b-5p 3.219 10.529 3.643 2.250 - - - - 

hsa-miR-451a - - - - - - -2.183 - 

hsa-miR-491-5p 2.193 5.463 4.337 - - - - - 

hsa-miR-5011-5p - 3.302 - - - - - - 

hsa-miR-5692a - - 2.482 - -2.587 - - - 

hsa-miR-874-3p - - - 2.986 - - - - 
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Table 9. Fold increase and decrease of fibrosis-related miRNA in HK-2 cells exposed for 48h to 1% serum from 

CKD patients, as compared to miRNA expression in HK-2 cells exposed to volunteer sera 

 

  

 
miRNA Upregulation miRNA Downregulation 

miRNA 
Stage 

3a 
Stage   

3b 
Stage   

4 
Stage 

5 
Stage 

3a 
Stage 

3b 
Stage 

4 
Stage 

5 

hsa-miR-122-5p 7.106 3.351 5.619 - - - - - 

hsa-miR-129-5p - - 3.468 - - - - - 

hsa-miR-150-5p - - - - -8.224 -2.638 -2.335 -2.565 

hsa-miR-199a-5p - - - - - - - -2.915 

hsa-miR-199b-5p 2.246 - 2.135 3.980 - - - - 

hsa-miR-208a-3p - - 3.681 3.980 - - - - 

hsa-miR-211-5p - 4.659 - - - - - -2.507 

hsa-miR-215-5p - - - - -2.275 - - - 

hsa-miR-216a-5p - - 2.933 - - - - - 

hsa-miR-217 - 104.89 59.811 - - - - - 

hsa-miR-223-3p - - - - -4.453 - - - 

hsa-miR-325 - - - - - - -2.005 -2.617 

hsa-miR-372-3p - - - - -5.396 -3.171 -4.028 - 

hsa-miR-377-3p - - 2.111 - - - - - 

hsa-miR-449a - 2.167 - - - - - - 

hsa-miR-449b-5p 4.229 3.441 5.444 4.736 - - - - 

hsa-miR-451a 2.643 - - - - - - - 

hsa-miR-5692a - 2.281 - 2.282 - - - - 

hsa-miR-663a - - 2.515 - - - - - 

hsa-miR-874-3p 4.806 - - 2.390 - - - - 
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3.9.2 Summary of the miRNA expression data after 24h or 48h of treatment with patient sera 

The miRNAs listed in Tables 8 and 9 are presented in Venn diagrams to facilitate the analysis of the 

pattern of miRNA regulation in relation to CKD stage (Figure 18). The miRNAs in the array kit are 

grouped in 7 categories depending on their function: Pro-Fibrotic, Anti-Fibrotic, Extracellular Matrix 

Remodelling & Cell Adhesion, Inflammation, Angiogenesis, Signal Transduction and Transcriptional 

Regulation and Epithelial-to-Mesenchymal Transition (Appendix 2).  

A comparison of the miRNAs upregulated after 24 h and 48 h of exposure to patient sera (Figure 18A 

and 18C) reveals that the Anti-Fibrotic miR-449b-5p was the only miRNA that was upregulated by sera 

of all CKD stages. Not a single common miRNA was down-regulated by exposure to sera of all CKD 

stages after 24 and 48h (figures 18B and 18D). However, miR-217 was strongly down-regulated after 

24h, more so than any other miRNA so it is likely that miR-217 plays an essential role in fibrosis, 

according to appendix 2 miR-217 is related to both Extracellular Matrix Remodelling & Cell Adhesion 

and Signal Transduction and Transcriptional Regulation. 

CKD stage 3a sera affected 5 miRNAs related to Pro-fibrosis (miR-199b, 338, 377, 5692a, 215), 1 related 

to Anti-fibrosis (miR-449b), 4 related to Extracellular Matrix Remodelling & Cell Adhesion (miR-199a, 

199b, 217, 451a), 2 related to inflammation (miR-122 and 199a), 2 related to angiogenesis (miR-372 

and 150), 6 related to Signal Transduction & Transcriptional Regulation (miR-122, 217, 223, 372, 491, 

451a), and 4 related to Epithelial-to-Mesenchymal Transition  (miR-199a, 199b, 215, 874). 

CKD stage 3b affected 5 miRNAs related to Pro-fibrosis (miR-338, 32, 382, 5011, 5692), 5 related to 

Anti-fibrosis (miR-449b, 204, 335, 449a, 211), 3 related to Extracellular Matrix Remodelling & Cell 

Adhesion (miR-217, 204, 449a),  3 related to inflammation (miR-129, 204, 122), 5 related to 

angiogenesis (miR-150, 10, 31, 375, 372), 8 related to Signal Transduction & Transcriptional Regulation 

(miR-217, 223, 491, 101, 204, 449a, 122, 372) and 1 related to Epithelial-to-Mesenchymal Transition 

(miR-382). 

CKD stage 4 affected 5 miRNAs related to Pro-fibrosis (miR-377, 5692, 208a, 216a, 199b), 3 related to 

Anti-fibrosis (miR-449b, 199b, 18a), 2 related to Extracellular Matrix Remodelling & Cell Adhesion 

(miR-217 and 451a), 2 related to inflammation (miR-122 and 129), 3 related to angiogenesis (miR-150, 

375, 372), 7 related to Signal Transduction & Transcriptional Regulation (miR-122, 217, 491, 18a, 451a, 

372, 663a) and 2 related to Epithelial-to-Mesenchymal Transition (miR-199b and 325). 

CKD stage 5 affected 5 miRNAs related to Pro-fibrosis (miR-377, 208a, 216a, 5692, 199b), 2 related to 

Anti-fibrosis (miR-449b and 211), 3 related to Extracellular Matrix Remodelling & Cell Adhesion (miR-

217, 199a, 199b), 2 related to inflammation (miR-122 and 199a), 2 related to angiogenesis (miR-372 

and 150), 4 related to Signal Transduction & Transcriptional Regulation (miR-122, 217, 223, 372) and 

4 related to Epithelial-to-Mesenchymal Transition (miR-874, 199a, 199b, 325). 
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A 

 

B 

 

C 

 

D 

 

 

Fig.18. Venn diagrams by CKD stage of miRNAs up- or down-regulated after 24h or 48h of exposure to CKD 

patient sera 

A) Up-regulated miRNA species after 24h incubation with patient sera; B) Down-regulated miRNA species after 

24h incubation with patient sera; C) Up-regulated miRNA species after 48h incubation with patient sera; D) 

Down-regulated miRNA species after 48h incubation with patient sera 
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4 Discussion 

The aim of this this study was to identify novel fibrosis-related miRNA targets for treatment of CKD by 

exposing RPTEC to sera of patients with different stages of diabetic nephropathy (DN). In healthy 

kidneys, proteins of molecular weight smaller than 40-50 kDa are filtered freely in the primary urine 

whereas proteins with molecular size >100 kDa are almost completely excluded from the filtrate 

(Ruggiero et al., 2010). In health, the majority of the filtered proteins are reabsorbed by the proximal 

tubules. However, the progression of diabetic nephropathy is often associated with increased 

proteinuria (Jefferson et al.), which is an end result of increased protein filtration in the glomerulus 

and decreased reabsorption of the filtered proteins by the proximal tubules. Recently it was 

demonstrated that patients with DN without proteinuria show similar histological renal damage as 

patients with proteinuria (Caramori et al., 2003). This suggests that molecular factors other than 

protein may exacerbate renal damage (e.g. through TIF) in DN.  

 

4.1 Fractionation and inactivation of human serum 

To investigate whether serum fractions containing proteins of different molecular size have a different 

effect on markers of fibrosis in human RPTEC depending on the stage of kidney disease, an initial 

objective of this study was to separate serum into fractions of defined molecular sizes using 

commercially available filtering devices, and to investigate the ability of each fraction to up-regulate 

markers of fibrosis. However, the results demonstrated that the chosen devices with cut-offs of 

100kDa and 50kDa were unable to yield protein fractions with the expected molecular sizes, as 

demonstrated by silver gel staining. The presence in the concentrate of protein bands of significantly 

lower molecular weight than the membrane cut-off but not in the filtrate suggests that that the 

membranes of the devices may have been clogged by the excessive amounts of protein in the whole 

serum. Due to the lack of reasonable fractionation alternatives, all further experiments were carried 

out with whole serum. 

To test whether complement activation plays a significant role on the expression of markers of fibrosis 

(e.g. PAI-1), heat inactivated human sera and native human sera were compared. The results indicated 

that the heat inactivation, which leads to deactivation of the complement, decreased the PAI-1 

promoter activation and PAI-1 protein expression. It has been shown that in macrophages the 

anaphylatoxin C5a complement fragment can induce the expression of PAI-1 via Nuclear Factor-κB 

(NF-κB) activation (Kasti et al., 2006). Therefore, the moderate decrease in PAI-1 promoter activation 

and protein expression by inactivated serum may be due to the inability to form C5a fragment or to 

the degradation of key protein factors. Therefore, native whole serum was used in all further 

experiments. 

 

4.2 Viability of HK-2 cells exposed to human sera 

The kit used to measures viability in this study utilises the formation of soluble formazan dye produced 

by dehydrogenases in cells and therefore, reflects the number of living cells. The stepwise decrease of 

cell viability in response to sera from patients with increasing stage of CKD suggests the gradual 

accumulation of toxic or anti-proliferative factors with renal disease. The viability was lowest in 

response to sera from stage 5 CKD patients, especially after 48h, suggesting accumulation of such 

factors due to minimal renal function. 
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The percentage of serum used in the experiments (1%) does not seem to cause an issue to the cells as 

the viability in response to stage 3a sera is very similar to the response to volunteer sera, and is 

significantly higher than of cells exposed to SFM. Research has shown that the later stages of CKD are 

associated with reduced viability in renal proximal tubular cells, as CKD stages 4 and 5 lead to increased 

levels of p-cresol (Huang et al., 2012) which induces oxidative stress within the cells, this leads to 

increased autophagic cell death and decreased viability in the cells (Lin et al., 2015). 

 

4.3 Activation of PAI-1 promoter by serum from DN patients and healthy volunteers 

Verification of the functionality of the PAI-1 promoter construct using transfected HK-2 cells that were 

exposed to acidosis demonstrated that within 24h period there was a stepwise increase in luciferase 

activity, which was significantly increased by acidosis. These data confirmed results from previous 

research in our group showing a significant increase in PAI-1 protein expression after a 24 h exposure 

to acidosis (2.5 fold) compared to cells exposed to pH 7.4, as detected by Western blot (data not 

shown). These results are supported by data showing that acidosis increases PAI-1 expression in 

mesothelial cells (Bergstrom et al., 2006). Furthermore, acidity appears to increase the stability and 

half-life of PAI-1 from 2h (physiological conditions) to 8h (pH 6.5) (Yildiz et al., 2014).  

Although an increase of the PAI-1 promoter activation was observed over the following 24-48h of 

exposure, exposure to pH 6.7 have resulted in reduced PAI-1 promoter activation, reflecting adaptive 

changes in the cells (data not shown).  

These results suggested that the PAI-1 promoter construct is functional and therefore it was used in 

further experiments to determine the time-course of reactivity to human sera.  

The luciferase expression of the CKD stage 3a and 3b samples are significantly higher than the 

volunteer samples after 4 hours implying that the patient serum does increase PAI-1 production. 

However, this is contradicted by the results for CKD stage 5 as while it is not significantly different to 

the other stages it does appear to be lower. This could be supporting the theory that the stage 5 

patients were undergoing dialysis and the serum sample was taken post-dialysis which would reduce 

the levels of CKD related serum factors within the serum. Further research would need to take place 

with the knowledge at which point the serum was taken from the patient. 

The PAI-1 expression levels of all CKD stages samples after 24 and 48 hours are reduced with the 

volunteer’s serum showing the same or higher expression levels as after 4 hours. This implies that 

after 4 hours the increased PAI-1 expression caused by the CKD serum returned to basal level which 

is supported by research showing similar effects where PAI-1 expression peaked at 4 hours then 

dropped after (Suzuki et al., 2002).  

 

4.4 Protein expression of PAI-1 and Collagen 1 in HK-2 cells exposed to human sera 

The protein expression PAI-1 of HK-2 cells exposed to sera varied between CKD stages, with no 

significant change induced by CKD stage 3a, 3b and 5 as compared to the volunteer samples at 24h 

and 48h. However, in response to stage 4 serum, PAI-1 expression was significantly higher than all 

other treatments at 24h, and moderately increased after 48h of exposure. The expression of PAI-1 

levels in the different CKD stages is not well documented but in other research it has been observed 

that the TGF-β levels are increased in the advanced stages of CKD (August and Suthanthiran, 2003) 

which as discussed is involved in the activation of PAI-1. Interestingly, after a 24h exposure to patient 
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or volunteer sera, the collagen-1 levels were significantly decreased in comparison to cells exposed to 

SFM. However, after 48h a significant increase of collagen-1 protein was observed in cells exposed to 

stage 4 CKD sera. This may be a delayed response to the increased PAI-1 protein at 24h.  

The protein levels of PAI-1 and collagen 1 in response to stage 5 CKD sera at 24h and 48h of exposure 

were lower than to stage 4 sera, thus providing further evidence for the presence of cytotoxic/anti-

proliferative factors at this stage. 

Between the PAI-1 and Collagen-1 expression it appears that CKD stage 4 is when the expression of 

PAI-1 increases leading to the production of Collagen after 48 hours and contributing heavily to the 

accumulation of ECM and the progression of TIF (Ghosh and Vaughan, 2012).  

 

4.5 Fibrosis related miRNA expression in response to human serum   

When comparing the miRNAs expression at 24h or 48h in response to sera from DN patients with 

different stages of CKD to sera from healthy volunteers, some interesting results were observed: for 

example, miR-449b was the only miRNA upregulated by patient sera of every CKD stage both at 24 

and 48h. Furthermore, miR-217 was down-regulated by sera of all CKD stages after 24h but not after 

48h. When comparing the expression of the fibrosis related miRNAs between the 24 hour volunteer 

samples and the 48 hour volunteer samples (data not shown) the expression of miR-217 was 

downregulated in the 48 hour volunteer samples by over 7000 fold. This means that while the miR-

217 expression in 48 hour patient samples may appear to be either normal or slightly upregulated 

they would still be severely down-regulated when compared to the 24 h volunteers.  

Overall, the expression of 31 miRNAs was dysregulated after 24h and 48h incubation with the patents 

sera. As the aim of this project was to identify potential therapeutic targets for preventing the 

progression of CKD in diabetic nephropathy, below are listed a selection of miRNAs dysregulated by 

sera from patients with CKD stage 3a (12 miRNAs overall), which are of interest for further 

investigation.  

 

4.5.1 Up-regulated miRNAs after 24 h and 48 h exposure to human sera  

miR-449b 

miR-449b is described as an anti-fibrotic miRNA in the Qiagen’s miRNA array manual. miR-449b has 

been shown to inhibit cell proliferation and migration, to induce apoptosis and act as a tumour 

suppressor and inhibitor of TGF-β activity (Sandbothe et al., 2017). Furthermore, miR-449b down-

regulates the translation of the transcription factor SOX-4, which facilitates TGF-β-induced EMT. 

Therefore, the up-regulation of miR-449b by sera from DN patients may be an adaptive response to 

an increased expression of TGF-β. Further experiments are required to measure TGF-β levels in media 

from cells exposed to human sera.  

 

miR-122-5p 

At 24h miR-122-5p was up-regulated by sera from patients with stage 3a, 4 and 5 of CKD, and at 48h 

by sera of stages 3a, 3b and 4. miR-122-5p is classified by the Qiagen’s miRNA array manual as a miRNA 

related to signal transduction, transcriptional regulation and inflammation. It appears to be a liver 

specific miRNA related to fibrosis with unknown renal expression. The expression of miR-122-5p 
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seems to be negatively correlated with liver fibrosis by recruiting CD11bhiGR1+ inflammatory cells 

through targeting the Ccl2 chemokine (Bandiera et al., 2015). Similarly to miR-449b, it may be 

upregulated in the HK-2 cells as an adaptive response to injury.  

 

miR-150-5p 

miR-150-5p was up-regulated in both stages 3b and 5 after 24h exposure to human serum. 

Interestingly, after 48h incubation miR-150-5p was the only target down-regulated by sera of all stages 

of CKD (3a-5). miR-150-5p is described by the Qiagen’s miRNA array manual as an angiogenesis miRNA. 

Overexpression of miR-150 significantly reduces the expression of the antifibrotic protein suppressor 

of cytokine signalling 1 (SOCS1) (H. Zhou et al., 2013). SOCS1 supresses the activity of TGF-β, which, as 

previously discussed, is key in ECM production. As well as suppressing TGF-β, SOCS1 also inhibits 

Interleukin-1β-induced Collagen I in the proximal tubule cells (H. Zhou et al., 2013). 

 

miR-199b-5p 

From the MIHS-117 PCR array the miRNA miR-199b is described as a pro-fibrotic, extracellular matrix 

remodelling and cell adhesion miRNA as well as being related to Epithelial-to-Mesenchymal Transition 

(EMT). It was up-regulated in stages 3a, 4 and 5 after 48 h of exposure to patient sera. Evidence 

demonstrates that when overexpressed, miR-199b plays a key role in liver and cardiac fibrosis by 

controling both Transforming Growth Induced factor (TGIF) and SMAD specific E3 ubiquitin protein 

ligase 2 (SMURF2e) (Duygu et al., 2017). These play pivotal roles in the TGF-β pathway which is a key 

regulator of ECM accumulation.  

Interestingly, miR-199b is down-regulated after 24h of exposure to stage 3a patient sera. 

 

miR-223-3p 

miR-223-3p is related to signal transduction and transcriptional regulation, and is upregulated after 

exposure to sera from stage 3a, 3b and 5 patients. miR-223-3p regulates myeloid progenitor 

proliferation indicating that this miRNA may contribute to renal fibrosis by inducing macrophage 

activation (Zarjou et al., 2011). miR-223-3p is activated by CCAAT-enhancer-Binding Proteins binding 

to the miRNA promoter which in turn will promote granulocyte differentiation (Taibi et al., 2014). 

 

miR-338-5p 

miR-338-5p is a pro-fibrotic miRNA and was upregulated after 24 hours in cells exposed to sera from 

stage 3a and 3b patients. There has been little research into the activity of miR-338-5p in CKD but 

there is evidence that it promotes an inflammatory response by down-regulating SPRY1 leading to the 

increased expression of pro-inflammatory chemokines (Yang et al., 2017). There is also research 

showing that miR-338-5p may promote the expression of NF-κB1 which will lead to expression of pro-

inflammatory molecules and chemokines (Ma et al., 2016). 
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miR-377-3p 

The pro-fibrotic miR-377-3p was upregulated after 24 hours of exposure to stage 3a, 4 and 5 patient 

sera. This miRNA may be a suitable target in DN, as miR-337-3p has been found to be overexpressed 

in human mesangial cells when exposed to high levels of glucose (Q. Wang et al., 2008). The 

upregulation of miR-377-3p is related to an increased expression of fibronectin, which are a hallmark 

of DN (Q. Wang et al., 2008). It has been suggested that a target of this miRNA is PAK1 which can 

activate MAPK and NF-κB (Kato et al., 2009). 

 

mir-491-5p 

Sera from stage 3a, 3b and 4 upregulated the expression of miR-491-5p which is described as a miRNA 

related to signal transduction and transcriptional regulation. It has been found that upregulation of 

miR-491-5p is related to disruption of epithelial cell junctions and that high levels of TGF-β induce the 

expression of miR-491 through a MEK/p38 kinase pathway (Q. Zhou et al., 2010). The miR-491-5p then 

targets Par-3 expression which is essential in maintaining tight junctions within epithelial cells. This 

disruption is seen in DN and also contributes to EMT (Q. Zhou et al., 2010). 

 

miR-874-3p 

Epithelial-to-Mesenchymal transition is a function that miR-874-3p is related to according to appendix 

2. It was upregulated in stages 3a and 5. The function of miR-874-3p in CKD is not fully documented 

but there is evidence that miR-874-3p inhibits EMT, as it targets SOX12 in hepatocellular carcinoma. 

SOX12 induces EMT by transactivating Twist1 and FGFBP1 expression which in turn inhibits E-Cadherin 

expression (T. Jiang et al., 2017). There is also evidence that miR-874-3p targets and inhibits CDK9 

expression (L. Wang et al., 2014). CDK9 forms complexes with SMAD3 and SMAD4 to promote renal 

fibrosis by stimulating Collagen-1 promoter activity (Qu et al., 2015). The upregulation of miR-874-3p 

in HK-2 cells may be an adaptive response to the serum exposure. 

 

4.5.2 Down-regulated miRNAs after 24 h and 48 h exposure to human sera  

miR-217 

According to the MIHS-117 Human Fibrosis miRNA PCR array from Sabiosciences, miR-217 is 

categorised as a miRNA related to extracellular matrix remodelling and cell adhesion. The results show 

that it is downregulated by at least 100 fold in stages 3a, 4 and also in stage 3b after 24 hours. 

Underexpression of miR-217 has been linked to various cancers such as gastric and ovarian cancer 

(Zheng et al., 2017) as it inhibits cell growth and metastasis and has a tumour suppressor role. This 

has also been observed in clear cell renal cell carcinoma (ccRCC) where downregulation of miRNA-217 

was observed when compared to normal tissue (Li et al., 2013).  

The expression of miR-217 is negatively correlated with SirT1 expression. SirT1 is involved in fibrosis 

by activating two major cell surface receptors: epidermal growth factor receptor (EGFR) and platelet-

derived growth factor receptor-β (PDGFRβ), which are essential in renal fibroblast activation and 

proliferation (Ponnusamy et al., 2014). It has been shown in that study that inhibition of SirT1 blocked 

the phosphorylation of EGFR and PDGFRβ thus inhibiting fibroblast activity and proliferation. 
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miR-217 is also related to fibrosis in human renal proximal tubule cells. The downregulation of miR-

217 is related to the downregulation of the dopamine D2 receptor (D2R) which increases the 

susceptibility to renal inflammation (Han et al., 2015). The downregulated D2R caused the 

downregulation of miR-217, which in turn increased the expression of TGF-β1, MMP-3 and Collagen-I 

all of which contribute to the progressive accumulation of ECM during TIF. 

The significant downregulation of miR-217 in the CKD patients agrees with previous research in that 

the activities of miR-217 and the mechanisms that it is involved in contribute heavily to TIF. 

 

miR-372-3p 

Classified by the MIHS-117 PCR array as a miRNA related to signal transduction and transcriptional 

regulation, miR-372 is down-regulated in CKD stages 3a, 3b and 4 at 48h when compared to  

volunteers. Research has suggested that miR-372 can act as a tumour suppressor by inhibiting the 

function of the ATAD2 gene which results in a G1 phase arrest and reduction of cell migration and 

invasion (Wu et al., 2014). ATAD2 is an oncogene that is frequently expressed in cancers and assists in 

cell proliferation and invasion through mechanisms involving genes such as APC and CTNNA1. The 

underexpression of miR-372 in the CKD patients must be allowing heightened expression of ATAD2 

and contributing to the progressing fibrosis (Wu et al., 2014). 

 

miR-215-5p 

After 48 hours miR-215-5p was down-regulated by serum from patients with stage 3a CKD, miR-215-

5p is related to both Pro-Fibrosis and Epithelial-to-Mesenchymal Transition. It is thought that down-

regulation of miR-215-5p increases the proliferation in primary fibroblast cells by targeting two 

proteins that are related to cell cycling, Minichromosome Maintainance 10 (MCM10) and Cell Division 

Cycle 25A (CDC25A) (Lan et al., 2015). MCM10 promotes helicase activation by binding to single 

stranded DNA. As the helicase is involved in the G1/S phase of the cell cycle, reduction in helicase 

activity will restrict cell proliferation (Lan et al., 2015). CDC25A dephosphorylates Cylin-Dependent 

Kinase (CDK) 1 and 2 which in turn will progress the cell cycle. Overexpression of either of these 

proteins has been linked to various cancers so the expression of miR-215-5p is most likely intended to 

prevent excessive cell proliferation (Lan et al., 2015). 

There is also research supporting that the down-regulation of miR-215-5p promotes EMT. One of the 

targets of miR-215-5p is Zinc finger E-box-binding homeobox 2 (ZEB2) which induces EMT by reducing 

E-cadherin activity (Hou et al., 2015). This so far has only been researched in lung cancers so further 

research is required to examine the effect in kidney disease. 

 

4.6 miRNA expression in stage 5 samples 

As discussed the viability results show a decreased viability in the stage 5 samples and this is reflected 

in the miRNA expression results. There are fewer miRNA up/down-regulations in stage 5 samples 

when compared to the volunteer samples especially with some of the fibrosis related miRNAs. For 

example miR-217 plays a key role in fibrosis and is severely downregulated in stages 3a, 3b and 4 but 

not in stage 5 where it is slightly upregulated. This could be that perhaps the stage 5 patients are 

undergoing dialysis due to decreased kidney function to filter out the pro-fibrotic factors, so the serum 
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samples may have been taken post-dialysis reducing the presence of these factors. However, as of the 

completion of this study, the dialysis status of these patients remained unknown. 

 

4.7 Limitations of the project and future research  

One of the limitations of this project relates to the preparation of patient and volunteer sera. The 

volunteers were recruited at MMU and their sera were isolated using BD Vacutainer® plastic serum 

tubes, whereas silica coated BD Vacutainer bottles with Hemogard stops were used for the isolation 

of patient sera. Although this could have led to some discrepancies in the results between volunteer 

and patient groups, the comparisons between patient groups have not been impacted. 

Due to time and cost constraints, there were many elements of this project, which were not fully 

explored. During the miRNA fibrosis PCR arrays as well as exposing cells to the volunteers and CKD 

patients sera there were also cells exposed to SFM to be used as a control. However, due to logistic 

issues and time constraints it became unfeasible to analyse the SFM exposed cells in time. 

When using the 50kDa and 100kDa ultrafiltration the results were inconclusive with the silver stains 

showing that there was not proper filtration. Significant amount of time was spent on the filtration 

experiments, as in the kidney the proximal tubular cells are only exposed to substances of 100 kDa or 

lower due to filtration in the glomerulus. According to the manufacturer’s protocol of the 50 kDa the 

size of the filters was supposed to be at least 2x smaller than the target molecular weight cut off and 

purchasing further filters became unattainable due to time constraints. 

When performing the assays using patient serum there was only 1 aliquot of serum per patient 

provided by the Salford Royal Trust.  Due to this, there could be no repeats of any experiments. It 

would be beneficial for the research if the arrays could be repeated, and for perhaps extended to 72 

hours to achieve a better understanding of the mechanisms over a longer time frame. A larger pool of 

healthy volunteers would also have increased the reliability of the control results. 

During the arrays using CKD patient serum, conditioned cell media was harvested to be tested for 

cytokine expression. This would have added strength to the result, as certain cytokine expression is 

very important to the mechanisms of TIF. However, due to time constraints the assay was unable to 

be completed. 

The next step for this research is to test the expression of key miRNAs in individual samples to confirm 

the results of the miRNA arrays which were obtained after pooling together volunteers or patients 

with the same CDK stage. Other areas to take the research further include looking into the impact of 

RAGE and AGEs on CKD, the expression of AGEs have an effect on DN and TIF so it would be interesting 

to analyse the levels expressed within the CKD stages. 

  



 

46 
 

5 Conclusions 

Human serum influenced the expression of PAI-1 as can be seen in the gene reporter assay and 

Western blots. PAI-1 protein expression after 24 hours is increased as the CKD stages progress and it 

peaks with stage 4 serum exposures.  

Sera from patients with DN produced different results from healthy volunteer sera, as demonstrated 

by the miRNA fibrosis assays. The various miRNAs that are under and overexpressed in the CKD patient 

serum in comparison to the volunteer serum are related to fibrosis and some of them may contribute 

to TIF (e.g. miR-217 and miR-449b). The relationship between TIF and miR-449b and other miRNA like 

miR-150 and miR-199b needs further research in this model of RPTEC exposed to sera from DN 

patients. This could be achieved by overexpressing and knocking out the miRNAs individually to 

measure the levels of markers of fibrosis like PAI-1 and TGF-β.  

The data also consistently showed that the stage 5 CKD sera gave reduced levels of expression in PAI-

1. It remains to be confirmed if the stage 5 patients underwent dialysis to filter out the CKD factors or 

the serum was isolated from pre-dialysis patients and contained cytotoxic/antiproliferative factors. 
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6 Appendix 

6.1 Appendix 1: MIHS-117 miRNA PCR Array Human Fibrosis Layout from SabioSciences 
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6.2 Appendix 2: Functional miRNA grouping in MIHS-117 PCR Fibrosis assay from SabioSciences 

Pro-Fibrotic: miR-142-3p , miR-145-5p, miR-155-5p, miR-199b-5p, miR-21-5p, miR-215, miR-216a-5p, 
miR-27a-3p, miR-27b-3p, miR-32-5p, miR-338-5p, miR-34a-5p, miR-377-3p, miR-382-5p, miR-192-5p, 
miR-30a-5p, miR-208a, miR-5692a, miR-5011-5p. 

Anti-Fibrotic: let-7d-5p, miR-107, miR-132-3p, miR-133a, miR-141-3p, miR-15b-5p, miR-16-5p, miR-
17-5p, miR-18a-5p, miR-194-5p, miR-19a-3p, miR-19b-3p, miR-200a-3p, miR-200b-3p, miR-204-5p, 
miR-20a-5p, miR-211-5p, miR-26a-5p, miR-26b-5p, miR-29b-3p, miR-335-5p, miR-449a, miR-449b-
5p, miR-590-5p, miR-92a-3p. 

Extracellular Matrix Remodeling & Cell Adhesion: miR-199a-5p, miR-199b-5p, miR-29a-3p, miR-29b-
3p, miR-29c-3p, miR-449a, miR-21-5p, miR-204-5p, miR-25-3p, miR-7-5p, miR-196a-5p, miR-203a, 
miR-27b-3p, miR-27a-3p, miR-451a, miR-145-5p, miR-143-3p, miR-1, miR-10a-5p, miR-10b-5p, miR-
661, miR-30a-5p, miR-16-5p, miR-217. 

Inflammation: let-7d-5p, miR-204-5p, miR-122-5p, miR-146a-5p, miR-199a-5p, miR-155-5p, miR-21-
5p, miR-129-5p, miR-142-3p, miR-503-5p. 

Angiogenesis: let-7d-5p, miR-378a-3p, miR-372, miR-34a-5p, miR-29b-3p, miR-20a-5p, miR-200b-3p, 
miR-195-5p, miR-17-5p, miR-16-5p, miR-15b-5p, miR-150-5p, miR-145-5p, miR-126-3p, miR-107, 
miR-31-5p, miR-375. 

Signal Transduction & Transcriptional Regulation: miR-26a-5p, miR-18a-5p, miR-122-5p, miR-133a, 
miR-20a-5p, miR-203a, miR-19a-3p, miR-17-5p, miR-146a-5p, miR-155-5p, miR-92a-3p, miR-29b-3p, 
miR-141-3p, miR-29a-3p, miR-204-5p, miR-590-5p, miR-372, miR-302b-3p, miR-19b-3p, miR-21-5p, 
miR-1, miR-217, miR-23a-3p, miR-328, miR-744-5p, miR-148a-3p, miR-451a, miR-125b-5p, miR-449a, 
miR-34a-5p, miR-29c-3p, miR-195-5p, miR-192-5p, miR-16-5p, miR-15b-5p, miR-663a, miR-30a-5p, 
miR-378a-3p, miR-145-5p, miR-146b-5p, miR-27a-3p, miR-324-5p, miR-324-3p, miR-223-3p, miR-
491, miR-101-3p, miR-491-5p. 
 

Epithelial-to-Mesenchymal Transition: let-7d-5p, miR-107, miR-155-5p, miR-199a-5p, miR-199b-5p, 

miR-200a-3p, miR-200b-3p, miR-215, miR-29a-3p, miR-29b-3p, miR-29c-3p, miR-382-5p, miR-325, 

miR-874.  
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