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Self-driving tourism induced carbon emission flows and its determinants in well- 
developed regions: A case study of Jiangsu Province, China

Abstract: 

Carbon emissions from the tourism industry are an important measure of the impact tourism has 
on the environment. Previous studies are predominantly focused on the static estimation of carbon 
emission from tourism transport. The effective estimation and analysis of carbon emission flows 
from self-driving tourism, and it’s related determinants, has become increasingly important. Using 
expressway traffic flow data at the level of toll-gate across Jiangsu Province in China, 2014, this 
paper has estimated the carbon emission flows from self-driving tourism between counties, 
analyzed the spatial patterns of its inflow, outflow and net flows, and modelled the determinants 
of these flows globally and locally using the geographically weighted regression method. The 
spatial distribution of these flows show high concentration in the South, gradually decreasing to 
the North. The two geographically weighted regression models demonstrate that the determinants 
of both inflows (the per capita gross domestic product. and the scenic spot’s score) and outflows 
(the per capita and total population of permanent residents) indicate spatial non-stationarity across 
Jiangsu province. The flow perspective and geographically weighted regression methods used in 
this paper have been proven to be effective in theoretical understanding and methodogical analysis 
of carbon emission trading. It is concluded that the spatial variation of these determinants has 
provided important evidence for carbon emission trading at county level. This suggests that local 
governments should take the variations of per capita gross domestic product, score of attractive 
spots and total population of permanent residents into the process of estimating carbon emission 
trading between counties. 

Key words: Carbon emission; self-driving tourism; spatial pattern; determinants; geographically 
weighted regression; Jiangsu province

1 Introduction
The tourism industry is progressively becoming the largest and fastest-growing industrial sector in 
the world. Understanding carbon emissions from the tourism industry is a significant factor in the 
global emission reduction target (WTTC, 2009). The World Tourism Organization (UNWTO) and 
United Nations Environment Programme (UNEP) (2008) have concluded that a correlation exists 
between tourism and climatic change. In face of this global challenge, UNWTO has proposed a 
theoretical framework and practical measures to alleviate the influences of tourism on climate 
change and promote the development of low-carbon tourism (Jamal, Taillon, & Dredge, 2011; 
Cerutti, Beccaro, Bruun, Donno, Bonvegna, & Bounous, 2016). A policy report published by the 
Business & Climate Summit in 2009, states that greenhouse gas emissions from tourism industry 
should be massively reduced (Simpson, Gössling, Scott, Hall, & Gladin, 2008). Self-driving travel 
has recently experienced rapid growth, in line with improving standards of living, transport 
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infrastructure and its associated facilities. Self-driving tourism is an organized and planned form 
of tourism with the self-driving car as the main means of transport (Becken, & Wilson, 2007). 
Self-driving tourism provides a flexible space for the tourists in the selection of objects, 
participation in the process and experience of freedom. Self-driving has become a dominant form 
of short-distance tourist travel as it enables to extend and expand the depth and breadth of tourist 
activities. 

As the largest developing country in the world, China's private car production, sales and 
possession have been increasing steadily, as stimulated by its long-standing economic 
development. In contrast, the car manufacturing in developed countries relatively remains in the 
same speed. Therefore, in the future, China’s government will be facing the challenges of 
emissions not only from existing cars but also from a huge number of newly purchased vehicles. It 
should be noted that the car sales in China are still dominated by the traditional fossil energy cars. 
The total volume of car sales in China was 23,491,900 in 2014, including the production and sales 
of only 74,800 new energy vehicles (including pure and hybrid electric cars) (China Automotive 
Industry Association, 2015). It is clear to see that the proportion of new energy cars is still very 
low, and subsequently, the vehicle carbon emission remains a serious issue and challenge. 
Admittedly, with the advancement of new technology in the future, the widespread promotion of 
new energy vehicles will help reduce or even solve the issues of carbon emissions from private 
cars. However, the situation of massive carbon emissions from private cars is still pressing for 
China at the current stage of development. Consequently, self-driving travel is contributing a large 
proportion of carbon emission in tourism industry (Katircioglu, Feridun, & Kilinc, 2014), 
particularly in China where tourism is developing rapidly.

Carbon emissions from the tourism industry have been extensively studied in the published 
literature across a wide range of themes. For example, recent studies include carbon footprints 
associated with tourism consumption (Munday, Turner, & Jones, 2013), CO2 emissions at hotels 
(Tsai, Lin, Hwang, & Huang, 2014) and from international tourism (Katircioglu, Feridun, & 
Kilinc, 2014), carbon footprint by transport (Filimonau, Dickinson, & Robbins, 2014) tourism 
investment (Cadarso, Gomez, Lopez, & Tobarra, 2016), and indirect carbon emission (Filimonau, 
Dickinson, Robbins, & Reddy, 2013). When categorised by modes of transport, it was revealed 
that the carbon emission from international aviation and private cars has occupied the majority of 
global tourism carbon emission (Howitt, Revol, Smith, & Rodger, 2013; Verbeek, & Mommaas, 
2008; Gössling, Scott, & Hall, 2015). The estimate is that cuiseship contributes probably around 
2% whereas aviation is now over 50% (Rutty, Gössling, Scott. & Hall, 2015; Scott, Hall, & 
Gössling, 2016; Scott, Gössling, Hall, & Peeters, 2016). Another case study in the Yangtze River 
Delta region found that the carbon dioxide emitted from planes and self-driving cars occupied 
71.64% of the total carbon emissions from tourist transport (Tao, & Huang, 2014).

Among these studies, methods of estimating carbon emissions have been one of the main concerns 
in this area. Since the seminal paper by Gössling (2000), which proposed the first measurement of 
carbon emissions from the tourism industry, a variety of methods have been explored, integrated 
and applied on varied scales from global down to local (Ram, Nawijn, & Peeters, 2013; Coles, 
Dinan, & Warren, 2014). Including top-down (Tao & Huang, 2014; Jones, 2013; Filimonau, V., 
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Dickinson, Robbins, & Huijbregts, 2011), bottom-up, and other methods (e.g. life cycle 
assessment; environmental satellite account) (Munday, Turner, & Jones, 2013; Sun, 2014; 
Huebner, 2012; Jones, 2015). For example, using a top-down as well as an extended tourism 
environmental satellite account method, Jones (2015) estimated the carbon emission from the 
Welsh tourism industry and revealed that approximately 77% of greenhouse gases had been 
produced from this industry within the country, 58.5% of which was directly emitted from tourism 
transport. 

In recent years, there has been a wealth of literature detailing the influence of carbon emissions in 
the tourism industry and the relevant countermeasures against emission reduction (Scott, Gössling, 
Hall, & Peeters, 2016). The determinants in the published literature include energy structure and 
carbon emissions within the tourism industry (Gössling et al., 2007), carbon emission coefficient 
of all kinds of energy, scale of tourist flow, spatial behavior of tourists, consumption behavior of 
tourists and transportation means of tourism (Scott, Peeters, & Gössling, 2010; Lin, 2010). For 
instance, Gössling et al. (2007) argued that enterprises and governments should make use of 
renewable energy to optimize the energy structure and improve energy efficiency in the tourism 
industry. This led to call for changing the current unsustainable tourism development model (Ram, 
2013). In addition, the environmental protection awareness of tourists has an important impact on 
the carbon emissions induced from tourism (Kachel, & Jennings, 2010). 

In terms of emission reduction policies, tourism transport has been one of many concerns, with a 
focus on changing the consumption behavior and pattern of tourists (Peric, Jurdana, & Grdic, 
2013), improving low carbon awareness and choosing low emission vehicles (Dickinson, Robbins, 
& Lumsdon, 2010). The development of a "slow travel" conceptual framework has a demonstrable 
effect on the practice of sustainable tourism (Lumsdon, & MeGrath, 2011). Environmentally 
sustainable modes of public transport should be promoted for tourist’ use in comparison to 
traditionally unsustainable modes including tour buses, trains and air transportation (Gössling, 
2000). It is argued that tourists should reduce the frequency of tourism by extending travel time, 
but increasing tourism travel distance is not conducive to the reduction of emission in tourism 
industry (Mckercher, Prideaux, Cheung, Law, Scott, & Becken, 2010; Ram, Nawijn, & Peeters, 
2013). Carbon tax has been also recognized as one of the most important policies of emission 
reduction (Gössling, Scott, & Hall, 2015). 

It is clear to see that many studies have focused on carbon emissions induced from tourism 
(particularly from tourism transport), among which the following two points should be 
highlighted:

Firstly, transport as a platform for tourism is key to carbon emission in the tourism industry.  
These previous studies have not made links to mobility, which is a fundamental function of 
transport. This has resulted in the focus of their analyses on static estimation of carbon emission. 
However, both energy production and consumption require an efficient energy transmission 
network (Kang, Zhou, & Chen, 2012). Consequently, there is a need to more accurately estimate 
the carbon emission based on the dynamic flows, which reflects the transport process of tourism 
(Jin, Cheng, & Xu, 2017). Secondly, the current analysis of carbon emissions from tourism 
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transport aims to reduce carbon emissions through using a variety of methods. The analysis 
methods used in these studies have not explored the spatial heterogeneity in the pattern of carbon 
emission and corresponding socio-economic determinants, which are crucial for the carbon trading 
policy across a region. To summarize, there is a clear research gap in the published literature: the 
carbon emission induced by tourism transport should be measured by dynamic flows and account 
for spatial heterogeneity when making relevant policy for carbon trading in the tourism industry.

The carbon emissions from tourism transport should be represented as a dynamic flow (Huang, 
Cao, Jin, Yu, & Huang, 2017), similar to the flow of migrants in human geography (Cheng, 
Young, Zhang, & Owusu, 2014). Flow in this context is defined as the flow and transferal of 
carbon dioxide emitted from tourism-induced transportation system when tourists travel from their 
origin places to destination attractions. It can be split into two categories: inflow and outflow. The 
former refers to the carbon emission generated due to travelling to destination, while the latter 
referring to the carbon emission generated due to travelling away from origin places. The 
comparisons between inflow and outflow can effectively measure the regional balance between 
production and consumption of carbon emission from the whole tourism transport and thus 
provide quantitative evidence for investigating the regional tourism carbon trading (Becken, 2002; 
Sun, & Pratt, 2014).

The aim of this paper is to explore carbon emissions within self-driving tourism and its socio-
economic determinants, discussing its geographical imbalance from the perspective of flow by 
using high-resolution traffic flow data collected at each toll-gate. Flow perspective, the focus of 
this paper, enables dynamic exploration of relationships between carbon emissions and tourist 
origins and destinations. The policy implication of the analysis results suggest that a shift from 
conventional static or areal analysis to flow-based modelling can reveal the spatial heterogeneity 
of carbon emission processes, which provides quantitative and exploratory evidence for carbon 
trading across a region. This paper has contributed a methodological development towards 
supporting policy making of carbon emission economy.

This paper is structured as follows. Following the introduction, section two introduces the case 
study area (Jiangsu Province, China), and the data sets and methods used. Section three presents 
the results obtained from measuring and analysing carbon emission flows induced by self-driving 
tourism. Section four presents a discussion of the results and summarizes the overall conclusions. 

[Fig. 1 Location of the study area and its administrative units]

[Fig.2 Location of toll-gates and expressway across the study area]

2. Data and Methods
2.1 Study area and data sources

Jiangsu Province is located on China’s eastern coast (Fig 1), covering an area of 102,600 km2. 
Jiangsu is situated in the well-developed regions of China, but has a geographical development 
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imbalance (Wei, 2010). With a total of 63 counties and cities, this province is usually divided into 
three regions; Northern (29 counties), Central (16 counties and its capita, Nanjing City), and 
Southern (18 counties). This is due to large variations in economic growth and social welfare 
between the regions. . The Southern region in particular, popularly called SuNan, has become a 
model of growth in China in international literature (Wei, 2010). In 2014, Jiangsu has achieved a 
gross domestic product (GDP) of up to 6.51 trillion yuan RMB (JPBS, 2015), which is now one of 
the fastest growing economies and most robust provinces in China. 

It is estimated that there have been 2971 thousand foreign tourists travelling to Jiangsu and staying 
overnight, with the number of domestic tourists reaching figures of up to 570 million. The added-
value of tourism industry has amounted to 363.39 billion yuan RMB, occupying 5.5% of Jiangsu’s 
GDP (JPBS, 2015). Tourism is a key industry in Jiangsu and has played an increasingly important 
role in the overall national economic development. The high rate of car ownership in the South, 
which is above 200 cars per 1000 people, has stimulated the growth of self-driving tourism. This 
provides a good case study for carbon emission induced by tourism transport and for exploring 
spatial heterogeneity in the pattern and determinants of carbon emissions. Meanwhile, Jiangsu, a 
dominant province in energy consumption which depends heavily on fossil energy (JBS, 2016), 
poses a prominent contradiction in emission reduction. Therefore, Jiangsu Province will be an 
ideal case study area for this topic.

The main data source for this case study is Jiangsu Expressway Network Operation & 
Management Center, which provides the historical data of real-time traffic flow on expressways 
across the study area. As shown in Fig. 2, there are 334 toll-gates in total across the province, 
showing a high concentration in the South. The flows of transport between any pair of two toll-
gates are recorded. Each record includes a serial number and time slot that each vehicle has 
arrived at and departed from a toll-gate. In total, 235 million records of high temporal resolution, 
were produced for 2014, based on which a two-dimensional OD flow matrix (334*334) between 
gates was created for further spatial analysis. As most statistical data of population and economy 
in China are reported at county level, a two-dimensional OD flow matrix (59*59) between 
counties was formed by spatial aggregation (note: in the total 63 counties, 4 counties have no toll-
gates as shown in Figure 3a, as such only the rest 59 counties are selected for this study). Socio-
economic statistical data on county scale were collected from Jiangsu Statistical Yearbook (JPBS, 
2015). The tourism data (the number of domestic tourists, the revenue from domestic tourism and 
the scenic spot’s score) is from the Jiangsu Tourism Development Report (Jiangsu Provincial 
Tourism Bureau, 2015). Socioeconomic data and tourism data are used to analyze the influencing 
factors of carbon emissions from self-driving tourism. The data are describes in Table 1.

[Table 1 Data Sources]

The ratio of self-driving vehicles to total flows is estimated through a process of sampling. The 
specific procedure is described below. There are 334 toll-gates in total across 63 counties, with an 
average number of 5.3 toll-gates per county. For each county, we randomly selected 1-2 
expressway toll-gates and allocated 2~3 students at each toll-gate to count the percentage of self-
driving tourism over the total. It is assumed that the ratio of self-driving tourism varies with 
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season. The sampling was taking place during each season: 28 days from 1-7th March, 1-7th June, 
1-7th September and 1-7th December, 2014. Specifically, the survey was conducted from 8 a.m. to 
8 p.m. each day. The ratio of self-driving to the total traffic flow was calculated accordingly for 
each day, and then their average values within a week was recorded for each season. The final 
ratio was calculated by weighting the average values between the four seasons for the selected 59 
counties, as shown in Figure 3b. It is estimated that this ratio ranges from 2-8% across China, 
though its spatial variation has been recognized (CATT, 2015).

[Fig. 3 Number of toll-gates (a) and ratios of self-driving to total traffic flows (b)]

2.2 Analytical methods

(1) Measurement of self-driving carbon emission

Using the well-recognized method of measuring carbon emission from tourism transport 
(Filimonau, Dickinson, & Robbins, 2011), the regional carbon emission from tourist travel, based 
on inter-county traffic flow, was calculated using the equations below (1-5):

                           (1)jjij iTS  
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                                               (5) 𝑁𝐶𝑖 = 𝐶𝑖𝑛𝑖 ‒ 𝐶𝑜𝑢𝑡𝑖

where Cij denotes the carbon emission from self-driving tourism from County i to County j; P is 
the average number of self-driving tourists. Sij denotes the self-driving vehicle flow; Dij means the 
distance from County i to County j. β is the unit carbon emission coefficient from self-driving 
tourism. Tij denotes the total amount of traffic flow from County i to County j. αj denotes the ratio 
of self-driving vehicles to total flows in County j. Cini and Couti indicates the carbon inflow and 
outflow within county i. NCi represents the net carbon emission. Carbon emissions from self-
driving tourism is a directed flow network, in which different nodes on the network have varied 
roles and positions. 

The value of β(the unit carbon emission coefficient from self-driving tourism) demonstrates a 
spatial variation, i.e. different country has a different standard and theβvalues in developed 
countries are generally higher than that in less developed countries (Chenoweth, 2009; Gössling, 
Scott, & Hall, 2015). Xiao, Zhang, Lu, Zhong, and Yin (2010) have made reasonable corrections 
and adjustments on theβvalue for China, and proposed that β should be set as 99 g/pkm, which 
will be used in this study, together with the P value of 2.97, determined through the survey.
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(2) Geographically weighted regression (GWR) model
  
The most frequently used modelling framework to analyse social and economic data is regression 
analysis based on ordinary least squares. Regression analysis is the standard technique for 
formalising statistical associations between a dependent variable and a set of explanatory 
variables, and for estimating the best fit between the predicted and observed values of the 
dependent variable as illustrated in equation 6, where y is a dependent variable, the xk are 
independent or explanatory variables, and βk are the coefficients to be estimated from 
observed data; β0  is an intercept term.

            y = β0 +  βk xk                                                 (6)

Such a model is termed ‘global’ in that all the data are used to derive one set of parameter 
estimates which are assumed to be constant over space. In turn, this assumes the processes being 
examined are stationary over space. The application of models of economic processes between 
counties across a province is interesting because there may well be different economic and spatial 
processes operating either county. In addition, areas near the economic agglomeration zones often 
self-organize into a special region with some socio-economic activities within the zone, such as 
tourism and commuting. Global modelling that ignores spatial non-stationarity is not able to 
capture such complexities (Cheng, & Fotheringham, 2013); what is needed are more flexible 
spatial models. Geographically Weighted Regression (GWR) is a local modelling technique that is 
able to capture spatial variations in processes (Brunsdon, Fotheringham, & Charlton, 1998; 
Fotheringham, Brunsdon, & Charlton, 2002). The basic GWR relationship is shown in equation 7. 

yi = β0 (ui, vi) +  βk (ui, vi) xk                                         (7)

where (ui, vi) denotes the coordinates of the ith point in space and βk (ui, vi) is a realisation of 

the continuous function βk (u, v) at point i. Equation 6 is a special case of equation 7 in which 

the parameters are assumed to be spatially invariant. The estimator for the local parameters in 

the GWR model is:

β^
 (ui, vi) = (XT W(ui, vi)X)-1 XTW(ui, vi)y                               (8)

where the bold type denotes a matrix or vector; the vector β^  represents an estimate of β; and 
W(ui, vi) defines a spatial weight function determined usually by a Gausian kernel. One of the 
main outputs from GWR is a set of local parameter estimates (and associated diagnostics) that can 
be mapped to show a surface of relationships. Fotheringham, Brunsdon, and Charlton (2002) 
explore local multiscale issues caused by the change of bandwidth defined for running GWR. In 
this sense, GWR can function as a spatial microscope in which relationships at different spatial 
scales can be seen by altering the bandwidth in the model.
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The development of GWR model aims to explore spatial heterogeneity in the process of carbon 
emissions induced by self-driving tourism transport by analyzing the socio-economic determinants 
locally, which can be split into two models focused on inflow and outflow of carbon emissions at 
county level respectively. The aggregation of carbon emission flows into county level enable the 
linkage of carbon emission flows with socio-economic factors, which can be collected at county 
level in China. The maps produced by GWR models can help interpret the spatial pattern of socio-
economic processes shaping the patterns of carbon emission across a region.

3 Results 
3.1 Spatial distributions of expressway traffic flows

The traffic flow matrix between pairs of counties in 2014 across Jiangsu Province was created 
through aggregating the traffic flow at toll-gate level. Using the centroid of county as a 
representative origin and destination site, these flows at county level are mapped in Fig. 4. High-
density flows are clearly concentrated in southern Jiangsu, with low-density flows observed in the 
North. This pattern is attributed to the higher rate of car ownership in the south, which is above 
200 cars per 1000 people (see Figure 7a as well). The following six economically well-developed 
counties dominate the spatial distribution of these flows: Suzhou, Nanjing, Wuxi, Changzhou, 
Nantong and Jiangyin, in which dense distribution of transport networks can be observed in Fig 2. 
In these counties,  cities, towns and countryside areas display a high rate of car ownership. For 
example, in the period from 2008 to 2014, the car ownership in Suzhou municipality has increased 
from 15.1 to 66.9 per 100 households for city/town areas and from 12.78 to 58.5 per 100 
households for countryside, respectively (BSS, 2015).

[Fig. 4 All (a) and self-driving (b) traffic flow on expressway network across Jiangsu]

3.2 Spatial distribution of self-driving traffic flows

Self-driving traffic flows in Jiangsu were then estimated using Eq (3), and with the resulting 
spatial distribution is shown in Fig. 4b. The self-driving tourist flow shows a similar pattern with 
that of total self-driving traffic flow in Fig 4a. The south outperforms the north in both self-driving 
flows and self-driving tourist flows. The disparity between both is indicated in its spatial scale. 
For example, only four counties: Nanjing, Suzhou, Wuxi and Changzhou, dominate the 
distribution of self-driving flows. This has clearly revealed that there are more people favoring 
self-driving tourism in the South than in the North. There is a substantial variation in GDP per 
capita across the province (see Figure 7c), where some southern counties have achieved above 0.1 
million yuan RMB, contrasting with most Northern counties below 50,000 yuan RMB (JBS, 
2015).

3.3 Carbon emission from self-driving tourism

The carbon emission flows from self-driving tourism were estimated using Eq. (2), and displayed 
in Fig.5. The highest concentration of these carbon emission flows is observed in Nanjing 
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municipality. As the provincial capital of Jiangsu, the rapid development of its high-density road 
network and high-ranking attractive spots have contributed to this pattern. In Figure 7d, the 
attractive score of Nanjing is higher than 80, compared with most other counties less than 20. 
High flows of carbon emissions are also observed throughout Suzhou, from Suzhou to Wuxi, 
Changzhou to Nanjing, Suzhou to Nanjing, Wuxi to Nanjing, Kunshan to Suzhou, Wuxi to 
Suzhou and Nanjing to Wuxi. The carbon emission flows between the counties in the North have 
much lower density relative to those in the South, such as from Lianshui to Binhai, baoying to 
Xiangshui and Lianshui to Xiangshui. Two reasons may contribute to the disparity between the 
South and North. First, the abundant tourism resources and high-level attractions (e.g. natural 
landscape and art history) distributed in the south are the crucial pulling forces (see Figure 7d). In 
addition to this, residents in this region have a much higher level of income (See Figure 7c), so 
they can afford a car (see Figure 7a) and travel costs.

[Fig. 5 Distribution of carbon emission flows from self-driving tourism]

3.4 Spatial patterns of carbon emission inflows and outflows from self-driving tourism 

Carbon emission inflows and outflows from self-driving tourism between all counties were 
calculated using  Eq. (3) and (4) and are shown in Fig. 6 (a) and (b), respectively. Net carbon 
emission flows from self-driving tourism can be further calculated using Eq. (5), as shown in Fig. 
6 (c).
 
[Fig. 6 Spatial patterns of carbon emission flows from self-driving tourism]

Carbon emission inflow within a county refers to the carbon emission produced by the tourists’ 
self-driving tourism from other areas to this county due to its pulling forces, including tourism 
attractions. Carbon emission outflows within a county refers to the carbon emission produced by 
the tourists’ self-driving tourism to other counties due to their tourism activities. Net carbon 
emission flow from self-driving tourism is defined as the difference between its inflow and 
outflow. A positive net carbon emission flow within a county indicates that the carbon emissions 
induced by the tourism attraction in this county exceeds carbon emissions generated by the local 
residents’ tourism activities. By contrast, a negative net carbon emissions flow indicates that the 
carbon emissions induced by the tourism attraction in this county cannot offset the carbon 
emission generated by the local residents’ tourism towards other regions. Comparatively, the 
counties in the South are characterized by positive carbon emissions, where those in the north 
display negative carbon emissions. 

Fig 6 demonstrates that Nanjing is the highest across three flows, followed by the economically 
advanced cities: Suzhou, Wuxi and Changzhou in the South. This spatial pattern of net carbon 
emission provides evidence to support provincial policy development in relation to carbon 
emissions trading from self-driving tourism. Counties with positive carbon emission flows have 
gained substantial income from the development of the tourism industry. In comparison, those 
counties with negative carbon emission flows sustained huge environmental damages caused by 
carbon emissions. Therefore, it is reasonable to propose that the counties with positive carbon 
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emissions state should transfer the corresponding economic income to those counties with 
negative carbon emissions state for the purpose of compensation for environmental pollution.
  
3.5 Modelling the determinants of carbon emission 

In general, the spatial patterns of carbon emission inflows and outflows from self-driving tourism 
are closely associated with the spatial arrangements of social and economic activities across the 
study area. To understand the global and local influences of these activities, it is imperative to 
develop spatial and statistical models with consideration of spatial heterogeneity. To achieve this, 
geographically weighted regression has been applied to analyse the local spatial variation of 
statistically significant determinants.  

This study has selected eight indices, namely permanent resident population, GDP, fixed-asset 
investment, total retail sales of consumer goods, car ownership, the number of domestic tourists, 
the revenue from domestic tourism and the scenic spot’s score, as explanatory variables. The first 
five indices were sourced from Jiangsu Statistical Yearbook in 2015, and the latter three were 
sourced from Jiangsu Tourism Development Report (Jiangsu Provincial Tourism Bureau, 2015). 
After conducting an exploratory regression analysis, which filters explanatory variables by 
variance inflation factor value, four variables of VIF > 10 were chosen to develop two GWR 
models in order to reduce multicollinearity. 

Comparatively the bandwidth of the first GWR model (inflow) is 91,817.55m, and its value of the 
second GWR model (outflow) is 94, 741.43m. As two bandwidth values are very close, it 
indicates that both GWR models have similar scaling effects. 

[Fig. 7 Spatial distributions of independent variables (a: number of private cars; b: total 
population; c: per capita GDP and d: attraction value of scenic spots)]

3.5.1 Modelling the determinants of carbon emission inflow

In the case of carbon emissions inflow, only two explanatory variables (per capita GDP and score 
of attractive spots (SAS)) were selected as suitable for the construction of GWR model. The 
regression equation (Eq. 9) for County i can be written as:

Cin(i)=β0(i)+β1(i) x pcGDP(i)+β2(i) x SAS(i)+ε(i)      (9)

where C(i) denotes the carbon emissions inflow from self-driving tourism, pcGDP(i) the per 
capita GDP and SAS(i) the score of attractive spots in this county. 

A global model of the carbon emission inflow is calibrated by ordinary least squares (OLS) as 
shown in equation 10:
Cin= 8.689e-10 +0.119 pcGDP +0.907 SAS +ε        (10)

T-value   ( 2.606)       ( 19.790 )
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Its adjusted R2 and AICc are 0.8543 and 122.04 respectively. This means 85.43% of the variance 
in the carbon emissions inflow can be explained by the two explanatory variables: pcGDP and 
SAS. These two explanatory variables are statistically significant. A Moran I value of ε is 0.4139, 
indicating the presence of spatial autocorrelation in the error term of this OLS model. 

In the resulting GWR model, its adjusted R2 has been improved to 0.9625 with a declining AICc 
value of 6.5689. The difference of AICc value between two models is larger than 3, suggesting 
that GWR is superior to OLS in model performance (Akaike, 1974). A Moran I value of ε(i) is 
0.0472, indicating the reduced spatial autocorrelation in the error term of this GWR model. The 
calibrated co-efficient values β1 (pcGDP) and β2 (SAS) and their t-values are displayed in Figure 
8. 

The regression coefficientβ1 demonstrates a general trend (Fig 8) of higher values in the North 
but lower values in the South. At the 5% significance level, all the 49 counties show positive 
correlation between per capita GDP and the carbon emissions inflow, mostly ranging between 0 
and 0.5. The pattern indicates that the economic impact on carbon emissions inflow is stronger in 
the North than in the South. The southern counties have an abundance of tourism resources, which 
stimulates rapid development of the tourism industry. In this context, economic effects on self-
driving tourism are weaker. By contrast, the northern counties are economically backward, so any 
economic investment can promote the investment in tourism industry and attract more tourists,  
leading to the increase of carbon emission inflows from self-driving tourism. 

The regression coefficientβ2 demonstrates an opposite trend (Fig 8) as β1: higher values in the 
South but lower values in the South. All have shown positive correlation between the score of 
attractive spots and the carbon emissions inflow, with large spatial variation across the province. 
At the 5% significance level, all the 54 counties are statistically significant apart from few in the 
North. Comparatively, the impacts of attractive spots on the carbon emission inflows are stronger 
than that of per capita GDP. There is a clear pattern: gradual decrease from the South to the North. 
The highest values are located around Nanjing. This indicates that the increase of diverse and 
high-quality attractive spots in the surrounding counties would promote growth in self-driving 
tourism in the South.

[Fig. 8 GWR regression results of the carbon emission inflow from self-driving tourism]

3.5.2 Modelling the determinants of carbon emission outflow

In the case of carbon emissions outflow, only two explanatory variables (total population of 
permanent residents and GDP) were selected for the construction of the GWR model. The 
regression equation (Eq. 11) for County i can be written as:
 
Cout(i)=β0(i)+β1(i) x pcGDP(i)+β2(i) x POP(i)+ε(i)          (11)

where C(i) denotes the carbon emission outflow from self-driving tourism, POP(i) denotes the 
total population of permanent resident in and pcGDP(i) the per capita GDP of this county. 
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A global model of the carbon emissions outflow is calibrated by ordinary least squares (OLS) as 
shown in equation 12: 
Cout= 9.923e-10 +0.145 pcGDP +0.908 POP +ε               (12)
       T-value   ( 3.432 )      ( 21.520 )

Its adjusted R2 and AICc are 0.8756 and 122.0451, respectively. This means that 87.56% of the 
variance in the carbon emission outflows can be explained by the two explanatory variables: 
pcGDP and POP. These two explanatory variables are statistically significant. The Moran I value 
of ε is 0.3823, indicating the presence of spatial autocorrelation in the error term of this OLS 
model.

In the resulting GWR model, the adjusted R2 has been improved to 0.9709 with a declining AICc 
value of -22.5754. The difference of AICc values between the two models is larger than 3, 
suggesting that GWR is superior to OLS in model performance (Akaike, 1974). A Moran I value 
of ε(i) is 0.0659, indicating a reduced spatial autocorrelation in the error term of this GWR model. 
The calibrated co-efficient values β1 (pcGDP) and β2 (POP) and their t-values are displayed in 
Figure 9. 

The regression coefficientβ1 demonstrates a general trend (Fig 9) of higher values in the central 
but lower values in the South. At the 5% significance level, all the 39 counties show positive 
correlation between per capita GDP and the carbon emissions outflow, largely less than 0.3. The 
pattern indicates that the economic impact on carbon emission outflows is stronger in the central 
than in the south.  

The regression coefficientβ2 demonstrates a clear spatial pattern (Fig 9): gradual decrease from 
the South to the North. All have shown positive correlation between the total population of 
permanent residents and the carbon emission outflow. At the 5% significance level, all57 counties 
are statistically significant apart from two counties, located in the Northwest. This indicates that 
residents in the South have a higher level of desire for self-driving tourism due to economic 
wealth. 

[Fig. 9 GWR regression results of the carbon emission outflow from self-driving tourism]

4. Discussion and conclusions
Carbon emissions caused by tourism transport is an important part of the analysis surrounding 
carbon emissions from tourism. Emission patterns are very much linked with the pattern of 
tourism related traffic flow. Self-driving tourism has become an important mode of tourism in 
China, so the empirical study of self-driving tourism facilitates further understanding of carbon 
emissions in the tourism industry. 

Carbon emissions produced from self-driving tourism vehicles, which connect origin and 
destination tourist activities, make it necessary to analyse and model the resulting carbon emission 



ACCEPTED MANUSCRIPT

14

flows. This approach enables accurate measurement and clear interpretation of carbon emissions 
produced from self-driving tourism. These analytical methods allow both an accurate depiction of 
spatial patterns and geographical disparity, alongside detecting socio-economic processes which 
shape these patterns. The spatial heterogeneity disclosed in this paper provides quantitative 
evidence for carbon emission trading between different spatial units, in this case at county level. 
Using the expressway traffic data recorded at toll-gates across Jiangsu province in 2014, the 
spatial patterns of carbon emission flows induced by self-driving tourism has been assessed. This 
has been carried out at two levels: toll-gate and county, which has led to the following 
conclusions.  

The carbon emission net flows (inflows and outflows), from self-driving tourism demonstrate 
similar spatial patterns. High concentrations are mostly located in the South of the province. High 
economic income and a larger quantity of attractive spots contribute to the concentration of 
positive carbon emissions observed in the South. The spatial pattern of carbon emissions provides 
evidence to support the proposition of carbon emission trading policies at county level. That is to 
say, counties in the South should transfer economic benefits from their tourism revenue to those 
counties in the North, which have negative carbon emission flows. Compared with other studies 
on the reduction of carbon emissions (Munday, Turner, & Jones, 2013; Gössling, Scott, & Hall, 
2015), this paper, which is focused on trading, has provided quantitative evidences from modeling 
the determinants of these flows in a local rather than global way.
 
The two GWR models, showing spatial non-stationarity, have revealed that the determinants of 
both inflows (the per capita GDP and the scenic spot’s score) and outflows (the per capita and 
total population of permanent residents) demonstrate spatial variations across the province. 
Carbon emissions from tourism travel is an important quantitative measure of the development 
quality of tourism industry. Effective controlling and reduction of tourism carbon emissions 
contributes to promoting the tourism industry, which has currently become a leading objective in 
the transformation and development of China’s tourism industry. Theoretically, this study on 
carbon emissions from tourism travel has extended the estimation of carbon emissions, to 
quantitative modelling of its determinants by considering spatial heterogeneity. In practice, the 
spatial variation of these determinants has provided important evidence for carbon emissions 
trading at county level. 

These results indicate that local governments should take the determinants of per capita GDP, 
score of attractive spots and total population of permanent residents into the process of estimating 
carbon emission trading between counties. The effects of the tourism industry’s energy structure, 
energy intensity, consumption level and passenger flow on carbon emissions could be further 
studied in future from the perspectives of technology and the political system (e.g. Hergesell & 
Dickinger, 2013; Hanandeh, 2013; Higgins, 2013). Carbon emission reduction policies tested in 
different countries (Juvan, & Dolnicar, 2014; Tsai, Lin, Hwang, & Huang, 2014) should be 
explored for China as well. In terms of energy conservation and emission reduction, in-depth 
studies on the relationships between low-carbon technology and tourism system (e.g. Hall, et al., 
2015; Cadarso, Gomez, Lopez, & Tobarra, 2016) can be examined as well.
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Transport is a key part of the tourism system (Jin, Huang, Xu, & Gu, 2013), however also acts as a 
source of carbon emission. Currently, self-driving tourism, a popular mode of tourism, has 
produced a large amount of carbon emissions and demonstrated a high level of geographic 
imbalance, threatening the sustainable development of tourism system. The spatial heterogeneity 
of carbon emission patterns and its determinants provide quantitative evidence for distinguishing 
the carbon trade between regions. Meanwhile, tourists should be encouraged to use public 
transport for tourism related activities in order to considerably reduce the carbon emissions 
induced by tourism travel and to further promote the sustainable development of tourism (Hall, 
Le-Klähn, & Ram, 2017).

It is necessary to highlight that China's carbon emissions trading has been steadily progressing 
since its pilot project began in November 2011. China’s first carbon emission trade platform was 
launched on June 18, 2013 (Zhen, 2014), China has recently begun constructing a unified national 
carbon emissions trade market in which the accounting, reporting and testing of historical carbon 
emissions will be incorporated into the tax of enterprise. Currently, China's carbon emissions 
trading is implemented on the basis of accounting the existing emission values, and the estimation, 
a kind of longitudinal accounting of itself, is done by comparing the actual emission value and the 
accounted emission value. Since November 2017, nearly 3,000 key emission enterprises have 
been selected into a pilot emission trading system. The total volume from these enterprises has 
reached 200 million tons of carbon dioxide that is worth about 4.6 billion yuan RMB (National 
Development and Reform Commission (NDRC), 2017). On the basis of the tested pilot system, 
China officially started the construction of a nationwide carbon emissions trading system on 
December 19, 2017. The first industry for the carbon emissions trading system is power 
generation industry, which will be extended to include more industries in the future. China's 
carbon emissions trading market will be composed of three major systems and four supporting 
systems. The former includes carbon emission monitoring, reporting and verification system, key 
emission enterprises quota management system and market transactions system. The latter has 
carbon emission data submission system, carbon emission rights registration system, carbon 
emission trading system and carbon emission trading settlement system (NDRC, 2017). The 
construction of such a trading market is a key task for China to cope with climate change and low-
carbon development at present and in the future.

Tourism behavior is characterized by creating horizontal flows of carbon emission from human 
movement across space. The destinations of tourists benefit from the revenues of tourism but other 
areas along the way have paid the price of absorbing the carbon emissions. Thereby, the analytical 
framework developed in this paper provides a new method for potential trade accounting of 
carbon emission flows. Firstly, the revealed spatial heterogeneity in the patterns of carbon 
emission and corresponding socio-economic determinants will help formulate these targeted 
emission reduction measures. Secondly, it is evidential that these counties with positive carbon 
emission contribution should transfer a certain amount of corresponding economic (tourism) 
income to those counties with negative carbon emission contribution, for the purpose of 
compensation for environmental pollution. Thirdly, it is suggested to further explore transport 
carbon emissions from the perspective of mobility and formulate transport carbon emissions 
policies accordingly.
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This paper is subject to limitations as a result of the inherent complexity in carbon emissions 
trading from self-driving tourism, particularly from data availability. Firstly, there is limited 
availability of actual self-driving tourism flows data in China. The percentage of self-driving 
tourism-purposed flows over the total flows of vehicles is only estimated through a sampling 
process. Secondly, there is no attribute data of each vehicle, such as size or weight, which enables 
a more accurate estimation of carbon emissions. Finally, from an urbanisation point of view, it 
would be insightful to explore the dynamics of carbon emission flows, if a time-series data set was 
made available. Future studies would benefit from exploring the potential deployment of sensor 
and tracking technology for collecting substantial data on carbon emission flows. 
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Fig. 1 Location of the study area and its administrative units 

Fig.2 Location of toll-gates and expressway across the study area
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 (a) (b)
Fig. 3 Number of toll-gates (a) and ratios of self-driving to total traffic flows (b)

(a) (b)
Fig. 4 All (a) and self-driving (b) traffic flow on expressway network across Jiangsu

Fig. 5 Distribution of carbon emission flows from self-driving tourism
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(a) carbon emission inflows    (b) carbon emission outflows   (c) net carbon emission flows 
Fig. 6 Spatial patterns of carbon emission flows from self-driving tourism

(a)  (b)

(c)  (d)

Fig. 7 Spatial distributions of independent variables (a: number of private cars; b: total population; 
c: per capita GDP and d: attraction value of scenic spots)
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(a)β1                    (b) t-values (β1)         (c) β1 at 0.05 significance level

             (d)β2                  (e) t-values (β2)         (f) β2 at 0.05 significance level

Fig. 8 GWR regression results of the carbon emission inflow from self-driving tourism

 

(a)β1                    (b) t-values (β1)         (c) β1 at 0.05 significance level

 

             (d)β2                  (e) t-values (β2)         (f) β2 at 0.05 significance level

Fig. 9 GWR regression results of the carbon emission outflow from self-driving tourism
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Highlight 1: We have estimated the carbon emission flows from self-driving tourism. 

Highlight 2: We have modelled the determinants of these flows using GWR method.

Highlight 3: The spatial distribution of flows shows high concentration in the South.

Highlight 4: The determinants demonstrated spatial variations across the province.
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Table 1 Data Sources
Data Source Description

Traffic flow data on 
expressway

Jiangsu Expressway 
Network Operation & 
Management Center

It is the key data for this study, mainly 
used for estimating flows of self-driving 
tourists. 

GIS vector data (counties, 
expressway network, toll-
gates location)

Jiangsu Provincial 
Bureau of Surveying 
Mapping and 
Geoinformation

Primarily used for the calculation of 
distance between gates as well as the 
spatial model (GWR) at the level of 
county.

Socioeconomic data
（resident population, GDP, 
fixed-asset investment, total 
retail sales of consumer 
goods, and car ownership）

Jiangsu Statistical 
Yearbook in 2015 
(Jiangsu Bureau of 
Statistics, 2015)

Extensively used for creating a variety of 
variables into the GWR model. 

Tourism related data （the 
number of domestic tourists, 
the revenue from domestic 
tourism and the scenic spot’s 
score）

Jiangsu Tourism 
Development Report 
(Jiangsu Provincial 
Tourism Bureau, 
2015)

Deployed to create relevant variables into 
the GWR model


