
Please cite the Published Version

Alsalami, Y, Yeun, C, Martin, TA and Khonji, M (2017) Linear and differential cryptanalysis of
small-sized random (n, m)-S-boxes. In: 11th International Conference for Internet Technology and
Secured Transactions (ICITST), 05 December 2016 - 07 December 2016, Barcelona, Spain.

DOI: https://doi.org/10.1109/ICITST.2016.7856751

Publisher: IEEE

Downloaded from: https://e-space.mmu.ac.uk/620057/

Usage rights: In Copyright

Additional Information: Paper presented at ICITST 2016 and published in the Proceedings.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1109/ICITST.2016.7856751
https://e-space.mmu.ac.uk/620057/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Noname manuscript No.
(will be inserted by the editor)

Linear and Differential Analysis of Small-Sized Random
S-Boxes

Y. Alsalami · M. Khonji · C. Y. Yeun ·
T. Martin

Received: date / Accepted: date

Abstract S-boxes are used in cryptography in order to provide non-linearity
in the design of cryptographic primitives such as block ciphers and hash func-
tions. Some cryptographic primitives use bijective S-boxes as in the Advanced
Encryption Standard (AES), and others use surjective S-boxes as in the Data
Encryption Standard (DES). S-boxes can have inputs and outputs of the same
length, i.e., 8 bits as in the case of AES (denoted by, (8, 8)-S-box), or alter-
natively their input length can be larger than its output length, i.e., 6 input
bits to 4 output bits as in the case of DES (denoted by, (6, 4)-S-boxes). In this
paper, we perform a statistical study of the linear and differential properties
of randomly generated (n,m)-S-boxes, where m ≤ n. We show that certain
S-boxes with good linear and differential properties can be feasibly obtained
via random search. We show further that certain types of S-boxes with specific
desirable linear and differential properties are improbable to occur randomly
if not impossible.

1 Introduction

Electronic communications nowadays are based on cryptographic primitives in
order to provide confidentiality of the information being transmitted. Shanon
in his seminal paper [18] highlighted two important concepts required to de-
sign any cryptographic primitive, namely, confusion and diffusion. Confusion
means to provide as complex as possible relationship between the plaintext,
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the ciphertext and the key, is achieved nowadays by the use of nonlinear com-
ponents in the design, such as the use of S-boxes. Diffusion, on the other hand,
means to spread out the relationship between these bits as fast as possible,
which is now achieved by the use of MDS (Maximum Distance Separable) [21]
and Pseudo-Hadamard Transform [11] matrices for example.

S-boxes are crucial components of any cryptographic primitive. If such
components are removed, these primitives can be easily broken by performing
linear analysis to the inputs, outputs and the secret key. The secret key bits
can then easily be deduced from the input and output bits using linear algebra
methods like Gaussian elimination. Therefore, it is essential that the S-boxes
used in any cryptographic primitive are nonlinear and very well crafted against
linear attacks. The well-known block cipher AES uses a bijective S-box of 8
bits length for both input and output [20, 8], while DES block cipher uses 8
surjective S-boxes of 6 and 4 bits length for input and output, respectively
[19]. Most other cryptographic primitives use either type of these S-boxes. For
example, the PRESENT cipher uses bijective S-boxes of length 4 bits [5] and
the hash function KECCAK uses a bijective S-box of length 5 bits [1].

In this paper, we study the linear and differential properties of bijective and
surjective S-boxes. The procedure we follow is based on randomly generating
large number of S-boxes of certain size, and we test their individual linear and
differential indicators (See section 3 for formal definitions). Then, we keep the
best and worst S-box generated so far with regard to these two measures. We
also perform a statistical study of the S-boxes linear and differential properties.
These two measures are used to thwart linear attacks and their generalizations
of Matsui [12] and differential attacks of Biham and Shamir [4]. The linear in-
dicator is intended to measure the linearity of the S-box we are using. (The
lower this value, the better its resistance to linear attacks.) The differential
indicator is also meant to measure the resistance of the S-box to differential
attacks and its generalizations. (The lower this value, the better its resistance
to differential attacks.) In block ciphers, designers use many rounds or itera-
tions of simple functions in order to improve the overall performance of the
cipher against both linear and differential attacks.

The rest of the paper is organized as follows. Section 2 presents the related
work. Notations and methodology are presented in section 3. Section 4 presents
the analysis on the tested DES-like S-boxes and their differential and linear
properties. Section 6 discusses the future enhancements of our analysis and
ideas to generalize to other types of S-boxes. Finally, Section 7 concludes our
study.

2 Related Works

In the paper [2], the authors study the linear and differential properties of
DES-like S-boxes which are balanced (6, 4)-function in which the four rows of
their truth tables are each a permutation (4, 4)-function. They first generate
random S-boxes suitable for use in the DES S-boxes of around 220 or almost
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1, 000, 000 of size 6 input bits and 4 output bits. Then, they test all of these
S-boxes for their maximum linear and differential indicators. They also keep
the best and worst S-boxes in terms of these two values. The authors also
emphasize that their analysis is geared towards getting optimal S-boxes when
having 6 input bits and 4 output bits against linear [12] and differential attacks
[4].

Previously, O’Connor has studied probabilistically what is the expected
value for linear and differential indicators [15, 13]. His studies only focus on
bijective S-boxes and he did not analyze surjective S-boxes with respect to
linear and differential S-boxes. He only studied DES-like S-boxes which are a
specific type of surjective S-boxes but not all in his paper [14]. We in this paper
fill out this gap at least numerically and deduce concrete conclusions on their
behaviour. With our analysis, surjective S-boxes can be selected with care with
respect to linear and differential attacks when used by cryptographers in their
design of cryptographic primitives.

Also in [17], the author studies the distribution of the DES-like S-boxes
with respect to all the design criteria imposed on the S-boxes of the DES
as mentioned in [7] to be consistent with the other components of the design.
The author however did not study the linear and differential properties of such
S-boxes without these additional restrictive constraints.

In this paper, we study such type of S-boxes, that is (6, 4)-S-boxes, and
others as well with respect to the most powerful linear and differential attacks.
We assume that the designers can carefully choose the other components which
mostly provide diffusion properties to the block cipher design. The optimal
components with respect to the diffusion is well known in the literature by the
usage of MDS and pseudo-Hadamard matrices as it is done in the design of
the AES [8, 20], Khazad [3], ARIA [10] and Anubis [16] for example.

3 Notations and Methodology

3.1 Notations

In this subsection, we present standard metrics and notations that are widely
adopted in cryptanalyzing any block cipher, and specifically their S-boxes [6].
Denote an (n,m)-S-box (or simply an S-box when the size of input and output
is irrelevant) by S(x) which is a vectorial Boolean (n,m)-function or simply
an (n,m)-function. Let Fn

2 denote the vector space of dimension n over the
finite field F2 = {0, 1}. Let Fn

2
∗ denote the vector space Fn

2 without the all
zero vector, i.e. 0 = (0, · · · , 0). The binary dot product between two vectors a
and b is defined as a · b =

∑n
i=0 aibi.

To measure how linear or nonlinear an S-box is, we use the following com-
mon measure:
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Definition 1 (Linear Property Indicator) Let S(x) be an (n,m)-S-box.
The linear property indicator of an S(x) is denoted by L(S) and is defined as:

L(S) , max
a∈Fn2

∗

b∈Fm2
∗

∣∣∣∣∣∣∣∣{x ∈ Fn
2 | a · x = b · S(x)}

∣∣∣− 2n−1

∣∣∣∣∣ (1)

We define also the Walsh transform of any (n,m)-function as:

Definition 2 Let S(x) be an (n,m)-S-box. We define the Walsh transform of
S(x) at (u, v) ∈ Fn

2 × Fm
2 as the discrete Fourier transform:

WS(u, v) =
∑
x∈Fn

2

(−1)v·S(x)+u·x

A related term which is also used widely in literature is the nonlinearity
or the linearity of an (n,m)-function, which is defined as:

Definition 3 Let S(x) be an (n,m)-S-box. The nonlinearity of S(x) is:

NL(S) = 2n−1 − 1

2
max
v∈Fm2

∗

u∈Fn2

∣∣∣∣∣∣
∑
x∈Fn

2

(−1)v·S(x)+u·x

∣∣∣∣∣∣
= 2n−1 − 1

2
max
v∈Fm2

∗

u∈Fn2

∣∣∣WS(u, v)
∣∣∣.

The quantity Lmax(S) = max v∈Fm2
∗

u∈Fn2

∣∣∣WS(u, v)
∣∣∣ is often called the linearity

of the S-box S(x). It is easy to show that the linear indicator is directly related
to the nonlinearity and linearity. This is shown as:

Lmax(S) , 2L(S). (2)

and we have also:

NL(S) , 2n−1 − L(S). (3)

Similarly, to measure the differential property of any S-box, we have the
following common measure which we refer to as the differential indicator:

Definition 4 (Differential Property Indicator) Let S(x) be an (n,m)-S-
box. The differential uniformity of S(x) is denoted by δmax(S) and is defined
as:

δmax(S) , max
a∈Fn2

∗

b∈Fm2

∣∣∣{x ∈ Fn
2 | S(x) + S(x+ a) = b}

∣∣∣ (4)

In general, in order to resist linear and differential attacks, the designer has
to keep these values as low as possible. These measures or their equivalents
are used by cryptographers to assess the block cipher resistance against such
attacks. For example in the AES block cipher, the designers keep these values
as low as possible using certain mathematical techniques to construct such
S-boxes [8].
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3.2 Random Generation of the S-boxes

In the phase of randomly generating (6, 4)-S-boxes, a random permutation
is done according to the Knuth’s shuffle which guarantees the uniformity of
the random generation [9]. We used standard rand() function in the C library
which is seeded by milliseconds. This is to ensure that we have different S-boxes
for our testing phase later. It is observed that the rand() function behaves
almost uniformly. Otherwise, one may end up generating similar S-boxes which
will shrink the search space.

3.3 Random Generation Algorithm

Algorithm 1 RandGenerate
Require: An (n, n)-S-box initially filled sequentially with items from S(0) = 0 to S(2n −

1) = 2n − 1; Number of output bits m.
Ensure: Having a randomly generated (n,m)-S-box S(x).
1: for i from 0 to 2n − 2 do
2: Take a random number j such that 0 ≤ j ≤ 2n − 2.
3: Swap S(i) and S(i+ j).
4: end for
5: for i from 0 to 2n − 2 do
6: S(i)← S(i) modulo 2m.
7: end for
8: return random (n,m)-S-box S(x)

3.4 Experiment Setup

In our experiments, we generated over 1 million random S-boxes. Each S-box
is tested with differential and linear cryptanalysis. We implemented all tests
using C programming language compiled with “-O3” optimization flag. A well
optimized C implementation generally obtains far better running time than
any other high level programming language. Additionally, since our basic oper-
ations are addition and multiplication, it is preferable to have a self-contained
implementation with a good degree of simplicity rather than using off-the-
shelf computer algebra software (e.g., Mathematica, PARI/GP). The machine
specifications are illustrated in 3.4.

4 Analysis of the Randomly Generated DES-like S-boxes and their
Distribution Table

In this section, we will present our linear and differential cryptanalysis on the
DES-like S-boxes which we have generated using Knuth’s Shuffle method.
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Machine

Product Intel(R) Core(TM)2 Duo CPU @ 1.66GHz

RAM 1GB

Bus 64 bits

Operating
Linux 2.6.34 with GCC version 4.2.4

System

Table 1 System configuration of the platform which performs the S-boxes testing

4.1 Distribution Table of the DES-like S-boxes in terms of their Linear and
Differential Indicators

After running the test for 3,676 seconds or 1 hour and 1 minute, we have found
the following distribution of the S-boxes in terms of their maximum differential
and linear indicators. Also, the reader should be very clear that this test has
been run several times and this is only one instance of these runs. The others
look the same in terms of the distribution.

We present the distribution of these linear and differential indicators in
Figure 1 and Table 2 and we note that we did not get values for the differen-
tial indicator higher than 30 and for the linear indicator lower than 10. It is
important to keep in mind that for a linear or almost linear S-box, one can
obtain easily higher values for the differential and linear indicators.

L\ δmax 12 14 16 18 20 22 24 26 28 Sums

10 174 591 181 31 2 0 0 0 0 979
12 10559 131768 111500 30168 5338 796 105 7 0 290241
14 5469 161872 248296 98979 23385 4241 740 124 15 543121
16 413 26204 66551 37938 11219 2446 505 93 14 145383
18 8 1888 7760 6136 2151 523 118 20 2 18606
20 0 60 558 579 270 63 19 1 2 1552
22 0 0 23 45 29 7 2 1 0 107
24 0 0 1 1 0 0 0 0 0 2

Total 16623 322383 434870 173877 42394 8076 1489 246 33

Table 2 Distribution of Linear L and Differential δmax properties of randomly generated
DES-like (6, 4)-S-boxes.

In fact to be more precise, we did not count the number of S-boxes where
L or δmax < 10 or where L or δmax > 28. In fact, the output of running our
program will print for you the S-boxes corresponding to these values excep-
tionally. Therefore, there is no loss of information here but only the counting
is done excluding these extremes.

4.2 Best and Worst DES-like (6, 4)-S-boxes

The highest δmax we have obtained is 30 and the lowest one is 12. For L, the
highest L is 24 and the lowest L is 10. Therefore, the best S-box (i.e. with



Linear and Differential Analysis of Small-Sized Random S-Boxes 7

Fig. 1 Distribution of the differential and linear indicators of the random DES-like (6, 4)-
S-boxes. The z-axis represents the the number of (6, 4)-S-boxes satisfying (δmax, L) in the
(x-axis,y-axis) respectively

the lowest L and δmax together) is with δmax = 12 and L = 10. And the
worst S-Box (i.e. with the highest L and δmax together) is with δmax = 28 and
L = 20 or when δmax = 26 and L = 22. Here we list some of the S-boxes with
their δmax and L values:

– S-box with worst found δmax: This corresponds to Table 3.
– S-box with worst found L: This corresponds to Table 4.
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Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 12 9 14 5 1 8 4 11 15 3 2 10 0 7 6 13
2 11 7 13 5 0 9 10 4 14 1 8 2 15 6 12 3
3 2 5 12 8 9 14 3 15 11 13 7 4 6 0 10 1
4 3 13 11 12 7 1 14 15 2 5 10 0 9 8 6 4

Table 3 S-box with δmax = 30 and L = 16:

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 5 13 6 15 3 0 8 9 4 12 7 2 11 10 14
2 8 0 15 6 1 5 9 2 10 14 13 7 12 4 3 11
3 4 5 7 3 12 14 1 9 13 2 6 10 8 11 15 0
4 3 13 10 14 15 12 2 11 8 0 7 4 6 1 9 5

Table 4 S-box with δmax = 16 and L = 24:

– S-box with worst found δmax and L: This corresponds to Table 5.

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 7 9 2 3 0 11 12 14 15 5 10 1 8 13 6 4
2 14 6 0 10 11 3 4 7 5 2 9 1 8 13 15 12
3 2 7 8 15 13 14 9 11 10 0 6 4 5 3 12 1
4 11 5 2 10 7 15 8 0 3 14 12 4 13 6 1 9

Table 5 S-box with δmax = 26 and L = 20:

– S-box with best found δmax and L: This corresponds to Table 6.

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 15 4 7 0 10 12 1 14 13 6 2 5 8 11 9
2 2 10 13 9 5 4 14 8 12 7 11 0 3 6 1 15
3 13 3 1 11 0 12 9 2 5 7 4 8 14 15 6 10
4 8 14 10 13 2 5 3 12 6 11 4 1 9 0 15 7

Table 6 S-box with δmax = 12 and L = 10:

The maximum number of S-boxes which are generated randomly corresponds
to the pair (δmax, L) = (16, 14) which has almost 25% of the total number of
S-boxes generated. Then, the next pair (δmax, L) = (14, 14) has a percentage
of 16% and thirdly the pair (14, 12) according to Table 7.

We have used also simple C programs to produce the differential and linear
distribution tables which corresponds to the DES (6, 4)-S-boxes as shown in
Table 8 or other randomly generated S-boxes like the above ones.
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Rank (δmax, L) #S-boxes Percentage

1 (16,14) 248,296 24.83%

2 (14,14) 161,872 16.19%

3 (14,12) 131,768 13.18%

4 (16,12) 111,500 11.15%

5 (18,14) 98,979 9.90%

6 (16,16) 66,551 6.66%

7 (18,16) 37,938 3.79%

8 (18,12) 30,168 3.02%

9 (14,16) 26,204 2.62%

10 Others 86,724 8.67%

Table 7 Rankings of the randomly generated DES-like (6, 4)-S-boxes classes in terms of
their differential and linear indicators

DES S-box # δmax L

1 16 18

2 16 16

3 16 16

4 16 16

5 16 20

6 16 14

7 16 18

8 16 16

Table 8 Differential and linear indicators of the DES (6, 4)-S-boxes

5 Analysis of Balanced Bijective and Surjective (n,m)-S-boxes
where m ≤ n

5.1 Analysis of (4,m)-S-boxes

We observe from Tables 9, 10 and 11 that we did not obtain any S-boxes with
differential uniformity of 14. This is a nice observation but it does not directly
affect the problem of choosing good S-boxes because a differential uniformity
of 14 is a bad choice cryptographically. We also know from different sources
that a bijective APN (4, 4)-function does not exist by exhaustively testing out
all of these bijective (4, 4)-functions.

We also know from theory that bent (4, 2)-functions exist and have a dif-
ferential uniformity of 4. However, they are not balanced. Also, we know that
differentially 6-uniform (4, 2)-functions exist as well from Chapter 5. However,
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it is not known whether all differentially 6-uniform (4, 2)-functions are not
balanced or there exist some balanced ones.

L\δmax 4 6 8 10 12 14 16 RSum

4 3595 4930 260 0 0 0 0 8785
6 1570 54612 27777 3541 256 0 1 87757
8 0 566 1631 927 323 0 11 3458

CSum 5165 60108 29668 4468 579 0 12

Table 9 Distribution of Linear L and Differential δmax properties of randomly generated
(4, 4)-S-boxes.

L\δmax 6 8 10 12 14 16 RSum

4 151789 156045 12001 1312 0 120 321267
6 36990 417731 180412 27397 0 232 662762
8 0 1995 6942 6561 0 473 15971

CSum 188779 575771 199355 35270 0 825

Table 10 Distribution of Linear L and Differential δmax properties of randomly generated
(4, 3)-S-boxes.

L\δmax 8 10 12 14 16 RSum

4 913658 4086404 1077119 0 42720 6119901
6 0 1844387 1914770 0 50178 3809335
8 0 0 48474 0 22290 70764

CSum 913658 5930791 3040363 0 115188

Table 11 Distribution of Linear L and Differential δmax properties of randomly generated
(4, 2)-S-boxes.

5.2 Analysis of (5,m)-S-boxes

In this category of S-boxes, we have observed from these tables that when
m decreases, the linear indicator values decrease and the differential unifor-
mity increases. We know from Chapter 5 that differentially 6-uniform (5, 3)-
functions exist but it is not known whether all of them are balanced or not.
From Table ?? in Appendix B, this can be seen that possible differentially
6-uniform (5, 3)-S-boxes can occur if we test more S-boxes in this category as
can be predicted from the values in this table.

Another important observation from these tables is that in Tables ?? and
?? in Appendix B we have balanced S-boxes having differential uniformity in
the range [2n−m, 2n−m+1]. This gives an answer to this interesting question
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Fig. 2 Distribution of the linear indicators L of the random (7, 1)-S-boxes.

we have raised in Chapter 5 before. We know also that balanced APN (5, 5)-
S-boxes exist within this category as with Gold, Kasami, Welch, Niho, Inverse
and Dobbertin (5, 5)-functions. We also observe that the Boolean (5, 1)-S-
boxes have a differential uniformity always divisible by 4. This observation is
also visible in the (7, 1)-S-boxes as well. Whether this behaviour is specific to
these Boolean (n, 1)-functions or for an of them is an interesting theoretical
question.

When we plot the distribution of the randomly generated S-boxes versus
the linear indicator we get the following probability distribution. In Figure
2, we plot the linear indicator versus the number of (7, 1)-S-boxes which are
randomly generated and that satisfy each linear indicator. In other words, we
plot the RSum of Table ?? from Appendix B. This probability distribution
looks similar to that of a Gamma probability distribution with a given mean
and spread factor. It remains open how to fit such graphs with the Gamma
probability distribution.

In Figure 3, we plot the differential uniformity versus the number of (7, 1)-
S-boxes which are randomly generated and that satisfy each differential uni-
formity, which we refer to by CSum in Table ?? from Appendix B.

6 Discussion and Further Enhancements

In order to improve our analysis, we propose the following enhancements to
be done on our testing procedures and the following generalizations for our
analysis as well:

– Testing more random S-boxes will give more insight into what can be done
to improve the S-boxes of the DES until we reach all the possible DES
(6, 4)-S-boxes. By testing more S-boxes, we can get possibly more insights
into what is possible and impossible to get for the extreme low values of
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Fig. 3 Distribution of the differential uniformities δmax of the random (7, 1)-S-boxes.

the differential and linear indicator of these S-boxes when n
2 < m < n for

n is even and when m < n when n is odd.
– One can do improve the generation process by generating the random S-

boxes only once and keeping track of such S-boxes generated so that one
is certain that some S-boxes do not occur twice or more. Even though the
method we are using does not generate much repetition of S-boxes, it will
give more certain results.

– One can implement the additional criteria of the S-boxes of DES mentioned
in [7] in order to eliminate so many of the randomly selected S-boxes and
cryptanalyze such S-boxes. This would guarantee efficient elimination and
sieving procedure for such a large number of possible S-boxes.

7 Conclusion

AES and DES S-boxes are not randomly selected but they have been tested
against many cryptanalysis attacks taken into consideration at the design
stages. However, at that time when DES was designed their S-boxes were
chosen to thwart differential attacks but not all types of linear attacks as
stated by Coppersmith in [7]. Coppersmith also mentioned that they have de-
signed DES S-boxes to avoid other attacks as well which are not covered in
our cryptanalysis here. AES on the other hand has been selected to withstand
both linear and differential attacks. Additionally, our cryptanalysis based on
linear and differential characteristics provides a very good and essential tool
for testing bijective S-boxes, as in AES, and surjective S-boxes, as in DES,
for any block cipher which have to be resistant against differential and lin-
ear cryptanalysis. We have seen that the linear and differential properties for
these types of S-boxes follow a certain probability distribution most likely the
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Gamma distribution. It remains open what are the exact parameters for this
probability distribution. We also hope that our analysis can stimulate more
research in proving the existence or in-existence of certain types of surjective
(n,m)-S-boxes.
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