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Abstract

A large range of vascular diseases require the replacement of blood vessels. By-

pass grafting is a widely used treatment, in particular for high risk-patients, and

consists of the connection of autologous/prosthetic graft and veins/arteries in order

to repair the regular blood supply through occluded or damaged vessels. However,

the development of stenosis due to thrombosis, atherosclerosis and intimal hyperpla-

sia, linked to unfavourable haemodynamic patterns, reduces the long-term efficiency

of the treatment. The identification of the natural blood motion as a swirling flow

in the whole arterial system has resulted in new promising lines of research in car-

diovascular devices in order to increase the patency rates of graft anastomoses by

reproducing this physiological phenomenon.

The impact of the proposed research lies in the numerical investigation of the

influence of different design parameters of novel spiral-inducing grafts on haemody-

namics, with the objective of understanding the physics of the problem and deter-

minating the most relevant geometrical parameters. Conventional Eulerian metrics

highlighted the effects of the ridge cross-sectional shape and, particularly, the posi-

tion of the ridge around the perimeter of the graft on inducing an enhanced swirling

blood flow. The Lagrangian approach, which assumes the blood as a heterogeneous

solid-liquid suspension, allows to assess the individual behaviour and movement of

representative particles travelling in the continuous phase and again highlighted the

influence of the ridge orientation from this perspective. The correlation between

distributions of friction forces and terminal locations of particles in the wall of the

host artery showed a predominant deposition in regions of low wall shear stress,

in agreement with those assumptions that were initially considered as optimisation

criteria.
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Chapter 1

Introduction

1.1 Motivation

Heart and blood vessel disorders cause approximately 40 percent of deaths in the

European Union with a consequent economic impact of e196 billion per year for

national health systems [1]. The occlusion of arteries produced by vascular diseases

or damaged vessels, particularly in high risk-patients, requires the use of prosthetic

or natural grafts with a variety of possible anastomoses in order to repair the regular

blood supply [2,3]. A graft anastomosis consists of the connection of an autologous

or prosthetic graft and veins or arteries. Arterial Bypass Grafts (ABGs), for improv-

ing the blood flow, and Arterio-Venous Grafts (AVGs), for creating an access point

for haemodialysis treatment for patients with renal diseases, are the main applica-

tions of vascular graft anastomosis. However, the development of stenosis at the

junction due to thrombosis, atherosclerosis and Intimal Hyperplasia (IH) reduces

the long-term efficiency of such treatments. Although the pathology of the graft

failure due to the above-mentioned diseases has not been accurately elucidated, it is

well documented that haemodynamic factors play an essential role [2]. Among the

1



different haemodynamic factors, the identification of the blood motion as a spiral

flow in the whole arterial system produced by the complicated geometry and blood

flow conditions of the vascular system [4] has recently inspired novel designs of pros-

thetic grafts which tend to mimic this natural phenomenon using helical and spiral

configurations [5]. The helical flow opens a range of possible applications such as so-

lutions for occlusion of arteries or grafts, improvement of stents performance and the

diagnosis of arterial status. These potential benefits come as a result of the blood

flow stabilisation, inhibition of stagnation and flow separation points, uniformity of

wall shear stress, energy efficiency and enhancement of oxygen transport [4].

In parallel, Computational Fluid Dynamics (CFD) has proven its effectiveness

as a powerful tool in order to characterise complex fluid flows, analyse the haemo-

dynamic forces [6] and obtain the optimal design of graft anastomosis that improves

the patency rate and minimises the graft failure and the need for re-operation. In

the physiological aspect, numerical methods also allow for characterising blood us-

ing homogeneous or heterogeneous fluid models and implementing patient-specific

boundary conditions, thereby increasing the rigour and accuracy of the biological

model and identifying possible regions of proliferation of vascular diseases.

The combination of these two technology trends, helical/spiral prosthetic grafts

and CFD simulations, will be used to elucidate the effects of inducing secondary

flow motions in vascular graft anastomosis and the potential improvement in graft

performance and patency rates.

1.2 Graft anastomosis

An anastomosis is a surgical connection between an autologous or prosthetic graft

and veins or arteries inside the human body. From a geometrical point of view and
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depending on the surgical intervention, the graft anastomoses can be executed as

end-to-side (as shown in Figure 1.1), end-to-end, and side-to-side configurations [7].

Figure 1.1: Schematic of an End-To-Side (ETS) distal graft anastomosis, subject of
study in the present work.

In general, vascular grafts can be categorised under the following two main ap-

plications:

- Arterial Bypass Grafts: Each year over a million vascular grafts are used

in current medical practice. Examples of the application of ABGs include

Peripheral Vascular Disease (PVD) and Coronary Artery Disease (CAD). In

ABGs, currently, the use of autologous grafts or natural vessels represents the

preferential option but is adversely affected by unsuitability and unavailability

of occurring vessels, particularly blood vessels less than 6 mm in diameter that

are highly demanded, as well as additional surgery for the patient [8]. Hence,

prosthetic grafts, following either biomaterial or tissue engineered approaches,

are necessarily employed. Current prosthetic surgical options commonly in-

clude Dacron (Polyethylene Terephthalate, PET) and expanded Polytetraflu-

oroethylene (ePTFE). Unfortunately, prosthetic grafts are known to exhibit

unsatisfactory long-term performances as a consequence of the development

of stenosis in the anastomotic region [9]. Therefore, much research on graft
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geometries and anastomosis designs is being performed to reduce failure rates

and improve patency rates, particularly for vessels under 6 mm in diameter.

- Arterio-Venous Grafts: AVGs are mainly used for creating an ‘access point’

for haemodialysis treatments for patients with renal diseases. The recent in-

crease in the incidence of diabetes mellitus and the need for haemodialysis in

patients with this disorder has expanded the number of patients who require

the implantation of ePTFE grafts for vascular access.

1.3 Physiological mechanisms of graft failure

The widely accepted role of haemodynamic conditions on physiological mechanisms

associated with graft failure has been extensively shown in literature [7,10,11]. How-

ever, despite the identification of this influence, there is still no unanimity about the

relationship between haemodynamic metrics and physiological mechanisms linked

to the development of the most common vascular diseases resulting in graft failure:

thrombosis, atherosclerosis, intimal hyperplasia and stenosis.

Thrombosis is a blood clot, thrombus, produced by the adhesion and accumula-

tion of platelets and red blood cells which entails the risk of rupture and diffusion

through the bloodstream. Thrombosis has been clinically associated with the di-

agnosis of atherosclerosis [12]. Haemodynamically, this disease has been linked to

patterns of low velocity and retrograde flow or recirculation which are observed in

stenoses. It is also considered as an initiating factor of early failure in small diam-

eter vascular grafts due to the low blood flow rate [12–14]. However, once again,

discrepancies can be observed in literature and other theories attribute high levels

of shear stress with platelet accumulation [10].
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Atherosclerosis is characterised by the narrowing of an artery because of the

formation and development of plaque and represents one of the leading causes of

death [15]. Atherosclerotic lesions arise due to the accumulation of atherogenic

lipids [16] and are associated with abnormal flow conditions, flow separation and

recirculation, which can also be induced as a result of postsurgical treatments [4].

These flow patterns are characterised by low and oscillatory wall shear stress [10,

17–19]. In this sense, Malek et al. [15] state the threshold in shear stress of 0.4 Pa

under which the region is prone to develop atherosclerosis.

Intimal hyperplasia represents the main cause of failure in distal end-to-side anas-

tomoses due to the proliferation of smooth muscle cells that occlude the blood vessel

lumen [7, 20–24]. Particularly in prosthetic grafts and ETS anastomotic configura-

tions, intimal hyperplasia has been mainly identified at region of flow separation

(i.e. toe and heel, see Figure 1.1), suture lines and bed of anastomosis [25, 26] and,

therefore, linked to the surgical deployment and design of the anastomosis.

As mentioned above, atherosclerosis and intimal hyperplasia can produce the

abnormal and severe narrowing of a blood vessel, known as stenosis [27]. As a result

of the geometrical modification of the fluid domain, haemodynamics is affected by

non-uniform conditions downstream of the region of stenosis, characterised by flow

separation and recirculation [6, 12]. The degree of stenosis directly influences the

blood velocity (associated with the Venturi effect), pressure loss, flow separation,

turbulence and viscous losses. From stenoses greater than 50%, pressure loss be-

comes significant and flow separation occurs under extremely low Reynolds number,

in the order of 10 [10, 11].

5



1.4 Spiral motion of blood flow

One of the most significant contributions to the improvement of haemodynamics in

grafts was based on the identification of the natural blood flow as spiral in the whole

arterial system. This behaviour is induced by the pulsatile nature of the flow [28]

and the rotational compressive pumping of the heart [29] that is supported by the

tapered, elastic, curved and non-planar geometry of the arterial system [30, 31].

Spiral blood flow has been identified in the right distal superficial and common

femoral arteries [28], across the ascending [32] and descending aorta [33], right coro-

nary artery and common iliac arteries [24, 30, 34–38]. It has also been observed in

the intracranial, carotid siphon, and pulmonary, right pulmonary artery, vascular

systems [39, 40]. However, the rotational direction of the flow pattern has been

shown as variable depending on the blood vessel and the cardiac phase.

The benefit of this flow pattern and the relevance of spiral grafts lie in avoiding

the deposition of blood cells, stabilising the motion, increasing the uniformity of Wall

Shear Stress (WSS), decreasing the energy dissipation and removing unfavourable

haemodynamic environments such as turbulence, stagnation and oscillatory shear

stress [4, 28, 37], which are believed to be the main causes of IH at anastomotic

configurations. The oxygen and mass transports are favoured by the sweep effect

in the presence of atherosclerotic plaque in the arterial wall [36, 41]. Furthermore,

helical flow has been hypothesized as a potential mechanism to assess the propensity

to arterial diseases [42,43] as well as to avoid the occlusion or re-stenosis in prosthetic

grafts, stents and arteriovenous shunts as a result of the increased WSS and velocity

components near the arterial wall [24].

The present investigation will be developed in concordance with this physiolog-

ical revelation and the new designs of prosthetic grafts, introduced in Chapter 2,
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that have started to take a new direction toward improving the patency of grafts by

mimicking this novel flow field augmentation.

1.5 Rheology of the blood

Blood is a complex multi-phase fluid composed of particles (red blood cells, white

blood cells and platelets) travelling in a continuous phase (blood plasma). Except

under elongational stress, blood plasma can be considered as a Newtonian fluid, i.e.

liquid with constant viscosity. The volume concentration and different mechanical

properties of haematocrit, that can amount about 40 to 45%, generates the non-

Newtonian behaviour of the blood. This effect, predominantly induced by the high

concentration and mechanical properties of red blood cells, is presented in the form

of shear thinning, viscoelasticity, thixotropy and yield stress [44]. The decrease in

viscosity with increasing levels of shear rates is known as shear thinning [45]. The

linear viscoelastic behaviour of blood is associated with the reversible deformation

of the three-dimensional microstructure of red blood cells, knows as rouleaux, and is

particularly identified at low shear rates and under pulsatile conditions [45, 46]. In

addition to the low load conditions required for the aggregation of red blood cells,

the composition of the continuous phase and, particularly, fibrinogen plasma protein

have been also linked to the formation of such structures [45, 46]. The transient

formation and breakup of these three-dimensional microstructures of red blood cells

define the thixotropy of blood [46]. Although this time-dependent property has

reported a minor impact on blood rheology, it is predominantly observed under

low shear rates over long periods of time [44, 47]. Yield stress characterises the

resistance of the fluid to flow and has been linked to blood clotting and thrombus

formation [46]. The rheological flow resistance is associated with the developement
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of aggregates and, as a consequence, with the concentration of erythrocytes (red

blood cells) and fibrinogen as well as the thixotropic behaviour of blood [44].

In relation to this investigation, the viscosity of blood as a non-Newtonian fluid

depends on the level of shear stress. Studies in this field set a shear rate threshold of

100 s−1 under which non-Newtonian effects are remarkable [44,45,48–51]. As alluded

to above, this behaviour is particularly important in small vessels, such as capillaries,

and zones of large arteries characterised by low shear rates (i.e. bends, bifurcations,

anastomoses and aneurysms) due to the development of three-dimensional structures

of erythrocytes [44,45,50,52–56]. The influence of these fluid flow characteristics are

reported in axial and secondary flow profiles as well as steady-state and transient

WSS-based metrics [57].

Despite the heterogeneous composition of blood, the most common haemody-

namic approaches consider the blood as a continuous fluid and the effect of blood

particles is usually simplified by using non-Newtonian models extensively studied in

the literature. The most widely used non-Newtonian models in haemodynamics are

Carreay-Yasuda and Casson viscosity laws. Other alternatives include power law,

Herschel-Bulkley, Oldroyd-B, Yeleswarapu, Bingham, Eyring-Powell, Ree-Eyring

and Quemada viscosity models [44].

1.6 Fluid mechanics

Fluid mechanics is the scientific discipline which studies the motion and behaviour

of those materials unable to resist shear stress, i.e. fluids (liquids and gases). Tra-

ditionally, the description of the motion of a fluid can be simultaneously addressed

using the Eulerian or Lagrangian formulation [58].
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1.6.1 Eulerian and Lagrangian descriptions

The most common approach in fluid mechanics and, particularly, in haemodynamics

is the Eulerian method that measures the temporal evolution of fluid magnitudes in

each point of the fluid domain, x. The use of this description lies in the equations

of velocity and every fluid magnitude f :

u = u(x, t) f = f(x, t) (1.1)

Eulerian haemodynamic metrics are used in Chapter 3 to analyse the perfor-

mance of the different designs of spiral grafts.

For its part, the Lagrangian formulation assesses the fluid field by measuring

fluid metrics over the motion of each fluid element through its trajectory, which

allows to study the behaviour of particles. The use of this description lies in the

trajectory equation over time, xT , described by the particle located in x0 at the

initial time t = t0 for every fluid magnitude f :

x = xT (x0, t) f = f(x0, t) (1.2)

Further information about different numerical Lagrangian approaches and the

use of this description to study the behaviour of idealised blood particles in the

different designs of spiral grafts can be found in Chapter 4.

1.6.2 Computational Fluid Dynamics

The simultaneous increase in complexity of engineering problems, that often involve

multiple physics (fluid dynamics, mechanical properties, electromagnetic behaviour,

design optimisation, etc.), and the power-to-cost ratio of computers have brought
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with them an exponential increase in the use of numerical techniques, including

computational fluid dynamics in biomedical engineering within the framework of

translational medicine.

Particularly, for prosthetic grafts, research is currently being undertaken under

two separate strands; the first tends to focus on tissue-engineering and biomaterial

science, while the second is concerned with biomechanics, flow field augmentations

and haemodynamic forces. Although both approaches are related by haemorheology

and its influence in tissue perfusion [45], the attention of the present work is focused

on the latter and relies on CFD to investigate the effects of secondary flow on distal

graft anastomosis configurations.

The working structure for this and, in general, for any CFD study is made up

of the following stages: (1) geometry definition and/or reconstruction of the fluid

problem, (2) meshing of the computational domain, (3) CFD setup and specification

of fluid properties, boundary conditions and parameters of the numerical procedure

and, finally, (4) post-processing and analysis of results.

Software packages

The increasing and multidisciplinary use of CFD techniques has resulted in a

wide variety of software packages of recognised solvency. According to the above-

mentioned working structure, the software used in each of the stages of this project

is enumerated as follows:

- CAD: ANSYS DesignModeler. Version 17.1, Academic Research CFD license.

ANSYS Inc., Canonsburg, PA, USA.

- Mesh: ANSYS Meshing. Version 17.1, Academic Research CFD license. AN-

SYS Inc., Canonsburg, PA, USA.
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- CFD solver: ANSYS CFX. Version 17.1, Academic Research CFD license.

ANSYS Inc., Canonsburg, PA, USA.

- Post-processing: ANSYS CFD-Post (Version 17.1, Academic Research CFD

license, ANSYS Inc., Canonsburg, PA, USA) and Ensight (CEI Inc., Research

Triangle Park, NC, USA).

1.7 Methodology

The aim of the proposed research lies in the haemodynamic characterisation, iden-

tification of the most relevant geometrical parameters and preliminary design opti-

misation of spiral-inducing prosthetic grafts.

Following a comprehensive literature review and the description of the state-of-

the-art in bypass grafting, different design strategies of a conventional end-to-side

distal graft anastomosis with internal helical ridge are analysed in order to carry out

an appropriate design comparison under the same boundary conditions. Different

cross-sectional designs, orientations, pitches and number of the ridges have been

tested here in order to determine the effect of each design parameter on haemody-

namics and, consequently, on physiological mechanisms associated with the devel-

opment of stenosis, thrombosis, atherosclerosis and intimal hyperplasia.

The Eulerian description of fluid mechanics represents the traditional approach

of computational haemodynamics by considering the blood as a continuous and

non-Newtonian fluid. Both steady-state and unsteady flow conditions will be intro-

duced in this research to simulate physiological conditions of the circulatory system.

Some of the haemodynamic metrics which will be investigated in this project include

secondary flow, Wall Shear Stress (WSS), pressure drop, helicity, retrograde flow,
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Oscillatory Shear Index (OSI), Time-Average WSS (TAWSS), TAWSS Gradient

(TAWSSG) and Relative Residence Time (RRT). Further information about these

haemodynamic parameters and their mathematical definitions will be presented in

Chapter 3. Widely accepted assumptions about the above-mentioned fluid dynamic

metrics will be used to justify the potential correlation with physiological mecha-

nisms associated with the formation and development of vascular diseases and to

assess the graft performance.

In line with the above, the combination of Eulerian and Lagrangian descriptions

provides a different haemodynamic approach by considering the blood as a hetero-

geneous solid-liquid suspension. This computational procedure enables to account

the transport and tracking of blood particles and, as a result, to study the regions

of deposition prone to the development of vascular diseases without the need of

intermediary hypothesis, often contradictory.

1.8 Organization of the thesis

This thesis ’Numerical Investigation of Haemodynamics in Spiral-Inducing Grafts

using Eulerian and Lagrangian Frameworks’ covers the assessment of design param-

eter effects on haemodynamics in a novel spiral-inducing prosthetic graft from the

two theoretical descriptions of fluid mechanics.

The remainder of this report is organised as follows. Chapter 2 reviews the

current status of bypass graft design and geometrical parameters studied in the lit-

erature together with their effects on haemodynamics. The design strategy for the

spiral-inducing graft assumed throughout the project will be introduced in this chap-

ter. Chapter 3 describes the use of the traditional Eulerian description, considering

the blood as a homogeneous fluid, in order to understand the physics of the fluid
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problem and compare the influence of the different design parameters on the fluid

flow field. Chapter 4 explores the use of the non-conventional Lagrangian approach

by considering the blood as a heterogeneous multi-phase mixture and enabling the

assessment of discrete particle trajectories and their deposition on the anastomotic

region. Lastly, conclusions and an outline of future work, which complements this

study, are drawn in Chapter 5.
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Chapter 2

Problem Definition

2.1 Introduction

The direct influence of the domain geometry and fluid conditions on haemodynamics

has resulted in an extensive research into design parameter effects associated with

bypass anastomoses and prosthetic grafts.

This chapter will review previous works studying geometrical factors as a basis

for deepening knowledge related to current designs of spiral-inducing grafts and its

surgical deployment. The common characteristics of the problem using the Eulerian

and Lagrangian frameworks will also be defined in terms of geometrical and fluid

dynamic conditions. Once the operating point of prosthetic grafts is specified, two

different design strategies are proposed in order to assess the effect of ridge designs

on the blood flow. The design strategy will be selected in order to ensure that the

different geometrical designs are compared under the same boundary conditions and

particularly, under a similar pressure drop or vascular resistance.

Therefore, all geometrical and fluid dynamic parameters followed throughout

this study will be defined in the following sections.
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2.2 Literature review

2.2.1 Geometrical parameters in bypass anastomoses and

prosthetic grafts

Since flow patterns are directly related to the geometry of the bifurcation, the design

of the graft and its connection to the host artery, much research has addressed the

effect of a large range of design parameters in bypass anastomoses and prosthetic

grafts.

Tissue remodelling and the patency rate of grafts have been related to the anasto-

motic angle [2], among other factors. Low angles have mainly reported more uniform

haemodynamic metrics and reduction of peak and oscillatory values of WSS [59–65].

In contrast, Do et al. [6] studied the effect of the anastomotic angle in a partially

occluded end-to-side distal graft anastomosis showing a decrease in reverse flow with

a certain increase of the angle.

Graft diameter has been shown as an important parameter in the biological re-

sponse to this treatment. While grafts of small diameter can lead to vessel occlusion

and early graft failure due to platelet thrombosis as a result of the overstimulation

produced by high levels of shear stress [10, 66, 67], high-diameter grafts can induce

intimal thickening because of low shear stress and abnormal flow conditions, i.e. flow

separation and recirculation [10]. Despite this fact, large graft calibers are generally

preferred in order to induce more uniform distributions of WSS and to avoid spatial

and temporal oscillations of WSS-based haemodynamic metrics [59, 68, 69].

Out-of-plane configurations have reported lower temporal oscillations of WSS

as well as improved flow patterns in the occluded region when compared with con-

ventional designs [70, 71]. The enhanced behaviour has been associated with the
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introduction of a circumferential velocity component to the bulk velocity of blood

that results in the dissipation of conventional Dean vortices into a single dominant

vortex. The reduction and increase of the helical pitch and amplitude, respectively,

have been suggested to improve the graft performance [72]. However, the deploy-

ment of non-planar graft configurations can be restricted by surgical factors [73].

Other studies have gained an insight into different configurations of distal graft

anastomosis by introducing hoods [74] and cuffs [75] with the purpose of improving

the adaptation of the blood flow and redistributing the development of IH at the

anastomosis.

2.2.2 Helical and spiral grafts

Building on the benefits of the physiological spiral flow of blood, described in Chap-

ter 1, two of the most innovative designs of prosthetic grafts are Spiral Flow Graft

and SwirlGraft:

- Spiral Flow Graft:

‘Spiral Laminar Flow (SLF) Peripheral Vascular Graft’, initially studied by

Stonebridge and colleagues [31,37] at Ninewells Hospital in Dundee (Scotland)

and subsequently commercialised by Vascular Flow Technologies (VFT) Ltd.,

consists of a prosthetic ePTFE graft design that is engineered to induce spiral

flow through an internal ridge within its distal end. The results of an early

clinical non-randomised study for VFT peripheral bypass graft were promising

and showed primary patency rates of 81% for above-the-knee bypasses and

57.3% for below-the-knee bypasses at 30 months of follow-up. The respective

secondary patency rates were 81% and 64% [81]. Similar improvements were

also found when using the spiral flow graft for AV access for haemodialysis
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(‘Spiral Flow AV Access Graft’). Through inducing spiral blood flow using

an internal ridge, the SLF graft is claimed to: 1) reduce laterally directed

forces and near-wall turbulence, 2) suppress acute thrombus formation with

no increase in platelet activation, 3) reduce WSS gradient and oscillatory

shear index, 4) enhance oxygen flux to the arterial wall and 5) reduce luminal

surface low-density lipoproteins concentration [5,82]. While the initial results

reported in [81] highlight the potential for the idea of spiral-inducing grafts in

bypass surgeries, in a very recent clinical investigation, Bechara [82] carried

out a single-centre study on patients undergoing infrainguinal bypass using

VFT’s spiral laminar flow graft compared against Propaten (a heparin-bonded

ePTFE graft produced by W.L. Gore) and found that the spiral laminar flow

graft had not led to higher patency rates in comparison to the conventional

ePTFE grafts. This finding highlights the need for further investigation on

the design and improving the performance of these grafts with more effective

spiral ridges.

- SwirlGraft:

‘SwirlGraft’, developed by Caro and colleagues [76] at Veryan Medical Ltd.,

is a new Arterio-Venous (AV) shunt graft with a helical out-of-plane geomet-

ric feature, also known as ‘SMall Amplitude Helical Technology’ (SMAHT).

Compared to a conventional ePTFE graft, the animal experiments reported

in [76] demonstrated that there was less thrombosis in SwirlGraft. The differ-

ence became even more significant after 8 weeks of implementation. To date,

a number of researchers have simulated the blood flow in out-of-plane grafts

geometries that induce 3D swirling [70–72, 77–79]. Whilst the majority of

the previous numerical simulations have studied the helical flow using various
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mean flow and wall shear stress-based haemodynamic parameters, Cookson et

al. [77] used high-order particle tracking, and an information entropy measure

to understand and quantify the mixing effect in helical geometries and found

the optimal helical geometry, in terms of mixing versus pressure loss. SMAHT

has also inspired other novel flow field augmentation techniques including the

work of Cookson et al. [80] which has shown that joining together two heli-

cal geometries, of different helical radii, would enhance mixing, with a minor

increase in pressure loss [77].

Recent investigations by the author’s research group [83] suggest that the com-

bination of a spiral ridge(s) with graft out-of-plane helicity can further enhance the

swirling effect in the flow. However, whilst several researchers have numerically

simulated the blood flow in out-of-plane graft geometries [70–72, 77–79], there are

currently very few research papers in the literature investigating grafts with inter-

nal spiral ridges [4]. Therefore, the focus of this thesis will be restricted to this

type of graft, with an aim of understanding the flow physics and haemodynamic

forces and improving the ridge design through conducting a parametric study on

various geometrical parameters. This research would have a wide range of beneficia-

ries including hospitals and the healthcare systems, medical practitioners and the

therapeutic technology industry.

2.3 Problem definition

2.3.1 Geometrical definition

In the present study, the design of a novel spiral-inducing graft has been assessed

from the haemodynamic point of view. Figure 2.1 represents the simplified geometry
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of an End-To-Side (ETS) distal graft anastomosis, that connects the prosthetic

graft and host artery with an angle of 60 degrees, according to experimental studies

by Kokkalis et al. [5] and in line with previous work carried out by the author’s

research group [83]. The internal diameters of host artery and graft are set to

6 mm, according to the order of magnitude of a peripheral artery bypass grafting.

The stenosis is considered complete and, therefore, the blood flow through the

graft is not affected by competitive flow from the stenosis. The distance between the

stenosis and heel of anastomosis is 12.92 mm, approximately 2 times the diameter

of the graft, in concordance with the experimental model of Spiral Laminar Flow

Peripheral Vascular Graft (Vascular Flow Technologies Ltd., Dundee, UK) assessed

by Kokkalis et al. [5].

The swirling flow is induced by means of one or more spiral ridges in the in-

ternal wall of the graft. In order to understand the haemodynamic effects of the

ridge design, different cross-sectional shapes, orientations, number and pitches of

the ridge have been tested by means of the design approaches A and B, explained in

Section 2.4. Three different monitoring planes located at 1 mm, 5 mm and 50 mm

distal from the toe of the anastomosis have been considered in order to evaluate

the haemodynamic parameters in the host artery, in line with the experimental

procedure carried out by Kokkalis et al. [5].

19



Figure 2.1: Schematic of the computational model.

2.3.2 Dynamic definition

The Reynolds number, Re, is a dimensionless fluid dynamic parameter that repre-

sents the ratio of inertial to viscous forces and provides an estimation of the flow

regime: laminar or turbulent.

Re =
ρV D

µ
(2.1)

Where ρ is the density of the fluid, V is the velocity of the fluid, µ is the dynamic

viscosity and D is the characteristic distance, i.e. the diameter of graft or host artery.

In the present problem, the Reynolds number has been set to Re = 570, according

to a normal flow condition in the peripheral system [5, 84]. Consequently, the flow

regime can be assumed as laminar.

When implementing transient flow conditions, the pulsatile behaviour can be

characterised by the Womersley number, α, that describes the ratio of transient

inertial forces to viscous forces or the reduced velocity, ured, that is the inverse of
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the Strouhal number and represents the relationship between the distance travelled

by the mean flow and the diameter [85].

α =
D

2

√
2π

υT
ured =

1

St
=

uT

D
(2.2)

Where υ is the kinematic viscosity (υ = µ/ρ), T represents the period of the

pulsatile cicle and St is the Strouhal number. As will be observed in Chapters 3

and 4, the patient-specific velocity waveform implemented at the inlet results in a

Womersley number of 4.34.

The boundary condition at the inlet was specified in terms of velocity according

to the aforementioned Reynolds number. Fully developed flow is ensured by the

initial extension of the graft of 60 mm, ten times the diameter of the graft and host

artery [86]. At the outlet, zero pressure conditions were considered [6, 87]. Further

details related to the different fluid dynamics approaches considered throughout this

study (Eulerian or Lagrangian frameworks) will be explained in Chapters 3 and 4.

The walls have been considered as rigid and non-slip [6, 71, 83]. Although the

assumption of rigid walls is far from being physiological at certain flow regimes

in arteries and veins, Ku et al. [10] showed that this premise can be considered

acceptable for Reynolds and Womersley numbers in the range of (100, 1000) and

(1, 10), respectively, as is in this case, in which the influence of wall elasticity is

reduced. Other computational investigations [88,89] also reported a minor effect of

compliance mismatch on local haemodynamics.
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2.4 Design strategies

The evolution of the design strategy used throughout this study is presented here.

Both design strategies consider the influence of the cross-sectional shape (circular

and elliptical ridges), orientation of the trailing edge, number of ridges and different

ridge pitches. With the purpose of analysing the effect of such geometrical param-

eters on the blood flow under similar dynamic conditions, the suitability of design

strategies A and B (defined below) is assessed in terms of the pressure drop and flow

resistance produced in the fluid domain.

Note that in all design schematics, the direction of the blood flow should be

interpreted as moving into the page.

2.4.1 Design Strategy A

The initial design strategy of spiral ridge(s) was considered by independently as-

sessing the height and width of the spiral as well as the number of ridges without

preliminary constraints in terms of total cross-sectional area.

Cross-sectional designs

Different sizes of circular and elliptical ridges were tested in order to assess the effect

of the cross-sectional shape. In the case of the circular ridge, the variation of the

size is defined through the Cross-Sectional Ratio (CSR):

CSR =
Ar

Ag

(2.3)
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where Ar and Ag represent the cross-sectional area of the ridge and graft, re-

spectively. The cross-sectional area of the graft is 28.27 mm2 corresponding to a

graft diameter of 6 mm.

The effects of the elliptical ridge have been studied separately. The variation of

the height is assessed (keeping the width of the ellipse fixed), by defining the Height

Ratio (HR) as:

HR =
L1

D
(2.4)

where L1 is the length of the semi-major axis, D is the diameter of the graft and

L2 is set to 0.9 mm.

Similarly, the variation of the width is studied (by keeping the height of the

ellipse fixed), through defining the Width Ratio (WR) as:

WR =
L2

D
(2.5)

where L2 is the length of the semi-minor axis and L1 is set to 0.9 mm.

In the numerical tests conducted in the this study, the values of 5, 15 and 30%

have been assigned to the parameters that define the size of the ridge (i.e. CSR,

HR and WR).

Orientation of the ridge

The procedure to analyse the impact of orientation of the trailing edge on haemo-

dynamics involves the rotation of the centre of the ridge to the positions 0◦, 90◦,

180◦ and 270◦. The trailing edge orientations 0◦ and 180◦ represent the toe and heel

of the anastomosis, respectively. The case of single circular ridge and CSR = 15%
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Figure 2.2: Schematic of the different cross-sectional shapes of ridge considered in
design strategy A.

was selected as a reference size to assess the effects of different ridge trailing edge

orientations.

Figure 2.3: Schematic of the different orientations of ridge considered in design
strategy A.

Number of ridges

The effects of the number of ridges were assessed by means of three configurations

with single, double and triple ridges. The circular ridge with CSR = 15% was

chosen as a reference size to generate the equally-spaced multi-ridge designs.
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Figure 2.4: Schematic of the different multi-ridge configurations considered in design
strategy A.

Pitch of the ridge

The influence of the pitch, H, on haemodynamics was evaluated through a variation

of ±20% in the helical pitch of the single circular ridge with CSR = 15% (Href =

86.54 mm). In all cases, the orientation of the ridge was set as in the reference case

(i.e. 180◦).

Figure 2.5: Schematic of the the different ridge pitches considered in design strategy
A.

All aforementioned features that define the different geometrical configurations

in design strategy A are summarised in Table 2.1.

2.4.2 Design Strategy B

With the purpose of comparing the different design of spiral grafts under similar fluid

dynamic conditions, the design strategy B evaluates similar graft configurations to
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Table 2.1: Features of the different configurations of ridge design considered in
design strategy A.

L1

[mm]
L2

[mm]
Orientation of
the ridge(s)

Number
of ridge(s)

Pitch
[mm]

Cross-sectional
designs

Elliptical
Height

HR 30% 1.8 0.9 180◦ 1 86.54
HR 15% 0.9 0.9 180◦ 1 86.54
HR 5% 0.3 0.9 180◦ 1 86.54

Circular
ridge

CSR 30% 2.58 2.58 180◦ 1 86.54
CSR 15% 1.76 1.76 180◦ 1 86.54
CSR 5% 0.98 0.98 180◦ 1 86.54

Elliptical
Width

WR 30% 0.9 1.8 180◦ 1 86.54
WR 15% 0.9 0.9 180◦ 1 86.54
WR 5% 0.9 0.3 180◦ 1 86.54

Trailing edge
orientation

0◦ 1.76 1.76 0◦ 1 86.54
90◦ 1.76 1.76 90◦ 1 86.54
180◦ 1.76 1.76 180◦ 1 86.54
270◦ 1.76 1.76 270◦ 1 86.54

Number
of ridges

Single 1.76 1.76 180◦ 1 86.54
Double 1.76 1.76 0◦, 180◦ 2 86.54
Triple 1.76 1.76 60◦, 180◦, 300◦ 3 86.54

Pitch
H+20% 1.76 1.76 180◦ 1 103.85
Href 1.76 1.76 180◦ 1 86.54

H−20% 1.76 1.76 180◦ 1 69.23

the ones described above but also implementing the constraint of constant total

cross-sectional area of ridge(s).

Cross-sectional designs

The effect of the cross-sectional shape on haemodynamics was also assessed by con-

sidering circular and elliptical ridges. In this case, the circular ridge is considered

as the reference case for further design parameters and the radius is set to 1.5 mm,

giving a ratio of approximately 10% between the cross-sectional area of the ridge

and graft (i.e. blockage ratio). The effects of the elliptical ridge have been studied

through the variation of the vertical semi axis and keeping the cross-sectional area

of the ridge fixed. As shown in Figure 2.6, in the numerical tests conducted here,

the ratio between the vertical semi axis, L1, and the diameter of the graft, D, is
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set to 0.2 (elliptical ridge - width), 0.25 (circular ridge) and 0.3 (elliptical ridge -

height).

Figure 2.6: Schematic of the different cross-sectional shapes of ridge considered in
design strategy B.

Orientation of the ridge

Similarly, the procedure to analyse the impact of the ridge trailing edge orientation

on haemodynamics again involves the rotation of the centre of the ridge to the

positions 0◦, 90◦, 180◦ and 270◦, along the circumference of the graft, near the

anastomosis. Note that the case of single circular ridge that was selected as the

‘reference’ configuration corresponds to the trailing edge orientation 180◦, consistent

with the current design of VFT’s ‘Spiral Flow Peripheral Vascular Graft’ [5].

Number of ridges

The effects of the number of ridges were also assessed by means of three configu-

rations with single, double and triple ridges. The single circular ridge is chosen as

the reference cross-sectional shape to generate equally-spaced ridges. However, in

the multi-ridge configurations, the radius of the circular ridges is decreased to keep
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Figure 2.7: Schematic of the different orientations of ridge considered in design
strategy B.

the total cross-sectional area fixed at 3.157 mm2 for all three cases. Therefore, the

radius of the ridge would be 1.04 mm and 0.84 mm in the double and triple ridge

configurations, respectively.

Figure 2.8: Schematic of the different multi-ridge configurations considered in design
strategy B.

Pitch of the ridge

Similar variations of ridge pitch to those taken in design approach A and illustrated

in Figure 2.5, were also considered in design strategy B. In constrast, the cross-

sectional areas of the ridge were set as in the reference case of design approach B,

i.e. single circular ridge with L1 = L2 = 1.5 mm.
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All aforementioned features that define the different geometrical configurations

in design strategy B are summarised in Table 2.2.

Table 2.2: Features of the different configurations of ridge design considered in
design strategy B.

L1

[mm]
L2

[mm]
Orientation

of the ridge(s)
Number
or ridges

Pitch
[mm]

Cross-sectional
designs

Elliptical - Height 1.8 1.18 180◦ 1 86.54
Circular ridge 1.5 1.5 180◦ 1 86.54

Elliptical - Width 1.2 2.31 180◦ 1 86.54

Trailing edge
orientation

0◦ 1.5 1.5 0◦ 1 86.54
90◦ 1.5 1.5 90◦ 1 86.54
180◦ 1.5 1.5 180◦ 1 86.54
270◦ 1.5 1.5 270◦ 1 86.54

Number
of ridges

Single 1.5 1.5 180◦ 1 86.54
Double 1.04 1.04 0◦, 180◦ 2 86.54
Triple 0.84 0.84 60◦, 180◦, 300◦ 3 86.54

Pitch
H+20% 1.5 1.5 180◦ 1 103.85
Href 1.5 1.5 180◦ 1 86.54

H−20% 1.5 1.5 180◦ 1 69.23

2.5 Discussion

The numerical simulation of the above-mentioned configurations enables the anal-

ysis of haemodynamic parameters such as the distributions of secondary velocity

magnitude and flow resistance in the fluid domain. Further details about the com-

putational model used in these simulations as well as the complete analysis of results

will be given in Chapters 3 and 4.

Figures 2.9 and 2.10 represent the distributions of secondary velocity at moni-

toring plane 3, located at 50 mm distal from the toe of the anastomosis where the

effects of the swirling motion are more meaningful, for the different cases of both

design strategies A and B described in Section 2.4. As can be observed, both design
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strategies give rise to conclusions in a similar direction by highlighting the influence

of the elliptical ridge, the trailing edge orientation, the increase of the number of

ridges and the decrease of the ridge pitch in producing an enhanced swirling flow.

However, an appropriate quantitative comparison of results requires the analysis of

the different geometrical designs under the same boundary conditions and particu-

larly, under a similar pressure drop or vascular resistance.

The appropriate blood flow supply to organs and tissues is regulated by the

resistance against the flow and the consequent pressure drop. Together with the

rheology of the blood, the geometry of vessels are the main parameters involved in

the adjustment of blood flow by means of vasoconstrictor and vasodilator mecha-

nisms.

The traditional description of blood in computational modelling as a homoge-

neous fluid together with the dynamic definition of the problem presented in Section

2.3, that will be further explained in Chapter 3, were used to analyse the resulting

pressure drop or equivalent flow resistance in the fluid domain, defined in Equation

2.6 [83, 90].

R =

∫ T

0
∆P Qdt∫ T

0
Q2dt

(2.6)

Where ∆P represents the pressure drop (∆P = Pinlet − Poutlet) and Q is the

volumetric flow rate.

Table 2.3 illustrates the values of pressure drop and flow resistance when the

design approach is free of constraints associated with the total cross-sectional area of

ridge(s). Unacceptable variations of up to 112.1% are reported when comparing with

the reference case (CSR = 15%), leading to an inappropriate numerical comparison

due to different pressure drop conditions in the different cases.
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Table 2.3: Pressure drop and flow resistance in the fluid domain for the different
configurations of spiral ridge(s) using the design configuration A.

Pressure drop [Pa] Flow resistance [MPa s m−3]

Cross-sectional design

Elliptical ridge - Height
HR 30% 550.35 61.40
HR 15% 496.37 55.38
HR 5% 469.81 52.42

Circular ridge
CSR 30% 785.11 87.60
CSR 15% 586.67 65.45
CSR 5% 502.43 56.06

Elliptical ridge - Width
WR 30% 507.93 56.67
WR 15% 496.37 55.38
WR 5% 485.17 54.13

Trailing Edge Orientation

0◦ 571.23 63.73
90◦ 581.82 64.91
180◦ 586.67 65.45
270◦ 591.12 65.95

Number of ridges
Single 586.67 65.45
Double 783.77 87.45
Triple 1244.06 138.80

Pitch
H+20% 598.42 66.77
Href 586.67 65.45

H−20% 540.55 60.31

In contrast to approach A, the design strategy B is based on setting the total

cross-sectional area of ridge(s) to be constant. This limits the difference in the

pressure drop of different cases, or equivalent flow resistance, to 3.5% with respect

to the reference configuration (as shown in Table 2.4), thus, making a numerically

valid comparison between different design parameters.

The design strategy B was therefore the approach adopted in the present work.
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Table 2.4: Pressure drop and flow resistance in the fluid domain for the different
configurations of spiral ridge(s) using the design configuration B.

Pressure drop [Pa] Flow resistance [MPa s m−3]

Cross-Sectional Design
Elliptical - Height 565.68 63.11

Circular Ridge 550.34 61.40
Elliptical - Width 535.49 59.74

Trailing Edge
Orientation

0◦ 531.13 59.26
90◦ 543.05 60.59
180◦ 550.34 61.40
270◦ 545.86 60.90

Number of
Ridges

Single 550.34 61.40
Double 546.29 60.95
Triple 547.32 61.06

Pitch
H+20% 559.31 62.40
Href 550.34 61.40

H−20% 537.99 60.02
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Figure 2.9: Contours of secondary velocity magnitude and crossflow streamlines for
different ridge designs considered in design strategy A at monitoring plane 3.
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Figure 2.10: Contours of secondary velocity magnitude and crossflow streamlines
for different ridge designs considered in design strategy B at monitoring plane 3.
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Chapter 3

Eulerian Approach

3.1 Introduction

As was introduced in Chapter 1, the Eulerian flow description provides information

of the fluid behaviour at every point of the fluid domain as a function of time. This

traditional approach, that considers the blood as a continuous phase, will be used

in this chapter to assess the influence of the different geometrical design parameters

proposed in Chapter 2. In addition to the traditional WSS-based haemodynamic

metrics (WSS, TAWSS, TAWSSG, OSI and RRT distributions), the rotational char-

acter of the flow field induced by the spiral ridge(s) will be assessed through the

distributions of secondary velocity and helicity as well as the regions of recircula-

tion and flow separation in the host artery. Despite of the lack of unanimity in the

relationship between fluid dynamics parameters and physiological mechanisms of

graft failure, widely accepted assumptions concerning the above-mentioned metrics

will form the proposed improvement criteria. As a result, a preliminary enhanced

configuration of spiral graft will be proposed and compared against the conventional

designs of graft (no ridge) and spiral graft under pulsatile boundary conditions.
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3.2 Numerical procedure

Building on the design strategy defined in Chapter 2, the different cross-sectional

shapes, orientation, pitches and number of ridges, whose features are specified in Ta-

ble 2.2 and illustrated in Figure 3.1, have been studied using the following numerical

procedure.

Figure 3.1: Schematic of the computational model.

3.2.1 Computational grid

The computational domain used in this chapter is based on finite-volume hybrid

mesh consisting of prismatic elements for the near-wall and tetrahedral elements for

the core regions and were generated using ANSYS Meshing (Version 17.1, Academic

Research CFD license, ANSYS Inc., Canonsburg, USA). The number of elements
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varies between 3.00-3.03 million, depending on the geometry simulated in each case,

in order to limit the variation in velocity and wall shear stress to 1% with different

mesh refinement levels, as shown in Figure 3.2. Skewness and orthogonal quality

metrics were additionally checked to ensure the quality of the grids.

Figure 3.2: Area-weighted average values of velocity at monitoring planes a) 1, b)
2 and c) 3 and d) WSS in the host artery for different levels of mesh refinement.
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3.2.2 Governing equations

The three-dimensional flow through the computational model is governed by the

Navier-Stokes equations under the assumption of stationary flow.

Continuity equation,

∇ · u = 0 (3.1)

Momentum equations,

∇ · (ρuu) = −∇p+∇ · (¯̄τ) (3.2)

¯̄τ = µ[(∇u +∇uT)− 2

3
∇ · u ¯̄I] (3.3)

where ρ is the density of the blood, u is the velocity vector, p is the static

pressure, ¯̄τ is the stress tensor and µ is the dynamic viscosity. External body forces

are neglected.

3.2.3 Non-Newtonian flow

Within the framework of the Eulerian description, the blood has been characterised

as a homogeneous and incompressible fluid with a density of 1050 kg m−3 [91, 92].

As described in Chapter 1, Section 1.5, due to the interest of this investigation on

the study of secondary velocity and WSS-based haemodynamic parameters, among

other metrics, in a fluid domain characterised by regions of low shear rates (bifur-

cations or anastomoses), the blood has been considered as a non-Newtonian fluid.

The non-Newtonian behaviour of the blood has been implemented by means of the
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Carreau-Yasuda model [93] that relates the dynamic viscosity, µ, as a function of

the shear strain rate, γ̇,

µ = µ∞ +
µ0 − µ∞

[1 + (λγ̇)a]
1−n
a

(3.4)

where γ̇ represents a scalar measure of the rate of deformation tensor, defined as

γ̇ =

√
2tr( ¯̄D2) ¯̄D = [∇u + (∇u)T ]/2 (3.5)

The low-shear viscosity, high-shear viscosity, time constant, Yasuda exponent,

and power law index are taken to be µ0 = 22 · 10-3 Pa s, µ∞ = 2.2 · 10-3 Pa s,

λ = 0.11 s, a = 0.644, and n = 0.392, respectively [94].

3.2.4 Boundary conditions

The configuration of boundary conditions was defined in terms of a constant and

uniform velocity profile of 0.317 m s−1 (Re = 570) at the inlet and zero pressure

at the outlet. The initial straight section of the graft, with an extension of 60 mm,

enables the complete development of the velocity profile before approaching the

leading edge of the ridge by reducing local inaccuracies at the inlet section [86]. The

wall has been considered as rigid [18,95] and a no-slip boundary condition has been

applied to all wall boundaries.

The governing equations of the fluid dynamic problem were solved using a high

resolution scheme in ANSYS CFX (Version 17.1, Academic Research CFD license,

ANSYS Inc., Canonsburg, USA). The high resolution scheme models the advec-

tion term by providing a non-linear formulation that balances the accuracy and

robustness of the solution according to the local gradients of the flow field [96, 97].
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The convergence of solutions was simultaneously ensured by the global balance of

the conservation equations and Root Mean Square (RMS) residual criteria. The

conservation target and RMS criteria were set to 0.01 and 10-6, respectively.

While most of the present simulations were conducted using steady-state condi-

tions, a series of transient simulations were also conducted to obtain more advanced

haemodynamics parameters (discussed further below). For transient simulations,

an implicit second-order backward Euler method was used for the transient scheme

with a time step of 0.01 s, according to previous investigations in this problem [83]

and the available computational resources. The residual criterion to ensure the con-

vergence of the numerical method was set to 10-6. The results presented here were

extracted from the last of four simulation periods in order to avoid initial instabilities

of the numerical procedure [98].

3.3 Improvement criteria

Although it is widely accepted that haemodynamic parameters play an important

role in the patency rate of graft anastomosis, there is no unanimity about the optimal

flow pattern that improves the efficiency of the grafting [99]. Several authors have

highlighted the benefits of high Wall Shear Stress (WSS) for avoiding the formation

of plaque [100, 101], increase of intimal medial thickness [102] and proliferation of

fibroatheroma and intermediate lesion [103]. In contrast, others suggest that high

values of WSS may result in endothelial lesions [104]. This discrepancy gave rise to

the theory of a safe bandwidth of WSS purposed by Kleinstreuer et al. [2, 105].

The paucity of in vivo data to support the existing hypotheses in the develop-

ment of intimal hyperplasia and atherosclerosis in different bypass configurations are

currently a major challenge [99]. The lack of quantitative thresholds of haemody-

40



namic metrics associated with physiological mechanisms of graft failure entails the

use of qualitative design criteria and makes it difficult to find haemodynamically

‘optimum’ configurations.

Nevertheless, the swirling flow is considered to be a beneficial physiological mech-

anism to reduce abnormal flow conditions [106] in order to prevent thrombosis, inti-

mal hyperplasia and atherosclerotic lesions [5,107,108] (i.e. the main causes of graft

failure). Consequently, consistent with Kabinejadian et al. [83], the haemodynamic

‘optimisation criteria’ of the spiral-inducing graft in the present study will be based

on the assumptions of high wall shear stress, high secondary velocity and reduction

of separation and recirculation zones, as potential favourable haemodynamic factors.

3.4 Validation

This numerical procedure was validated in [109] using a series of steady-state simula-

tions for a spiral-inducing graft configuration which have been tested experimentally

by Kokkalis et al. [5]. In their experiments, the secondary flow motions induced by

the Spiral Laminar Flow Peripheral Vascular Graft (Vascular Flow Technologies

Ltd., Dundee, UK) were compared with those of a control device; constant flow

rates were applied and data was collected in the cross-sectional view distal from the

graft outflow and dual-beam vector Doppler was used to create 2-D velocity maps.

In the validation tests, the secondary velocity magnitude (normalised with the

theoretical axial velocity produced by the mean flow rate) obtained from this sim-

ulation procedure was compared against the measurements of Kokkalis et al. at

monitoring plane 2, 5 mm distal from the toe of the anastomosis, under a Reynolds

number of Re = 1140 in this case. The maximum normalised secondary velocity was

also compared under different flow rates at monitoring plane 3 (see Figure 3.3). As
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can be observed in [109], the numerical results were in good qualitative agreement

with the data, especially in identifying the spiral flow in the host artery and areas

with the maximum velocity magnitude. Inherent differences may be due to unknow

geometrical details of the experimental model such as a potential out-of-plane ge-

ometry, characteristics of the connection between graft and vessel as well as the

effect of the elastic behaviour of gratf and vessel particularly with the increase of

the Reynolds number.

Figure 3.3: Comparison of maximum normalised secondary velocity magnitudes
under different flow rates at monitoring plane 3 obtained from the present simulation
procedure against measurements of Kokkalis et al. [5].

3.5 Results

3.5.1 Secondary Velocity

The swirling motion has been characterised through the secondary velocity contours

and crossflow streamlines at the monitoring planes 1, 2, and 3 located at 1mm, 5mm
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and 50 mm distal from the toe of the anastomosis, respectively. The secondary

velocity was defined as the composition of the transverse velocities v and w along

the Y and Z axes in the host artery, respectively,

vyz =
√
v2 + w2 (3.6)

The average values of such distributions at the different monitoring planes are

given in Table 3.1. Note that the direction of the flow in all secondary velocity

distributions should be interpreted as into the page.

Figure 3.4 shows that while no significant changes can be seen at monitoring

plane 1 for the different cross-sectional designs of the ridge, different patterns can

be observed from monitoring plane 2 where the intensity of asymmetry increases

downstream and the peak secondary velocity regions rotates around the axis of the

host artery moving to the lateral side of the lumen. The differences in secondary

velocity magnitude are more noticeable reaching an improvement of 15% with the

increase of the height from the reference case. The higher secondary velocity magni-

tudes are associated with the dominant vortex. At monitoring plane 3, the increase

of the height of the elliptical ridge results in a relevant improvement of 19% in

average secondary velocity magnitude with respect to the circular configuration.

The helical flow generated by different orientations of the ridge is presented in

Figure 3.5, where a number of prominent flow features are worth highlighting. At

monitoring plane 1, all orientations show the maximum secondary velocity located

around the centre of the lumen. Moving further away from the anastomosis in

the streamwise direction, the secondary velocity peak region develops an important

asymmetry and moves to a lateral side of the host artery, depending on the ridge

orientation. At monitoring plane 3, the trailing edge orientation 270◦ stands out
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Figure 3.4: Secondary velocity distributions and crossflow streamlines for different
cross-sectional designs of a single ridge.

amongst the other configurations by reaching the highest secondary velocity and

producing a single dominant spiral as a result of dissipation of the weaker vortices.

Although one would assume that the trailing edge orientations 90◦ and 270◦

should produce similar distributions in the present case, the results highlight sig-
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Figure 3.5: Secondary velocity distributions and crossflow streamlines for different
orientation of the trailing edge.

nificant differences, mainly due to the spiral direction along the pitch. Since the

secondary flow in the distal section of the graft is clockwise, in the case of trailing

edge orientation 90◦, the induced rotation by the ridge is supressed by the near side-

wall effect in the host artery upon impingement on the arterial bed, as illustrated in

Figure 3.6. However, in the case of trailing edge orientation 270◦, the swirling flow

receives lesser degree of suppression from the surrounding wall boundaries. This

phenomenon could also be observed at plane 3 where the average secondary veloc-

ity magnitude in the 270◦ model is over 4 times higher than that produced by the
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reference case (180◦), as shown in Table 3.1. Although each model shows a differ-

ent secondary velocity distribution, the 180◦ and 270◦ orientations show the weakest

and strongest average secondary velocity magnitudes, respectively, at all monitoring

planes.

Figure 3.6: Streamlines and representation of the rotation induced by a single ridge
with trailing edge orientations 90◦ and 270◦, and those produced by the curvature
of the arterial wall.

The effects of increasing the number of ridges are shown in Figure 3.7. At

monitoring planes 1 and 2, the double ridge design results in a decrease of secondary

velocity compared to the single ridge configuration. However, at monitoring plane 3

this pattern changes and the double ridge configuration produces 37% higher average

secondary velocity magnitude in comparison with the reference case. The triple ridge

design with three equally-spaced ridges at 60◦, 180◦ and 300◦ leads to an even more

significant increase of secondary velocity magnitude and shows the implicit effect of

the trailing edge orientation through the ridges located at the orientations 60◦ and

300◦.

The influence of the pitch is illustrated in Figure 3.8. Closer to the anastomotic

region, changing the helical pitch has negligible effects on the magnitudes and distri-

butions of the secondary velocity. However, further downstream in the host artery, a

46



Figure 3.7: Secondary velocity distributions and crossflow streamlines for different
numbers of ridges.

noteworthy increase of approximately 30% in secondary velocity magnitude is found

at monitoring plane 3 by decreasing the pitch.
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Figure 3.8: Secondary velocity distributions and crossflow streamlines for different
ridge pitches.
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Table 3.1: Average secondary velocity magnitude at the different monitoring planes
along the host artery.

vyz [m s−1]·10−2

Monitoring plane 1
vyz [m s−1]·10−2

Monitoring plane 2
vyz [m s−1]·10−2

Monitoring plane 3

Cross-sectional
designs

Elliptical - Height 17.02 8.14 0.59
Circular 16.43 7.10 0.50

Elliptical - Width 16.08 6.64 0.54

Trailing edge
orientation

0◦ 16.81 7.89 0.94
90◦ 17.22 9.21 0.96
180◦ 16.43 7.10 0.50
270◦ 19.21 11.92 2.20

Number of
ridges

Single 16.43 7.10 0.50
Double 15.94 6.61 0.69
Triple 17.18 7.86 1.15

Pitch
H+20% 16.70 7.35 0.52
HRef 16.43 7.10 0.50
H−20% 16.48 7.05 0.65

3.5.2 Helicity

In the present work, the helicity is measured through calculating the ‘helicity density’

defined as the dot product of vorticity (i.e. curl of the velocity vector) and velocity

[4, 110],

h = (∇× v) · v (3.7)

The distributions of absolute area-weighted average of helicity density along the

host artery are shown in Figure 3.9. The integral of such distributions provides the

values of helicity listed in Table 3.2.

In line with the above results of secondary velocity, as can be observed in Figure

3.9a, the case of ‘Elliptical Ridge - Height’ (L1/D = 0.3) generates the highest

distribution of helicity density. This effect is more noticeable within the anastomotic

region where it can be seen that the peak helicity density is proportional to ridge
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height. Moving further away in the streamwise direction, the differences in helicity

density decrease with a slight predominance of the elliptical configurations.

The effects of varying the orientation of the ridge in the distribution of helicity

are shown in Figure 3.9b, where consistent with the observations from Figure 3.5, the

trailing edge orientation 270◦ produces the highest distribution of helicity density

along the host artery. The 0◦ orientation shows a somewhat significant drop in

helicity compared to the reference case (i.e., 180◦) in the region of flow impingement

onto the bed of the host artery (i.e., x = 25− 53 mm). In other regions of the host

artery, the comparative performance of different configurations is similar to that at

the anastomosis.

Figure 3.9c illustrates the distributions of helicity density for different number

of ridges. It can be seen that the single and triple ridge configurations show the

highest values of helicity density in the anastomosis region. The multiple ridge

configurations fall below the case of single ridge in the region where the flow impinges

on the bed of the host artery. However, the triple and double ridge configurations

show higher helicity density than the reference case beyond x = 50 and 65 mm,

respectively.

The distributions of helicity density due to the variation of the ridge pitch are

shown in Figure 3.9d. In terms of helicity, the increase of the helical pitch enhances

the swirling flow in the anastomosis region and produces a rise in helicity density.

Similarly as observed before in terms of secondary velocity, in the region away from

the anastomosis, specifically from x = 65mm, the decrease of the ridge pitch slightly

increases the magnitude of helicity density.
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Figure 3.9: Distributions of helicity density along the host artery. Solid lines repre-
sent the reference case in each figure.

3.5.3 Wall Shear Stress

The WSS characterises the tangential fluid forces that act on the vessel wall. As was

alluded to earlier, the intimal thickening and restenosis due to intimal hyperplasia

is normally characterised by low WSS [100–103]. In addition to intimal hyperpla-

sia, one should also consider the effects of mural platelet and fibrin deposits in the

artery; the deposition of a mural layer of proteins and/or cells that can be the nidus
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Table 3.2: Pressure drop in the fluid domain, absolute helicity and spatial mean of
wall shear stress in the host artery.

Pressure Drop
[Pa]

Helicity
[m2s−2]

Wall Shear Stress
[Pa]

Cross-sectional
designs

Elliptical - Height 565.341 1.277 2.307
Circular 550.341 1.182 2.295

Elliptical - Width 535.490 1.142 2.290

Trailing edge
orientation

0◦ 531.130 1.140 2.283
90◦ 543.054 1.333 2.374
180◦ 550.341 1.182 2.295
270◦ 545.863 1.660 2.432

Number of
ridges

Single 550.341 1.182 2.295
Double 546.291 1.045 2.276
Triple 547.317 1.183 2.256

Pitch
H+20% 559.310 1.225 2.310
Href 550.341 1.182 2.295

H−20% 537.986 1.103 2.281

for further cell and protein infiltration and atherosclerotic lesion progression, could

subsequently result in graft failure. From the haemodynamic point of view, fibrino-

gen/fibrin is normally deposited at low shear rates and at areas exposed to eddies,

flow separations and stasis (i.e. after stenosis and after areas of flow disturbance),

thus, making the WSS metric even more relevant in the present study [83].

Figure 3.10 represents the distributions of WSS on an unfolded model of the host

artery, which has been opened ventrally and the direction of the flow is from left to

right. The spatial means of such distributions are given in Table 3.2.

The increase of the ridge height generates an increase of WSS on the bed in

magnitude and asymmetry, slightly shifting the peak regions to the lateral side of

the host artery.
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The trailing edge orientation again represents an important parameter since

the most homogeneous distribution and the highest average WSS are obtained by

the 270◦ configuration; this trailing edge orientation also results in the high-shear

region further extending proximally towards the occluded section of the host artery.

Moreover, in agreement with the results presented in Figure 3.5 and Figure 3.9b,

the 90◦ configuration also results in higher average WSS magnitude compared to 0◦

and 180◦ configurations.

The increase of the number of ridges results in consecutive and slight decrease of

the spatial mean WSS, while the degree of asymmetry in the distributions tend to

increase with respect to the reference case. The decrease in the WSS for the triple

ridge design here is particularly interesting, since in Figure 3.7 it was shown that in

fact the triple ridge design leads to an increase of secondary velocity magnitude at

all monitoring planes. This observation highlights the importance of assessing the

performance of such haemodynamics problems using a range of different metrics.

Therefore, relying on a single parameter could lead to inconclusive outcomes.

The variation of the ridge pitch results in minor effects on the spatial mean of

WSS in the host artery, returning differences less than 1% as shown in Table 3.2.

3.5.4 Flow separation and recirculation

Abnormal flow conditions and recirculation are associated to regions of low WSS that

lead to cholesterol deposition, atheroma growth thrombus formation and, eventually,

IH development [2]. Therefore, the focus of this section is on the recirculation and

retrograde flow regions.

Figure 3.11 represents the regions of retrograde flow (negative axial velocity)

generated by different graft designs at monitoring planes 1 and 2 located at 1 mm
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Figure 3.10: Wall Shear Stress distributions on an unfolded model of the host artery
for different ridge designs.

and 5 mm distal from the toe of the anastomosis, respectively. These regions were

insignificant at plane 3, hence not included in Figure 3.11. The direction of the flow
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should be interpreted as into the page. The percentage of cross-sectional area of the

host artery affected by this adverse effect is given in Table 3.3.

In all cases, the recirculation zones are found at the toe side of the host artery

close to the anastomosis. At monitoring plane 1, except for the trailing edge orienta-

tion, the other three design parameters present minor effects on the flow separation

zones with the maximum 1.2% difference compared to the reference case. The varia-

tion of the ridge trailing edge orientation with respect to the reference case, however,

results in a slight decrease of the flow separation zone but an increase in the degree

of asymmetry in these regions.

Distinct recirculation zones are found at monitoring plane 2, most of which can

be seen to extend towards the centre of the lumen and to rotate due to the spiral

motion of the graft outlet flow impinging onto the host arterial bed. The increase

of the ridge height and width tend to decrease (3.4%) and increase (1.4%) the

recirculation region, respectively. The variation of the trailing edge position with

respect to the reference model results in significant reduction in both retrograde flow

area (e.g. 8.6% for trailing edge orientation 270◦) and the extent of recirculation

region towards the centre of the lumen. Another interesting point to highlight here

is how the recirculation regions of the orientations 270◦ and 90◦ rotate clockwise and

anticlockwise, respectively, around the axis of the host artery. This can be explained

again by considering the interaction between the induced rotations by the ridge and

surrounding wall boundaries.

Increasing the number of ridges within the graft leads to reduction of the dis-

turbed zones. In particular, the results of the triple ridge design are of significant

interest here, where 7.4% reduction is achieved.
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Finally, similar to the results obtained in terms of WSS, the modification of the

pitch leads to insignificant effects on the variation of recirculation regions.

Figure 3.11: Regions of retrograde flow with different designs at monitoring planes
1 and 2. These regions are negligible in plane 3, hence not included here.

3.6 Discussion

Building on the important role of the haemodynamic parameters and the recognised

sensitivity of the flow pattern to the geometry [34,83,111,112], the present chapter

has assessed different designs of a peripheral prosthetic graft with internal spiral

ridge(s) using the Eulerian formulation of fluid mechanics. This description repre-

sents the traditional computational approach for the analysis of haemodynamics by

considering the blood as a homogeneous fluid.

The design condition of constant total cross-sectional area adopted in Chapter

2 results in the same level of resistance against the flow and consequence pressure
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Table 3.3: Percentage of cross-sectional area affected by recirculation at the different
monitoring planes along the host artery.

Monitoring Plane 1 Monitoring Plane 2 Monitoring Plane 3

Cross-sectional
designs

Elliptical - Height 7.38% 8.71% 0%
Circular 7.63% 12.07% 0%

Elliptical - Width 7.78% 13.51% 0%

Trailing edge
orientation

0◦ 4.59% 5.03% 0%
90◦ 6.25% 3.82% 0%
180◦ 7.63% 12.07% 0%
270◦ 5.31% 3.52% 0%

Number of
ridges

Single 7.63% 12.07% 0%
Double 6.70% 10.83% 0%
Triple 6.40% 4.71% 0%

Pitch
H+20% 7.47% 11.35% 0%
HRef 7.63% 12.07% 0%

H−20% 7.56% 11.76% 0%

drop, enabling the appropriate comparison of different configurations. Based on the

widely accepted assumptions postulated in Section 3.3, the flow patterns have been

studied in order to increase the swirling flow and wall shear stress as well as reducing

flow separation and recirculation zones.

Figure 3.13 summarises the effects of different ridge designs on all the design

parameters tested here, namely average secondary velocity magnitude, area affected

by retrograde flow, pressure drop, helicity and spatial mean of WSS. The results

have been normalised with the corresponding values of the reference configuration.

Based on Figure 3.13a, an improvement in the performance of the graft could

be achieved through the variation of the height of an elliptical ridge. The increase

of the ridge height has resulted in an enhancement of the swirling flow (with higher

values of secondary velocity and helicity), a reduction of the recirculation zones and

a slight increase in the spatial mean WSS.

In the present study, the location of the spiral ridge trailing edge at the anas-

tomosis has been shown to be the most important design parameter in order to
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improve the performance of the graft. As shown in Figure 3.13b, significant dif-

ferences in the spiral flow patterns and the regions of flow separation have been

observed amongst the four trailing edge orientations tested here. In a lower order of

magnitude, the variation of the ridge orientation also results in the most notewor-

thy difference in spatial mean of WSS in the host artery when compared with the

other design parameters. Increases in WSS of 3.44% and 5.97% were reported with

orientations 90◦ and 270◦, respectively. The most significant effect of the trailing

edge orientation was observed at the interaction between the induced rotation and

the ridge and the suppression produced by the near sidewall of the host artery upon

impingement. Consequently, in the case of the trailing edge orientation 270◦, the

intensity of the swirling flow is effectively enhanced greater than the other config-

urations due to the lesser degree of suppression from the surrounding boundaries,

when passing through the anastomosis.

Most of the results presented in this chapter including Figure 3.13c suggest

that increasing the number of ridges in the graft could have measurable effects,

especially on the secondary velocity magnitude and retrograde flow. However, the

impact of varying the number of ridges is more influenced by the location of the

ridge trailing edge(s) as opposed to the number of ridges. To further prove this

fact, an additional study of the double ridge configuration was conducted using

orientations 90◦ and 270◦ in comparison with the above-mentioned double ridge

case where the ridges have orientations 0◦ and 180◦. As can be observed in Figure

3.12, the new configuration returns higher secondary velocity, revealing the influence

of the orientation over the number of ridges which supports the above hypothesis.

Figure 3.13d denotes a measurable improvement in terms of the secondary ve-

locity magnitude in the region of the host artery away from the anastomosis by
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Figure 3.12: Justification of the greater influence of the ridge orientation over the
number of ridges on the secondary flow by comparing double ridge configurations
with trailing edge orientations 0◦ and 180◦ against 90◦ and 270◦.

decreasing the helical pitch. However, other results reported throughout this study

suggest that the variation of the pitch tends to have minor influences on the region

of the anastomosis.

3.6.1 Clinical relevance: Novel strategy for peripheral by-

pass surgery

The above observation about the different performances of spiral grafts depending

on the orientation of the ridge has an important implication on the peripheral artery

bypass surgeries, since the rotation of the blood flow has been found as clockwise in

the left common iliac arteries and anticlockwise in the right common iliac arteries

using magnetic resonance angiography [28, 30, 106]. Although the current design of

SLF grafts incorporate the internal ridge with 180◦ orientation, the present findings

could lead to a more effective peripheral bypass surgery strategy by considering two

grafts with optimised ridge orientation and with opposite ridge rotational direction

(i.e. clockwise and anticlockwise) in order to achieve the improved and physiologi-
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Figure 3.13: Overall comparison of normalised results for different ridge designs.

cally suitable rotation of the blood flow depending on the location of the stenosis,

as shown in Figure 3.14.
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Figure 3.14: Contours of secondary velocity and velocity vector distributions of
preliminary optimised a) anticlockwise configuration with trailing edge orientation
90◦ and b) clockwise configuration with trailing edge orientation 270◦.

3.6.2 Comparative study between conventional, spiral and

enhanced spiral grafts under transient boundary con-

ditions

Based on the results presented earlier, an enhanced design of spiral graft is proposed

for its comparison against the conventional graft (no ridge) and spiral graft (con-

figuration with single circular ridge and trailing edge orientation 180◦). The new

enhanced spiral graft is developed according the most significant design parameters,

i.e. single elliptical ridge (L1/D = 0.3) and orientation of the trailing edge 270◦.

The comparative analysis between conventional, spiral and enhanced spiral grafts

has been carried out under transient boundary conditions using the inlet velocity

waveform represented in Figure 3.15a that corresponds to MRI measurements in
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femoral artery of a healthy subject [113] (details of the transient simulation can be

found in Section 3.2).

Figure 3.15: (a) Velocity waveform at the inlet and (b) contours of secondary velocity
and crossflow streamlines at monitoring plane 3 and at peak (t1) and reversed (t2)
flow phases.

Figure 3.15b shows the contours of secondary velocity and crossflow streamlines

at peak (t1 = 0.25 s) and reversed (t2 = 0.41 s) flow phases and at monitoring plane

3, where the effects of graft designs and the swirling motion are more meaningful in

comparison with monitoring planes 1 and 2, as was observed in Section 3.5. The in-

corporation of the spiral ridge and its enhancement results in an increase of rotation
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and asymmetry of the transverse flow field. At both phases, the configuration of

enhanced spiral graft shows a more important preponderance attributed to the dis-

sipation of weaker vortices, a single dominant spiral and the complete development

of the swirling flow.

A decrease in area-weighted secondary velocity magnitude can be observed by

comparing the conventional (0.067 m s−1) to spiral (0.061 m s−1) grafts at the peak

flow phase. This slight discrepancy is caused by the ‘undeveloped’ swirling flow of

the spiral graft case. This would be in line with the investigation by Bechara et

al. [82] where it was shown that the spiral flow graft did not lead to higher patency

rates in comparison to conventional graft.

Transient haemodynamics metrics, such as Time-Averaged WSS (TAWSS),

TAWSS Gradient (TAWSSG), Oscillatory Shear Index (OSI) and Relative Resi-

dence Time (RRT), have been identified as important fluid dynamic parameters

to predict the development of cardiovascular diseases under physiological pulsatile

conditions [83]. Such fluid dynamic variables are analysed according to the widely

accepted low/oscillatory shear theory [114].

Figure 3.16 shows the distributions of TAWSS on the unfolded model of the host

artery. TAWSS is defined through:

TAWSS =
1

T

∫ T

0

|τw| dt (3.8)

Where τw is the WSS vector and T is the period of the flow cycle corresponding

to 0.9 s in the present case. An increase of the asymmetry intensity of the TAWSS

is observed when the spiral ridge is added to the graft. The higher intensity of the

swirling flow when the spiral ridge is enhanced, mainly caused by the orientation of
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the ridge, slightly extends the region of high-TAWSS towards the occluded section,

as was observed under steady-state conditions.

Figure 3.16: Distributions of Time-Averaged WSS on the unfolded model of the host
artery.

Figure 3.17 shows the distributions of TAWSSG defined as:

TAWSSG =
DG

τ0

1

T

∫ T

0

√(
∂τx
∂x

)2

+

(
∂τy
∂y

)2

+

(
∂τz
∂z

)2

dt (3.9)

Where DG is the diameter of the graft (6 mm) and τ0 is the WSS corresponding

to the Poiseuille flow under average flow conditions (0.82 Pa). Regions of high

TAWSSG are identified in the anastomoses at the toe, heel and the stagnation point

on the bed of the host artery. The spiral ridge shifts and extends these regions,

while the enhanced spiral ridge generates a non-uniform band of high TAWSSG in

the cross-sectional plane of the toe.

The analysis of OSI and RRT is presented in Figures 3.18 and 3.19 and described

in Equations 3.10 and 3.11, respectively:

OSI =
1

2

1−

∣∣∣∫ T

0
τ⃗wdt

∣∣∣∫ T

0
|τ⃗w| dt

 (3.10)
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Figure 3.17: Distributions of Time-Averaged WSS Gradient on the unfolded model
of the host artery.

RRT =
1

(1− 2×OSI)× TAWSS)
=

1

1
T

∣∣∣∫ T

0
τ⃗wdt

∣∣∣ (3.11)

Regions of high OSI and RRT are initially symmetrical and located at the heel

and around the impingement point in the case of conventional graft. The incorpora-

tion of the spiral ridge results in an oblique elevated region within the anastomosis

and occluded region. The effect of the spiral ridge also results in asymmetry of

the high OSI and RRT region distally extended from the toe which is dissipated by

means of the enhancement of the ridge design.

3.7 Limitations

While the present study represents an important step towards improving the design

and performance of spiral-inducing grafts, in order to find the ‘optimum’ configu-

ration, further work is required to construct an appropriate ‘cost function’ against

which to perform shape optimisation. The range of possible design configurations
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Figure 3.18: Distributions of Oscillatory Shear Index on the unfolded model of the
host artery.

Figure 3.19: Distributions of Relative Residence Time on the unfolded model of the
host artery.

in the problem presented in this work is large, therefore one would have to extend

the number of design parameters and their range in order to undertake a complete

shape optimisation. Furthermore, this work has employ a simplified geometry of

distal anastomosis in agremeent with benchmark studies and with the purpose of

elucidating the role of each design parameters on haemodynamics. However, with

access to patient-specific cases and supported with the current increase of computa-
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tional power, personalised geometries and dynamic conditions could be implemented

according to the future trends of personalised medicine.

The interaction of the spiral ridge and out-of-plane grafts need to be investigated

to match the direction of the spiral ridge with that resulting from the graft out-of-

plane to maximise the swirling motion. Moreover, further studies are required in

order to test a wider range of physical, geometrical and haemodynamic properties of

both helical and spiral designs with a view to be utilised in different types of bypass

grafts.

Although there are evidences in literature that justify the assumption of rigid

walls under the present fluid dynamic conditions, compliance mismatch has been

identified as an important postoperative factor in the development of restenosis

around the suture line of the anastomosis [67,88,115]. The implementation of fluid-

structure interaction considering the different mechanical properties of graft and

host artery together with transient and physiological boundary conditions and the

required level of accuracy could be accomplished using High Performance Computing

(HPC).

Another possible future extension for the present study would be to study the

proximal anastomosis, where the size of the ridge and the shape of the leading edge

could lead to an increase in fluid resistance, the damage of inflow conditions to the

prosthetic graft and the deposition of cholesterol, calcium, cellular debris and fatty

substances at the leading edge.

All these points represent current lines of research within the author’s research

group.
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Chapter 4

Lagrangian Approach

4.1 Introduction

The Eulerian analysis of haemodynamics in spiral grafts described the effects of the

ridge design and highlighted the influence of the ridge orientation and height on

inducing enhanced swirling flow, as was discussed in Chapter 3.

However, the traditional concept of blood as a continuous fluid contradicts the

physiological rheology of this heterogeneous fluid in which a high volume concen-

tration of biological particles (red blood cells, white blood cells and platelets) travel

in a continuous phase (blood plasma) and define the mechanical properties of this

non-Newtonian suspension.

This chapter will use of the Lagrangian fluid dynamic description, expounded

in Chapter 1, and particle tracking simulations in order to assess and compare

the transport of representative particles and the direct deposition on the boundary

walls under the effects of the swirling flow generated by the different designs of

spiral-inducing grafts described in Chapter 2.
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4.2 Literature review

With the purpose of mimicking the behaviour of biological multiphase flows, particle-

haemodynamics has been used to model various phenomena and devices of cardio-

vascular and respiratory systems. In such applications, different numerical methods

have demonstrated appropriate capabilities for modelling the blood as an hetero-

geneous mixture: Eulerian-Eulerian [116–120], Eulerian-Lagrangian [121–127] or

Lattice-Boltzmann [128–130] methods, among others.

The Eulerian-Eulerian method is a multiphase model that provides global infor-

mation of the particulate matter which is approximated as an additional continuous

phase [97]. The capability of including cell and particle transport using the Eulerian-

Eulerian method was highlighted by Ou et al. [120] to study the pathological re-

sponse of intracranial aneurysms. Their results reported a prevalence for particle

deposition in regions of patient-specific aneurysms characterised by flow disturbance,

low WSS and complex secondary flow patterns. Similarly, Wen et al. [131] applied

the Eulerian multiphase model to investigate the haemodynamics in helical grafts

and proved its performance improvement against conventional artery bypass grafts.

The swirling flow induced by the non-planar geometry decreased the accumulation

of red blood cells in the distal anastomosis.

The Eulerian-Lagrangian method, also known as Lagrangian particle tracking

multiphase model, couples the Eulerian framework, used to described the behaviour

of the continuous phase, and the Lagrangian transport model, which traces the mo-

tion of discrete particles [97]. This model enables researchers to obtain complete

information about the individual behaviour of dispersed particles as well as about

the continuous phase. Longest et al. [123–125] studied the transport of particles

in femoral ETS distal anastomoses linked to the development of vascular diseases
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and proposed the near-wall residence time model capable of accounting for parti-

cle deposition and activation as well as surface reactivity. This model was used

to assess the effects of the graft-end cut and the diameter ratio between graft and

artery, including its application to Miller cuff, pre-cuffed, streamlined and conven-

tional anastomotic configurations [123–125]. Basciano et al. [126,127] implemented

particle transport modelling to elucidate the particle transport associated to the de-

velopment of intraluminal thrombus in abdominal aortic aneurysm. In addition to

the assessment of fluid-related parameters, a detailed analysis of particle haemody-

namics, including, among others, near-wall particle distribution and shear stress on

particle surface linked to blood particle activation, successfully predicted the throm-

bus formation in a patient-specific case. The behaviour of micro-particles involved

in the treatment of liver tumours and embolisation therapies has also been stud-

ied using particle transport modelling by Basciano [126] and Johnson et al. [122],

respectively. For its part, Fabbri et al. [121] used particle tracking simulations to

study the effect of emboli characteristics and the geometry of the cerebral arterial

network on particle distributions.

In contrast to finite volume methods, Lattice-Boltzmann model considers the

fluid as an aggregation of particles moving between Cartesian lattice points [132].

The growing use of this method has shown a particular relevance for modelling

aggregation, deformation and interaction of particles [120].

This chapter will comparatively assess the movement of representative particles

and the direct deposition on the model walls as a result of the enhanced swirling

flow generated by different designs of spiral graft. Based on the aforementioned

Eulerian-Lagrangian methodologies for particle-haemodynamics [121–127], the La-

grangian particle tracking multiphase model, available in the software package used
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throughout the project, was used together with the geometrical and dynamic con-

ditions defined in Chapters 2 and 3.

4.3 Computational model

4.3.1 Computational domain and mesh

The computational domain remains the ETS distal graft anastomosis described in

Chapter 2 and 3. In this chapter, in order to evaluate the deposition of particles

in the different zones of the anastomosis, with particular emphasis in those regions

prone to the development of vascular diseases in prosthetic grafts and ETS anasto-

motic configurations, the junction was split into six different zones: toe, heel, host

artery 1 (HA1 or upper wall), host artery 2 (HA2 or lateral side at orientation 90◦),

host artery 3 (HA3 or bed of the host artery) and host artery 4 (HA4 or lateral side

at orientation 270◦), as shown in Figure 4.1.

Finite-volume hybrid meshes of prismatic and tetrahedral elements are again

developed using ANSYS Meshing (Version 17.1, Academic Research CFD license,

ANSYS Inc., Canonsburg, USA). On the basis of the grid analysis carried out in

Chapter 3 using Eulerian metrics, the computational mesh has additionally been

evaluated to verify the independence of Lagrangian results, area integral of particle

momentum flow density at the outlet, to further mesh refinements using the reference

graft design. Meshes with numbers of elements between 3.06 and 3.43 million,

depending on the geometry simulated in each case, assured differences less than 1%

in the abovementioned metric with a feasible computational cost, as shown in Figure

4.2.
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Figure 4.1: Schematics of the computational model with detail in the different
regions of interest.

4.3.2 Lagrangian particle tracking multiphase model

Particle transport modelling is a multiphase technique that enables the computa-

tional simulation of solid particles (disperse phase) travelling in a continuous phase

by coupling the Eulerian and Lagrangian fluid dynamics descriptions. In ANSYS

CFX [96,97], the multiphase flow is simultaneously governed by the continuity and

Navier-Stokes equations for the continuous phase (Equations 4.1) and particle mo-

mentum equations for the Lagrangian phase (Equations 4.2):

∇ · u = 0 ∇ · (ρuu) = −∇p+∇ · (¯̄τ) (4.1)
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Figure 4.2: Area average of particle momentum flow density at the outlet for different
levels of mesh refinement.

mp
dup

dt
=

∑
Fi (4.2)

where u and up are the velocities of fluid and particles, respectively. Fi repre-

sents the forces acting on particles and consists of drag force (FD), buoyancy force

(FB), pressure gradient force (FP ), rotational forces (FR) and virtual mass force

(FVM) [96, 97].

The drag force acting on particles is described proportional to the relative ve-

locity of the fluid with respect to the particle.

FD =
1

2
CDρfAp |u − up| (u − up) (4.3)
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Where CD is the drag coefficient and Ap is the particle cross-section. Building on

the assumption of spherical and disperse particles, the drag coefficient, CD, can be

modelled using the Schiller-Naumann model based on experimental results [96, 97]:

CD =
24

Re
(1 + 0.15Re0.687) (4.4)

The gravitational force due to the density difference between particles and the

continuous phase is implemented by means of the buoyancy force:

FB = (mp −mf )g (4.5)

Wen et al. [131] showed the importance of the gravitational force in cell transport

by favouring particle sedimentation along its direction. In this study, the force of

gravity is considered in the direction of -Z axis (see Figure 4.1).

The pressure gradient force accounts for the pressure difference around the par-

ticles as a result of the fluid acceleration.

FP = −mf

ρf
∇p (4.6)

In the present study, the fluid domain remains stationary, so rotational forces

(centripetal or Coriolis) are discarded.

The virtual mass force evaluates the acceleration of the fluid that would occupy

the volume of the particle. This force is representative in flows with noticeable

accelerations and in the motion of bubbles where the mass of the displaced fluid is

much higher that the mass of the discrete phase.

FVM =
CVM

2
mf

(
duf

dt
− dup

dt

)
(4.7)
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The maximum contribution of this force was evaluated by considering a non-

dimensional virtual mass coefficient, CVM , equal to 1. A minor influence of 0.01%

in deposition ratio on the entire model of the ETS distal graft anastomosis was

reported, and thus the effect of virtual mass force was neglected in this study, in

concordance with [121, 122, 126].

The influence of the remaining forces, i.e. drag, bouyancy and pressure gradient

forces, was evaluated in terms of particle deposition at the different zones of the

anastomosis using the cases defined in Table 4.1. Figure 4.3a illustrates the note-

worthy influence of the buoyancy forces and the negligible effects of the pressure

gradient force.

Accordingly, in the present computational procedure, drag and buoyancy forces

will govern the motion of particles immersed in the continuous phase through the

model of ETS distal graft anastomosis illustrated in Figure 4.1.

Figure 4.3: Effect of the different parameters in the Lagrangian model: a) influence
of the different forces acting on particles and b) influence of the number of particles.
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Table 4.1: Description of the different cases for the analysis of the influence of forces
acting on particles and the number of particles.

Case Forces Number of particles
Case 1 Drag Buoyancy Pressure grad. 50000
Case 2 Drag Buoyancy - 50000
Case 3 Drag - Pressure grad. 50000
Case 4 Drag - - 50000
Case 5 Drag Buoyancy Pressure grad. 25000
Case 6 Drag Buoyancy Pressure grad. 75000

4.3.3 Blood characterisation

As introduced in Chapter 1, the rheology of the blood in a Lagrangian framework

defines the fluid as discrete particles travelling in a continuous phase. Red blood cells

(RBCs) represent the predominant solid phase and can amount to about 40 to 45%,

much higher than the 1% corresponding to the concentration of white blood cells

[46, 120, 133]. The influence of RBCs is not only observed in volume concentration

but also in mechanical properties through shear thinning, viscoelasticity, thixotropy

and yield stress. With the purpose of assessing the effects of the swirling flow on the

behaviour of generalised particles, that may represent blood cells, cellular debris or

fatty substances, idealised RBCs, whose size is intermediate between white blood

cells and platelets, were considered as representative particles in this comparative

study.

Accordingly, the heterogeneous mixture is characterised by representative par-

ticles with a diameter and density of 7.2µm [134] and 1099.6 kg m−3 [135], respec-

tively. Consistent with the rheology model used in Chapter 3, the continuous phase

was modelled with a density of 1050 kg m−3 and the Carreau-Yasuda viscosity model

described in Section 3.2.3.
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4.3.4 Boundary conditions

From this perspective, the performance of spiral grafts was evaluated by injecting

20,000 particles, which entails an affordable computational cost, at the inlet with

the continuous fluid at a velocity of 0.317 m s−1 (Re = 570). The analysis of the

influence of the number of particles injected at the inlet gave rise to minor differ-

ences in particle deposition at the different zones of the anastomosis, as shown in

Figure 4.3b. Zero-pressure conditions were considered at the outlet. The walls were

considered rigid and non-slip. The particle-wall interaction in ANSYS CFX is de-

scribed by means of restitution coefficients [96,97]. The normal, Rn, and tangential,

Rt, restitution coefficients are defined as the ratio between normal and tangential

velocities after and before the impact with the wall, as illustrated in Equations 4.8

and Figure 4.4.

Rn = v2n/v1n Rt = v2t/v1t (4.8)

Figure 4.4: Model of particle-wall interaction and definition of restitution coeffi-
cients.

Where vin and vit represent the normal and tangential components of velocity,

respectively, and ϕ is the angle of impact. Zero restitution coefficients, representing
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fully inelastic collisions, were considered in this investigation to study the deposition

of particles.

The three-dimensional and steady simulations that constitute the comparative

study were conducted using ANSYS CFX (Version 17.1, Academic Research CFD

license, ANSYS Inc., Canonsburg, USA). The convergence criteria was established

taking into consideration both Eulerian and Lagrangian metrics. The global balance

of the conservation equations and a RMS residual criterion of 5 · 10-6 ensured the

independence of results to further levels of convergence in the present configuration

of ETS distal graft anastomosis.

Particle transport was also modelled under transient boundary conditions in

order to assess the pulsatile behaviour of blood cells. A high resolution second-

order backward Euler method was used for the transient scheme with a time step

of 0.01 s. The residual criterion to ensure the convergence of the numerical method

was set to 5 · 10−6 supported by the global balance of the conservation equations.

The results presented in Section 4.6.1 were extracted from the last of four simulation

periods in order to avoid initial instabilities of the numerical procedure [98]. Further

details will be given in Section 4.6.1.

4.4 Validation

The present computational setting was validated against the experimental results

of Johnson et al. [122] aimed at elucidating the influence of operating parameters

(injection technique, particle diameter and flow blockage) on the efficiency of the

embolisation treatment using a multi-branch artery. The type of boundary condi-

tions implemented by Johnson et al. in terms of steady-state mass flow rate and

zero-pressure at the inlet and outlets, respectively, is in concordance with the dy-
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namic description of the present study. Numerical and experimental exit fractions,

defined as the ratio of particles that exits the domain through each outlet and the

number of injected particles, were compared.

At the inlet, the multiphase flow with 10,000 particles characterised by a diam-

eter and density of 0.125mm and 1600 kg m−3, respectively, was uniformly injected

with a constant mass flow rate of 7.067 · 10-4 kg s−1. Zero-pressure conditions were

imposed at the three outlet branches. According to the experimental procedure,

no deposition on the wall was considered and, consequently, restitution coefficients

were set equal to 1. In this problem, the convergence of results was achieved using

a residual criterion of 2.5 · 10-5.

The comparison between numerical-experimental results led to differences in exit

fractions less than 5% for the different outlet branches. These results, corresponding

to the Lagrangian analysis of an idealised multi-branch model, provide a favorable

assessment on the accuracy of the subsequent simulations using the present method-

ology for the bypass graft.

4.5 Results

The results derived from the application of the Lagrangian particle tracking mul-

tiphase model to the different designs of spiral grafts defined in Chapter 2 were

analysed in terms of particle trajectories and deposition and comparison is made

against Eulerian haemodynamic metrics.

In spite of this study being focussed on the distal anastomosis, the Lagrangian

particle tracking multiphase model provides relevant results that support the as-

sumption introduced in Chapter 3 about the potential deposition of blood cells,

fatty substances and cellular debris on the leading edge.
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4.5.1 Trajectories and deposition of particles

Trajectories and deposition of particles have been investigated in the region of in-

terest located between (−2D, 3D) with respect to the toe of the anastomosis, in

concordance with the region defined in Chapter 3 for the analysis of WSS-based

haemodynamic metrics. The colour of particle terminal locations and trajectories

in the following figures represents the region of impingement according to Figure

4.1. The quantification of particle terminal locations in each region of impingement

is given in Table 4.2 in terms of deposition ratios, defined as the number of parti-

cles that collide in each region of interest when comparing with the total number

of injected particles (20,000 particles). This analysis has been complemented with

the longitudinal distribution of terminal locations along the x-direction of the host

artery, shown in Figure 4.9.

Figure 4.5 shows the particle-transport results in terms of particle trajectories

and deposition for different cross-sectional designs. The strength of the swirling

flow introduces a moderate asymmetry in the behaviour of particle trajectories at

the outlet of the graft that are subsequently affected by the surrounding boundaries

in the host artery. In this sense, depending on the relative position of particles to

the lateral boundaries at the outlet of the graft, particles are diverted to the near

corner defined by the toe, HA1 and HA2 or HA4 when particle locations at the

outlet of the graft are close to HA2 or HA4, respectively. Both behaviours share a

common region of deposition at the upper wall of the host artery in the downstream

direction. As can be observed in Figure 4.5, the effect of the decrease of the ridge

height, from L1/D = 0.3 to 0.2, also results in a reduction of particle deposition in

the region HA1 corresponding to the upper wall of the host artery and a consecutive

decrease of particle depositon in the region of the toe. These last results begin at the
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region of the toe with a noteworthy and rapid decrease in particle deposition along

the x-direction of the host artery, as shown in Figure 4.9a. Likewise, a residual

deposition of particles close to the heel can be observed with the increase of the

ridge width. However, taking into account the effects of other design parameters,

that will be studied below, the influence of the cross-sectional design leads to less

significant differences in particle transport, which is in line with the results obtained

using the Eulerian approach in Chapter 3.

Figure 4.5: Trajectories and terminal locations of those particles that collide on the
regions of interest in the host artery for different cross-sectional designs of a single
ridge.

The significant effects in the response of particles to the flow produced by differ-

ent orientations of a single circular ridge are illustrated in Figure 4.6. The influence

of the trailing edge orientation on the induction of spiral flow was highlighted in

Chapter 3 using the traditional Eulerian haemodynamics. Accordingly, the more

pronounced swirling flow produced by the configuration with ridge orientation 270◦

results in an asymmetrical distribution of particle deposition. In this configuration,
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the deposition of particles at the region HA2 is generated by the presence of the

weaker vortex close to this boundary that is still not dissipated at monitoring planes

1 and 2 according to Figure 3.5. This asymmetrical ejection of particles further away

in the streamwise direction and assisted by the rotational flow increase the deposi-

tion of particles in the region HA2 with respect to the other orientations. As shown

in Figure 4.9b, the trailing edge orientations 90◦ and 180◦ give rise to the highest

depositions of particles at the region of the toe and the entire anastomosis in con-

trast to the ride orientation 0◦ that, interestingly, reports the lowest deposition of

particles. By contrast, a perceptible particle disturbance and deposition is produced

at the region of occlusion with the ridge orientations 90◦ and 270◦.

Figure 4.6: Trajectories and terminal locations of those particles that collide on the
regions of interest in the host artery for different ridge orientations.
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Figure 4.7 shows the effects of the multi-ridge configurations on particle-

haemodynamics. The increase of the number of ridges results in a global decrease of

particle deposition with respect to the reference case, with a noteworthy reduction

in the case of double ridge. Particularly, this increase in the number of ridges

reduces the deposition at the toe and slightly increases the impingement of particle

at the heel with respect to the reference case, as illustrated in Figure 4.9c. However,

as was observed in Chapter 3, the effects of the number of ridges are again more

influenced by the orientation of the ridges than by the very nature of the multiridge

configuration.

Figure 4.7: Trajectories and terminal locations of those particles that collide on the
regions of interest in the host artery for different number of ridges.

The influence of the ridge pitch on particle trajectories and deposition is illus-

trated in Figure 4.8. An increase in the number of particles deposited in the region

HA1 is reported with the consecutive increase of the ridge pitch. In the vicinity

of the anastomosis, the number of particles deposited at the toe increases with the
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consecutive decrease of the helical pitch, as illustrated in Figure 4.9d. At the heel,

a slight increase in particle deposition is reported with the increase of the pitch, as

shown in Table 4.2.

Figure 4.8: Trajectories and terminal locations of those particles that collide on the
regions of interest in the host artery for different ridge pitches.

Table 4.2: Percentage of deposition ratios for different ridge designs.
Toe Heel HA1 HA2 HA3 HA4 Leading edge

Cross-sectional
designs

Elliptical - Height 1.270 0.045 0.030 0.145 0.000 0.095 1.400
Circular 1.135 0.045 0.060 0.085 0.000 0.070 1.395

Elliptical - Width 1.035 0.070 0.045 0.070 0.000 0.030 1.220

Trailing edge
orientation

0◦ 0.255 0.005 0.085 0.005 0.000 0.060 1.560
90◦ 1.070 0.105 0.020 0.000 0.000 0.045 1.410
180◦ 1.135 0.045 0.060 0.085 0.000 0.070 1.535
270◦ 0.370 0.265 0.025 0.250 0.000 0.000 1.530

Number of
ridges

Single 1.135 0.045 0.060 0.085 0.000 0.070 1.535
Double 0.400 0.065 0.060 0.050 0.000 0.065 1.465
Triple 0.810 0.065 0.055 0.025 0.000 0.035 1.280

Pitch
H+20% 1.115 0.055 0.100 0.105 0.000 0.070 1.450
Href 1.135 0.045 0.060 0.085 0.000 0.070 1.535

H−20% 1.275 0.035 0.035 0.025 0.000 0.110 1.195
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Figure 4.9: Distribution of particle terminal locations along the regions of interest
in the host artery. Solid lines represent the reference case in each figure.

4.5.2 Impingement of particles on the leading edge

From the Lagrangian perspective, the number of particles that impinge on the lead-

ing edge can be assessed in terms of the deposition ratios listed in Table 4.2. The

bulk flow impinges on the blunt surface of the ridge and particles collide generating

higher deposition ratios than those obtained in the anastomotic region.
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The elliptical ridge configurations, particularly with the increase of the ridge

width, results in a slight decrease of particle deposition in the leading edge with

respect to the reference case. Regarding to the orientation of the ridge, the cross-

sectional area and shape of the single ridge remain the same with the variation of

the ridge location and generate similar deposition ratios at the leading edge. In

the multi-ridge configurations, the deposition ratio at the leading edge decreases

with the increase of the number of ridges. When varying the pitch of the ridge, the

deposition of particles in the leading edge is affected by the initial curvature of the

graft in the configuration H−20%. As a result, the decrease of the ridge pitch reduces

the deposition of particles at the leading edge.

4.5.3 Correlation between WSS and particle deposition

In Figures 4.10-4.13, the distributions of shear force are represented on an unfolded

model of the host artery. In this case, terminal locations of particles have been

superimposed in order to evaluate any potential correlation between Eulerian and

Lagrangian haemodynamic metrics.

The effect of different cross-sectional shapes in such correlation is represented in

Figure 4.10. The deposition of particles represented through the lateral edge of the

graph indicates deposition of particles approximately in the intersection of the plane

XZ and the upper wall of the host artery. The enhancement of the swirling flow

with the increase of the ridge height reduces the number of terminal locations in

this region. As will be also observed through the different correlations under steady-

state boundary conditions, it can be observed a tendency of particle deposition in

regions of low WSS.
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Figure 4.10: Correlation between distributions of WSS and particle deposition on
the unfolded model of the host artery for different cross-sectional designs of a single
ridge.

The Eulerian-Lagragian correlation under the effect of the ridge orientation is

shown in Figure 4.11. As described in Chapter 3, the interaction of the flow with

the surronding boundaries defines the rotational direction of the fluid flow field in

the host artery. Consequently, the trailing edge orientation 270◦ results in particle

deposition at the region of the lateral wall HA2 close to the anastomosis where

the spiral flow is still not totally developed. By contrast, terminal locations in

the proximity of the heel are an indicator of the flow disturbance in the region of

occlusion, as illustrated in Figure 4.6 in the cases with ridge orientations 90◦ and

270◦. As mentioned above, the sweep effect of the shear stress results in distributions

of particle deposition out the regions of high WSS.

The variation of the number of ridges shows the implicit influence of the ridge

orientations by inducing different asymmetries in the distributions of WSS and par-

ticle deposition, as shown in Figure 4.12. As previously stated, the increase in the

number of ridges reduces the deposition of particles in the host artery and, partic-

ularly, at the toe of the anastomosis with respect to the reference case.
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Figure 4.11: Correlation between distributions of WSS and particle deposition on
the unfolded model of the host artery for different orientations of the trailing edge.

Figure 4.12: Correlation between distributions of WSS and particle deposition on
the unfolded model of the host artery for different number of ridges.

Figure 4.13 shows the Eulerian-Lagrangian correlation corresponding to different

ridge pitches. The decrease of the pitch reduces the number of deposition points

through the right lateral edge of the graph corresponding to impingements at the

region HA1 and HA2. By contrast, such decrease in the ridge pitch increases the

deposition at the toe and at the region HA4 corresponding to negatives values of

the arch length s (horizontal axis).
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Figure 4.13: Correlation between distributions of WSS and particle deposition on
the unfolded model of the host artery for different ridge pitches.

4.6 Discussion

In view of the uncertainty associated with the relationship between fluid mechanics

parameters and biological mechanisms attributed to graft failure, the Lagrangian

approach was used in this chapter in order to assess the influence of different graft

designs on the underlying transport of particles. The Lagrangian particle track-

ing multiphase model enables one to obtain comprehensive information about the

behaviour of discrete and dispersed blood particles travelling in a continuous phase.

As was observed in Chapter 3, changing the orientation and, to a lesser extent,

the height of the elliptical ridge have significant influence on producing an enhanced

swirling blood flow in the lumen. These effects were also observed using Lagrangian

particle tracking in terms of deposition, trajectories and WSS distributions.

The analysis of Figures 4.5-4.9 provided useful information about the predom-

inant areas of particle deposition: toe, heel and the regions HA1, HA2 and HA4

of the host artery. Interestingly, no deposition were reported at the region HA3 in

this study. The different designs of grafts alter the relative distribution of particle
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deposition in the host artery. The region of the toe was observed as the predominant

zone of deposition. The deposition of particles at the heel results from the backward

flow rotation after the impingement of the bulk flow in the bed of the host artery

and supported by the curvature of surronding wall boundaries.

The orientation of the ridge was again highlighted as an important design pa-

rameter to improve the transport of particles in spiral-inducing grafts. In addition

to the benefits produced by the configuration with ridge orientation 270◦, the trail-

ing edge orientation 0◦ has interestingly resulted in an even lower deposition of

particles on the anastomosis. This fact highlights the need of a complete and multi-

approach optimisation to ellucidate the best ridge orientation. Contrary to the

widely assumed benefits associated with the Eulerian swirling flow, it was observed

that complex and enhanced rotational flow can lead to certain degree of particle dis-

turbance. This evidence is in concordance with the conclusions reported by Ou et

al. [120] who observed an increase in particle deposition on the regions of aneureyms

affected by complex secondary flow. In this particular problem, particle disturbance

has particularly been observed in the region of occlusion with the configuration 270◦.

However, in spite of this particle recirculation detected at the region of occlusion in

those cases with enhanced swirling flow, deposition starts in the cross-section cor-

responding to the heel showing different behaviours along the host artery according

to the induced flow field, as can be observed in Figure 4.9. Additionally, it has to

be taken into account that the jet flow generated by a case with partial stenosis

can drastically change the behaviour of particle in this region. That is why future

work is proposed in order to model different degrees of stenosis or alternatively use

patient-specific geometries.
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The study of the leading edge illustrated the important influence of this region

on the inflow conditions. The influence of the ridge and the initial curvature of the

graft was observed in the number of particles that impinge on this region.

The particle-tracking approach enabled to observe in this problem a tendency

of particle deposition in regions of low WSS, which are prone to the development

of vascular diseases, as a result of a lower influence of the sweep effect produced by

the bulk spiral flow, as shown in Figures 4.10-4.13. This supports the assumptions

that were initially considered as ‘optimisation criteria’ in Chapter 3 and those that

consider high levels of WSS as a beneficial measure to increase the efficiency of

prosthetic grafts [100–103].

The present numerical investigation will be complemented in Section 4.6.1 with

the study of the pulsatile behaviour of particles using the reference spiral graft.

4.6.1 Particle tracking in spiral-inducing grafts under tran-

sient boundary conditions

The reference case (circular ridge with trailing edge orientation 180◦) was simulated

under pulsatile conditions. Figure 4.14 shows the mass flow rates of fluid and par-

ticles that were implemented at the inlet. The fluid mass flow rate corresponds to

the waveform used in Chapter 3 obtained from MRI measurements in the femoral

artery [113]. Mass flow rate of particles was defined proportionally to that of the

fluid with positive values in order to avoid numerical errors associated with negative

values of particle mass flow rate.

Figure 4.15 illustrates the trajectories and terminal locations of particles that

collide in the region of interest of the host artery. As was expected, the alternation

of peak and reversed flow phases results in a noticeable flow disturbance that can
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Figure 4.14: Fluid and particle mass flow rates imposed at the inlet of the reference
configuration of spiral graft.

be observed in the behaviour of particle trajectories. Contrary to that which has

been obtained in the analysis of particle deposition under steady-state boundary

conditions, the implementation of pulsatile flow produces impingement of particles

on the bed of the host artery.

Figure 4.15: Trajectories and terminal locations of those particles that collide on the
regions of interest in the host artery of the reference case under pulsatile conditions.

Figure 4.16 illustrates the terminal locations of particles superimposed over

the distributions of transient WSS-based haemodynamic metrics. Distributions of

TAWSS, TAWSSG, OSI and RRT are represented according to their definitions ex-

pressed by the Equations 3.8-3.11 in Chapter 3. However, no clear correlation is

observed on this occasion because of the different temporary nature of instantaneous

impacts of particles and time-averaged distributions of Eulerian metrics.
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Figure 4.16: Distributions of transient WSS-based haemodynamic metrics and ter-
minal locations of those particles that collide on the regions of interest in the host
artery.

4.7 Limitations

An evident shortcoming of this analysis methodology is the implementation of a

limited volume concentration of haematocrit. In this investigation, 20,000 particles

were used with the purpose of comparing the Lagrangian performance of different

designs of spiral-inducing grafts with an affordable computational cost. The use of

a physiological level of haematocrit concentration within the appropiate multiphase

methology could improve the physiology of the problem in terms of the rheological

and mechanical definition of blood.
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In line with the above, larger concentrations of blood particles could be addi-

tionally considered through the complementary use of different particle transport

models, such as the Eulerian-Eulerian or Lattice-Boltzmann multiphase methods.

Moreover, additional haemodynamic metrics, such as the near-wall residence time

model proposed by Longest [123] or velocity and forces of blood particles at the time

of impact on the host artery wall, would provide valuable information linked to the

activation of blood and endothelial cells as well as the tissue response affected by

the fluid-particle flow.

The benefits of trailing edge orientation were reported in terms of secondary

velocity, WSS and recirculation in the host artery. However, Figure 4.6 showed a

higher disturbance of particle trajectories in the region of occlusion in those config-

urations with enhanced swirling flow. The residual flow at the region of occlusion

would be highly dependent on the degree of stenosis and thus the jet flow from the

boundary considered in the present study as occlusion. The assessment of different

degrees of stenosis at the occlusion and, where feasible, the use of patient-specific

geometries would enable one to directly ellucidate the influence of the jet flow and

obtain a rigurous prediction of the anastomosis performance.

As was alluded in Chapter 3, the investigation of the proximal anastomosis

and/or the leading edge of the ridge can give rise to interesting results related to

the deposition of cellular debris and fatty substances which might entail the loss of

performance of the graft. This methodology has shown a high deposition of particles

in the leading edge of the ridge influenced by the design parameters of ridge and

graft. Further work on the proximal anastomosis could elucidate the effects of the

ridge leading edge on the graft inflow conditions.
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Finally, in addition to the above-mentioned points of future work of a numerical

nature, in vitro experiments would significatly contribute by providing valuable

information to validate and calibrate the multiphase methods.
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Chapter 5

Conclusion and Future Work

Cardiovascular diseases are unfortunately one of the leading causes of death in the

world. Arterial bypass grafts and arterio-venous grafts have become a widely used

treatment of blood vessel replacement and vascular access, respectively. However,

the long-term efficiency of these devices is adversely affected by the development

of stenosis due to thrombosis, atherosclerosis and intimal hyperplasia, where the

impact of haemodynamic metrics has been widely recognised. This thesis has studied

such influences from the two traditional descriptions of fluid mechanics, Eulerian or

Lagrangian formulations, linked to the concept of the blood as a homogeneous or

heterogeneous fluid, respectively.

The identification of the physiological blood flow as spiral in the whole arterial

system has led to novel designs of spiral-inducing prosthetic graft including spiral

laminar flow peripheral vascular graft, commercialised by Vascular Flow Technolo-

gies Ltd., a design which is the main focus of the present work. Different geometrical

parameters of the graft, including the cross-sectional shape, trailing edge orienta-

tion, pitch and number of ridges, were assessed with the design condition of constant
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cross-sectional area of ridge(s), which enabled an appropriate performance compar-

ison under similar conditions of vascular resistance.

Building on the above-mentioned design strategy and an improvement criteria

based on the potential favourable effects of high wall shear stress, high secondary

velocity and reduction of separation and recirculation zones, Chapter 3 used the

traditional concept of blood as a homogeneous fluid to evaluate the secondary flow

and WSS-based haemodynamic metrics under steady-state and pulsatile conditions.

This investigation highlighted the influence of the elliptical ridge height and, partic-

ularly, the trailing edge orientation of the ridge on inducing swirling flow in the host

artery. The interaction between the induced rotation by the spiral ridge and the

lesser suppression produced by the near sidewall of the host artery upon impinge-

ment with the ridge orientation 270◦, enhanced the swirling flow of this configuration

in comparison with other orientations considered in this study. This design parame-

ter has particular clinical relavance when taking into account the different rotational

direction of the blood, depending on the location of the blood vessel. In this thesis,

a new peripheral bypass surgery strategy was proposed by considering two grafts

with optimised ridge orientation and with opposite ridge rotational direction (i.e.

clockwise and anticlockwise) in order to achieve the improved and physiologically

suitable rotation of the blood flow depending on the location of the stenosis.

The implementation of the Lagrangian particle tracking multiphase model en-

abled the consideration of the blood as a heterogeneous fluid composed of discrete

particles travelling in a continuous phase. Complete information about particle

trajectories and terminal locations was analysed in order to assess the influence of

the different graft design parameters from the perspective of the particle distur-

bance and predominant regions of deposition on surrounding wall boundaries. In
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agreement with the results obtained using the Eulerian methodology, the orienta-

tion of the ridge reported a great influence on particle-haemodynamics. As a result

of the sweep effect produced by the spiral flow, a correlation between the regions

of low-WSS and particle deposition was observed under steady-state conditions,

which supports the initial optimisation criteria assumed in the Eulerian framework.

However, cases with enhanced swirling flow also resulted in an increased particle

disturbance in the region of occlusion although deposition of particles was only re-

ported from the cross-section corresponding to the heel of the anastomosis. In spite

of this study being focussed on the distal anastomosis, the particle transport model

revealed a noteworthy impingement of particles at the leading edge.

The limitations of the present analysis, described in detail in Chapters 3 and 4,

are summarised below, as suggestions for future work (given in the order to CFD

workflow):

- In-vitro experiments. As has been proved during the last decades, numeri-

cal simulation, recently also known as in-silico testing, is able to rigorously

model biomedical problems like bypass grafting, additionally providing infor-

mation that in some cases cannot be obtained using experimental procedures.

However, experimental methods, in-vitro, in-vivo or ex-vivo testing, cannot be

discarded since they represent an indispensable tool for validating numerical

results. Specifically with respect to explored methodology, experimental in-

formation could enable a complete calibration and validation of Eulerian and

Lagrangian frameworks, particularly in terms of fluid-structure, fluid-particle

and particle-structure interactions.

- Patient-specific models. The geometry of the fluid domain, together with the

dynamic conditions, have a direct influence on haemodynamic results. An ide-
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alised geometry of End-To-Side distal graft anastomosis has been used in this

project, in the absence of access to realistic models and also in line with par-

allel investigations by the author’s research group on the effect of non-planar

helical designs of grafts, to understand the physics of the problem and assess

the influence of the ridge design parameters in spiral-inducing grafts. The use

of patient-specific geometries would increase the accuracy and physiology of

model and consequently the results, thus enabling the implementation of a

realistic degree of stenosis, contraints in the deployment of grafts, an accurate

gravity direction, dimensions of the lumen, curvature and morphological de-

tails. From the clinician’s point of view, it would additionally enable them to

plan surgical intervations and obtain a personalised prediction of the device

performance.

- Compliance mismatch and Fluid-Structure Interaction (FSI). Although the

assumption of rigid walls in arteries and veins under the dynamic conditions

considered in this problem can be considered acceptable, the analysis of the

difference in mechanical properties between prosthetic graft and host artery

continues to be a major challenge. Compliance mismatch has been identified

as an important parameter associated with the postoperative development of

restenosis around the suture line. The implementation of FSI, keeping the re-

quired accuracy and using pulsatile boundary conditions, would significantly

increase the computational cost, which has posed as a limiting factor in the

present project, and consequently requires the use of High Performance Com-

puting (HPC).

- Multiphase approaches. In this thesis, the Lagrangian particle tracking multi-

phase model was selected in order to obtain complete information about the
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behaviour of representative particles along its path through different design

of spiral gratfs. The consideration of Eulerian-Eulerian or Lattice-Boltzmann

methods would enable the implementation of larger concentrations of parti-

cles and could complement this methodology by providing additional particle-

transport metrics. Likewise, should the proposed in vitro experiments take

place, these results would be of great interest to calibrate the model of inter-

action and collision between particles and arterial walls.

- Complete design optimisation. This investigation has covered the parametric

analysis of spiral grafts in order to understand the physics of the problem as

well as highlighting the most relevant design parameters. The identification

of the predominant influence of the elliptic ridge height and, particularly, the

orientation of the ridge on haemodynamics enables researchers to narrow the

search of the optimal spiral graft design and, therefore, decrease the future

computational cost. Building on the results presented in this thesis, a multi-

objective optimisation would result in the optimal combination of graft design

parameters that would produce the most appropriate swirling blood flow to

avoid the potential development of vascular diseases.
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