### 1 Regulation of Inducible Nitric Oxide Synthase by Arabinoxylans with Molecular

### 2 Characterization from Wheat Flour in Cultured Human Monocytes

- Zhengxiao Zhang,<sup>1</sup> Christopher Smith,<sup>2</sup> Jason Ashworth,<sup>3</sup> and Weili Li $^{2}\,*$
- 4 <sup>1</sup> Department of Medical Microbiology and Department of Animal Science, University of
- 5 Manitoba, Winnipeg, MB, Canada, R3T 2N2
- 6 <sup>2</sup> Institute of Food Science and Innovation, University of Chester, Chester, CH1 4BJ, UK.
- <sup>3</sup> School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, UK
- 8 \* Corresponding author at: Institute of Food Science and Innovation, University of Chester, Chester,
- 9 *CH1 4BJ, UK*
- 10 Tel: +44 1244511397; E-mail: w.li@chester.ac.uk
- 11

3

13 Abstract

| 14 | The immunomodulatory activity of the arabinoxylans (AXs) extracts from cereal sources             |
|----|---------------------------------------------------------------------------------------------------|
| 15 | have been reported to impart health benefits in terms of immune enhancement. This                 |
| 16 | study investigated the effect of enzymatic extraction on extraction yield and structure of        |
| 17 | AXs from wheat flour pentosan fraction. Under the optimised conditions, the extraction            |
| 18 | yield of AXs reached up to 81.25%. Furthermore, the study determined whether water-               |
| 19 | extracted AXs (WEAXs) and enzyme-extracted AXs (E-WEAXs) from wheat flour were                    |
| 20 | able to differentially stimulate nitric oxide (NO) secretion through increased levels of          |
| 21 | inducible nitric oxide synthase (iNOS) in human U937 monocytes. The results indicated             |
| 22 | that AXs concomitantly induced ( $P < 0.05$ ) both NO and iNOS productions in U937                |
| 23 | monocytes compared to untreated cells. Compared with WEAXs, E-WEAXs resulted in a                 |
| 24 | higher proportion of low Mw (1-10 KDa) AXs (49.51% versus 19.11% in WEAXs), a                     |
| 25 | higher A/X ratio (0.83 versus 0.48 in WEAXs) and a higher yield (12.83 $\pm$ 0.35% versus         |
| 26 | 7.54 $\pm$ 0.47% in WEAXs). Moreover, E-WEAXs induced significantly ( <i>P</i> < 0.05) greater NO |
| 27 | and iNOS production per million viable cells (61.8 ± 2.7 $\mu$ M and 42.41 ± 3.83 ng              |
| 28 | respectively) than WEAXs (51.6 ± 2.6 $\mu$ M and 33.46 ± 1.48 ng respectively). The findings      |
| 29 | suggest AXs may heighten innate immune activity in the absence of infection or disease            |

| 30 | through an iNOS-mediated stimulation of NO production. The immunomodulatory              |
|----|------------------------------------------------------------------------------------------|
| 31 | activity of the wheat-derived AXs was enhanced by enzyme treatment, with low Mw and      |
| 32 | high A/X ratio associated with elevated NO/iNOS levels in human monocytes compared       |
| 33 | to water-extraction.                                                                     |
| 34 | Keywords: arabinoxylans; wheat flour; extraction; molecular structures; immunomodulatory |

*activity; nitric oxide; inducible nitric oxide synthase* 

#### 37 Introduction

38 Arabinoxylans (AXs) are hemicelluloses found in the outer-layer and endosperm cell 39 walls of cereal grains, such wheat and corn (Izydorczyk and Biliaderis 2007, Fan et al. 40 2016, Li et al. 2016). It has been reported that oral administrated dietary fibre including 41 β-glucans and AXs is able come into contact with the mucosal immune system (Mendis et 42 al. 2016), in which intestinal epithelial cells together with the immune cells of the 43 Peyer's patches play an important role in regulating immune responses (Smith et al. 2011). Previous animal study also showed oral administration of AXs (1.6 – 3.2 mg/day) 44 45 significantly induced intestinal macrophage phagocytosis, delayed the hypersensitivity 46 reaction and increased spleen lymphocyte proliferation (Zhou et al. 2010). Moreover, a 47 human study involving 80 participants showed that consumption of rice-derived AXs as a dietary supplement (3 g/day for 8 weeks) significantly increased interferon gamma 48 49 (IFN- $\gamma$ ) production in circulating leukocytes of healthy adults (Choi *et al.* 2014), 50 confirming immunomodulatory effects of AXs on human peripheral blood mononuclear 51 cells. Thus, AXs may be considered a bioactive food supplement with immunity 52 improvement properties (Zhang et al. 2015). However, the role of AXs in certain specific

| 53 | immune responses, including the expression of nitric oxide (NO) synthases and                     |
|----|---------------------------------------------------------------------------------------------------|
| 54 | downstream NO secretion, remains largely undetermined. The immune functions of NO                 |
| 55 | have been found to involve antimicrobial and anti-tumour activities in vitro and in vivo          |
| 56 | (Lechner <i>et al.</i> 2005, Bogdan 2000). Inducible NO synthase (iNOS) is one isoform in a       |
| 57 | family of NOS enzymes involved in the generation of NO from L-arginine. Expression of             |
| 58 | iNOS in immune cells is induced during an immune response following stimulation by                |
| 59 | microbial polysaccharides such as lipopolysaccharides (LPS) and immune cytokines                  |
| 60 | (Bogdan 2000). Recent studies have shown that AXs enhance NO secretion in both                    |
| 61 | murine and human monocyte/macrophage cell lines (Nagata et al. 2001, Ghoneum and                  |
| 62 | Matsuura 2004). However, the precise mechanism through which NO secretion is                      |
| 63 | stimulated by AXs has not been elucidated to date.                                                |
| 64 | In addition, the molecular characteristics, such as the molecular weight (Mw) and                 |
| 65 | substitution degree (A/X) of cereal AXs, appear to affect their NO-inducing activities            |
| 66 | (Zhou et al. 2010, Zhang et al. 2016). The endo- $\beta$ -(1,4)-xylanases (EC 3.2.1.8) are        |
| 67 | commonly involved in cereal AXs isolation and structural modification (Zhang <i>et al.</i> 2014). |
| 68 | The yields of AX extracts using enzymatic treatment showed generally low. Van Craeyveld           |

| 69 | et al. (2010) extracted 32-55% of the wheat bran AX using 3 different endoxylanase                 |
|----|----------------------------------------------------------------------------------------------------|
| 70 | treatments, and Escarnot <i>et al.</i> (2012) tested various xylanases on the AXs extraction yield |
| 71 | of spelt bran and hull and the highest extraction recovery was 68.8% of the total AX of raw        |
| 72 | materials. The pentosan fraction of wheat flour is a by-product of wheat starch processing,        |
| 73 | and it has been found to be an AX-enriched source that usually consists of about 12%               |
| 74 | original AXs content (Li et al. 2013). However, the effects of extraction and modification         |
| 75 | conditions using enzymatic treatment on the yield and molecular structures of AXs from             |
| 76 | the pentosan of wheat flour have been limited reports. Thus, for the first time, this study        |
| 77 | investigated whether the iNOS isoform of the NOS enzymes mediates NO production in                 |
| 78 | U937 human monocytes following treatment with AXs from wheat flour. Moreover, the                  |
| 79 | differential influence of the extraction method on the molecular characteristics of AXs and        |
| 80 | subsequent induction of NO/iNOS levels was investigated.                                           |

# 81 Materials and Methods

Materials. A sample of dried pentosan fraction (moisture content 5.9%) was kindly
provided by Henan Lianhua Monosodium Glutamate Group Co., Ltd (Xiangchen, Henan,
China). Pentopan Mono BG (2500 U/g), an endoxylanase product (EC 3.1.2.8, family 11

| 85  | of glycosyl hydrolases) from Thermomyces lanuginosus (donor)/Aspergillus oryzae            |
|-----|--------------------------------------------------------------------------------------------|
| 86  | (host), was supplied by Novozyme (Bagsvaerd, Denmark). The U937 cell line was              |
| 87  | purchased from the Public Health England Culture Collections. LPS (lipopolysaccharides     |
| 88  | of <i>Escherichia coli</i> serotype 0111:B4) was purchased from Sigma-Aldrich (Gillingham, |
| 89  | UK). RPMI-1640 cell culture medium with L-glutamine was purchased from Lonza               |
| 90  | (Verviers, Belgium). Human iNOS (116 $\mu$ g/ml, Code: TP311819) was purchased from        |
| 91  | Cambridge Bioscience (Cambridge, UK). The primary antibody, monoclonal iNOS                |
| 92  | antibody (4E5) (1 mg/mL), was purchased from Novus Biologicals (Cambridge, UK). The        |
| 93  | secondary antibody, the rabbit anti-mouse immunoglobulins/HRP (P0260), was                 |
| 94  | purchased from Dako (Glostrup, Denmark).                                                   |
| 95  | <b>Extraction of AXs.</b> The pentosan fraction of wheat flour was ground to a 0.5 mm      |
| 96  | particle size using an Ultra Centrifugal Mill ZM 200 (RETSCH Ltd. United Kingdom).         |
| 97  | Milled pentosan sample (30 g) was mixed with 200ml of distilled water using a hand         |
| 98  | blender (800W, WSB800U) for 45 s prior to water or enzyme extraction. For the water        |
| 99  | extraction process, the pentosan-water mixture was incubated in a shaking water bath at    |
| 100 | 40 °C for 2 h followed by centrifugation (6000 <i>g</i> , 20 min) and collection of the    |

| 101 | supernatant (containing extracted AX). For the enzymatic extraction process, three             |
|-----|------------------------------------------------------------------------------------------------|
| 102 | extraction conditions (enzyme concentration, extraction time and temperature) were             |
| 103 | considered according to those previously described for endoxylanase (P-BG) in the              |
| 104 | preparation of wheat endosperm AXs (Li et al. 2013). The effect of endoxylanase                |
| 105 | concentration (50, 100, 200, 300, 400 ppm, w/w), extraction time (2 h, 3 h, 4 h) and           |
| 106 | temperature (20 °C, 30 °C and 40 °C) on extraction yield and structure of AXs from the         |
| 107 | mixed pentosan sample were determined by the enzyme extraction procedure.                      |
| 108 | Following the extraction process, samples were centrifuged ( $6000g$ , 20 min), and the        |
| 109 | supernatants were collected. Then the supernatants (150 mL) was added to 300 $\mu$ l           |
| 110 | termamyl $\alpha$ -amylase (500 U/ml) at 90 °C to allow starch hydrolysis to occur. After 1 h, |
| 111 | the solution was cooled rapidly and adjusted to pH 7. One hundred $\mu l$ proteinase (1        |
| 112 | mg/mL, ≥3 units/mg) was added to the solution and the mixture was incubated at 60 °C           |
| 113 | for 1 h to remove unwanted protein. The sample was placed in a boiling water bath for          |
| 114 | 10 min to deactivate enzymes and then centrifuged at 6000g for 20 min. After                   |
| 115 | centrifugation, the supernatants were then precipitated according to the ethanol               |
| 116 | precipitation process described by Zhang et al. (2016). The residue was then placed in         |

| 117 | an oven overnight at 45 $^{\circ}$ C to dry and then milled using an analytical mill (IKA A11 Basic, |
|-----|------------------------------------------------------------------------------------------------------|
| 118 | Guangzhou, China, 50/60Hz, 160W).                                                                    |
| 119 | Determination of AX extraction yields. The determination method of AXs yield                         |
| 120 | was constructed using the methods described by Zhang et al. (2016) to evaluate the                   |
| 121 | xylose content of the raw material and extracted AX supernatants.                                    |
| 122 | Determination of monosaccharide compositions of isolated AXs The                                     |
| 123 | composition assessment was performed as previously described by Zhang <i>et al.</i> (2016).          |
| 124 | The mobile phase was HPLC grade water for the HPLC and isocratic elution was achieved                |
| 125 | using a Shimadzu LC-10ADvp pump. Samples were analysed on SUPELCOGEL Pb (5 cm $\times$               |
| 126 | 4.6 mm) and Phenomenex ThermaSphere TS-130 columns combined with a JASCO RI-                         |
| 127 | 2031 refractive index (RI) detector. All analyses were conducted in triplicate.                      |
| 128 | Molecular weight distribution characterisation of extracted AXs. Size exclusion                      |
| 129 | high-pressure liquid chromatography (SE-HPLC) with a RI detector (JASCO RI-2031,                     |
| 130 | Jasco Corporation, Tokyo, Japan) was used to determine the Mw and size distribution of               |
| 131 | extracted AX samples using methods described by Zhang et al. (2016). The average                     |
| 132 | degree of polymerisation (avDP) was value of the apparent peak molecular mass divided                |

133 by the molecular mass of anhydropentose sugars (Courtin *et al.* 2008).

| 134 | <b>Cell culture</b> . Complete cell culture medium was prepared using RPMI-1640 with L-               |
|-----|-------------------------------------------------------------------------------------------------------|
| 135 | glutamine (Luna, Belgium), 10% foetal bovine serum (FBS) and 2% penicillin-                           |
| 136 | streptomycin (P/S). The human U937 monocyte cell line was grown in complete culture                   |
| 137 | medium under sterile conditions in a 37 °C incubator with 5% CO $_2$ in air atmosphere,               |
| 138 | subculturing every 2 days to maintain high cell viability ( $\geq$ 90%). For experimental tests,      |
| 139 | cultured U937 cells were centrifuged at 1000 <i>g</i> for 10 min and re-suspended in RPMI-            |
| 140 | 1640 medium with L-glutamine and $10\%$ FBS such that the density of cells was set at                 |
| 141 | 1×10 <sup>6</sup> viable cells/ml.                                                                    |
| 142 | Polysaccharide medium preparations. The extracted AX samples and LPS were                             |
| 143 | dissolved in the RPMI-1640 medium with 5% FBS overnight at 4 $^{\circ}\mathrm{C}$ to allow the sample |
| 144 | to become fully hydrated prior to sterile filtration through a 0.45 $\mu$ m sterile filter. The       |
| 145 | LPS and solubilised AX samples were diluted in RPMI-1640 medium to yield a series of                  |
| 146 | typical concentrations (1, 5, 10, 50, 500 and 1000 $\mu$ g/ml) (Zhang <i>et al.</i> 2016) for the     |
| 147 | subsequent cell culture testing. The samples were stored at 4 °C prior to use.                        |
| 148 | Cell viability and growth. Cell growth and viability of U937 cells following                          |

| 149 | treatment with AX samples or LPS were assessed by cell counting and trypan blue                           |
|-----|-----------------------------------------------------------------------------------------------------------|
| 150 | uptake. A 100 $\mu$ L cell suspension at 1×10 <sup>6</sup> viable cells/ml was pipetted into each well of |
| 151 | a 96-well microplate. The AX and LPS sterile medium preparations at three high                            |
| 152 | concentrations (50, 500 and 1000 $\mu$ g/ml) were pre-warmed to 37 °C and 100 $\mu$ L of each             |
| 153 | concentration was added to six replicate wells of the microplate and mixed thoroughly.                    |
| 154 | After 24 h incubation (Ghoneum and Gollapudi 2003, Zhang <i>et al.</i> 2016), 40 $\mu$ L from             |
| 155 | each well was mixed with 40 $\mu L$ of trypan blue (Sigma-Aldrich, UK) for 1 min prior to                 |
| 156 | analysis on a TC10 automated cell counter (Bio-Rad, UK). The number of blue stained                       |
| 157 | (non-viable) cells and unstained (viable) cells in each sample were counted.                              |
| 158 | <b>NO stimulation</b> . The NO assay was conducted as previously described by (Zhang <i>et</i>            |
| 159 | <i>al.</i> 2016). Fifty $\mu$ l of U937 cells at 1x10 <sup>6</sup> viable cells/ml was added to a 96-well |
| 160 | microplate prior to adding 50 $\mu$ l of AX or LPS sample to replicate wells. Replicate                   |
| 161 | untreated controls were prepared by adding 50 $\mu$ l medium with 50 $\mu$ l U937 cells at                |
| 162 | $1 \times 10^6$ viable cells/ml to wells. Background levels of nitrite and/or interference from           |
| 163 | nitrate present in AX samples were internally controlled for within the assay by taking in                |
| 164 | account the direct activity of AX samples in replicate wells containing 50 $\mu$ l medium and             |

| 165 | 50 $\mu$ l of diluted sterile AX sample in the absence of U937 cells. All experimental samples          |
|-----|---------------------------------------------------------------------------------------------------------|
| 166 | were evaluated in triplicate with appropriate adjustments for background nitrite/nitrate                |
| 167 | levels. The microplate was incubated (37 °C, 5% CO <sub>2</sub> ) for 24 hours before mixing 50 $\mu$ l |
| 168 | component A of the Griess' reagent to each well for 10 minutes at room temperature.                     |
| 169 | Griess' reagent was made up with two components. Component A consisted of equal                         |
| 170 | amounts by volume of 37.5 mmol/L sulphanilamide in deionized water and 6.5 mol/L $$                     |
| 171 | HCl. Component B was 12.5 mmol/L N-1-napthylethylenediamine dihydrochloride                             |
| 172 | (NEED) in deionized water. A further $50\mu l$ component B of the Griess' reagent was added             |
| 173 | to each well, mixing well and then incubating at 4°C for 20 minutes. The absorbance of                  |
| 174 | each well was measured at 540nm using a microplate reader (Synergy HTX Multi-Mode                       |
| 175 | Reader, Biotek, UK).                                                                                    |
| 176 | Determination of iNOS Levels. An immunoblot assay was used to determine the                             |
| 177 | iNOS level in cell lysates according to previously described methodologies (Bloch <i>et al.</i>         |
| 178 | 1999). An equal volume (5mL) of AX treatment, LPS positive control (at 50 $\mu { m g/mL}$ ) or          |
| 179 | untreated media control (RPMI-1640 with L-glutamine and 5% FBS) was incubated for                       |
| 180 | 24 h with 5mL cultured U937 cells set at $2.0 \times 10^6$ viable cells/ml. Samples were                |

| 181 | centrifuged ( $1000g$ for 10 min) and resuspended in the fresh medium at a density of             |
|-----|---------------------------------------------------------------------------------------------------|
| 182 | $2 \times 10^6$ viable cells /mL. A 9ml aliquot of each sample was centrifuged at $1000g$ for 10  |
| 183 | min and the supernatant discarded. The cell pellet was kept on ice and 150 $\mu$ l ice-cold       |
| 184 | lysis buffer (0.1 M Tris-HCl and 1 mM ETDA in deionized water; pH 7.8) was added to               |
| 185 | each cell pellet. The samples underwent a repeated (three times) rapid freeze/thaw                |
| 186 | process to lyse the cells by placing in a freezer (-80 $^{\circ}$ C) for 15 min followed by rapid |
| 187 | thawing in a 37 °C water bath until just thawed, with vortex mixing for 10 s in between           |
| 188 | each freeze/thaw cycle. Samples were repeatedly (10 times) placed in a sonication bath            |
| 189 | (5510E-DTH, 490W, 50/60Hz, Bransonic, Danbury, USA) for 10 s, followed by vortex                  |
| 190 | mixing in between each sonication step. The samples were centrifuged at 10,000g for 10            |
| 191 | min and supernatants (cell lysates) were collected.                                               |
| 192 | A 5 $\mu$ l aliquot of each cell lysate was added to 500 $\mu$ l ice-cold lysis buffer (1:100     |
| 193 | dilution). Human iNOS enzyme (116 $\mu$ g/mL) was diluted in the iNOS standard buffer             |
| 194 | (10% glycerol, 100mM glycine and 25mM Tris-HCl in deionized water) to provide a set               |
| 195 | of iNOS standards at 116, 58, 29, 14.5 and 11.6 $\mu { m g/mL}$ . The cell lysates and iNOS       |
| 196 | standards were placed as 5 $\mu$ l immunoblots on NC 45 nitrocellulose membrane (Serva            |

| 197 | Electrophoresis GmbH, Heidelberg, Germany), and 5 $\mu$ l BSA solution (1 mg/ml BSA in     |
|-----|--------------------------------------------------------------------------------------------|
| 198 | deionized water) was used as a negative control (absence of iNOS protein). The             |
| 199 | membrane was incubated in a 1:1000 dilution of monoclonal iNOS primary antibody            |
| 200 | (4E5) overnight ( $\leq$ 20h) at 4°C with shaking at 60rpm.                                |
| 201 | The membrane was washed five times for 5 min using TBS buffer before incubating            |
| 202 | with the rabbit anti-mouse immunoglobulins/HRP secondary antibody solution (1:1000         |
| 203 | dilution) at room temperature for 1 h with shaking at 60rpm. The membrane was              |
| 204 | washed five times for 5 min in TBS buffer and then 1 mL chemiluminescent detection         |
| 205 | reagent (Biological Industries (BI), Lichfield, UK) was gently distributed across the      |
| 206 | membrane and left to stand for 1 min in a dark room. Images of the membrane were           |
| 207 | then captured using a G:Box (Chemi HR16, Syngene, Cambridge, UK) and Image J               |
| 208 | software (National Institute of Health, USA) was used to quantify the levels of iNOS using |
| 209 | the iNOS standards. The iNOS level was determined from three replicate experiments.        |
| 210 | Statistical Analysis. Experiments, unless otherwise stated, were performed in              |
| 211 | triplicate and analyzed by one-way ANOVA followed by a posthoc Tukey test. A value of p    |
| 212 | < 0.05 was considered statistical significance in all cases. Data were expressed as mean ± |

standard error of the mean (SEM) unless stated otherwise.

# **Results and Discussion**

| 215 | Extraction of AXs from the pentosan fraction of wheat flour. The original AX              |
|-----|-------------------------------------------------------------------------------------------|
| 216 | content of the wheat flour pentosan was determined as 15.79±0.46% (dry basis).            |
| 217 | Compared with water extraction (Table 1), the extraction yield of AXs significantly       |
| 218 | increased ( $P < 0.05$ ) from 7.54% to 12.83% with increasing enzyme (endoxylanase, P-    |
| 219 | BG) concentration (0 to 400 ppm). In particular, significant increases ( $P < 0.05$ ) in  |
| 220 | extraction yield positively correlated (r = 0.98) with increased enzyme concentration     |
| 221 | within the range of 50 ppm to 200 ppm. Higher enzyme concentrations, from 200ppm to       |
| 222 | 400ppm, did not significantly increase the yield further ( $P > 0.05$ ), indicating that  |
| 223 | maximum extraction condition was achieved, with no benefit in increasing the enzyme       |
| 224 | concentration any further beyond this range. The treatment temperature also showed a      |
| 225 | significant effect on the extraction yield of AXs. Temperatures of 30 °C - 40 °C showed   |
| 226 | higher AX extraction yield than 20 °C ( $P < 0.05$ ) with an enzyme concentration of 200  |
| 227 | ppm, a 2 h incubation and pH 4.5. Moreover, with an enzyme concentration of 400 ppm       |
| 228 | at 40 °C for 2 h, recovery of AXs from the pentosan fraction reached the highest recovery |

| 229 | level (81.25% of total AX content) identified in the study. The increased extraction yield     |
|-----|------------------------------------------------------------------------------------------------|
| 230 | upon enzyme treatment is likely in large part due to endoxylanases cleaving internal $eta$ -   |
| 231 | (1,4)-linkages in the xylan backbone and rendering a portion of water un-extractable           |
| 232 | AXs (WUAXs) soluble and extractable (Andersson <i>et al.</i> 2003). This means that a fraction |
| 233 | of the WUAXs in the cell wall of the pentosan will be released into solution, resulting in     |
| 234 | increased extraction yield.                                                                    |
| 235 | Monosaccharide compositions and branch degree analysis of AXs. The enzyme                      |
| 236 | extracted AXs samples (E-WEAXs) had a higher A/X ratio of 0.83 (Table S1) than water           |
| 237 | extracted AXs (WEAXs) of 0.48, with A/X increasing linearly as the enzyme                      |
| 238 | concentration increased from 0 ppm to 400 ppm ( $R^2 = 0.958$ ). The A/X ratio represents      |
| 239 | the degree of branching of AXs, which is an indicator of the relative proportions of the       |
| 240 | substituted xylose residues in xylan chains (Izydorczyk and Biliaderis 2007). The degree       |
| 241 | of substitution plays a key role in the solubility of AXs. Less arabinose substitutes          |
| 242 | resulted in a lower solubility of AXs in water (Zhang et al. 2014), which the reason was       |
| 243 | the low A/X substitution fraction enhance aggregation of unsubstituted regions of the          |
| 244 | AXs stabilised by hydrogen bonds, which may result in an increase in viscosity or              |

| 245 | precipitation of polymer chains (Izydorczyk and Biliaderis 2007). Therefore, the results                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| 246 | suggest AXs extracted from the pentosan fraction using the enzymatic treatments                                              |
| 247 | contained more substituted xylose residues and higher solubility.                                                            |
| 248 | Molecular characterisation of AXs. The overall Mw distribution of AXs ranged                                                 |
| 249 | from 159 Da to 794 KDa and it was divided into four ranges (Table S1). Around 79% of                                         |
| 250 | WEAXs were mainly in the larger Mw range of 10 KDa to 794 KDa whereas 81-89% of E-                                           |
| 251 | WEAXs were in the smaller Mw range of 1 KDa to 100 KDa. The Mw distribution curve of                                         |
| 252 | the E-WEAXs (Figure 1) contains two main peaks; the major one with Mw of 12.22 KDa                                           |
| 253 | (log <sub>10</sub> Mw $\approx$ 4.1, avDP = 93), and the lesser one with Mw of 3.72 KDa (log <sub>10</sub> Mw $\approx$ 3.6, |
| 254 | avDP = 28). However, the Mw distribution curve for the WEAX sample comprises mainly                                          |
| 255 | a single peak with Mw of 501.19 KDa (log <sub>10</sub> Mw $\approx$ 5.7, avDP = 3797). In addition, the Mw                   |
| 256 | distribution (Fig. 1) shows the Mw peak at around 3.72 KDa (log <sub>10</sub> Mw $\approx$ 3.6) progressing                  |
| 257 | enlarged as the concentration of enzyme increased from 50 ppm to 400 ppm. According                                          |
| 258 | to previous studies, endoxylanase attacks the $\beta$ -1, 4 linked D-xylopyranosyl backbone                                  |
| 259 | and breaks down xylan chains, thus reducing the molecular weight of AXs during                                               |
| 260 | enzymatic extraction (Izydorczyk and Biliaderis 2007). Zhang et al. (2014) showed that                                       |

| 261 | the Mw of AXs varies depending on the extraction and treatment methods used.                   |
|-----|------------------------------------------------------------------------------------------------|
| 262 | Endoxylanase treatment appeared to be one of the most effective methods for modifying          |
| 263 | AXs molecular structure, resulting in AXs with low Mw distribution. Furthermore, the           |
| 264 | Mw has been indicated as a crucial factor influencing the physicochemical properties in        |
| 265 | solution. Wheat AXs with low Mw exhibited less intrinsic viscosities and weak elastic          |
| 266 | properties when in solution (Izydorczyk and Biliaderis 2007).                                  |
| 267 | Effects of AXs on the growth and viability of U937 cells. In order to investigate              |
| 268 | the possible relationship between the immunomodulatory activity and molecular                  |
| 269 | structure of AXs, WEAX and E-WEAX with significantly different Mw distributions and            |
| 270 | monosaccharide compositions, were extracted with an enzyme concentration of 400                |
| 271 | ppm for <i>in vitro</i> studies.                                                               |
| 272 | The total cell counts of U937 macrophages treated with high concentrations of AXs              |
| 273 | (50, 500, 1000 $\mu$ g/ml) were not significantly different ( <i>P</i> > 0.05) compared to the |
| 274 | untreated control (Table 2). WEAX and E-WEAX did not induce a stimulatory effect on            |
| 275 | the growth of U937 cells over a period of 24 h. In addition, the viability of cells following  |
| 276 | each AX treatment was typically around 90%, which was not significantly different ( $P$ >      |

| 277 | 0.05) to untreated control cells, suggesting AX samples had no effect on U937 cell           |
|-----|----------------------------------------------------------------------------------------------|
| 278 | survival over a 24 h period. However, the total count of U937 cells was significantly (P <   |
| 279 | 0.05) reduced after treatment with 500 and 1000 $\mu$ g/ml LPS compared with the             |
| 280 | untreated control (Table 2). This is in concordance with previous studies indicating that    |
| 281 | LPS inhibits and blocks macrophage proliferation in a dose-dependent manner (Vairo <i>et</i> |
| 282 | al. 1992, Vadiveloo et al. 1996, Muller-Decker et al. 2005). The inhibitory effect of LPS on |
| 283 | cell proliferation is tightly regulated through a complex network of cytokines. For          |
| 284 | example, Vadiveloo et al. (2001) found that bacterial LPS had an inhibitory effect on cell   |
| 285 | proliferation in mouse marrow-derived macrophages. They found LPS inhibited the              |
| 286 | expression of cyclin D1, which is an essential protein for proliferation in many cell types. |
| 287 | Botanical polysaccharides extracted from plants have received considerable attention in      |
| 288 | bioscience due to their wide immunomodulatory activities and low toxicity (Schepetkin        |
| 289 | and Quinn 2006). Compared with LPS, the present study indicated that the AX samples          |
| 290 | have no inhibitory effects on the viability and growth of human U937 macrophages, even       |
| 291 | at high concentrations of 1000 $\mu$ g/ml.                                                   |

292 Effects of AXs on NO production by U937 cells. NO production by U937 cells

| 293 | following treatment with WEAX, E-WEAX or LPS over the concentration range of 1 to                     |
|-----|-------------------------------------------------------------------------------------------------------|
| 294 | 500 $\mu$ g/ml was determined (Table 3). The LPS positive control, significantly stimulated           |
| 295 | ( $P < 0.05$ ) NO secretion per million viable cells at all concentrations (1 to 500 $\mu$ g/ml)      |
| 296 | compared to the untreated control. Although significant changes in NO were not                        |
| 297 | detected across every single successive LPS concentration, overall the NO generated by                |
| 298 | LPS significantly ( $P < 0.05$ ) increased as LPS concentration increased from 0 to 500               |
| 299 | $\mu$ g/ml. All concentrations of WEAX and E-WEAX tested also significantly elevated (P <             |
| 300 | 0.05) NO production by U937 cells compared with the untreated control. NO levels per                  |
| 301 | million viable cells significantly increased in a dose-dependent manner as the                        |
| 302 | concentration of E-WEAX increased by 2 or more incremental concentration steps (from                  |
| 303 | 1 to 10 $\mu$ g/ml and 5 to 50 $\mu$ g/ml), before reaching a maximum of 61.8 ± 2.7 $\mu$ M following |
| 304 | treatment with 50 $\mu$ g/ml E-WEAX. In contrast, NO stimulation by WEAX in the                       |
| 305 | concentration range of 10 to 50 $\mu$ g/ml was substantially more modest compared to that             |
| 306 | produced by similar concentrations of E-WEAX. The highest NO level produced was 53.4                  |
| 307 | $\mu$ M per million viable cells after treatment with 500 $\mu$ g/ml WEAX, but this was still         |
| 308 | significantly increased ( $P < 0.05$ ) in a dose-dependent manner compared to NO levels               |

| 309 | generated by lower WEAX concentrations in the range 1 to 10 $\mu$ g/ml. Thus, the optimal       |
|-----|-------------------------------------------------------------------------------------------------|
| 310 | dose of E-WEAX for maximum NO production was found to be < 500 $\mu$ g/ml in this study         |
| 311 | whereas WEAX probably had an optimum dose somewhere above 500 $\mu$ g/ml. Although              |
| 312 | the peak NO secretion for the WEAX treatment may not have been reached in the assay,            |
| 313 | the findings suggest the maximum NO secretion was being approached and was                      |
| 314 | substantially below that of E-WEAX. These comparisons show that there are obvious               |
| 315 | differences between E-WEAX and WEAX treatments in relation to NO stimulation, with              |
| 316 | WEAX generally having weaker NO stimulation than E-WEAX. This is consistent with the            |
| 317 | NO stimulatory activities of corn bran AXs with low and large Mw in U937 cells (Zhang <i>et</i> |
| 318 | al. 2016).                                                                                      |
| 319 | One of main structural differences between the two types of AX samples was in the               |
| 320 | low Mw range of 1-10 KDa. The E-WEAX contained a higher portion of AX with lower                |
| 321 | avDP in this small Mw range compared with WEAX. In addition, E-WEAX presented a                 |
| 322 | higher A/X ratio ( $0.83$ ) compared to WEAX ( $0.48$ ). Thus, the large difference in NO       |
| 323 | stimulatory activity between the two AX samples may be associated with the difference           |
| 324 | in the low 1-10kDa Mw fractions and A/X ratio.                                                  |

| 325 | Effects of AX treatments on iNOS levels in U937 cells. In order to obtain a better              |
|-----|-------------------------------------------------------------------------------------------------|
| 326 | understanding of AX modulation of NO production, the effect of WEAX and E-WEAX on               |
| 327 | iNOS levels was determined in human U937 monocytes. Both WEAX and E-WEAX                        |
| 328 | significantly elevated iNOS levels in U937 cells (Figure 2A) after 24h compared with the        |
| 329 | untreated control ( $P < 0.05$ ), mirroring the elevation detected in NO production. E-WEAX     |
| 330 | and WEAX resulted in a 2.5 and 2.0 fold increase in iNOS level per million viable U937          |
| 331 | cells respectively compared with the untreated control (Figure 2B). In addition, the            |
| 332 | amount of iNOS following treatment with E-WEAX was significantly higher than with               |
| 333 | WEAX ( $P < 0.05$ ). Similarly, the LPS positive control significantly increased iNOS levels    |
| 334 | compared to untreated control ( $P < 0.05$ ). The stimulatory effect of AXs on iNOS was         |
| 335 | highly correlated with their stimulatory activity on NO production. Thus, the findings          |
| 336 | suggest the increased NO production by AXs is probably due, at least in part, by elevated       |
| 337 | levels of iNOS in U937 cells. This is in agreement with the previous reports that show          |
| 338 | both iNOS mRNA and protein levels in macrophages are induced by cytokines (such as              |
| 339 | IFN- $\gamma$ and TNF- $\alpha$ ) and microbial polysaccharides such as LPS (Bogdan 2000). More |
| 340 | recently a study found that polysaccharides from Dendrobium officinale were able to             |

| 341 | increase iNOS expression and NO production in RAW 264.7 cells. They indicated that the                                              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| 342 | stimulatory ability of <i>D. officinale</i> on iNOS expression was associated with the disruption                                   |
| 343 | of I $\kappa$ B $\alpha$ /NF- $\kappa$ B complexes, leading to the activation of NF- $\kappa$ B (Cai <i>et al.</i> 2015). Thus, AXs |
| 344 | may stimulate NO production in U937 cells through the iNOS pathway. Moreover, the                                                   |
| 345 | immunoblots showed that E-WEAX (50 $\mu$ g/mL) had a higher stimulatory effect (P <                                                 |
| 346 | 0.05) on iNOS level (42.4 $\pm$ 3.8 $\mu g/mL$ per million viable cells) compared to the effect of                                  |
| 347 | WEAX (33.5 ± 1.5 $\mu$ g/mL per million viable cells) at the same concentration. The                                                |
| 348 | difference in stimulatory effect between E-WEAX and WEAX on iNOS induction overlaps                                                 |
| 349 | with their significantly different stimulatory activity on NO production.                                                           |
| 350 | The Mw distribution of AX is considered to be a significant determinant of their                                                    |
| 351 | immune-modulatory activity. Physicochemical properties of AXs in solution including tertiary                                        |
| 352 | conformation, solubility, viscosity and elastic properties depend on their molecular weight                                         |
| 353 | and degree of branching (Izydorczyk and Biliaderis 2007). For other cereal polysaccharide,                                          |
| 354 | such as Beta-glucan, molecular size and solubility have already been confirmed to have a                                            |
| 355 | substantial effect on Dectin-1 receptor activation, which is associated with immune-                                                |
| 356 | modulating activities of Beta-glucan such as increased level of iNOS, IL-12, TNF- $\alpha$ , IL-1 $\beta$ and                       |

| 357 | IL-6 (Zhang et al. 2015, Liu et al. 2015). Recently, wheat AX was reported to activate the                   |
|-----|--------------------------------------------------------------------------------------------------------------|
| 358 | Dectin-1 receptor in the HEK-Null1 Dectin-1A and B cell lines (Sahasrabudhe et al.                           |
| 359 | 2016). Therefore, it is reasonable to conclude that molecular structure, combined with these                 |
| 360 | physicochemical properties of AX may confer receptor activation that result in different                     |
| 361 | stimulatory effects on iNOS expression in macrophage and subsequent NO production.                           |
| 362 | 4. Conclusion                                                                                                |
| 363 | Dietary intervention of foods and food-derived substances with immune-modulating                             |
| 364 | activities is widely studied and considered a potential way of mediating immune functions to                 |
| 365 | reduce the risk of infection or cancer (Zhang <i>et al.</i> 2015, Mendis <i>et al.</i> 2016). In this study, |
| 366 | an enzymatic method was optimized to efficiently extract high yields (86%) of AXs with                       |
| 367 | a high proportion of low MW (3.72 KDa) material and a high degree of branching (A/X =                        |
| 368 | 0.83) from wheat flour pentosan. AX extracts significantly elevated NO secretion by the                      |
| 369 | U937 cells compared with the untreated control ( $P < 0.05$ ), suggesting the AXs have potential             |
| 370 | immunomodulation properties for improving immune function and reducing the risk of                           |
| 371 | infection. Analysis of the relationship between the molecular structures and the                             |
| 372 | immunomodulatory activity of AX samples suggests that enzyme-modified AXs, that                              |

| 373 | have a much higher proportion of lower Mw AXs and higher A/X ratio than the non-              |
|-----|-----------------------------------------------------------------------------------------------|
| 374 | enzyme treated AXs, stimulate higher levels of NO production. The iNOS data suggest that      |
| 375 | stimulation of NO synthesis by AXs is closely mirrored iNOS expression in U937 cells. This is |
| 376 | an exciting area for future research, the findings elucidating the precise mechanisms         |
| 377 | through which the molecular structure of AXs may modulate immunomodulatory                    |
| 378 | activity. Further experimental work is required to identify the AX receptor(s) on             |
| 379 | macrophages and determine their interaction with iNOS expression.                             |
| 380 | Acknowledgements                                                                              |
| 381 | We also would like to thank the technician team, Phil Evans, Roya Yazdanian, Glenn            |
| 382 | Ferris and a PhD candidate, Nicola Hall for their support in the experimental work.           |
| 383 | Funding                                                                                       |
| 384 | The authors are grateful for funding support from Department of Food, Nutrition and           |
| 385 | Hospitality of Manchester Metropolitan University (L-30073).                                  |
| 386 | Notes                                                                                         |
| 387 | The authors declare no competing financial interest.                                          |

# 388 References

| 389 | Andersson, R., Eliasson, C., Selenare, M., Kamal-Eldin, A. and Aman, P. (2003) 'Effect of         |
|-----|---------------------------------------------------------------------------------------------------|
| 390 | endo-xylanase-containing enzyme preparations and laccase on the solubility of rye                 |
| 391 | bran arabinoxylan', Journal of the Science of Food and Agriculture, 83(7), 617-623.               |
| 392 |                                                                                                   |
| 393 | Bloch , W., Fleischmann , B. K., Lorke , D. E., Andressen , C., Hops , B., Hescheler , J. and K., |
| 394 | A. (1999) 'Nitric oxide synthase expression and role during cardiomyogenesis',                    |
| 395 | Cardiovascular Research, 43 (3), 675-684.                                                         |
| 396 |                                                                                                   |
| 397 | Bogdan, C. (2000) 'The function of nitric oxide in the immune system' in Mayer, B., ed.           |
| 398 | Handbook of Experimental Pharmacology, Heidelberg: Springer, 443–492                              |
| 399 |                                                                                                   |
| 400 | Cai, H., Huang, X., Nie, S., Xie, M., Phillips, G. O. and W., C. S. (2015) 'Study on Dendrobium   |
| 401 | officinale O-acetyl-glucomannan (Dendronan®): Part III–Immunomodulatory                           |
| 402 | activity in vitro.', <i>Bioactive Carbohydrates and Dietary Fibre</i> , 5(2), 99–105.             |
| 403 |                                                                                                   |
| 404 | Choi, J. Y., Paik, D. J., Kwon, D. Y. and Park, Y. (2014) 'Dietary supplementation with rice      |
| 405 | bran fermented with Lentinus edodes increases interferon-gamma activity                           |
| 406 | without causing adverse effects: a randomized, double-blind, placebo-controlled,                  |
| 407 | parallel-group study', <i>Nutrition Journal</i> , 13(1), 35.                                      |
| 408 |                                                                                                   |
| 409 | Courtin, C. M., Swennen, K., Broekaert, W. F., Swennen, Q. and Buyse, J. (2008) 'Effects of       |
| 410 | dietary inclusion of xylooligo-saccharides, arabinoxylooligosaccha-rides and                      |
| 411 | soluble arabinoxylan on the microbial composition of caecal contents of chickens',                |
| 412 | Journal of the Science of Food and Agriculture., 88(14), 2517-2522.                               |
| 413 |                                                                                                   |
| 414 | Escarnot, E., Aguedo, M. and Paquot, M. (2012) 'Enzymatic hydrolysis of arabinoxylans             |
| 415 | from spelt bran and hull', Journal of Cereal Science, 55(2), 243-253.                             |
| 416 |                                                                                                   |
| 417 | Fan, L., Ma, S., Wang, X. and Zheng, X. (2016) 'Improvement of Chinese noodle quality by          |
| 418 | supplementation with arabinoxylans from wheat bran', International Journal of                     |

*Food Science & Technology*, 51(3), 602-608.

- Ghoneum, M. and Gollapudi, S. (2003) 'Modified arabinoxylan rice bran (MGN-3/Biobran)
  sensitizes human T cell leukemia cells to death receptor (CD95)-induced
  apoptosis', *Cancer Letters*, 201(1), 41-9.
- 424
- Ghoneum, M. and Matsuura, M. (2004) 'Augmentation of macrophage phagocytosis by
  modified arabinoxylan rice bran (MGN-3/biobran)', *International Journal of Immunopathology and Pharmacology*, 17(3), 283-92.
- 428
- Izydorczyk, M. S. and Biliaderis, C. G. (2007) 'Arabinoxylans: Technologically and nutritionally functional plant polysaccharides' in Biliaderis, C. G. and Izydorczyk,
  M. S., eds., *Functional Food Carbohydrates*, Boca Raton: CRC Press, 249–290.
- 432
- Lechner, M., Lirk, P. and Rieder, J. (2005) 'Inducible nitric oxide synthase (iNOS) in tumor
  biology: the two sides of the same coin', *Seminars in cancer biology*, 15(4), 277-89.
- Li, L., Ma, S., Fan, L., Zhang, C., Pu, X., Zheng, X. and Wang, X. (2016) 'The influence of
  ultrasonic modification on arabinoxylans properties obtained from wheat bran', *International Journal of Food Science & Technology*, 51(11), 2338-2344.
- 439
- Li, W., Hu, H., Wang, Q. and Brennan, C. S. (2013) 'Molecular Features of Wheat Endosperm
  Arabinoxylan Inclusion in Functional Bread', *Foods*, 2(2), 225-237.
- 442
- Liu, M., Luo, F., Ding, C., Albeituni, S., Hu, X., Ma, Y., Cai, Y., McNally, L., Sanders, M. A., Jain,
  D., Kloecker, G., Bousamra, M., 2nd, Zhang, H. G., Higashi, R. M., Lane, A. N., Fan, T. W.
  and Yan, J. (2015) 'Dectin-1 Activation by a Natural Product beta-Glucan Converts
  Immunosuppressive Macrophages into an M1-like Phenotype', *The Journal of Immunology*, 195(10), 5055-65.
- 448
- Mendis, M., Leclerc, E. and Simsek, S. (2016) 'Arabinoxylans, gut microbiota and immunity', *Carbohydrate Polymers*, 139, 159-66.
- 451

| 452 | Muller-Decker, K., Manegold, G., Butz, H., Hinz, D. E., Huttner, D., Richter, K. H., Tremmel, M., |
|-----|---------------------------------------------------------------------------------------------------|
| 453 | Weissflog, R. and Marks, F. (2005) 'Inhibition of cell proliferation by bacterial                 |
| 454 | lipopolysaccharides in TLR4-positive epithelial cells: independence of nitric oxide               |
| 455 | and cytokine release', Journal of Investigative Dermatology, 124(3), 553-61.                      |
| 456 |                                                                                                   |
| 457 | Nagata, J., Higashiuesato, Y., Maeda, G., Chinen, I., Saito, M., Iwabuchi, K. and Onoe, K. (2001) |
| 458 | 'Effects of water-soluble hemicellulose from soybean hull on serum antibody levels                |
| 459 | and activation of macrophages in rats', Journal of Agricultural and Food Chemistry,               |
| 460 | 49(10), 4965-70.                                                                                  |
| 461 |                                                                                                   |
| 462 | Sahasrabudhe, N. M., Schols, H. A., Faas, M. M. and de Vos, P. (2016) 'Arabinoxylan activates     |
| 463 | Dectin-1 and modulates particulate beta-glucan-induced Dectin-1 activation',                      |

464 Molecular Nutrition & Food Research s, 60(2), 458-67.

- 465
- Schepetkin, I. A. and Quinn, M. T. (2006) 'Botanical polysaccharides: macrophage
  immunomodulation and therapeutic potential', *International Immunopharmacology*, 6(3), 317-33.
- 469

Smith, P. D., Smythies, L. E., Shen, R., Greenwell-Wild, T., Gliozzi, M. and Wahl, S. M. (2011)
'Intestinal macrophages and response to microbial encroachment', *Mucosal Immunology*, 4(1), 31-42.

- 473
- 474 Vadiveloo, P. K., Keramidaris, E., Morrison, W. A. and Stewart, A. G. (2001)
  475 'Lipopolysaccharide-induced cell cycle arrest in macrophages occurs
  476 independently of nitric oxide synthase II induction', *Biochimica et Biophysica Acta*477 (*BBA*)-*Molecular Cell Research*, 1539(1), 140-6.
- 478
- Vadiveloo, P. K., Vairo, G., Novak, U., Royston, A. K., Whitty, G., Filonzi, E. L., Cragoe, E. J., Jr.
  and Hamilton, J. A. (1996) 'Differential regulation of cell cycle machinery by various
  antiproliferative agents is linked to macrophage arrest at distinct G1 checkpoints', *Oncogene*, 13(3), 599-608.
- 483

484 Vairo, G., Royston, A. K. and Hamilton, J. A. (1992) 'Biochemical events accompanying

- 485
- 486
- 487
- 5 macrophage activation and the inhibition of colony-stimulating factor-1-induced 6 macrophage proliferation by tumor necrosis factor-alpha, interferon-gamma, and 7 lipopolysaccharide', *Journal of Cellular Physiology*, 151(3), 630-41.
- 488

Van Craeyveld, V., Dornez, E., Holopainen, U., Selinheimo, E., Poutanen, K., Delcour, J. A. and
Courtin, C. M. (2010) 'Wheat bran AX properties and choice of xylanase affect
enzymic production of wheat bran-derived arabinoxylanoligosaccharides', *Cereal Chemistry*, 87(4), 283-291.

493

Zhang, S., Li, W., Smith, C. J. and Musa, H. (2015) 'Cereal-derived arabinoxylans as
biological response modifiers: extraction, molecular features, and immunestimulating properties', *Critical Reviews in Food Science and Nutrition*, 55(8), 103350.

- 498
- Zhang, Z., Smith, C. and Li, W. (2014) 'Extraction and modification technology of
  arabinoxylans from cereal by-products: A critical review', *Food Research International*, 65, 423-436.
- 502

Zhang, Z., Smith, C., Li, W. and Ashworth, J. (2016) 'Characterization of Nitric Oxide
Modulatory Activities of Alkaline-Extracted and Enzymatic-Modified
Arabinoxylans from Corn Bran in Cultured Human Monocytes', *Journal of Agricultural and Food Chemistry*, 64(43), 8128-8137.

- 507
- 508Zhou, S., Liu, X., Guo, Y., Wang, Q., Peng, D. and Cao, L. (2010) 'Comparison of the509immunological activities of arabinoxylans from wheat bran with alkali and510xylanase-aided extraction', *Carbohydrate Polymers*, 81(4), 784–789.
- 511 512

#### 513 List of Tables

- 514 **Table 1.** Extraction yield (dry basis) of arabinoxylans (AXs) under different 515 enzymatic conditions
- **Table 2.** Effects of arabinoxylans (AXs) and lipopolysaccharides (LPS) on the
- 517 growth and viability of U937 cells
- **Table 3.** NO production per million viable cells by U937 cells following treatment
- 519 with water extracted arabinoxylan (WEAX), enzyme extracted arabinoxylan (E-
- 520 WEAX) or lipopolysaccharides (LPS)

## 521 List of Figures

522 **Figure 1.** The molecular weight distribution of enzyme extracted arabinoxylans

523 (E-WEAXs) following various enzyme treatments and water extracted 524 arabinoxylans as a Control

- 525 Figure 2. Effects of AXs and LPS on iNOS levels in U937 cells detected by
- 526 immunoblot assay (A): The blots in the first line are iNOS standards (Dilution of
- 527 stock human iNOS enzyme at 116µg/ml) and a blank control standard (containing
- 528 BSA but no iNOS protein). The blots in the second line are derived from U937 cells
- 529 incubated for 24h with WEAX, E-WEAX or LPS (50μg/ml) treatment. **(B)**: The iNOS
- 530 levels from the U937 cells were quantified by densitometry analysis and human iNOS
- 531 protein standards (Cambridge Bioscience, UK) of known concentration; The mean
- 532 *iNOS concentration (\mu g/ml) in the cell lysates is presented as the mean + standard*
- 533 error of the mean (SEM) of triplicate experiments. The symbol \* indicate results that
- are significantly different (*P* < 0.05) and the dotted line '---' indicates the iNOS level
- 535 of control cells.

536 **Table 1.** Extraction yield (dry basis) of arabinoxylans (AXs) under different

537 enzymatic extraction conditions

| Treatment conditions |                                      | Extraction yield of AXs  | AX content of |  |
|----------------------|--------------------------------------|--------------------------|---------------|--|
|                      |                                      |                          | Raw material  |  |
| Treatment            | 20 °C                                | 11.12±0.39% <sup>b</sup> |               |  |
| Temperature          | 30 °C                                | 12.97±0.34% ª            |               |  |
|                      | 40 °C                                | 12.73±0.53% ª            |               |  |
| Under pH 4.5, 200 p  | pm endoxylanase for 2 h i            | n all cases              |               |  |
| Treatment            | 2 h                                  | 12.72±0.54% ª            | _             |  |
| Time                 | 3 h                                  | 12.21±0.34% a            |               |  |
|                      | 4 h                                  | 12.44±0.34% ª            |               |  |
| Under pH 4.5, 200 p  | pm endoxylanase at 40 $^{\circ}$     | in all cases             | 15.79±0.46%   |  |
| Enzyme               | 50 ppm                               | 10.31±0.26% <sup>b</sup> | _             |  |
| Concentration        | 100 ppm                              | 10.71±0.55% <sup>b</sup> |               |  |
|                      | 200 ppm                              | 12.70±0.55% ª            |               |  |
|                      | 300 ppm                              | 12.75±0.40% ª            |               |  |
|                      | 400 ppm                              | 12.83±0.35% ª            |               |  |
| Under pH 4.5 at 40   | ${\mathfrak C}$ for 2 h in all cases |                          |               |  |
| Control              |                                      |                          |               |  |

Extracted AXs using the different enzyme concentrations (50 ppm to 400 ppm), treatment temperatures (20  $\degree$  to 40  $\degree$ ) and extraction times (2 h to 4 h) were investigated in terms of yield and AX content. The control indicates water extractable AX (WEAX) that lacked enzymatic treatment. The extraction yields are presented as mean ± standard deviation and experiments were conducted in triplicate. Dissimilar superscripts (<sup>a,b,c</sup>) highlight significantly different AX extraction yields among the various extraction treatments (P < 0.05).

**Table 2.** Effects of arabinoxylans (AXs) and lipopolysaccharides (LPS) on the growth

| 545 | and | viability | of | U937 | cells |
|-----|-----|-----------|----|------|-------|
|-----|-----|-----------|----|------|-------|

| Sample |                       | Untreated Co | ontrol      |           |             |           |             |           |
|--------|-----------------------|--------------|-------------|-----------|-------------|-----------|-------------|-----------|
|        | 50                    |              | 500         |           | 1000        |           | -           |           |
|        | Total count Viability |              | Total count | Viability | Total count | Viability | Total count | Viability |
| LPS    | 1.18±0.029            | 92.63%       | 0.92±0.05*  | 90.21%    | 0.91±0.024* | 88.15%    | 1.17±0.022  | 90.90%    |
| E-     | 1.21±0.021            | 90.60%       | 1.22±0.046  | 90.09%    | 1.23±0.032  | 90.70%    |             |           |
| WEAX   |                       |              |             |           |             |           |             |           |
| WEAX   | 1.25±0.026            | 90.72%       | 1.23±0.016  | 90.48%    | 1.24±0.037  | 89.60%    |             |           |

546 The total count ( $\times$  10<sup>6</sup> cells) indicates the number of total (viable and non-viable) U937 cells after various

547 AX treatments for 24 h. The viability (%) was calculated as the viable cell count/total cell count x 100.

548 The total cell count and viability after treatment with AXs or LPS were compared with the untreated

549 control by one way ANOVA, with the symbol \* highlighting a significant difference (P < 0.05). Total cell

550 *counts are presented as mean* ± *standard error of six replicate samples.* 

**Table 3.** NO production per million viable cells by U937 cells following treatment

with water extracted arabinoxylan (WEAX), enzyme extracted arabinoxylan (E-WEAX)



553 or lipopolysaccharides (LPS)

554 The  $NO_2$  concentration ( $\mu$ M), presented as mean  $\pm$  standard error of triplicate samples, is a measure of

555 NO production by U937 cells. The symbol \* indicates significant increase (P < 0.05) in NO secretion

556 following AX treatment at **all concentrations tested** compared to the untreated control. The symbol #

557 indicates a significant change in NO secretion (P < 0.05) the two indicated concentrations of samples. The

558 symbol @ indicates significant difference (P < 0.05) in NO secretion between treatment with E-WEAX and

treatment with WEAX at the same concentration. The symbol \$ indicates significant (P < 0.05) difference

560 in NO secretion between E-WEAX or WEAX treatment and LPS treatment at the same concentration.

# 561 Graphical Abstract









В.



| 583 |  |  |  |
|-----|--|--|--|
| 584 |  |  |  |
| 585 |  |  |  |
| 586 |  |  |  |
| 587 |  |  |  |
| 588 |  |  |  |
| 589 |  |  |  |
| 590 |  |  |  |
| 591 |  |  |  |
| 592 |  |  |  |
| 593 |  |  |  |
| 594 |  |  |  |
| 595 |  |  |  |
| 596 |  |  |  |
| 597 |  |  |  |
| 598 |  |  |  |
| 599 |  |  |  |
| 600 |  |  |  |
| 601 |  |  |  |
| 602 |  |  |  |
| 603 |  |  |  |
| 604 |  |  |  |
| 605 |  |  |  |
| 606 |  |  |  |
| 607 |  |  |  |

| Treatment conditions       |         | Monosaccharides compositions of AXs <sup>a</sup> |                             |                         |                         | Mw distributions of AXs <sup>c</sup> |                                       |                                     |                                     |                                       |
|----------------------------|---------|--------------------------------------------------|-----------------------------|-------------------------|-------------------------|--------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|
|                            |         | Ara(%)                                           | Xyl(%)                      | Glc(%)                  | Gal(%)                  | A/X <sup>b</sup>                     | Range 1:                              | Range 2:                            | Range 3:                            | Range 4:                              |
|                            |         |                                                  |                             |                         |                         |                                      | 10 <sup>5</sup> -10 <sup>5.9</sup> Da | 10 <sup>4</sup> -10 <sup>5</sup> Da | 10 <sup>3</sup> -10 <sup>4</sup> Da | 10 <sup>2.2</sup> -10 <sup>3</sup> Da |
| Control                    | Water   | 26.13±1.01                                       | $53.96 \pm 1.49^{\text{y}}$ | 10.62±2.04 <sup>x</sup> | $9.29\pm\!\!1.26^x$     | 0.48                                 | 46.46%                                | 32.06%                              | 19.11%                              | 2.37%                                 |
| Enzyme                     | 50 ppm  | 28.15±1.34                                       | 49.65±1.22 <sup>y</sup>     | 11.92±0.95 <sup>x</sup> | 10.28±1.32 <sup>x</sup> | 0.57                                 | 15.27%                                | 45.54%                              | 35.42%                              | 3.77%                                 |
| Concentration <sup>d</sup> | 100 ppm | 29.93±0.69                                       | 47.92±2.02 <sup>y</sup>     | 11.42±0.83 <sup>x</sup> | 10.74±1.23 <sup>x</sup> | 0.62                                 | 9.26%                                 | 40.29%                              | 46.72%                              | 3.72%                                 |
|                            | 200 ppm | 26.77±1.23                                       | 37.13±0.76 <sup>x</sup>     | 20.3±0.86 <sup>y</sup>  | 15.81±0.32 <sup>y</sup> | 0.72                                 | 7.17%                                 | 40.62%                              | 46.82%                              | 5.39%                                 |
|                            | 300 ppm | 27.11±0.76                                       | 35.37±2.92 <sup>y</sup>     | 21.32±1.03 <sup>y</sup> | 16.2±1.43 <sup>y</sup>  | 0.77                                 | 6.47%                                 | 40.09%                              | 48.88%                              | 4.56%                                 |
|                            | 400 ppm | 28.74±1.77                                       | 34.51±0.34 <sup>y</sup>     | 21.85±2.22 <sup>y</sup> | 14.9±2.32 <sup>y</sup>  | 0.83                                 | 5.75%                                 | 39.89%                              | 49.51%                              | 4.85%                                 |
| Treatment                  | 2 h     | 26.88±0.83                                       | 37.21±0.48                  | 20.3±0.63               | 15.61±0.78              | 0.72                                 | 7.33%                                 | 40.18%                              | 47.38%                              | 5.11%                                 |
| Time <sup>e</sup>          | 3 h     | 27.52±0.34                                       | 38.22±1.32                  | 19.84±0.63              | 14.42±0.79              | 0.72                                 | 7.48%                                 | 40.30%                              | 47.04%                              | 5.18%                                 |
|                            | 4 h     | 26.72±0.54                                       | 37.81±0.86                  | 20.01±0.89              | 15.46±1.46              | 0.71                                 | 7.13%                                 | 40.45%                              | 46.93%                              | 5.49%                                 |
| Treatment                  | 20 °C   | 27.11±1.82                                       | 39.04±1.64                  | 18.47±1.33              | 15.38±0.49              | 0.70                                 | 7.15%                                 | 40.52%                              | 46.87%                              | 5.46%                                 |
| Temperature <sup>f</sup>   | 30 °C   | 28.15±1.67                                       | 39.19±0.76                  | 18.01±2.55              | 14.65±0.64              | 0.72                                 | 7.05%                                 | 40.69%                              | 46.79%                              | 5.47%                                 |
|                            | 40 °C   | 26.67±1.05                                       | 37.22±0.35                  | 20.34±0.50              | 15.77±0.44              | 0.72                                 | 7.23%                                 | 40.45%                              | 46.75%                              | 5.57%                                 |

**Table S1.** The structural characteristics of arabinoxylan (AX) samples obtained under different enzyme extraction conditions.

a: The proportion of each monosaccharide in the AX sample is presented as mean + standard deviation and all experiments were conducted in triplicate. b: A/X represents the composition ratio of arabinose to xylose. c: The distribution (%) of AXs in different Mw ranges were analysed using the LC Data Analysis (SHIMADZU Corporation). d: The temperature range (20  $\degree$  to 40  $\degree$ ) indicates the extraction treatment temperatures, keeping other extraction conditions constant (pH 4.5, 2 h incubation 200 ppm endoxylanase); e: The time range (2 h to 4 h) indicates the different enzyme extraction times, keeping other extraction conditions constant (pH 4.5, 40  $\degree$ , 200 ppm endoxylanase); f: The enzyme concentration range (50 to 400 ppm) indicates the different enzyme concentrations during the extraction of AXs, keeping other extraction conditions constant (pH 4.5, 40  $\degree$ , 200 ppm conditions constant (pH 4.5, 40  $\degree$  for 2 h). Dissimilar superscripts ( $\degree, 9$ ) highlight significantly different AX extraction yields among the various extraction treatments (P < 0.05).