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Abstract 
 

Neuropeptides are small peptides that act as signalling molecules. These have a 

wide range of important roles in numerous physiological, metabolic and behaviour 

functions. For example, oxytocin and vasopressin have essential roles in salt 

balance, social behaviour, and stress regulation. The role of neuropeptides in 

reproduction is well documented: it has been demonstrated they are involved in 

sexual behaviour, maternal-infant bonding, pair-bonding, lactation, pregnancy, 

penile erection, ejaculation, uterus contraction, and sperm transfer. The receptors 

for neuropeptides are found throughout both the male and female reproductive 

tracts. Several neuropeptides are found in both seminal plasma and follicular fluid 

indicating some involvement directly in fertilisation. Neuropeptide levels are altered 

in mood disorders and these altered levels could potentially have implications in 

infertility. However, very little is currently known about the effects of neuropeptides 

on sperm function, this study explored this area further.  

Considering the overarching link that neuropeptides have between pair bonding, 

mental health and fertility it was hypothesised that any perturbations in their action 

may impede successful reproduction. This study investigated how neuropeptides 

could regulate sperm function. These data may lead to future therapies in assisted 

reproduction. 

Semen samples were produced by masturbation, separated from the seminal 

plasma and probed for neuropeptide receptors via immunocytochemistry. This is the 

first time, to knowledge, that vasopressin receptor 2 has been localised on human 

sperm. As no other receptors were localised this study focused on any effect 

vasopressin may have on sperm function by incubation with a vasopressin agonist 

and measuring any modulations in motility and PKA phosphorylation activity.  

No significant differences were found in motility or PKA phosphorylation activity in 

sperm treated with vasopressin agonist, further optimisation of the assays is 

required. 
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1.0 Introduction 

 

The neuroendocrine system is responsible for regulating a vast number of functions; 

homeostasis, metabolism, thirst, hunger, sleep, behaviour, mood and reproduction. 

It comprises of the hypothalamus as a link from the nervous system to the endocrine 

system through the pituitary.  

Mood has been implicated in infertility. Stress, depression and anxiety have been 

shown to negatively impact both male and female fertility. Neuropeptides and their 

receptors are found throughout the limbic system such as amygdala and 

hypothalamus and are important in mood regulation; differing levels of 

neuropeptides in the blood have been implicated in mood disorders such as 

postpartum depression providing an important link between neuropeptides, 

reproduction and mood. 

Neuropeptides are involved throughout all phases of reproduction, from sexual 

behaviour, to conception, to lactation and parent-infant bonding and the receptors 

are found throughout both the male and female reproductive tracts. Several 

neuropeptides are found in both seminal plasma and follicular fluid indicating some 

involvement directly in fertilisation. Neuropeptide levels are altered in mood 

disorders and these altered levels could potentially have implications in infertility. 

 

1.1 Neuropeptides  

 

Neuropeptides are short chain polypeptides. They are peptides that function as 

neurotransmitters and some can also function in the periphery as peptide hormones 

for example, oxytocin, vasopressin, prolactin corticotropin-releasing hormone and 

ghrelin. However, unlike neurotransmitters they are not re-absorbed by the cell and 

hence once secreted typically have more prolonged actions. They influence a 

variety of biological processes such as, reward, metabolism, analgesia, memory, 

appetite, behaviour and also reproduction (Mac E Hadley, 1996). 

The majority of neuropeptides function through G protein-coupled receptors for 

instance both oxytocin and vasopressin, these are a group of cell surface receptors, 

when activated by the binding of the neuropeptide, activate the heterotrimeric G 
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proteins inducing an intracellular signalling cascade resulting in a cellular response 

(Gomes et al., 2013). 

 

1.2 Neuropeptides in reproduction  

 

Neuropeptides are important in all aspects of reproduction, from pair bonding, 

sexual behaviour, penile erection, both male and female orgasm and sperm transfer 

to pregnancy and parturition to lactation and maternal-infant bonding (Filippi et al., 

2002; Fuchs et al., 1990).  

The involvement of neuropeptides in reproduction is most evident in the female 

where, for instance both oxytocin and prolactin are vital in pregnancy and during 

birth (Nissen et al., 1996; Uvnäs-Moberg et al., 1990), and neuropeptide Y has been 

implicated in fertility regulation and has been shown to suppress fertility in female 

fats (Toufexis et al., 2002, Roa and Herbison, 2012). Other neuropeptides have also 

been shown to be related to female fertility, pituitary adenylate cyclase-activating 

polypeptide (PACAP) has been shown to reduce fertility in female mice via reduced 

maternal behaviour and smaller little sizes (Shintani et al., 2002).  

Murgatroyd and Nephew, (2013) demonstrated that early life chronic stress has 

longitudinal effects and reduced maternal behaviour and nursing efficiency in adult 

female rats. This was specifically associated with attenuated gene expression for 

the neuropeptides vasopressin, oxytocin and prolactin in the brain. 

Depression and chronic anxiety not only negatively affect the mother but also their 

adult offspring, vasopressin, oxytocin and prolactin were implicated in the aetiology 

of both stress related mood disorders and maternal behaviour for both humans and 

rodents. Low levels of oxytocin and prolactin have been associated with postpartum 

depression (Abou-Saleh et al., 1998; Skrundz et al., 2011) and the opposite is true 

for vasopressin, high levels of vasopressin are associated with depression in 

humans and in animal models of depression (Murgatroyd et al., 2004,  Rotzinger et 

al., 2010, Surget and Belzung, 2008). 

In regards to sperm function, Gonzales (1989) found prolactin released from the 

seminal vesicles directly stimulate sperm motility and negatively impacted 

concentration. In animal studies vasopressin has been found to negatively affect 
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sperm motility and overall function (Kwon et al., 2013). Oxytocin levels have been 

found to elevate significantly post ejaculation however, no correlation was found 

between oxytocin levels and sperm motility and quality and it was postulated that in 

humans it is primarily involved in the precipitation of ejaculation (Ogawa et al., 

1980). In domestic animal breeding studies oxytocin has been shown to aid sperm 

transport when added to semen preparations during artificial insemination (Okazaki 

et al., 2014). 

 

Although there are several neuropeptides involved in reproduction there were three 

of particular interest. Oxytocin, prolactin and vasopressin are well documented in 

literature for their integral roles in mood, sexual behaviour and sperm transport and 

reproduction, and their receptors are found throughout male and female 

reproductive tracts and tissues (Filippi et al., 2002; Fuchs et al., 1990; Ouhtit et al., 

1993). 

1.3. Oxytocin  

 

Oxytocin is a nonapeptide (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2), which is 

synthesised in the hypothalamus and secreted from posterior pituitary (Norman and 

Henry, 2015). Oxytocin is associated with pregnancy and parturition – stimulating 

uterine contractions, and is involved in lactation. Studies have shown , that knockout 

mice have no ability to lactate (Zingg and Laporte, 2003). Oxytocin has been found 

to increase maternal behaviour (mother-offspring bonding), female-male pair-

bonding and sexual behaviour, i.e. lordosis behaviour and increases duration and 

frequency of mating. In other studies, oxytocin was shown to increases maternal 

aggression in mice. However, there are conflicting reports for the effects on male 

aggression (Caldwell and Young III, 2006). In female mice progesterone has been 

found to directly inhibit oxytocin by having a high affinity for the oxytocin receptor, 

resulting in uterine quiescence (low myometrium contractibility) (Gimpl and 

Fahrenholz, 2001). 

The oxytocin receptor is a type I G protein-coupled receptor, primarily Gq that 

activates the phospholipase C pathway (Figure 1). Oxytocin binds to its receptor, 

activating phospholipase C (PLC) which hydrolyses phosphatidylinositol 4,5-

bisphosphate (PIP2) into diacyl glycerol (DAG) and inositol 1,4,5-triphosphate (IP3). 
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IP3 binds to its receptors causing an influx of calcium into the cell while DAG remains 

membrane bound, together IP3 and DAG activate protein kinase C (PKC) which 

goes on to phosphorylate target proteins. In the central nervous system oxytocin 

and its receptor is widely distributed in a variety of areas in the brain, hypothalamus, 

ventral hippocampus, amygdala, olfactory bulbs. The neuropeptide and its receptor 

is found throughout both male and female reproductive tracts, for example in the 

pregnant uterus, placenta, ovaries, corpus luteum, testis, leydig cells, epididymis, 

prostate, mammary tissues, for review see (Gimpl and Fahrenholz, 2001). 

Oxytocin use in intrauterine insemination in farm animals has been shown to aid 

sperm transport (Gibson et al., 2004; Langendijk et al., 2005). However, there have 

been conflicting findings in other animal studies using intrauterine insemination, 

where the use of oxytocin had no effect on fertility and fertilisation rates (Sayre and 

Lewis, 1997). In humans it has been suggested that oxytocin also aids sperm 

transport via contractility of the uterus acting as a peristaltic pump that aids the 

transport of sperm towards the ovary with the dominant follicle (Wildt et al., 1998). 

 

Figure 1. Oxytocin signalling cascade via G protein-coupled receptor, Gq alpha subunit. 
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1.3.2 Prolactin  

 

Prolactin has a wide range of biological actions, such as: metabolism, 

immunoprotection, growth, water and electrolyte balance, behaviour and 

reproduction. The receptor is a member of a subfamily of hematopoietic cytokine 

receptors (Norman and Henry, 2015). The prolactin receptor has been localised in 

a variety of tissues and cells; mammary gland, throughout the reproductive organs, 

the central nervous system, pituitary, skin, lungs, adrenal cortex, liver, heart, 

gastrointestinal tract, bone, pancreas, lymphoid tissues, kidney and sperm as well 

as a variety of cancer cells (Tsai-Morris, Dufau, 2004; Pujianto et al., 2010). 

Prolactin plays a vital role in cell proliferation and by working synergistically with 

growth hormone to stimulate this proliferation and differentiation. In animals with 

seasonal reproduction it has been shown that there are seasonal fluctuations in 

prolactin, peaking during breeding season (Curlewis, 1992). 

The prolactin receptor is a type 1 cytokine receptor that activates the JAK/STAT, 

PI3K/AKT/mTOR (cell cycle regulation) pathway (Brooks et al., 2014, Helmer et al., 

2010). The JAK/STAT pathway is involved in myriad cell signalling and is highly 

conserved, it also regulates gene expression via ligand-specific signal pathways and 

mediating chromatin modifications and communicating with the core promotors. The 

relevant cytokine binding to the cell surface receptor which activates the relevant 

JAKs, these phosphorylate tyrosine residues on the cytokine receptor and form a 

binding site for molecules with SH2 domains, the SH2 domains that possess STATs 

are also phosphorylated by JAKs and form hetero/homodimers which translocate to 

the nucleus and activate transcription of target genes (Aaronson and Horvath, 

2002). The PI3K/AKT/mTOR pathway is directly related to cell proliferation, 

quiescence and cancers, commonly in cancers this pathway is overactive and leads 

to inhibition of apoptosis. This pathway, in short, functions by activating 

phosphoinositide 3-kinase (PI3K) which activates protein kinase B (AKT) which in 

turn activates mechanistic target of rapamycin (mTOR), this regulates processes 

such as autophagy, protein synthesis, cell survival/growth and cell motility 

(Clevenger et al., 2003, Hay and Sonenberg, 2004).  
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Figure 2. Prolactin signalling cascade via type 1 cytokine receptor. 

 

1.3.3 Vasopressin 

 

A nonapeptide (Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2) that is synthesised in 

the hypothalamus and secreted from posterior pituitary. Vasopressin is structurally 

very similar to oxytocin. Both are constituted of 9 amino acids, only 2 of these 9 

differ between oxytocin and vasopressin (Norman and Henry, 2015).  

Vasopressin has been implicated in corpus luteum function in conjunction with 

oxytocin in animal studies, porcine corpora lutea were collected at a variety of 

stages through the oestrous cycle and fluctuations of vasopressin, oxytocin and 

progesterone were measured. It was observed that concentrations of oxytocin and 

vasopressin were essentially similar until the end of the cycle where a significant 

increase of vasopressin was detected (Choy and Watkins, 1988). Injections of 

vasopressin into the cauda epididymis of rats showed potential as a male 

contraceptive, where all doses used caused oligozoospermic (low sperm 

concentration) ejaculation with the higher dose producing teratozoospermia 

(abnormal sperm morphology) ejaculation, while sexual behaviour remained 

unaffected (Ratnasooriya and Jayakody, 2005).  

The vasopressin receptor 2 is a G protein-coupled receptor (Gs alpha subunit - the 

cAMP dependent pathway), which activates adenylyl cyclases converting ATP to 
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cyclic AMP (cAMP) thus activating protein kinase A which leads to phosphorylation 

of target proteins (Holmes et al., 2003).  

 

Figure 3. Vasopressin signalling cascade via vasopressin receptor 2. 

Although the role of neuropeptides in reproduction is very well documented, there 

is little known about the role of neuropeptides on sperm function. 

 

1.4 Sperm biology  

 

1.4.1 Sperm structure 

 

The structure of sperm is a highly specialised cell with the function of delivering the 

haploid paternal genome to the oocyte. The sperm can be apportioned into three 

major sections; the head, the midpiece and the tail. The head of the sperm contains 

the haploid paternal genome and is surrounded by the acrosome that contains vital 

enzymes such as acrosin that digest the zona pellucida allowing sperm to enter the 

perivitelline space and enable sperm-oocyte fusion. The midpiece contains 

mitochondria for ATP production and the energy source for motility. The tail 

executes the movement propelling the sperm through the female reproductive tract 

towards the oocyte. 
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Figure 4. Sperm structure. Representation of main components of the sperm. 

 

1.4.2 Spermatogenesis / maturation 

 

Sperm are produced in the testis during the process of spermatogenesis; this 

process starts at puberty and normally continues throughout the male’s life (Figure 

5). 

The whole process of spermatogenesis itself is a lengthy process that takes just 

over 70 days. Beginning with spermatogonia, the initial cells in this process, 

replicate at first via mitosis into primary spermatocytes and then via meiosis I to 

produce secondary spermatocytes and these divide again via meiosis II the haploid 

round cell spermatids. Next, the spermatids undergo spermiogenesis; this process 

alters the cell from round cell into flagellated cell, development of the acrosome and 

the tail as well as an increase in nuclear condensation to produce spermatozoa. 

However, these sperm lack motility and must undergo further maturation in the 

epididymis (Coward and Wells, 2013; Moore, 1998; Ruwanpura et al., 2010). 

In brief, the epididymis is a coiled tube responsible for storage, maturation and 

transportation of sperm between the testes and the vas deferens. It consists of three 

different sections, the caput or head, corpus or body and cauda or tail. It takes 

approximately two weeks for sperm to pass through the epididymis and undergo 

maturation. Sperm undergo many essential morphological and functional changes 
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during their passage through the epididymis including, modification of the chromatin, 

acrosome and gain the ability to become motile and fertilise the oocyte (Clulow et 

al., 1994; Hamilton et al., 1969; Hess, 2000; Overstreet and Cooper, 1978).  

 

Figure 5. Spermatogenesis. Basic representation of the process of spermatogenesis. 

1.4.3 Sperm function  

 

Sperm must undergo biochemical and physical changes in order to successfully 

fertilise an oocyte. One important process is capacitation. 

Capacitation comprises a reversible set of physiological changes that involve the 

removal of cholesterol by albumin in the female reproductive tract and a prerequisite 

for hyperactivation (see below) and the acrosome reaction. In vivo, it involves the 

removal of inhibitory factors from seminal plasma and the interaction of the sperm 

with components in the female reproductive tract (Jaiswal and Eisenbach, 2002). 

The removal of cholesterol permits the influx of bicarbonate and Ca2+ ions, which in 

turn activate adenylate cyclase, thereby elevating cAMP concentrations. The 

increased cAMP levels activate protein kinase A, which then phosphorylates several 

tyrosine kinases, including chaperone proteins and those important for the 

acrosome reaction. These migrate to the sperm head where they are 

phosphorylated (Aitken and Nixon, 2013, Yoshida et al., 2008).  
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Hyperactivated sperm penetrate a layer of cells surrounding the oocyte (the cumulus 

oophorous) and undergo the acrosome reaction (Jin et al, 2011). The sperm then 

penetrate the zona pellucida enabling sperm-oocyte fusion and the completion of 

fertilisation.   

1.4.4 Sperm parameters  

 

Sperm motility is an easy measure of function and one of the most vital 

parameters, motile sperm are required for fertilisation otherwise the sperm cannot 

fertilise the oocyte.  

Human sperm motility is categorised into progressive (A+B), where the sperm are 

moving linearly or in large circles, non-progressive (C), sperm displaying any other 

patterns of motility and immotile (D), no movement whatsoever (World Health 

Organization, 2010a). When using computer assisted sperm analysis (CASA) 

progressive motility can be separated into fast progressive (A) (> 25 µm/sec) and 

slow progressive (B) (Figure 6). 

 

Figure 6. Sperm motility groups. A – fast progressive sperm, moves linearly or in large circles 

quicker than 25 µm/sec. B – slow progressive sperm, moves linearly or in large circles slower than 

25 µm/sec. C – non-progressive sperm, moves in small circles or ‘twitches’. D – immotile sperm, no 

movement. 
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1.4.5 Sperm chemotaxis  

 

Human sperm have been shown to respond to chemotactic factors in human 

follicular fluid (Ralt et al., 1994). In rabbits, progesterone has been identified as a 

chemotactic factor and is released from the oocyte-cumulus complex. Progesterone 

forms a concentration gradient as it diffuses away from the oocyte-cumulus 

complex. The sperm swim towards the more concentrated chemoattractant gradient 

(Guidobaldi et al., 2008). It has been observed that sperm chemotactic 

responsiveness is acquired during capacitation and it has been postulated that this 

is a means of selecting for capacitated sperm only (Cohen-Dayag et al., 1995). 

The role of neuropeptides in modulating sperm behaviour has not been explored in 

depth. It can be postulated that female stress and mood may influence post-coital 

fertility by altering sperm function. Furthermore, as neuropeptides have been 

detected in follicular fluid and semen they are likely to play an essential role in sperm 

physiology in both the male and female reproductive tracts (Figure 7).  

 

 

Figure 7. Neuropeptides on human fertility. Proposed hypothesis of the effects that 

neuropeptides may have on sperm and fertility. 
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1.5 Aims and Objectives 

 

Aim:   

(i) To investigate the presence of oxytocin, vasopressin and prolactin receptors on 

human sperm. 

(ii) To examine the function of oxytocin, vasopressin receptors on sperm through in 

vitro assays measuring intracellular responses to oxytocin, vasopressin treatment.  

  

Objectives: to investigate potential links between neuropeptides and sperm function 

via the following specific objectives: 

(i) Human sperm obtained from volunteers will be treated with oxytocin, 

vasopressin and prolactin 

(ii) Modulations in sperm motility will be assessed via CASA 

(iii) Immunolocation of neuropeptide receptors on human sperm.  

(iv) Cell signalling regulation after neuropeptide treatment will be 

investigated.  
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2.0 Materials and Methods 
 

Materials Used: 
 

Table 1. Equipment used. 

Equipment 

 
Agilent Technologies SureCycler 8800 – Thermal cycler 

Atto AE-6220 Duel Slab Chamber – SDS-PAGE gel tank 
Bio-Rad ChemiDocTM Touch Imaging System – Western blot and agarose gel 
imaging system 
Bio-Rad PowerPacTM Basic Power Supply - power supply for gel tanks and 
transfer system 

Bio-Rad Sub-Cell® GT Cell – Agarose gel electrophoresis tank 
Bio-Rad Trans-Blot® SD Semi-Dry Transfer System – Western blot transfer 
system  

BioTek® SYNERGY HT Microplate Reader 

 Leica DFC 365 FX – Fluorescent microscope 
Millipore Amplicon® Ultra 0.5ml centrifugal filters Ultracel® 3K – Protein 
concentration filters 

NUAIRETM Autoflow Direct Heat CO2 Incubator – Cell culture incubator 

NUAIRETM Biological Safety Cabinets – Class II safety cabinet 

Olympus CX41 – Phase contrast microscope (CASA) 

Scarstedt Falcon Tubes 

Sigma 3-16PK centrifuge 

SLS lab basics vortexer 

TECHNE Dri-Block® DB-2D – Heat block 

Thermo scientific NanoDrop 2000c Spectrophotometer 

Thermofisher Glassware 

Tomy Capsulefuge PMC-860  - Micro centrifuge 

Zeiss Axio Imager Z1 – Fluorescent microscope 

Gilson Pipettes  

Plasticware from Starstedt or Fisher Scientific 

Microplates – Grenia 

Cell culture plates and T75 Flasks – Nunc by Fisher Scientific 

Eppendorf tubes – Starlabs 

Pipette tips – Starlabs 

Sample collection pots – Sterilin UK 

CASA counting chamber 20 micron – Cell Vision 
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Table 2. Software used. 

Software 

 
AxioVision version 4.8.2.0 

Bio-Rad Image LabTM software 

Gen 5 version 2.05.5 BioTek® 

Microsoft® Excel® 2013 version (15.0.4841.1000) 

Sperminator® Pro Creative Diagnostics 1.0 

Leica LAS X Suite microscope imaging software 

 

 

Table 3. Antibodies used. 

Antibodies Supplier Catalogue # 

   
Alexa fluor® 488 F(ab') 2 goat anti-
mouse IgG, IgM (H+L) 

Thermo Fisher 
Scientific A-10684 

Alexa fluor® 488 goat anti-rabbit IgG 
(H+L) Invitrogen A-11008 

Anti-goat HRP Sigma A5420 

Anti-goat IgG-FITC 
Santa cruz 
biotechnology  

Anti-oxytocin receptor Abcam ab87312 

Anti-oxytocin receptor Abcam ab115664 

Anti-prolactin receptor Abcam ab2773 

Goat anti-rabbit HRP Bio-Rad 170-6515 
Monoclonal Anti-β-Tubulin antibody 
produced in mouse Sigma T4026 
Phospho(Ser/Thr) PKA substrate 
antibody Cell signalling 9621S 

Anti-AVPR V2 antibody Abcam Ab188748 

Primers Invitrogen A15612 

 

 

Table 4. Reagents used. 

Reagents Supplier Catalogue # 

   
[Arg8] Vasopressin acetate salt Sigma V9879 

2-Mercaptoethanol Sigma M7154 

5x DNA Loading Buffer Blue Bioline BIO-37045 

8-bromo-cAMP Abcam ab141448 

Acrylamide/Bis 30% solution Bio-Rad 161-0158 

Agarose Fisher scientific M-12198 
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AmershamTM Protran® Western 
blotting membranes, nitrocellulose AmershamTM GE10600001 

Ammonium persulphate Sigma A3678 

Bovine serum albumin Sigma A2153 

Bromophenol blue Sigma B8026 

Chloroform Sigma C7559 

DAPI Sigma D9542 
Dulbecco's Modified Eagle's Medium - 
high glucose Sigma D1145 

Ethanol Sigma 51976 

EZ-ECL Biological industries 20-500-120 

Foetal bovine serum Sigma F0804 

Glycerol Sigma G5516 

Glycine Sigma G8898 

GoTaq® 2-step RT-qPCR system Promega A6010 

Hydrochloric acid Sigma H1758 

HyperLadderTM 25bp Bioline BIO-33057 

HyperLadderTM 50bp Bioline BIO-33054 
ImmEdge Hydrophobic Barrier Pen 
(PAP pen) Vector H-4000 

Isopropanol Sigma I9516 

L-Glutamine Sigma G5792 
MagicMarkTM XP western protein 
standard Life technologies LC5603 

Marvel dried milk powder Sainsbury's 2051857 

Methanol Sigma 494437 

MyTaqTM DNA Polymerase Bioline BIO-21105 

N,N,N',N'-Tetramethylethylenediamine Sigma T9281 

Normal goat serum Vector S-1000 

Penicillin-Streptomycin Sigma P4333 

Phosphate Buffered Saline Oxoid BR0014G 

Phosphotase inhibitor cocktail set III Millipore 524627 

Pierce® BCA protein assay kit Pierce 23225 

Ponceau S Sigma P3504 

Precision plus proteinTM standards Bio-Rad 161-0376 

Protease inhibitor cocktail Sigma P8340 

Bicarbonate Sigma S3817 

Sodium chloride Sigma S3014 

Sodium deoxycholate Sigma S1827 

Sodium dodecyl sulphate Sigma L3771 

Sperm freezing medium Origio 10670010A 
Sperm preparation medium with 
Phenol Red Origio 10705060A 

SupraSperm® System Origio 10922060A 

Tris base Fisher scientific BP152-1 

TritonTM X-100 Sigma T8787 

TRIzol® Reagent 
Ambion life 
technologies 15596018 

http://www.sigmaaldrich.com/catalog/product/sigma/a3678
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Trypsin Sigma T2600000 

Tween® 20 Sigma P9416 
Vectashield® mounting medium for 
fluorescence with DAPI Vector H-1200 

Whatman® gel blotting papers Whatman® WHA10426981 
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Methods 

[Note: further recipes in Appendix] 

2.1 Sample procurement 

 

Semen samples were produced by masturbation after 2-5 days of abstinence from 

healthy donors aged 18-38 years old (n = 5). Donors were given a participant 

information sheet with details of the study and completed a medical screening form 

and consent form, full ethical approval (see appendix 2). Semen was produced on 

site in a designated room and participants were instructed how to produce the 

sample in to a sample collection pot. 

All semen samples were assessed according to the WHO 5th edition (2010). 

Liquefaction of semen was carried out a 37°C, which was followed by measurement 

of semen volume, sperm concentration and motility assessment.  

To assess sperm motility and concentration, 5 µl of sample was applied to a 

counting slid and analysed using computer assisted sperm analysis (CASA) 

(Sperminator®) (Olympus CX41). The CASA measures sperm concentration 

(million/ml), velocity and grades sperm into A (fast progressive), B (slow 

progressive), C (non-progressive) and D (immotile) providing a percentage of these 

grades as an output (Figure 6).  

 

2.2 Sperm Isolation  

Sperm was separated from seminal plasma using density gradient centrifugation 

unless indicated otherwise, where the swim-up technique was employed.  

 

2.2.1 Density Gradient 

 

Sperm cells were separated from seminal plasma via density gradient 

centrifugation. Semen (1 ml) was layered on top of SupraSperm® gradient (55% - 2 

ml and 80% - 2 ml) and centrifuged at 300G for 20 minutes (Figure 8). Supernatant 

was discarded, 3 ml of sperm preparation media (SPM) was added and the pellet 

was resuspended. The sample was centrifuged at 300G for 10 minutes twice, 
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removing the supernatant each time. The remaining pellet was resuspended in 1 ml 

SPM, and the concentration and motility of sperm measured. 

 

Figure 8. Density gradient. 

 

2.2.2 Swim-Up Method 

 

For assessing PKA activity in sperm, the swim–up technique was used so minimise 

spontaneous capacitation in vitro. Sperm was placed beneath 2 ml of PBS and 

incubated at an angle of approximately 45° at 37°C for 30-60 minutes (Figure 9). 

Top layer of PBS was then pipetted into a falcon tube and washed with 3 ml PBS 

and pelleted via centrifugation at 300G twice. Pellet was resuspended in PBS (World 

Health Organization, 2010). 

 

Figure 9. Swim-up method. 
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2.3 Immunocytochemistry 

 

2.3.1 Fixing sample on slides 

 

The sample (10 µl) was smeared onto a slide. The slide was immersed in ice-cold 

methanol, 4% formaldehyde or 10% neutral buffered formalin (appendix 1) for 10 

minutes. The slide was air-dried and either used immediately or stored at -20°C until 

required. 

2.3.2 Immunolocalisation of neuropeptide receptors  

 

Slides taken from -20°C were left to thaw at room temperature for five minutes. The 

perimeter of the slides were drawn around with a PAP pen then rehydrated in 

phosphate-buffered saline (PBS) for 10 minutes and permeabilised in PBS-Tween 

0.1% (v/v) for 10 minutes. Blocking buffer [500 µl] was added to each slide, which 

was covered with the lid of the humidity chamber and left for 1 hour. Slides were 

washed in PBS-Tween 0.1% 3 times for 5 minutes (appendix 1). 

Primary antibody was diluted in blocking buffer (1:50, 1:100, 1:200) where 200 µl 

was added to the slides followed by overnight incubation at 4°C. A no primary 

antibody control was prepared by adding 200 µl of blocking buffer to a slide and 

stored as above.  

After incubation, all slides were washed in PBS-Tween 0.1% 3 times for five 

minutes. At low light levels, 250 µl of the appropriate fluorescent-conjugated 

secondary antibody (1:2000 dilution with blocking buffer unless otherwise stated) 

was added to each slide. Slides were covered and left for 1 hour. Slides were 

washed 3 times in PBS-Tween 0.1% for five minutes in darkness. A drop of 

VECTASHIELD® mounting medium with DAPI was added to each slide, a coverslip 

was placed on top and sealed with an enamel sealant. Slides were left in darkness 

for half an hour to develop before imaging using fluorescent microscopy (Zeiss Axio 

Imager Z1/Leica DFC 365 FX). 

 



21 
 

2.4 Cell culture and in vitro assays.  

 

All cells were cultured in class II safety cabinets and incubated in direct heat 5% 

CO2 incubators at 37°C. 

All cells, excluding sperm, were cultured using standard culture media (appendix 1) 

and standard cell culture technique in either 6 well cell culture plates or T75 flasks. 

Sperm cells were prepared via density gradient/swim-up and washed twice in sperm 

preparation media (SPM), SPM was the media used in all experiments unless 

otherwise specified.  

 

2.4.1 Incubations with agonists 

 

All cells were incubated with neuropeptide (10 pM, 10 nM, 10 µM) or positive control 

8-bromo-cAMP (100 µM) agonists in their appropriate media, either SPM or 

standard culture media (appendix 1), at 37°C for 5-90 minutes. 

 

2.5 Protein extraction and quantification 

 

2.5.1 Radioimmunoprecipitation assay cell/tissue lysis  

  

Radioimmunoprecipitation assay (RIPA) lysis buffer (appendix 1) was used for 

protein extraction (Six and Kasel, 1978). 1 ml of RIPA with 1:100 (v/v) protease 

inhibitor cocktail and 1:100 (v/v) phosphotase inhibitor cocktail was used for 10 

million cells or 0.1 g of tissue. Sample and lysis buffer were incubated at 4°C under 

constant agitation for 30-60 minutes dependant on whether it was cells (30 minutes) 

or tissue (60 minutes). 

Samples were centrifuged at 12,000G for 20 minutes at 4°C, the supernatant was 

aspirated and stored at -80°C and the pellet discarded.  
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2.5.2 Protein quantification – Bicinchonic acid assay (BCA assay) 

 

Bicinchonic acid (BCA) assay was used (Pierce™ BCA protein assay kit) to quantify 

all proteins. The BCA assay is a colourmetric assay that determines total protein 

concentration due to colour changes in the samples when compared to known 

standards (Smith et al., 1985). Protein standards were made to the manufacturer’s 

instructions. Reagent A was mixed with reagent B at 50:1 (v/v) to make the working 

reagent, 25 µl of protein standard or sample was pipetted into a 96 well microplate 

and 200 µl of working reagent was added to each protein sample. The microplate 

was incubated at 37°C for 30 minutes and then absorbance was measured at 562 

nm on a microplate reader. Standard curve was calculated using Microsoft® Excel 

software and equation from graph (y=mx+c) was used to quantify unknown proteins. 

 

2.6 Western blotting 

 

2.6.1 SDS-Page 

 

Table 5. SDS-Page gel recipe. 

Reagent Separating Gel Stacking Gel 

dH2O 3.2 ml 5.6 ml 
Separating buffer 2.5 ml - 
Stacking buffer - 2.5 ml 
Bis/Acrylamide 30% 4.3 ml 1.9 ml 
APS 10% 100 µl 100µl 
TEMED (add last) 10 µl 10 µl 

 

Separating gel was prepared in a universal tube as per recipe in Table 5. Of the 

separating gel, 5 ml was pipetted into the gel cast, 100 µl of isopropanol was 

pipetted on top of the gel to ensure it sets evenly and the gel was left to polymerise 

for 15 minutes. The isopropanol was decanted and gel rinsed with dH2O. Stacking 

gel was prepared in a universal as per recipe in table 5, this was then pipetted on 

top of the separating gel until the gel cast was full, the gel comb was then inserted 

and the gel was left to polymerise for a further 15 minutes. Once the gel was set the 

gel casts were placed in the gel tank and it was filled with electrode buffer to the 

marker and gel combs removed.   
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Protein samples were diluted laemmli buffer 4X (appendix 1) and then heat 

denatured at 100°C for 15 minutes. 2.5 ng/µl of protein sample was loaded into the 

gel (unless otherwise stated) along with protein ladder at manufacturer’s 

recommendation. Gel tank was connected to power pack and ran at 60V for 60 

minutes, then the voltage was increased to 120V and left to run until the dye front 

reached the end of the gel. 

 

2.6.2 Blotting 

 

Stacking gel was removed and discarded. Blotting paper was cut into 8 pieces per 

gel and soaked in towbin buffer (appendix 1) along with the nitrocellulose membrane 

for approximately 2 minutes. A sandwich of 4 pieces of blotting paper, the 

nitrocellulose membrane, the gel and a further 4 pieces of blotting paper, in that 

order, were laid out onto the transfer system. Any air bubbles were eliminated from 

this ‘sandwich’ by rolling a clean test tube (or something similar) over the 

components. The lid was placed on the transfer system and connected to the power 

pack, this was then ran at 100V for 1 hour (unless otherwise stated). 

 

2.6.3 Blocking 

 

The membrane was then incubated for 1 hour in blocking buffer (5% bovine serum 

albumin in 0.01% TBS-T v/v, unless otherwise stated, appendix 1) at room 

temperature on a shaker. Blocking buffer was then discarded and primary antibody 

solution (1:1000 antibody to blocking buffer v/v) was added to membrane and the 

membrane was incubated overnight at 4°C on a shaker. 

Primary antibody was discarded and the membrane was washed for 5 minutes in 

triplicate with PBS-T at room temperature on a shaker. The appropriate secondary 

HRP conjugated antibody was then added in solution (1:1000 antibody to TBS-T 

v/v, unless otherwise stated) to the membrane and left to incubate on a shaker at 

room temperature. Secondary antibody solution was discarded and membrane was 

once again washed 3 times for 5 minutes with TBS-T at room temperature on a 

shaker.  
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2.6.4 Developing 

 

Membranes were kept in TBS-T to prevent them from dehydrating. Cling film was 

laid out on a flat surface and membrane was placed onto the cling film protein side 

up. Electrochemiluminescence (ECL) solution was used to develop the membrane. 

In the dark, ECL solution A and B were mixed in equal parts and then 1ml of ECL 

solution was added to the membrane and left to develop for approximately 5 

minutes. The ECL was drained off and the membrane was imaged using 

ChemiDocTM Touch Gel and Western Blot Imaging System. 

Membranes were then washed 3 times with TBS-T for five minutes and incubated 

with loading control antibody overnight at 4°C on a shaker and the process from 

then on was repeated. 

 

2.7 RNA extraction (Trizol & Chloroform) 

 

Suspension cells were pelleted via centrifugation at 300G for 10 minutes and the 

supernatant removed prior to extraction.  RNA was extracted from adherent cells 

directly from the cell culture flask as follows; culture media was removed and the 

TRIzol® reagent was added at the appropriate volume for the amount of cells, 

usually either 1 or 2 ml (usually 1 ml for sperm, 2 ml for HeLa/other adherent cells 

in a T75 flask) and left for 15 minutes at room temperature. TRIzol® reagent was 

added. The TRIzol® cell suspension was transferred to 1.5 ml Eppendorf tubes (as 

many as appropriate) and 200 µl of chloroform was added to each Eppendorf tubes 

and vigorously shaken. These were then left for a further 15 minutes at room 

temperature. The Eppendorf tubes were centrifuged at 12,000G for 15 minutes at 

4°C. The aqueous phase, which is clear and containing the RNA, was pipetted into 

a new 1.5 ml Eppendorf tubes and 500 µl of isopropanol was added. This was then 

vortexed and left at room temperature for 10 minutes. The suspension was 

centrifuged at 12,000G for 10 minutes at 4°C and the supernatant was aspirated 

and discarded. After, 1 ml of 75% ethanol was added, vortexed and centrifuged at 

8000G for 5 minutes at 4°C. The supernatant was aspirated and discarded and the 

pellet was dissolved in 30 µl of nuclease free water. RNA quantity and purity was 
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investigated using NanoDrop 2000C Spectrophotometer. After quantification RNA 

was immediately reverse transcribed into cDNA to avoid degradation during storage, 

any remainder of RNA was stored at -80°C for up to 6 months. 

 

2.8 Polymerase Chain Reaction (PCR) 

 

2.8.1 Primer design  

 

All primers were designed using Primer3 Plus hosted by NCBI for use with BLAST. 

 

2.8.2 Reverse transcription PCR: 

 

All reverse transcription was performed using Agilent’s SureCycler 8800 thermal 

cycler and a reverse transcription kit (GoTaq® 2-Step RT-qPCR System by 

Promega). Following manufacturer’s instructions, on ice, RNA and reverse 

transcription primer was combined appropriately using up to a maximum of 5 μg 

per reaction and to a final volume of 10 μl. This mixture was denatured at 70°C for 

5 minutes and chilled at 4°C for 5 minutes. The GoScriptTM reaction mix was 

prepared as follows, Nuclease-Free Water - 1.5 µl, GoScript™ 5X Reaction Buffer 

– 4 µl, MgCl2 25 mM – 2 µl, PCR Nucleotide Mix 10 mM – 1 µl, Recombinant 

RNasin® Ribonuclease Inhibitor  - 0.5 µl, GoScript™ Reverse Transcriptase – 1 

µl. The reaction mix was combined with the RNA and reverse transcription primer 

in the reaction tube and cDNA was synthesised under the following cycle 

conditions: 

Table 6. cDNA synthesis cycle conditions for GoTaq 2-Step RT-qPCR system by Promega. 

Step Temperature Time 

Anneal 25°C 5 minutes 

Extend 42°C 1 hour 

Inactivate 70°C 15 minutes 

cDNA was stored at -20°C until use. 
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2.8.3 Endpoint PCR 

 

Primers were optimised using a thermal cycler and a DNA polymerase kit. Following 

the manufacturer’s instructions, on ice, in the reaction tube the reaction was set up 

as follows: 

5x MyTaq Reaction Buffer – 10 µl  
cDNA - as required  
Primers 20 µM each – 1 µl  
MyTaq DNA Polymerase – 1 µl  
ddH2O - up to 50 µl 
 

The following cycling conditions were used to amplify the target: 

Table 7. Endpoint PCR cycle conditions for primer optimisation. 

Step Temperature Time 

Initial 
denaturation 

95°C 1 minute 

Denaturation 95°C 30 seconds 
Annealing 60°C 30 seconds 
Extension 72°C 30 seconds 

 
x35 cycles 
 

Final Extension 72°C 10 seconds 
 

PCR product was immediately used in agarose gel electrophoresis to ensure 

appropriate amplification of the target sequence (Table 6). 

 

2.8.4 Agarose Gel Electrophoresis  

 

All gels were composed of 2% agarose in 1X TBE buffer (appendix 1) with midori 

green as the DNA intercalating agent. Bioline 5x DNA loading buffer blue was mixed 

appropriately with the PCR product prior to loading, Bioline HyperLadderTM 25bp or 

50bp were used appropriately dependant on expected amplicon size and the gel ran 

at 80V for 60 minutes, or until the dye front reached the end of the gel. 

Gels were imaged using ChemiDocTM Touch Gel and Western Blot Imaging System. 
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2.9 Statistical analysis 

 

Statistical analysis of progressive sperm motility was performed in Microsoft 

Excel® 2013 software using a standard paired T-Test. Analysis of western blot 

band intensity was performed in Bio-Rad Image LabTM software. 
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3.0 Results 

 

3.1 Immunolocalisation of neuropeptide receptors on human sperm 

 

Immunocytochemistry was employed to investigate the presence of neuropeptides 

receptors on sperm cells. Sperm separated from seminal plasma was fixed on slides 

and probed for vasopressin receptor 2, oxytocin receptor and prolactin receptor. 

 

 3.1.1 Immunolocalisation of vasopressin receptor 2  

 

Human kidney cells (HK2) express the vasopressin receptor 2 (Thibonnier et al., 

1998) and was used as a positive control for vasopressin receptor 2 

immunolocalisation showing positive cell surface staining of the receptor in all cells 

(Figure 10).  

 

 

Figure 10. Immunolocalisation of vasopressin receptor 2 on human kidney cells 
(HK2). HK2 cells stained for vasopressin receptor 2 (green) localized on the cell surface 
membrane (A). No primary antibody control (B). Nuclei were stained with DAPI (blue). 
Magnification x640. Representative images from N = 3. 

Immunolocalisation of vasopressin receptor 2 displayed strong staining on the 

acrosome region of human sperm, staining was seen on most sperm cells however 

a few did not show staining for the vasopressin receptor 2 and it is postulated that 

this is due to its localisation on the acrosome, some sperm may have undergone 

spontaneous acrosome reaction and therefore no longer have the receptor present 

(Figure 11).  

A                                                                            B 
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Figure 11. Immunolocalisation of vasopressin receptor 2 in human sperm. 

Vasopressin receptor 2 (green) was localized to the acrosome region of sperm (A and 

insert). No primary antibody control (B). Nuclei were stained with DAPI (blue). 

Magnification x1000. Representative images from N = 5. 

 

3.1.2 Immunolocalisation of oxytocin receptor 

 

MCF-7 cells, a human breast cancer cell line known to express the oxytocin receptor 

(Cassoni et al., 1994), was used as a positive control.  Positive staining for oxytocin 

receptor on the cell surface membrane on all cells is shown in Figure 12.  

No immunolocalisation of oxytocin receptor was detected on human sperm (Figure 

13). 

 

 

Figure 12. Immunolocalisation of oxytocin receptor in MCF-7 cells (human breast 
cancer cell line). MCF-7 cells stained for oxytocin receptor (green) localized on the cell 
surface membrane (A). No primary antibody control (B). Nuclei were stained with DAPI 
(blue). Magnification x400. Representative images from N = 3. 

 

 

A B 

A                                                                         B 
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Figure 13. Immunolocalisation of oxytocin receptor in human sperm. Oxytocin 
receptor was not detected on human sperm (A). No primary antibody control (B). Nuclei 
were stained with DAPI (blue). Magnification x400. Representative images from N = 3. 

 

3.1.3 Immunolocalisation of prolactin receptor 

 

MCF-7 express prolactin receptors (Melck et al., 2000) and were used as a positive 

control in these studies. Immunolocalisation with clear labelling observed on the cell 

surface of each cell (Figure 14). However, prolactin receptor was not detected on 

human sperm in the present study (Figure 15). 

 

 

Figure 14. Immunolocalisation of prolactin receptor in MCF-7 cells. MCF-7 cells 
stained for prolactin receptor (green) localized on the cell surface membrane (A). No 
primary antibody control (B). Nuclei were stained with DAPI (blue). Magnification x400. 
Representative images from N = 3. 

 

A                                                                           B 

A                                                                            B 
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Figure 15. Immunolocalisation of prolactin receptor in human sperm. Prolactin 
receptor was not detected on human sperm (A). No primary antibody control (B). Nuclei 
were stained with DAPI (blue). Magnification x400. Representative images from N = 3. 

 

3.2 Neuropeptides and sperm function  

 

This study has localised vasopressin receptor 2 on human sperm. However,  

oxytocin and prolactin were not localised on sperm, therefore the role of vasopressin 

on human sperm was further investigated.  

 

3.2.1 Vasopressin and sperm motility  

 

Human sperm were separated from seminal plasma using density gradient 

centrifugation (as outlined in section 2). Washed sperm were incubated with 

vasopressin agonist at concentrations (10 pM, 10 nM and 10 µM) for 30 and 90 

minutes at 37°C.  Sperm motility was measured using on the CASA. Progressive 

motility was calculated by adding motility grade A and B (WHO, 2010). No significant 

difference was observed between the control and treatment progressive motility 

after incubation with vasopressin (Figures 14 and 15) [statistical analysis: 2-tailed, paired 

t-test p = > 0.05. N = 4].  

 

 

A                                                                             B 
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Figure 16. Percentage progressive motility after 30 minutes 
incubation with vasopressin at varying concentrations and no 
treatment control. No difference in percentage progressive motility was 
observed at any concentration, statistical analysis (p = > 0.05. N = 4.) 

 

 

Figure 17. Percentage progressive motility after 90 minutes 
incubation with vasopressin at varying concentrations and no 
treatment control. No difference in percentage progressive motility was 
observed at any concentration (p = > 0.05. N = 4). 
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3.3 PKA activation  

 

To further investigate the effects of vasopressin on the cellular function of human 

sperm, the activation of PKA was examined through immunolocalisation of 

phosphorylated serine and threonine substrates using the phospho-PKA substrates 

antibody. These substrates are phosphorylated by PKA and can be used as a 

measure of PKA activity within the cell (Kwon et al., 2013).  

There were no visible signal differences between all treatments and controls 

(Figures 18, 19, 20, 21 and 23) except for the sperm cells incubated with the PKA 

activator 8-bromo-cAMP. PKA was localised in HeLa throughout the cell (Figures 18 

and 19), in sperm it was localised to the tail except when incubated with 8-bromo-

cAMP in which there was also localisation on the equatorial region of the head of 

the sperm (Figure 22 and arrow in A). 

 

3.3.1 Phospho-PKA substrates immunocytochemistry 

 

As a positive control and for assay optimisation HeLa cells were utilised. HeLa were 

treated with PKA activator 8-bromo-cAMP and immunolocalisation of  phospho-PKA 

substrates in HeLa cells with and without treatment positive staining for phospho-

PKA substrates evenly throughout the cells and in all cells with no visible signal 

differences between the two samples (Figures 18 and 19).  

 

 

Figure 18. Immunolocalisation of Phospho-PKA Substrates in HeLa cells induced with 8-
bromo-cAMP. Phospho-PKA substrates (green) detected on HeLa cells induced with 8-Bromo-
cAMP (A). No primary antibody control (B). Nuclei were stained with DAPI (blue). Magnification x400. 
Representative images from N = 3. 

B A 
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Figure 19. Immunolocalisation of Phospho-PKA Substrates in HeLa cells. Phospho PKA 
substrates (green) detected on HeLa cells (A). No primary antibody control (B). Nuclei were stained 
with DAPI (blue). Magnification x400. Representative images from N = 3. 

Immunolocalisation of phospho-PKA substrates in human sperm showed 

localisation primarily in the tail of the sperm (Figures 20, 21, 22, 23). All sperm 

samples were separated from the seminal plasma via swim-up method in PBS 

(methods section 2.2.2). In Figure 20, a no treatment control, positive staining for 

phospho-PKA substrates was observed on the tail of the sperm, no staining was 

observed elsewhere (Figure 20, A). In Figure 21 sperm were treated with 25mM 

bicarbonate to capacitate the sperm (Da Ros et al., 2004, Stauss et al., 1995). This 

was done as sperm that have undergone capacitation have been observed to have 

a much higher rate of PKA activity than non-capacitated sperm (Lefievre et al., 

2002). Localisation of phospho-PKA substrates was once again observed along the 

tail of the sperm (Figure 21, A). In Figure 22 sperm were treated with 100 μM of the 

PKA activator 8-bromo-cAMP for 5 minutes and showed increased signal 

differences for phospho-PKA substrates from the other treated and control samples, 

including positive staining for the phospho-PKA substrates along the equatorial 

region of the head of the sperm (Figure 22, A, arrow). This indicated that the PKA 

activator 8-bromo-cAMP could successfully be used to increase PKA activity in vitro. 

Figure 23 showed sperm incubated with 10 μM of vasopressin agonist, positive 

immunolocalisation of the phospho-PKA substrates was once again observed along 

the tail of the sperm (Figure 23, A).  

All no primary controls showed no staining indicating there was no non-specific 

binding of the antibody (C in Figures 20, 21, 22 and 23). 

Phase contrast images of both stained and no primary controls showed the full 

sperm morphology (B and D in Figures 20, 21, 22 and 23) 

B A 
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There were no visible signal differences for phospho-PKA substrates between the 

control, capacitated sperm and sperm incubated with vasopressin (Figure 20, A , 

Figure 21, A and Figure 23, A). 
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Figure 20. Immunolocalisation of Phospho-PKA Substrates in human sperm cells. Phospho PKA substrates 
(green) detected on human sperm washed and incubated with PBS (A). Phase contrast image of A (B). No primary 
control (C) and phase contrast of no primary control (D). Nuclei were stained with DAPI (blue). Magnification x400. 
Representative images from N = 1. 

A B 

C D 
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Figure 21. Detection of Phospho-PKA Substrates in capacitated human sperm cells. Phospho-PKA substrates 
(green) detected on human sperm washed in PBS and incubated with 25mM HCO3. (A). Phase contrast image of A (B). 
No primary control (C) and phase contrast of no primary control (D). Nuclei were stained with DAPI (blue). Magnification 
x400. Representative images from N = 1. 

D C 

B A 
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Figure 22. Detection of Phospho-PKA Substrates in human sperm cells washed in PBS and incubated with 8-
Bromo-cAMP. Phospho-PKA substrates (green) detected on human sperm washed in PBS and incubated with 8-
Bromo-cAMP. (A). Phase contrast image of A (B). No primary control (C) and phase contrast of no primary control (D). 
Nuclei were stained with DAPI (blue). Magnification x400. Representative images from N = 1. 

D C 

B A 
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Figure 23. Detection of Phospho-PKA Substrates in human sperm cells washed in PBS and incubated with 10µM 
vasopressin. Phospho-PKA substrates (green) detected on human sperm washed in PBS and incubated with 10µM 
vasopressin. (A). Phase contrast image of A (B). No primary control (C) and phase contrast of no primary control (D). 
Nuclei were stained with DAPI (blue). Magnification x400. Representative images from N = 1. 

D 

B A 
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3.3.2 Phospho PKA substrates western blots 

 

To investigate the regulation of PKA, HeLa and sperm cells were incubated with 8-

bromo-cAMP to induce PKA phosphorylation activity as a positive control for PKA 

phosphorylation activity.  

Western blot analysis for phospho-PKA substrates showed, in HeLa, the PKA 

activator 8-bromo-cAMP upregulated phospho-PKA activity after both 5 and 30 

minutes in bands at 25 kDa and 30 kDa when corrected for Actin using Image LabTM 

software. No observable difference between the 5 and 30 minute incubations with 

8-bromo-cAMP (Figures 24a and 24b). Western blots using sperm did not show any 

conclusive data, which may be due to poor protein yields from the human sperm 

samples. Further optimisation is required in order to obtain results from sperm 

samples (Figure 25). 

 

 

 

Figure 24. Overlay of representative western blot of Phospho-PKA substrates 
and Actin protein extracted from untreated and treated HeLa cells. HeLa cells 
were untreated (HeLa C) and treated with 8-bromo-cAMP for 5 minutes (HeLa 5) 
and 30 minutes (HeLa 30). Representative images from N = 9. 
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Figure 24b. Band intensity ratio for band A and band B of representative western 
blot 24a. HeLa Actin band compared to HeLa band A and B treated for 5 minutes with 
PKA activator 8-bromo-cAMP (HeLa 5) and treated for 30 minutes with PKA activator 8-
bromo-cAMP (HeLa 30). Representative of N = 1. 

 

 

Figure 25. Overlay of representative western blot of Phopho PKA substrates and 
β-Tubulin protein extracted from untreated and treated human sperm cells. Human 
sperm were washed and untreated (Sperm C) and treated with vasopressin for 5 minutes 
(sperm VP) and for 5 minutes PKA activator 8-bromo-cAMP (sperm 8-bromo-cAMP). 
Representative images from N = 1.  
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3.4 Exploring Neuropeptide transcripts in human sperm.  

To further investigate the presence of neuropeptide receptors in human sperm 

transcripts for vasopressin receptor 2, prolactin receptor and oxytocin receptor were 

explored.  

Sperm cells are transcriptionally quiescent (Johnson et al., 2011), however the 

neuropeptide receptor transcripts may be present in mature sperm (carried on from 

spermatids and earlier cells from spermatogenesis) regardless of whether the 

receptor itself is present on mature human sperm. Should the transcripts be present 

this could indicate a possible role during spermatogenesis and sperm maturation 

that may be vital for mature sperm function. Oxytocin receptor primers 2,3 and 5 

were optimized using cDNA from MCF-7 cells (appendix 3). However, for sperm 

samples optimization was not yet possible during this study and further work is 

required.  
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4.0 Discussion  

 

This study set out to investigate the role of neuropeptides on human sperm, by 

localising the receptors on human sperm and examining of any physiological role.   

The oxytocin and vasopressin receptors have been found throughout both male and 

female reproductive tissues, the epididymis, vas deferens, leydig cells, prostate, 

testis (Filippi et al., 2002) and the ovaries (Fuchs et al., 1990). Vasopressin, oxytocin 

and prolactin are found in both seminal plasma and follicular fluid (Brotherton, 1990; 

Schaeffer et al., 1984; Goverde et al., 1998; Laufer et al., 1984; Schoenfeld et al., 

1979) indicating a possible role in sperm function and fertilisation. 

In the present study, the vasopressin receptor 2 was immunolocalised on the 

acrosome region of the human sperm (Figure 11). However, both the oxytocin and 

prolactin receptors were not immunolocalised (Figures 13 and 15).  

To date, the oxytocin receptor has not been localised on sperm. Oxytocin, in high 

levels, is known to have an affinity for the vasopressin receptor 2 (Joo et al., 2004, 

Li et al., 2008). Though the oxytocin was not localised in human sperm, in high 

levels, oxytocin may function through the vasopressin receptor 2 on sperm. Kwon 

et al. (2013) showed that when the vasopressin receptor 2 is activated in sperm it 

has negative effects on sperm function (motility, capacitation and acrosome 

reaction). One study showed that the use of an oxytocin antagonist improved the 

fertility of a woman who suffered 15 years of infertility and 7 failed in vitro 

fertilisation/embryo transfer attempts (Pierzynski et al., 2007). Oxytocin is known to 

be present in high levels in pregnant and breastfeeding women (Kumaresan et al., 

1974; Nissen et al., 1996; Otsuki et al., 1983; Uvnäs-Moberg et al., 1990). It could 

therefore be postulated that oxytocin at high levels may modulate sperm function 

locally in the tubal milieu. 

In this study the prolactin receptor was not localised on human sperm, however 

Pujianto et al. (2010) showed expression of the prolactin receptor on human sperm 

in particular in the tail region. They demonstrated that prolactin has prosurvival 

effects on human sperm via the inhibition of apoptosis, supports prolonged motility, 

suppresses capacitation and prevents the formation of spontaneous DNA 

fragmentation via caspase suppression.  
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Vasopressin receptor 2 was the only neuropeptide receptor localised on human 

sperm in this study. Therefore, the role of vasopressin in sperm function was further 

investigated. An easy and effective measure of function is progressive sperm 

motility. Motile sperm is vital for fertilisation to occur and easy to measure in vitro 

either manually or using CASA. Capacitation causes sperm to be hypermotile, an 

influx of intracellular calcium leads to an upregulation of PKA, all essential for 

acrosome reaction and fertilisation. Should time have permitted this study would 

have benefitted from investigating capacitation status and acrosome reaction in 

order to have a more complete idea of any effect that vasopressin may be having 

on human sperm function. Sperm incubated at various concentrations of 

vasopressin for 30 and 60 minutes showed no significant difference in motility 

between control and treated samples (Figures 16 and 17). However, Kwon et al. 

(2013) found in mouse sperm there was a dose dependant negative effect on 

percentage progressive sperm motility when incubated with vasopressin, but only a 

significant difference at the highest concentration (10 µM). They found that high 

quantities of vasopressin strongly inhibited the acrosome reaction and capacitation 

and suggested that vasopressin has strong negative effects on normal sperm 

function and the potential use of vasopressin as a male contraception. If the 

vasopressin receptor 2 has inhibitory effects on sperm function and high levels of 

vasopressin are present in the Fallopian tube during acute stress, sperm may be 

negatively affected therefore lowering fertility. This could be a method of post-coital 

sexual selection, whereby females may influence the behaviour of sperm locally 

through increasing levels of vasopressin during times of duress (Nakanishi et al., 

2004; Sakkas et al., 2015). 

The findings of Kwon et al. (2013) and the present study have revealed some 

differences in the localisation of the vasopressin receptor 2 on sperm. In mouse, the 

receptor was localised along the tail and midpiece. Furthermore, Kwon et al. (2013) 

used sperm from the caput epididymis, which are not mature and do not have the 

ability to be motile or fertilise an oocyte (Jones, 1999). They also used sperm 

isolated from the cauda epididymis and showed localisation on the acrosome, 

indicating that the vasopressin receptor 2 develops on the acrosome during sperm 

maturation (Kwon et al., 2013). In the present study, mature human sperm produced 

via masturbation and the vasopressin receptor 2 was localised exclusively on the 

acrosomal region (Figure 11). Further investigation into immunolocalising the 
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vasopressin receptor 2 on immature human sperm would support the idea that the 

vasopressin receptor 2 develops on sperm during maturation. 

No significant effect on human sperm progressive motility was observed after 

treatment with vasopressin, this could be due to the small sample size used in this 

study with limited donors and further investigation is required.  

To examine any intracellular signalling activity of vasopressin on sperm, the activity 

of PKA was analysed. The vasopressin receptor 2 is a G protein-coupled receptor 

(Gs alpha subunit) that activates the cAMP dependant pathway. The increases in 

cAMP which activates PKA, thus phosphorylating serine and threonine residues on 

target proteins (Neves et al., 2002).  

To optimise the assay, HeLa cells were used. After treatment with 8-bromo-cAMP  

with PKA activator and then probed for any PKA activity via immunocytochemistry. 

Both control and treated samples showed strong labelling for phospho-PKA 

substrates throughout the cell, though no visible difference in fluorescent signal was 

observed (Figures 18 and 19).  

PKA is activated during capacitation (Lefievre et al., 2002) and capacitation can be 

induced in vitro using bicarbonate. To induce sperm PKA activity in this study, sperm 

were treating with bicarbonate (25mM) (Da Ros et al., 2004; Lefievre et al., 2002) . 

The capacitated sperm showed positive labelling for phospho-PKA substrates along 

the tail (Figure 20) but no visible differences in fluorescence were observed between 

this and the control sample (Figure 20). This may be due to sperm undergoing 

spontaneous capacitation. 

The sperm sample incubated with PKA activator 8-bromo-cAMP showed positive 

staining for phospho-PKA substrates along the tail and the equatorial region of the 

head (Figure 22). There was an increased immunofluorescence in treated sperm 

compared to untreated sperm, which may indicate increased PKA activity. This 

showed that 8-bromo-cAMP induces increased phosphorylation of on target 

proteins via PKA in human sperm, allowing for its use as a positive control in further 

assays. 

After treatment with vasopressin, sperm showed positive staining for phospho-PKA 

substrates along the tail (Figure 23), though no visible difference in PKA activity was 

observed between the treated and control sample. Though it may not be a visible 

difference via immunofluorescence, Kwon et al. (2013) showed that vasopressin 
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decreases phospho-PKA substrates in sperm in a dose dependant manner via 

western blot analysis. 

To assess PKA activity cells were treated with PKA activator 8-bromo-cAMP. To 

optimise the assay – HeLa cells were used. Extracted protein was used for western 

blot analysis and probed for phospho-PKA substrates. HeLa cells treated with 8-

bromo-cAMP (after 5 and 30 minutes incubations) showed upregulation of PKA 

activity through increased phosphorylation of target proteins (Figures 24a). Further 

analysis showed upregulation of substrates phosphorylation around 25 and 30 kDa 

(Figures 24b). These data demonstrate that PKA activity can be detected after 

stimulation of cells in vitro using 8-bromo-cAMP. The next step was to examine PKA 

activity in sperm. Sperm were treated with 8-bromo-cAMP and vasopressin for 5 

minutes.  However, when western blotting was attempted with human sperm protein 

extract after treatment with 8-bromo-cAMP and vasopressin no conclusive data 

were obtained. This assay requires further optimisation and due to time restraints, 

this was not possible during this study. 

Although sperm are transcriptionally quiescent and the oxytocin and prolactin 

receptors may not be present on mature human sperm, if the transcripts are present 

this could indicate a role for the neuropeptide and its receptor earlier in 

spermatogenesis. Kwon et al. (2013) found when immunolocalising vasopressin 

receptor 2, the receptor was not present on the acrosome of the caput mouse sperm 

(immature) until the mouse sperm was further matured in the cauda. The presence 

of transcripts for neuropeptide receptors in sperm was explored.   

Primers for the human oxytocin receptor were optimised using cDNA from MCF-7 

cells, known to express oxytocin receptor. Oxytocin receptor primer sets 2, 3 and 5 

amplified as expected and the no template controls were clear (appendix 3). No 

conclusive data was generated for in the present study. 

 

4.1 Limitations and future work 

 

The major limitations of the present study were mostly technical, which include 

optimisation of Western blots and immunocytochemistry. Given the time scale of 

this study, it was not possible to acquire data that are more conclusive.  
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To further investigate the role of neuropeptides on sperm function, other 

neuropeptides that have been implicated in reproduction such as neuropeptide Y, 

leptin, PACAP, ghrelin and others (Brann et al., 2002; García et al., 2007; Shintani 

et al., 2002; Toufexis et al., 2002) should be explored via immunocytochemistry for 

their receptors in human sperm. If the receptor is successfully located to then 

explore any modulation in motility after incubation with a specific receptor agonist 

and antagonist.  

Using proteomics to fully profile any neuropeptides found in follicular fluid and 

semen would give direction to further exploration of neuropeptides involved in 

reproduction and potentially sperm function. Any chemotactic effects of these 

neuropeptides could be investigated via a simple assay using a microfluidic device 

(Koyama et al., 2006). 

As the vasopressin receptor 2 was localised on the acrosome region on the head of 

the human sperm in order to investigate the effects this receptor has when activated 

the experiments mentioned in this study require further optimisation and larger 

sample sizes in order to negate for both inherent differences in between donors and 

samples themselves. To further explore vasopressin’s effect on human sperm 

function both capacitation status and acrosome reaction post-incubation with 

vasopressin agonist and antagonist should be explored. Percentage of positively 

labelled sperm should be measured in order to obtain more quantitative data.  As 

the vasopressin receptor 2 is found on the acrosome this suggests that it may play 

a part in the acrosome reaction. In renal cells, the vasopressin receptor 2 triggers 

the signalling cascade, activating adenylyl cyclases, which activate cAMP, 

activating PKA resulting in the translocation of aquaporin 2 channels from the 

intracellular vesicle to the cell membrane (Dibas et al., 1998; Nielsen et al., 1995), 

aquaporin 2 has been localised in the ampulla of the vas deferens of the rat and is 

suggested that it is involved in sperm concentration via fluid removal from the lumen. 

However, the aquaporin 2 channels found in the vas deferens have been shown to 

not be regulated by vasopressin unlike in renal cells (Matsuzaki et al., 2002; Stevens 

et al., 2000). Vasopressin could potentially be important in the acrosomal shedding 

during acrosome reaction via increased osmosis via this pathway. 
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5.0 Conclusion  

 

The presence of the receptors for neuropeptides oxytocin, vasopressin and prolactin 

was explored. The vasopressin receptor 2 was the only receptor localised on human 

sperm and any functional role was examined though results were limited. Sperm 

exposed to varying concentrations of vasopressin in vitro did not show any effect on 

progressive sperm motility. Sperm PKA activation by vasopressin was investigated 

– however, no conclusive data was obtained.  

The vasopressin receptor 2 was localised to the acrosomal region.  It is therefore 

likely that vasopressin may play a role in the acrosome reaction. Further work is 

required to establish any role vasopressin has on human sperm. Additionally, 

investigating the possible roles of other neuropeptides and sperm function is an area 

worth investigating, linking neuroendocrinology and sperm biology.   
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7.0 Appendices 

1 

Recipes 

Western blotting recipes 

Separating buffer 

1 g SDS 
45.4 g Tris Base 
Make up to 250 ml with dH2O  
Adjust to pH 8.8 
Can be stored at room temperature for a few months 
 
Stacking Buffer 

1 g SDS 
15 g Tris Base 
Make up to 250 ml with dH2O 
Adjust to pH 6.8  
Can be stored at room temperature for a few months 
 
APS 
 
10% solution  
(e.g. 100 mg in 1 ml dH2O) 
Can be stored in the fridge for a week 
 
Running buffer/Electrode buffer 
 
12.02 g Tris Base 
4 g SDS 
57.68 g Glycine  
Made up to 2 L in dH2O 
Can be stored at room temp – will run out before it goes out of date  
 
Sample buffer/Laemmli buffer (X4) 
 
1.51g Tris Base 
20ml Glycerol  
Add 25 ml dH20 and adjust to pH 6.8  
Then add 4 g SDS  
10 ml 2-mercaptoethanol  
0.004 g bromophenol blue  
Make up to 100 ml with dH2O  
Filter and store in -20 in aliquots  
 
Towbin Buffer 
 
1.51 g Tris Base 
7.2 g Glycine  
0.167 g SDS 
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75 ml Methanol  
Make up to 500 ml with dH2O 
Adjust pH to 8.3 and store at room temperature 
 
 
Bovine Serum Albumin (for Blocking and Antibody solutions) 
 
1% solution – add 1 g BSA to 100 ml PBS-T  
Store in fridge for approx. a week 
 
Milk (for Blocking and Antibody solutions) 
 
5% solution – add 5 g milk powder to 100 ml PBS-T 
Store in fridge for approx. a week 
 
Stripping Buffer 
 
0.9 g Tris-HCL  
2 g SDS 
Add 100 ml of dH2O and adjust pH to 6.7 
Then add 800 uL 2-mercaptoethanol 
 
TBS-T 
 
2.422 g Tris base 
16.36 g NaCL 
2 ml Tween 
In 2 L dH2O 
Adjust to pH 7.4 and store at room temperature for 7-10 days or at 4°C for a 
month. 
 
RIPA Lysis Buffer 
 
50 mM Tris base adjusted to pH 8 (0.607g) 
150 mM NaCL (0.292g) 
0.5% Sodium deoxycholate (0.5g) 
0.1% SDS (0.1g) 
1% Triton X-100 (1ml) 
Make up to 100ml with dH2O 
 
Immunocytochemistry recipes 
 
Blocking buffer 
 
5% goat serum  
Made up in PBS-T  
 
Blocking buffer with additional ingredients 
 
10% horse serum 
0.3 M glycine 
1% bovine serum albumin 
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In PBS-T (1%) 
Other 
 
Tris-Borate-EDTA buffer (TBE) 
 
89 mM Tris (pH 7.6) 
89 mM boric acid 
2 mM EDTA 
In dH2O 
 
Standard cell culture media 
 
440 ml DMEM high glucose 
5 ml L-glutamine 
50 ml heat inactivated foetal bovine serum 
5 ml penicillin-streptomycin  
Filtered through 0.22 µm filter 
 
Neutral buffered formalin (10%) 
 
50 ml formaldehyde (37% solution) 
3.25 g dibasic sodium phosphate  
2 g monobasic sodium phosphate 
In 500 ml dH2O 
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3 
Polymerase Chain Reaction  

 

Table 8. Oxytocin receptor primers. 

Target Gene Forward Primer Reverse Primer Amplicon 
Size 

Oxytocin 
Receptor 
(OXTR 1) 

CCGCACGGTCAAGA
TGACTT 

ATGAAGGCCGAGGCT
TCCTTG 

123 

Oxytocin 
Receptor 
(OXTR 2) 

CAAGCTCATCTCCAA
GGCCA 

GAAGGCCGAGGCTTC
CTTG 

145 

Oxytocin 
Receptor 
(OXTR 3) 

GTCTACATCGTGCC
GGTCAT 

TGAAGGCCGAGGCTT
CCTTG 

313 

Oxytocin 
Receptor 
(OXTR 4) 

TGCTGGACGCCTTT
CTTCTT 

GAAGGCCGAGGCTTC
CTT 

75 

Oxytocin 
Receptor 
(OXTR 5) 

CGCCCAAGGAAGCC
TCG 

GGCTCAGGACAAAGG
AGGAC 

213 

Oxytocin 
Receptor 
(OXTR 6) 

GACGCCTTTCTTCTT
CGTGC 

ATGAAGGCCGAGGCT
TCCTTG 

72 

 

 

 

Figure 26. Agarose gel electrophoresis (2%) of end-point 
polymerase chain reaction optimising oxytocin receptor 
primers and no template controls. Primers 1-6 optimised using 
cDNA extracted from human breast cancer MCF-7 cells and primers 
(1-6) no template control (NTC). Representative images from N = 1. 

 

Oxytocin receptor primers 1-6 were optimized using RNA extracted from human 

breast cancer MCF-7 cells cultured in standard media and extracted via Trizol 

method and converted to cDNA using Promega’s GoTaq® 2-step RT qPCR kit 

(methods 2.whatever) as a positive control as they are known to express oxytocin 

1    2    3    4    5    6                    1    2    3    4    5    6  

NTC 
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receptor. Oxytocin receptor primers 2,3 and 5 worked as expected, amplicon size 

was shown via gel electrophoresis, primers 1,4 and 6 showed no amplification. No 

template controls were clear showing no contamination. 

 

 

Figure 27. Agarose gel electrophoresis. Oxytocin primers on human sperm cDNA. 
Contamination present throughout. Primers 2, 3 and 5 optimised using cDNA extracted from 
human sperm cells and primers (2, 3, 5) no template control (NTC). Representative images from N 
= 1. 

2   3   5    2    3   5 

NTC 


