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Abstract. Accurate geometrical and spatial information of the built environment can be accurately acquired and the 
resulting 3D point cloud data is required to be processed to construct the digital model, Building Information 
Modelling (BIM) for existing facilities. Point cloud by laser scanning over the buildings and facilities has been 
commonly used, but the data requires external information so that any objects and materials can be correctly 
identified and classified. A number of advanced data processing methods have been developed, such as the use of 
colour information to attach semantic information. However, the accuracy of colour information depends largely on 
the scene environment where the image is acquired. The limited number of spectral channels on conventional RGB 
camera often fails to extract important information about surface material, despite spectral surface reflectance can 
represent a signature of the material. Hyperspectral imaging can, instead, provide precise representation of spatial and 
spectral information. By implementing such information to 3D point cloud, the efficiency of material detection and 
classification in BIM should be significantly improved. In this work, the feasibility of the image integration and 
discuss practical difficulties in the development.  

1 Introduction  
The UK will be required to refurbish or retrofit 93% of 
existing buildings by 2050 to meet national carbon targets 
– this includes 25 million homes and 3 million non-
domestic facilities [1]. Refurbishing and retrofitting (RR) 
facilities will be the major work for the UK construction 
industry in the next 20 years. The main issue of RR is the 
unavailability or inaccurate building drawings, plans or 
blueprints [2]. Without these, the RR project is open to a 
myriad of engineering unknowns and risks, causing 
additional concerns to health and safety, financial 
uncertainties and hazards. To optimise RR, any project 
team must be able to work seamlessly with accurate 
building information (e.g. plans, material) on a digital 
and common platform called Building Information 
Modelling (BIM) [3, 4]. BIM is a digital representation of 
the physical and functional characteristics of a buildings 
or structures (hereby referred to as facility). It is aimed to 
serve as a shared knowledge resource for information 
about a facility, as well as forming a reliable basis for 
decisions during the facility's lifecycle, from inception 
onward. BIM has been becoming essential tool for the 
Architecture, Engineering, Construction and Facility 
Management communities. The use of BIM is also 
mandated for UK Government projects by 2016 [5]. 

BIM allows accredited project team members to add, 
edit, delete, and share real time information and design 
specification on a common technology. BIM provides 
multi-dimensional information of any facility; identify 

design collision between the multidisciplinary project 
team; check for accessibility compliances; capture design 
and material information; building regulation 
compliance; supply chain integration [6-8]. 

Among these information, geometrical information of 
the facilities and objects, and their physical properties 
must be documented accurately so that the digitised 
information can be linked together on a common standard 
platform. 

Technological advancements have made it possible to 
generate 3D models to assess as-built conditions, and to 
verify the progress of the project and contract 
specifications. Modelling can be used to capture the as-
built or as-is reality of any project and facility. The 
modelling consists of collecting infrastructure’s spatial 
data as a series of 3D Cartesian coordinates.  The 
collection of the dense Cartesian-based distance data set 
is known as point cloud, and these points are processed 
and transformed into a structure or an object by purposely 
designed software [e.g. 9] associated with specific 
database [e.g. 10]. 

The 3D laser scanning and photogrammetry have 
been most commonly used to acquire the point cloud data 
[11, 12]. Developments in both hardware and software 
have been underway to make them more reliable, 
compact, and affordable, but there are still certain limits 
in the implementation of the 3D point cloud to BIM. One 
of the critical issues is to do with performing 
identification and classification of objects and materials 
in the 3D point cloud. 
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The point cloud data does not contain any sematic 
information but merely geometrical coordinates and 
intensity values per point. This problem can be addressed 
by combining external information, such as visual 
information from the other sources, to the point cloud. 
The most common method is the integration with 
snapshot photographs or colour images taken 
independently of the laser scanning but simultaneously 
on site [13-15]. One of various developments in the 
utilisation of colour information processes colour images 
with sophisticated algorithm along with specifically 
designed image database to identify the construction 
materials [16].

A concern is, however, the quality of the colour 
information by conventional RGB camera depends on the 
environment or imaging condition where the images are 
being taken. Colour appearance of the surfaces, for 
example, varies with the scene illumination. In addition, 
due to the limited number of the spectral channels in the 
imaging system, any complex spectral signature of 
materials cannot be accurately extracted. These 
disadvantages lead to failures in the identification and
classification. 

Since the identification of the materials can be 
provided by their spectral signature, it would be ideal if 
the spectral imaging data is integrated to 3D point cloud 
data. With the current technology, however, the 
hyperspectral imaging is available in two dimensions. A 
challenge is, therefore, to develop methodology to 
integrate the 2D spectral image to the 3D point cloud. 
One of feasible and convenient methods is to project the 
3D point cloud to 2D and apply the image registration 
methods between 2D images. In this report, the feasibility 
of this integration to the hyperspectral data is addressed, 
and the advantages and disadvantages are to be discussed.  

2 Colour image for material 
identification  
The laser scanning is one of the most common methods 
to capture geospatial information in the built-environment 
and facilities accurately and efficiently. Photogrammetry 
can be used complementary because of the similarities in 
output data [11].

The point cloud, as noted earlier, only contains 
Cartesian coordinate and intensity values at the point, and 
does not carry any semantic information, such as 
knowing which point belongs to what as-built structural 
component. Without such attributes or context, it is 
almost impossible to judge where the point is belonged to 
and to examine any relationship between nearby points. 
In order to identify and classify the materials and objects 
in the facilities or scenes, it is necessary to attach 
additional semantic information to the point cloud. 

Working with such featureless data to explore geometric 
reasoning are generally tedious, time consuming, often 
produce errors [17]. 

The semantic information or context of the scene can 
be extracted from independent imaging systems, pre-
examined data, or post image processing [18, 19]. A 
number of computational algorithms have been also 
reported to provide better solutions on these limitations 
[e.g. 13, 14, 16, 18]. 

Colour information and photographic data often 
provides useful information about the objects in the 
facilities or scenes, and even what the materials are. The 
colour images taken by conventional RGB camera have 
an advantage to be collected quickly and inexpensively. 
For example, Dimitrov et al [14] presented a new 
algorithm based on Structure-from-Motion (SfM) 
combined with image statistical analysis. Hang et al [16] 
proposed a manual integration of 3D point cloud and 2D 
image patches to facilitate 4D BIM with the site photo-
log and SfM accompanied with specially designed image 
database. 

However, the colour imaging by a conventional RGB 
camera has certain limitations. That is, the quality of the 
colour largely defined by the environmental condition 
where the image is being acquired. Colour appearance of 
the surfaces, for example, is influenced by the scene 
illumination.  

Figure 1 shows an example of misrepresentation of 
colours. Colour images were acquired by a build-in RGB 
camera in a laser scanner (Fig. 1a), and by a conventional 
RGB camera (Fig. 1b). Despite the materials of the all 
surfaces are the same, top surface has a different 
appearance from the side surfaces (Fig. 1a) and 
brightness of the surfaces are different between the 
images (Fig. 1 a and b). Further, due to the limited 
number of the spectral channels over spectrum (three in 
the conventional RGB camera and human eye), such 
imaging device cannot always produce correct colour 
appearance of some surfaces which has complex spectral 
properties are, known as metameric surfaces [20]. 

Figure 1. Examples of misrepresentation of colour 
appearance. Colour images taken by (a) the built-in RGB 
camera in the laser scanner and by (b) an external 
conventional RGB camera.
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3 Advanced imaging and integration  

3.1 Spectral information  

Characteristics of materials can be represented by 

spectral properties. Estimation of surface reflectances 

enables to identify the spectral characteristics of materials 

independently of scene illuminations and environment. 

The more spectral channels are available, the more 

accurate estimation is available. It is therefore reasonable 

to consider the integration of the hyperspectral imaging 

data to 3D point cloud.  

Spectral characteristics of urban construction 
materials, such as an aging effect on concrete and clay 
tiles, have been examined to establish spectral library for 
the BIM [21]. It has been also the case for the spectral 
characteristics of asphalt road aging and deterioration 
[22]. These data provide the important evidence that the 
spectral characteristics and their examination need to be 
taken into account to identify the materials, and 
consequently to be implemented in the BIM protocol.  
They also indicate the requirement of a careful 
consideration to determine which range of spectra should 
be examined. 

3.2 Hyperspectral imaging  

The hyperspectral imaging has evolved to include not just 
one monochromatic channel or three colour channels 
covering the visible spectrum, but many channels, over 
30, even several hundreds, extending from the visible 
spectrum to near-infrared (NIR) and shortwave infrared 
(SWIR) channels [20, 23]. 

This imaging method is aimed mainly to exploit the 
materials comprising the various objects in a scene where 
lights reflect, scatter, and being absorbed, depending on 
characteristic of material in both chemical and physical 
properties.  

If the number of spectral channels sufficiently covers 

a wider spectral range and each is narrowly tuned, the 

information on each pixel can be used in a detailed 

analysis to gain accurate identification of objects and 

materials against different environmental exposure. Such 

assessment is unavailable by human eyes or the RGB 

camera with the three channels. 

In the recent years, demands to the hyperspectral 
imaging has grown significantly because of its increasing 
applications in a variety of research area, for example, 
agriculture [24] and cultural heritage [25]. The 
hyperspectral imaging is currently limited to two 

Figure 2. The image registration example between two images acquired by different conditions (in spatial resolution, viewing distance 
and viewing). (a) Colour rendering image based on the hyperspectral imaging in a natural scene. (b) Colour image of the same scene 
with a conventional RGB camera. (c) Detection of the SURF (Speeded-Up Robust Features) image key features and image
transformation. Circles and crosses are the features from each of the images in (a) and (b), respectively. (d) Result of image registration. 
For visibility a black frame was inserted and the background was converted to grey scale.
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dimensions and requires specific spectral calibration at 
each image acquisition. Each spectral channel has 
different focal length. This causes chromatic fringes in 
the resulting images, unless any spectral correction is 
made by performing post-image processing (e.g. the 
image registration across the spectral channels) or by 
using any optical devices in the imaging system (e.g. an 
achromatising lens). 

3.3 Image registration methods  

One of the unique features of using the 3D point cloud 
data is the ability to manipulate and view data in a full 
degree of freedom environment. That is, users can 
interact and manipulate the dense point data flexibly (for 
example,  users can observe the data from different 
distance and viewing angles as shown in Fig. 3a),
allowing for construction of as-built conditions in a 
virtual environment [26]. Such flexibility may provide a 
feasibility of integrating the point cloud to the other 
digital imaging. That is, it is possible to adjust the 
viewing angle so that the projection of the 3D image can 
closely correspond to the external 2D image. The 
projected 2D image can be registered to the external 2D 
image to be integrated. It enables to extract or attach 
additional information. 

Once both image data from the laser scanning and 

hyperspectral imaging are on the same image dimension, 
the integration will be performed by applying the image 
registration methods established in computational vision. 
Common technique in the image registration is based on 
the detection of image key features and their 
correspondences between the images. The key features 
are, for example, intensity contrast, gradients, edge, and 
surface normal. Several algorithms have been proposed to 
detect the key features; Binary Robust Invariant Scalable 
Keypoints (BRISK) [27]; Speeded-Up Robust Features 
(SURF) [28]; Maximally Stable Extremal Regions 
(MSER) [29]; Fast Retina Keypoint (FREAK) [30]. The 
combination of these methods is also applicable. Instead 
of using computational key features, it is also possible to 
use reference objects or markers physically placed in the 
scenes. These image registration algorithms are applied to 
the 3D point cloud as well as 2D images, when multiple 
sets of scanning (point clouds) are to be registered [31]. 

Figure 2 represents an example of the image 
registration between two images taken by the different 
imaging systems, from different viewing distances and 
angles, with applying the SURF algorithm [28] to 
compute the image transformation (Fig. 2c). The 
goodness of the image registration is controlled by 
adjusting optimisation parameters, such as the number of 
iterations and step size. The final registered image is 
shown in Fig. 2d.

Figure 3. Proposed image integration between 3D point cloud and the hyperspectral image. (a) Point cloud with adjustable viewing 
angle; (b) Colour image rendering of the hyperspectral data. (c) Example GUI to be implemented to monitor spectral profile on each 
pixel selected.
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If the image integration is completed, the spectral 
properties obtained by the hyperspectral data (as shown 
in Fig. 3c) can be integrated to point cloud. The 
integration between 3D point cloud and spectral images 
have been reported in the other research disciplines, for 
example, characterisation of plants and plant disease 
detection [24, 32] and examination of art-objects [25],
any of which have been performed under well-controlled 
experimental environment. 

3.4 Considerations  

This proposed method is not difficult to implement, but it 
should be noted that there are certain disadvantages.  

The projection to 2D loses the advantage of having 
3D information, such as depth and occlusion. Any of the 
image information on the invisible surfaces cannot be 
obtained. It will be problematic if any significance (e.g. 
damage) may exist on those surfaces. The 3D information 
also provides useful information about the effect of scene 
illumination and shadows, which are often important in 
designing and retrofitting of the built-environment and 
facilities. It is, therefore, a common practice to identify 
what image information will be required and examine the 
geometrical correspondence between different imaging 
techniques in advance of performing the image 
acquisitions. 

Difference in spatial resolution of the imaging devices 
may cause inaccuracy in the image registration. 
Advanced image processing tools may be applied to 
achieve sufficient interpolation or extrapolation to 
overcome this issue. 

In terms of spectral image data, as noted earlier,
physical characteristics of light must be taken into 
account, namely, chromatic aberration. The fact that each 
spectral channel (light of different wavelength) has 
different focal length causes “colour fringe” at the edge 

of surfaces in the image. The correction of the chromatic 
aberration is important because edges of surfaces and 
objects provide essential information in their
identification and classification. The correction is 
available at the time of image acquisition using specially 
designed optical devices (e.g. an achromatising lens) or in 
the post image processing (e.g. the image registration 
across the spectral channels). As a note, there has been a 
report that the spectral edges or gradient of the spectral 
map provide clue to achieve image fusion [33]. 

There is a technical disadvantage in the image 
registration by image key features. That is, the detection 
of any key features depends on the image contents. If the 
scene is consisted of, for example, a large uniform 
surface or walls, it is difficult to detect any key features. 
Alternative registration algorithm, such as normal cross 
correlation may be considered. 

Apart from the proposed image integration method, 
the computational image fusion methods between 3D 
point cloud and 2D colour image have been reported [34],
where the characterisation of the imaging devices is 
implemented. The camera calibration is considered as a 
necessary step in the 3D computer vision to extract 
spatial and geometrical information from 2D images [35, 

36]. It is the process of estimating intrinsic and extrinsic 
parameters. Intrinsic parameters deal with the internal 
characteristics of the imaging device, such as, focal 
length, skew, distortion, and image centre. Extrinsic 
parameters describe its position and orientation in the 
world coordinate. Knowing these parameters is essential, 
as it allows estimating the scene’s structure in Euclidean 
space and removes lens distortion, which degrades 
accuracy. Such characterisation of the devices should be 
performed ahead of the imaging practice. It still needs,
however, to examine exactly how the correction works 
under practical and uncontrolled environments. 
 

4 Conclusions 
Refurbishment and retrofit (RR) projects will be the main 
work in the UK in order to achieve the agreed carbon 
emission targets. RR projects is not plagued with risks 
and uncertainties, which considerably rises costs, health 
and safety, and lacked environmental and carbon 
emission consideration.  It has been considered that BIM 
for RR projects is the way forward but has not been fully 
practiced in industries yet. The 3D scanning of existing 
facilities to obtain spatial information has been 
introduced and the demand has been increasingly grown. 
Taking a step further, the present report considered a 
possible method of the image integration between the 3D
point cloud and 2D hyperspectral imaging. As discussed, 
there are considerable difficulties at this stage of the 
development. Some of the disadvantages will be 
overcome by careful pre-planning of the imaging 
protocol. Currently computational cost for the point cloud 
and the spectral data is very demanding. Developments in 
sophisticated image processing tools are also required to 
extract all of the relevant information from the multitude 
of the data. However, by achieving the image integration 
between 3D and 2D, the identification and classification 
of the construction materials will become more efficient 
in terms of both labour and cost. This approach will add 
another dimension to the BIM. 
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