

### Please cite the Published Version

Freeman, Sarah, Lee, D, Lim, L, Skowron, A and Rodriguez De Leon, Ruben (2018) Trading Off Aircraft Fuel Burn and NOx Emissions for Optimal Climate Policy. Environmental Science & Technology, 52 (5). pp. 2498-2505. ISSN 0013-936X

**DOI:** https://doi.org/10.1021/acs.est.7b05719

Publisher: American Chemical Society

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/619959/

Usage rights: O In Copyright

Additional Information: This is an Author Accepted Manuscript of a paper accepted for publication in Environmental Science & Technology, published by and copyright American Chemical Society.

#### Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

# Trading Off Aircraft Fuel Burn and NO<sub>x</sub> Emissions for Optimal Climate Policy

3 Sarah Freeman\*, David S Lee, Ling L. Lim, Agnieszka Skowron and Ruben Rodriguez De León

## 4 <u>\*s.freeman@mmu.ac.uk</u>

5 School of Science and the Environment, Faculty of Science and Engineering, Manchester

6 Metropolitan University, Manchester M1 5GD, U.K.

7

8

KEYWORDS. Aviation, Climate, NO<sub>x</sub>, CO<sub>2</sub>, Tradeoff, Emissions

9

10 ABSTRACT. Aviation emits pollutants that affect climate, including CO<sub>2</sub> and NO<sub>x</sub>; NO<sub>x</sub> 11 indirectly so, through the formation of tropospheric ozone and reduction of ambient methane. To 12 improve the fuel performance of engines, combustor temperatures and pressures often increase, 13 increasing NO<sub>x</sub> emissions. Conversely, combustor modifications to reduce NO<sub>x</sub> may increase 14 CO<sub>2</sub>. Hence, a technology tradeoff exists, which also translates to a tradeoff between short lived 15 climate forcers and a long-lived greenhouse gas, CO<sub>2</sub>. Moreover, the NO<sub>x</sub>-O<sub>3</sub>-CH<sub>4</sub> system 16 responds in a non-linear manner, according to both aviation emissions and background NO<sub>x</sub>. A 17 simple climate model was modified to incorporate non-linearities parameterized from a complex 18 chemistry model. Case studies showed that for a scenario of a 20% reduction in NO<sub>x</sub> emissions 19 the consequential CO<sub>2</sub> penalty of 2% actually increased the total radiative forcing (RF). For a 2% 20 fuel penalty, NO<sub>x</sub> emissions needed to be reduced by >43% to realize an overall benefit.

Conversely, to ensure the fuel penalty for a 20% NO<sub>x</sub> emission reduction did not increase overall forcing, a 0.5% increase in  $CO_2$  was found to be the 'break even' point. The timescales of the climate effects of NO<sub>x</sub> and  $CO_2$  are quite different, necessitating careful analysis of proposed emissions tradeoffs.

25

#### 26 INTRODUCTION

27 Aviation is essential to international travel, and is a growing industry, with passenger traffic 28 increasing at an average of 5.3% per year since 2000. It releases anthropogenic emissions in a 29 physically and chemically complex region of the atmosphere. Aviation emissions consist 30 primarily of carbon dioxide (CO<sub>2</sub>), nitrogen oxides (NO<sub>x</sub>), sulfur oxides (SO<sub>x</sub>) and soot or 'black carbon' emissions, and small amounts of water vapour<sup>1-3</sup>. The climate impacts of aviation NO<sub>x</sub> 31 emissions are complex, since they affect the climate by contributing a positive radiative forcing 32 33 (RF) through the promotion of tropospheric ozone formation and a negative RF by reducing 34 methane lifetime. There are additional negative RF effects from the CH<sub>4</sub> lifetime reduction 35 through small reductions in background O<sub>3</sub> and stratospheric water vapour<sup>4</sup>, although the balance is a net positive forcing  $^{2,5}$ . At ground level, aviation NO<sub>x</sub> is also considered an air pollutant due 36 to its role in ozone production. 37

In 1981, ICAO adopted a first certification standard to control aircraft NO<sub>x</sub> emissions in response to concerns over the effect of NO<sub>x</sub> emissions on surface air quality. As further NO<sub>x</sub> stringency assessments were undertaken it became apparent that the engine modifications necessary to reduce NO<sub>x</sub> resulted in a fuel burn penalty, and therefore a CO<sub>2</sub> penalty. Hence, it was realized that a tradeoff existed between the two pollutants<sup>6-8</sup>. 43 A further issue arises over the timescale of the perturbations to the atmosphere; aviation  $NO_x$ 44 emissions and their associated impacts on ozone and methane contribute a short-lived climate 45 forcing to the atmosphere, whereas CO<sub>2</sub> release has an impact on a much longer timescale. In 46 order to understand the environmental consequences of the technology tradeoff, it is necessary to 47 model the climate impacts in some way for both NO<sub>x</sub> and CO<sub>2</sub> perturbations over longer 48 timescales. Most studies of the radiative impact of aviation consider either present-day forcing, or a scenario of e.g 2050 emissions<sup>1, 9-11</sup>. Here, we focus on the very long term as this is not 49 normally considered and only a few studies deal with this<sup>12-14</sup>. The long-term is important as it 50 51 affects the choice of the mitigation options outlined here, i.e. the long-term impact of a small 52 increase in CO<sub>2</sub> emissions that accumulate vs shorter-term effects that reduce forcing.

Adding to the complexity of this, the NO<sub>x</sub>-O<sub>3</sub>-CH<sub>4</sub> atmospheric system is known to be non-53 54 linear, sensitive to both the perturbing emissions being studied (i.e. aviation) and the NO<sub>x</sub> levels of the background atmosphere<sup>15-17</sup>. Such calculations are normally conducted with complex 3D 55 56 models of the atmosphere that account for this with a sophisticated chemical scheme. The 57 reduction in CH<sub>4</sub> lifetime, is normally calculated offline by a simplified parameterization since 58  $CH_4$  has a lifetime of approximately 10 - 12 years. However, model simulations for periods of 59 around 100 years are necessary to account for a significant fraction of the CO<sub>2</sub> emissions, usually 60 done in simplified climate models (SCMs). Previously, small perturbations of the NO<sub>x</sub> system have been treated as linear<sup>12</sup> (e.g. Sausen and Schumann, 2000) in SCMs. Since this is known to 61 62 induce inaccuracies into the computations, a new non-linear parameterization of a SCM was 63 derived from a more complex atmospheric chemistry model, MOZART-3, to model the longer-64 term effects of aviation NO<sub>x</sub> emissions.

| 65 | Having demonstrated and incorporated a suitable non-linear NO <sub>x</sub> scheme into a SCM, a series of                          |
|----|------------------------------------------------------------------------------------------------------------------------------------|
| 66 | model runs were designed in order to study the tradeoff between aviation $\mathrm{NO}_{\mathrm{x}}$ and $\mathrm{CO}_{\mathrm{2}}$ |
| 67 | emissions over a 100 year period. Through changes in aircraft engine design and emissions                                          |
| 68 | characteristics, the relative emissions of $NO_x$ and $CO_2$ can be tuned to address specific mitigation                           |
| 69 | targets. From the perspective of climate change mitigation, the model runs investigate the                                         |
| 70 | amount of $NO_x$ reduction needed to account for any increases in $CO_2$ emissions and also, how                                   |
| 71 | much additional CO <sub>2</sub> can be emitted before additional forcing is incurred, should NO <sub>x</sub> emissions             |
| 72 | be reduced by a set amount, in this case -20%.                                                                                     |
|    |                                                                                                                                    |
| 73 | The model runs also assess the impact of the background $NO_x$ emission on the sign of the $NO_x$                                  |
| 74 | RF and how this impacts on a tradeoff scenario, therefore two different backgrounds NO <sub>x</sub> levels                         |

are investigated, one to represent a near present day atmospheric composition and one to
 represent a background atmosphere where significant surface NO<sub>x</sub> emissions reduction has taken
 place.

## 78 METHODS

79 Overall simulations design and modeling tools. Comparing emissions and their climate effects in some form of emission equivalence is a complex subject itself<sup>18</sup>. However, in this study, the 80 81 tradeoff question can be posed in a simple way in the sense of variation of RF and change in 82 global mean surface temperature ( $\Delta T$ ) after 100 years for constant emissions conditions over 83 some defined base case. First, the global CTM (chemistry transport model) MOZART was used 84 to investigate the linearity of the NO<sub>x</sub>-O<sub>3</sub> and NO<sub>x</sub>- CH<sub>4</sub> relationships in response to different 85 background conditions. The results of those model runs were then used to create a new non-86 linear NO<sub>x</sub> parameterization to be used in a tradeoff study.

87 The tradeoffs simulations performed with the SCM represent a parametric study, where all 88 variables are kept constant over time, beginning with a constant amount of fuel use per year. This 89 was to gauge the response of the system to a simple (constant) input, rather than being a scenario 90 study of actual projections. The constant value of fuel use was  $\sim 250$  Tg per year, the 91 observational fleet value at 2012 (International Energy Agency data), background CO<sub>2</sub> was kept 92 constant at 404 ppm, the background value as of March 2016, thus removing the transient nature 93 of  $CO_2$  modeling - in order to remain consistent with the constant  $NO_x$  background used in the 94 CTM runs outlined below. The global fleet emissions index for  $NO_x$  (EINO<sub>x</sub> in g NO<sub>2</sub>/g fuel 95 burned) was kept constant at 13, a representative fleet average. Aviation CO<sub>2</sub> and NO<sub>x</sub> emissions 96 were fixed over an arbitrary 100 year simulation at  $\sim$ 790 Tg CO<sub>2</sub> (kerosene to CO<sub>2</sub> conversion of 97 3.16) and 3.24 Tg NO<sub>2</sub> (0.98 Tg N)per year respectively as a result of the constant fuel use. This 98 scenario represented the 'base case' where the total RF was taken to be the sum of the net NO<sub>x</sub> 99 and CO<sub>2</sub> radiative forcings. Note that no 'history' of CO<sub>2</sub> emissions prior to the start year was 100 incorporated. The base case was then perturbed, the constant fuel value was changed to reflect a 101 percentage increase or decrease in  $CO_2$  and  $NO_x$  emissions, while still remaining constant over 102 time. A common scenario from the literature suggested that a 2% fuel penalty could be incurred when NO<sub>x</sub> emissions were reduced by 20% - owing to engine modification<sup>7,19,20</sup> - to determine 103 104 whether a net RF benefit was realized or not. The model runs then followed a logical path of 105 determining how much NO<sub>x</sub> reduction is in fact necessary to counteract the additional 2% CO<sub>2</sub> 106 emissions, i.e. 'breaking even', while ensuring that overall RF does not exceed that of the base 107 case. It is then investigated, were the situation to be reversed and  $NO_x$  reduction was held at -108 20% below the base case, how much of  $CO_2$ /fuel penalty is allowed before forcing goes above

that of the base case. Sensitivity simulations were also run to understand the consequences of
high and low NO<sub>x</sub> background emissions.

111 Two basic modeling tools were necessary – a sophisticated 3D CTM of the global atmosphere 112 ('MOZART' v3) and a simple climate model (SCM)(LinClim). MOZART was used to fully 113 represent the impacts of changing aircraft NO<sub>x</sub> emissions at varying levels and backgrounds<sup>21</sup>, 114 the results of which were used to formulate a simplified parameterization in the LinClim SCM 115 ('LinClim', based on Sausen and Schumann, 2000), which simulated both net NO<sub>x</sub> and CO<sub>2</sub> 116 radiative impacts. These modeling tools are described below.

117 Three-dimensional global chemical transport model – MOZART. The 3D CTM MOZART

118 (Model for OZone And Related Tracers), version 3, was used to simulate the ozone burden and 119 methane lifetime change resulting from aviation NO<sub>x</sub> emissions in this study. MOZART-3 was evaluated by Kinnison et al (2007) and has been applied in several atmospheric studies<sup>22-25</sup>. The 120 121 European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data 122 for 2006 provided the meteorological fields that drive the transport of chemicals within MOZART. The background emissions necessary for MOZART<sup>26</sup> represent the year 2000 and 123 124 were originally compiled for the IPCC AR5 report. The background data are made up of surface 125 emissions of anthropogenic activity and biomass burning, and the European Union project POET 126 (Precursors of Ozone and their Effects on Troposphere) supply the biogenic surface emissions<sup>27</sup>. 127 The choice of meteorology data driving the model will affect the calculations of the NO<sub>x</sub>/O<sub>3</sub>/CH<sub>4</sub> 128 impacts. Kinnison et al., (2007), when evaluating MOZART3 model performance against 129 observations of various chemical species, noted better agreement when similar ECMWF re-130 analysis data were used vs other dynamical data. MOZART3 was also driven with ECHAM/5 131 GCM data as a test, the results from which are given in the SI. Inter-model variability is another

source of uncertainty in CTM modeling, in Søvde et al., (2014) MOZART3 is tested against
other models in its ability to model NO<sub>x</sub> emissions<sup>29</sup>, the results of that analysis are extended in
the SI, to show the variability of aviation NO<sub>x</sub> responses in a small subset of CTMs and how
MOZART compares to other models.

136 The aim of the CTM simulations was to model how the atmosphere reacts to the release of 137 varying levels of aviation and background NO<sub>x</sub> emissions. Although it is known that aviation 138  $NO_x$  increases tropospheric ozone burden and reduces methane lifetime, the question arises as to 139 when this relationship becomes non-linear. The SCM LinClim previously incorporated a linear 140 scheme for  $NO_x - O_3$  and  $NO_x - CH_4$ , such that the purpose of running iterative simulations with 141 MOZART was to determine whether a new non-linear parameterization of LinClim could be 142 formulated, and also determine the sensitivity of this non-linear response to different background 143 NO<sub>x</sub> conditions.

144 For each simulation run on MOZART, the model was run without aircraft emissions, referred to 145 as the 'reference run' and then again with aircraft emissions, referred to as the 'perturbation run'. 146 Each of these runs is preceded by a 'spin up year', which used the same meteorology, and 147 describes the time taken by the model for the atmospheric constituents to reach equilibrium. The 148 reference run is then subtracted from the perturbation run and the difference plotted, thus 149 showing the impact of aviation on the atmosphere. The variables for the perturbations runs are a 150 series of increasing aviation emissions, each of which was run in two different background 151 atmospheric NO<sub>x</sub> states, described below. The spin up and either reference or perturbation run 152 constitutes a total run time of two years, which is sufficient to show the tropospheric ozone response to aviation  $NO_x$  emissions<sup>28</sup> and the perturbations to methane lifetime are corrected to 153 154 account for its longer lifetime as described in the supplementary material.

| 155                                           | Ozone and methane are modeled in MOZART-3 using a constant background NO <sub>x</sub> level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 156                                           | Therefore, to investigate the impact of a changing background atmosphere, two different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 157                                           | background atmospheric NO <sub>x</sub> scenarios (global value and spatial pattern) are used which replace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 158                                           | those from the original background emissions inventory. The values of background $NO_x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 159                                           | emissions used here are 20.76 Tg N yr <sup>-1</sup> and 44.75 Tg N yr <sup>-1</sup> and were taken from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 160                                           | Representative Concentration Pathways (RCPs) to represent low and high levels of $NO_x$ in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 161                                           | background atmosphere. The low $NO_x$ background comes from RCP3 in the year 2100 and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 162                                           | high from RCP8 in the year 2020 (see SI, Figure S1). These two values were chosen to represent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 163                                           | the highest and lowest projected range of possible background NOx levels over the next 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 164                                           | years in accordance with the RCP scenarios, thus the results are bounded in that particular range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 165                                           | The aviation scenarios run on MOZART-3 were generated using the REACT4C aircraft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 165<br>166                                    | The aviation scenarios run on MOZART-3 were generated using the REACT4C aircraft emissions data set <sup>29</sup> as a starting point (from the European project – Reducing Emissions from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 166                                           | emissions data set <sup>29</sup> as a starting point (from the European project – Reducing Emissions from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 166<br>167                                    | emissions data set <sup>29</sup> as a starting point (from the European project – Reducing Emissions from Aviation by Changing Trajectories for the benefit of Climate – 'REACT4C'). The REACT4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 166<br>167<br>168                             | emissions data set <sup>29</sup> as a starting point (from the European project – Reducing Emissions from<br>Aviation by Changing Trajectories for the benefit of Climate – 'REACT4C'). The REACT4C<br>data were then multiplied by different factors to create several aviation emissions scenarios of                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 166<br>167<br>168<br>169                      | emissions data set <sup>29</sup> as a starting point (from the European project – Reducing Emissions from<br>Aviation by Changing Trajectories for the benefit of Climate – 'REACT4C'). The REACT4C<br>data were then multiplied by different factors to create several aviation emissions scenarios of<br>increased aviation activity (all with the same spatial pattern). Aviation emissions are expected to                                                                                                                                                                                                                                                                                                                        |
| 166<br>167<br>168<br>169<br>170               | emissions data set <sup>29</sup> as a starting point (from the European project – Reducing Emissions from<br>Aviation by Changing Trajectories for the benefit of Climate – 'REACT4C'). The REACT4C<br>data were then multiplied by different factors to create several aviation emissions scenarios of<br>increased aviation activity (all with the same spatial pattern). Aviation emissions are expected to<br>grow more strongly in some regions than others, particularly the Far East/China, differential                                                                                                                                                                                                                       |
| 166<br>167<br>168<br>169<br>170<br>171        | emissions data set <sup>29</sup> as a starting point (from the European project – Reducing Emissions from<br>Aviation by Changing Trajectories for the benefit of Climate – 'REACT4C'). The REACT4C<br>data were then multiplied by different factors to create several aviation emissions scenarios of<br>increased aviation activity (all with the same spatial pattern). Aviation emissions are expected to<br>grow more strongly in some regions than others, particularly the Far East/China, differential<br>growth may affect the balance of the $O_3/CH_4$ perturbation. However, this effect has been found                                                                                                                  |
| 166<br>167<br>168<br>169<br>170<br>171<br>172 | emissions data set <sup>29</sup> as a starting point (from the European project – Reducing Emissions from<br>Aviation by Changing Trajectories for the benefit of Climate – 'REACT4C'). The REACT4C<br>data were then multiplied by different factors to create several aviation emissions scenarios of<br>increased aviation activity (all with the same spatial pattern). Aviation emissions are expected to<br>grow more strongly in some regions than others, particularly the Far East/China, differential<br>growth may affect the balance of the O <sub>3</sub> /CH <sub>4</sub> perturbation. However, this effect has been found<br>to be small, of the order <3% (see SI). The REACT4C emission scenarios were then modeled |

Emissions of aircraft NO<sub>x</sub> were calculated to be approximately 0.7 Tg N yr<sup>-1</sup> in the REACT4C aviation emissions scenario<sup>29</sup> (2006). Emissions scenarios indicate that these emissions may increase by 2050, over the range 0.8 - 5 Tg N yr<sup>-1</sup> <sup>1, 9, 30-32</sup>. The MOZART CTM was used in a

178 series of 10 simple computer simulations, scaling up the REACT4C aviation emissions over a 179 'realistic' range of emissions through to beyond those currently anticipated. In addition, 7 further 180 simulations at larger incremental changes (> 7 Tg N yr<sup>-1</sup>) were run well beyond what might be 181 considered 'realistic' in order that the non-linearity of the response of the system could be 182 evaluated. In total, 17 simulations were run for the 'high' background NO<sub>x</sub> emissions and a 183 further 17 simulations for the 'low' background NO<sub>x</sub> emissions.

184 In order to develop a new parameterization, the RF of all the effects of aviation NO<sub>x</sub> emissions 185 release were calculated which, in this study, comprise of short term ozone, methane, long term 186 ozone and stratospheric water vapor (SWV). We acknowledge the effects of aerosols in terms of their overall radiative impact (direct and indirect) of aviation<sup>33</sup>. Their impact on the NO<sub>x</sub>-O<sub>3</sub>-CH<sub>4</sub> 187 188 systems is still not well established. Pitari et al. (2015, 2016) find a small effect that reduces the 189 net NO<sub>x</sub> effect (it being a balance of positive and negative terms) in the aerosol providing a surface for NO<sub>x</sub>  $\rightarrow$  HNO<sub>3</sub> conversion<sup>34-35</sup>. MOZART3 does not include these terms and more 190 191 work is needed to better establish this effect. Short term ozone RF was calculated using monthly 192 mean ozone fields from MOZART and the Edwards-Slingo radiative transfer model, therefore 193 the relationship between ozone burden and RF is linear (see SI) that also includes a stratospheric 194 adjustment calculation (see SI), methane RF was calculated using the methodology of Hansen et al., (1988)<sup>36</sup>. The use of the ES code also introduces further uncertainties (see SI). The long-term 195 196 ozone and SWV effects are taken to be 0.5 times the methane forcing (uncertainty 60%) and 0.15 197 times the methane forcing (uncertainty 71.43%) respectively based on Myhre et al.,  $(2013)^{4,37}$  (one should note that the uncertainties provided here are for global averages, not 198 199 specifically aviation perturbations).

200 The Simplified Climate Model, 'LinClim'. LinClim was used to investigate tradeoffs in the 201 climate response between aviation  $NO_x$  and  $CO_2$  emissions, simulations need to be performed 202 over the longer term. CTMs are computationally very expensive and demanding to run, 203 particularly when complex chemistry is involved. Simple climate models provide a way to 204 simulate future RF responses, from which climate temperature responses can be calculated while 205 running quickly and inexpensively. This type of model can run climate simulations of long 206 duration - up to hundreds of years - using input values of  $CO_2$  and other long-lived greenhouse 207 gases generated from full general circulation model simulations and impulse response functions<sup>12</sup>. 208

209 LinClim is a linear climate response model that has been tailored specifically to aviation and 210 includes all the effects of aviation as outlined by the IPCC (1999)<sup>1,38</sup>. The 'linearity' implied in 211 its name assumes that RF and temperature responses are small enough, and can therefore be 212 treated as linear subtractions/additions. Global aviation fuel burn is the input for LinClim and 213 from this, LinClim calculates the resulting emissions of CO<sub>2</sub> and NO<sub>x</sub> using emissions indices. 214 For CO<sub>2</sub>, this is simple, for every 1 kg of fuel burned, 3.16 kg of CO<sub>2</sub> is emitted. CO<sub>2</sub> 215 concentration is then calculated using the impulse response function (IRF) from Hasselmann et al., (1997)<sup>39</sup>. The current carbon cycle in LinClim is based on the Maier-Reimer and Hasselmann 216  $(1987)^{40}$  model and the CO<sub>2</sub> RF is calculated with the function used in IPCC AR4<sup>41</sup>. For NO<sub>x</sub>, 217 218 the emission index ( $EINO_x$ ) of the global fleet is required. The current parameterization in 219 LinClim for calculating ozone and methane RF assumes a linear relationship between aviation 220 NO<sub>x</sub> emissions and the resulting ozone and methane RF changes. Therefore, a new 221 parameterization, created using the results from the MOZART runs described above, was used to 222 calculate the RF from aviation NO<sub>x</sub> emissions. This RF value was then used as an input to

| 223 | LinClim and the corresponding temperature response from aviation net NO <sub>x</sub> RF was calculated.              |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 224 | The temperature response formulation is based on the method described in Hasselmann et al.                           |
| 225 | $(1993)^{42}$ . The calculated temperature response is also dependent on the climate sensitivity                     |
| 226 | parameter and the lifetime of the temperature perturbation. These are tuned to LinClim's 'parent'                    |
| 227 | Atmosphere-Ocean General Circulation Models (AOGCMs). In this study, LinClim was tuned to                            |
| 228 | 19 different parent models and the median temperature response was taken.                                            |
| 229 | RESULTS                                                                                                              |
| 230 | Effects of aviation $NO_x$ emissions on ozone and methane abundances. The results of the                             |
| 231 | MOZART runs show that as aviation NO <sub>x</sub> emissions increase, so does the associated global                  |
| 232 | ozone burden and RF (Figure 1; Figure S2). This relationship is approximately linear up to $\sim$ 2 Tg               |
| 233 | N yr <sup>-1</sup> of aviation $NO_x$ emissions and shows clear non-linearity thereafter in both the low $NO_x$      |
| 234 | and high NO <sub>x</sub> background atmospheric states. At values of aviation NO <sub>x</sub> emissions greater than |
| 235 | $\sim$ 2 Tg N yr <sup>-1</sup> ozone formation per NO <sub>x</sub> molecule reduces as aviation emissions increase,  |
| 236 | reflecting the non-linearity of the NO <sub>x</sub> -O <sub>3</sub> system <sup>15-17</sup> .                        |

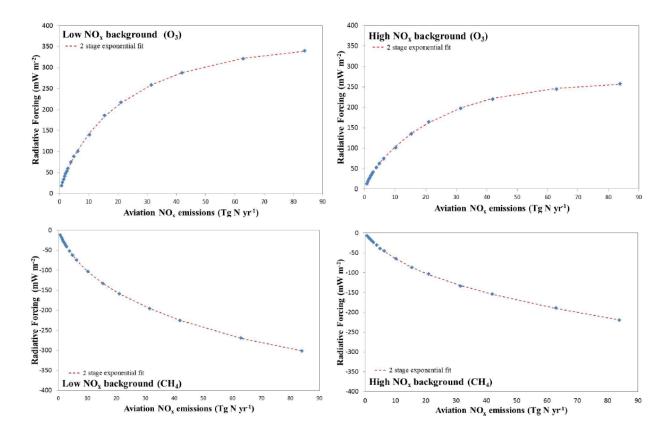





Figure 1. The radiative forcing resulting from ozone burden (Tg O<sub>3</sub>) (upper panels) and methane lifetime change (years) (lower panels) due to aviation NO<sub>x</sub> emissions in the low (left hand panels) and high (right hand panel) NO<sub>x</sub> atmospheric background states. Each point represents one of the emissions scenarios run on MOZART described in the text. The trend line shows a two-stage exponential fit of the data, which was used to create a new net NO<sub>x</sub> RF parameterization.

244

Aviation NO<sub>x</sub> emissions result in an enhancement of OH abundance, which in turn reduces methane lifetime since OH is its principle sink term (CH<sub>4</sub> + OH  $\rightarrow$  CH<sub>3</sub> + H<sub>2</sub>O). The change in methane lifetime and reduction in atmospheric abundance associated with the release of aviation NO<sub>x</sub> thus produces a negative RF. Similar to the NO<sub>x</sub> – O<sub>3</sub> relationship, the relationship between aviation NO<sub>x</sub> emissions and methane lifetime reduction (and therefore associated RF) is approximately linear until aviation  $NO_x$  emissions reach ~2 Tg N yr<sup>-1</sup> (Figure 1; Figure S2) and becomes non-linear thereafter.

252 The effects of aviation NO<sub>x</sub> emissions on methane lifetime differ depending on the state of the 253 background into which the emissions are released. The lifetime of methane is reduced 254 substantially more (per NO<sub>x</sub> molecule) in the low NO<sub>x</sub> background scenario than the high NO<sub>x</sub> 255 (by an average of 50% over the range of NO<sub>x</sub> emission values used here). The low NO<sub>x</sub> 256 background enables greater formation rates of ozone as described above, which in turn results in 257 an increased concentration of OH and therefore greater decreases in methane lifetime. 258 The emissions of NO<sub>x</sub> used in this study represent 'realistic' values (the highest density of data 259 points in Figure 1 and data shown in Figure S2), through to anticipated ranges of values in future 260 scenarios, to values which are far beyond those expected. However, the purpose of using such 261 values is two-fold; firstly, to demonstrate that the response with a complex global CTM is able to 262 show the expected non-linear response and secondly, to determine at what point the production 263 of O<sub>3</sub> starts to saturate. Clearly, even within the range of emissions suggested in the literature (up to ~5 Tg N yr<sup>-1</sup>), a linear response is not expected, and such a response in a simplified model 264 265 would over-estimate RF and therefore temperature responses.

It has been established that the responses of ozone and methane to aviation NO<sub>x</sub> emissions are not linear and thus, cannot be treated as such in a parameterization for a simple climate model. The results presented in Figure 1 (and Figure S2) quantify the range over which the linear relationship of NO<sub>x</sub> emissions to ozone burden and methane lifetime change is valid. It is shown that both the NO<sub>x</sub> – O<sub>3</sub> and NO<sub>x</sub> – CH<sub>4</sub> regimes are linear up to ~2 Tg N yr<sup>-1</sup> of aviation NO<sub>x</sub> emissions and therefore, a linear regression is appropriate, however linearity ceases after 2 Tg N

272 yr<sup>-1</sup> and the data are better represented by exponential fitting. These fit coefficients (Table SI1)
273 can be used to calculate the RF of ozone and methane perturbations resulting from aviation NO<sub>x</sub>
274 emissions in studies using SCMs such as LinClim.

275

276 Using the constant emissions scenario described in the methods, and keeping the EINO<sub>x</sub> constant 277 at 13 g NO<sub>2</sub>/kg fuel (3.9 g N/kg), the new parameterization was used to calculate the total forcing from aviation NO<sub>x</sub> emissions over 100 years (Table 1). The results show that in these simplified 278 279 cases, the background atmosphere determines the sign of the net NO<sub>x</sub> forcing from aviation 280 emissions. In the high NO<sub>x</sub> background, aviation NO<sub>x</sub> emissions contribute a positive net forcing 281 or warming, however, in the low NO<sub>x</sub> background, aviation NO<sub>x</sub> emissions contribute a negative 282 net forcing, or cooling. The difference in sign is due to the fact that in lower NO<sub>x</sub> backgrounds, 283 more OH is available for methane removal, therefore it is enhanced over ozone production in the 284 low NO<sub>x</sub> background, compared with the high NO<sub>x</sub> background where ozone production 285 dominates, resulting in an overall positive net forcing from  $NO_x$ . As the long-term ozone effect 286 and SWV perturbation are calculated from the methane forcing, their contribution enhances the 287 negative forcing in the low NO<sub>x</sub> environment.

288 Table 1 also gives comparative data on the net NO<sub>x</sub> forcing from LinClim's linear

289 parameterization and the new non-linear parameterization. While the methane forcing is

290 comparable between the two methods, the ozone forcing is overestimated by the linearized form

291 of LinClim. Although this comparison uses low NO<sub>x</sub> values, which fall within the 'linear range'

292 of the NO<sub>x</sub>-O<sub>3</sub>-CH<sub>4</sub> system, they system is still inherently non-linear, and therefore the non-

293 linear regime developed here does give slightly different results.

Table 1. Radiative forcing (mW m<sup>-2</sup>) resulting from aviation NO<sub>x</sub> calculated using LinClim and the new non-linear parameterizations described in the text, when the same fuel scenario is used – as described in 'methods'.

| Calculation<br>used/forcing             | Short term O <sub>3</sub> | Methane | Long term O <sub>3</sub> | SWV   | Total NO <sub>x</sub> RF |
|-----------------------------------------|---------------------------|---------|--------------------------|-------|--------------------------|
| Non-linear (low<br>NOx background)      | 26.80                     | -17.13  | -8.56                    | -2.57 | -1.468                   |
| <b>Non-linear</b> (high NOx background) | 18.09                     | -9.91   | -4.95                    | -1.48 | 1.745                    |
| Linear (Linclim)                        | 28.74                     | -13.61  | -6.80                    | -2.04 | 6.279                    |

297

298

## 299 Tradeoff model runs using a simple climate model

300 Throughout these model runs, two base case scenarios were considered (Figure 2); total aviation 301 forcing was taken as the CO<sub>2</sub> plus net NO<sub>x</sub> forcing, one scenario using the low NO<sub>x</sub> background 302 and one the high NO<sub>x</sub> background and the CO<sub>2</sub> background was set at a constant value of 404 303 ppm throughout (2016 value, as explained in the methods section). When the base case is 304 perturbed by reducing NO<sub>x</sub> emissions by 20% and increasing CO<sub>2</sub> emissions by 2%, total 305 aviation forcing increases by 3.87% for the low background NO<sub>x</sub> case, and 0.55% for the high 306 background NO<sub>x</sub> case after 50 years, and by 3.1% and 1.12% after 100 years (low, high NO<sub>x</sub> 307 backgrounds respectively). This demonstrates that for an ambition that reduces the NO<sub>x</sub> 308 emissions by 20%, the resultant 2% increase in CO<sub>2</sub> emissions (Figure 2) means that the total 309 effect is greater than the base case – potentially inadvertently having an adverse effect on climate 310 rather than an intended benefit. Therefore, the next step was to determine exactly how much NO<sub>x</sub> 311 reduction is required to reduce the total aviation forcing to below that of the base case when  $CO_2$ 

emissions are assumed to increase by 2% because of the technology tradeoffs. Emissions of NO<sub>x</sub> were incrementally reduced until the total forcing was the same as the base case. For the high background NO<sub>x</sub> case, aviation NO<sub>x</sub> would need to be reduced by 43% to 'break even' in terms of RF after 100 years, or by 38% in terms of temperature response after 100 years. The temperature response is lower due to the thermal inertia of the climate system, since the system has an additional response time over RF.

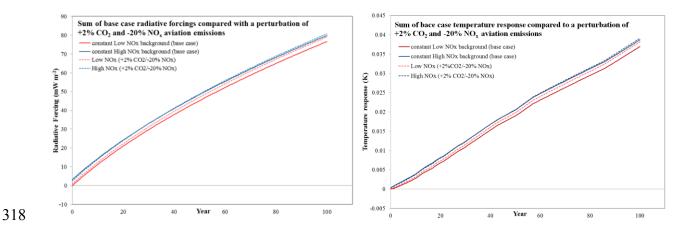



Figure 2. The sum of aviation  $NO_x$  and  $CO_2$  RF (left) and associated temperature response (right) as a result of the constant base case emissions and the initial perturbation case of -20%  $NO_x$ , +2% CO<sub>2</sub>, both described in the text, over 100 years.

322

For the low background NO<sub>x</sub> case, the results are more complex – net NO<sub>x</sub> emissions provide a negative RF, since methane removal dominates over ozone production. This means that any reduction in aviation NO<sub>x</sub> emissions in the low NO<sub>x</sub> background reduced the negative forcing, leading to an overall greater forcing. Therefore, the only way to reduce overall forcing from aviation when CO<sub>2</sub> emissions are increased by 2% is to, rather counter-intuitively, *increase* aviation NO<sub>x</sub> emissions. This provides an additional negative forcing to counteract the additional positive forcing from CO<sub>2</sub>. This is a somewhat unrealistic case in that the CO<sub>2</sub> penalty would presumably not be incurred. It was found that aviation  $NO_x$  emissions had to be increased by 37% to counteract the additional RF provided by the 2% increase in  $CO_2$  and reduce the overall forcing to below that of the base case after 100 years (Table 2), and by 33% to reduce the associated temperature response (Table 3). However, what this case does show is that the overall impact in terms of RF and temperature does not depend solely on the technology tradeoffs, but also on the background atmosphere.

336 The next model runs assume that NO<sub>x</sub> reduction is held at 20% below the base case and it was 337 determined how much of a CO<sub>2</sub> penalty is permitted before total forcing increases above that of 338 the base case. It was calculated that CO<sub>2</sub> can only be allowed to increase by 0.5% over the base 339 case without incurring a forcing or temperature penalty over 100 years in the high  $NO_x$ 340 background. Thus, for this case in can be interpreted that any CO<sub>2</sub> penalty less than 0.5% will 341 yield a net climate benefit. In the low NO<sub>x</sub> background, any reduction in NO<sub>x</sub> emissions causes 342 an increase in overall forcing as described above. Therefore, in this scenario, the forcing is 343 increased over the base case by reducing NO<sub>x</sub> by 20% before any CO<sub>2</sub> increase is considered. 344 Thus, it was determined that, should  $NO_x$  emissions be reduced by 20% in the low  $NO_x$ 345 background, CO<sub>2</sub> emissions would also have to be reduced by 1.5% to counteract the additional 346 forcing and temperature change incurred by the reduction in NO<sub>x</sub> emissions over 100 years 347 (Tables 2 and 3).

348

349

350

351

|                                      | High NO <sub>x</sub> bac | kground        |                | Low NO <sub>x</sub> bac | kground        |                |
|--------------------------------------|--------------------------|----------------|----------------|-------------------------|----------------|----------------|
|                                      |                          | 50 year end    | 100 year end   |                         | 50 year end    | 100 year end   |
|                                      |                          | point          | point          |                         | point          | point          |
|                                      | Model run                | % diff from BC | % diff from BC | Model run               | % diff from BC | % diff from BC |
|                                      | -25% NO <sub>x</sub>     | 0.16%          | 0.89%          | +21% NO <sub>x</sub>    | 0.08%          | 0.87%          |
|                                      | -26% NO <sub>x</sub>     | 0.08%          | 0.84%          | +22% NO <sub>x</sub>    | -0.02%         | 0.81%          |
|                                      | -27% NO <sub>x</sub>     | 0.0017%        | 0.79%          | +23% NO <sub>x</sub>    | -0.11%         | 0.76%          |
|                                      | -28% NOx                 | -0.08%         | 0.74%          | +25% NO <sub>x</sub>    | -0.30%         | 0.65%          |
| om BC                                | -30% NO <sub>x</sub>     | -0.25%         | 0.64%          | +30% NO <sub>x</sub>    | -0.77%         | 0.38%          |
| t +2% fi                             | -40% NOx                 | -1.13%         | 0.12%          | +32% NOx                | -0.96%         | 0.27%          |
| CO2 held at +2% from BC              | -41% NO <sub>x</sub>     | -1.22%         | 0.06%          | +33% NOx                | -1.05%         | 0.22%          |
| 8                                    | -42% NO <sub>x</sub>     | -1.31%         | 0.01%          | +34% NO <sub>x</sub>    | -1.15%         | 0.16%          |
|                                      | -43% NO <sub>x</sub>     | -1.41%         | -0.05%         | +35% NO <sub>x</sub>    | -1.24%         | 0.11%          |
|                                      | -44% NOx                 | -1.51%         | -0.10%         | +36% NOx                | -1.33%         | 0.052%         |
|                                      | -45% NO <sub>x</sub>     | -1.60%         | -0.16%         | +37% NO <sub>x</sub>    | -1.43%         | -0.0019%       |
| from                                 | +0.5% CO2                | -0.91%         | -0.35%         | -2% CO2                 | -0.12%         | -0.91%         |
| NO <sub>x</sub> held at -20% from BC | +1% CO2                  | -0.42%         | 0.14%          | -1.5% CO2               | 0.39%          | -0.52%         |
| NO <sub>x</sub> held                 | +2% CO <sub>2</sub>      | 0.55%          | 1.12%          | -1% CO2                 | 0.90%          | 0.12%          |

353 Table 2. The percentage difference in RF for each perturbation case as compared to the base354 case.

|                                      | High NO <sub>x</sub> bac | kground              |                       | Low NO <sub>x</sub> bac | kground              |                    |
|--------------------------------------|--------------------------|----------------------|-----------------------|-------------------------|----------------------|--------------------|
|                                      |                          | 50 year end<br>point | 100 year end<br>point |                         | 50 year end<br>point | 100 year end point |
|                                      | Model run                | % diff from BC       | % diff from BC        | Model run               | % diff from BC       | % diff from BC     |
|                                      | -20% NO <sub>x</sub>     | 0.35%                | 1.01%                 | +15% NO <sub>x</sub>    | 0.44%                | 1.09%              |
|                                      | -23% NO <sub>x</sub>     | 0.09%                | 0.85%                 | +18% NO <sub>x</sub>    | 0.11%                | 0.90%              |
| rom BC                               | -24% NO <sub>x</sub>     | -0.004%              | 0.80%                 | +19% NO <sub>x</sub>    | 0.005%               | 0.84%              |
| CO2 held at +2% from BC              | -25% NOx                 | -0.09%               | 0.75%                 | +20% NO <sub>x</sub>    | -0.10%               | 0.78%              |
| D <sub>2</sub> held                  | -38% NO <sub>x</sub>     | -1.36%               | 0.0016%               | +30% NO <sub>x</sub>    | -1.19%               | 0.16%              |
| Ŭ                                    | -40% NOx                 | -1.57%               | -0.12%                | +32% NOx                | -1.41%               | 0.04%              |
|                                      | -41% NOx                 | -1.68%               | -0.18%                | +33% NOx                | -1.52%               | -0.02%             |
| 6 from                               | +0.5% CO <sub>2</sub>    | -1.11%               | -0.46%                | -2% CO <sub>2</sub>     | 0.16%                | -0.76%             |
| NO <sub>x</sub> held at -20% from BC | +1% CO2                  | -0.62%               | 0.03%                 | -1.5% CO2               | 0.67%                | -0.52%             |
| NO <sub>x</sub> held                 | +2% CO2                  | 0.35%                | 1.01%                 | -1% CO2                 | 1.19%                | 0.27%              |

358 Table 3. The percentage difference in temperature change for each perturbations case as359 compared to the base case.

360

361

362

#### 363 DISCUSSION

364 The results presented here provide important insights for industrial technology development and

- 365 policy-making, regarding tradeoffs between different aviation emissions species. It has been
- 366 found that, while there is a tradeoff between aviation NO<sub>x</sub> and CO<sub>2</sub> emissions, in terms of
- 367 climate change, CO<sub>2</sub> emissions still provide the majority of the forcing from aviation and a

368 smaller change in its emission affects the total forcing much more than an equivalent change in 369 NO<sub>x</sub> emission. The balance of the previously well-known positive RF from ozone, and the 370 counterbalancing negative RF from reduction in methane lifetime has changed with the more 371 recent assessment of the additional negative RF terms from SWV reduction<sup>4</sup>, and reduction in 372 longer-term ozone<sup>43</sup>. One must also consider the role of aviation NO<sub>x</sub> as a polluter at ground 373 level, and during the landing-take off cycle, hence why its reduction from aircraft emissions is 374 desirable.

375

376 In terms of a tradeoff between different emissions, one must cautiously consider where the 377 benefit would lie in reducing one species at the expense of another. Regarding the common 378 scenario proposed in the literature, that a reduction of NO<sub>x</sub> by 20% incurring a fuel penalty of 379 2%, while that would reduce pollution from NO<sub>x</sub> at ground level, it was shown to be worse 380 overall in terms of total climate impact, as the additional CO<sub>2</sub> forcing from the fuel increase was 381 not counteracted by the reduction in  $NO_x$  emissions. In terms of the ambition of achieving a 382 climate benefit from NO<sub>x</sub> emission reductions, we show that a fuel increase should probably be 383 avoided and our test case (20% NO<sub>x</sub> emission reduction) showed that even an increase of 0.5%384 fuel would yield no net climate benefit. Either much stronger NO<sub>x</sub> emission reductions would be 385 necessary, or a condition that no fuel penalty is incurred is the best option. In any case, we show 386 that a careful environmental assessment is required. Even the cases described here may be 387 considered simplistic in terms of realism, but serve as an initial quantitative assessment of 388 tradeoffs which has so far, been absent.

390 Another important consideration highlighted in this study is the effect of the background 391 atmosphere. If background/surface  $NO_x$  emissions were to decrease, which may be likely as 392 industries aim to cut air pollution at ground level, the net forcing from aviation NO<sub>x</sub> emissions 393 could result in a negative forcing, thus, aviation NO<sub>x</sub> mitigation would not be at all beneficial in 394 terms of climate: however, it is likely that there will be an ongoing requirement to reduce  $NO_x$ 395 emissions at ground-level in order to reduce air pollution impacts on human health. Thus, further 396 consideration of scenarios and test cases should be given to future work to properly assess air 397 quality and climate impacts.

398

399 The complex interactions that have been demonstrated here show that scientific assessment and 400 advice can assist in technology development and policy related to aircraft impacts, but it needs to 401 be done with great care – moreover, the interactions between motivations for improving air 402 quality and climate would benefit from extending the results to simple cost-benefit analyses. 403 Currently, only cost-effectiveness analyses are considered in regulatory development within 404 ICAO (International Civil Aviation Organization). As with any atmospheric modeling study, 405 attention must be paid to the uncertainties surrounding computer simulations, the data used and 406 the analysis of the results.

407

408

409

410

# 412 ASSOCIATED CONTENT

- 413 Supporting Information. RF calculations, CH<sub>4</sub> corrections, extra information for CTM, RCP
- 414 explanations
- 415
- 416
- 417 AUTHOR INFORMATION
- 418 **Corresponding Author**
- 419 \*Email: <u>s.freeman@mmu.ac.uk</u>
- 420 **ORCID**
- 421 Sarah Freeman

# 422 Author Contributions

- 423 The manuscript was written through contributions of all authors. All authors have given approval
- 424 to the final version of the manuscript.
- 425 Notes
- 426 The author declare no competing information
- 427
- 428 ACKNOWLEDGMENT
- 429 The authors wish to thank the anonymous reviewers for their helpful comments. This work was
- 430 supported by internal university funding and the UK Department for Transport. Any opinions,

| 431 | findin          | gs, and conclusions or recommendations expressed in this paper are those of the authors      |
|-----|-----------------|----------------------------------------------------------------------------------------------|
| 432 | and do          | o not necessarily reflect the views of the sponsors.                                         |
| 433 | ABBR            | EVIATIONS                                                                                    |
| 434 | $\rm CO_2$      | Carbon dioxide                                                                               |
| 435 | GHGs            | Greenhouse gases                                                                             |
| 436 | ICAO            | International Civil Aviation Organization                                                    |
| 437 | IPCC            | Intergovernmental Panel on Climate Change                                                    |
| 438 | NO <sub>x</sub> | Nitrogen oxides (NO + NO <sub>2</sub> )                                                      |
| 439 | RF              | Radiative Forcing                                                                            |
| 440 |                 |                                                                                              |
| 441 | REFE            | RENCES                                                                                       |
| 442 |                 |                                                                                              |
| 443 | 1. 1            | Penner, J., Lister, D. H., Griggs, D. J., Dokken, D. J., McFarland, M. Eds. Aviation and the |
| 444 | ٤               | global atmosphere. Prepared in collaboration with the Scientific Assessment Panel to the     |
| 445 | Ì               | Montreal Protocol on Substances that Deplete the Ozone Layer; Intergovernmental Panel        |
| 446 | (               | on Climate Change. Cambridge University Press; UK., 1999.                                    |
| 447 | 2. 1            | Lee, D. S.; Fahey, D. W.; Forster, P. M.; Newton, P. J.; Wit, R. N. C.; Lim, L. L.; Owen,    |
| 448 | ]               | B.; Sausen, R. Aviation and global climate change in the 21st century. Atmospheric           |
| 449 |                 | Environment, <b>2009</b> , 43, 3520 – 3537, DOI:10.1016/j.atmosenv.2009.04.024.              |
| 450 | 3. ]            | Lee, D. S.; Pitari, G.; Grewe, V.; Gierens, K.; Penner, J. E.; Petzold, A.; Prather, M. J.;  |
| 451 | <b>C</b>        | Shumann, U.; Bais, A.; Berntsen, T.; Iachetti, D.; Lim, L. L.; Sausen, R. Transport impacts  |
| 452 | (               | on atmosphere and climate: Aviation. Atmospheric Environment, 2010, 44, DOI                  |
| 453 |                 | 10.1016/j.atmosenv.2009.06.005.                                                              |
|     |                 |                                                                                              |

| 454 | 4. Myhre, G.; Nilsen, J. S.; Gulstad, L.; Shine, K. P.; Rognerud, B.; Isaksen, I. S. A. Radiative             |
|-----|---------------------------------------------------------------------------------------------------------------|
| 455 | forcing due to stratospheric water vapor from CH <sub>4</sub> oxidation. <i>Geophys. Res. Lett.</i> 2007, 34, |
| 456 | L01807.                                                                                                       |

| 457 | 5. Myhre, G.; Shine, K. P.; Rädel, G.; Gauss, M.; Isaksen, I. S. A.; Tang Q.; Prather M. J  |
|-----|---------------------------------------------------------------------------------------------|
| 458 | Williams, J. E.; van Velthoven, P.; Dessens, O.; Koffi, B.; Szopa, S.; Hoor, P.; Grewe, V   |
| 459 | Borken-Kleefeld, J.; Berntsen, T. K.; Fuglestvedt, J. S. Radiative forcing due to changes i |
| 460 | ozone and methane caused by the transport sector. Atmospheric Environment, 2011, 45         |
| 461 | DOI 10.1016/j.atmosenv.2010.10.001.                                                         |

- 462 6. Lewis, J. S.; et al. Aircraft technology and its relation to emissions. In *Aviation and the*463 *Global Atmosphere*; Penner, J. E., Lister, D. J., Griggs, D. J., Dokken, D. J., McFarland, M.
  464 Eds.; Intergovernmental Panel on Climate Change, Cambridge University Press,
  465 Cambridge 1999; pp 373.
- Faber, J.; Greenwood, D.; Lee, D. S.; Mann, M.; Mendes de Leon, P.; Nelissen, D.; Owen,
  B.; Ralph, M.; Tilston, J.; van Velzen, A.; van de Vreede, G. Lower NO<sub>x</sub> at higher
  altitudes. Policies to reduce the climate impact of aviation NOx emission, CE-Delft, Delft,
  The Netherlands, 2008.
- 470 8. Kyprianidis, K. G.; Dahlquist, E. On the trade-off between aviation NO<sub>x</sub> and energy
  471 efficiency. *Appl. Energy*, 2017, 185, DOI 10.1016/j.apenergy.2015.12.055.
- 472 9. Owen, B.; Lee, D. S.; Lim, L. L. Flying into the Future: aviation emission scenarios to
  473 2050. *Env. Sci. Technol.* 2010, 44, 2255–2260, DOI 10.1021/es902530z.

| 474 | 10. Flemming, G; Ziegler, U. Environmental and Economic Assessment of NO <sub>x</sub> Stringency            |
|-----|-------------------------------------------------------------------------------------------------------------|
| 475 | Scenarios, Aircraft Technology Improvements. ICAO Environmental Report 2010. ICAO,                          |
| 476 | Montreal, Canada, 2010.                                                                                     |
| 477 | 11. Flemming, G; Ziegler, U. Environmental Trends in Aviation to 2050. ICAO Environmental                   |
| 478 | Report 2013, Montreal, Canada, 2013.                                                                        |
| 479 | 12. Sausen, R.; Schumann, U. Estimates of the climate response to aircraft $CO_2$ and $NO_x$                |
| 480 | emissions scenarios. <i>Climatic Change</i> , <b>2000</b> , 44, 27 – 58, DOI 10.1023/A:1005579306109.       |
| 481 | 13. Khodayari, A.; Wuebbles, D. J.; Olsen, S. C.; Fuglestvedt, J. S.; Berntsen, T; Lund, M. T.;             |
| 482 | Waitz, I.; Wolfe, P.; Forster, P. M.; Meinhausen, M.; Lee, D. S.; Lim, L. L.                                |
| 483 | Intercomparison of the capabilities of simplified climate models to project the effects of                  |
| 484 | aviation CO2 on climate. Atmospheric Environment, 2013, 75, 321 - 328, DOI                                  |
| 485 | 10.1016/j.atmosenv.2013.03.055.                                                                             |
| 486 | 14. Lund, M. T.; Aamaas, B.; Berntsen, T.; Bock, L.; Burkhardt, U.; Fuglestvedt, J. S.; Shine,              |
| 487 | K. P. Emission metrics for quantifying regional climate impacts of aviation. Earth. Syst.                   |
| 488 | <i>Dynam.</i> , <b>2017</b> , 8, 547 – 563, DOI 10.5194/esd-8-547-2017.                                     |
| 489 | 15. Isaksen, I. S. A.; Hov, O.; Hesstvedt, E. Ozone generation over rural areas. Environ. Sci.              |
| 490 | Technol. 1978, 12, DOI:10.1021/es60147a011.                                                                 |
| 491 | 16. Berntsen, T. K.; Isaksen, I. S. A. Effects of lightning and convection on changes in                    |
| 492 | tropospheric ozone due to $NO_x$ emissions from aircraft. <i>Tellus</i> , <b>1999</b> , 51B, 766 – 788, DOI |
| 493 | 10.3402/tellusb.v51i4.16484.                                                                                |
|     |                                                                                                             |

| 494 | 17. Stevenson, D. S.; Derwent, R. G. Does the location of aircraft nitrogen oxide emissions         |
|-----|-----------------------------------------------------------------------------------------------------|
| 495 | affect their climate impact? Geophys. Res. Letts. 2009, 36, DOI: 10.1029/2009GL039422.              |
| 496 | 18. Fuglestvedt ,J. S.; Shine, K. P.; Berntsen, T.; Cook, J.; Lee, D. S.; Stenke, A.; Skeie, R. B.; |
| 497 | Velders, G. J. M.; Waitz, I. A. Transport impacts of atmosphere and climate: Metrics.               |
| 498 | Atmospheric Environment, 2010, 44, DOI 10.1016/j.atmosenv.2009.04.044.                              |
| 499 | 19. ICAO (2010) ICAO environmental report 2010, Montreal, Canada.                                   |
| 500 | 20. Newton, P. Long-term Technology Goals for CAEP. Presented at the ICAO Colloquium on             |
| 501 | Aviation Emissions with Exhibition, 14 – 16 May, 2007.                                              |
| 502 | 21. Kinnison, D. E.; Brasseur, G. P.; Walters, S.; Garcia, R. R.; Marsh, D. R.; Sassi, F.;          |
| 503 | Harvey, V. L.; Randall, C. E.; Emmons, L.; Lamarque, J. F.; Hess, P.; Orlando, J. J.; Tie,          |
| 504 | X. X.; Randel, W.; Pan, L. L.; Gettleman, A.; Granier, C.; Diehl, T.; Niemeier, U.;                 |
| 505 | Simmons, A. J. Sensitivity of chemical tracers to meteorological parameters in the                  |
| 506 | MOZART-3 chemical transport model. J. Geophys. Res. 2007, 112, DOI                                  |
| 507 | 10.1029/2006JD007879.                                                                               |
|     |                                                                                                     |

- Sassi, F.; Kinnison, D. E.; Boville, B. A.; Garcia, R. R.; Roble, R. Effect of El Nino –
  southern oscillation on the dynamical , thermal and chemical structure of the middle
  atmosphere. *J. Geophys. Res.* 2004, 109, D17108, DOI 10.1029/2003JD004434.
- 511 23. Liu, Y.; Liu, C. X.; Wang, H. P.; Tie, X. X.; Gao, S. T.; Kinnison, D.; Brasseur, G.
  512 Atmospheric tracers during the 2003-2004 stratospheric warming event and impact of
  513 ozone intrusions in the troposphere. *Atmos. Chem. Phys.* 2009, 9, 2157 2170 DOI
  514 10.1007/s11274-015-1903-5.

| 515 | 24. Skowron, A.; Lee, D. S.; De León, R. R. The assessment of the impact of aviation NO <sub>x</sub> on |
|-----|---------------------------------------------------------------------------------------------------------|
| 516 | ozone and other radiative forcing responses - The importance of representing cruise                     |
| 517 | altitudes accurately. Atmospheric Environment, 2013, 74, 159 – 168, DOI                                 |
| 518 | 10.1016/j.atmosenv.2013.03.034.                                                                         |
| 519 | 25. Skowron, A.; Lee, D. S.; De León, R. R. Variation of radiative forcings and global                  |
| 520 | warming potentials from regional aviation NOx emissions. Atmospheric Environment,                       |
| 521 | <b>2015</b> , 104, 69 – 78, DOI 10.1016/l.atmosenv.2014.12.043.                                         |
| 522 | 26. Lamarque, JF.; Bond, T. C.; Eyring, V.; Grainer, C.; Heil, A.; Kilmont, Z.; Lee, D.;                |
| 523 | Liousse, C.; Mieville, A.,; Owen, B.; Schultz, M. G.; Shindell, D.; Smith, S. J.; Stehfest,             |
| 524 | E.; Van Aardenne, J.; Cooper, O. R.; Kainuma, M.; Mahowald, N.; McConnell, J. R.; Naik,                 |
| 525 | V.; Riahi, K; van Vuuren, D. P. Historical (1850 - 2000) gridded anthropogenic and                      |
| 526 | biomass burning emissions of reactive gases and aerosols: methodology and application.                  |
| 527 | Atmos. Chem. Phys. 2010, 10, 7017 – 7039, DOI 10.5194/acp-10-7017-2010.                                 |
| 528 | 27. Granier, C.; Guenther, A.; Lamarque, J. F.; Mieville, A.; Muller, J. F.; Olivier, J.; Orlando,      |
| 529 | J.; Peters, G.; Petron, G.; Tyndall, G.; Wallens, S. POET, a database of surface emissions              |
| 530 | of ozone precursors. 2005 (available at                                                                 |
| 531 | http://eccad.sedoo.fr/eccad_extract_interface/JSF.jsf).                                                 |
| 532 | 28. Skowron, A. The impact of emissions of nitrogen oxides from aviation on tropospheric                |
| 533 | chemistry - the counterbalancing roles of ozone and methane. Ph.D. Thesis, Manchester                   |
| 534 | Metropolitan University, Manchester, UK, 2013.                                                          |
| 535 | 29. Søvde, O. A.; Matthes, S.; Skowron, A.; Iachetti, D.; Lim, L.; Owen, B.; Hodnebrog, Ø.;             |

536 Di Genova, G.; Pitari, G.; Lee, D. S.; Myhre, G.; Isaksen, I. S. A. Aircraft emissions

| 537 | mitigation by changing route altitude: A multi-model estimate of aircraft NO <sub>x</sub> emission       |
|-----|----------------------------------------------------------------------------------------------------------|
| 538 | impact on O <sub>3</sub> photochemistry. Atmospheric Environment, 2014, 95, 468 – 479, DOI               |
| 539 | 10.1016/j.atmosenv.2014.06.049.                                                                          |
| 540 | 30. Olsen, S. C.; Wuebbles, D. J.; Owen, B. Comparison of global 3-D aviation                            |
| 541 | emissions datasets. Atmos. Chem. Phys. 2013, 13, 429 - 441, DOI 10.5194/acp-13-429-                      |
| 542 | 2013.                                                                                                    |
| 543 |                                                                                                          |
| 544 | 31. Khodayari, A.; Olse, S. C.; Wuebbles, D. J. Evaluation of aviation NO <sub>x</sub> induced radiative |
| 545 | forcings for 2005 and 2050. Atmospheric Environment, 2014, 91, 95 - 103, DOI                             |
| 546 | 10.1016/j.atmosenv.2014.03.044.                                                                          |
| 547 |                                                                                                          |
| 548 | 32. Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y. Global emission                |
| 549 | projections for the transportation sector using dynamic technology modelling. Atmos.                     |
| 550 | <i>Chem. Phys.</i> <b>2014</b> , 14, 5709 – 5733, DOI 10.5194/acp-14-5709-2014.                          |
| 551 |                                                                                                          |
| 552 | 33. Gettelman, A.; Chen, C. The climate impact of aviation aerosols. Geophys. Res. Lett.,                |
| 553 | <b>2013</b> , 40, 2785 – 2789, DOI 10.1002/grl.50520.                                                    |
| 554 |                                                                                                          |
| 555 | 34. Pitari, G.; Iachetti, D.; Di Genova, G.; De Luca, N.; Søvde, O. A.; Hodnebrog, Ø.; Lee, D.           |
| 556 | S.; Lim, L. L. Impact of coupled NOx/aerosol aircraft emissions on ozone photochemistry                  |
| 557 | and radiative forcing. Atmosphere, 2015, 6 751 – 782, DOI 10.3390/atmos6060751.                          |
|     |                                                                                                          |

| 559 | 35. Pitari, G.; Cionni, I.; Di Genova, G.; Søvde, O. A.; Lim, L. Radiative forcing from aircraft  |
|-----|---------------------------------------------------------------------------------------------------|
| 560 | emissions of NOx: model calculations with CH4 surface flux boundary condition.                    |
| 561 | <i>Meteorologische Zeitschrift</i> , <b>2016</b> , 26 (6), 663 – 687, DOI 10.1127/metz/2016/0776. |
| 562 | 36. Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G. Global        |
| 563 | climate changes as forecast by Goddard Institute for Space Studies three-dimensional              |
| 564 | model. Journal of Geophysical Research, 1988, 93 (D8), 9341 – 9364, DOI                           |
| 565 | 10.1029/JD093iD08p09341.                                                                          |
| 566 |                                                                                                   |
| 567 | 37. Myhre, G.; Shindell, D.; Bréon, F-M.; Collins, W.; Fuglestvedt, J.; Koch, D.; Lamarque, J-    |
| 568 | F.; Lee, D.; Mendoza, B.; Nakajima, T.; Robock., A.; Stephens, G.; Takemura, T.; Zhang,           |
| 569 | H. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical              |
| 570 | Science Basis. Contribution of working Group I to the Fifth Assessment report of the              |
| 571 | Intergovernmental Panel on Climate Change. Stocker, T. F., Qin, D., Plattner, G-K.,               |
| 572 | Tignor, M., Allen, S. K., Baschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M., Eds.;       |
| 573 | Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,                      |
| 574 | 2013.                                                                                             |
| 575 | 38. Lim, L.; Lee, D. S.; Sausen, R.; Ponater, M. Quantifying the effects of aviation on radiative |
|     |                                                                                                   |
| 576 | forcing and temperature with a climate response model. Proceedings of the TAC-                    |
| 577 | <i>Conference</i> , June 26 – 29, 2006, Oxford, UK.                                               |

| 578 | 39. Hasselmann, K.; Hasselmann, S.; Giering. R.; Ocana, V.; VonStorch, H. Sensitivity study             |
|-----|---------------------------------------------------------------------------------------------------------|
| 579 | of optimal CO <sub>2</sub> emission paths using a simplified structural integrated assessment model     |
| 580 | (SIAM). <i>Climatic Change</i> , <b>1997</b> , 37, 345 – 386, DOI 10.1023/A:1005339625015.              |
| 581 | 40. Maier-Reimer, E.; Hasselmann, K. Transport & storage of CO <sub>2</sub> in the ocean – an inorganic |
| 582 | ocean-circulation carbon cycle model. Climate Dynamics, 1987, 2, 63 - 90, DOI                           |
| 583 | 10.1007/BF01054491.                                                                                     |
| 584 | 41. Solomon, S.; et al. Technical Summary. In: Climate Change 2007: The Physical Science                |
| 585 | Basis. Contribution of Working Group I to the Fourth Assessment Report of the                           |
| 586 | Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen,                     |
| 587 | Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L., Eds.; Cambridge University                   |
| 588 | Press, Cambridge, United Kingdom and New York, NY, USA.                                                 |
| 589 | 42. Hasselmann, K.; Sausen, R.; Maier-Reimer, E.; Voss, R. On the cold start problem in                 |
| 590 | transit simulations with coupled atmosphere-ocean models. Climate Dynamics, 1993, 9 (2),                |
| 591 | 53 – 61, DOI 10.1007/BF00210008.                                                                        |
| 592 | 43. Holmes C. D.; Tang, Q.; Prather, M. J. Uncertainties in climate assessment for the case of          |
| 593 | aviation NO. Proc. Natl. Acad. Sci. USA. 2011, 108, DOI 10.1073/pnas.1101458108.                        |
| 594 |                                                                                                         |
| 595 |                                                                                                         |