
The Evolutionary Resilience of Distributed
Cellular Computing

Matteo Cavaliere1 and Alvaro Sanchez2

1 University of Edinburgh, UK,
mcavali2@staffmail.ed.ac.uk,

2 Yale University, USA
alvaro.sanchez@yale.edu

Abstract. Individual cells process environmental information relevant
to their functions using biochemical processes and signalling networks
that implement a flow of information from the extracellular environment,
across the cell membrane to the cytoplasm in which the actual cellular
computation takes place (in the form of gene expression). In many cases,
the environmental information to be processed are either molecules pro-
duced by other cells or shared extracellular molecules - in this case the
processing of the environmental information is a distributed, highly par-
allel computing process, in which cells must synchronize, coordinate and
cooperate. While the ability of cells to cooperate can increase their over-
all computational power, it also raises an evolutionary stability issue -
population of cooperating cells are at risk of cheating cells invasions,
cells that do not cooperate but exploit the benefits of the population.
The bridge between membrane computing (as a mathematical formaliza-
tion of cellular computing) and evolutionary dynamics (as mathematical
formalization of Natural selection) could lead to interesting insights on
the evolutionary stability of cellular computing.

1 How much cells can compute

Populations of living cells can be seen as systems that implement information
processing in a distributed manner. This is a repeated motif in biology, where ex-
amples of biological systems that are distributed, process information and make
decisions without a centralized coordinator occur at multiple levels of organi-
zation [10, 14, 16]. Several authors have tried to understand the similarities and
differences between distributed computations in biological and human-designed
systems (e.g., see [14] for a recent review). Distributed information processing in
cellular populations is often result of the interplay between inter-cellular com-
munication and cellular physiology. Cells can often secrete signaling molecules
which, through the activation of internal signaling networks, affect other cells’
behavior. This form of cellular communication endows populations of cells with
the ability to synchronize their actions. In turn, the ability of single cells to syn-
chronize their decisions may lead to populations of cells to overcome individual
cellular limitations to processing environmental information [12, 3, 14]. A natural

question is then how one could quantify these aspects of cellular information-
processing [16]

One of the possible approaches, inspired by computer science and automata
theory, is membrane computing that propose a formal mathematical framework
to investigate the computing power of living cells [15]. We briefly revise here
a specific membrane computing model based on agents that can process infor-
mation internally or in coordination with other cells, highlighting the essential
point that higher computing power can only be obtained when the cells are
able to coordinate (when individual cells are sufficiently simple). However, an
important aspect that is generally not considered in membrane computing (and
similar biologically-inspired models of cellular computation) is that a population
of cells is subject to Natural selection - cells compete for resources and different
cells can replicate at different rates.

This leads to a key problem. Distributed cellular computing relies on the
coordination of the different cells in the population by endogenously produced
shared molecules. Since these molecules are thus public goods, their produc-
tion can suffer from the spreading of cheating mutants: cells that benefit from
the public good (in this case the enhanced powers of information processing
achieved by the population), but which do not contribute to its production [11].
Because these such non-producing cheating cells enjoy the benefits but avoid
paying the metabolic costs associated to the production and secretion of the sig-
naling molecules, they have an advantage over the producer cells and will divide
faster, spreading in the population and ultimately collapsing the coordination
mechanism (and the overall cellular computation). This paper briefly reviews the
relevant aspects of this issue and tries to suggests that the bridge between mem-
brane computing and evolutionary dynamics could lead to interesting insights
on this problem and, more in general, on the evolutionary stability of cellular
computing.

2 A Colony of Synchronizing Agents (CSA)
computational framework of cellular synchronization

The issue of evolutionary resilience as described above appears independent of
the specific mathematical formalism; however, to provide a simple example of
how one could quantify the role of cellular synchronization (from a computa-
tional perspective) we briefly review a model of membrane computing called
CSA (colony of synchronizing agents) inspired by the interactions between liv-
ing cells [1] (clearly, the questions driving this paper could also be reformulated
in other frameworks of biological computing and cellular decision-making [16,
14]).

The model CSA abstracts intracellular and intercellular mechanisms of cel-
lular populations in terms of multisets-rewriting (often used to analyze the com-
putational aspects of biochemistry [22]). As several models in membrane com-
puting, it is based on a multiset of agents (cells) in a common environment.
Each agent has a local contents, stored in the form of a multiset of atomic ob-

jects, updated by multiset rewriting rules which may act on individual agents
(intracellular action) or synchronize the contents of pairs of agents (intercellular
action). Intercellular actions are abstractions of the process in which cells change
synchronously their contents by using a shared environmental molecules (using
a terminology from game theory [11], such shared molecule could constitute a
public good).

A general approach to quantify the computation power of a system is to
compare it with an appropriate device from formal language theory and multiset-
rewriting.

In this paper we use only basic aspects of this theory - a more complete
introduction can be found in the corresponding book chapter of the membrane
computing handbook [15] and in the introductory book on automata theory [8].

The computational model (called CSA [1]) is based on a population/colony
of agents (e.g., corresponding to cells) in a common environment, able to modify
their contents and to synchronize with other agents in the same environment.
Each agent has a contents represented by a multiset of atomic objects (e.g., corre-
sponding to chemical compounds or the characteristics of individual molecules)
with some of the objects classified as terminals (e.g., corresponding to prop-
erties or chemicals visible to an external observer). An agent’s contents may
be modified independently of other agents by means of multiset rewriting rules
(called internal rules) which can mimic biochemistry or other types of intracellu-
lar mechanisms. Moreover, the agents can influence each other by synchronously
changing their contents using pairwise synchronization rules (this represents the
ability of the cells to coordinate). Rules are global, so all agents obey the same
rules: the only feature which may distinguish the agents is their contents. Dy-
namics of CSAs are defined as sequences of transitions obtained by applying the
rules to the agents (i.e., cells). These transitions thus mark the passage of the
system from one configuration to another.

To evaluate its computing power, one can interpret CSAs as computational
devices and can thus study CSAs by applying tools from classical fields of com-
puter science, such as formal language and automata theory. This is usually done
by defining computations of CSAs the trajectories that reach halting configu-
rations, i.e. configurations where the contents of the agents can no longer be
changed because no rules may be applied (this situation can be interpreted as a
particular kind of steady state of the system). We are interested in the config-
uration of the colony when a halting condition is reached and we may take the
precise contents of the agents as the output (the result) produced by the CSA.

The model has similarities with cellular automata (CAs) another computa-
tional formalism widely used to simulate and model cellular populations [9]. In
CAs, cells exist on a regular grid, where each cell has a finite number of possible
states and where cells react to or with a defined neighbourhood. In the presented
model, because of the multiset-based contents and because of the arbitrary mul-
tiset rewriting rules, a cell may have infinitely distinct states and could interact
with an arbitrary number of other cells.

From a computational point of view, cellular automata that use synchronous
update are computational complete (i.e., equivalent to Turing machines), even
when employing simple rules (e.g., rule 110 [9]).

In our case, to characterize the computing power of the presented CSAs and
describe their dynamics we use few basic concepts from formal language theory
and multisets rewriting.

We denote by |A| the cardinality of set A and by ∅ the empty set. By V ∗ we
denote the set of all strings (sequences of symbols) over V . By V + we denote the
set of all strings over V excluding the empty string. The empty string is denoted
by λ. The length of a string v is denoted by |v|. The concatenation of two strings
u, v ∈ V ∗ is written uv.

The number of occurrences of the symbol a in the string w is denoted by
|w|a. We denote by N the set of natural numbers and use standard set operations
union, intersection and inclusion denoted by ∪, ∩ and ⊆, respectively.

The Parikh vector (also called Parikh image) associated to a string x, with
respect to an alphabet V , is denoted by PsV (x). We then denote by PsV (L) the
Parikh image of L, with respect to the alphabet V .

Given a multiset M , we denote by M(a) the multiplicity (i.e., number of
occurrences) of the symbol a in the multiset M . We denote by card(M) the
cardinality of the multiset M .

For multisets M and M ′ we write (M ⊆ M ′) to denote that M is included
in M ′. The sum of multisets M and M ′ is written as the multiset (M +M ′) and
the difference between M and M ′ is written as (M −M ′). We denote by M(V)
the set of all possible multisets over V and by Mm(V) the set all multisets over
V having cardinality m.

As originally defined in [1], a Colony of Synchronizing Agents (CSA) of degree
m is a construct Π = (A, T,C,R) in which

• A is a finite alphabet of symbols (its elements are called objects). T ⊆ A is the
set of terminal objects.

• An agent over A is a multiset over the alphabet A (an agent can be represented
by a string w ∈ A∗, since A is finite). C is the initial configuration of Π and it
is a multiset of agents, with card(C) = m.

• R is a finite set of rules over A. We have internal rules of type u → v, with
u ∈ A+ and v ∈ A∗, and synchronization rules of the type 〈u, v〉 → 〈u′, v′〉 with
uv ∈ A+ and u′, v′ ∈ A∗.

An occurrence γ of an internal rule r : u→ v can be applied to an agent w by
taking a multiset u from w (hence, u ⊆ w) and assigning it to γ (i.e., assigning
the occurrences of the objects in u to γ). The application of an occurrence of
rule r to the agent w consists of removing from w the multiset u and then adding
the multiset v to the resulting multiset.

An occurrence γ of a synchronization rule r : 〈u, v〉 → 〈u′, v′〉 can be applied
to the pair of agents w and w′ by: (i) taking from w a multiset u (hence, u ⊆ w)
and assigning it to γ; (ii) taking from w′ a multiset v (hence, v ⊆ w′) and
assigning it to γ. The application of an occurrence of rule r to the agents w and
w′ consists of: (i) removing the multiset u from w and then adding the multiset

u′ to the resulting multiset; (ii) removing the multiset v from w′ and then adding
the multiset v′ to the resulting multiset.

Adopting a simplification often used in the area of membrane computing, we
assume the existence of a global clock which marks the passage of units of time.

A configuration of a CSA, Π, consists of the agents present in the colony
at a given time. We denote by C(Π) the set of all possible configurations of Π.
Therefore, using the notation introduced before, C(Π) is exactly M(H) with
H = M(A).

A single transition of Π from an arbitrary configuration c of Π to the next
one lasts exactly one time unit and is obtained by applying the rules in the
set R to the agents present in c in an asynchronous way. This means that, for
each agent w and each pair of agents w′ and w′′ present in c, the occurrences
of the objects of w,w′ and w′′ are either assigned to occurrences of the rules,
with the occurrences of the objects and the occurrences of the rules chosen in a
non-deterministic way, or left unassigned. A single occurrence of an object may
only be assigned to a single occurrence of a rule. In a transition any number
of occurrences of rules (zero, one, or more) can be applied to the agents in the
configuration c.

A sequence (possibly infinite) 〈C0, C1, · · · , Ci, Ci+1, · · ·〉 of configurations of
Π, where Ci+1 is obtained from Ci, i ≥ 0, by a transition is called a trajectory
of Π. A trajectory of Π is said to be halting if it halts, that is if it is finite and the
last configuration of the sequence is a halting configuration, i.e., a configuration
containing only agents for which no occurrences of rules from R can be applied.

A trajectory of Π that is halting and that starts with the initial configuration
of Π is called a computation of Π. The result/output of a computation is the set
of vectors of natural numbers, one vector for each agent w present in the halting
configuration with the vector describing the multiplicities of terminal objects
present in w. More formally, the result of a computation which stops in the
halting configuration Ch is the set of vectors of natural numbers {PsT (w) | w is
an agent present in Ch}.

Because of the way rules can be applied, several possible computations of Π
may exist. Taking the union of all the results for all possible computations of Π,
we get the set of vectors generated by Π, denoted by PsT (Π) (that, informally,
is what the colony of cells ”compute”).

Example 1. A CSA with degree 3 is defined by the following.

Π = (A, T,C,R) with A = {a, b, c}, T = {a}, C = {(abcba, 1), (abbcc, 1),
(bab, 1)} = {abcba, abbcc, bab}.

The rules R = {r1 : abca→ ba, r2 : 〈abc, cc〉 → 〈aa, cb〉}.
The application of an occurrence of internal rule r1 to the agent abcba in the

configuration C is shown diagrammatically in Figure 1(a).

The application of an occurrence of the synchronization rule r2 to the pair
of agents abcba and abbcc in the configuration C is shown diagrammatically in
Figure 1(b).

(a) Internal rule r1 applied to C (b) Synchronization rule r2 applied to C

Fig. 1. Alternative application of rules r1 and r2 to configuration C from Example 1.

A more complex example of part of a trajectory is presented in Figure 2(a):
Π ′ = (A′, T ′, C ′, R′) with the initial configuration C ′ = {(ac, 2), (a, 1)} and rules
R′ = {ac→ aa, a→ b, 〈aa, aa〉 → 〈ab, ab〉, 〈ab, d〉 → 〈bb, d〉, b→ d}.

In the next Example we show how the output (result) produced by a CSA is
obtained.

Example 2. Consider a CSA Π = (A, T,C,R) with A = {a, b, c, d, e, f}, T =
{e, f}, C = {(ab, 1), (bc, 1), (bd, 1), (a, 1)}. The rules in R are
{r1 : 〈ab, bc〉 → 〈eff, eff〉, r2 : 〈ab, bd〉 → 〈eff, eff〉}.

There are only two possible computations of Π and these are represented
diagrammatically in Figure 2(b).

In this case, we have that the output of the system is PsT (Π) = {(1, 2), 0}.
Informally, this is what the colony of cells Π computes (a set of vectors of natural
numbers).

In fact, we have two possible halting configurations (for the two computa-
tions).

This outcome can be understood in the following manner. In the first halting
configuration we have the agent (in two copies) eff whose associated Parikh
vector (with respect to T) is (1, 2) and the agents bd and a, whose associated
Parikh vectors (with respect to T) are null vectors 0 (these agents do not con-
tain any terminal object from T). Then the result of this computation is the
set of vectors {(1, 2), (1, 2), 0, 0} = {(1, 2), 0} with each vector describing the
multiplicities of the terminal objects in the agents in the halting configuration.

In the second halting configuration we have the agent (in two copies) eff
whose associated Parikh vector (with respect to T) is (1, 2) and the agents bc and
a, whose associated Parikh vectors (with respect to T) are null vectors. Then,
also in this case, the result of the computation is the set of vectors {(1, 2), 0}

Taking the union of the results for the (two) possible computations we get
the overall output PsT (Π) = {(1, 2), 0} ∪ {(1, 2), 0} = {(1, 2), 0}.

(a) Trajectories of Π ′ of (b) The two possible
Example 1 computations of Π of Example 2

Fig. 2. Trajectories and computations.

The examples show a specific instance of a CSA but one can study the general
computing power of this class of devices. How much CSAs can compute (i.e.,
assuming one could design/program arbitrary internal and synchronizing rules)?

As proved in [1], if the internal rules of the cells are sufficiently restricted,
then the ability for the cells to coordinate (i.e., to employ synchronizing rules)
is crucial to get high computational power, i.e., to simulate powerful computing
devices such as register machines and Turing machines. In fact, when cells can
coordinate, one can formally prove that CSAs are equivalent to a specific class of
register machines (called blind [15]), i.e., they can be programmed to compute
whatever blind register machines can do. On the other hand, if cells are unable
to coordinate then their overall computing power is much more limited [1].

3 The Evolutionary Instability of (Distributed) Cellular
Computation

Cellular populations are able to process more complex environmental informa-
tion by synchronizing or coordinating their responses. As presented in the pre-
vious section, this can be formally shown using an abstract agent based model.

Synchronization is a key ingredient of this model, allowing the population to sim-
ulate the computations of register machines. Similar results that stress the impor-
tance of synchronization, i.e., coordination, between a population of cells/agents
can be found for other models of membrane computing [15] and bio-inspired
computation [10].

In many biological scenarios, synchronization is essentially based on the pos-
sibility to communicate either trough a shared environment or using diffusible
signaling molecules [16, 11].

In this last case, at least some of the cells must be able to produce and secrete
the diffusible molecule. Such producers are cooperators paying an individual cost
to produce a public good: a signal that allows the cells to coordinated their
response to a stimulus. The overall computing power of the population is then
in the hands of those cells that choose to contributing. However, the public
goods nature of the computation is potentially threatened by the endogenous
appearance of cheaters or free-riders, cells that take advantage of the enhanced
computing power that is mediated by public good, but which do not contribute
to its production, avoiding paying the costs associated to it. In situations where
the cost-benefit breakdown is favorable to these cheaters, cheating cells may
ultimately spread in the population disrupting the ability of the cells to properly
process environmental information [11].

In summary, when the ability to perform powerful computations is based on
cellular coordination, within-group competition may make cellular coordination
inherently evolutionary unstable. One could then hypothesize an endogenous
evolutionary cost for distributed cellular computing which would be on top of
the energy cost for cellular computations [13]. Given this cost, one may then
ask how cellular information-processing, and more generally cellular computing,
could be distributed among cells so that it is evolutionary resilient to cheaters.

One of the possibilities is the presence of an interplay between cellular infor-
mation processing and the eco-evolutionary dynamics that characterize the cel-
lular population, as presented in recent works [2, 4]. Proper cellular information-
processing could minimize the risk of cheaters spreading when coupled to specific
ecological constraints. This is reminiscent of the connection between optimal
decision-making and the particular environment where they are to be applied,
as discussed by H.A. Simon [20].

This possibility was investigated computationally by Cavaliere and Poyatos
in [2]. In this paper, the authors analyze communities of cells structured in
colonies that recurrently are recreated and whose growth depends on a public
good (as in the standard Hamilton’s group model [21]). The emergence (by
mutation) of free-riders (cheaters) that do not contribute but use the accessible
public good leads to the demographic collapse of the population. The authors
also found that low densities (following the spreading of cheaters and lack of
public good) can facilitate the recover of cooperation (i.e., of producer cells) due
to a phenomenon called Simpson’s paradox [21], but on the other hand they may
also lead to demographic extinctions [2]. The risk of extinction can be minimized
when the cells use proper cellular information-processing, whereby the amount

investment in the public good can be adjusted in response to the structure of
the population, i.e. the fraction of other cooperators in it.

Results in [2] (and presented in Figure 3) show that the optimal kinds of
cellular information-processing depend on the ecological constraints (the size of
the colonies) and on the efficiency of the public good. For low efficiency of the
public good (and sufficiently small colony size) the optimal cellular decision-
making consists in withholding production of public goods when cheaters are
detected above a certain threshold (this is called positive plasticity). The reac-
tion to cheaters invasions is interrupted as result of the feedback between the
cellular decision and colonies assortment stressing how limited information pro-
cessing can be efficient due to the specific ecological structure in which they are
applied [20].

However, such type of decision making does not work when the cellular pop-
ulation is structured in large colonies. In this case, negative plasticity is a better
strategy. Such strategy maintains the population in a dynamical equilibrium with
the largest possible amount of non-producers that minimizes cheaters advantage
but is compatible with population growth. In this case cells do not produce
public good unless thy need it - population density reaches critical values.

These results were consistent with later analytical work based on the Ecolog-
ical Public Goods Game (EPGG), which found that strategies akin to negative
plasticity can sustain cooperation in a way that is both ecologically and evolu-
tionary resilient [17]. In this work, Rauch et al. considered an implementation
of the Ecological Public Goods Game [6, 7], where cooperators were allowed to
implement either fixed strategies with different investment levels, or facultative
strategies where the amount of public good that cooperators produced could be
tuned in response to the density of cooperators in the population. These authors
found that the structure of the EPGG causes an inherent tradeoff between eco-
logical resilience (the ability to recover from perturbations that cause a sudden
increase in mortality) and evolutionary resilience (the ability to resist invasion
by cheaters). Cooperators that use a (typically low) fixed investment strategy
cannot avoid this tradeoff, and therefore strategies that are non-invasible by
cheaters have low ecological resilience and are prone to extinction in a fluctuat-
ing environment. On the other hand, cooperators that are highly stable to such
ecological stressors (by producing large amounts of the public good) were very
sensitive to invasion by cheaters, which would take over the population and drive
cooperators to exceedingly low frequencies.

However, cooperators that used facultative rather than fixed investments
were able to circumvent this tradeoff and reach high levels of ecological re-
silience while remaining fully resistant to invasion by cheaters. The facultative
strategies that yielded this behavior were reminiscent of the negative plastic-
ity strategies that Cavaliere and Poyatos found stabilized cooperation in agent
based simulations. The two studies differ in the exact nature of the facultative
or plastic strategies. In the EPGG-based analytical model, the amount of in-
vestment (rather than the probability to invest or not, as was the case for the
computational model) was modulated in the facultative strategy. In addition, the

B

time

P
o
p
u
la

ti
o
n

0

150

300

A

ra
ti

o
 a

ll
 P

g
ro

u
p
s

0

1

P
o
p
u
la

ti
o
n

0

150

300

DC
time

timetime
0

0.1

0.2

V
ar

ia
n
ce

nP

P

1-q>

q>

P

nP

1-q<

q<

and

+ plast.

- plast.

P
1-q<

q<

nP nP

P

1-q>

q>

Fig. 3. Cellular decision-making can repress cheating cells. Cellular
information-processing can alter the evolutionary dynamics and constrain the spread-
ing of cheaters in communities of cells structured in colonies, i.e., Hamilton’s group
model [21] (Figures from [2]). Tick arrows denote the cellular decision to switch to
production (P) or non production (nP) of the public good; q denotes the individual
chances to switch to nP given the amount of public good received. (A) Positive plastic-
ity consists in producing public good, stopping it as response to cheaters. This causes
a fast reduction of the amount of public good and consequently of population density.
After cheater invasion is stopped, the population finally evolve to the initial scenario of
all cells producing (B). (C) A population of negative plastic producers is characterized
by its permanent low density favored by the constant presence of non-producing cells
which helps controlling cheaters invasion. (D) The success of the decision-making is
coupled to the ecological constraints as it is related to the colonies heterogeneity, i.e.,
positive plasticity transiently modifies the inter-colonies variance to control cheaters.
This contrasts with the relatively constant variance observed in a population of nega-
tive plastic producers (variances correspond to time series (B) and (C), respectively).

analytical model consider infinitely large populations and produced deterministic
dynamics, whereas the computational models considered finite populations, and
thus stochastic dynamics. Agent based simulations with large population sizes
displayed behavior that was consistent with the analytical model, thus bridging
the two approaches.

Altogether, these two studies showed that if cellular information-processing
is properly coupled to environmental constraints, then cheaters spreading can
be minimized, public goods production can be maintained, and this may facili-

tate the presence of cellular coordination (hence, more complex kinds of cellular
computations, as discussed above).

Beyond the realm of theoretical speculation, the basic types of cellular decision-
making outlined above (negative or positive plasticity) are often found in nat-
ural scenarios [4]. Intriguingly, the types of strategies used by microbes in na-
ture are consistent with the strategies predicted by mathematical and computa-
tional models to stabilize cooperation. Negative plasticity resembles the notion
of facultative cheating, a cellular strategy implemented by different molecular
mechanisms: generation of iron-scavenging pyoverdin molecules –iron being an
essential public good in some environments– is reduced when enough molecules
are already in the environment minimizing in this way the ability of cheaters to
invade [5]. On the other hand, gene regulatory functions that are consistent with
positive plasticity have also been documented in cases where eco-evolutionary
modeling would predict they would maximize resistance to cheater invasion [19,
18]

4 Perspective

Drawing inspirations from biology, computer science, mathematics and engi-
neering one can understand, study and quantify the process of cellular decision-
making as the ability of cells to process environmental information and take de-
cisions (i.e., compute) in a distributed manner [10, 16]. There are multiple ways
to quantify how much cells can compute. Membrane computing is a computa-
tional model inspired by the principles of information-processing in living cells
and focused on automata theory [15]. Several results in the area of membrane
computing highlight, in various forms, a key point: The ability to encode power-
ful computations is generally linked to the ability of the cells to have some sort
of synchronization or coordination of their responses i.e., the ability to commu-
nicate and to exchange (simple) messages [15]. This is, for instance, the case in
the simple model of agents (abstracted cells) [1] that we have briefly reviewed in
this paper - the ability of agents to synchronize allow the population to perform
powerful computations, equivalent to a class of register machines.

One usual way to facilitate synchronization between cells is the sharing of a
diffusible signaling molecule produced by cooperative (producer) cells [16]. These
molecules may act as a public good, and lead to a classical evolutionary problem:
cheating cells that avoid the costly production of the public good can appear
by mutation and spread in the population, causing a concomitant decline in the
public good [11]. In this sense, then, we could say that a corollary of this is that
population of living cells find challenges to parallelize complex computations,
as the need for synchronization may lead to the appearance of cheaters that
would in turn lead to the collapse of the computation. From this point of view,
one could even speculate that the complexity of distributed cellular computa-
tion is bounded by the ability to encode complex functions and the need to be
evolutionary sustainable.

On the other hand, the ability of individual cells to process information can
itself be a possible solution to the cheating problem. This is indeed the case when
such information-processing is coupled to the ecological constraints in which the
cellular population is embedded. This possibility discussed in [2] and [4], however,
has not been studied in a systematic way and the area of membrane computing
may be a possible framework in which one can easily combine the notion of
cellular computation with evolutionary dynamics.

For instance, one could quantitatively study the potential trade-off between
cellular computation, parallelism and evolutionary resilience. How can a com-
putational process be distributed between individual cells and which is the cost
to pay in terms of evolutionary resilience ? Which is the best strategy to divide
the computational labor between the cells to avoid the emergence of detrimental
mutants ?

All these types of questions may be approached by extending standard mod-
els of membrane computing. For instance, in the context of the presented model
with agents, one may incorporate cell division and assume that cells may divide
at different speed - cells that are simpler (in terms of the employed internal bio-
chemistry/computational instructions) will divide faster (i.e., possibly spreading
in the population, altering the balance between different types of cells). This
would couple the notion of cellular fitness to that of cellular computation. Such
idea could also be incorporated in classical models of membrane computing with
division, known for their ability to solve efficiently (in parallel way) hard com-
putational problems [15]. One could then study which of the obtained results
with membrane systems with divisions are also evolutionary stable - i.e., they
are not compromised by the fact that some cells may execute less complex in-
structions/biochemistry and then divide faster (remains to formulate a proper
measure for the complexity of instructions).

We believe that these types of questions can help to address one of the
key differences between distributed cellular computing and standard models of
distributed computing - cells need to split the computational tasks with the
evolutionary constraint to keep the proper balance between the different types,
avoiding that some of them would outcompete the others.

Acknowledgments M.C. acknowledges the support from the Engineering
and Physical Sciences Research Council (EPSRC) grant EP/J02175X/1. Work
in the Sanchez laboratory is supported by a Young Investigator grant from the
Human Frontiers Science Project and a Scialog seed grant from Simons Foun-
dation.

References

1. M. Cavaliere, R. Mardare, and S. Sedwards. A multiset-based model of syn-
chronizing agents: Computability and robustness. Theoretical Computer Science,
391(3):216–238, feb 2008.

2. M. Cavaliere and J. F. Poyatos. Plasticity facilitates sustainable growth in the
commons. Journal of The Royal Society Interface, 10(81):20121006–20121006, jan
2013.

3. O. Feinerman and A. Korman. Theoretical distributed computing meets biology:
A review. In International Conference on Distributed Computing and Internet
Technology, pages 1–18. Springer Berlin Heidelberg, 2013.

4. K. I. Harrington and A. Sanchez. Eco-evolutionary dynamics of complex so-
cial strategies in microbial communities. Communicative & Integrative Biology,
7(1):e28230, jan 2014.

5. F. Harrison, J. Paul, R. C. Massey, and A. Buckling. Interspecific competition and
siderophore-mediated cooperation in pseudomonas aeruginosa. The ISME journal,
2(1):49–55, 2008.

6. C. Hauert, M. Holmes, and M. Doebeli. Evolutionary games and population dy-
namics: maintenance of cooperation in public goods games. Proceedings of the
Royal Society of London B: Biological Sciences, 273(1600):2565–2571, 2006.

7. C. Hauert, J. Y. Wakano, and M. Doebeli. Ecological public goods games: coop-
eration and bifurcation. Theoretical population biology, 73(2):257–263, 2008.

8. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

9. A. Ilachinski. Cellular automata: a discrete universe. World Scientific, 2001.
10. L. Kari and G. Rozenberg. The many facets of natural computing. Communications

of the ACM, 51(10):72, oct 2008.
11. S. A. Levin. Public goods in relation to competition, cooperation, and spite. Pro-

ceedings of the National Academy of Sciences, 111(Supplement 3):10838–10845, jul
2014.

12. J. Maćıa, F. Posas, and R. V. Solé. Distributed computation: the new wave of
synthetic biology devices. Trends in Biotechnology, 30(6):342–349, jun 2012.

13. P. Mehta and D. J. Schwab. Energetic costs of cellular computation. Proceedings
of the National Academy of Sciences, 109(44):17978–17982, 2012.

14. S. Navlakha and Z. Bar-Joseph. Distributed information processing in biological
and computational systems. Communications of the ACM, 58(1):94–102, 2015.

15. G. Paun, G. Rozenberg, and A. Salomaa. The Oxford handbook of membrane
computing. Oxford University Press, Inc., 2010.

16. T. J. Perkins and P. S. Swain. Strategies for cellular decision-making. Mol Syst
Biol, 5, nov 2009.

17. J. Rauch, J. Kondev, and A. Sanchez. A tradeoff between the ecological and
evolutionary stabilities of public goods genes in microbial populations. bioRxiv,
2016.

18. A. Ross-Gillespie, A. Gardner, A. Buckling, S. A. West, and A. S. Griffin. Den-
sity dependence and cooperation: theory and a test with bacteria. Evolution,
63(9):2315–2325, 2009.

19. A. Ross-Gillespie, A. Gardner, S. A. West, and A. S. Griffin. Frequency depen-
dence and cooperation: theory and a test with bacteria. The American Naturalist,
170(3):331–342, 2007.

20. H. A. Simon. Models of man; social and rational. 1957.
21. E. Sober. The nature of selection: evolutionary theory in philosophical focus. Uni-

versity of Chicago Press, 1993.
22. D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. Computation with finite

stochastic chemical reaction networks. Natural Computing, 7(4):615–633, feb 2008.

