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Abstract  

This paper presents 170 Schmidt Hammer exposure ages from moraine boulders and 

glacially-sculpted bedrock to reveal the post-Last Glacial Maximum (LGM) history of the 

Wicklow Mountains, Ireland. These data suggest that large ice masses survived for 4-7 ka 

after retreat of the Irish Sea Ice Stream and were sustained by summit ice-fields until ~16.6 

ka. Post-LGM retreat was dynamic, with re-advance moraines deposited in response to 

Heinrich Stadial 1. However, these events reflect short-term ice front oscillations (≤ 1 ka) 

during the long-term retreat phase. Retreat from re-advance positions was synchronous 

across the range and paced by climate, with time-progressive deglaciation from low to high 

elevation. In contrast, marked asynchroneity in the timing of Younger Dryas deglaciation is 

closely linked to snow redistribution and indicates that for small cirque glaciers (≤ 1 km2), 

topography can exert the primary control on glacier survival. This result has important 

implications for palaeoclimate reconstructions as cirque glacier dynamics may be unrelated 

to climate. This is further complicated by post-depositional processes which can result in 

moraine ages (e.g. 10Be) which post-date retreat. Future palaeoclimate studies should 

prioritise cirque glaciers where snow contributing areas are small and where post-

depositional disturbance is limited (matrix-poor, boulder-rich moraines). 

 

Keywords 

• Schmidt Hammer exposure dating (SHED) 

• Wicklow, Ireland  
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• Glacier chronology  

• Topographic controls 

• 
10Be dating 

 

 

Introduction 

Recent studies have focused on the retreat dynamics of the Irish Sea Ice Stream (ISIS) 

(Chiverrell et al., 2013; Smedley et al., 2017a), a major outlet of the British-Irish Ice Sheet (BIIS; 

Smedley et al., 2017b). The timing of ISIS retreat after the Last Glacial Maximum (LGM; 23.3 – 

27.5 ka; Hughes and Gibbard, 2015) has important implications for the dynamics of terrestrial 

ice masses and, in particular, proximal mountain ice caps (Clark et al., 2012). In the Irish Sea 

Basin, ice caps centred on the mountains of Wales (Hughes et al., 2016), the Lake District 

(Wilson et al., 2013) and Wicklow, Ireland (Ballantyne et al., 2006) coalesced with the ISIS 

during the LGM and may have persisted after ISIS retreat. However, while the deglacial 

chronologies of the Welsh and Lake District ice caps are constrained by 10Be, OSL and 14C 

ages (Ballantyne et al., 2009; McCarroll et al., 2010; Glasser et al., 2012; Lloyd et al., 2013; 

Hughes et al., 2016; Smedley et al., 2017b), there is a paucity of geomorphological and 

geochronological evidence for post-LGM activity in the Wicklow Mountains. 10Be ages from 

summits in Wicklow (Ballantyne et al., 2006) and the adjacent Blackstairs Mountains 

(Ballantyne and Stone, 2015) indicate summit deglaciation soon after the LGM (n = 5; 21.0 - 

22.9 ka), while a single 36Cl age from the Mottee Stone (~20 km SE of Lugnaquilla (925m) at 

52.886993, -6.208196) indicates separation of mainland ice and the ISIS by 23.1 ± 2.2 ka 

(Bowen et al., 2002). This timeframe accords with Bayesian modelling of ice stream retreat, 

with the ISIS retreating ~80 km along the Irish coast during the interval 20.8 – 23.9 ka 

(Smedley et al., 2017b). Recent research has begun to establish the geomorphological 

context for deglaciation in the Wicklow Mountains (Knight et al., 2017). However with the 

exception of isolated 14C (n = 2, 11.5 - 11.6 ka; Colhoun and Synge, 1980) and 36Cl ages (n = 

1; 17.9 ± 1.0 ka; Bowen et al., 2002) from Lough Nahanagan, the geochronology of the 

deglaciation of the Wicklow Ice Cap is poorly understood. To address this knowledge gap, 

this study presents 170 Schmidt Hammer (SH) exposure ages from cirque and valley 

moraines and from a summit overridden by ice at the LGM. These data provide new insights 

into the contrasting deglacial chronologies of the ISIS and the Wicklow Ice Cap and the 

climatic and topographic factors which conditioned post-LGM retreat. 

 

Methods 
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To develop a deglacial chronology, sampling was focused on prominent moraines and 

boulder accumulations as these are the best geomorphological indicators of the dimensions 

of former mountain glaciers (Barr et al., 2017). Key sites along the main SW-NE axis of the 

mountain range were targeted for Schmidt Hammer exposure dating (SHED; Tomkins et al., 

2016) including glacially-deposited boulders on prominent cirque moraines (>400 m) at 

Kelly’s Lough, Lough Nahanagan, Mullaghcleevaun and Upper Lough Bray. These moraines 

exhibit good spatial coherence (Kirkbride and Winkler, 2012) as they are generally matrix-

poor, boulder-rich and feature clearly defined moraine crests, although the outer cirque 

moraine at Lough Nahanagan is degraded (Colhoun and Synge, 1980). This moraine is ~1 km 

in length, broadly convex in cross-profile form and consists of unsorted granite, sand and 

gravel deposits with entrained glacially smoothed granite boulders (1 - 4 m diameter; 

Colhoun and Synge, 1980). Multiple nested moraines and boulder accumulations are 

preserved within the inferred YD glacial limit at each site, which conforms to a pattern of 

active oscillatory retreat (Bickerdike et al., 2017). In addition, samples were obtained from 

valley moraines (250 – 400 m, c. 2 - 4 km from cirque headwalls) at Carrawaystick Brook, 

Upper Glendasan, Lough Brook and Glenmacnass Waterfall and from ice-moulded bedrock 

and erratic boulders from the summit of Carrigshouk (571 m), which was overridden by ice at 

the LGM (Fig. 1; Table 1). 20 surfaces were sampled at each site (Carrawaystick Brook; n = 10) 

and 170 surfaces were sampled in total, comparable to previous applications of SHED in the 

Mourne Mountains, Northern Ireland (Barr et al., 2017).    

30 R-values were generated per surface (Niedzielski et al., 2009). Sampled boulders were of 

sufficient size (> 25 kg; Sumner and Nel, 2002; Demirdag et al., 2009) and all sampled 

surfaces were free of surface discontinuities (Williams and Robinson, 1983) and lichen 

(Matthews and Owen, 2008). Instrument calibration (Correction Factor = 1.017) and age 

calibration (Correction Factor = 0.992) were performed using the SHED-Earth online 

calculator (http://shed.earth) following the recommendations of Dortch et al. (2016). SH 

exposure ages and 1σ uncertainties were calculated based on the arithmetic mean for each 

surface (Mean of 30 R-values) and based on the updated calibration curve of Tomkins et al. 

(2017) which includes 10Be dated surfaces from Blackstairs Mountain, Wexford (n = 2; 

Ballantyne and Stone, 2015) and Bloody Foreland, Donegal (n = 6; Ballantyne et al., 2007; 

Clark et al., 2009). These data fit the trend established at calibration sites in Scotland and NW 

England and indicate that errors in SH exposure age estimates due to climatic variability 

appear unlikely (Barr et al., 2017). Calibration site exposure ages are calculated using the 

online calculators formerly known as the CRONUS-Earth online calculator 

(http://hess.ess.washington.edu/math/, Wrapper script 2.3, Main calculator 2.1, constants 2.3, 

muons 1.1; Balco et al., 2008) and are based on the time-dependent Lm scaling (Lal, 1991; 

Stone, 2000), the Loch Lomond Production Rate (LLPR; Fabel et al., 2012; 4.02 ± 0.18 atoms 

g-1 a-1) and assuming 0 mm ka-1 erosion. The LLPR is constrained by independent 14C ages 

(MacLeod et al., 2011) and is the most widely used local production rate in the British Isles. 

However, the results presented here will be subject to recalibration in light of future 

refinement of local production rates. For each sampled site (n = 9), probability density 
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estimates (PDEs) were produced and modelled to separate out the highest probability 

Gaussian (Fig. 2; Dortch et al., 2013) to account for geological uncertainty. This analytical 

method has been employed in studies using 10Be (Dortch et al., 2013; Murari et al., 2014) to 

identify ages that are too young (moraine degradation; Heyman et al., 2011) or too old 

(inheritance; Hallet and Putknonen, 1994).  

Based on the results of SHED, three dimensional reconstructions of cirque glaciers were 

generated using the GLaRe tool (Pellitero et al., 2016; Basal shear stress = 100 kPa; Step 

length = 10 m) and used to estimate palaeo equilibrium-line altitudes (ELAs). Valley glaciers 

were also reconstructed for individual catchments using this method although ELAs were not 

calculated for these ice configurations as geochronological data are not available for all 

glacier outlets. ELAs were estimated using the GIS tool of Pellitero et al. (2015), applying the 

area-altitude balance ratio method (AABR = 1.9 ± 0.81; Rea, 2009). ELAs are controlled by 

climate (Ohmura et al., 1992; Hughes and Braithwaite, 2008) but are also strongly influenced 

by non-climatic factors (Table 2), such as the supply of snow and ice from indirect sources 

(Mitchell, 1996; Kern and Laszlo, 2010). To assess the impact of ‘redistributed’ snow and ice, 

combined snow and avalanche contributing areas (Ac) were calculated (c.f. Ballantyne, 

2007a,b; Barr et al., 2017; Dominant wind direction W/SW = 210 - 300°, Avalanche slopes ≥ 

25°) and compared to total glacier surface areas (Ag). The Ac/Ag ratio is a proxy for the 

potential contribution of redistributed snow to glacier accumulation.  

 

Results 

Gaussian SH exposure ages (Table 1) are in correct stratigraphic order in individual glacier 

catchments, are broadly consistent with comparable deglacial chronologies across the British 

Isles (Clark et al., 2012), and clearly differentiate cirque and valley moraines, with deposition 

during the Younger Dryas (YD; 11.7 - 12.9 ka) and Oldest Dryas respectively (GS-2.1a; 14.7 - 

17.5 ka). Moreover, these datasets are chronologically robust (Kirkbride and Winkler, 2012), 

with well-dated moraine sequences in Glenmalur, Glendasan and Glenmacnass (Fig. 1), and 

provide a framework for a wider morphostratigraphic deglacial chronology for the Wicklow 

Mountains (Knight et al., 2017). At cirque sites, SHED indicates deglaciation by 12.31 ± 0.51 

ka at Upper Lough Bray (ULB), 12.00 ± 0.44 ka at Kelly’s Lough (KL), 11.40 ± 0.13 ka at 

Mullaghcleevaun (MC) and 10.93 ± 0.26 ka for the outer moraine at Lough Nahanagan (LN; 

Colhoun and Synge, 1980). In contrast, valley moraines were deposited at 16.46 ± 0.58 ka at 

Glenmacnass Waterfall (GW), 16.21 ± 0.60 ka at Upper Glendasan, 15.48 ± 0.35 ka at 

Carrawaystick Brook (CB) and 15.41 ± 0.30 ka at Lough Brook (LB). Finally, SHED indicates the 

emergence of Carrigshouk (CS) by 16.64 ± 0.82 ka. This date provides a minimum age for 

wider summit deglaciation in the Wicklows Mountains due to its comparatively low elevation 

(571 m) and central position on the range divide. Reconstructed cirque glaciers (Table 2) 

range in size from 0.35 km2 (ULB) to 1.10 km2 (LN) while snow contributing areas (Ac) range 
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from 0.12 km2 (ULB) to 1.07 km2 (LN). At Lough Nahanagan and Mullaghcleevaun, extensive 

upland plateaus to the west and south (210 - 300°) account for large snow contributing areas 

(Ac ≥ 1 km2). In contrast, restricted upslope areas within the glacier drainage basin likely 

limited the potential for significant snow redistribution (Ac ≤ 0.5 km2) at Kelly’s Lough and 

Upper Lough Bray. AABR ELAs for cirque glaciers range from 513 m (LN) to 648 m (KL) and 

show no clear spatial clustering. Finally, reconstructed valley glaciers range in size from 4.96 

km2 (UGD) to 12.46 km2 (GW) and demonstrative a progressive reduction in total glacier area 

(Ag) throughout the period 15.4 - 16.5 ka.  

 

Discussion 

Firstly, these data demonstrate that significant ice masses persisted in the Wicklows after 

retreat of the ISIS, with large valley glaciers (Length: ~4 km, Area: ~12.5 km2) present until 

the onset of the Late-glacial (Greenland Interstadial-1; Rasmussen et al., 2014). While lowland 

(23.1 ± 2.2 ka; Bowen et al., 2002) and summit deglaciation (n = 3; 21.0 – 21.9 ka; Ballantyne 

et al., 2006) was coeval with ISIS retreat (Smedley et al., 2017b), SH exposure ages from the 

summit of Carrigshouk (571 m) indicate that summit ice fields were present on the range 

divide until 16.64 ± 0.82 ka. However, distal summits were ice free as early as 21.9 ± 1.1 ka 

(Djouce Mountain, 725 m), 21.2 ± 1.1 ka (Scarr, 641 m) and 21.0 ± 1.1 ka (Kanturk, 523 m) 

and evidence a significant time lag in summit deglaciation (~4.4 ka). Collectively, 10Be and 

SHED ages indicate rapid downwastage of the Wicklow Ice Cap soon after the LGM and a 

transition to summit ice fields which sourced discrete outlet glaciers (e.g. Glenmacnass, 

Glendasan, Glenmalur; Fig. 1). This chronology is consistent with 10Be ages from summits in 

Wales (Glasser et al., 2012; Hughes et al., 2016), which record downwastage of the Welsh Ice 

Cap at 19 - 20 ka (≤ 600 m), while 14C ages from proximal Welsh lowlands (15.82 ± 0.39 cal. 

ka BP; Lowe, 1981; Reimer et al., 2013), show that Alpine-style valley glaciers were present for 

~4 ka after initial summit emergence (Hughes et al., 2016). These data also accord with a 36Cl 

age from ice-sculpted bedrock in the Scafell massif, which indicates substantial downwastage 

of the Lake District ice cap by 17.3 ± 1.1 ka (< 750 m; Ballantyne et al., 2009). Deglaciation of 

Carrigshouk at ~16.6 ka marks a shift to topographically confined ice flow, with glaciers 

sourced from high elevation cirques, and likely reflects a time-progressive response to 

reduced moisture availability and winter aridity during this interval (Kelly et al., 2010). 

However, these data indicate that summit ice fields and large valley glaciers persisted in the 

Wicklows for 4 - 7 ka after ISIS retreat (Smedley et al., 2017b), and reveal similarities in the 

post-LGM histories of the Wicklow, Welsh (Hughes et al., 2016) and Lake District ice caps 

(Ballantyne et al., 2009). These data accord with wider evidence for post-LGM disintegration 

of the BIIS into component ice caps (Clark et al., 2012). 

Secondly, the geomorphological record indicates that post-LGM retreat was dynamic, with 

valley and cirque re-advance moraines deposited during the Oldest Dryas and Younger 
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Dryas respectively (Fig. 2A). Re-advance of valley glaciers during the interval 15.4 - 16.5 ka 

was coeval with peak ice rafted debris flux (Bard et al., 2000; Eynaud et al., 2009) and reduced 

sea surface temperatures (Bard et al., 2000) during Heinrich Stadial 1 (Fig. 2B; HS1) and the 

re-advance of the Irish Ice Sheet (IIS) and the ISIS during the Killard Point Stadial (~16 - 17.1 

ka; McCabe et al., 2007; Clark et al., 2012). The re-advance of glaciers in Ireland during the 

Oldest Dryas was matched further down the North-East Atlantic margin in Spain (Palacios et 

al., 2017). These re-advances are linked to North Atlantic climate perturbations (HS1) and 

likely reflect short-term oscillations of the ice front (≤ 1 ka) during the long-term post-LGM 

retreat phase (~8 ka). Moreover, these chronological data match recent morphostratigraphic 

assessments which support a widespread pattern of sustained retreat interrupted by minor 

glacier readvance (Knight et al., 2017). Retreat from re-advance positions, estimated at 1.82 

km ka-1 for the Glenmacnass glacier, was synchronous across the Wicklow Mountains, as 

demonstrated by progressive deglaciation from low to high elevation (Fig. 3A; R2 = 0.9116; p 

= 0.045). These data are indicative of climate-controlled retreat with independent outlet 

glaciers responding synchronously to reduced moisture availability (Kelly et al., 2010), 

irrespective of contrasting glacier aspects, source areas or glacier extents. Oldest Dryas valley 

glaciers were extensive (≤ 12.5 km2), sustained by ice fields and prior to ~16.6 ka, 

overtopped low-lying summits (~571 m). As a result, the potential for significant 

redistribution of snow and avalanche material (Ac > Ag) was limited, particularly during 

periods of winter aridity (Kelly et al., 2010). Therefore, while topography likely influenced the 

retreat pattern in individual valleys, post-LGM retreat (~15 - 17 ka) was primarily paced by 

climate.  

In contrast, marked asynchroneity in the timing of final YD deglaciation (Fig. 3; 11.4 - 12.3 ka) 

is unrelated to cirque elevation (Fig. 3A; R2 < 0.01, p = 0.97), palaeo-ELA (Fig. 3E; R2 = 0.04, p 

= 0.81) or site latitude (R2 = 0.10, p = 0.69). These data suggest that climate was not the 

dominant control on the timing of final YD deglaciation. Instead, glacier retreat was strongly 

controlled by local topography and the redistribution of wind-blown snow and avalanche 

material (Fig. 3B; R2 > 0.99, p < 0.01). Combined snow and avalanche contributing areas (Ac) 

range from just 0.119 km2 at Upper Lough Bray to 1.071 km2 at Lough Nahanagan. For 

glaciers with large Ac areas, topography may exert the primary control on glacier formation 

and survival, and may account for the comparatively late-deglaciation of Lough Nahanagan 

and Mullaghcleevaun during the early-Holocene. By comparison, glaciers with small Ac areas, 

where the potential for redistribution of snow and avalanche material is limited, may respond 

quasi-synchronously to climate warming. For example, the early deglaciation of Upper Lough 

Bray at 12.31 ± 0.51 ka is coeval with a gradual rise is summer air temperatures after ~12.5 

ka (Brooks and Birks, 2000) which was likely sufficient to raise the ‘climatic’ ELA above cirque 

elevations (Ac/Ag = 0; Barr et al., 2017) and initiate mass wastage. In contrast, abundant snow 

redistribution (Ac ≥ 1), conditioned by existing topographic configurations (extensive upland 

plateaus), was likely sufficient to locally supress the ‘local’ (non-climatic) ELA and promote 

glacier survival at other sites. However, the contribution of redistributed snow to glacier 

accumulation almost certainly diminished throughout the YD as summer air temperatures 
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increased rapidly towards the onset of the Holocene (Brooks and Birks, 2000), thus limiting 

snowpack preservation. These data indicate that while regional climate provides the baseline 

conditions for glacier growth and decay, cirque glacier dynamics may primarily reflect the 

influence of topography. However, there is a weak correlation between glacier size (Ag) and 

deglaciation age (Fig. 3C; R2 = 0.77, p = 0.12), although the size variation between the 

smallest (ULB; 0.35 km2) and largest reconstructed glacier (LN: 1.10 km2) is minimal (~0.75 

km2). As such, significant within-mountain range variation in glacier response times is not 

anticipated (Raper and Braithwaite, 2009). This may account for the weak correlation 

between Ac/Ag ratios and deglaciation ages (Fig. 3D; R2 = 0.58, p = 0.24) although the 

observable trend demonstrates the probability of early deglaciation for glaciers with small 

Ac/Ag ratios.  Based on this reasoning, we conclude that for small YD glaciers, local 

topoclimatic controls can be more significant than wider regional climate in determining 

cirque glacier dynamics, and in particular, the timing of final deglaciation. This result has 

important implications for palaeoclimate reconstructions based on dating of cirque moraines 

(e.g. using 10Be), as cirque glacier ELAs are not representative of the regional climate and 

consequently glaciers dynamics are likely to be decoupled from climatic changes occurring 

in the North Atlantic region. This phenomenon is observed today in the behaviour of small 

glaciers in marginal glaciated settings such as the Italian Alps (Colucci, 2016) and other 

Mediterranean mountains (Hughes, 2018). These data from Ireland also show that the impact 

of topography on glacier dynamics is most significant when glaciers are small (≤ 1 km2), 

resulting in clear asynchroneity in deglaciation (Fig. 3A; R2 = < 0.01), and provide further 

evidence that the climatic integrity of cirque glaciers may be limited (Kirkbride and Winkler, 

2012). In contrast, large glaciers (~12.5 km2), with limited potential for snow redistribution, 

have been shown to respond synchronously to climate forcing (Fig. 3A; R2 = 0.9116). 

Modelling studies have shown that topoclimatic variables (solar radiation/snow 

redistribution) can predict the style of deglaciation (moraine distribution) for small Younger 

Dryas glaciers (Coleman et al., 2009; Bickerdike et al., 2017). The chronological data 

presented here provides new evidence that topographic controls not only influence the style 

of deglaciation, but can determine the timing of final deglaciation, with clear within-

mountain range variability.  

A further challenge in linking cirque glacier dynamics to climatic fluctuations is the potential 

impact of moraine stabilisation (Hallet and Putknonen, 1994). This post-depositional process 

can result in moraine ages (e.g. 10Be) which post-date glacial retreat. A 1-2 ka early 

stabilization period has been recorded for Alpine moraine sequences in Alaska and the Alps 

(Briner et al., 2005; Ivy-Ochs et al., 2006, 2008; Dortch et al., 2010a). In these environments, 

glaciers can produce distinctive asymmetric ice-contact fans that undergo rapid gullying and 

post-depositional reworking on their ice-proximal slopes (e.g. Hambrey et al., 2012; Lukas et 

al., 2012). However, these landforms are topographically and sedimentologically distinct from 

the low-relief, topographically concordant valley and cirque landsystems found in the 

Wicklow Mountains. Moreover, there has been comparatively little attention to processes of 

moraine development and deglaciation dynamics in these environments, with analogue 
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studies predominantly focused on ‘hummocky moraine’ landsystems (e.g. Benn and Lukas, 

2006), and a relative paucity of research into moraine processes in smaller cirque type 

landsystems, likely under the assumption of rapid stabilisation after deglaciation. Recent 

work has highlighted the importance of self-censoring in cirque environments due to 

obliterative overlap (Barr and Lovell, 2014) or ice-cored moraine degradation (Crump et al., 

2017; Tonkin et al., 2017), while external-censoring due to slope instability may also provide 

a control on moraine stabilisation (Barr and Lovell, 2014). As a result, there is considerable 

uncertainty regarding the robustness of chronological datasets for cirque moraine systems 

(Kirkbride and Winkler, 2012). To produce better-resolved glacier chronologies, researchers 

can account for moraine stabilisation through (1) morphostratigraphic comparison of 

moraine sequences, (2) Gaussian separation of exposure ages (Dortch et al., 2013), (3) 

assessment against independent geochronological data (e.g. 14C, OSL) and (4) consideration 

of modern process studies and likely modern analogues for moraine assemblages when 

assessing site suitability for a give geochronological approach (e.g. Çiner et al. 2015). Based 

on these criteria, we infer that moraine stabilisation may be a key post-depositional process 

for the outer moraine at Lough Nahanagan. Firstly, this moraine is degraded (Colhoun and 

Synge, 1980) and is morphologically distinct from sampled cirque moraines at 

Mullaghcleevaun, Kelly’s Lough and Upper Lough Bray which are tall (> 3 m), matrix-poor, 

boulder-rich, and feature clearly defined moraine crests (Fig. 4). Secondly, Gaussian 

separation of SHED data for this site (n = 20) reveals a clear ‘two-peak’ probability density 

function (Fig. 2C), with Gaussian ages of 10.93 ± 0.26 ka (n = 9) and 11.38 ± 0.26 ka (n = 9). 

The youngest age post-dates the YD by ~0.8 ka and is inconsistent with wider evidence for 

deglaciation of the British Isles by the YD/Holocene transition (MacLeod et al., 2011) 

although in isolation, this observation is insufficient to reject this age at this stage. In 

addition, this method highlights clear outlier ages (n = 3; 12.8 - 13.5 ka). These Gaussian 

ages can be rejected as they are comprised of fewer than 3 ages (c.f. Fig. 3 in Dortch et al., 

2013). Finally, independent 14C ages indicate deglaciation during the late YD and early 

Holocene (11.5 - 11.6 ka; Colhoun and Synge, 1980). In contrast, a single 36Cl age suggests 

ice free conditions since 17.9 ± 1.0 ka (Bowen et al., 2002), although this age likely reflects 

prior exposure (inheritance) and is rejected from further analysis. Based on these data, we 

conclude that the older Gaussian age of 11.38 ± 0.26 ka is more representative of final 

deglaciation as this age is consistent with previous 14C ages and accounts for both the 

distinctive geomorphological assemblage at this site and the clear ‘two-peak’ distribution of 

SHED ages. This conclusion indicates that moraine stabilisation and boulder exhumation may 

account for the degraded moraine surface and comparatively ‘young’ SHED ages. These data 

provide further evidence that moraine ages are more likely influenced by post-glacial 

instability than prior exposure (Shanahan & Zreda 2000; Putkonen & Swanson 2003; Zech et 

al. 2005; Heyman et al. 2011; Applegate et al., 2012). As a result, the dynamics of small cirque 

glaciers (< 1 km2), as determined by radiometric methods (10Be), may not only primarily 

reflect topographic controls, but may be profoundly influenced by post-depositional 

processes. The post-depositional evolution of YD moraine systems is largely unexplored at 
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present and a clear co-benefit of the SHED approach is the potential insight into these 

processes; insight that was not afforded by other geochronological approaches. Future 

research should carefully consider landform context (Barr and Lovell, 2014) and prioritise 

sampling of cirque environments where snow and avalanche contributing areas (Ac) are small 

(Warren, 1991; Mills et al., 2012; Barr and Lovell, 2014), where postglacial erosion is limited 

and where short transport distances promote the formation of matrix-poor boulder-rich 

moraines (Fig. 5; Pallàs et al., 2010). In these environments, snow redistribution is limited and 

moraines are more likely to stabilise rapidly after deglaciation. As such, these glaciers may 

respond quasi-synchronously to climatic fluctuations and may produce more robust 

palaeoclimatic reconstructions. 

 

Conclusions 

This study provides the first chronological constraints on post-LGM retreat of the Wicklow 

Ice Cap. 170 SH exposure ages from cirque and valley moraines and from a summit 

overridden by ice at the LGM demonstrate that significant ice masses persisted in the 

Wicklows after retreat of the ISIS and were sustained by summit ice-fields until ~16.6 ka. 

Post-LGM retreat was dynamic, with re-advance moraines deposited during the Oldest Dryas 

in response to HS1 cooling. However, these events reflect short-term oscillations (≤ 1 ka) of 

the ice front during the long-term retreat phase (~8 ka), which was driven by reduced 

moisture availability and winter aridity. This chronology is matched by 10Be and 14C ages from 

the Welsh Ice Cap, with downwastage during the interval 19-20 ka, while alpine valley 

glaciers persisted for ~4 ka after initial summit emergence. Retreat from re-advance 

positions was paced by climate, with time-progressive deglaciation from low to high 

elevation (R2 = 0.9116). In contrast, asynchroneity in final Younger Dryas deglaciation is 

accounted for by local topography and the redistribution of snow and avalanche material. 

Contrasting synchroneity in the timing of glacial retreat during these periods is conditioned 

by glacier size, with small YD glaciers (< 1 km2) highly sensitive to local topographic controls. 

This result has important implications for palaeoclimate reconstructions based on dating of 

cirque moraines (e.g. 10Be), as cirque glacier dynamics may be unrelated to climate. This is 

further complicated by post-depositional processes which can result in ages which post-date 

retreat. As a result, future palaeoclimate reconstructions should prioritise cirque glaciers 

where snow and avalanche contributing areas (Ac) are small and where the potential for 

post-depositional disturbance is limited (matrix-poor, boulder rich moraines).  
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Figure Captions 

Figure 1. Generalised geomorphological map of the Wicklow Mountains. Moraines modified 

after Clark et al. (2017). 10Be ages recalibrated from Ballantyne et al. (2006) using the online 

calculators formerly known as the CRONUS-Earth online calculator (Wrapper script 2.3, Main 

calculator 2.1, constants 2.3, muons 1.1; Balco et al., 2008) based on the Loch Lomond 

Production Rate (Fabel et al., 2012), the time-independent Lm scaling (Lal, 1991; Stone 2000) 

and assuming 0 mm ka-1 erosion. Ca: Camenabologue; Dj: Djouce Mountain; Ka: Kanturk; Ki: 

Kippure; Lq: Lugnaquillia; Mu: Mullaghcleevaun; Sc: Scarr; Tg: Tonelagee. Map projection: 

UTM WGS 1984.  

Figure 2. Gaussian ages related to deglaciation of the Wicklow Mountains. A: The NGRIP 

Oxygen Isotope Curve (Rasmussen et al., 2014) plotted against 1σ age boundaries for 

sampled cirque and valley sites. The Younger Dryas (YD) and Oldest Dryas (OD) periods are 

Page 15 of 30

http://mc.manuscriptcentral.com/jqs

Journal of Quaternary Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



marked. B: Ice rafted debris and sea surface temperature records from cores SUBI-18 (Bard et 

al., 2000) and MD95-2039 (Eynaud et al., 2009) in the North Atlantic. C: Gaussian models for 

sampled cirque and valley sites. For each site, the highest probability Gaussian is considered 

the most likely timing of deglaciation as all ages are younger than the Last Glacial Maximum 

(Dortch et al., 2013). At Lough Nahanagan, the oldest peak with more than 3 ages is selected 

(c.f. Dortch et al., 2013) as this moraine is degraded and morphologically distinct from other 

sampled cirque moraines (MC, KL, ULB). Moreover, this estimates matches previous 14C ages 

(Colhoun and Synge, 1980).  

Figure 3. Topographic and climatic controls on the timing of cirque deglaciation in the 

Wicklow Mountains. A: Site Elevation; B: Snow contributing area (Ac); C: Glacier area (Ag); D: 

Ac/Ag ratio; E: ELA; F: ELAs and Ac/Ag ratio plots. These data show that for large valley glaciers, 

retreat is paced by climate with progressive deglaciation from low to high elevation (A). In 

contrast, marked asynchroneity in the timing of cirque deglaciation (A) is strongly controlled 

by snow redistribution (B). This asynchroneity is weakly correlated with glacier size (C) and 

Ac/Ag ratios (D) and is unrelated to ELA (E).  

Figure 4. Sampled cirque moraines at Lough Nahanagan (A), Mullaghcleevaun (B), Kelly’s 

Lough (C) and Upper Lough Bray (D). The outer cirque moraine at Lough Nahanagan is 

degraded (Colhoun and Synge, 1980) and is morphologically distinct from other cirque 

moraines which are sharp crested, boulder-rich and matrix-poor.  

Figure 5. Matrix-poor, boulder-rich moraine at Mullaghcleevaun which likely stabilised 

rapidly after deglaciation. 
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Tables 

Table 1. Gaussian ages for cirque, valley and summit sites from the Wicklow Mountains.  

Group Site Name 
Site 

Code 
Site Elevation 

(m) 
Site Latitude 

(°) 
Deglaciation Age 

(ka) ± 
Glacier Area (Ag 

km2) 

Cirque  

Lough Nahanagan LN 443 53.034 11.38 0.26 1.10 

Mullaghcleevaun MC 571 53.089 11.40 0.13 0.61 

Kelly's Lough KL 585 52.960 12.00 0.44 0.38 

Upper Lough Bray ULB 466 53.178 12.31 0.51 0.35 

 

Valley 

Lough Brook LB 393 53.070 15.41 0.30 7.63 

Carrawaystick Brook CB 421 52.964 15.48 0.35 1.83 

Upper Glendasan UGD 332 53.030 
 16.21 0.60 4.96 

Glenmacnass Waterfall GW 268 53.062 
 16.46 0.58 12.46 

 Summit Carrigshouk CG 571 53.086 16.64 0.82 - 
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Table 2. Snow contributing areas (Ac), glacier areas (Ag) and ELAs for cirque moraines.  

Site 
Code 

Deglaciation Age 
(ka) ± Snow Contributing Area (Ac km2) a 

Glacier Area 
(Ag km2) 

Ac / Ag 
Ratio ELA b 

LN 11.38 0.26 1.07 1.10 0.97 513 

MC 11.40 0.13 0.99 0.61 1.62 561 

KL 12.00 0.44 0.42 0.38 1.10 648 

ULB 12.31 0.51 0.12 0.35 0.34 519 

        
a Area within the glacier drainage basin within the 210 – 300° quadrant + all other slopes which overlook the glacier (Gradients > 25°), b AABR = 1.9 ± 
0.81 (Rea, 2009) 
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Figure 1. Generalised geomorphological map of the Wicklow Mountains. Moraines modified after Clark et al. 
(2017). 10Be ages recalibrated from Ballantyne et al. (2006) using the online calculators formerly known as 

the CRONUS-Earth online calculator (Wrapper script 2.3, Main calculator 2.1, constants 2.3, muons 1.1; 
Balco et al., 2008) based on the Loch Lomond Production Rate (Fabel et al., 2012), the time-independent 
Lm scaling (Lal, 1991; Stone 2000) and assuming 0 mm ka-1 erosion. Ca: Camenabologue; Dj: Djouce 

Mountain; Ka: Kanturk; Ki: Kippure; Lq: Lugnaquillia; Mu: Mullaghcleevaun; Sc: Scarr; Tg: Tonelagee. Map 
projection: UTM WGS 1984.  
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Figure 2. Gaussian ages related to deglaciation of the Wicklow Mountains. A: The NGRIP Oxygen Isotope 
Curve (Rasmussen et al., 2014) plotted against 1σ age boundaries for sampled cirque and valley sites. The 

Younger Dryas (YD) and Oldest Dryas (OD) periods are marked. B: Ice rafted debris and sea surface 

temperature records from cores SUBI-18 (Bard et al., 2000) and MD95-2039 (Eynaud et al., 2009) in the 
North Atlantic. C: Gaussian models for sampled cirque and valley sites. For each site, the highest probability 

Gaussian is considered the most likely timing of deglaciation as all ages are younger than the Last Glacial 
Maximum (Dortch et al., 2013). At Lough Nahanagan, the oldest peak with more than 3 ages is selected 

(c.f. Dortch et al., 2013) as this moraine is degraded and morphologically distinct from other sampled cirque 
moraines (MC, KL, ULB). Moreover, this estimates matches previous 14C ages (Colhoun and Synge, 1980).  
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Figure 3. Topographic and climatic controls on the timing of cirque deglaciation in the Wicklow Mountains. A: 
Site Elevation; B: Snow contributing area (Ac); C: Glacier area (Ag); D: Ac/Ag ratio; E: ELA; F: ELAs and 

Ac/Ag ratio plots. These data show that for large valley glaciers, retreat is paced by climate with progressive 

deglaciation from low to high elevation (A). In contrast, marked asynchroneity in the timing of cirque 
deglaciation (A) is strongly controlled by snow redistribution (B). This asynchroneity is weakly correlated 

with glacier size (C) and Ac/Ag ratios (D) and is unrelated to ELA (E).  
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Figure 4. Sampled cirque moraines at Lough Nahanagan (A), Mullaghcleevaun (B), Kelly’s Lough (C) and 
Upper Lough Bray (D). The outer cirque moraine at Lough Nahanagan is degraded (Colhoun and Synge, 

1980) and is morphologically distinct from other cirque moraines which are sharp crested, boulder-rich and 

matrix-poor.  
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Figure 5. Matrix-poor, boulder-rich moraine at Mullaghcleevaun which likely stabilised rapidly after 
deglaciation.  

 

 

Page 24 of 30

http://mc.manuscriptcentral.com/jqs

Journal of Quaternary Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Group Site Code Sample Name Latitude (°) Longitude (°) Elevation (m) Type Mean R-value SEM 
a Age (ka) 1σ

Cirque LN LN-01 53.03338 -6.3854 445 Boulder 46.10 0.94 11.535 1.382

Cirque LN LN-02 53.03352 -6.3858 447 Boulder 46.63 0.92 11.233 1.383

Cirque LN LN-03 53.03358 -6.38594 446 Boulder 46.24 0.81 11.46 1.382

Cirque LN LN-04 53.03383 -6.3859 446 Boulder 46.91 0.91 11.074 1.384

Cirque LN LN-05 53.03407 -6.38591 446 Boulder 47.28 0.98 10.852 1.385

Cirque LN LN-06 53.03402 -6.38659 447 Boulder 47.05 1.04 10.971 1.384

Cirque LN LN-07 53.03372 -6.3867 447 Boulder 46.42 0.91 11.322 1.383

Cirque LN LN-08 53.03381 -6.38705 447 Boulder 42.96 0.64 13.281 1.378

Cirque LN LN-09 53.03405 -6.38726 445 Boulder 47.16 0.82 10.892 1.384

Cirque LN LN-10 53.03421 -6.38778 444 Boulder 42.63 0.55 13.466 1.377

Cirque LN LN-11 53.03463 -6.38824 443 Boulder 46.54 0.87 11.252 1.383

Cirque LN LN-12 53.03461 -6.38828 442 Boulder 47.31 0.95 10.816 1.385

Cirque LN LN-13 53.03452 -6.38849 443 Boulder 46.18 1.03 11.46 1.382

Cirque LN LN-14 53.03478 -6.38881 440 Boulder 47.09 1.05 10.949 1.384

Cirque LN LN-15 53.03468 -6.38892 440 Boulder 47.09 0.99 10.949 1.384

Cirque LN LN-16 53.03476 -6.39012 439 Boulder 47.23 1.10 10.873 1.384

Cirque LN LN-17 53.03477 -6.39019 439 Boulder 46.43 0.94 11.327 1.383

Cirque LN LN-18 53.03462 -6.39077 439 Boulder 46.23 0.82 11.441 1.382

Cirque LN LN-19 53.03465 -6.39129 438 Boulder 47.01 0.91 11.005 1.384

Cirque LN LN-20 53.03481 -6.39209 437 Boulder 43.84 0.82 12.804 1.379

Cirque MC MC-01 53.08932 -6.38822 586 Boulder 45.89 0.85 11.636 1.382

Cirque MC MC-02 53.08923 -6.38826 586 Boulder 45.50 0.79 11.855 1.381

Cirque MC MC-03 53.08913 -6.38826 587 Boulder 46.20 0.76 11.458 1.382

Cirque MC MC-04 53.08889 -6.38819 586 Boulder 44.51 0.79 12.414 1.38

Cirque MC MC-05 53.08873 -6.38812 583 Boulder 44.92 0.68 12.188 1.38

Cirque MC MC-06 53.08862 -6.38807 580 Boulder 46.21 0.91 11.452 1.382

Cirque MC MC-07 53.08856 -6.38811 578 Boulder 44.19 0.83 12.599 1.379

Cirque MC MC-08 53.08836 -6.38785 575 Boulder 46.28 0.87 11.412 1.383
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Cirque MC MC-09 53.08817 -6.38766 575 Boulder 47.32 0.90 10.828 1.385

Cirque MC MC-10 53.08792 -6.38769 575 Boulder 47.62 0.98 10.657 1.385

Cirque MC MC-11 53.08784 -6.38766 575 Boulder 46.36 0.77 11.367 1.383

Cirque MC MC-12 53.08763 -6.38737 569 Boulder 46.37 1.09 11.371 1.383

Cirque MC MC-13 53.08737 -6.38723 568 Boulder 45.41 0.96 11.914 1.381

Cirque MC MC-14 53.08703 -6.38712 568 Boulder 46.28 0.94 11.418 1.382

Cirque MC MC-15 53.08699 -6.38697 568 Boulder 46.12 0.97 11.513 1.382

Cirque MC MC-16 53.08677 -6.38674 566 Boulder 45.85 1.04 11.655 1.382

Cirque MC MC-17 53.08662 -6.38667 564 Boulder 46.42 0.80 11.341 1.383

Cirque MC MC-18 53.0861 -6.3857 552 Boulder 46.26 0.87 11.429 1.382

Cirque MC MC-19 53.0858 -6.38509 543 Boulder 44.24 0.80 12.571 1.379

Cirque MC MC-20 53.08559 -6.38516 542 Boulder 45.90 0.85 11.63 1.382

Cirque KL KL-01 52.96091 -6.42741 589 Boulder 47.09 0.69 10.964 1.384

Cirque KL KL-02 52.9606 -6.42686 586 Boulder 44.40 0.72 12.491 1.379

Cirque KL KL-03 52.96059 -6.42689 585 Boulder 45.40 0.89 11.918 1.381

Cirque KL KL-04 52.96058 -6.42695 585 Boulder 45.01 0.59 12.151 1.38

Cirque KL KL-05 52.96054 -6.42688 585 Boulder 46.57 0.85 11.252 1.383

Cirque KL KL-06 52.96045 -6.42687 585 Boulder 45.31 0.85 11.961 1.381

Cirque KL KL-07 52.96037 -6.42682 585 Boulder 46.28 0.66 11.414 1.382

Cirque KL KL-08 52.96032 -6.42669 585 Boulder 47.08 0.58 10.962 1.384

Cirque KL KL-09 52.96022 -6.42657 585 Boulder 46.59 0.88 11.24 1.383

Cirque KL KL-10 52.96015 -6.42655 585 Boulder 44.40 0.83 12.472 1.379

Cirque KL KL-11 52.96006 -6.42634 585 Boulder 45.67 0.81 11.749 1.381

Cirque KL KL-12 52.9599 -6.42618 585 Boulder 44.57 0.81 12.368 1.38

Cirque KL KL-13 52.95984 -6.42605 584 Boulder 44.94 0.81 12.162 1.38

Cirque KL KL-14 52.95965 -6.42554 582 Boulder 45.11 0.92 12.067 1.38

Cirque KL KL-15 52.95945 -6.42557 586 Boulder 45.25 0.97 11.99 1.381

Cirque KL KL-16 52.95947 -6.42537 585 Boulder 47.25 0.99 10.854 1.385

Cirque KL KL-17 52.95913 -6.42493 586 Boulder 45.56 0.89 11.819 1.381

Cirque KL KL-18 52.95903 -6.42483 586 Boulder 46.69 0.62 11.176 1.383

Cirque KL KL-19 52.95883 -6.42416 583 Boulder 45.60 0.74 11.8 1.381

Cirque KL KL-20 52.95849 -6.42373 583 Boulder 46.30 0.59 11.403 1.383

Cirque ULB ULB-01 53.18062 -6.30129 464 Boulder 44.30 1.00 12.544 1.379
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Cirque ULB ULB-02 53.18063 -6.30117 463 Boulder 45.17 1.01 12.043 1.381

Cirque ULB ULB-03 53.18056 -6.30117 462 Boulder 44.44 1.27 12.459 1.379

Cirque ULB ULB-04 53.18044 -6.30134 462 Boulder 44.68 1.40 12.327 1.38

Cirque ULB ULB-05 53.18032 -6.30136 462 Boulder 46.33 1.25 11.38 1.383

Cirque ULB ULB-06 53.1804 -6.30112 462 Boulder 44.65 1.14 12.334 1.38

Cirque ULB ULB-07 53.18048 -6.30083 462 Boulder 45.06 1.24 12.109 1.38

Cirque ULB ULB-08 53.18055 -6.30071 462 Boulder 44.73 1.39 12.294 1.38

Cirque ULB ULB-09 53.18025 -6.30063 466 Boulder 43.29 1.40 13.116 1.378

Cirque ULB ULB-10 53.18022 -6.30049 466 Boulder 44.84 1.08 12.234 1.38

Cirque ULB ULB-11 53.17784 -6.29847 471 Boulder 43.97 1.05 12.728 1.379

Cirque ULB ULB-12 53.17786 -6.29841 471 Boulder 42.06 0.96 13.813 1.377

Cirque ULB ULB-13 53.17785 -6.29823 471 Boulder 42.77 0.80 13.409 1.378

Cirque ULB ULB-14 53.17756 -6.29822 471 Boulder 43.34 0.96 13.086 1.378

Cirque ULB ULB-15 53.17737 -6.29801 471 Boulder 45.53 0.69 11.846 1.381

Cirque ULB ULB-16 53.17711 -6.29775 471 Boulder 42.88 0.93 13.345 1.378

Cirque ULB ULB-17 53.17694 -6.29753 471 Boulder 39.79 0.78 15.1 1.376

Cirque ULB ULB-18 53.17675 -6.29755 463 Boulder 43.86 0.93 12.79 1.379

Cirque ULB ULB-19 53.17635 -6.29698 460 Boulder 38.29 0.69 15.951 1.376

Cirque ULB ULB-20 53.17632 -6.29698 459 Boulder 43.10 0.70 13.231 1.378

Valley LB LB-01 53.07045 -6.35507 394 Boulder 37.26 1.04 16.538 1.377

Valley LB LB-02 53.07046 -6.35512 393 Boulder 38.69 0.93 15.726 1.376

Valley LB LB-03 53.07034 -6.35513 395 Boulder 37.59 0.95 16.345 1.377

Valley LB LB-04 53.07009 -6.35499 396 Boulder 39.72 1.05 15.137 1.376

Valley LB LB-05 53.07006 -6.355 396 Boulder 37.93 0.90 16.156 1.377

Valley LB LB-06 53.07009 -6.35495 396 Boulder 39.43 0.72 15.302 1.376

Valley LB LB-07 53.07003 -6.35471 396 Boulder 38.44 0.97 15.874 1.376

Valley LB LB-08 53.07015 -6.3546 396 Boulder 38.71 0.90 15.715 1.376

Valley LB LB-09 53.07041 -6.35415 390 Boulder 38.44 1.00 15.862 1.376

Valley LB LB-10 53.07045 -6.35399 390 Boulder 40.34 0.82 14.791 1.376

Valley LB LB-11 53.07029 -6.35407 392 Boulder 38.82 0.94 15.656 1.376

Valley LB LB-12 53.0702 -6.35389 393 Boulder 39.35 0.68 15.357 1.376

Valley LB LB-13 53.07032 -6.35356 393 Boulder 39.02 0.89 15.543 1.376

Valley LB LB-14 53.07028 -6.35348 394 Boulder 38.06 0.65 16.091 1.376
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Valley LB LB-15 53.07027 -6.35349 394 Boulder 37.20 1.11 16.57 1.377

Valley LB LB-16 53.07012 -6.35328 394 Boulder 39.07 0.80 15.52 1.376

Valley LB LB-17 53.07022 -6.35302 391 Boulder 39.17 0.92 15.454 1.376

Valley LB LB-18 53.06963 -6.35252 395 Boulder 39.37 0.93 15.34 1.376

Valley LB LB-19 53.06958 -6.35199 389 Boulder 39.14 1.13 15.469 1.376

Valley LB LB-20 53.06971 -6.35162 384 Boulder 39.48 0.79 15.281 1.376

Valley CB CB-01 52.96432 -6.40324 423 Boulder 39.52 0.66 15.264 1.376

Valley CB CB-02 52.96429 -6.40317 424 Boulder 39.79 0.79 15.113 1.376

Valley CB CB-03 52.9643 -6.40319 423 Boulder 38.20 0.69 16.021 1.376

Valley CB CB-04 52.96428 -6.4031 421 Boulder 39.36 0.64 15.359 1.376

Valley CB CB-05 52.96423 -6.40311 421 Boulder 40.53 0.54 14.696 1.376

Valley CB CB-06 52.96421 -6.40317 421 Boulder 38.91 0.80 15.616 1.376

Valley CB CB-07 52.96425 -6.40302 420 Boulder 38.84 0.79 15.656 1.376

Valley CB CB-08 52.96436 -6.4029 420 Boulder 36.25 0.70 17.112 1.378

Valley CB CB-09 52.96431 -6.40291 419 Boulder 39.22 0.76 15.431 1.376

Valley CB CB-10 52.96418 -6.40294 418 Boulder 38.79 0.90 15.662 1.376

Valley UGD UGD-01 53.02901 -6.36507 336 Boulder 38.23 0.93 15.984 1.376

Valley UGD UGD-02 53.02903 -6.36502 336 Boulder 37.90 0.91 16.173 1.377

Valley UGD UGD-03 53.02916 -6.36542 332 Boulder 39.77 0.90 15.113 1.376

Valley UGD UGD-04 53.02936 -6.3655 330 Boulder 39.07 0.90 15.51 1.376

Valley UGD UGD-05 53.02939 -6.36557 330 Boulder 38.21 0.96 16.002 1.376

Valley UGD UGD-06 53.0296 -6.36602 333 Boulder 37.71 0.73 16.286 1.377

Valley UGD UGD-07 53.0297 -6.36598 335 Boulder 39.89 0.97 15.054 1.376

Valley UGD UGD-08 53.02973 -6.36654 328 Boulder 40.46 0.97 14.731 1.376

Valley UGD UGD-09 53.02976 -6.36657 329 Boulder 37.25 0.91 16.551 1.377

Valley UGD UGD-10 53.02974 -6.36667 328 Boulder 36.75 0.68 16.835 1.377

Valley UGD UGD-11 53.03012 -6.36654 334 Boulder 36.35 0.84 17.062 1.378

Valley UGD UGD-12 53.0302 -6.36666 332 Boulder 36.26 0.78 17.115 1.378

Valley UGD UGD-13 53.03029 -6.36672 333 Boulder 39.81 0.71 15.098 1.376

Valley UGD UGD-14 53.03049 -6.36659 332 Boulder 38.94 0.82 15.586 1.376

Valley UGD UGD-15 53.03056 -6.36662 332 Boulder 37.61 0.99 16.351 1.377

Valley UGD UGD-16 53.03062 -6.36666 330 Boulder 39.21 1.03 15.423 1.376

Valley UGD UGD-17 53.03066 -6.36667 330 Boulder 39.29 0.96 15.385 1.376
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Valley UGD UGD-18 53.03097 -6.367 330 Boulder 37.58 0.93 16.358 1.377

Valley UGD UGD-19 53.03113 -6.3668 337 Boulder 39.93 1.12 15.022 1.376

Valley UGD UGD-20 53.03128 -6.36709 334 Boulder 38.19 0.83 16.008 1.376

Valley GW GW-01 53.06269 -6.33445 275 Boulder 37.29 0.97 16.498 1.377

Valley GW GW-02 53.06269 -6.3345 274 Boulder 38.13 0.86 16.021 1.376

Valley GW GW-03 53.0626 -6.33461 273 Boulder 38.36 1.09 15.891 1.376

Valley GW GW-04 53.06254 -6.33465 269 Boulder 39.13 0.95 15.454 1.376

Valley GW GW-05 53.06248 -6.33472 266 Boulder 35.67 0.72 17.422 1.378

Valley GW GW-06 53.06242 -6.33468 271 Boulder 36.61 0.83 16.892 1.377

Valley GW GW-07 53.06235 -6.33471 270 Boulder 36.35 0.90 17.044 1.378

Valley GW GW-08 53.06227 -6.33476 267 Boulder 38.18 1.01 16.002 1.376

Valley GW GW-09 53.0622 -6.3347 266 Boulder 35.92 0.81 17.29 1.378

Valley GW GW-10 53.06211 -6.33465 268 Boulder 36.22 0.81 17.119 1.378

Valley GW GW-11 53.06207 -6.33459 268 Boulder 37.16 1.06 16.589 1.377

Valley GW GW-12 53.06197 -6.33464 269 Boulder 36.73 1.00 16.835 1.377

Valley GW GW-13 53.06182 -6.3347 269 Boulder 37.43 0.94 16.438 1.377

Valley GW GW-14 53.06169 -6.3347 268 Boulder 36.50 0.78 16.968 1.378

Valley GW GW-15 53.06165 -6.33473 267 Boulder 37.27 0.86 16.532 1.377

Valley GW GW-16 53.06153 -6.33473 268 Boulder 37.14 0.79 16.608 1.377

Valley GW GW-17 53.06144 -6.33487 266 Boulder 37.98 0.74 16.135 1.377

Valley GW GW-18 53.0614 -6.33493 262 Boulder 36.98 0.79 16.703 1.377

Valley GW GW-19 53.06132 -6.33491 261 Boulder 37.72 0.88 16.286 1.377

Valley GW GW-20 53.0612 -6.33494 261 Boulder 37.92 0.61 16.173 1.377

Summit CS CS-01 53.08641 -6.3626 570 Bedrock 35.45 0.63 17.56 1.379

Summit CS CS-02 53.08638 -6.36257 571 Boulder 34.01 0.58 18.389 1.381

Summit CS CS-03 53.08649 -6.36254 570 Bedrock 35.62 0.73 17.464 1.378

Summit CS CS-04 53.08645 -6.36234 570 Bedrock 39.11 0.82 15.478 1.376

Summit CS CS-05 53.08653 -6.36226 570 Bedrock 39.31 0.80 15.367 1.376

Summit CS CS-06 53.08663 -6.36216 570 Boulder 37.31 1.00 16.506 1.377

Summit CS CS-07 53.0864 -6.36238 570 Bedrock 39.39 0.66 15.321 1.376

Summit CS CS-08 53.08634 -6.36248 570 Bedrock 36.21 0.81 17.127 1.378

Summit CS CS-09 53.08615 -6.36222 569 Bedrock 39.03 0.56 15.529 1.376

Summit CS CS-10 53.08611 -6.36223 569 Bedrock 40.13 0.75 14.905 1.376
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Summit CS CS-11 53.08605 -6.36221 567 Bedrock 38.09 0.50 16.059 1.376

Summit CS CS-12 53.08595 -6.36209 567 Boulder 37.23 1.02 16.548 1.377

Summit CS CS-13 53.08597 -6.36204 568 Bedrock 39.01 0.81 15.548 1.376

Summit CS CS-14 53.086 -6.3619 568 Bedrock 39.58 0.70 15.226 1.376

Summit CS CS-15 53.08591 -6.3618 568 Bedrock 36.97 0.94 16.703 1.377

Summit CS CS-16 53.08586 -6.36144 569 Bedrock 36.74 0.79 16.835 1.377

Summit CS CS-17 53.08616 -6.36171 569 Bedrock 36.67 0.71 16.871 1.377

Summit CS CS-18 53.08634 -6.36132 569 Boulder 37.58 0.99 16.353 1.377

Summit CS CS-19 53.08645 -6.36164 569 Boulder 37.25 0.73 16.544 1.377

Summit CS CS-20 53.08644 -6.36157 569 Bedrock 37.66 0.80 16.317 1.377

a
 Standard Error of the Mean
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