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The mathematical continuum: A haunting problematic 

	
Elizabeth de Freitas1 

Manchester Metropolitan University 

	
ABSTRACT: The mathematical continuum refers to the geometric number line and the 

real number system. This conceptual coupling of line and number has been an enduring 

source for mathematical invention and paradox. The continuum captures the monstrous 

desire of mathematics, a desire to re-assemble the discrete with the continuous, the finite 

with the infinite, the point with the line. This paper explores how the continuum is a 

source of fundamental ambiguity fueling our desires and fears about mathematics.  
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The haunting 

In set theory, the mathematical continuum refers to the power set of the natural numbers, 

but on a more intuitive plane, the continuum melds the geometric number line with the 

real number system. This conceptual coupling of line with number has been an enduring 

source for mathematical invention and paradox. If the density of the real numbers – that 

being the fact that you can always find another real number between any other two - is 

not adequate to ensure that the reals are continuous and without gaps, then there seems to 

be a haunting absence that destabilizes the continuum. Concerns that Euclid’s axioms 

could not, in principle, construct the continuity of the number line lead to various 

attempts to do so in the nineteenth century. Dedekind (1831-1916), intent on banishing 

all geometric “intuition” from mathematics, used classes and “cuts” to compose the 

infinite granularity needed for the continuum. Each real number – each ‘part’ of the 

continuum – was to be uniquely identified with a cut (Dedekind, 1901). When the cut 

designated a rational number, rather than irrational, the number was then assigned to one 
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of the two sets on either side of the cut. But in the case of an irrational number, the 

number belonged to neither. In such irrational cases, the number was always on the 

outside of both sets, which made it strangely unreachable and yet adequately defined in 

absentia. Irrational numbers were thus produced through this method, and thus the 

continuum was adequately defined or constructed. And yet the irrationals were somehow 

excluded as well, being outside either set, which for some mathematicians cast some 

small measure of suspicion on Dedekind’s method.  

Cantor (1845-1918) would offer a similar ‘compositional’ approach, proposing 

necessary and sufficient conditions for continuity that relied on set theoretic constraints 

(Ferreirós, 1993). As set theory came to dominate the field in the nineteenth century, the 

materiality of the number line was left behind, and the continuum became simply the 

power set of the natural numbers. But haunting this historical development is the 

unresolved continuum hypothesis. This famous hypothesis refers to the proposition that 

there is no set of numbers with cardinality between that of the natural numbers (1, 2, 3, 

…) and that of the real numbers. In other words, the hypothesis can be characterized by 

the claim that the next biggest set, that cannot be counted by the natural numbers, is the 

set of real numbers. The hypothesis predicts that there is no set of numbers with 

cardinality between these two sets, which would mean that the Reals were continuous. If 

there is no other set, then there is nothing missing from the Reals – there are no gaps 

haunting them, so to speak.  

Over the centuries, the continuum seems to vibrate with traumatic desire, a desire 

to be both discrete and continuous, counted and uncountable, separate but connected. The 

mathematical continuum seems to function like a desiring machine, spurring 

mathematical inventiveness and ever new axiomatic endeavors. This ongoing concern 

with the continuum reveals the affective-material dimensions of mathematics. The 

traumatic investment in cutting up the continuum shows how mathematics taps an animal 

desire, a desire to fold continuously with the world, but also to cut oneself off as discrete 

individual (de Freitas, 2016b). The mathematical continuum encapsulates our collective 

dilemma - we are all connected, but we are all individuals. The rumbling continuum 

captures the monstrous desire of mathematics, a desire to re-assemble the discrete with 

the continuous, the finite with the infinite, the point with the line.  
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The diabolical 

More generally, measurement harbors a profound anxiety about the ontological status of 

continua (Serres, 2017). For instance, the early calculus relied on the use of infinitesimals 

- infinitely small continua - to accurately calculate various kinds of quantities in problems 

and applications. These were named indivisibles because they were considered a kind of 

fundamental element, without discrete parts, that could be infinitely distorted, inflated or 

stretched. They had no ‘parts’ in the conventional sense of separable parts, but they 

possessed a potential for differentiation, a sort of difference in itself. In other words, they 

seemed to be changelings that could be used as discrete entities with definitive outlines, 

and yet open to stretching and inflating as need be. Thus their very status seemed to 

bridge the continuous and the discrete, object and relation. In some sense, they were both 

and neither, and thus they perplexed those who argued for atomism and also those who 

argued against it. Aristotle argued against the existence of these infinitesimal 

‘indivisibles’; while, Archimedes deployed indivisibles in his computation of areas and 

volumes in the second century BC.  

Archimedes’ calculation techniques were taken up and further developed in the 

1600s, during a period of intense mathematical invention in which infinitesimal 

calculation flourished. And yet the very idea of a smallest interval that could not be 

further dissected was indeed the source of many paradoxes. The infinitesimal of 

Bonaventura Torricelli (1598-1647) and Evangelista Cavallieri (1608-1647) was 

considered so radical that the Jesuits outlawed it in European education institutions. 

In the 1630s, Jesuit fathers in Rome banned the doctrine of infinitesimals, in part 

because of these paradoxes, declaring the idea to be dangerous and subversive, and 

denouncing those who taught it. Deleuze and Guattari (1987) describe the infinitesimal as 

always “diabolical” because it undermines the atomism and fixity of individuals, and 

binds number and matter through infinite variation (p. 109). 

Various definitions have emerged over the years – perhaps the simplest is that the 

infinitesimal is an infinitely small interval. Leibniz (1646-1716) used the term 

infinitesimal to designate the distance between two numbers that are infinitely close 

(Alexander, 2014). This strange idea – that a continuous interval could be infinitely small 
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– runs counter to our intuitions about intervals as lengths that can always be divided into 

yet smaller lengths. In what sense could an interval be infinitely small? Infinitesimals are 

like continua “viewed in the small” as though one could zoom in and find the ultimate 

miniscule straight lines that composed the macro surfaces that we typically encounter. 

Others have described the infinitesimal as a quantity less than any finite quantity, a 

quantity that operates beneath the finite world (de Freitas, 2016a). Such quantities don’t 

play by the usual rules, however, being so small that their squares and other powers can 

be neglected. Perhaps the infinitesimal is an intensive magnitude rather than an extensive 

magnitude, and as such partakes in the material world in quite different ways, weaving 

the mathematical continuum together.  

The paradoxical 

A closer look at the seminal work of Cavalieri and Torricelli in the seventeenth century 

sheds light on why there was so much concern. But it also shows how the mathematical 

continuum, as source for the paradoxical, was pivotal in the development of the calculus. 

In other words, the paradoxical was the driving force of invention. Torricelli, in 

particular, created highly accessible treatises and offered “short, direct and positive 

proofs” using infinitesimals (or indivisibles). Unlike Cavailieri, whose work was 

burdened by attempts to avoid paradoxes, Toricelli delved into the paradoxes and put 

them to work in a new kind of calculus. The mathematician and historian Amir 

Alexander (2014) claims that Torricelli “reveled in paradoxes” (p.111) and tapped the 

contradictions that emerged when one assumed the continuum was composed of 

indivisibles, using them as tools for investigation (p.111). “The paradoxes were, in a way, 

Torricelli’s mathematical experiments … For Torricelli, paradoxes … pushed logic to the 

extreme, thereby revealing the true nature of the continuum, which cannot be accessed by 

normal mathematical means” (Alexander, 2014, p.112). 

As a simple example, consider the task of calculating the area of a parallelogram 

(Fig. 1). We divide the parallelogram into two equal triangles, and imagine the space of 

the two triangles composed of lines with infinitesimal width (here shown as dotted lines), 

in one triangle they are vertical and the other horizontal. Following the methods of the 

early calculus, these infinitesimal lines can be added up to determine the area of each 
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triangle (much like we might integrate under a curve by adding up the differential 

rectangles).  

 

	
Fig. 1  Toricelli and paradox 

 

But if we compare each infinitesimal line in one triangle with a corresponding 

line in the other, we see that the vertical line will always be shorter than the horizontal. It 

then follows, through pure logic, that since the vertical lines are always shorter than the 

horizontal to which they are compared, the result obtained after adding them will always 

be less. One triangle will have more area than the other! Contradiction! Cavalieri tried to 

avoid such paradoxes by not allowing indivisibles to be compared that were not parallel. 

But Torricelli would take up this simple paradox and delve into its potential for 

rethinking the mathematical continuum. Indeed, the reciprocity in this example, how we 

move back and forth between the vertical and the horizontal (lines of width dx and lines 

of width dy), will be used to huge advantage.  

Torricelli introduced an entirely different way of thinking about composition and 

argued that there was a way that the longer lines could indeed add up to the shorter lines. 

The significance of this for my argument is that he was willing to break with the ruling 

doxa of the time, and did so by introducing a difference into a concept where there had 

been none before. He quite simply contradicted Euclid’s definition of a line and claimed 

that the short lines are wider than the long lines. In other words, lines are not all without 

width, nor are they all of equal width (Alexander, 2014). The idea that some lines were 

wider than others was a revolutionary idea, and broke with conventional definitions of the 

line. The same proposal was made for indivisible points that might inflate to varying 

sizes, and indivisible planes of varying thickness. It was as if Toricelli was carving out a 
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new virtual dimension for these geometric objects, which suddenly allowed them to 

distort in convenient ways. Indivisibles were shown to possess a previously imperceptible 

dimension, which was allowed infinite variation in magnitude, and thus an infinitary 

calculus was born.  

This controversial move allowed one to calculate various measures that had never 

before been attempted, extending mathematics reach and relevance, and re-assembling 

the relationship between mathematics and matter. If lines had infinitesimal width and 

planes had infinitesimal thickness, then geometry engaged with matter in new ways. 

These geometric concepts became physico-mathematical entities. Despite their awkward 

ontological status, people began to use infinitesimals in their calculations, calling them 

“linelets” and “timelets” and “evanescent quantities” and “inassignable quantities”.  

Concerns over their ontological status, however, would eventually lead to a theory 

of limits and an attempt to rid mathematics of actually infinite small quantities. Limit 

theory would eventually rule the day. But there have always been advocates for 

infinitesimals, and they continue to be of interest today. In the nineteenth century, for 

instance, the mathematician Paul du Bois-Reymond (1831-1889) argued on their behalf, 

stating, “The proposition that the number of points of division of the unit length is 

infinitely large produces with logical necessity the belief in the infinitely small.” He 

advocated for a geometric number line composed of points and infinitesimal intervals. 

Charles Dodgson (1832-1898) and Charles Peirce (1839-1914) were also advocates for 

the infinitesimal. For Peirce, a continuous line contained no points, only continuous 

infinitesimal intervals. Wherever a point occurs, claimed Peirce, that point “interrupts the 

continuity” (CP 6.168). For Peirce, infinitesimals could be used for measurement without 

disrupting continuity. In other words, infinitesimals were measurements intrinsic to the 

continuous entity, and thus they avoided the perennial concern that measures of the 

continuous were always imposed from without (always the discrete fumbling to make 

sense of the robust continuous). Accordingly, infinitesimals were a “continuity-

preserving method of measurement” (Buckley, 2012, p. 149). The infinitesimal was 

finally given formal legitimacy (aside from its evident pragmatic value) in the 1960s 

when the mathematician Abraham Robinson produced a powerful and coherent 
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foundation for the hyperreal numbers, which incorporated infinitesimals, transfinite 

numbers and the real numbers in one system (Bell, 2013).  

Abduction and stupidity  

The marriage of the number line with the Real numbers brings hope and promise for an 

ultimate kind of synergy where measure and matter partake together of an onto-logical 

mixture. The continuum thus becomes a means of fusing connectives and quantifiers, 

geometry and arithmetic, the finite and the infinite. The paradoxes that haunt the 

continuum continue to be a driving force for new mathematical adventures today (Katz & 

Tall, 2011; Katz & Poley, 2017). The mathematician Fernando Zalamea (2012) 

demonstrates how contemporary developments in Category theory build on Peirce’s work 

in the late nineteenth century on the mathematical continuum. Peirce merged modal logic 

with mathematics in novel ways, introducing the notion of abduction as a pivotal form of 

inference.2 Peirce considered abduction “the process of forming explanatory hypotheses. 

It is the only logical operation which introduces any new idea” (CP 5.172). According to 

Peirce, abduction is a crucial form of reasoning in mathematics, and operates unlike 

induction and deduction, in that it involves systematic guessing. The guess becomes a key 

act of reason, a full-fledged form of operating mathematically.  

Abduction is precisely how we hypothesize about an odd irregular event, and thus 

it plays a pivotal role in how we might respond to the weird number that refuses to obey 

our axioms, or the anxiety when faced with the apparent gaps in the continuum. We can’t 

use deduction or induction in such instances, but must employ a different form of 

thinking. Abduction is at work when we devise means – as Dedekind did - of gluing the 

continuum back together wherever a cleavage or cut or gap is discerned. Speculating – or 

what Peirce would call guessing - is crucial in response to such tears in the fabric of life. 

In other words, a certain “explanatory continuum” is achieved through abduction, as it 

knits the torn threads of the mathematical continuum, darning the holes with speculation. 

																																																								
	
	
2 For good introduction to Peirce on abduction, go to 
https://plato.stanford.edu/entries/abduction/peirce.html 
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An abduction is a process that one might say supplements induction and deduction in our 

efforts to ‘explain’ the continuum.  

More specifically, abduction is characterized as the act of composing a hypothesis 

based on an observation of an irregularity that occurs in relation to expectations. This 

might be characterized as a “vague” deformation of syllogistic deduction that allows one 

to form a “retro-implicative inference” (Zalamea, 2012, p.100). The table below, derived 

from that of Zalamea (2012), shows how abduction differs from deduction and induction, 

in terms of the kind of inference that is allowed: 

Deduction	 Induction	 Abduction	
All	X	is	Y	
Some	Z	is	X	
Some	Z	is	Y	

Some	Z	is	X	
Some	Z	is	Y	
All	X	is	Y	

All	X	is	Y	
Some	Z	is	Y	
Some	Z	is	X	

 

These examples help us discern the differences between different forms of 

reasoning, underscoring the ambition and weakness of each. In the case of abduction, the 

inference is deeply speculative, venturing to posit something that cannot be deduced or 

induced. Vagueness is precisely what makes abduction so powerful - guessing introduces 

possibilities of ‘errors’ but it also performs a kind of reasoning that cannot be achieved 

otherwise. In deduction, we know there are members of Z that are definitively part of Y, 

but in abduction we only know that members of Z may be part of a smaller set contained 

within the set to which they belong. Maybe so, maybe not. Note how terribly easy it is to 

go ‘wrong’ in abduction. The point here is that abduction plugs into our stupidity – our 

not knowing - in a very particular and productive way. We use abduction regularly on a 

daily basis, whenever we form a hypothesis based on limited knowledge and generate a 

plausible explanation. Abduction tries to explain systematically a break or a breach in 

regularity or homogeneity or order, and is thus the very instrument needed when faced 

with the irruptions and gaps of the ever illusive continuum.   

Thus the deep task of abduction may be seen as locally gluing breaks in the 

continuum, by means of an arsenal of methods which select effectively the “closer” 

explanatory hypotheses for a given break and which try to “erase” discontinuities from a 

new regularizing perspective: 
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Fig. 2  Image from Zalamea, 2012, p. 102 

 

Through the speculative act of abduction, we smudge the discontinuity and patch 

together both the mathematical continuum but also the cosmological continuum of life 

itself. Abduction, however, is not only a human faculty, but is an expression of a worldly 

synechism and tychism – the terms that Peirce used to describe his metaphysics of 

continuity and chance. For Peirce, continuity and chance are the two entangled 

metaphysical attributes of the world. Through abduction, chance is leveraged to mend the 

break in any continuum. Chance is a crucial term for Peirce, because it is through 

probability and modal logic that he will pursue abduction more systematically. There is a 

combinatorial logic in the act of guessing, a process of mapping the span of possibility, 

that is, a habit of listing all possible outcomes, and then ‘counting the chances’ of one 

outcome occurring in the midst of that set of possibilities, more or less exactly. “What are 

the odds?” we ask, of finding an irrational number in this set, and we begin to weave 

hypotheses and stitch a covering of some kind, glimpsing and encountering provisionally 

the virtual realm of minuscule differentiations – this, and/or this, and/or this, and/or this, 

and/or this, and/or this, … in an iterative process that is at the heart of the concept of 

algorithm. Abduction engages with what we don’t know, the essential not-knowing that 

spurs on a speculative hypothesis – a “plausible explanation” – selected from the 

differentiated sea of reason. This sea is so granular, we trick ourselves into imagining it 

continuous and without seam, but its actually a distribution of vanishing indivisibles that 

subtends the threshold of imperceptibility. As Zalamea (2012) suggests, this realm is 

populated by an “infinitude of useless hypotheses” (p.102).  
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As the hallmark of our not-knowing, chance is the engine of a profound 

ontological stupidity. Chance haunts the continuum, and also mends it. Peirce’s proposal 

that abduction is the warp and weave of the mathematical continuum gives the problem 

of stupidity all its cosmic and encyclopedic dimensions. Rather than concern ourselves 

with error and delusion, as the cogito would have us do, the mathematical continuum 

demands that we make stupidity a transcendental problem. Not-knowing becomes a 

generative problematics – still haunting, diabolical and paradoxical – but wisely at work 

for no purpose that we can fathom. As Deleuze (1980) states, “Stupidity is neither the 

ground nor the individual, but rather this relation in which individuation brings the 

ground to the surface without being able to give it form ….” (p. 149-153). Stupidity is 

here affirming all of chance, affirming indeterminacy as a plenitude rather than a lack. 

This profound non-knowing haunts the mathematical continuum like a hungry ghost.  
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