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Thesis Abstract 
 

Blood flow Restriction Training [BfRT] involves the intentional and temporary reduction of 

blood flow through a limb to induce short periods of mild limb ischaemia, often during 

periods of low-intensity exercise. A systematic review into the use of BfRT to attenuate 

losses to lower-limb muscle strength and size during periods of injury-related impaired 

weight bearing revealed wide variations in the equipment, methodology and outcomes 

described. No evidence specifically investigated the acute physiological effect of BfRT 

during un-resisted, or ‘no-load’ rehabilitation exercises. This doctoral research project 

aimed to address these issues, by developing externally-valid BfRT methodologies utilising 

relatively inexpensive BfR equipment, and determining the acute physiological effects of 

combining BfRT with ‘no-load’ lower-limb exercise. 

Phase I recruited sixty-one healthy participants across 3 subgroups; 21 males, 19 females 

and 21 elite male rugby players. Short periods of lower-limb blood flow restriction [BfR] 

were applied to participants at 40, 60, 80, 100 or 120mmHg via a thigh blood-pressure 

cuff. Ultrasound imaging was used to quantify the degree of popliteal arterial blood-flow 

remaining [%PBfR] at each cuff pressure. Subgroups were statistically different to each 

other across nine physical characteristics (p ≤ 0.05). %PBfR decreased as cuff pressure 

increased (p < 0.0001), but with no between-subgroup differences (p = 0.122). Only weak 

bivariate correlations existed between physical characteristics and %PBfR across tested 

cuff pressures. A polynomial equation was created to indicate %PBfR based only upon the 

amount of thigh-cuff pressure applied. 

Phase II recruited sixteen participants (n=9 male, n=7 female) who undertook four un-

resisted, seated, unilateral knee extension exercise sessions with 0, 40, 60 or 80mmHg of 

continuous thigh-cuff pressure applied. A near-infra red spectroscopy [NIRS] device 

measured tissue oxygen saturation [SmO₂] of the vastus lateralis muscle before and 

during exercise sessions. Compared to 0mmHg, greater cuff pressures resulted in greater 

drops in vastus lateralis SmO₂ during exercise sessions (p < 0.05). Bivariate correlations 

existed between physical characteristics and the mean magnitude of change in SmO₂ 

during BfRT sessions, including Body Mass Index (Pearson r = 0.791, p < 0.001). 

Phase III recruited three injured professional rugby players to undertake lower-limb BfRT 

4-5 times per week over periods of 4 to 12 weeks. BfRT sessions were as per Phase II, but 

delivered at higher cuff pressures (100 and 120mmHg). No adverse events or pain 

occurred during any BfRT session. NIRS data indicated that greater cuff pressure resulted 

in greater drops in vastus lateralis SmO₂ during exercise sessions. Thigh girth (recorded 

via tape measurement) was maintained longitudinally in all players. MRI evidence 

suggested that BfRT did not hinder healing from a tibial and femoral osseous stress injury. 

This doctoral project has expanded the evidence base available to healthcare 

professionals wishing to use BfRT during lower-limb injury rehabilitation. In particular, 

findings support the use of relatively inexpensive blood-pressure cuffs as a method of 

delivering BfRT, and in the ability of BfR to amplify the acute, local metabolic demand of 

an un-resisted ‘no-load’ exercise suitable for use in rehabilitation. 
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CHAPTER ONE 
 

Blood-flow Restriction Training [BfRT] 

 

1.1 Chapter Introduction 

Blood flow Restriction Training [BfRT] involves the intentional and temporary reduction of 

blood flow through a limb to induce short periods of mild limb ischaemia, often during 

periods of low-intensity exercise. Using BfRT among populations with a lower-limb 

musculoskeletal injury may help to attenuate the losses in lower-limb muscle mass and 

strength seen during extended period of impaired weight bearing. However, there are 

wide variations in the equipment, methodology and outcomes described across BfRT 

research, with no evidence specifically investigating the acute physiological effects of 

BfRT during un-resisted, or ‘no-load’ rehabilitation exercises. In light of this, this doctoral 

research project aims to develop and refine the use of BfRT within the context of lower-

limb injury rehabilitation.  

 

This chapter will introduce the reader to the overall concept of BfRT. A brief overview of 

the concept is first given, followed by a discussion as to how BfRT may acutely modulate 

the exercise-related signals and cellular signalling pathways implicated in longitudinal 

muscular adaptation. The chapter ends with a comparison of the longitudinal effects of 

different resistance training modalities upon muscular adaptation and function, with and 

without lower-limb blood flow restriction [BfR] superimposed.  

 

1.2 The Concept of BfRT 

BfRT involves the intentional and temporary reduction of blood flow through an upper or 
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lower limb to induce short periods of mild limb ischaemia, often during periods of low-

intensity exercise. Its inception can be largely attributed to Dr. Yoshiaki Sato, who 

reportedly pioneered the technique in 1966 (Sato, 2005). His theory surmised that 

artificially restricting blood-flow whilst completing low-intensity resistance training may 

replicate the physiological demands of traditional high-intensity resistance training 

(Kaatsu Global©, 2015a). Bicycle inner tubes, acting as rudimentary tourniquets around 

the proximal portions of his limbs, were used to repetitively induce blood-flow restriction 

[BfR], with a claimed effect of longitudinal muscle hypertrophy (Sato, 2005). In 1973, Dr. 

Sato reportedly combined the technique with isometric exercises to prevent lower-limb 

muscle atrophy after fracturing both ankles in a skiing accident. Development of more 

advanced restriction apparatus (Sato Sports Plaza Co. Ltd., 2014) and training protocols 

resulted in commercialisation and certification of the technique under the moniker of 

‘Kaatsu’ training; a Japanese term for ‘additional pressure’ (Kaatsu Global©, 2015b; 

2015c). 

 

Whilst Kaatsu training was only recently patented, the concept of BfRT has been studied 

academically since 1987, with BfR induced through a variety of different restriction 

apparatus. This includes the use of pressurised air chambers (Eiken and Bjurstedt, 1987; 

Sundberg, 1993), elastic knee wraps (Head et al, 2015; Loenneke et al, 2010) and 

inflatable thigh-cuff devices (Cayot et al, 2015; Iida et al, 2007). Whilst training protocols 

and restriction apparatus differ greatly across academic texts, BfRT can be grouped into 

three broad categories: 

 BfR combined with low-intensity or high intensity resistance training. 

 BfR combined with cardiovascular exercise. 

 BfR in isolation, without simultaneous exercise. 
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BfR combined with low-intensity or high intensity resistance training  

Participants complete weighted resistance exercise using free-weights or an exercise 

machine. Typically, the maximum voluntary contraction [MVC] or one repetition 

maximum [1RM] for a given exercise is first determined. BfR is then applied via an 

inflatable cuff placed around the proximal part of a limb. The cuff then remains inflated 

throughout a multiple-set exercise session performed at a low-intensity (20-30% 

1RM/MVC) before being deflated upon completion of the final exercise set (Clark et al, 

2011; Ellefsen et al, 2015; Laurentino et al, 2012). Other variations exist, including the use 

of BfR intermittently across an exercise session, or the use of BfR during high-intensity 

resistance training at ≥ 60% 1RM/MVC (Laurentino et al, 2008; Neto et al, 2014; Teixeira 

et al, 2017). 

 

BfR combined with cardiovascular exercise  

Participants complete an aerobic exercise programme such as treadmill walking (Abe et 

al, 2006; Abe et al, 2010a; Salvador et al, 2016), stationary cycling (Abe et al, 2010b; 

Corvino et al, 2014) or water-based exercise (Araújo et al, 2015). BfR is applied to both 

limbs either continuously or intermittently across the exercise session. 

 

BfR in isolation, without simultaneous exercise  

Participants are given repetitive bouts of lower-limb BfR at rest, without the completion 

of any simultaneous exercise. This application is typically given to participants who 

possess a lower-limb injury (Takarada et al 2000b), or who are simulating lower-limb 

immobilisation (Kubota et al, 2008; Kubota et al, 2011) or weightlessness (Nakajima et al, 

2008), with a view to preventing or limiting muscle disuse atrophy. 
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Before the proposed mechanisms of action of BfRT can be discussed, the basic process by 

which traditional exercise (without BfR) is thought to generate muscular adaptation will 

first be described. Wackerhage (2014) splits this process into three stages. Firstly, 

exercise-related signals that indicate a perturbation to cell homeostasis are detected by 

sensor proteins. These signals include increased ATP turnover, a reduction in the partial 

pressure of oxygen and an increased production of reactive oxygen species within tissues 

(Camera et al, 2016; Egan and Zierath, 2013). Secondly, these signals are transduced 

through cellular signalling pathways, reaching effector proteins within the cell nucleus. 

Ultimately, these effector proteins regulate a myriad of cellular functions including 

muscle protein synthesis and degradation (Wackerhage, 2014). Whilst effector proteins 

are responsible for producing muscular adaptation, how a muscle adapts can be 

modulated by the frequency, intensity, duration and modality of the exercise(s) 

completed (Egan and Zierath, 2013). Age, gender, and environmental factors may further 

influence this process. (Lemmer et al, 2000; Roth et al, 2002; Zempo et al, 2016).  

 

1.3 The Effect of BfRT on the Mechanisms of Muscular Adaptation 

The precise mechanisms by which BfRT produces favourable muscular adaptations are 

not yet fully understood (Pearson and Hussain, 2015; Scott et al, 2015). However, existing 

work demonstrates that the use of BfR can affect each of the stages of muscular 

adaptation noted by Wackerhage (2014). This BfRT evidence base is considerable in size, 

consisting of over two-hundred and sixty experimental studies and 38 narrative reviews 

on various aspects of the topic. Therefore, the majority of literature discussed in the 

reminder of this chapter relates to the effects of BfR modalities most relevant to this 

doctoral research project; the use of lower-limb BfR in isolation, or the use of lower-limb 

BfR combined with low-intensity lower-limb exercise. 
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1.3.1 The Modulation of Acute Exercise-related Signals 

1.3.1.1 Local Tissue Hypoxia 

Oxygen consumption within active muscle tissue increases during exercise and can 

exceed the rate at which oxygen can be delivered via the cardiovascular system. This can 

produce an acute, hypoxic intramuscular environment during lower-limb resistance 

exercise (Tanimoto et al, 2006). Evidence has demonstrated the ability of BfRT to amplify 

the degree of acute muscle tissue deoxygenation occurring during lower-limb resistance 

exercise performed at lower intensities (≤30% 1RM) (Downs et al, 2014; Tanimoto et al, 

2005). 

 

Reduced oxygen levels within skeletal muscle are known to activate hypoxia-sensing 

transcription factor [HIF-1], whose target genes are involved in increasing oxygen 

transport to improve tissue function during low oxygen availability (Lindholm and 

Rundqvist, 2016). Activation of HIF-1 may regulate the expression of Vascular Endothelial 

Growth Factor [VEGF], an angiogenic signal protein that can induce an increase in muscle 

capillarisation (Hoier and Hellsten, 2014; Semenza, 2000). Work by Ameln et al (2005) has 

demonstrated that both HIF-1α and VEGF levels increase acutely in response to the 

demands of a lower-limb knee-extension exercise. In this study, VEGF levels of nine 

healthy males were significantly higher when lower-limb BfR was superimposed over the 

exercise protocol. Subsequent studies have also shown acute VEGF mRNA expression is 

significantly amplified by the addition of lower-limb BfR to resistance exercise, compared 

to the exercise alone (Item et al, 2013; Larkin et al, 2012 Takano et al, 2005).    

 

1.3.1.2 Lactate Accumulation 

The current theories surrounding lactate have developed considerably from the 
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traditional viewpoint of the molecule as simply being a waste product of glycolysis and 

responsible for exercise-induced fatigue (Philp et al, 2005). Growing evidence supports 

the potential role of lactate as an anabolic signalling molecule, implicated in the 

mediation of exercise-induced adaptations (Nalbandian and Takeda, 2016; Philp et al, 

2005; Todd, 2014). Speculatively therefore, BfRT may be of benefit if it could be utilised to 

create (or amplify) acute lactate accumulation within muscle tissue. 

 

Applying lower-limb BfR does appear to amplify lactate accumulation during low-intensity 

resistance exercise (20-30% 1RM). For example, Fujita et al (2007) documented changes 

in the blood lactate of six young males (mean age; 32 ±2 years) immediately following 

four sets of bilateral knee extension exercise completed at a low-intensity (20% 1RM). 

Exercise sessions were performed with or without BfR superimposed. Whilst blood lactate 

was notably elevated following both exercise conditions, levels remained significantly 

higher for a period of 40 minutes where BfR had been superimposed (p < 0.05). Fry et al 

(2010) later replicated these findings within a group of seven older males (mean age; 70 ± 

2 years), albeit with lower magnitudes of lactate change. Low sample sizes and 

unreported effect sizes in the studies by Fujita et al (2007) and Fry et al (2010) may 

indicate a need for caution when interpreting these findings in isolation. However, recent 

studies have utilised greater participant numbers and more extensive reporting of 

statistical methods (Loenneke et al, 2016; Teixeira et al, 2017). These studies reported 

that adding BfR to low-intensity knee-extension exercises achieved a level of lactate 

accumulation which matched or exceeded that seen during high exercise intensity (70% 

1RM) performed without BfR. 

 

The capacity of BfRT to match the lactate accumulation of traditional high-intensity 
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resistance training does not appear universal, however. Within a group of eighteen 

hypertensive women, Pinto et al (2016) demonstrated that BfR combined with a session 

of low-intensity (20% 1RM) knee extensions did not increase blood lactate to the level 

seen during the completion of the same exercise at 65% 1RM without BfR. Whilst this 

contradicts the findings of Loenneke et al (2016), the exercise volume delivered within 

Pinto et al (2016) was notably lower (30 repetitions vs. 75 repetitions) with longer inter-

set rest periods (60 seconds vs. 30 seconds). It is possible that, even with BfR applied, the 

parameters of the exercise protocol in Pinto et al (2016) were of insufficient intensity to 

generate the lactate levels seen in the traditional high-intensity exercise. 

 

It should also be noted that favourable muscular adaptations can occur in the apparent 

absence of lactate accumulation. For example, Loenneke et al (2012e) found that 

repetitive bouts of treadmill walking at 4.5km/h did not significantly increase the post-

session blood lactate levels of a small cohort of healthy men and women (n = 9), whether 

BfR was applied or not. Yet earlier longitudinal studies with both similar and older cohorts 

(Abe et al, 2006; Abe et al, 2010a; Ozaki et al, 2011; Sakamaki et al, 2011) demonstrated 

that this type of exercise, performed with BfR at a slower pace (3-4km/h), significantly 

increased thigh muscle size and strength compared to non-restricted control groups.  

 

1.3.1.3 Neuromuscular Activation and Fatigue 

It has been proposed that motor units, consisting of motor neurons and muscle fibres, are 

recruited in size order as the force requirement of an exercise increases (Henneman et al, 

1965; Mendell 2005). In practice, motor units containing predominantly slow-twitch 

oxidative fibres are recruited first. By increasing the firing rate of upstream neurons 

synapsing with motor units, predominantly fast-twitch (Type II) glycolytic fibres are then 
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recruited to generate additional force. During sustained exercise, where slower-twitch 

oxidative fibres may become fatigued over time, faster-twitch glycolytic fibres may also 

be progressively recruited to allow the exercise to continue (Wackerhage, 2014). Maximal 

neuromuscular activation and fatigue would ultimately ensue, leading to exercise failure. 

This ‘size principle’ is still not universally accepted (Bawa et al, 2014). However, recent 

mathematical models of motor unit fatigue that incorporate this principle are able to 

predict actual motor unit endurance times with good fidelity (Potvin and Fuglevand, 

2017).  

 

It has been proposed that the activation of fast-twitch/Type II fibres during exercise, 

independent of the intensity of the exercise being completed, is the primary variable that 

affects stimulation of muscle protein synthesis and thus longitudinal muscle hypertrophy 

(Phillips, 2009). An acute study by Burd et al (2010) appears to support this notion within 

the context of traditional (non-BfR) resistance exercise. Data obtained from fifteen 

healthy males suggested that knee extensions performed at 30% 1RM to volitional failure 

produce similar, significant post-session increases in mixed and myofibrillar fractional 

synthetic rate as knee extension performed at 90% 1RM to volitional failure. A recent, 

high-quality study also reflects this longitudinally, demonstrating within a cohort of forty-

nine males that training to volitional failure produces similar gains in strength and muscle 

size over eight weeks, regardless of whether traditional high-intensity (75-90% 1RM) or 

low-intensity (30-50% 1RM) resistance exercise programmes are employed (Morton et al, 

2016).  

 

Loenneke et al (2011a) acknowledged the work by Phillps et al (2009) and the need to 

activate fast-twitch/Type II muscle fibres to stimulate muscle protein synthesis. Loenneke 
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et al (2011a) hypothesised that, in situations where low-intensity exercise is completed to 

volitional failure, adding BfR allows failure to be reached with a comparatively lower 

volume of work.  This was substantiated by Cook et al (2013), who found that adding BfR 

to a low-intensity knee extension exercise reduced the amount of repetitions needed to 

reach failure by approximately 33%. Wernbom et al (2012) also demonstrated that knee 

extensions performed to volitional failure across five exercise sets generated 

comparatively greater (p < 0.01) decrements in MVC immediately post-exercise when BfR 

was superimposed. In studies where volitional failure was not part of the exercise 

protocol, statistically greater decrements in MVC were still achieved via the addition of 

BfR. Karabulut et al (2010) demonstrated this within their cohort of fourteen healthy 

males during the delivery of a knee extension exercise at 20% 1RM across five exercise 

sets of 20 repetitions (p < 0.05), with results indicating that a mixture of central and 

peripheral fatigue was responsible. Loenneke et al (2013a) also demonstrated 

significantly greater (p < 0.05) torque decrements post-session due to BfR, among eight 

healthy males who exercised across four sets performed at 30% 1RM. 

 

Statistically significant (p < 0.05) pre-post decrements in knee extensor torque/MVC 

following lower-limb resistance exercise can persist up to forty-eight hours post-session 

(Wernbom et al, 2012), but the addition of BfR does not appear to significantly amplify 

these decrements by a statistically significant degree (Loenneke et al, 2013a; Wernbom et 

al, 2012). However, both studies involved low sample sizes and power calculations were 

absent from their texts. Further studies which address these issues, lowering the 

possibility of a Type II error, may provide a clearer picture as to the effect of BfR upon 

neuromuscular fatigue beyond one hour post-exercise. 
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1.3.1.4 Cellular Swelling in Response to Resistance Exercise 

Traditional resistance exercise is known to produce a hydration-mediated cellular swelling 

response, which itself has been linked to increases in protein synthesis, reduction in 

proteolysis and potential hypertrophic muscular adaptation (de Freitas et al, 2017; 

Schoenfeld 2010; Schoenfeld 2013). During BfRT, a limb-swelling effect has been 

demonstrated both with and without simultaneous exercise (Loenneke et al 2012c; 

Loenneke et al 2016). It has been hypothesised that a cell-swelling response during BfR 

training occurs from a combination of blood pooling, metabolite accumulation and 

reactive hyperaemia (Loenneke et al, 2012a). Interestingly, a similar limb-swelling 

response can occur during low-intensity resistance exercise whether BfR is applied or not, 

providing exercise sets are completed until exhaustion (Yasuda et al, 2015). The 

beneficence of applying BfR in this case was a 50% reduction in the volume of exercise 

required to reach exhaustion. 

 

1.3.2 The Transduction of Exercise-related Signals and Gene Expression 

1.3.2.1 Systemic Hormone Levels 

Changes in systemic hormone levels occur following resistance exercise, including acute 

increases in growth hormone, cortisol and testosterone (Kraemer et al, 2005). The 

magnitude of change in hormone levels appears to be acutely influenced by the 

parameters and intensity of the exercise completed (Kraemer et al, 1990; Smilios et al, 

2003; Bottaro et al, 2009). Early work proposed that substances such as growth hormone 

amplified protein synthesis in response to muscular work and determined absolute 

muscle size (Goldberg and Goodman, 1969). Studies have shown that the addition of BfR 

to low-intensity (20-30% 1RM) resistance exercise amplifies the post-session blood serum 

levels of systemic hormones, including cortisol (Fry et al, 2010; Fujita et al, 2007), growth 
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hormone (Fujita et al, 2007; Takano et al, 2005; Takarada et al, 2000a) and insulin-like 

growth factor 1 [IGF-1] (Takano et al, 2005). Equally, evidence suggests that low-intensity 

BfRT programmes create similar chronic changes to resting serum hormone levels as 

traditional high-intensity resistance training programmes (Ellefsen et al, 2015; Kim et al, 

2014). Whilst this may support the addition of BfR to low-intensity resistance 

programmes, a growing evidence base proposes that both acute and chronic changes in 

systemic hormone levels are unrelated to changes in muscle size and strength following 

resistance training programmes (Mitchell et al, 2013; Morton et al, 2016; West et al, 

2009, West et al, 2012). Therefore, it is possible that the amplification of hormone 

responses by the addition of BfRT is inconsequential. 

 

1.3.2.2 The Akt/mTOR and Mysotatin-Smad Pathways  

Muscle hypertrophy occurs through a shift towards muscle protein synthesis and away 

from protein degradation (Egerman and Glass, 2014). Primarily, two cellular signalling 

pathways work in tandem to regulate muscle growth (Schiaffino et al, 2013). The 

Akt/mTOR pathway is geared towards anabolism, transducing upstream exercise-related 

signals across to the cell nucleus to increase protein synthesis and muscle fibre 

hypertrophy (Bodine et al, 2001). In contrast, the myostatin-Smad pathway is thought to 

inhibit the Akt/mTOR pathway and myoblast differentiation (Schiaffino et al, 2013; 

Trendelenburg et al, 2009). The capacity of BfRT to affect these pathways has previously 

been examined. 

 

Drummond et al (2008) delivered two low-intensity (20% 1RM) knee extension exercise 

sessions to six healthy young males, one session with BfR superimposed and one without, 

in a random-crossover design. Myostatin mRNA expression was significantly 
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downregulated following both exercise sessions (p < 0.05), with no between-session 

differences. Thus, it was concluded that low-intensity resistance triggered myostatin 

downregulation and BfR did not amplify this effect. However, a longitudinal study by 

Laurentino et al (2012) suggested otherwise. Twenty-nine healthy males underwent one 

of three training programmes for 8 weeks. Participants completed either high-intensity 

(80% 1RM) resistance training, or low-intensity resistance training (20%1RM) with or 

without BfR. Post-intervention, myostatin expression dropped by a non-significant 

amount in the group performing low-intensity exercise without BfR. Yet myostatin 

expression dropped significantly (p < 0.05) in groups performing high-intensity resistance 

exercise or low-intensity exercise with BfR. Several other studies have also demonstrated 

that the addition of BfR to a low-intensity (20% 1RM) knee extension exercise can 

significantly amplify the post-session phosphorylation of mTOR and its upstream or 

downstream targets (Fry et al, 2010, Fujita et al, 2007, Gundermann et al 2014). Results 

showed that BfR significantly increased the post-session fractional rate of muscle protein 

synthesis, beyond that of the low-intensity resistance exercise alone.  

 

1.3.2.3 The Ubiquitin-proteasome Pathway 

Protein degradation within skeletal muscle is primarily dependent upon the ubiquitin-

proteasome pathway (Egan and Zierath, 2012). Within this pathway, the activation of 

Forkhead Box Class O [FOXO] transcription factors upregulate two ubiquitin ligases; 

atrogin-1/MAFbx and MuRF1. This upregulation triggers protein degradation, a reduction 

in muscle fibre size and muscle atrophy (Egerman and Glass, 2014; Sandri, 2008). It is also 

suggested that these ligases are transiently upregulated following resistance exercise and 

are implicated in subsequent muscle remodelling (Murton et al, 2008).  
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A study by Drummond et al (2008) found that a one-off session of low-intensity (20% 

1RM) resistance training upregulated MuRF1 mRNA expression post-session. The addition 

of BfR further amplified this response, but not by a statistically significant degree. Pre-

post MAFbx mRNA expression remained unchanged in both groups. Conversely, Manini et 

al (2011) found that both MuRF1 and atrogin-1 expression decreased post-session, 

despite participants performing the same BfRT protocol as Drummond et al (2008). This 

mismatch may be explained by Manini et al (2011) taking post-session biopsies at eight 

hours, whereas Drummond et al (2008) took biopsies at 3 hours. This would suggest a 

time-dependent change in the expression of these ligases. A third study by Ellefsen et al 

(2015) appears to support this notion. At 1 hour post exercise (low-intensity knee 

extensions at 30% 1RM with BfR), MuRF1 expression had increased significantly (p < 

0.05). This remained the case when the exercise and biopsy was repeated after the 

completion of the last exercise session of the twelve-week BfRT programme. However, in 

a rested state, MuRF-1 levels were numerically (but not statistically) lower after the 

twelve-week training programme than before the programme commenced. Atrogin-1 

expression remained unchanged at all measured time points. Comparing these three 

studies to a collated review of other ubiquitin-proteasome evidence (Murton et al, 2008), 

suggests that similar modulation of these ligases occurs following traditional high-

intensity resistance training. Explicitly, an acute post-session increase in MuRF-1 and 

MAFbx/atrogin-1 mRNA expression, followed by a return to basal levels sub-acutely, or 

chronic downregulation. It is possible that low-intensity BfRT may acutely amplify MuRF-1 

expression and thus the activity of the ubiquitin-proteasome pathway, leading to 

muscular adaptation via remodelling rather than atrophy. The work by Ellefsen et al 

(2015) seems to support this notion, demonstrating similar pre-post changes is thigh 

cross-sectional area and muscle fibre transition (from Type IIx to Type IIa) between the 
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BfRT group and the traditional high-intensity resistance training group after their twelve-

week programmes. 

 

1.3.3 Longitudinal Muscular Adaptations in Response to BfRT 

1.3.3.1 Muscular Hypertrophy and Strength Development 

When attempting to elucidate the longitudinal effect of lower-limb BfRT programmes 

upon muscle size and strength, existing evidence typically compares a form of BfRT 

against a non-exercising control group, or participants completing similar exercise 

programmes without BfR applied. A head-to-head comparison of these studies is 

presented below, grouped by the type of exercise programmes that were applied. 

 

Low-intensity Blood-flow Restricted Resistance Training [LiBfRT] vs. High-intensity 

Resistance Training [HiRT] 

Evidence points towards both LiBfRT and HiRT being able to significantly increase post-

intervention 1RM for knee extension (Laurentino et al, 2012; Martín‐Hernández et al, 

2013) and leg press (Libardi et al, 2015; Vechin et al, 2015) over training periods of four to 

12 weeks. Across studies, between-group improvements in 1RM were either similar 

between modalities, or of a greater magnitude with HiRT. All four studies demonstrated 

statistically significant within-group increases in quadriceps cross-sectional area or muscle 

thickness, with no significant between-group differences. 

 

LiBfRT vs. Low-intensity Resistance Training [LiRT] 

Over an eight-week programme, Laurentino et al (2012) has shown that cohort knee-

extensor 1RM can increase significantly following either LiRT or LiBfRT within healthy 

males (p < 0.001). Participants completing LiBfRT twice-weekly experienced a larger 
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percentage increase in pre-post 1RM than those performing LiRT twice-weekly at the 

same exercise intensity (mean 20.7% vs. 40.2%), but this between-group difference was 

not statistically significant. Conclusions were similar in respect of maximum knee extensor 

torque following a five-week, thrice weekly, training programme conducted by Fitschen et 

al (2014). However, the mean percentage increase in knee extensor torque was modest 

(5.2 ± 10.41%, p = 0.033) across the study’s thirty participants (n=25 female) compared to 

the magnitude of 1RM changes seen in Laurentino et al (2012).  

 

In contrast to Laurentino et al (2012) a superiority of LiBfRT over LiRT at increasing pre-

post maximal knee extensor torque was reported by Takarada et al (2004). This study, 

whilst delivering the same programme duration and training frequency to Laurentino et al 

(2012), produced a mean increase in maximum knee extensor torque of 9.9 ± 2.2% with 

LiBfRT, versus 3.1 ± 1.4% with LiRT; a significant between-group difference (p < 0.05). The 

exercise dose was greater in Takarada et al (2004) compared to Laurentino et al (2012) 

(five sets at 20% 1RM (mean 16.8 repetitions per set) vs. 3 sets of 15 repetitions at 20% 

1RM). Other factors, such as differing cuff widths, cuff pressures and the differences in 

group sample sizes (6 vs. 10) may have contributed to the contrasting results between 

studies. It is worth noting, however, that within Takarada et al (2004) the LiBfRT group 

completed their five exercise sets to failure, with the LiRT group being work-matched for 

repetitions against this. It is wholly possible that LiBfRT participants experienced 

significantly more physiological stress and/or muscle fibre activation than LiRT 

participants through exercising to failure, which expressed itself longitudinally as the 

comparatively greater increase in the percentage of maximum knee torque. 

 

In terms of longitudinal changes to thigh mass, only LiBfRT increased thigh cross-sectional 
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area (Takarada et al, 2004) and quadriceps cross-sectional area (Laurentino et al, 2012) by 

a statistically significant degree. Within Fitschen et al (2014), thigh lean mass measured 

via Dual X-ray Absorptiometry [DXA] showed no significant pre-post intervention change 

across either LiRT or LiBfRT. Again, the discrepancy between study results may relate to 

methodological differences, with a bias towards longer training programmes producing 

more favourable results for LiBfRT. In summary, existing evidence suggests that 

superimposing BfR over LiRT does appear to amplify gains in longitudinal muscle strength 

within the lower-limb. 

 

LiBfRT to volitional failure vs. LiRT to volitional failure or HiRT to volitional failure 

Findings from a study by Barcelos et al (2015) suggest that similar, significant gains in 

knee-extensor muscle hypertrophy and strength occur across LiRT, LiBfRT and HiRT 

programmes lasting eight weeks, providing exercise sets are completed to volitional 

failure. Barcelos et al (2015) acknowledged that this may have occurred due to significant 

recruitment of motor units and activation of fast-twitch/Type II muscles fibres across all 

exercise modalities via the universal attainment of volitional failure. Thus, promoting 

muscular development as discussed by Burd et al (2010) and Loenneke et al (2011a).  

Whilst Barcelos et al (2015) had studied previously untrained males aged 18-30 years, a 

separate study of eighteen middle-aged participants (mean 55 ±7 years, n= 6 female) also 

found that both LiRT or LiBfRT performed to volitional failure produced similar within-

subject, between-leg improvements in knee extensor strength over a 6-week period (Fahs 

et al, 2015). Quadricep muscle thickness increased within both legs, with larger effect 

sizes in the limb that underwent LiBfRT. Further evidence by Clark et al (2011) also 

demonstrated statistically significant gains in isometric knee extensor strength could 

occur over shorter, four-week, thrice-weekly training programmes among a cohort of 
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seventeen healthy participants (n=2 female) who were allocated to LiBfRT at 30% 1RM or 

HiRT at 80% 1RM (both to volitional failure). The HiRT group increased their strength by a 

higher percentage than the LiBfRT group (13% vs. 8%), but the difference was not 

statistically significant (p= 0.28, effect size 0.09). 

 

In summary, the findings of Barcelos et al (2015) and Fahs et al (2015) give strength to the 

suggestion that adding BfR to LiRT already performed to volitional failure may provide no 

additional benefit, in terms of amplifying longitudinal increases to lower-limb muscle size 

and strength. However, Fahs et al (2015) did demonstrate that the volume of exercise 

required to reach volitional failure during LiRT was reduced by approximately 36% by the 

addition of BfR. Other studies have also shown a similar, volume-reducing effect 

(Loenneke et al, 2011b; Loenneke et al, 2012f, Wernbom et al, 2009). Whilst the 

participants of each of these studies were all healthy, it could be argued that the volume-

reducing effect of adding BfR to LiRT could have some clinical beneficence. BfR could be 

used as a variable by which to control or modulate training load to increase or maximise 

the intensity and/or acute metabolic stress of a LiRT exercise, whilst mediating the risk of 

re-injury. 

 

High-intensity Blood-flow Restricted Resistance Training [HiBfRT] vs. HiRT  

Few studies have examined the effect of adding BfR to HiRT in regards to muscular 

development. Laurentino et al (2008) studied sixteen males over a period of 8 weeks, 

delivering resistance training at 60% 1RM or 80% 1RM, with or without BfR. All four 

modalities significantly increased knee extensor 1RM and quadriceps cross-sectional area, 

with no modality demonstrating superiority over the others. Over the same length of 

training programme, Mueller et al (2014) also demonstrated that superimposing whole-
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body vibration over HiBfRT consisting of a 70% 1RM squat exercise produced the same, 

significant increases in knee-extensor 1RM as completing HiRT alone.  

 

The lack of any additive effect of BfR within these studies may have a haemodynamic 

explanation. It is known that high-intensity muscular contractions can generate sufficient 

extravascular pressure to occlude the vascular network, and thus blood flow, within a 

muscle during its contraction. Evidence suggests that this occurs at a range of 50-64% 

MVC (Sadamoto et al, 1983). At this intensity of exercise, particularly where muscular 

relaxation time is absent or minimal, the superimposing of extravascular pressure via a 

restriction device may not further restrict muscular blood flow. In effect, it is not possible 

to restrict the blood-flow within a muscle that is already fully restricted via its own 

contraction. Evidence by Cayot et al (2015) appears to support this notion. In this study, 

BfR was applied immediately before and during knee extensions performed at 20% to 

80% MVC. During the exercise performed at 20% and 40% MVC, deoxygenated 

haemoglobin levels within the vastus lateralis muscle grew significantly higher with BfR 

superimposed than without. However, this effect was negated when the exercise was 

completed at 60% and 80% MVC. This could explain why Laurentino et al (2008) found no 

additive longitudinal effect of applying BfR to exercise performed at these higher 

intensities. Arguably, exercise at this intensity alone was already sufficient to maximally 

limit blood flow through exercising lower-limb musculature and thus maximise the role 

that reduced blood-flow plays within the creation of acute exercise-induced metabolic 

stress and longitudinal muscular adaptation. 
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1.3.3.2 LiBfRT during Injury Rehabilitation 

The potential of LiBfRT to prevent or attenuate lower-limb muscle atrophy and strength 

loss following a musculoskeletal injury is addressed specifically within chapter two. Aside 

to this, two studies have tracked the longitudinal recovery of lower-limb muscle strength 

and size in groups with established atrophy due to an injury. Tennent et al (2017) added 

three lower-limb LiBfRT exercises to a traditional knee arthroscopy rehabilitation 

programme of ten participants. After twelve sessions of physiotherapy, the LiBfRT group 

displayed increases in knee extension and flexion strength that were twice the magnitude 

of those seen in the traditional rehabilitation group (n=7). Thigh girth also increased to a 

statistically significant level (p ≤ 0.01), but only within the group completing LiBfRT. 

Similar success was seen in a case series by Hylden et al (2015), who delivered a LiBfRT 

programme to seven males with long-standing unilateral strength deficits due to 

musculoskeletal injury. All cases significantly improved peak torque and average power of 

the knee flexors and extensors after a minimum of two weeks training. However, a lack of 

case-controls blurs the specific contribution that BfR may have made to these findings. 

 

1.3.3.3 Skeletal Muscle Angiogenesis 

Exercise-induced angiogenesis within skeletal muscle is thought to be modulated by 

number of factors, including endothelial shear stress due to increased blood flow, 

mechanical tissue stretch and enhanced metabolism (Hoier et al, 2014). Within Mueller et 

al (2014), four weeks of high-intensity (70% 1RM) squat training with simultaneous BfR 

and whole-body vibration produced a significant within-group increase in capillary-to-

fibre ratio of the vastus lateralis (p < 0.01). This increase was significantly greater than the 

increase seen within a control group completing traditional squats at 70% 1RM (p < 0.01). 

However, due to the lack of a ‘vibration only’ or LiRT group it is difficult to elucidate 
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whether BfR or vibration amplified these angiogenic changes, or by what extent. An 

earlier study by Evans et al (2010) provided a clearer picture, through the delivery a four-

week training protocol of bodyweight heel raises to a cohort of nine healthy male 

participants. Both legs were exercised, one under BfR. Post-intervention, authors noted 

that calf filtration capacity (a reported measure of capillarisation) within the cohort had 

increased by 26% within the blood-flow restricted leg (p < 0.05). However, filtration 

capacity also increased by 23% in the unrestricted leg (p = 0.06). This negligible between-

leg difference could indicate no additive effect of BfR upon calf muscle angiogenesis, or 

the need for a larger sample size to improve the experiment’s statistical power to detect 

smaller between-leg changes post intervention. In the apparent absence of further 

evidence, it is difficult to confirm that BfR added during resistance training specifically 

amplifies any angiogenic effect within skeletal muscle, particularly over time periods 

exceeding four weeks. 

 

1.3.3.4 Longitudinal Changes in Overall Physical Function  

Within older populations or those with a chronic disease, the application of LiBfRT 

appears both safe and beneficial to functional performance. For example, a randomised 

clinical trial by Bryk et al (2016) delivered a six-week LiBfRT programme to 17 women 

diagnosed with knee osteoarthritis (age; 62.3 ± 7.0 years), with a second group (n=17, 

age; 60.4 ± 6.7 years) completing conventional HiRT. The LiBfRT programme was equally 

effective as the HiRT programme in improving self-reported function, measured via the 

Lesquene Questionnaire, and objective function via the Timed ‘Up-and-Go’ [TUG] test. 

Doubts have been raised as to the internal consistency and reliability of the Lesquene 

questionnaire in measuring both physical function and pain (Veenhof et al, 2006). On 

review of other outcome data, however, the group-means for the TUG did exceed the 
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minimal detectable change [MDC] of this outcome measure, if compared to a similar 

reference population (n=65, mean age; 54.9 years, MDC; 1.1 seconds, Alghadir et al, 

2015). These functional improvements were also accompanied by concomitant increases 

in maximal isometric quadricep strength (p = 0.001). Pain reduction post-intervention, as 

measured via Numerical Rating Scale, also exceeded the minimal clinically important 

difference of two points (LiBfRT; -3.3 ± 2.2 vs. HiRT; -2.5 ± 1.8). Thus, the use of LiBfRT to 

improve physical function whilst reducing osteoarthritic knee pain does seem justified. 

Particularly as LiBfRT also generated significantly less pain than HiRT during the exercise 

sessions (LiBfRT; 2.5 ± 1.5 vs. HiRT; 6.2 ± 2.2, p = 0.01). 

 

A randomised trial by Yokokawa et al (2008) confirmed the functional benefits of using 

BfR within an older, but healthy, population. Nineteen participants (mean age; 70.7 ± 4.3 

years) completed eight weeks of supervised, twice-weekly sessions of body-weight 

resistance exercises under BfR. A second group of twenty-five participants (mean age; 

70.6 ± 5.0 years) completed 8 weeks of supervised, twice-weekly dynamic balance 

exercises performed without BfR. Post-intervention, both groups had significantly 

improved their performance across a range of functional outcomes, including maximum 

step distance and the Functional Reach Test (p ≤ 0.01). Performance in the TUG was 

significantly better in the BfR group compared to the dynamic balance group (p < 0.001). 

This finding was accompanied by improvements in isometric knee extension strength 

among the BfR group, but not the dynamic balance group (p ≤ 0.007).  

 

A study by Mattar et al (2014) delivered a twelve-week lower-limb LiBfRT programme, 

consisting of leg press and knee extension exercises at 20-30% 1RM, to a cohort of 

thirteen participants with inflammatory muscular conditions; polymyositis and 
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dermomyositis. Compared to baseline, participants significantly increased functional 

performance, measured via the TUG test and timed stands. The absence of raw TUG test 

values within the article’s text makes it difficult to ascertain whether the group’s 4.5% 

improvement in this outcome exceeded the MDC. However, post-intervention measures 

of subjective health also improved compared to pre-intervention (SF-36 and HAQ; p < 

0.05). Longitudinal LiBfRT programmes have also been implicated in the increase of 

horizontal walking speed, but not the TUG test, in a 74-year old male with inclusion body 

myositis (Jørgensen et al, 2015), who completed LiBfRT for 12 weeks. A second male 

patient with the same condition experienced a six-second improvement in the TUG test 

over the same time period (Gualano et al, 2010). In all of these studies (Gualano et al, 

2010; Jørgensen et al, 2015; Mattar et al, 2014) the lack of case-controls or participants 

undertaking traditional LiRT does make it impossible to draw out the specific contribution 

that BfR made towards these improvements. 

 

Beyond resistance training, work by Abe et al (2010a) has delivered twenty minutes of 

treadmill walking to healthy older participants (aged 60-78 years), five times per week 

over a 6-week training programme. Participants with BfR superimposed during training 

significantly reduced the time needed to complete the TUG test post-intervention, with 

concomitant increases in sit-to-stand performance, whilst the group training without BfR 

saw no significant improvement. Functional improvements could be linked to statistically 

significant within-group increases in dynamic lower-limb strength and skeletal muscle 

mass (p ≤ 0.05) in the BfR group, but with an absence of change in cardiovascular exercise 

capacity.  
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Whilst Abe et al (2010a) used a narrow-width (5cm) inflated to 180-200mmHg during 

training sessions, a recent study by Clarkson et al (2017) utilised a wider (10.5cm) cuff 

inflated to a lower pressure (mean 134.4 ± 4mmHg) to produce favourable post-

intervention functional improvements within a similarly aged, healthy population (mean 

69 ± 6 years). A training volume half that of Abe et al (2010a), performed over a similar 

time frame (six weeks), produced improvements in all tested measures of physical 

function within the group completing treadmill walking with BfR (TUG test, total sit-to-

stands in 30 seconds, 6MWT, Queen’s College Step Test). These improvements were 

statistically greater than those seen in the control group (treadmill walking without BfR) 

when measured by percentage improvement (p < 0.05). When reviewing the raw values 

for these outcomes, however, the between-group differences were less apparent. Only 

the total number of sit-to-stands performed in thirty seconds displayed a between-group 

statistical difference post-intervention (p < 0.05). In the TUG, the BfR group-mean 

improved by approximately 0.7 seconds, whilst the control group-mean improved by 

approximately 0.3 seconds. The lack of an existing MDC regarding the use of the TUG 

among healthy populations makes it difficult to ascertain if either group experienced a 

real functional improvement. 

 

Within healthy, younger adults and athletes, measures of somatic functional performance 

are less common within BfRT literature. Lin et al (2014) suggested that LiBfRT and LiRT 

were equally effective at reducing the 100-metre sprint time of twenty-one healthy 

college students. Manimmanakorn et al (2013) found that LiBfRT at 20% 1RM produced 

significantly greater changes in 5-metre sprint times, the 5-0-5 agility test and the 20-

metre shuttle run test than LiRT alone. Interestingly, participants who underwent LiRT 

with superimposed hypoxia (via a face mask) increased their functional performance by 



42 
 

similar levels to the LiBfRT group. These improvements were accompanied by similar 

increases in VO₂ Max and dynamic knee extension, suggesting that either adjunct (BfR or 

hypoxia via face mask) can drive muscular and cardiovascular development during LiRT by 

limiting of oxygen delivery to tissues.  

 

In summary, randomised clinical trial evidence does support the use of BfR during low-

intensity exercise to generate statistically significant longitudinal improvements in 

subjective and objective physical function, similar to that seen in HiRT or a dynamic 

balance programme (Bryk et al, 2016; Yokokawa et al, 2008). Whilst this appears to be 

true in both clinical and healthy populations, the way in which data is presented in some 

other article texts makes it difficult to elucidate whether statistically-significant 

improvements in physical function exceed the MDC of the selected outcome measures 

used (often the TUG test). Further controlled trials that contain both LiRT, LiBfRT and HiRT 

groups are warranted to determine the specific longitudinal benefit of BfR upon physical 

function, particularly among clinical populations. 

 

1.3.4 Conclusions 

In summary, the process of muscular adaptation in response to conventional exercise is 

complex and the mechanisms responsible are still not fully understood. However, a 

significant weight of evidence suggests that lower-limb BfR can affect these mechanisms. 

This is achieved through the amplification of acute exercise-induced metabolic stress, 

driven primarily by the impairment of oxygen delivery to exercising muscle tissue. 

Increased neuromuscular activation ensues, leading to enhanced neuromuscular fatigue 

or a reduction in the time/volume of exercise required to reach volitional failure. This 

alters exercise-related signals, modulating the cellular pathways involved in signal 
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transduction and appearing to alter gene expression in favour of muscular development 

(strength and hypertrophy), skeletal muscle angiogenesis and somatic physical 

performance.   

 

The evidence base surrounding the effect of lower-limb BfR on muscular development 

and performance is extensive, with studies tending to concur as to its overall beneficence 

in this context. However, many studies with comparator or control groups contain a 

relatively small number of participants per group (n ≤ 10) and do not report statistical 

power or sample size calculations. This can lead to Type II errors (a failure to detect a true 

effect) within or between groups, or may cause statistically significant results to poorly 

represent the effect that may be seen in the population(s) from which the study 

participants are drawn from (Button et al, 2013; VanVoorhis and Morgan, 2007). 

Infrequent reporting of effect sizes and confidence intervals also limits the ability of the 

reader to interpret the strength of the reported results. In light of this, an element of 

caution needs to be taken when interpreting the overall findings and implications of these 

studies until they can be validated by further randomised-controlled trials and large 

cohort studies. The conclusions drawn from this presented evidence are as follows; 

 

1) Where exercise is not completed to volitional failure, adding BfR to lower-limb LiRT 

(typically at 20-30% 1RM or MVC) appears to increase the acute metabolic stress of 

the exercise and amplify subsequent cellular responses. Compared to traditional LiRT, 

evidence points towards LiBfRT programmes enhancing longitudinal gains in lower-

limb muscle size, strength and physical function across a range of adult populations. 

This finding is not universal across the selected literature, however, with some studies 

indicating that the addition of BfR produced no additive effect.  
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2) Where resistance exercise is completed to volitional failure, LiBfRT (typically at 20-

30% 1RM or MVC) does not appear to augment or amplify lower-limb muscular 

adaptation beyond that seen in traditional LiRT or HiRT. However, LiBfRT reduces 

amount of exercise volume or repetitions required to reach volitional failure by 

approximately 30-40% compared to LiRT. From a clinical perspective, this may allow 

physiotherapists additional fidelity when progressing patients through a rehabilitation 

programme. Exercise to volitional failure could be introduced via LiBfRT before 

progressing through traditional LiRT and HiRT, for example. This could minimise the 

risk of re-injury via mechanical overload whilst still being able to access the purported 

benefits of volitional failure training. 

3) Adding BfR to lower-limb HiRT (≥ 60% 1RM or MVC) does not appear to augment the 

acute metabolic stress of the exercise, or longitudinal muscular adaptation beyond 

that seen in traditional HiRT. It is possible that lower-limb muscular blood flow is 

already occluded or severely limited during resistance exercise at this intensity, due to 

the degree of extravascular pressure generated by surrounding muscles during their 

contraction. In this case, attempting to superimpose artificial restriction may provide 

no measurable benefit. 

 

This chapter has summarised the concept of BfRT in terms of its historical background and 

the proposed effects of BfR upon the mechanisms of muscular adaptation. Discussion has 

also been made as to the effects of BfR applied during variations of lower-limb resistance 

exercise. The next chapter presents a systematic review, which specifically investigates 

the use of lower-limb BfRT to attenuate lower-limb muscle disuse atrophy and strength 

loss.  
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CHAPTER TWO 
 

The effect of BfRT upon Lower-limb Muscle Size and 
Performance among Individuals with an Acute  

Lower-limb Injury: A Systematic Review 

 

2.1 Chapter Introduction 

This chapter investigates and critically appraises the existing academic evidence base 

surrounding the use of lower-limb BfRT to prevent or attenuate loss of lower-limb muscle 

size and performance. More specifically, the attenuation of muscle size and performance 

due to extended periods of impaired weight-bearing following a musculoskeletal lower-

limb injury. The rationale for this review and its objectives are first established, followed 

by a description of the systematic search strategy. A narrative, critical appraisal of the 

selected literature is then presented with discussion as to methodological quality and 

potential risks of bias within studies. Finally, conclusions are drawn as the effects of 

lower-limb BfRT within the context of the review, leading into the aims and objectives of 

this doctoral research project described within chapter three.  

 

2.1.1 Rationale for the Review 

Two reviews have provided concise summaries into the potential of BfRT as a 

rehabilitative treatment adjunct (Scott et al, 2015; Slyz et al, 2016). A narrative review by 

Scott et al (2015) summarised the general use of BfRT for muscular development. Three 

key papers were cited within this review that purported the ability of BfRT to limit losses 

in thigh muscle strength or size during periods of limb immobilisation (Kubota et al, 2008; 

Kubota et al, 2011; Takarada et al, 2000b). A systematic review and meta-analysis by Slyz 

et al (2016) also concluded that BfR added to low-intensity exercise could amplify 
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longitudinal increases in muscle size and strength, proposing the value that BfRT may 

have in future rehabilitative care. However, the systematic review by Slyz et al (2016) 

included only studies involving healthy (uninjured) participants. Their proposition was 

therefore speculative.  

 

Recently, a systematic review and meta-analysis of controlled trials completed by Hughes 

et al (2017) reported an efficacy of low-intensity BfRT within clinical musculoskeletal 

populations receiving this intervention. The majority of selected studies (13 out of 20) 

investigated the use of BfRT within healthy, elderly participants, whilst remaining studies 

investigated the use of BfRT following anterior cruciate ligament [ACL] reconstruction 

(n=3), the presence (or risk) of knee osteoarthritis (n=3) or polymyositis/dermatomyositis 

(n=1). Low-intensity BfRT had a moderate effect over conventional low-intensity training 

in terms of increasing maximal muscle strength over periods of up to twelve weeks, 

measured predominantly via pre-post changes in one repetition maximum [1RM] 

(Hedges’ g = 0.523, 95% CI 0.263 to 0.784, p < 0.001). However, conventional high-

intensity training was more effective in terms of these outcomes than low-intensity BfRT 

(Hedges’ g = 0.674, 95% CI 0.296 to 1.052, p <0.001). Authors also suggested that low-

intensity BfRT was a more tolerable alternative in regards to minimising exercise-related 

pain.  

 

The systematic review and meta-analysis by Hughes et al (2017) provides useful and 

informative evidence-based recommendations for clinicians looking to use BfRT within 

the context of musculoskeletal rehabilitation. Whilst this work did review controlled-trial 

evidence regarding populations recovering from ACL reconstruction, the question as to 

whether BfRT has an ability to attenuate (rather than redress) lower-limb disuse muscle 
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atrophy has not been fully addressed by way of a review. A systematic review of such 

nature may be of considerable use to clinicians looking to prevent disuse atrophy within 

acutely or sub-acutely injured patients. Particularly in those restricted to extended 

periods of impaired weight-bearing to whom traditional resistance training is 

contraindicated. This review should identify the extent of existing evidence in regards to 

the prevention of disuse atrophy and strength loss, the methodological quality of this 

evidence and whether the application of BfRT appeared efficacious. Additionally, the 

identification of any consensus regarding the restriction equipment used, the cuff 

pressures applied and the exercises used, may allow a generic lower-limb BfRT protocol 

to be generated for use among injured patients.  

 

2.1.2 Research Questions 

This review aimed to answer two research questions; 

I. In adults with an acute lower-limb musculoskeletal injury, does the addition of 

low-intensity BfRT to an exercise or rehabilitation programme attenuate losses in 

lower-limb muscular size and/or performance? 

II. Using existing evidence, is it possible to identify or propose a valid low-intensity 

BfRT protocol for use within individuals with an acute lower-limb musculoskeletal 

injury? 

 

2.2 Methods 

2.2.1 Protocol and Registration 

The search protocol for this review was registered within the International Prospective 

Register of Systematic Reviews [PROSEPRO] (Centre for Reviews and Dissemination, 2017) 

on the 10th November 2015, Registration Number CRD42015026789. Reporting is in 
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accordance with the PRISMA statement for reporting systematic reviews and meta-

analyses of studies that evaluate health care interventions (Liberati et al, 2009). 

 

2.2.2 Eligibility Criteria 

Any type of study design, including controlled trials, cohort studies, case series, or single 

case studies were eligible for inclusion within the review. The following exclusion criteria 

were applied;  

- Duplicate search records 

- Studies not available in the English language 

- Studies not from a peer-reviewed journal source 

- Studies involving non-human participants 

- Studies unrelated to BfR in the context of this review (for example, the effect of 

ablation therapy upon carotid vascular occlusion). 

Further criteria for inclusion and exclusion are listed below in the Population, 

Intervention, Comparator/Control, Outcome [PICO] format. 

Population 

Inclusion Criteria: 

Adults (aged ≥ 18 years) who had; 

 A current lower-limb musculoskeletal injury to one lower-limb. The injury (or 

resultant surgery) should have be of a magnitude that prevented normal 

weight bearing for a period of at least fourteen consecutive days. Or; 

 Were uninjured, but agreed to undertake a voluntary period of walking with 

crutches whilst one limb was prevented from bearing weight via a cast or boot, 

analogous to what would occur following a significant lower-limb injury. 



49 
 

Normal weight bearing must have been prevented for at least 14 consecutive 

days. 

Exclusion Criteria: 

 Studies that investigated participants with a significant underlying disease 

affecting the cardiovascular system, such as diabetes or congestive heart failure.  

 Studies that investigated participants with multiple musculoskeletal injuries of the 

chest, head or upper limbs. 

 Studies that investigated participants with generally accepted contraindications to 

BfRT (such as a medical history of deep vein thrombosis). 

Intervention 

Eligible studies must have applied BfRT to at least one individual's lower-limb over a 

programme of multiple sessions, over a period of at least fourteen days. Studies that 

combined BfRT with interventions other than physical exercise and/or passive/active limb 

movement (such as acupuncture or electrotherapy) were excluded. 

 

Comparator(s)/control 

Control/comparator groups must have received either no intervention, or a low-intensity 

exercise intervention that did not include BfRT. Where no control or comparator group 

existed, a suitable within-subject comparator must have been measured (such as 

comparison between left and right leg muscle size/strength. 

 

Outcome Measures 

Primary outcomes: 



50 
 

 Muscular strength, determined via isokinetic dynamometry or one repetition 

maximum. 

 Muscular size, determined via medical imaging or flexible tape measurement of 

limb girth. 

 Muscular endurance, determined via isokinetic dynamometry or total amount 

of repetitions completed until failure. 

Secondary outcomes: 

 Objective physical function, assessed via a validated outcome measure such as 

the Timed Up and Go [TUG] Test. 

 Subjective physical function, assessed via a validated outcome measure such 

as the Lower Extremity Functional Scale [LEFS]. 

2.2.3 Information Sources 

Seven academic databases were used to obtain literature for this review; AMED, CINAHL, 

Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, ScienceDirect, Scopus 

and SPORTDiscus. Each database was initially searched for literature on the 2nd December 

2015 to detect all articles published with a peer-reviewed journal from the 1st January 

1995 to the 2nd December 2015. Due to the rate at which BfRT research was being 

published following this search, the search strategy was later repeated to cover the 

period of 3rd December to 5th October 2016 to ensure the review remained 

contemporaneous. 

 

2.2.4 Search Terms 

Five preliminary searches were completed to assess the scope of relevant BfRT literature 

and to assess the suitability of search terms. A final search strategy was then formulated. 
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Search terms and Boolean operators were entered into each academic database as 

follows; 

Search Box 1 = (Blood flow OR Vascula*) AND (Restric* OR Occlu*) [In record title] 

AND 

Search Box 2 = Exercis* OR Train* OR Rehab* OR Therap* OR Protocol* OR Program* OR 

Atroph* OR Disuse* [In record title] 

OR 

Search Box 3 = Kaatsu¹ [In record title or abstract] 

¹Kaatsu is a patented form of Blood-flow Restriction Training 

 

2.2.5 Study Selection 

Two reviewers (the primary researcher and the Director of Studies) independently 

performed the search strategy. The records retrieved from each database were collated 

and inclusion/exclusion criteria were applied sequentially to the retrieved records by title, 

abstract and full text. Records deemed suitable for data extraction were then compared 

between reviewers to ensure a consensus. 

 

2.2.6 Data Collection Process 

The primary researcher created a bespoke data entry spreadsheet containing fields for all 

the data items listed in chapter 2.2.7. The primary researcher populated the spreadsheet 

by extracting data from the selected records. Where information relating to data items 

was missing or unclear within study texts, the primary researcher attempted to obtain 

this information via contact with study authors. 
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2.2.7 Data Items 

The following data was extracted from each of the selected studies, where possible. 

 

The Type of Study Design  

Population 

The total number of participants and the number of male and female participants within 

the study. The type of injury or surgery, if applicable. The mode of none weight-bearing 

(crutch ambulation, for example). 

 

Intervention  

Length of the BfRT intervention. The number of BfRT sessions completed per week. The 

type(s) of exercise completed and their intensity, if applicable. The number of repetitions 

per exercise set and number of sets per exercise. The duration of inter-set rest periods. 

 

BfRT Methodology 

The type and width of the restriction cuff used, and the method of its inflation. The main 

(or mean) cuff pressure applied during the intervention and how this was derived or 

justified. Whether the cuff was inflated continuously or intermittently during exercise 

sessions. 

 

Outcomes 

All primary and secondary outcome measures listed in chapter 2.2.2, including the 

direction and magnitude of changes in these variables and the statistical significance level 

of each outcome. 

 



53 
 

2.2.8 Risk of Bias within Studies 

For randomised controlled trials [RCTs], risk of bias within studies was determined via the 

use of a tool derived by the Cochrane Collaboration (Higgins et al, 2011a). Reviewers 

independently assessed each RCT, classing studies as at low, medium or high risk of bias 

for each of the tool’s eight domains. Reviewers then compared their findings to ensure 

consensus. 

 

2.3 Results 

2.3.1 Study Selection 

The initial search strategy was completed by both reviewers on the 2nd December 2015. A 

PRISMA flowchart (Figure 2.3.1) displays the results of the sifting process. Of n=271 

articles available after the removal of duplicate records, a total of n=9 were selected for 

inclusion within the review. At later date, the search strategy was repeated by the 

primary researcher to cover the period from 3rd December 2015 to the 5th October 2016. 

This yielded no further eligible studies. However, one of the 9 studies selected from the 

initial search (Hackney et al, 2012) had been converted from a conference paper to a 

published article (Hackney et al, 2016). The more recent article was used within the final 

review. 
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Figure 2.3.1. A PRISMA flowchart documenting the selection of studies included within 
the systematic literature review for this project. 

 

2.3.2 Study Characteristics 

Seven controlled trials (Cook et al 2010; Cook et al 2014; Iversen et al, 2015, Kubota et al 

2008; Kubota et al 2011; Ohta et al, 2003; Takarada et al, 2000b), one head-to-head study 

(Hackney et al, 2016) and one single case study (Lejkowski and Pajaczkowski, 2011) were 

selected for inclusion. Four studies utilised injured participants, all recovering acutely 

from a unilateral ACL reconstruction. The five remaining studies utilised uninjured 

participants who voluntarily underwent a period of unilateral lower-limb suspension 

[ULLS] and crutch ambulation. Across studies, reported thigh-cuff inflation pressures 

ranged from 50mmHg (Kubota et al, 2011) to 260mmHg (Takarada et al, 2000b) whilst 

cuff widths ranged from 6cm (Hackney et al, 2016) to 15.2cm (Lejkowski and 
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Pajaczkowski, 2011). Intervention periods ranged from fourteen days to 16 weeks (Ohta 

et al, 2003). A data synthesis table details the methodological characteristics of each 

particular study (Appendix Va). Within this table, the studies by Cook et al (2010; 2014) 

have been amalgamated into one record as both relate to the same experiment. 

 

2.3.3 Risk of Bias within Controlled Trials 

Risk of bias within the selected controlled trials was often unclear due to inadequate 

reporting of study methodology. This was particularly apparent in terms of randomisation 

procedures and the concealment of group allocations among researchers and participants 

(Appendix Vb). Contact with authors was attempted to clarify methodological points for 

all studies, but only two responded. Iversen et al (2015) provided sufficient information to 

score ‘low risk’ across five of the seven potential sources of bias, measured using the 

Cochrane tool. Cook et al (2010) and Cook et al (2014) scored ‘low risk’ across three of the 

seven potential sources of bias. The remaining texts (Kubota et al 2008; Kubota et al 

2011; Ohta et al, 2003; Takarada et al, 2000b) scored ‘unclear’ risks of bias across most 

potential sources of bias, with Ohta et al (2003) scoring ‘high risk’ for selection bias.  

 

2.4 Discussion 

2.4.1 Summary of Evidence 

2.4.1.1 Changes in Lower-limb Muscle Size and/or Girth 

Seven studies determined pre-post changes to lower-limb muscle size via magnetic 

resonance imaging [MRI] (Cook et al 2010, Cook et al 2014; Hackney et al, 2016; Iversen 

et al 2015; Ohta et al, 2003; Takarada et al, 2000). The use of tape measurement to 

monitor changes in limb girth, as a purported indicator of muscle mass, was also evident 

in three studies (Kubota et al, 2008; Kubota et al, 2011; Lejkowski and Pajaczkowski, 
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2011). 

 

The earliest selected study (Takarada et al, 2000b) investigated the effect of intermittent 

bouts of BfR delivered without simultaneous exercise, among eight participants (n=4 

female) recovering acutely from ACL reconstruction surgery. BfR sessions were completed 

twice-daily for 10 consecutive days. Each session consisted of five, 5-minute bouts of BfR, 

with each bout separated by a three-minute rest period. A 9cm-wide cuff was used, 

progressively inflated over sessions from 180-260mmHg (mean 238mmHg). A further 

eight participants (n=4 female) were allocated to a control group, in which the BfR cuff 

remained deflated throughout sessions. After the ten-day intervention period, knee-

extensor had CSA reduced significantly less in the experimental (BfRT) group (9.4 ± 1.6%) 

when compared to the control group (20.7 ± 2.2%; Mann-Whitney U Test, p < 0.05). 

However, knee-flexor CSA reduced by similar amounts between groups (11.3 ± 2.6% vs. 

9.2 ± 2.6%). A clear explanation for why atrophy attenuation only appeared within the 

knee extensors was not given, but it was indicated that differences in their function 

against gravity or muscle fibre composition may have been a factor (Lieber et al, 1992). 

Presumably, that anti-gravity muscles which cross one articular joint and contain larger 

proportions of slow-twitch/Type I muscle fibres (such as vastus intermedius and vastus 

medialis) are more susceptible to immobilisation-induced atrophy than poly-articular 

muscles that do not have an anti-gravity role, such as the hamstring group. Within 

Takarada et al (2000b), the accuracy of how researchers determined the same, mid-femur 

measurement sites within-subject MRI images was unclear. Blinding of outcome assessors 

was not reported. Either of these factors may cast doubt upon the reliability and internal 

validity of study findings. 
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Work by Kubota et al (2008) repeated the BfR protocol of Takarada et al (2000b). Healthy 

males undertook fifteen days of voluntary unilateral lower-limb suspensions [ULLS], with 

pre-post thigh and lower-leg circumference being recorded via flexible tape 

measurement. Post-intervention thigh and leg circumferences, measured by tape 

measure, were preserved in the experimental group (n=5) and decreased by 2.3-2.8% 

within the control group (n=6). Further work by Kubota et al (2011) retained the same 

experimental protocol, but reduced the thigh-cuff pressure used to 50mmHg. On this 

occasion, thigh and leg circumferences decreased significantly within each group, with no 

significant between-group difference. Risk of bias was unclear across both studies due to 

a lack or unclear reporting of any blinding or randomisation procedures.  

 

The work of Kubota et al (2008; 2011) and Takarada et al (2000b) showed that 

intermittent bouts of BfR performed without exercise could reportedly attenuate lower-

limb muscle atrophy during non-weight bearing, providing a supra-systolic cuff pressure 

was used. A contradiction to this was later provided by Iversen et al (2015), who repeated 

the intermittent BfRT protocol derived by Takarada et al (2000b) within a larger cohort 

(n=24) recovering acutely from ACL reconstruction. Authors also added twenty repetitions 

of isometric quadriceps contractions, end-range knee extensions or straight leg raises 

during each BfR bout. Over eighteen days, MRI cross-sectional area of the knee extensors 

(quadriceps) reduced by 13.8 ± 1.1% in the experimental group (n=12) and 13.1 ± 1.0% 

within the control group (n=12); a non-significant between-group difference (p = 0.626). 

The confliction between this work and that of Kubota et al (2008) and Takarada et al 

(2000b) may be due to differences in methodological rigour across studies. 

Randomisation during group allocation and blinding of the outcome (MRI) assessor took 

place in Iversen et al (2015), which may have minimised the risk of selection and 
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performance bias. In contrast, no blinding or randomisation was reported in Takarada et 

al (2000b). Randomisation occurred within Kubota et al (2008), but no blinding was 

reported. These factors may have introduced bias which confounded the results of 

Takarada et al (2000b) and Kubota et al (2008). Low group sizes within the BfR and 

control groups of Kubota et al (2008) (n=5 and n=6) may also limit the extent to which 

their results can be generalised to other populations. Iversen et al (2015) added in un-

resisted exercises during intermittent BfR bouts. It is possible that this volume of exercise 

was still insufficient when coupled with rests period without BfR to generate enough 

acute metabolic stress over the course of each BfR session to stimulate a muscular 

adaptive response. At present, it is justified to accept the null findings of Iversen et al 

(2015) over Takarada et al (2000b) and Kubota et al (2008) due to evidence of superior 

methodological rigour, casting doubt upon the efficacy of intermittent BfRT (with or 

without un-resisted exercise) at preventing acute losses to lower-limb girth and thigh 

muscle size. 

 

Compared to intermittent BfRT, the use of continuous BfR superimposed over low-

intensity resistance exercise [LiBfRT] was more prevalent within the selected studies. 

Cook et al (2010) recruited sixteen participants, who volunteered to undertake a 30-day 

period of ULLS. In the experimental group (n=8), continuous BfR was applied during the 

rest and exercise periods of a seated knee extension exercise performed at 20% MVC. 

Each of the three sets was performed to volitional failure. The control group (n=8), who 

received neither exercise or BfR, experienced a 7.5% (range 4-15%) loss in knee-extensor 

muscle CSA via MRI, and an 8.5% (range 0-16%) loss in plantar flexor CSA over this thirty-

day period. In contrast, the LiBfRT group experienced minimal change to their knee-

extensor CSA (~1%, range 0-6%), and a 5.4% (range 2-9%) loss in plantar flexor CSA. 
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Statistically significant sparing of knee extensor muscle CSA in the experimental group 

was evident compared to the control group (p = 0.04), but was insignificant in regards to 

the plantar flexors (p > 0.05).  

 

Whilst Cook et al (2010) reported significant attenuation of knee-extensor CSA, the 

authors highlighted the lack of a third experimental group completing only low-intensity 

resistance exercise without blood-flow restriction [LiRT]. This prevented authors from 

determining the specific contribution that BfR may (or may not) have made towards the 

attenuation of atrophy during the thirty-day none weight-bearing period. This point is of 

particular importance. Recent evidence has demonstrated that conventional resistance 

exercise (without BfR) performed at a low-intensity (20-30% 1RM) is as effective at 

generating muscle hypertrophy as conventional high-intensity resistance training [HiRT], 

providing sets are performed to volitional failure (Burd et al, 2011; Morton et al, 2016; 

Schoenfeld et al, 2015). Therefore, it is not unreasonable to suggest that the attenuation 

of atrophy seen in Cook et al (2010) was generated exclusively by the completion of low-

intensity resistance exercise to volitional failure, rather than the addition of BfR. 

 

A study by Hackney et al (2016) compliments the work of Cook et al (2010), delivering a 

thrice-weekly programme of leg press and calf raises exercises to thirteen healthy 

participants during 25 days of unilateral lower-limb suspension. The experimental group 

(n=7) undertook LiBfRT performed at 20-30% 1RM to volitional failure, whilst the second 

group (n=6) completed traditional HiRT (70-80% 1RM) to volitional failure. Post-

intervention, the HiRT group increased knee extensor CSA in the none weight-bearing 

limb by approximately 3.6%, whilst this decreased in the experimental group by 

approximately 2.9% (Exercise Condition x Time interaction; p = 0.002). The lack of a ‘no-
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intervention’ control group prevented a within-study comparison of whether the small 

decrease in CSA among the LiBfRT was indicative of atrophy-attenuation within the knee 

extensors. However, the authors noted that the no-intervention control group in Cook et 

al (2010) experienced twice the loss in knee-extensor CSA (7.5%) than that seen in the 

BfRT group of Hackney et al (2016). This comparison would suggest atrophy attenuation 

of knee-extensor CSA in Hackney et al (2016), but the comparison is confounded by the 

studies having employed different lower-limb exercise programmes. Therefore, the 

question still remains as to whether BfR was responsible for this attenuation, or just the 

completion of low-intensity resistance exercise to volitional failure.  

 

Clarification may be sought by looking beyond the selected literature, to that of Barcelos 

et al (2015). Authors studied forty-seven untrained, males over an 8-week intervention 

period. All participants were uninjured and were permitted to mobilise freely throughout 

the experiment. Each participant was randomly assigned into one of five groups; either a 

no-intervention control group (n=8) or a protocol of seated knee extensions performed at 

20% 1RM over one set (n=10) or over three sets (n=10), or 50% 1RM over one set (n=10) 

or three sets (n=10). Within the experimental groups, BfR was applied to one leg during 

exercise, whilst the other was exercised separately without BfR. All experimental 

participants completed their allocated exercise modality to volitional failure. Post-

intervention, all training groups had significantly increased knee-extensor CSAs compared 

to the no-intervention control group (p < 0.05). There were no significant differences 

between training groups in the percentage increase of knee-extensor muscle CSA. 

Acutely, the levels of blood lactate generated by all exercise protocols were also similar. 

Importantly, Barcelos et al (2015) encompassed exercise protocols that closely resembled 

those delivered in Cook et al (2010) and Hackney et al (2016); three sets of exercise at 
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20% 1RM to failure under continuous BfR. In Barcelos et al (2015), this produced equal 

muscle hypertrophy and similar acute lactate responses with and without BfR, suggesting 

that simply performing resistance exercise to volitional failure was responsible for 

generating favourable muscular adaptations. It is possible that a similar situation also 

occurred in Cook et al (2010) and Hackney et al (2016), but within the context of atrophy 

attenuation. In effect, exercising to volitional failure produced atrophy attenuation 

irrespective of whether BfR was applied. 

 

During longer-term recovery, evidence suggests that rehabilitation programmes involving 

BfRT maintain the size of thigh musculature, or expedite the reversal of muscular atrophy. 

Ohta et al (2003) conducted a sixteen-week study investigating the effect of adding BfR 

into the rehabilitation programme of a patients recovering acutely from ACL 

reconstruction. Two weeks post-surgery, half of the cohort (n=22) introduced BfR during 

their low-intensity rehabilitation and resistance exercises. Pre-post intervention MRIs of 

each thigh were then analysed to determine any change in the CSA of the operated leg, 

by comparing it to the CSA of the un-operated leg via a ratio. Knee-extensor CSA ratio 

improved in the experimental group from 0.92 to 1.05, whilst in the control group it 

remained unchanged at 0.92; a significant between-group difference (p = 0.04). 

Improvements were seen in the knee-flexor and adductor CSAs of both groups, without a 

significant between-group difference. Whilst these findings support the ability of BfRT to 

mitigate and even reverse atrophy during long-term rehabilitation, results must be 

interpreted with caution. Randomisation into groups was performed by whether the last 

digit of the patient’s ID number was odd or even. This is deemed to introduce an element 

of non-randomness into the process and carries a high risk of selection bias (Higgins et al, 

2011b). A lack of reporting in terms of participant and personnel blinding also makes the 
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risk of performance and detection bias unclear. Raw values for thigh muscle CSA were 

also omitted from the results, making it impossible for the reader to draw direct 

comparisons with the MRI findings of other BfRT studies.  

 

A case study Lejkowski and Pajaczkowski (2011) incorporated BfRT into a female athlete’s 

twelve-week rehabilitation programme following a surgical ACL reconstruction. BfR was 

applied in intermittent bouts (without exercise) from four to seven days post-surgery, as 

per Takarada et al (2000b), with the remainder of the recovery programme utilising 

continuous BfR during rehabilitation exercises. Thigh and leg girth was preserved across 

the rehabilitation programme in both limbs when measured every three weeks via tape 

measure. This suggests an attenuation of post-surgical muscle atrophy due to the 

application of BfR to the operated limb. However, the absence of medical imaging to 

substantiate changes in thigh-muscle CSA and a lack of reporting as to blinding of the 

outcome assessor, blurs the significance and validity of these girth measurements. Given 

that this is a single case study lacking a case-control, the potential risk of bias inherent to 

this methodology also places it at the bottom of the hierarchical pyramid of evidence-

based medicine (Murad et al, 2016). Therefore, whilst this study provides valuable 

information as to how lower-limb BfR can applied safely and practically within an injured 

individual, the strength of its evidence in regards to atrophy attenuation is lower than 

that of larger cohort studies or controlled trials, such as Cook et al (2010) and Iversen et al 

(2015). 

 

In summary, critical appraisal of the selected evidence suggests that intermittent BfR is 

not efficacious at attenuating longitudinal losses in lower-limb muscle size girth or lower-

limb girth. The use of LiBfRT can attenuate these losses. However, it is plausible to 
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suggest that the LiRT component of this caused this attenuation via the completion of 

chosen exercises to volitional failure, rather than BfR. 

 

2.4.1.2 Changes in Lower-limb Muscular Performance 

Several studies within the selected literature objectively measured muscular performance 

at pre-intervention and post-intervention time points (Cook et al 2010; 2014, Ohta et al, 

2003; Kubota et al, 2008; 2011). Within the realm of ACL reconstruction, Ohta et al (2003) 

utilised isokinetic dynamometry [IKD] to calculate knee-extensor strength ratios between 

the injured and uninjured limbs of participants prior to surgery. Ratios were then re-

assessed sixteen-weeks post-surgery and compared with pre-surgery values. All 

participants experienced a worsening of their knee-extensor strength ratio, whether they 

completed their traditional rehabilitation programme with or without BfRT. However, 

pre-post ratio reductions in the BfRT group were significantly smaller than those of the 

control group in the knee extensors (p < 0.01) and knee flexors (p ≤ 0.05) during both 

eccentric, concentric and isometric contractions. IKD was likely contraindicated during 

early and mid-term rehabilitation due to the risk of re-injury, therefore it is difficult to 

determine a within-study trajectory of strength loss and/or its attenuation during the 

initial stages of the intervention. 

 

The application of BfR over shorter intervention periods has also found favourable effects 

relating to the preservation of muscular knee strength. Kubota et al (2008) compared 

muscular knee torques via IKD, before and after fourteen days of ULLS. The experimental 

group undertook twice-daily sessions of intermittent BfRT without simultaneous exercise, 

similar to Takarada et al (2000b). Depending upon muscular contraction type and speed, 

the control group experienced post-intervention losses in knee-extensor torques between 
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22.1% and 26.9%, whilst knee-extensor torque was largely preserved in the BfRT group, 

resulting in losses ranging between 0.6% and 4.7%. This between-group differences 

reached statistical significance in four of the six tested muscular contraction types/speeds 

(p ≤ 0.05). A trend also existed towards the preservation of knee-flexor torques in the 

BfRT group compared to the control group, reaching statistical significance at two 

contraction types/speeds (p < 0.05).  

 

Later work by Kubota et al (2011), using a lower 50mmHg cuff pressure but an otherwise 

identical protocol to Kubota et al (2008), reported similar results in terms of knee-flexor 

torque preservation. However, a between-group statistical difference in knee-extensor 

torque loss was only seen at one of the six tested contraction types/speeds. Therefore, it 

could be suggested that a low cuff pressure was less efficacious at preserving knee-

extensor torque than the 200mmHg cuff pressure used in Kubota et al (2008). 

Interestingly, Kubota et al (2008) included a second experimental group that completed 

only isometric exercises without BfR. This training modality failed to attenuate knee-

extensor torque loss, and provided only minor attenuations in the knee-flexor torque loss. 

In combination, the results of Kubota et al (2008) and Takarada et al (2000b) studies 

suggest that intermittent bouts of BfR sessions (without exercise) can maintain muscular 

knee torques where a participant is unable to fully weight-bear for a period of up to 

fourteen days, above and beyond that achievable by isometric exercise training alone. 

However, a supra-systolic cuff pressure should be used. Caution must still be taken in 

interpreting these findings due to particularly to low group sizes and a lack of reporting in 

terms of blinding within Kubota et al (2008; 2011). Blinding and randomisation is also 

unreported within Takarada et al (2000b), introducing the potential for selection bias. 
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The application of LiBfRT over a thirty-day period of ULLS appears to protect against 

longitudinal losses in knee muscular performance. Cook et al (2010; 2014) demonstrated 

a between-group difference in the percentage loss of knee-extension MVC and 1RM that 

occurred following ULLS. In the BfRT group, losses in knee-extensor MVC were typically 

prevented, whereas a 15.6% mean reduction occurred in the non-exercising control group 

without BfR. Knee-extension 1RM was reduced by 1.5% in the BfRT group, but reduced by 

21% in the control group, a statistical between-group difference (p = 0.02). Hackney et al 

(2016) repeated the BfRT and ULLS protocol used in Cook et al (2010; 2014), albeit with 

different lower-limb exercises. The BfRT protocol was unable to preserve lower-limb 1RM 

values, which reduced by an average of 12% during leg press and 11.9% during plantar 

flexion tests. However, the magnitude of these 1RM reductions were less than the non-

exercising control group of Cook et al (2010; 2014), indicative of some attenuation of 

strength loss. 

 

As discussed previously in regards to atrophy, the absence of a group completing only 

low-intensity resistance exercise in either Hackney et al (2016) or Cook et al (2010; 2014) 

makes it difficult to isolate whether any attenuation in strength loss was attributable 

specifically to BfR. It is possible that simply exercising to volitional failure exposed 

participants to sufficient neuromuscular activation to preserve longitudinal strength. 

Barcelos et al (2015) found that increases in strength could be generated to similar 

magnitude via the completion of resistance training to volitional failure over eight weeks, 

irrespective of the load used, or whether BfR was applied. 

 

A notable finding was the overall inability of BfR (performed without exercise) to prevent 

losses in muscular strength of the plantar flexors during periods of ULLS. Whilst Kubota et 
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al (2008) found that BfRT provided a sporadic protective effect within these muscles, this 

effect was largely absent in the later study (Kubota et al, 2011). Cook et al (2010; 2014) 

also saw significant MVC and 1RM reductions of the plantar flexors across the whole 

cohort during the ULLS period, regardless of whether they received BfR. This creates a 

discrepancy; if BfR without exercise attenuates knee extensor/flexor strength losses 

during ULLS, it should arguably attenuate plantar flexor strength loss.  

 

It could be deliberated that Kubota et al’s (2011) findings regarding preservation of knee 

torque were not the result of applying just BfR (without exercise). For example, Clark et al 

(2004) reported that during ambulation with crutches, muscle activation within the biceps 

femoris of a non-weight bearing limb increases to 186% of that generated by normal 

ambulation whilst soleus activity decreases to 33%. Therefore, it may be possible that 

regular bouts of raised neuromuscular activation within the hamstring musculature 

during ULLS (occurring outside of structured BfR sessions) helped to preserve knee flexor 

torque over the study period in used in Kubota et al (2011). In contrast, the reduced 

activation of soleus during ULLS and ankle immobilisation may have allowed plantar flexor 

torque loss to occur unimpeded. Further to this, Cook et al (2010) found that the CSA of 

the rectus femoris in the suspended limb appeared to be preserved in both their 

experimental and control group, following a thirty-day period of ULLS. Whilst speculative, 

it may be that the unweighting of the suspended limb via a thick-soled boot caused all 

participants to maintain their hip in slight flexion during crutch ambulation. Regular 

neuromuscular activation and mechanical tension through the rectus femoris, beyond 

that typically experienced during normal gait patterns, may have triggered muscular 

adaptations and a novel preservation of the rectus femoris despite limb unloading, 

independent of BfRT. 
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In terms of muscular endurance, both Hackney et al (2016) and Cook et al (2010) noted 

post-intervention changes in the number of repetitions that could be completed following 

25-30 days of during ULLS. Within the unweighted limb, knee-extensor endurance 

improved by 28% in the BfRT group whilst decreasing by 24% in the control group (Cook 

et al, 2010). Leg press endurance improved by 22.5% and calf raise endurance by 48.2% 

within Hackney et al (2016). This gives the suggestion that an element of fatigue 

resistance can be generated longitudinally via exercise to volitional failure. Again, 

whether the process of restricting blood-flow specifically contributed to this effect is 

speculative. 

 

In summary, there is some evidence to support the use of intermittent BfR to preserve 

knee flexor and extensor strength over a non-weight bearing period of fourteen days, 

where a supra-systolic cuff pressure is utilised with the study’s methodology. Combining 

BfR with LiRT performed to volitional failure can preserve quadriceps strength during non-

weight-bearing periods of up to thirty days. As with findings in regards to lower-limb 

muscle size, however it is plausible to suggest that the LiRT component of this caused this 

attenuation via the completion of chosen exercises to volitional failure, rather than BfR 

itself. 

  

2.4.1.3 Subjective Reporting of Physical Function 

This was rarely present across the selected literature. Only one case study by Lejkowski 

and Pajaczkowski (2011) tracked subjective function via the use of the Lower Extremity 

Functional Scale [LEFS] and the Knee injury and Osteoarthritis Outcome Score [KOOS]. 

Whilst both scales have shown validity and reliability for use in post-surgical cases (Alcock 

et al, 2012; Binkley et al, 1999; Roos et al, 1998; Salavati et al 2011), the study itself 
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consisted of a single athletic participant with no case-control. Therefore, it is not feasible 

to generalise the findings of this study into other populations. All five KOOS domains 

showed pre-post improvements in subjective function. However, the minimal detectable 

change for each domain was not exceeded. The post-intervention LEFS score (65/80) was 

similar to the score typically reported at twelve weeks after ACL surgery (Cupido et al, 

2014), suggesting adequate recovery. However, no LEFS scores were recorded during the 

intervention programme itself. Therefore, the rate of subjective recovery cannot be 

compared against the expected 12-week trajectory of LEFS scores seen within traditional 

ACL rehabilitation protocols (Fowler Kennedy, 2015; Cupido et al, 2014). It is therefore 

unclear whether subjective recovery was initially expedited by the addition of BfRT into 

the rehabilitation programme. 

 

2.4.1.4 BfRT Equipment and Methodology 

Large between-study variations existed in terms of the equipment used to induce lower-

limb BfR, and in the modality by which it was delivered. Thigh cuffs were inflated 

automatically or manually to between 50mmHg and 260mmHg, with cuff widths ranging 

from 6cm to 15.2cm. Only three of the 9 selected studies stated the use of a formula to 

calculate and tailor the cuff pressure applied to their study participants (Cook et al, 2010; 

Cook et al, 2014; Hackney et al, 2016). Studies endorsed the use of both continuous BfR 

with exercise and intermittent BfR without exercise, albeit with conflicting evidence for 

the latter. There was no clear evidence towards a particular cuff type, or cuff width, being 

more or less effective than others in terms of the attenuation of thigh atrophy or strength 

loss. However, limited evidence supported the use of cuff pressures ≥ 100mmHg.  

 

Lejkowski and Pajaczkowski (2011) utilised a relatively inexpensive blood pressure cuff 
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and manual sphygmomanometer to induce lower-limb BfR. However, studies both within 

and beyond this review tend to use proprietary cuff equipment combined with 

automated rapid-cuff inflation systems (Hokanson®, 2017; Kaatsu Global©, 2017). It had 

been noted that the cost and accessibility of these systems may limit their practicality in 

settings outside of the laboratory (Lowery et al, 2014). An inexpensive, practical 

alternative involves the use of elastic knee wraps to induce BfR (Loenneke et al, 2010; 

Wilson et al, 2013). Yet the lack of a simple objective method to determine the degree of 

thigh compression and BfR induced by an elastic wrap is apparent. This is currently 

limited to a subjective determinant, requesting participants to pull the wrap to a ‘7 out of 

10’ tightness around their limb. Between-participant differences in the perception of 

tightness may have arguably contributed to disparities in the degree of BfR occurring and 

the conflicting results seen in regards to strength and hypertrophy responses among 

longitudinal studies utilising knee wraps (Head et al, 2015; Luebbers et al, 2014; 

O’Halloran et al, 2014). 

 

2.4.2 Strengths and Limitations of this Review 

2.4.2.1 Strengths 

This review was systematic in its design and execution, with prior registration of the 

search strategy within PROSPERO and reporting in line with PRISMA statement guidelines 

(Liberati et al, 2009). This transparency allows for objective confirmation that the planned 

and actual search strategy were identical, whilst enabling the search to be reproduced by 

others (Biondi-Zoccai et al, 2011). The use of five preliminary searches beforehand 

allowed the results of different search-term combinations to be explored, helping to 

refine and inform the final search strategy. In the final search, broad search terms were 

applied across seven academic databases and two reviewers independently applied 
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inclusion and exclusion criteria to retrieved search records, before comparing their 

records to ensure a consensus. This enabled an extensive search to be completed across 

many peer-reviewed sources, whilst reducing the possibility of pertinent studies being 

excluded incorrectly. Utilising two researchers to independently assess risk of bias within 

controlled trials, whilst contacting study authors to clarify points of methodological rigour 

where possible, also enhanced the objectivity of any judgements regarding bias risk 

within studies.  

 

2.4.2.2 Limitations 

Within the selected studies, it was often difficult to ascertain the risk of bias across the 

reviewed literature due to lack of appropriate reporting within article texts. Within 

controlled trials, the method of randomisation was largely unreported, as was the level 

and extent of participant and researcher blinding. Group sample sizes tended to be small, 

effect sizes and confidence intervals were not routinely reported and there was 

heterogeneity in BfRT methodologies and outcome measures utilised across the 

literature. A meta-analysis of study data was not possible. Therefore, the findings of the 

review and their potential transposition into clinical practice must be interpreted with 

caution. 

 

Only four of the retrieved studies investigated the use of BfRT in participants with an 

actual, acute, lower-limb musculoskeletal injury. Whilst the search strategy also 

permitted studies involving healthy participants undertaking ULLS for extended periods 

time, thus replicating the non-weight bearing conditions of a significant acute MSK injury, 

this only expanded the total to nine studies. It is possible that this search was too 

restrictive. For example, relaxing the secondary outcome measures to include non-
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validated measures of physical function would have allowed inclusion of an acute injury 

case study by Loenneke et al, 2013b. However, the author believes that it is a paucity of 

peer-reviewed evidence on this topic which is the causative factor of the low number of 

retrieved records, rather than an excessively restrictive search strategy. 

 

Evidence regarding the use of BfRT to restore muscle strength, size and function within 

other rehabilitation contexts is rapidly becoming established. This includes the use of 

BfRT within patients at risk of knee OA (Segal 2015a, Segal 2015b) and patients with long-

term weakness due to traumatic injury (Hylden et al, 2015). It was of the author’s initial 

opinion that a subsequent systematic review exploring the utility and efficacy of BfRT 

within these populations would be of additional clinical value. This has since been fulfilled 

by Hughes et al (2017), who provides a systematic review of controlled-trial and quasi-

experimental evidence within this context.  

 

2.5 Review Conclusions  

This review aimed to answer two research questions: 

I. In adults with an acute lower-limb musculoskeletal injury, does the addition of 

low-intensity BfRT to an exercise or rehabilitation programme attenuate losses in 

lower-limb muscular size and/or performance? 

II. Using existing academic evidence, is it possible to identify or propose a valid low-

intensity BfRT protocol for use within individuals with an acute lower-limb 

musculoskeletal injury? 

 

In relation to the first research question, over short-term applications (≤ 15 days), 

evidence conflicts as to whether intermittent BfRT delivered twice daily can attenuate the 
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loss of thigh muscle/knee-extensor CSA. The most methodologically robust evidence 

(Iversen et al, 2015) suggests that it does not. Minimal evidence, with often unclear risks 

of potential bias, suggests that intermittent BfRT performed without exercise may 

attenuate losses in isokinetic and isometric knee extensor and flexor strength over this 

same time period. 200mmHg of thigh-cuff pressure delivered via a 7.7cm-wide would be 

sufficient to achieve this attenuation. 50mmHg of thigh-cuff pressure may still preserve 

this effect within the knee flexors, but not the knee extensors.  

 

In mid-term applications (~30 days), LiBfRT performed to volitional failure appears 

sufficient to attenuate thigh muscle atrophy and knee-extensor strength loss during 

periods of non-weight-bearing. However, it is very possible that the process of exercising 

to volitional failure alone, rather than the application of BfR, produces these effects. In 

long-term applications (twelve to sixteen weeks) there is limited evidence to suggest that 

thigh girth can be maintained, or the return of thigh muscle CSA expedited, if BfRT is 

added to a structured lower-limb ACL rehabilitation programme. Pre-post measures of 

physical function beyond isokinetic dynamometry were rarely employed within the 

selected literature. 

 

In relation to the second research question, significant methodological variations 

between the studies included in this review, and conversely, a lack of variety in terms of 

the injuries investigated, make it impossible to generate a robust BfRT protocol for use 

specifically during the acute stages of lower-limb injury rehabilitation.  

 

To progress the evidence base regarding the use of BfRT within lower-limb injury 

rehabilitation, several points should be addressed within future research. 
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 There should be a consistency across research studies in respect of the apparatus 

used to induce lower-limb BfR, within the context of injury rehabilitation. The 

apparatus used should be relatively inexpensive and accessible to healthcare 

professionals [HCPs], but with an objective method of quantifying the amount of thigh 

pressure applied to the limb. Combined, this would prevent the need for HCPs who 

cannot afford or access bespoke pressure-controlled cuff systems from having to 

compromise or make assumptions as to the effect using another device to induce BfR 

among injured individuals. 

 Whilst variations in the frequency, intensity, type and duration of exercises performed 

under BfR should be encouraged during injury rehabilitation, greater consistency is 

required in the amount(s) of thigh-cuff pressure applied to the lower-limb during 

BfRT, or in how this cuff pressure is derived. Developing a BfR protocol which is 

universal in terms of the points at which the cuff is inflated and deflated, with a 

simple way of reasoning or calculating an appropriate cuff pressure, may increase the 

external validity of research and boost its clinical uptake further. This may also allow 

HCPs and researchers to better compare the effect of adding BfR to different (or even 

similar) exercise programmes across the evidence base. 

 Research is lacking into the acute physiological and perceptual effect(s) of 

superimposing BfR over un-resisted (or ‘no-load’) lower-limb exercises, such as those 

potentially employed during the initial stages of rehabilitation from orthopaedic 

surgery or traumatic MSK injury. Determining whether BfR would be efficacious in 

amplifying the acute metabolic demand of this mode of exercise would help to 

determine its potential utility as a muscle-preserving treatment adjunct. 

 The creation of further ‘real-world’ case studies, case-series, cohort studies or RCTs 

that investigate the use of BfRT across a range of common lower-limb musculoskeletal 
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injuries beyond ACL reconstruction and which impair weight-bearing. Examples 

include ankle fracture, Achilles tendon repair and knee meniscal repair. Studies which 

investigate either lower-limb BfR superimposed over un-resisted exercise, or lower-

limb LiBfRT, would expand the evidence base available to clinicians and may provide 

further treatment rationale for the use of BfRT amongst their own clinical 

populations. 

 

2.6 Project Aims and Objectives; 

In response to the findings of this systematic review, the overall aim of this doctoral 

research was to develop and refine the use of BfRT within the context of lower-limb 

musculoskeletal injury rehabilitation. Two objectives were formed to achieve this; 

1. To develop an externally valid lower-limb BfRT methodology using relatively 

inexpensive BfR equipment and protocols that may be replicated within clinical 

settings.  

2. To determine the physiological and perceptual effects of combining BfRT with un-

resisted (‘no-load’) lower-limb exercise.  

This aim and its objectives would be met by splitting the project into three separate 

phases, defined below; 

 

2.6.1 Phase I 

2.6.1.1 Aim 

To investigate whether the physical size characteristics of individuals were associated 

with, or could help clinicians to predict, the degree of initial lower-limb BfR initially 

created by different blood-pressure thigh-cuff inflation pressures (chapter four). 
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2.6.1.2 Hypotheses 

H0 – There will be no significant bivariate correlation between the degree of lower-limb 

BfR occurring and any measured physical characteristic during the application of different 

thigh-cuff inflation pressures. 

H1 – There will be a significant bivariate correlation between the degree of lower-limb 

BfR occurring and at least one measured physical characteristic during the application of 

different thigh-cuff inflation pressures. 

 

2.6.2 Phase II 

2.6.2.1 Aim 

To investigate whether the addition of lower-limb BfR to an un-resisted ‘no-load’ knee 

exercise produces a significant change to the acute metabolic demand or perceptual 

response to the exercise session, across a range of thigh-cuff inflation pressures (chapter 

five). 

 

2.6.2.2 Hypotheses 

H0 – The addition of lower-limb BfR to a ‘no-load’ knee extension exercise will produce no 

significant change in the acute metabolic demand or perceptual response to the exercise. 

H1 - The addition of lower-limb BfR to a ‘no-load’ knee extension exercise will produce a 

significant change in the acute metabolic demand or perceptual response to the exercise. 

 

2.6.3 Phase III  

2.6.3.1 Aim  

To examine the haemodynamic, perceptual and physical responses to the application of a 
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‘no-load’ lower-limb BfRT programme among a case-series of participants recovering 

from a significant lower-limb musculoskeletal injury (chapter six). 

 

With the aims and objectives of this doctoral research now defined, the chapter three will 

introduce and detail the research methodologies and outcome measures used across the 

project’s three study phases. 
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CHAPTER THREE 
 

Research Methodologies and Outcome Measures 

 

3.1 Chapter Introduction 

This chapter details the methodologies and outcome measures selected for use during 

this doctoral research project. Specifically, section 3.2 describes the processes involved in 

the recruitment and health screening of study volunteers, whilst section 3.3 describes all 

anthropometric, physiological and subjective outcome measures selected for purposes of 

data collection. Sections 3.4 and 3.5 detail the equipment used to deliver lower-limb BfR 

and the lower-limb exercise protocol, respectively. To aid the reader, a summary of the 

relevant methods, outcome measures and testing protocols used within each phase is 

also given within their respective thesis chapters. Further to this, a tabulated list of the 

outcome measures used within each phase is given within Table 3.2 (page 114). 

 

3.2 Research Participants 

3.2.1 Participant Recruitment 

During Phases I and II, staff and students belonging to universities within the Greater 

Manchester area were recruited by way of electronic and poster advertisements. Phase I 

study advertisements were linked to a bespoke website, created by the primary 

researcher (Philip Smith), that contained both the contact details for the researcher and 

the participant information sheet for the study. During Phases I and III, professional rugby 

league players from Warrington Wolves Rugby League Club were recruited by way of a 

gatekeeper. The gatekeeper had been employed by the club for several years as part of 

their performance team and was an established Physiotherapist experienced in the 
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concepts and delivery of rehabilitation-specific BfRT. 

 

3.2.2 Testing Locations 

Testing and data collection for Phase I and Phase II were undertaken within a quiet, 

temperature-controlled room of Manchester Metropolitan University’s Muscle Function 

Laboratory. Testing and data collection for Phase III was completed at Warrington Wolves 

Rugby League training facility, based within the grounds of Chester University’s Padgate 

Campus. This allowed data collection for Phase III to occur within a busy ‘real-world’ 

clinical setting, thus reflective of how BfRT may typically be delivered within an elite-

sporting environment.   

 

3.2.3 Participant Consent and Ethical Approval 

The primary researcher gained written informed consent from all participants prior to 

their involvement within a project phase (Appendix Ib). The researcher adhered to the 

principles outlined within the Declaration of Helsinki (World Medical Association, 2013) 

throughout this doctoral project. Ethical approval was granted prior to commencement of 

data collection via the Faculty Academic Ethics Committee of Manchester Metropolitan 

University (Application Number 1269). If changes to project methodologies were 

required, revisions to the original ethics application were submitted to the Ethics 

committee for approval prior to their implementation.  

 

3.2.4 Participant Health Screening 

To minimise the risk of adverse or unexpected health-related events during or following 

BfR and/or lower-limb exercise, participants were required to complete a health 

screening questionnaire prior to undergoing any project testing protocol (Appendix Ia). At 
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the onset of this doctoral research project, no universal screening method or health 

questionnaire existed to aid clinicians or researchers in the safe application of BfR to 

patients or participants. Therefore, to determine relevant and appropriate screening 

questions for the project in a thorough manner, the primary researcher (Philip Smith) 

synthesised all health-related exclusion criteria reported within lower-limb BfRT 

experimental studies published between 1st January 1995 and 31st December 2014. 

 

The search strategy was performed during w/c 5th January 2015 using the same seven 

academic databases and search terms described in chapters 2.23 and 2.24 (page 50).  A 

‘health-related exclusion criteria’ was defined as a physical or cognitive condition/event, 

current or historical, that was used to prevent a participant from partaking in a BfR study 

on the grounds of participant safety or wellbeing. Examples would include a personal 

history of angina or myocardial infarction. Health criteria used to exclude participants for 

reasons other than safety or wellbeing were not extracted from retrieved articles. For 

example, if a study wished to investigate the effect of BfR upon vascular endothelial 

function within a small cohort, and the inclusion of participants who were long-term 

tobacco-users may have confounded the results. If ambiguity existed within an article’s 

text as to the reason for the exclusion criteria, it was presumed to be for reasons of 

participant safety or wellbeing. 

 

BfRT articles published on any date within an academic journal and available in the 

English language were initially included. Review articles, experiments conducted upon 

only the upper limbs and experiments not involving human participants were excluded. 

Following the application of these inclusion and exclusion criteria, the full texts of 125 

relevant articles were retrieved. Each text was reviewed by the primary researcher and 
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health-related exclusion criteria were extracted and tabulated into a bespoke 

spreadsheet. The types and prevalence and these criteria would then inform the 

researcher as to the design and content of the bespoke health screening questionnaire. 

The number of articles in which no health-related exclusion criteria were described was 

also monitored.  

 

Within the reviewed texts (n=125), the attainment of ethical approval and informed 

consent from participants was universally reported. Use of the word ‘healthy’ to describe 

recruited participants was widespread, however, 45.6% of articles (n=57) reported no 

explicit health-related exclusion criteria within their texts. Of the remaining studies 

(n=68), the type and prevalence of reported health-related exclusion criteria are 

displayed in Table 3.1 (page 82).  

 

No adverse health events were located within the reviewed experimental studies 

published between 1995 and 2014. Outside of an experimental setting, one published 

case study has documented an episode of exertional rhabdomyolysis (skeletal muscle 

injury and necrosis, and leakage of cell contents into the circulation (Bosch et al, 2009) 

following a LiBfRT session at a physiotherapy centre (Iversen and Røstad, 2010). A healthy 

male had attempted supervised LiBfRT to regain strength following an 11-month injury 

period in which unilateral quadriceps atrophy and weakness had occurred. Following his 

recovery from rhabdomyolysis, he subsequently returned to using LiBfRT without incident 

and returned to competitive sport after seven weeks. As of 2017, two further case studies 

have documented the occurrence of isolated adverse events. In Tabata et al (2016), one 

sedentary male suffered an episode of rhabdomyolysis following BfRT involving bilateral 

squats and upper-limb resistance training without BfR. This male was not involved within 
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an experimental BfRT study, but had been under the supervision of a qualified fitness 

professional at the time of the incident. According to authors, the severity of the 

rhabdomyolysis may have been exacerbated by a bacterial infection (acute tonsillitis) and 

several recently prescribed medications. A second male suffered two episodes of 

unilateral central retinal vein occlusion, followed by blindness in the affected eye (Ozawa 

et al, 2015). This male was participating in an ethically approved BfRT study at the time of 

these adverse events. The authors believed that the male’s existing diabetes, 

hypertension and diabetic retinopathy may have raised the relative risk of adverse events 

occurring from the undertaking BfRT.  

 

One epidemiological study has attempted to quantify the incidence of adverse health 

events among a Japanese population undertaking BfRT within real-world settings 

(Nakajima et al, 2006). Instructors based within 105 facilities across Japan were surveyed 

regarding their use of Kaatsu among their clients and patients. Of the 12,642 persons 

having received Kaatsu through these facilities, the incidence of serious adverse events 

was low. Adverse events included venous thrombus (0.055%), pulmonary embolism 

(0.008%) and rhabdomyolysis (0.008%).  The incidences of bruising (13.1%) and numbness 

(1.30%) were more prevalent, however. The presented results indicated that all adverse 

events occurred in facilities other than ‘training gyms’, such as hospitals, clinics and 

rehabilitation centres. It could be suggested, therefore, that the inherent presence of 

disease or injury in patients at these locations may have increased their relative risk of 

experiencing an adverse event during BfRT. Whilst serious adverse events are both 

isolated and rare in comparison with the number of BfRT sessions completed without 

incident, evidence does support the need for sound clinical reasoning and health-
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screening when considering the application of BfRT to sedentary, comorbid or injured 

individuals. 

Table 3.1. The prevalence of health-related exclusion criteria within lower-limb BfRT 
experimental studies from 1995-2014. 

Health-related Exclusion Criteria 
Percentage of Studies 
Listing the Exclusion 

Criteria 

Current Vascular-specific Disease or Clotting Disorder 53% 

Current Cardiac-specific Disease 51% 

Current Orthopaedic Disease or Limitation 47% 

Current or Recent Smoker (of tobacco) 29% 

Current Medication Use (including contraceptives) 25% 

Obesity (a Body Mass Index > 30 kg/m²) 22% 

Current or Recent Musculoskeletal Injury 22% 

Current Hypertension (> 140/90mmHg) 19% 

Historical Deep Vein Thrombosis/Thromboembolism 16% 

Current Pulmonary-specific Disease or Disorder 15% 

Physical Activity Readiness Questionnaire [PAR-Q]¹ 13% 

Ankle-Brachial Index ≤ 0.90 12% 

Current Neurological-specific Disease or Disorder 10% 

Use of Ergogenic Aids (including anabolic steroids) 9% 

Current Pregnancy 4% 

Current Hypotension 3% 

Current Alcoholism 3% 

Current Cancer Diagnosis 3% 

Current Lack of Mental Capacity 3% 

Currently Following a Weight Loss Programme 3% 

Historical Angina or Myocardial Infarction 1% 

¹The PAR-Q is itself a health-screening tool, used to ascertain the medical suitability of a 
person to undertake general exercise. 

 

In respect of the findings noted in Table 3.1 the project’s Health Screening Questionnaire 

was created (Appendix Ia). Questions were formulated to detect health-related exclusion 

criteria either specifically, or by way of ‘catch-all’ questions designed to cover multiple 

criteria. Answering ‘Yes’ to any of the first five questions of the Health Screening 

Questionnaire would exclude that participant. Participants answering ‘Yes’ to questions 6, 

7 or 8 would be considered by the primary researcher on a case-by-case basis and 

included or excluded as deemed ethically and medically appropriate.  
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It should be noted that the project used a common Body Mass Index cut-off to indicate 

the possibility of obesity (>30 kg/m²) (World Health Organisation, 2016) and thus 

exclusion from study participation. However, as the accuracy of using Body Mass Index to 

diagnose obesity can be limited in both the general population (Romero-Corral et al, 

2008) and athletes (Ode et al, 2007), participants displaying a Body Mass Index (>30 

kg/m²) were not excluded if a reason unrelated to adiposity could be demonstrated. For 

example, the presence of significant muscle mass in an elite athlete. 

 

3.3 Project Outcome Measures 

The primary researcher (Philip Smith) selected, collected and processed all the 

anthropometric, physiological and subjective outcome measures (and their resultant 

data) within this doctoral research project. These outcome measures are detailed in the 

remainder of this chapter section. 

 

3.3.1 Anthropometric Outcome Measures 

3.3.1.1 Height/Body Weight 

All height measurements were recorded using a stadiometer to the nearest 0.1cm, with 

participants’ footwear removed. Body weight measurements were recorded using digital 

scales to the nearest 0.05kg, with footwear and heavy clothing removed. 

 

3.3.1.2 Brachial Blood Pressure 

Resting brachial blood pressure was recorded from the left arm of every participant in a 

relaxed, supine position. An arm blood-pressure cuff [MDF2100451; MDF Instruments®, 

California, USA], hand-held sphygmomanometer [MDF848XPD, MDF Instruments®; 

California, USA] and stethoscope [MDF747XP, MDF Instruments®; California, USA], were 
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used to take two readings, from which mean systolic and diastolic values were calculated. 

Mean arterial pressure was also derived using a standard calculation (Sherwood, 2012); 

Mean arterial pressure = diastolic pressure + 1/3 pulse pressure 

3.3.1.3 Leg Dimensions 

Participant leg dimensions were recorded using a generic flexible tape measure. If leg 

dimensions were discovered to be of importance in predicting the level of BfR that may 

occur at given cuff pressures, this measurement method would provide clinicians with the 

ability to inexpensively replicate leg dimension measurements within future clinical 

practice. Flexible tape measures were regularly compared with fixed rulers by the primary 

researcher to ensure their accuracy over repeated use. None were replaced during the 

research project. All tape measurements of leg dimensions were taken in triplicate to the 

nearest 0.5cm and a mean value calculated. 

 

Leg length was measured from the anterior superior iliac spine [ASIS] to the medial 

malleolus in supine (Magee, 2014). This method has displayed high inter-rater and intra-

rater reliability and concordance with computed tomography scans that measured leg 

length (Jamaluddin et al, 2011; Neelly et al, 2013). Thigh length was measured from the 

anterior superior iliac spine [ASIS] to the superior pole of the patella in supine. Thigh 

circumference was determined by marking a point on the anterior upper thigh in supine, 

40% of the distance between the ASIS and superior pole of the patella in a caudal 

direction. Participants then stood and placed equal weight on both lower limbs. Thigh 

circumference was immediately measured at the level of the marker, with the tape 

measure wrapped perpendicular to the femur.  

 

In regards to thigh circumference, work by Loenneke et al (2012c; 2015a; 2016) typically 
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selects a distance of 33% between the inguinal crease and the superior pole of the patella 

from which to source this measurement. It was of the primary researcher’s opinion that 

this method may induce confounding, as the inguinal crease is not a fixed anatomical 

point. The crease is several centimetres in length and angled obliquely to the shaft of the 

femur. Accurately marking the midpoint of the crease (to improve measurement 

consistency) would have also required removal or adjustment of clothing close to the 

groin of participants. In contrast, the ASIS is visually prominent and easily palpable 

(Muscolino, 2008) whilst lying adjacent to the inguinal crease. Its rounded shape meant 

no marking of the skin was required. The ASIS was therefore selected as the preferred 

proximal anatomical landmark. The percentage distance value along the thigh at which 

the marker point was placed was adjusted from 33% to 40%. This compensated for the 

ASIS lying slightly superior of the inguinal crease and prevent inadvertent inclusion of 

gluteal muscle fibres in the thigh circumference measurement. The thigh circumference 

measurement therefore encompassed all four quadriceps, sartorius, the hamstrings 

(except for the short head of biceps femoris), the adductor muscles, gracilis, the femur, 

and all surrounding neural, vascular and connective tissues. 

 

3.2.1.4 Body Composition 

Dual-energy X-ray Absorptiometry [DXA] can rapidly quantify body composition in vivo 

using a three-compartment model, separating scanned body tissues into fat, lean mass 

and bone (Albanese et al, 2003). Whilst a more accurate four-compartment model exists 

(Toombs et al, 2012), accessing and performing the additional battery of tests required to 

achieve this prohibited its use within this project. All Phase I participants underwent one 

full-body DXA scan [Lunar Prodigy Advance; GE Healthcare] to determine body 

composition. To minimise sources of error and variability in body composition data, the 
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primary researcher adhered to the DXA scanning and analysis recommendations of Nana 

et al (2014). Prior to each full-body scan, the DXA scanner was calibrated using a multi-

density phantom block and quality-assurance process. Participants were requested to 

remove any dense or metal-containing items likely to confound scan results, before lying 

in a relaxed supine position. Upper limbs were positioned away from the trunk and lower 

limbs were fixed into an internally-rotated position using ankle straps. Post-scan, the 

researcher aligned the detected borders of each body region in each scan image to 

correspond with predetermined skeletal landmarks (Appendix II). Measurements of tissue 

fat percentage, fat mass and lean mass were then extracted from scan results. These 

measurements were used in Phase I, via bivariate correlational analysis, to determine any 

relationships between participants’ physical characteristics the degree of lower-limb BfR 

generated by different thigh-cuff pressures. 

 

3.3.2 Physiological Outcome Measures 

Physiological measurements across the doctoral research project were recorded from 

participants adopting the same seated testing position, and are described across the 

remainder of this chapter section. These physiological measures were as follows; 

 Popliteal Artery Diameter 

 Popliteal Artery Cross-sectional Area 

 Mean Popliteal Artery Blood-flow Velocity 

 Popliteal Artery Blood-flow  

 Popliteal Artery Pulsatility Index [PI] 

 Popliteal Artery Resistive Index [RI] 

 Vastus Lateralis Muscle Microvascular Oxygenation Saturation [SmO₂] 

 Vastus Lateralis Muscle Total Haemoglobin Mass [tHb] 
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 Vastus Lateralis Muscle Deoxygenated Haemoglobin Mass [HHb] 

 Heart Rate [HR] 

 

Participants were first fitted with a 21cm-wide thigh blood-pressure cuff [MDF2090471; 

MDF Instruments®, California, USA] whilst standing, with the cuff situated as high on the 

upper thigh as possible without contacting the groin (Figure 3.3.1). During Phase I and 

Phase II, the limb to be fitted with the thigh cuff and undergo BfR was selected randomly 

beforehand via the use of a Microsoft Excel macro. This was not required during Phase III 

as both lower limbs received BfR consecutively in an alternating left/right sequence. 

 

Figure 3.3.1. The initial positioning of the thigh cuff in standing. 

 

Participants then sat centrally upon a height-adjustable plinth with their back 

unsupported. The height of the plinth was adjusted to achieve approximately 90° hip 

flexion and 80° knee flexion with both feet placed flat on the floor (Figure 3.3.2). Where 

required, the fit of the deflated cuff was adjusted to prevent any resting compression of 

thigh tissues and potential confounding of blood-flow measurements. When required 
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during a testing protocol, thigh cuffs were inflated manually by the researcher via an 

aneroid, hand-held sphygmomanometer [MDF848XPD, MDF Instruments®; California, 

USA]. 

 

Figure 3.3.2. A sagittal view of the seated testing position used throughout the project. 

 

3.3.2.1 Blood-flow Measurements 

Blood-flow measurements were extracted from data captured using an ultrasound 

imaging machine [MyLab™ 70; Esaote SpA, Italy] equipped with a linear, phased-array 

ultrasound probe [Biosound LA523; Esaote SpA, Italy] during Phase I and Phase II of the 

project. With the participant in the seated test position, the probe was placed in a 
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longitudinal direction against the popliteal fossa of the selected lower limb. Minimal 

pressure was applied through the probe to prevent compression of the vasculature and 

potential confounding of arterial diameter measurements. A water-based transmission 

gel was used to provide a consistent interface between the probe and skin surface 

[Aquasonic® 100; Parker Laboratories, Inc., USA]. Care was also taken to image the artery 

through its centre-line, as images recorded off-centre could confound artery diameter 

measurements. 

 

Data was captured using a mixture of 2-dimensional [2D] and pulsed-wave Doppler 

ultrasound [PWD] modes. This allowed capture of both static images of the popliteal 

artery (Figure 3.3.3) and spectral representations of the blood velocities generated within 

it (Figure 3.3.4). Simultaneous measurement of popliteal venous flow distal to the thigh 

cuff, or femoral venous outflow proximal to the thigh cuff, may have provided additional 

insight as to the haemodynamic effects of BfR. However, this was not practicable with the 

resources and personnel available during the doctoral research project.   

 

2D images of the popliteal artery were typically recorded at depths of 2-4cm. All PWD 

spectral images were taken from the same arterial segment from which 2D images were 

captured. If required, colour-flow Doppler was employed beforehand to ensure that the 

measurement site did not contain collateral arterial branches. These branches can create 

turbulent flow, confounding subsequent blood-flow velocity calculations (Holland et al, 

1998).  
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Figure 3.3.3. A sample 2-dimensional ultrasound image of the popliteal region. The 
popliteal artery [A], the popliteal vein [B] and the posterior, superior aspect of a tibial 
condyle [C] are visible. Image depth is displayed in centimetres to the right of the image. 
 

 

Care was taken to ensure that the angle at which the Doppler beam intersected the 

artery, known as the isonation angle, was as acute as practicable. It is known that an 

isonation angle of greater than 60° can produce large errors in blood flow velocity 

calculations (Holland et al, 1998). Therefore, PWD beam steering and angle correction 

were used to achieve an isonation angle ≤60°. As arterial flow is laminar in normal un-

diseased arteries, sampling flow only from the centre of the lumen can also cause 

overestimation of mean arterial blood flow velocity during analysis (Blanco et al, 2015; 

Buck et al, 2014; Gerhard-Herman et al, 2012). The sample volume gate was therefore 

adjusted for each participant to encompass their entire lumen diameter (Figure 3.3.5). A 

wall filter of 65Hz was applied to prevent unwanted low-frequency signals originating 
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from slow-moving soft tissues from being included within the spectral signal (Pozniak et 

al, 1992). 

 

Figure 3.3.4. A typical pulsed-wave Doppler ultrasound image taken from the popliteal 
artery. Note the normal, tri-phasic waveform of each cardiac cycle. Blood-flow velocity is 
displayed as a spectral flow over a period of 4.5 seconds. Velocity is represented in 
centimetres per second on the scale to the right of the image. 

 

Blood-flow data was obtained by collecting blocks of sequential 2D and PWD ultrasound 

images over periods of thirty seconds. Blood-flow measurements could then be extracted 

from each image block and compared quantitatively with other image blocks taken at 

different points of a testing protocol. A visual representation of one image block is shown 

in Figure 3.3.6.  
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Figure 3.3.5. A 2D ultrasound image showing the alignment and path of the Doppler 
beam during blood-flow measurements. The sample volume gate has been adjusted to 
encompass the entire artery lumen. The Isonation angle here is 58°. 
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Figure 3.3.6. A flow chart depicting the collection sequence of 2-dimensional and 
pulsed-wave Doppler ultrasound images within one ‘image block’. Black solid arrows 
depict the image source(s) of each blood-flow measurement. The dashed arrow depicts 
the measurements from which blood flow was derived. 

 

Using commercial analysis software [MyLab™ Desk, version 8.0; Esaote SpA, Italy], the 

following blood-flow measurements could be derived from one imaging block. 

 

Popliteal Artery Diameter 

Electronic callipers (white crosses, Figure 3.3.7) were placed within the innermost borders 

of the popliteal artery wall at three locations of a 2D image, spaced equally within the 

boundaries of the Doppler beam sample gate. All 2D images were captured during cardiac 
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diastole. This prevented the transient changes in arterial diameter that occur during 

systole from confounding measurement values. Arterial diameter was expressed in 

millimetres (mm) and was a mean of the six values recorded over the two 2D images 

within an image block. 

 

Figure 3.3.7. A 2-dimensional ultrasound image, demonstrating arterial diameter 
measurement. The average artery diameter here is 6.5mm. 

 

Popliteal Artery Cross-sectional Area 

Popliteal artery diameter readings were divided by two to obtain artery radius (r). The 

formula, πr² was then applied to achieve a measure of popliteal artery cross-sectional 

area, for each imaging block, expressed in millimetres squared (mm²). 

 

Peak Blood-flow Velocity 

Peak blood-flow velocity in the popliteal artery was determined by detecting the highest 
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recorded peak of any cardiac cycle within a PWD image (Figure 3.3.8, page 96). The 

highest peak value recorded within every PWD image of an image block were then 

combined and a mean value was calculated. Peak blood-flow velocity was expressed in 

centimetres per second (cm/s). 

 

Mean Blood-flow Velocity 

The time-averaged mean velocity [TAMV] of blood flowing through the popliteal artery 

was determined by manually tracing the spectral flow within a PWD image. Whilst 

automatic ‘real-time’ tracing of waveforms was possible with the ultrasound machine 

available, the accuracy of the automatic method was highly dependent upon spectral 

image quality. The slightest noise or artefact within a spectral image would create 

obvious errors in the automatic tracing path and confound the velocity measurement. 

Thus, whilst time-consuming, manual tracing allowed the primary researcher to easily 

discount spectral noise and artefacts from traces and the resultant TAMV 

measurements. 

 

Spectral tracing began at the first full cardiac cycle of the image and finished at the end 

of the last full cardiac cycle (Figure 3.3.9, page 97). Deriving TAMV in this way, across 

several sequential cardiac cycles, is an accepted method within ultrasound imaging and 

has been used within previous literature (Holland et al, 1998; Nelson and Praetorius, 

1988) Care was taken to trace through the centre of each spectral flow to accurately 

represent TAMV in the sampled artery. Mean blood-flow velocity was expressed in 

centimetres per second (cm/s) and was an average of the TAMV values recorded across 

all PWD images within an image block.  
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Figure 3.3.8. A Doppler image demonstrating peak blood-flow velocity measurement. 
The highest value (55.2 cm/s in this instance) would be selected for analysis. 
 

 

Blood Flow 

The amount of blood flowing through an artery over a period of one minute (Blanco, 

2015) can be expressed using the following calculation; 

 Arterial blood flow = Artery cross-sectional area x TAMV x 60 (seconds) 

The TAMV and artery cross-sectional area recorded from an imaging block were input 

into this calculation to express an arterial blood-flow reading in millilitres per minute. 
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Figure 3.3.9. A Doppler image demonstrating mean blood-flow velocity measurement. 
The mean velocity here is 2.7 cm/s. 
 

 

Pulsatility Index 

Pulsatility Index [PI] is a ratio measure of peak blood flow velocity, divided by the mean 

blood-flow velocity over a full cardiac cycle (Gosling and King, 1974). A decrease in PI may 

indicate the presence of arterial stenosis proximal to the site being sampled by pulsed-

wave Doppler (Johnston and Teraschuk, 1976). In the context of this doctoral research, a 

reduction in popliteal artery PI may indicate arterial stenosis of the femoral artery 

(underlying the blood-pressure cuff) as higher cuff pressures begin to compress the artery 

walls. As it is acknowledged that the cuff pressure applied during BfRT should occlude 

venous return whilst leaving arterial inflow predominantly intact (to encourage local 

metabolite accumulation and provoke venous pooling/cell swelling; Loenneke et al, 2014; 

Pope et al, 2013), changes in PI could indicate at what cuff pressure(s) this state was met 

or exceeded during participant testing. PI was determined by tracing the outline of the 
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first three cardiac cycles appearing in a Doppler image (Figure 3.3.10). The PI values from 

all PWD images within a block were then averaged to give a mean PI.  

 

Figure 3.3.10. A Doppler image demonstrating Pulsatility Index and Resistive Index 
measurements. The Pulsatility Index here is 17.93. The Resistive Index is 1.35. 
 

 

Resistive Index 

Resistive Index [RI] within peripheral arteries is a ratio measure of peak systolic blood-

flow velocity, divided by peak reverse diastolic blood-flow velocity during one cardiac 

cycle (Pourcelot, 1974). Changes in RI indicate changes in vascular resistance and 

compliance distal to the site being sampled by pulsed-wave Doppler (Bude and Rubin, 

1999). In the context of this project, an increase in popliteal RI may occur as thigh-cuff 

pressure is applied and venous outflow from the limb is occluded. Hence, its inclusion as 

an outcome measure. RI was determined by tracing the outline of the first three cardiac 

cycles appearing in a Doppler image (Figure 3.3.10). The RI values from all Doppler images 

within a block were then averaged to give a mean RI. 
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Determining the Degree of Lower-limb Blood-flow Restriction 

Throughout the studies in which ultrasound imaging was employed (Phases I and II), the 

percentage of blood-flow remaining in the popliteal artery during the compressive effect 

of an inflated thigh cuff could be quantified. This was achieved by comparing the blood 

flow value recorded immediately before inflation of the thigh cuff to a target pressure [x], 

with the blood flow value recorded immediately upon reaching the target cuff pressure 

[y] (Figure 3.3.11). Dividing y/x, then multiplying this value by 100, gives the percentage of 

popliteal arterial blood-flow remaining [%PBfR] during the cuff pressure.  

 

Figure 3.3.11. A flowchart depicting the process by which the degree of blood-flow 
restriction occurring within the popliteal artery was determined.  
 

3.3.2.2 Microvascular Oxygenation Saturation of Tissue [SmO₂] 

Developed from early work by Jobsis (1977), Near Infrared Spectroscopy [NIRS] is now an 

established non-invasive method of quantifying haemoglobin levels within living tissue 

(Boas et al, 2014; Jue and Masuda, 2013; Vardi and Nini, 2008). Briefly, a NIRS device 



100 
 

emits light into a portion of tissue across several wavelengths ranging between 700 and 

1000nm. It is known that haemoglobin molecules are chromophores; absorbing near 

infrared light across these light spectra dependent upon whether they are in an 

oxygenated or de-oxygenated state (Figure 3.3.12).  

 

Figure 3.3.12. A graph displaying the absorption spectra of oxygenated [red] and de-
oxygenated haemoglobin [blue] across near infrared light wavelengths.  
(Image: Gowerlabs Ltd., 2016) 

 

Using Beer-Lambert’s Law and mathematical modelling, NIRS devices use the amount of 

light returning from the sampled tissue at various wavelengths to quantify levels of 

oxygenated and deoxygenated haemoglobin (Soul and du Plessis, 1999). From this, 

microvascular oxygen saturation of tissue [SmO₂] can be determined and expressed as a 

percentage via the following calculation: 
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In Phases II and III, all microvascular oximetry measurements were recorded from the 

distal vastus lateralis muscle using a commercially available NIRS device [Moxy Monitor, 

Fortiori Design LLC; Minnesota, USA] (Figure 3.3.13). The device emits near infrared light 

at 680, 720, 760 and 800nm wavelengths whilst two sensors, spaced 12.5mm and 25mm 

from the light emitting diode, allow tissue sampling depths of approximately 12mm. A 

proprietary algorithm is utilised by the device to maximise sensitivity to the muscle layer 

whilst minimising sensitivity to skin and fat layers (Fortiori Design LLC, 2016). At the 

commencement of this project, published evidence as to the reliability and validity of this 

device’s use in within experimental studies was absent. Therefore, data recorded from 

this device during the Phase II and Phase III pilot studies (with the participants at rest) 

were checked for concordance against normal reference values reported in other NIRS 

literature. The coefficient of variation in resting NIRS values recorded over periods of 

three minutes were also reviewed for their magnitude, and variability across testing 

sessions. This data is presented in results sections of chapters 5.4.3 (page 164) and 6.3.3 

(page 203). As the research project progressed, academic studies utilising this device in 

the quadriceps or plantar flexors have emerged (Bau et al, 2015; Born et al, 2016; Crum et 

al, 2017; Luck et al, 2017). Each study has demonstrated the ability of the Moxy Monitor 

to detect changes in SmO₂ during exercise. In particular work by, Crum et al (2017) 

reported that SmO₂ data collected by the Moxy Monitor appeared to be an acceptable 

index of metabolic demand in the working vastus lateralis muscle during an incremental 

cycling exercise (n=10). In Crum (2017), SmO₂ data displayed strong correlations between 

repeated trials for all study participants (n=10) (Spearman’s Rank r = 0.842-0.993; ICC r = 

0.773-0.992, p < 0.01) and moderate correlations with other determinants of exercise 

intensity (VO₂; r = 0.73, p < 0.01, heart rate; r = 0.71, p < 0.01). 
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Figure 3.3.13. The Moxy Monitor device. 

 

Using medical adhesive tape [Transpore™, 3M™; Bracknell, UK], the Moxy Monitor device 

was positioned to overly the distal vastus lateralis muscle whilst the participant held full 

active knee extension (Figure 3.3.14). As the muscle belly of the vastus lateralis shortens 

during concentric knee extension, this positioning method ensured no loss of contact 

between the device and the distal vastus lateralis during the exercise protocol. To prevent 

ambient light from reaching the Moxy Monitor and confounding readings, the device and 

lower thigh were lightly wrapped with black cohesive bandage [PowerFlex®, Andover 

Healthcare; Massachusetts, USA] (Figure 3.3.15). Care was taken not to compress the 

vascular or soft tissues of the thigh, to prevent potential confounding of ultrasound 

blood-flow measurements. 

 

Data captured by the Moxy Monitor was both stored within the device and broadcast 

wirelessly in real-time. During participant testing, Golden Cheetah (version 3.3) was 

utilised to display real-time SmO₂ values at sample rates of 1Hz. This allowed the primary 

researcher to detect any gross problems in regards to signal-acquisition or device 

positioning and rectify these before the commencement of a testing protocol. Prior to 

each exercise session, a three-minute baseline period was used to record SmO₂ of the 
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vastus lateralis muscle whilst the participant quietly maintained the seated testing 

position (Figure 3.3.15). SmO₂ values were then collected continuously throughout the 

exercise session. To determine the pattern and magnitude of change between pre-session 

and mid-session SmO₂, data was extracted directly from the Moxy Monitor post-session 

by the primary researcher and transferred into a bespoke Microsoft Excel spreadsheet for 

analysis. Analysis of within-device data was preferred over the real-time data broadcast 

to Golden Cheetah, as the former was sampled at higher rate of 2Hz and was unaffected 

by transient losses in wireless signal. This allowed for greater fidelity and reliability among 

collected data and any resulting analysis.  

 

 

3.3.2.3 Heart Rate 

In Phase I, heart rate was determined by analysing the spectral flows of PWD images. The 

RR interval (the time taken between the cardiac systole peaks of two adjacent cardiac 

cycles in milliseconds) could be measured using electronic callipers and then converted 

into a heart rate value by the ultrasound machine’s in-built software. The first three RR 

intervals were measured within a PWD image, giving three heart rate values per image 

Figure 3.3.14. Placement of the Moxy 

Monitor in a position of full active knee 

extension [above]. 

Figure 3.3.15. Wrapping of the Moxy 

Monitor and thigh with black cohesive 

bandage [right]. 
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(Figure 3.3.16). Mean heart rate was then calculated from all the recorded heart rate 

values of each PWD image within an image block. 

 

Figure 3.3.16. A Doppler image showing the measurement of RR intervals and 
corresponding heart rate values. 
 

 

It was not possible to collect valid PWD images whilst the limb was in motion during 

lower-limb exercise. Therefore, heart rate before and throughout exercise sessions within 

Phases II and III was determined using a commercially-available heart rate chest strap 

[Garmin International; Kansas, USA]. Transmission gel was placed upon the two sensor 

contacts before securing the strap at the level of a participant’s xiphisternum. Heart rate 

signals were broadcast from the chest strap wirelessly and recorded using freely-available 

software [Golden Cheetah, version 3.3] at a sample rate of 1Hz. Post-session, the primary 

researcher transferred heart-rate data to a bespoke Microsoft Excel spreadsheet, aligning 

the time-stamped HR data to NIRS data obtained from the Moxy Monitor. 
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3.3.3 Subjective Outcome Measures 

3.3.3.1 Pain 

Pain is a multi-dimensional experience modulated by a range of environmental, biological 

and cognitive factors (Melzack, 2001; Moseley and Vlaeyen, 2015). Despite these 

complexities, a method of quickly quantifying pain intensity was required throughout 

data collection to safeguard participant wellbeing. Quantitative analysis of pain scores 

may have also provided rationale as to the appropriate cuff pressures to apply in future 

populations receiving BfR. The Numerical Rating Scale [NRS] was selected to monitor 

participant peak pain intensity, in preference to either the Verbal Rating Scale or Visual 

Analogue Scale. Whilst all three scales have been deemed valid and reliable for use in 

clinical contexts to quantify pain intensity (Williamson and Hoggart, 2005), the NRS 

surpasses the Verbal Rating Scale and Visual Analogue Scale in terms of sensitivity to 

change and responsiveness (Ferreira-Valente et al, 2011; Hjermstad et al, 2011; 

Williamson and Hoggart, 2005). 

 

The primary researcher supplied each participant with an NRS sheet for Phase I (Appendix 

Ic) and familiarised them with its completion. Immediately after each cuff inflation, 

participants were asked to mark a cross on the NRS corresponding to the represent the 

peak intensity of pain experienced during the cuff inflation, if any. Phase II and III 

participants were supplied with a similar NRS sheet for each of their sessions and were 

asked to mark a cross on the corresponding NRS immediately after every exercise set. 

NRS scores were immediately checked by the primary researcher. A pain score of 60 or 

more (out of 101), or a request to stop from the participant at any time due to pain, were 

set as criteria to cease the testing protocol. To reduce confounding during Phase II and 

Phase III, participants were not given access to NRS scores they recorded during previous 
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exercise sessions. Scales were set to 10 centimetres in width and pain scores were 

determined by recording the distance from the zero-point to the cross mark in 

millimetres using a ruler. 

 

3.3.3.2 Discomfort of the Testing Procedure 

In addition to the NRS for pain, Phase I participants were asked to complete a modified 

NRS, in which the text headings were amended to relate to any discomfort experienced 

during applied cuff pressures (Appendix Id). A peak discomfort score of 80 or more (out of 

101), or a request to stop from the participant at any time due to discomfort generated 

by the application of thigh-cuff pressure, were set as criteria to cease the testing protocol. 

The NRS was set to 10cm in width and discomfort scores were determined by recording 

the distance from the zero-point to the cross mark in millimetres using a ruler. 

 

3.3.3.3 Rate of Perceived Exertion 

Perceived exertion integrates peripheral and central nervous sensations received from all 

bodily systems into one subjective rating, and has been opined as the best single indicator 

of the degree of physical strain occurring during a physical activity Borg (1982). Recording 

perceived exertion in this doctoral research project was important for two reasons. 

Firstly, as a method of maintaining participant wellbeing during BfRT sessions. Exceeding 

a pre-determined level of perceived exertion would warrant interruption or cessation of a 

testing protocol to minimise the risk of adverse events or excessive discomfort. Secondly, 

as a means of comparing the perceptual effect of adding greater degrees of BfR to an 

exercise, particularly if exertion scores aligned with the degree of change in acute 

physiological measures such as muscle tissue oxygenation. This may allow clinicians to use 

perceived exertion to broadly indicate the degree of acute metabolic demand that occurs 



107 
 

during the prescribed BfRT session.  

 

Scales developed specifically by Borg (1982) were considered as a means to quantify the 

perceptual effort of BfR sessions during Phases II and III. Borg exertion scales are deemed 

valid tools to quantify exercise intensity (Chen et al, 2002; Scherr et al, 2013). However, 

the standard Borg scale was derived via ramped aerobic exercise (cycle ergometry), from 

which subjective scores when multiplied by ten broadly correspond with participant heart 

rates between 60 and 200 beats per minute (Borg, 1982).  In contrast, evidence suggests 

that lower-limb LiBfRT at intensities greater than those proposed within this project only 

raised heart rate by approximately 25-30 beats per minute (Downs et al, 2014). It was 

considered, therefore, that the sensitivity of the standard Borg scale may be inadequate 

for this project. The modified Borg CR-10 scale was also reviewed, yet it was disregarded 

due to the need to establish a license agreement and proprietary fee for its use (Borg 

Perceptions, 2016). 

 

The Omnibus Resistance Exercise Scale [OMNI-RES] (Robertson et al, 2003) was selected 

for use during this project. Development of the scale involved exposing participants to a 

seated knee extension exercise, which bore similarities to the exercise planned for use 

within this doctoral research. Participants exercised at an intensity corresponding to 65% 

1RM during the study; higher than that proposed within this project. However, a 

subsequent study utilised a lower boundary of 40% 1RM whilst retaining high levels of 

construct validity compared to the Borg Scale (Legally and Robertson, 2006). A study by 

Duncan et al (2006) also delivered seated knee extensions at 30% 1RM and found that 

OMNI-RES scores were positively correlated with levels of quadriceps muscle activity.  
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No studies appear to have investigated the validity of the OMNI-RES during unweighted 

lower-limb exercise. However, Hollander et al (2010) used the scale during lower-limb 

LiBfRT at an intensity of 20% 1RM and detected within-group, between-set statistical 

differences in OMNI-RES scores despite a small sample size (n=7). A study by Neto et al 

(2016) also used OMNI-RES to describe exertion levels during LiBfRT. Whilst the validity 

and sensitivity of the scale was not investigated specifically in this study, the presented 

results suggested that OMNI-RES scores recorded during LiBfRT were similar and 

reflective of OMNI-RES scores recorded during traditional resistance exercise. In respect 

of these findings, it was considered justified to employ the OMNI-RES during Phase II and 

III of this doctoral research. Following the commencement of data collection for Phases II 

and III, a study by Yasuda et al (2016) has further reflected the broad similarity in OMNI-

RES scores between lower-limb LiRT, LiBfRT and HiRT. 

 

The primary researcher gave Phases II and Phase III participants an OMNI-RES data sheet 

prior to each exercise session and familiarised them with its completion (Appendix Ie). At 

the end of each exercise set, participants would quantify ‘how hard their thigh muscles 

worked’ using the scale and report a numeric value on the provided sheet. To minimise 

potential sources of bias, participants were not given access to OMNI-RES scores recorded 

on prior exercise sessions.  

 

3.3.3.4 Subjective Physical Function 

Obtaining a subjective measure of physical function allowed the primary researcher to 

quantify the return of function in Phase III (injured) participants across the whole BfRT 

intervention period. This was important, as the presence of injury would contraindicate 

objective measures of physical function, such as MVC via isokinetic dynamometry or one 
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hundred-metre sprint time, from being utilised during the intervention period. If possible, 

subjective function data could then be compared against normative or reference values 

from existing academic literature. 

 

Developed by Binkley et al (1999), The Lower Extremity Function Scale [LEFS] was 

selected to track longitudinal changes in subjective physical function within Phase III 

participants. The LEFS consists of twenty questions in which participants rate their actual, 

or perceived, difficulty in completing a range of functional tasks. Total scores can range 

between 0 and 80, with a minimal clinically-important change (and difference) between 

two questionnaires of 9 points (Binkley et al, 1999). In separate studies, the LEFS has 

demonstrated responsiveness and high test-retest reliability within patients with ankle 

fracture (Lin et al, 2009), anterior knee pain (Watson et al, 2005) lower-limb ligament 

injury and muscle strain (Cacchio et al, 2010). This supports the use of the LEFS in settings 

in which the types of musculoskeletal injury encountered are wide-ranging, such as Rugby 

League (Hoskins et al, 2006; King et al, 2010). The LEFS also demonstrates superior 

sensitivity to change than the general Short Form Health Survey [SF-36] (Binkley et al, 

1999) whilst encompassing a broader spread of injuries than more specialised 

questionnaires such as the Knee Injury and Osteoarthritis Outcome Score (Roos et al, 

1998) and the Anterior Knee Pain Scale (Kujala et al, 1993).  

 

Phase III participants were given the LEFS at their first study appointment and were 

directed by the primary researcher to read the standardised instructions accompanying 

the scale. The primary researcher then checked participant understanding and allowed 

them to self-complete the LEFS. Following each testing appointment, completed LEFS 

were reviewed by the primary researcher and the total score calculated. Participants self-
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completed a new LEFS at regular intervals throughout the study, typically once every two 

calendar weeks. To minimise sources of bias, participants were not given access to their 

previous LEFS scores prior to completing a new LEFS.  

 

3.3.3.5 Habitual Physical Activity 

A measure of habitual physical activity was selected to indicate potential associations 

between long-term activity levels and the acute physiological effects of BfRT among 

Phase II participants. Objective long-term measurement of activity levels was not possible 

within the scope and resources available to this project. Therefore, activity levels were 

quantified via the completion of a Habitual Activity Questionnaire designed by Baecke et 

al (1982). Despite their widespread use, physical activity questionnaires can show limited 

reliability and validity when compared to objective measures such as pedometry or 

physiological testing (Shephard, 2003). Evidence does exist, however, to specifically 

support the validity of the Baecke Questionnaire across a range of populations (Florindo 

et al, 2003; Hertogh et al, 2008; Phillippaerts et al 1999; Sadeghisani et al, 2016). The 

questionnaire is also quick to administer and gives the ability to compare different activity 

sub-domains such as ‘work activity level’ with the physiological effects of BfRT. Higher 

scores relate to higher levels of habitual physical activity within each sub-domain, with 

the total overall score for the questionnaire ranging from three to fifteen.  

 

Phase II participants were given the questionnaire to complete upon their arrival for their 

first testing appointment. Participants were asked to answer each question by 

considering their activity levels over the previous twelve months. Scores were calculated 

using the scoring system described in Baecke et al (1982) and collated using a bespoke 

Microsoft Excel spreadsheet. Scores were then be used to determine correlations 
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between reported physical activity levels and the acute physiological or perceptual 

responses that occurred during BfR sessions. 

 

3.4 Lower-limb Blood-flow Restriction Equipment 

3.4.1 Cuff Types 

Two models of thigh blood pressure cuff were used during this project; A 21cm non-

elastic Flexiport® cuff manufactured by Welch Allyn® and a 21cm-wide non-elastic cuff 

manufactured by MDF Instruments® [MDF2090471]. Whilst the Welch Allyn® cuff offered 

a quick-release air valve and was already in use at Warrington Wolves to deliver BfRT, the 

inflated cuff would not consistently remain attached during exercise where a player’s 

upper thigh circumference exceeded ~70cm. The cuff manufactured by MDF 

Instruments® consistently remained attached during exercise, hence this cuff was 

selected for primary use during all main studies of the project. Before and after each use, 

cuffs were examined for damage or air-leakage following inflation. No thigh cuff required 

replacement during the research project.  

 

3.4.2 Cuff Inflation Devices 

Thigh blood pressure cuffs were inflated using hand-held aneroid sphygmomanometers 

manufactured by Welch Allyn® [DuraShock™ DS66] and MDF Instruments® [Bravata™; 

MDF848XPD]. To ensure accuracy and consistency of pressure readings, 

sphygmomanometers were matched to their corresponding models of thigh cuff. Both 

sphygmomanometers were certified to a calibrated accuracy level of ±3mmHg. As per 

manufacturer instructions, each sphygmomanometer was checked before each use to 

ensure that the measurement needle rested at 0mmHg. One sphygmomanometer (MDF 

Instruments®) lost calibration during pre-testing sessions and was replaced. Data 
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collection within pilot and main study phases was unaffected. 

 

3.5 BfR Exercise Protocol 

Seated knee extension is a commonly-utilised exercise within BfRT literature, appearing in 

at least 40% of peer-reviewed, lower-limb studies between 1995 and 2014. Within the 

context of lower-limb injury, this exercise commonly appears among rehabilitation 

protocols and programmes designed to maintain or regain muscular strength and 

function. This includes ACL reconstruction (Oxford University Hospitals NHS Trust, 2012; 

Palmieri-Smith and Thomas, 2008) knee arthroscopy (East Kent Hospitals University NHS 

Foundation Trust, 2016; University Hospital Southampton NHS Foundation Trust, 2012) 

and total knee replacement (Bade and Stevens-Lapsley, 2011; Guy’s and St Thomas’ NHS 

Foundation Trust, 2013). Seated knee extension was also an established method of 

delivering BfRT at Warrington Wolves Rugby Club, as part of players’ multi-modal 

rehabilitation programmes. Thus, the parameters of the exercise used throughout study 

Phases II and III were drawn directly from those established by Warrington Wolves. One 

BfRT session typically consisted of three sets of un-resisted, seated knee extensions, with 

each set lasting for one minute. Inter-set rest periods were also one minute in length. In 

the absence of an established repetition speed both at the Club and within the academic 

literature, the researcher set this to a pace of forty repetitions per minute. Participants 

therefore completed 120 un-resisted knee extensions over the course of one exercise 

session. The start and end positions for each repetition of the exercise are shown in 

Figure 3.5.1 and Figure 3.5.2.  
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Figure 3.5.1 [left] and Figure 3.5.2 

[below] showing the respective start 

and end positions of the seated knee 

extension exercise. 

   

Participants were requested to move their limb at a constant steady pace throughout 

each exercise set, with no pause at the start and end of each repetition. To ensure 

participants completed the prerequisite number of repetitions, metronome software 

[Metronome, version 4.5.4.0; Zhaobang, China] was used to provide visual and auditory 

cues at a speed of eighty beats per-minute. Each beep denoted the start or end position 

of a repetition.  

 

3.6 Chapter Summary 

This chapter has provided a detailed description of the outcome measures and general 

methodologies used across this research project’s three study phases. For added clarity, 

the objective and subjective measures used within each particular phase of the project 

have been tabulated (Table 3.2). The following three chapters will present and discuss the 

results of the studies conducted within each phase of this doctoral research. To assist the 

reader, each chapter will briefly summarise the methods and outcome measures involved 

within that particular study. 
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Table 3.2. A tabulated reference of the objective and subjective measures collected 
within each phase of this doctoral research. A shaded box indicate that the measure was 
collected. 

   STUDY PHASE 

   I II III 

O
B

JE
C

TI
V

E 
M

EA
SU

R
ES

 

A
N

TH
R

O
P

O
M

ET
R

IC
 

Gender       

Age       

Height (via stadiometer)       

Weight (via electronic scales)       

Body Mass Index       

Leg Length (via Tape Measure)       

Thigh Length (via Tape Measure)       

Thigh Circumference (via Tape Measure)       

Supine Brachial Blood Pressure       

Mean (Brachial) Arterial Pressure       

DXA Body Composition Values       

P
H

Y
SI

O
LO

G
IC

A
L Blood Flow Measurements (via Ultrasound)       

Heart Rate (via Ultrasound)       

Heart Rate (via Chest Strap)       

Near Infrared Spectroscopy Measurements       

SU
B

JE
C

TI
V

E 
M

EA
SU

R
ES

 Pain NRS       

Discomfort NRS       

OMNI-RES       

Lower Extremity Functional Scale [LEFS]       

 

 



115 
 

CHAPTER FOUR 

 

PHASE I  

Associations Between Participant Physical Characteristics, 

Thigh-Cuff Pressure and the Degree of Lower-limb Blood 

Flow Restriction Being Delivered 

 

4.1 Chapter Introduction 

This chapter provides details of the first phase of this doctoral research project. A 

summary of existing academic evidence regarding the selection and/or calculation of cuff 

pressures for individuals undertaking BfRT is first given, providing rationale and 

justification for further research on this topic. Following this, the remainder of the 

chapter describes the implementation and outcomes of a pilot study involving a cohort of 

nine participants, and a main study involving a larger cohort (n=61). Findings of the main 

study were subsequently presented at 4th (European Region) World Confederation for 

Physical Therapy Congress, in November 2016 (Appendix VIa).  

 

4.2 Phase I Aim 

To investigate whether the physical size characteristics of individuals were associated 

with, or could help clinicians to predict, the degree of initial lower-limb BfR initially 

created by different thigh-cuff inflation pressures 

 

4.3 Background 

There is great disparity concerning the appropriate amount of thigh-cuff inflation 

pressure to be used during lower-limb BfRT, and in how this is derived. Inflation pressures 

can appear to be set arbitrarily (Fujita et al 2007; Neilsen et al, 2012; Mueller et al 2014). 
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Where some form of pressure calculation is employed, the absolute cuff pressure values 

utilised within a study cohort can be left unreported (Kubo et al, 2006; Conceição et al, 

2016; Fatela et al, 2016). Discrepancies can also arise during the justification of cuff 

pressures via the citation of previous BfRT literature. For example, Cook et al (2007) 

justified the thigh-cuff pressure used within their lower-limb BfRT study with the 

following text:  

“It has been suggested that a pressure 1.3 times systolic blood pressure (partial 
occlusion) impedes venous blood flow causing blood to pool in the capacitance vessels 
distal to the cuff while restricting some arterial blood flow.” Cook et al (2007:1710) 

 

Yet the citation used to support this statement, a study by Takarada et al (2000c), applied 

only upper-limb BfR using sub-systolic cuff pressures. In a second example, Abe et al 

(2006) delivered a treadmill-walking programme of BfRT utilising 160-230mmHg of thigh-

cuff pressure. The authors stated that:  

“The restriction pressure of 160–230 mmHg was selected for the occlusive 
stimulus, as this pressure has been suggested to restrict venous blood flow and cause 
pooling of blood in capacitance vessels distal to the belt, as well as restricting arterial 
blood flow… “ Abe et al (2006:1461) 

 

Takarada et al (2000c) and Burgomaster et al (2003) were used to justify this statement, 

despite both studies investigating upper-limb BfRT and utilising cuff pressures below 

120mmHg. Whilst Takarada and colleagues have used thigh-cuff pressures in the region 

of 200mmHg within lower-limb BfRT studies, none directly measured the degree of lower-

limb BfR that this cuff pressure actually induced (Takarada et al, 2000a, 2000b, 2002). 

 

Although these disparities exist, the process by which cuff pressure is determined during 

lower-limb BfRT has steadily evolved over the last sixteen years. Early literature tended to 

apply lower-limb BfRT through a combination of supra-systolic thigh-cuff inflation 
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pressures and narrow cuff widths (Ohta et al, 2003, Takarada et al 2000a, 2000b, 2002; 

2004). The degree of compression produced was presumed to inhibit both arterial and 

venous blood flow through the lower limb (Takarada et al, 2000b), creating local tissue 

hypoxia, a regional accumulation of metabolites and systemic increases in plasma growth 

hormone levels (Takarada et al, 2000a). Later work by Takano et al (2005) demonstrated 

that the application of a cuff pressure 130% that of systolic brachial blood pressure (160-

180mmHg) via a 3.3cm-wide cuff did not fully occlude blood flow at rest; instead reducing 

blood flow in the superficial femoral artery to 30% of baseline within five participants. 

The same work demonstrated that adding this degree of BfR to eleven participants 

completing a low-intensity knee extension exercise significantly amplified acute plasma 

growth hormone, insulin growth factor and vascular endothelial growth factor responses. 

With Abe et al (2006) concluding that a similar degree of cuff pressure induced 

comparative increases in thigh muscle size and strength when added to a treadmill-

walking programme, the use of supra-systolic pressure applied via narrow cuffs was 

established and proposed as efficacious. 

 

Whilst the benefits of BfRT using high-pressure, narrow-width combinations continued to 

be ratified within both acute-response studies (Fujita et al, 2007; Drummond et al, 2008; 

Fry et al, 2010) and longitudinal programmes (Kubota et al, 2008; Karabulut et al, 2010a, 

Abe et al, 2010a; Cook et al, 2010) the use of wider-width cuffs began to develop within 

the literature. Cuff widths ≥ 13cm were initially combined with a supra-systolic pressure 

to increase the rate of fatigue during a low-intensity knee-extension exercise (Wernbom 

et al, 2006). However, this combination produced high levels of subjective pain and 

exertion amongst their sixteen healthy participants (n=13 male, mean age; 27.9 years). 

Building upon a non-BfRT study by Crenshaw et al (1988), Loenneke et al (2012b) 



118 
 

demonstrated that the thigh-cuff pressure required to completely occlude lower-limb 

arterial flow was dependent upon cuff width. Among healthy participants (n=116), a 

13.5cm-wide thigh cuff eliminated pulsatile flow within the tibial artery of all participants 

at mean cuff pressure of 144 (± 17) mmHg, whilst a narrow (5cm) cuff eliminated the 

tibial pulse at 235 (± 42) mmHg. This difference does not take into account forty-three 

participants who, during the use of the narrow cuff, still possessed a tibial pulse at the 

study’s ceiling pressure of 300mmHg. Study findings implicated thigh circumference as a 

moderate predictive indicator of tibial occlusion pressure. A negligible relationship 

between systolic brachial blood pressure and tibial pulse elimination pressure also led to 

the conclusion that thigh-cuff pressures derived simply from systolic blood pressure 

values should be discouraged. Loenneke et al (2015a) completed subsequent work among 

a cohort of 171 participants producing similar results and conclusions to Loenneke et al, 

2012b. 

 

A tendency to utilise thigh-cuff pressures based upon a percentage of total arterial 

occlusion pressure then developed (Loenneke et al, 2013a; Fahs et al; 2014; Lixandrão et 

al; 2015). Bi-directional Doppler was used to detect the cuff pressure required to 

completely interrupt the tibial pulse at rest, then 40% to 80% of this value would often be 

applied during BfRT itself. This allowed cuff pressure to be adjusted to each individual 

whilst accommodating for cuff width. When wide thigh cuffs (≥ 13cm) were utilised, the 

cuff pressures applied to participants became almost exclusively sub-systolic. Yet the 

acute and chronic effects of adding lower-limb BfR to traditional low-intensity resistance 

were still evident and deemed to be efficacious (Laurentino et al, 2012; Libardi et al; 

2015, Vechin et al, 2015; Tennent et al, 2017). 
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The work by Loenneke et al (2012b; 2015a) detected a positive relationship between total 

occlusion pressure and thigh circumference. However, there is no guarantee that if each 

individual within a cohort were given 80% of their own arterial occlusion pressure, for 

example, that the whole cohort would subsequently experience a similar degree of actual 

BfR. This may vary between individuals and could itself be related to physical 

characteristics such as thigh circumference or vascular characteristics such as arterial 

stiffness. Hunt et al (2016), was the first to publish evidence investigating relationships 

between physical characteristics and the percentage of actual BfR occurring at sub-

occlusive thigh-cuff pressures. Hunt et al (2016) did indeed find variation in the thigh-cuff 

pressure required to achieve the same degree of sub-occlusive BfR across individuals. 

However, physical characteristics inputted into a hierarchical regression model were 

unable to explain the majority of this variance, with mean arterial pressure alone 

providing the strongest model (r = 0.58, r² 0.34, p < 0.05). Hunt et al (2016) acknowledged 

potential limitations within their study, including a lower sample size than Loenneke et al 

(2012b; 2015a) and lack of generalisability regarding their findings to individuals who had 

a body mass index above 29.3 kg/m², or thigh circumference above 66.7cm. Participants 

were also tested in the supine position, whereas studies often deliver BfRT in a seated or 

standing position. It is possible that different findings may have presented themselves if 

either of these testing positions were investigated. 

 

It is important to note that a significant portion of experimental studies deliver lower-

limb BfRT using ‘Kaatsu’ or similar rapid cuff inflation devices. Whilst these are purpose-

built and ideal for experimental settings due to their ability to automatically regulate cuff 

pressure, they are expensive to purchase. For example, Kaatsu devices currently retail 

between £2,600 and £5,000 within the United Kingdom (Kaatsu Training™, 2016). This 
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arguably places those wishing to deliver evidence-based BfRT individuals, but who are 

unable to afford the restriction equipment, in difficulty. Whilst some evidence exists 

regarding the use of alternative restriction devices such as elastic knee wraps to deliver 

BfRT sessions, knee wraps remove the ability to objectively set the degree of cuff 

pressure being applied. This may present an unacceptable risk of adverse events within 

settings where BfRT is applied to injured, comorbid or elderly populations, particularly if  

BfRT were to be prescribed to outpatients completing sessions unsupervised. Evidence as 

to the efficacy of using elastic knee wraps during structured BfRT programmes can also be 

conflicting as to its efficacy (Luebbers et al 2014; Head et al, 2015). 

 

In summary, the method by which thigh-cuff pressures have been determined and 

justified during experimental lower-limb BfRT studies has gradually evolved over time. 

Currently, inter-subject variations in the degree of BfR experienced at sub-occlusive thigh-

cuff pressures are poorly explained by the physical characteristics of individuals. Further 

research is warranted, particularly regarding the use of relatively inexpensive restriction 

devices, to determine whether the findings of Hunt et al (2016) are replicated or 

contradicted among a different population, or within a seated or standing test position. 

 

4.4. Phase I Pilot Study 

4.4.1 Pilot Study Objectives 

To pilot the suitability of a BfR protocol for use in the main Phase I study. Specifically; 

1. To confirm whether each thigh-cuff pressure selected for use within the planned 

Phase I testing protocol produced a sub-occlusive level of BfR in all participants. 
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2. To confirm that no participant reached the agreed cut-off values for subjective 

levels of pain (≥ 40 out of 101) and discomfort (≥ 80 out of 101) during thigh-cuff 

inflations. 

3. To trial the suitability of the Doppler measurement site for obtaining arterial 

blood-flow measurements, and measure the within-subject variability in baseline 

(pre-inflation) blood flow readings. 

 

4.4.2 Methods 

Following informed consent and completion of a health screening questionnaire 

(Appendix Ia) a convenience sample of nine participants (n=7 male) were recruited from 

University staff and students. Participants underwent anthropometric measurements as 

described in chapter 3.3.1. Participants were then fitted with a 21cm-wide blood-pressure 

cuff [MDF2090471; MDF Instruments®, California, USA] around their upper thigh and 

seated in the test position described in chapter 3.3. Four thigh-cuff pressures were 

applied in a randomised order (40, 70, 100 or 130mmHg). Each cuff inflation lasted thirty 

seconds, with a rest period of three minutes separating each inflation. No exercise or 

passive movement of participants’ limbs occurred throughout the BfR protocol. Before 

and during thigh-cuff inflations, physiological measures of heart rate, arterial diameter 

and blood flow were recorded using the ultrasound ‘imaging block’ method shown in 

figure 3.3.6. Measures of subjective pain and discomfort were recorded using the 

numerical rating scales described in chapter 3.3.3. The percentage of arterial blood-flow 

remaining at each thigh-cuff pressure, compared to the pre-inflation blood-flow, was then 

determined as shown in figure 3.3.11.  

 

It is important to note that during the pilot study, ultrasound measurements were taken 
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from the distal portion of the superficial femoral artery. Images were not taken from the 

popliteal artery. The superficial femoral artery was initially chosen due to its proximity 

with the distal portion of the thigh cuff. Arterial diameters and blood flow values are also 

higher in this location than more distal sampling sites (Holland et al, 1998; Wolf et al, 

2006). Therefore, the author believed sampling from the superficial femoral artery may 

have allowed clearer detection of differences in blood-flow between different thigh-cuff 

pressures than sampling from lower-leg locations.  

 

4.4.3 Results 

Two participants were excluded from the analysis due to difficulties in imaging the 

superficial femoral artery both before and during inflation of the cuff to target pressures. 

Details of the seven remaining participants (n=6 male) are shown in Table 4.4.1. 

Participants were normally distributed across the demographics of age, height, weight 

and Body Mass Index (Shapiro-Wilkes p ≥ 0.279). 

Table 4.4.1. Participant demographics of the Phase I pilot study. Mean values are shown, 
with standard deviations displayed in brackets. 

Age Height [cm] Weight [kg] Body Mass Index 

31.6 (7.6) 179.7 (7.6) 83.3 (10.7) 25.7 (1.7) 

 

 

All participants tolerated all thigh-cuff pressures. No adverse or unexpected events 

occurred throughout testing. Among participants, mean pre-inflation blood flow in the 

superficial femoral artery over the test protocol was 70.94 (SD 19.89) mL/min and was 

normally distributed (Shapiro-Wilkes p = 0.184). Baseline (pre-inflation) blood flow values 

varied moderately within-subjects over the course of the test protocol, displaying a 

coefficient of variance of 28.03%. Pre-inflation blood flow values also decreased gradually 
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over the course of the test protocol (Figure 4.4.1). However, this numerical decrease was 

not statistically significant (Repeated measures ANOVA; F(3,18) = 1.012, p = 0.411). 

During thigh cuff inflations, participants’ superficial femoral arterial blood flow decreased 

in a linear way as cuff inflation pressure increased (Figure 4.4.2). This decrease was 

statistically significant (Repeated measures ANOVA; F(1,6) = 55.742, p < 0.001).Three 

participants came within 20% of total arterial occlusion at 130mmHg thigh-cuff pressure, 

with no participant becoming fully occluded. 

 

 

Figure 4.4.1. A bar chart displaying the baseline blood flow readings taken over the 
course of the Phase I pilot protocol, before each cuff inflation. Mean values are 
displayed. Whiskers represent standard deviations. No statistically significant difference 
existed between the cohort mean values recorded for each cuff inflation (Repeated 
Measures ANOVA; p = 0.411). 
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Measurements of heart rate, arterial cross-sectional area and subjective pain scores were 

normally distributed at baseline and during all cuff inflations (Shapiro-Wilkes p ≥ 0.184), 

remaining similar across all tested cuff pressures (Table 4.4.2). Subjective discomfort 

scores were only distributed normally at 100mmHg of cuff pressure, and had left-skewed 

distributions at other thigh-cuff pressures. Subject discomfort scores increased as the cuff 

pressure applied increased, with reported values ranging between 0 and 40 at 130mmHg 

cuff.  

 

 

Figure 4.4.2. A bar chart displaying the percentage of superficial femoral artery blood 
flow remaining at different thigh-cuff pressures during the Phase I pilot study. Mean 
values are reported. Whiskers represent standard deviations. Statistical differences 
between adjacent thigh cuff inflation pressures are donated by the ‘#’ symbol (p < 0.05). 
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Table 4.4.2. Cohort values for heart rate, arterial cross-sectional area and perceptual 
responses during the Phase I pilot study. Mean values are reported. Standard deviations 
are shown in brackets.  

Thigh-cuff 
Pressure 
Applied 

Heart Rate 
[beats per 

minute] 

Arterial Cross-
sectional Area 

[mm²] 

Subjective 
Pain Score  

[0-101] 

Subjective 
Discomfort 

Score [0-101] 

0 mmHg* 60.8 (7.6) 35.7 (5.3) N/A N/A 

40 mmHg 61.4 (6.7) 35.6 (5.7) 0 (0.0) 4.1 (7.5) 

70 mmHg 60.7 (7.1) 35.3 (5.6) 0 (0.0) 5.8 (10.0) 

100 mmHg 59.8 (7.7) 34.6 (5.2) 0 (0.0) 17.8 (12.6) 

130 mmHg 57.5 (7.9) 35.1 (5.4) 1.4 (3.8) 22.4 (15.6) 

*The 0mmHg values shown are a mean of the four pre-inflation measurements taken 
across the pilot protocol. 
 
 

4.4.4 Discussion 

This pilot study looked to assess the suitability of a BfR testing protocol for use in the 

main Phase II study. The application of thigh-cuff pressures from 40mmHg to 130mmHg 

did produce increasing degrees of lower-limb BfR within the cohort. Whilst no participant 

became fully occluded, several were close to arterial occlusion at 130mmHg of cuff 

pressure. BfRT is not typically performed under full arterial occlusion (Pope et al, 2013). 

Therefore, occurrence of full occlusion would be of minimal practical use and warranted a 

reduction in the maximum cuff pressure applied in the main study. 

 

In respect of participants’ perceptual responses to thigh-cuff inflations, no participant 

reached the cut-off values for subjective pain (≥ 40 out of 101) or discomfort (≥ 80 out of 

101) at any thigh-cuff pressure. The relative absence of subjective pain across all cuff 

pressures, the presence of only low levels of subjective discomfort at cuff pressures up to 

130mmHg and the absence of adverse or unexpected events were evidence that the 

testing protocol was tolerable and of minimal risk to participants’ wellbeing.  

 

There were difficulties encountered in obtaining Doppler measurements from the 
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superficial femoral artery during this pilot study. In one participant, the artery could not 

be located outright in the seated testing position. This participant was petite, which 

resulted in the thigh cuff largely obscuring the measurement site and exclusion from 

study results. In another participant, the change in depth and angle of the artery caused 

by tissue compression during cuff inflations prevented any viable blood-flow 

measurements from being recorded. When obtaining baseline (pre-inflation) blood flow 

values, the depth of the artery regularly caused the arterial walls to be poorly defined and 

the Doppler spectral signal to become faint using the ultrasound equipment available. 

This may have contributed to the 28% variance in within-subject, baseline blood flow 

values between cuff inflations. Baseline arterial blood flow values were lower than those 

reported in existing literature for the superficial femoral artery (Holland et al, 1998; 

Hussain 1997), however these studies appeared to measure flow in either supine or 

prone positions, as opposed to a seated position. It is possible that that the upright 

resting position used in the pilot study produced a slowing of venous return from the 

lower-leg and a relatively lower overall blood-flow through the lower limb. 

 

4.4.5 Conclusions and Protocol Adjustments 

In conclusion, all three objectives of the pilot study were met. It was confirmed that each 

thigh-cuff pressure selected for use within the planned Phase I testing protocol produced 

a sub-occlusive level of BfR in all participants. It was also confirmed that no participant 

reached the agreed cut-off values for subjective levels of pain and discomfort during thigh 

cuff inflations. Doppler measurement at the distal portion of the superficial femoral 

artery was not possible at all in two of the nine pilot participants, with sporadic difficulties 

in other participants. In advance of the main study, the following adjustments to the 

testing protocol were made; 
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1. The imaging location for blood-flow measurements was switched from the distal 

superficial femoral artery to the proximal portion of the popliteal artery. Limited 

testing following the pilot study showed that, in contrast to the superficial femoral 

artery, the imaging depth and angle of the popliteal artery remained unchanged 

before and during cuff inflations. The author reasoned that moving the 

measurement site to the popliteal artery would resolve any confounding of blood-

flow measurements caused by changes in artery depth or angle. This could 

increase the consistency and validity of baseline blood-flow measurements, thus 

reducing their coefficient of variation. In addition, whereas the superficial femoral 

measurement site could be obscured by the cuff within a participant with a 

shorter thigh length, this issue would not arise with a popliteal measurement site. 

2. At 130mmHg of thigh-cuff pressure, the smallest pilot participant [weight; 71.0kg, 

thigh circumference; 55cm] came close to full cessation of blood flow in the 

superficial femoral artery (%BfR; 16%). If physical characteristics were related to 

the degree of BfR experienced at a given thigh-cuff pressure, then there may have 

been potential for physically smaller participants to experience full arterial 

occlusion at 130mmHg in the main study. A state of full occlusion would not have 

been unsafe, but may have provided minimal scientific value within the collected 

results (the actual pressure at which occlusion occurred in the participant would 

have been unknown, occurring somewhere between 101mmHg and 130mmHg). 

Therefore, the primary researcher reasoned that reducing the maximum pressure 

to 120mmHg may decrease the potential of full occlusion occurring, and increase 

the likelihood of achieving useful sub-occlusive %BfR values across all tested cuff 

pressures for most, if not all, participants. 
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3. The increment between each tested thigh-cuff pressure was reduced from 

30mmHg to 20mmHg and a fifth cuff pressure was added, producing thigh-cuff 

pressures of 40, 60, 80, 100 and 120mmHg. It was proposed this would increase 

the resolution of obtained data allow more robust detection of non-linear 

patterns in the degree of BfR occurring over the range of cuff pressures tested in 

each participant. This would also reduce the width of the gap for which blood-flow 

measurements were missing if blood-flow measurements at one cuff pressure 

could not be adequately acquired (a gap of 40mmHg would occur as opposed to a 

gap of 60mmHg). 

4. Immediately following each cuff inflation, the participants in the main study would 

be requested to isotonically contract their triceps surae, by way of repeated 

plantar flexion, for at least ten seconds. This was intended to limit the rate at 

which resting popliteal blood flow decreased over the course of the testing 

protocol, limiting any degree of confounding within captured data. 

 

4.5 Phase I Main Study 

4.5.1 Main Study Objectives 

1. To observe and examine the acute haemodynamic responses to lower-limb BfR 

within a cohort of individuals who differ in height, weight, gender and limb 

dimensions.  

2. To determine whether correlations exist between the physical characteristics of 

individuals and the degree of lower-limb blood-flow restriction experienced during 

preselected thigh-cuff pressures.  
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3. To build a statistical model that predicts the percentage of lower-limb BfR that 

would occur at a given thigh-cuff pressure, incorporating physical characteristics 

into the model where appropriate. 

 

4.5.2 Hypotheses 

H0 – There will be no significant bivariate correlation between the degree of lower-limb 

BfR occurring and any measured physical characteristic during the application of different 

thigh-cuff inflation pressures. 

H1 – There will be a significant bivariate correlation between the degree of lower-limb 

BfR occurring and at least one measured physical characteristic during the application of 

different thigh-cuff inflation pressures. 

 

4.5.3 Methods 

Healthy males and female volunteers aged 18 to 40 were recruited as described in 

chapter 3.2. Upon arrival at the testing location, a full-body DXA scan was performed and 

anthropometric measurements of height, weight, supine brachial blood pressure and leg 

dimensions were taken as described in chapter 3.3.1. In total, eighteen different physical 

characteristics were derived from these measurements, listed in Appendix III. After the 

thigh cuff was fitted to one lower-limb, participants adopted the seated test position and 

the primary researcher applied five different inflation pressures 

[40/60/80/100/120mmHg]. Each pressure was separated by a three-minute rest period. 

The leg chosen for testing and the order in which cuff pressures was delivered were 

randomised via the use of Microsoft Excel macros. The collection of popliteal artery 

blood-flow measurements and perceptual responses proceeded as described in chapter 

3.3.2. 
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5.5.4 Analysis 

Differences between cohort blood flow, HR, PVel, PI, RI and %PBfR during cuff inflation 

pressures were examined using descriptive statistics and parametric/non-parametric 

tests. Associations between physical characteristics and %PBfR experienced at different 

cuff inflation pressures were assessed in three ways; 

1) Participants were allocated into one of three subgroups; rugby-males, non-rugby 

males and non-rugby females. A two-way repeated measures ANOVA was used to 

investigate the effect of a within-subjects factor (the amount of cuff pressure 

applied) and a between-subjects factor (cohort subgroup) upon %PBfR. These main 

effects and the two-way interaction effect of inflation pressure x subgroup were 

reviewed for statistical significance (p ≤ 0.05). 

2) For each participant, the %PBfR values recorded for across their five cuff pressures 

were averaged to produce a participant-mean %PBfR. Where data was normally 

distributed (Shaprio-Wilkes ≥ 0.05), bivariate correlations between physical 

characteristics and participant-mean %PBfR were assessed using Pearson’s 

correlation coefficient. If normality was not present, bivariate correlations were 

assessed via the Spearman’s Rank test. 

3) The %PBfR value recorded for a participant at each cuff inflation pressure was plotted 

graphically and fitted with a second-order polynomial trend line (Hunt et al, 2016). 

The resulting polynomial equation was used to calculate the amount of cuff pressure 

required to theoretically reduce their popliteal arterial blood-flow to 60% of baseline 

[60% PBfR]. This process was repeated across the cohort. Bivariate correlational 

analysis was then performed to determine whether 60% PBfR values were associated 

with participants’ physical characteristics. 
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All statistical analysis was performed using IBM SPSS Statistics for Windows (Version 23.0. 

Armonk, New York: IBM Corp.) Statistical significance was set at p ≤ 0.05 and was two-

tailed during the analysis of bivariate correlations. An a priori sample-size calculation 

suggested that a cohort consisting of 72 participants would allow detection of a bivariate 

correlation with an r value of 0.50, with a 95% confidence interval of 0.304 – 0.655 

(Vassarstats, 2017). 

 

The intra-rater reliability of the primary researcher in calculating %PBfR values was also 

determined. Following the analysis of all participants, seven were selected at random 

(~10% sample) in a way that blinded the researcher to the identity of the participants, 

their previous %PBfR values and the order in which cuff pressures were applied during 

their testing protocol. Ultrasound images for the 10% sample were re-analysed in this 

blinded state, then compared to %PBfR values recorded during the first analysis. Intra-

rater reliability was high, displaying an intra-class correlation coefficient of 0.976 (95% CI 

0.954-0.988, p < 0.001). It could be proposed that significant confounding of %PBfR due 

to intra-rater reliability issues, or a lack of blinding during primary analysis of ultrasound 

images, was unlikely. 

 

4.5.5 Results 

4.5.5.1 Participant Anthropometrics 

Sixty-one volunteers participated in the study (Table 4.5.1). The three participant 

subgroups were statistically different across seventeen of the eighteen recorded physical 

characteristics (one-way ANOVA, p ≤ 0.05); the exception being total body fat in grams 

taken from the DXA scan (p = 0.561). Post hoc testing, with Games-Howell correction 



132 
 

where required, demonstrated that nine of the eighteen physical characteristics were 

significantly different across all subgroup combinations (p ≤ 0.05) (Appendix III).  

Table 4.5.1. Phase I cohort and subgroup physical characteristics.  
Mean values are displayed. Standard deviations are given within brackets. 

SUBGROUP N= 
Age  

[years] 
Height  
[cm] 

Weight  
[kg] 

Body 
Mass 
Index 

Rugby Males 21 23.9 (3.8) 185.6 (5.6) 96.8 (8.3) 28.1 (1.7) 

Non-rugby Males 21 27.7 (5.4) 178.9 (7.5) 82.4 (11.8) 25.7 (3.2) 

Non-rugby 
Females 

19 26.6 (5.6) 168.1 (8.6) 63.5 (6.4) 22.5 (1.8) 

Total 61 26.0 (5.2) 177.8 (10.1) 
81.5 

(16.3) 
25.5 (3.2) 

 

 

No serious adverse events occurred during the testing protocol. One participant 

experienced mild left arm discomfort during their last cuff inflation, which the participant 

stated was historical musculoskeletal pain not disclosed upon the health screening 

questionnaire. After subsequent medical review by the participant’s GP, the pain was 

considered to be muscular/postural in origin and unrelated to the testing protocol. A valid 

Doppler signal could not be acquired during 100mmHg cuff inflations in two participants. 

In three participants (two at 40mmHg, one at 80mmHg), the resting or restricted blood 

flow values recorded were anomalous and excluded.  

 

Ultimately, data from ninety-eight percent of cuff inflations (299 out of a possible 305)  

were included within analysis. The six missing inflations were spread equally across six 

participants. To prevent these participants’ data from being excluded outright during 

statistical analysis, the six missing %PBfR values were replaced with substitute values. This 

was achieved by first fitting a second-order polynomial trend line through each 
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participant’s remaining %PBfR values. The cuff pressure at which the %PBfR value was 

missing was then input into the polynomial equation to produce a suggested %PBfR value. 

This value was then entered into the dataset. Therefore, the results for ‘%PBfR’ in chapter 

4.5.5 and the results for ‘Repeated Measures ANOVA and ‘Session-mean %PBfR’ in 

chapter 4.5.5.3 have been presented using a complete data set, with missing values 

populated. 

 

4.5.5.2 Perceptual Responses to Thigh-Cuff Inflations 

The range, means and standard deviations of cohort NRS values provided across each 

thigh-cuff pressure are shown for discomfort and pain in Table 4.5.2 and Table 4.5.3 

respectively. One participant reported pain (NRS = 55 out of 101) and discomfort (NRS = 

84) at 100mmHg which exceeded the pre-agreed cut-off values for these measures, 

therefore the testing protocol was halted and 120mmHg was not attempted by the 

primary researcher. The participant displayed no visual signs of pain or discomfort during 

the cuff inflation in question and experienced no other physical symptoms. One 

participant experienced pain at 120mmHg of cuff pressure (NRS = 49), but wished to 

continue with the remainder of the testing protocol, giving consent to do so.  

 Table 4.5.2 Participant-reported values for discomfort during  

thigh-cuff inflations (NRS Scale 0 to 101) 

Cuff Pressure 

Applied 

Cohort 

Median 

Cohort 

Range 

Minimum 

Value 

Maximum 

Value 

Cohort 

Mean 

Std. 

Dev. 

40mmHg 0.0 30 0 30 2.9 7.2 

60mmHg 0.0 40 0 40 6.2 9.9 

80mmHg 9.5 60 0 60 10.1 13.0 

100mmHg 10.0 84 0 84* 16.3 18.7 

120mmHg 20.0 74 0 74 21.3 19.5 

*This participant reached the pre-agreed cut-off value for discomfort and did not attempt 
120mmHg cuff pressure. 
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 Table 4.5.3 Participant-reported values for pain during  

thigh-cuff inflations (NRS Scale 0 to 101) 

Cuff Pressure 

Applied 

Cohort 

Median 

Cohort 

Range 

Minimum 

Value 

Maximum 

Value 

Cohort

Mean 

Std. 

Dev. 

40mmHg 0.0 3 0 3 0.1 0.6 

60mmHg 0.0 20 0 20 0.5 2.7 

80mmHg 0.0 20 0 20 0.8 3.1 

100mmHg 0.0 55 0 55* 2.2 9.1 

120mmHg 0.0 49 0 49** 1.9 7.7 

*One participant reached the pre-agreed cut-off value for pain and did not attempt 
120mmHg cuff pressure. 
**One participant reached the pre-agreed cut-off value for pain but consented to continue 
with the remainder of the protocol. 

 

4.5.5.3 Haemodynamic Measurements 

Popliteal Arterial Blood Flow 

Blood flow values taken prior to each cuff inflation were similar across the testing 

protocol, Friedman Test, χ2(4) = 6.444, p = 0.168. Table 4.5.4. 

 Table 4.5.4. Median popliteal artery blood flow values [in mL/min] of 
the Phase I cohort (n=61) prior to each thigh-cuff inflation pressure. 

The range for each median value are also displayed. 
 

 Prior to 1st 
Cuff 

Inflation 

Prior to 2nd 
Cuff 

Inflation 

Prior to 3rd 
Cuff 

Inflation 

Prior to 4th 
Cuff 

Inflation 

Prior to 5th 
Cuff 

Inflation 

Median 
  

56.4  52.4 53.3  54.7 49.9 

Minimum 
Value 

24.2 23.6 22.9 22.4 20.2 

Maximum 
Value 

213.3 171.8 167.7 198.4 241.3 

Range 
 

189.1 148.1 144.7 175.9 221.0 

 

Cohort blood flow values recorded during each cuff inflation pressure were typically of 

non-normal (right-skewed) distributions (Shapiro-Wilks, p ≤ 0.05). Cohort blood flow 

reduced significantly as cuff inflation pressure was increased, Friedman test, F(5, 55) = 

233.639, p < 0.0001. Table 4.5.5. 



135 
 

 Table 4.5.5. Median popliteal artery blood flow values of the Phase 
I cohort [in mL/min] during each thigh-cuff inflation pressure.  

The range for each median value are also displayed. 
 

 0 
mmHg 

40 
mmHg 

60 
mmHg 

80 
mmHg 

100 
mmHg 

120 
mmHg 

Median 
 

53.8 42.3 38.4 29.5 23.7 18.1 

Minimum 
Value 

22.9 16.6 15.6 14.0 10.1 7.1 

Maximum 
Value 

170.9 163.3 125.8 81.7 66.0 54.7 

Range 
 

148.0 146.7 110.2 67.8 56.0 47.6 

 

Popliteal arterial blood flow at rest was positively correlated with participant height 

(Spearman Rank; 0.41, p = 0.001), weight (Spearman Rank; 0.48, p < 0.001) and body 

mass index (Spearman Rank; 0.418, p = 0.001).  

 

The Percentage of Popliteal Arterial Blood-flow Remaining [%PBfR] 

The percentage of blood-flow that remained at each cuff pressure, compared to baseline, 

is displayed in Table 4.5.6. %PBfR values were statistically significantly different across 

inflation pressures (Friedman Test, χ2(4) = 193.875, p < 0.001), decreasing as the inflation 

pressure increased. 

Table 4.5.6.  Mean and median %PBfR values of the Phase I cohort 
during each thigh-cuff inflation pressure. 

 

 

Thigh-cuff 
Inflation 
Pressure 

%PBfR 
(Mean) 

95% Confidence 
Interval % PBfR 

(Median) 
Range 

Lower 
Bound 

Upper 
Bound 

40mmHg 81.6 77.8 85.5 81.7 79.5 

60mmHg 68.2 64.2 72.1 67.9 74.1 
80mmHg 56.9 53.6 60.2 58.2 63.3 

100mmHg 45.6 42.1 49.1 42.0 58.9 
120mmHg 33.3 30.6 36.1 31.9 54.3 
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Heart Rate [HR] 

Cohort HR values were normally distributed at each cuff inflation pressure (Shapiro-

Wilkes, p ≥ 0.64). Mauchly's test of sphericity indicated that the assumption of sphericity 

had not been violated, χ2(14) = 3.343, p = 0.159. A repeated measures ANOVA showed 

cohort HR was statistically different across inflation pressures, F(5, 270) = 7.282, p < 

0.0001, partial η2 = 0.119, displaying a tendency to decrease slightly as inflation pressure 

increased (Table 4.5.7). 

Table 4.5.7. Mean heart rate values (in beats per minute) of the 
Phase I cohort recorded during each thigh-cuff pressure. 

 

Thigh-cuff 
Inflation 
Pressure 

Mean 

95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

0mmHg 67.9 65.2 70.5 
40mmHg 66.8 63.7 69.9 
60mmHg 66.1 63.2 69.1 
80mmHg 65.2 62.4 68.1 

100mmHg 65.5 62.6 68.3 
120mmHg 65.3 62.4 68.3 

 

Pulsatility Index [PI] 

Cohort PI values were typically of non-normal (right-skewed) distribution at each cuff 

inflation pressure (Shapiro-Wilks, p ≤ 0.05). A non-parametric Friedman test indicated 

that cohort PI was statistically different across cuff inflation pressures χ2(5) = 171.800, p < 

0.001. Cohort PI tended to increase as inflation pressure increased, up to 100mmHg 

(Table 4.5.8). Cohort PI decreased at 120mmHg compared to 100mmHg, but post-hoc 

comparisons indicated that this difference was not statistically significantly (p = 0.359).  

 

Resistive Index [RI] 

Cohort RI values were of a non-normal distribution at two inflation pressures (Shapiro-
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Wilks, p ≤ 0.05). A non-parametric Friedman test indicated that cohort RI was statistically 

different across inflation pressures χ2(5) = 66.694, p < 0.001. Cohort RI tended to increase 

as inflation pressure increased up to 80mmHg. Cohort RI decreased slightly at 100mmHg, 

then remained similar at 120mmHg (Table 4.5.8). 

 

Peak Velocity [PVel] 

Cohort PVel values were typically of a non-normal (right-skewed) distribution at each cuff 

inflation pressure (Shapiro-Wilks, p ≤ 0.05). A non-parametric Friedman test showed that 

cohort PVel was statistically different across inflation pressures χ2(5) = 50.801, p < 0.001. 

Post-hoc comparisons indicated that cohort PVel was lower at 120mmHg compared to 

100mmHg to a statistically significant level (p < 0.001). PI values are displayed in Table 

4.5.8.  

Table 4.5.8. Median values for three haemodynamic variables recorded for the Phase I 
cohort during each thigh-cuff pressure. The range for each median value are displayed in 
brackets. 

 0mmHg 40mmHg 60mmHg 80mmHg 100mmHg 120mmHg 

Pulsatility 
Index 

13.27 
[24.99] 

17.55 
[39.19] 

22.76 
[68.6] 

26.73 
[108.89] 

30.10 
[86.82] 

28.81 
[74.46] 

Resistive 
Index 

1.34 
[0.58] 

1.39 
[0.51] 

1.41 
[0.39] 

1.43 
[0.50] 

1.38 
[0.48] 

1.40 
[0.50] 

Peak 
Velocity 

31.78 
[38.71] 

32.17 
[37.77] 

33.30 
[40.07] 

34.17 
[41.40] 

33.77 
[47.27] 

26.97 
[35.93] 

 

 

4.5.5.4 Correlations between Physical Characteristics and %PBfR 

Repeated Measures ANOVA 

The %PBfR for each thigh-cuff inflation pressure within each subgroup were assessed for 

differences using a two-way repeated measures ANOVA. There were no extreme outliers 

as assessed by examination of studentised residuals for values greater than ±3. 

Studentised residuals were normally distributed, as assessed by Q-Q plots. %PBfR values 
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typically followed a normal distribution across each inflation pressure within each 

subgroup, (Shapiro-Wilkes, p > 0.05). Exceptions were non-rugby males at 100mmHg cuff 

pressure (p= 0.014) and rugby males at 120mmHg (p = 0.039). A two-way repeated 

measures ANOVA, with or without the three participants creating the non-normal 

distributions, produced negligible differences in generated F, P and partial η2 values. As 

there was no suggestion that %PBfR values from these three participants were erroneous, 

%PBfR results are presented with all participants included. 

 

There was homogeneity of variance in %PBfR values across cuff inflation pressures, as 

assessed by Levene's test (p ≥ 0.170). There was homogeneity of covariance, as assessed 

by Box's M test of equality of covariance matrices (p > 0.001). Mauchly's Test indicated 

that the assumption of sphericity was violated for the two-way interaction of inflation 

pressure x subgroup, χ2(2) = 40.653, p < 0.0001. Greenhouse-Geisser correction was used 

to accommodate for this violation. 

 

There was no statistically significant two-way interaction of cuff inflation pressure x 

subgroup upon %PBfR, F(6.044, 175.288) = 1.649, p = 0.136, partial η2 = 0.041. The main 

effect of cuff inflation pressure showed a statistically significant difference in %PBfR 

across inflation pressures, F(3.022, 175.288 = 215.243, p < 0.0001, partial η2 = 0.788) with 

higher cuff pressure producing a lower %PBfR. The main effect of cohort subgroup 

showed no statistically significant differences in %PBfR across subgroups, F(2, 58) = 2.186, 

p = 0.122, partial η2 = 0.070. A boxplot of median %PBfR scores and their distributions 

across cohort subgroups is displayed in Figure 4.5.1 



139 
 

 

Figure 4.5.1 A box plot displaying median value and distribution of %PBfR within 
each subgroup at each of the five cuff inflation pressures. No statistically 
significant between-subgroup difference was found in %PBfR at each thigh cuff 
inflation pressure (p > 0.05). 

 

Participant-mean %PBfR 

Participant-mean %PBfR values (the average %PBfR recorded from the five cuff different 

inflation pressures) were normally distributed for the cohort (Shapiro-Wilks, p = 0.617). 

For the cohort as a whole, eleven physical characteristics had normally-distributed values 

(Shapiro-Wilks ≥ 0.05) and seven did not (Shapiro-Wilks ≤ 0.05). Pearson correlation 

coefficients or Spearman Rank tests were used respectively to determine bivariate 

correlations between each cohort physical characteristic and participant-mean %PBfR. 

Two-tailed significance of bivariate correlations are subsequently displayed in Table 4.5.7. 
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60% PBfR 

One participant was excluded from analysis as a 60% PBfR value could not be 

extrapolated from their polynomial second-order equation. 60% PBfR values were 

normally distributed for the remainder of the cohort (Shapiro-Wilks p = 0.723). The cohort 

required a mean cuff pressure of 75.3 (±18.2) mmHg to induce 60% %PBfR. The cohort 

median value was similar (76.0 mmHg). Analysis indicated no statistically significant 

bivariate correlation between any participant physical characteristic and their 60% PBfR 

value (Pearson’s correlation coefficient or Spearman’s Rank, p > 0.05). Due to these lack 

of correlations, it was not appropriate to attempt a regression model to explain any inter-

subject variance in 60% PBfR values via physical characteristics. However, a second-order 

polynomial equation could be derived for the cohort, to represent the actual %PBfR that 

the cohort experienced across all tested cuff inflation pressures; 

y = -0.0007x2 - 0.4797x + 100 

Where y is the percentage of popliteal blood flow remaining compared to baseline, and x 

is the amount of thigh-cuff inflation pressure applied in mmHg. Figure 4.5.2 displays the 

trend line relating to this equation. 
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Table 4.5.7. Bivariate correlations between participant-mean %PBfR and  
physical characteristics of the Phase I cohort. Bold values indicate statistical 
significance (p ≤ 0.05) 
 

Physical Characteristic 
Method of 

Correlational 
Analysis 

r Value 
95% 

Confidence 
Interval 

p Value 

Age 
Spearman 
Rank 

0.072 -0.183 – 0.318 0.580 

Height (cm) Pearson 0.257 0.006 – 0.477 0.046 

Body Weight (kg) 
Spearman 
Rank 

0.326 0.081 – 0.533 0.100 

Body Mass Index Pearson 0.226 -0.027 – 0.452 0.080 

Thigh Circumference (cm) Pearson 0.296 0.048 – 0.509 0.021 

Leg Length (cm) Pearson 0.245 -0.007 – 0.467 0.057 

Thigh Length (cm) Pearson 0.255 0.004 – 0.476 0.047 

Systolic Blood Pressure 
(mmHg) 

Pearson 0.267 0.017 – 0.486 0.038 

Diastolic Blood Pressure 
(mmHg 

Pearson 0.123 -0.132 – 0.363 0.344 

Mean Arterial Pressure 
(mmHg) 

Pearson 0.203 -0.051 – 0.432 0.117 

DXA Body Tissue Fat % 
Spearman 
Rank 

-0.107 -0.349 – 0.148 0.414 

DXA Body Fat Mass (g) 
Spearman 
Rank 

0.075 -0.180 – 0.320 0.567 

DXA Body Lean Mass (g) Pearson 0.274 0.024 – 0.491 0.033 

DXA Total Body Mass (g) 
Spearman 
Rank 

0.335 0.091 – 0.541 0.008 

DXA Test Leg Tissue Fat % 
Spearman 
Rank 

-0.155 -0.391 – 0.100 0.233 

DXA Test Leg Fat Mass (g) 
Spearman 
Rank 

-0.054 -0.301 – 0.200 0.680 

DXA Test Leg Lean Mass (g) Pearson 0.326 0.081 – 0.533 0.010 

DXA Test Leg Total Mass (g) Pearson 0.342 0.099 – 0.546 0.007 
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Figure 4.5.2. Phase I cohort %PBfR values fitted to a second-order polynomial 
trend line. Mean values are used for cohort %PBfR, whiskers represent standard 
deviations. 

 

4.5.6 Discussion 

4.5.6.1 Reliability and Validity of Ultrasound Measurements 

The validity of popliteal haemodynamic ultrasound measurements recorded during this 

study can be endorsed by comparing them to those reported within a reference 

population (n=40) examined by Holland et al (1998). As seen in Table 4.5.8, mean values 

recorded from the popliteal arteries of the two cohorts were similar. The order in which 

cuff pressures were applied was randomised to spread any confounding effect that 

variance in pre-inflation blood flows had upon results. However, popliteal blood-flow 

prior to each of the five cuff inflation pressures remained statistically similar across the 
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testing protocol (Table 4.5.2), in contrast to what occurred during the pilot study, 

suggesting that any confounding effect due to this factor was minimised. 

Table 4.5.8. Inter-study comparisons of reported haemodynamic values within the 
human popliteal artery at rest.  VMn = Mean blood-flow velocity, aCSA = Artery cross-
sectional area, BF = Blood flow 

 Current Study Holland et al (1998) 

 
Mean Std. Dev. Mean Std. Dev. 

Pulsatility Index 13.78 5.46 17.69 13.76 

Resistive Index 1.34 0.10 1.41 0.11 

VMn (cm/s) 3.38 2.10 4.90 2.20 

aCSA (cm²) 0.35 0.09 0.29 0.12 

BF (ml/min) 67.62 40.24 72.00 34.00 

 

 

4.5.6.2 The Acute Haemodynamic Responses to Lower-limb BfR 

Whilst blood-flow through the popliteal artery decreased in an almost linear fashion as 

cuff inflation pressure increased (Figure 4.5.2), the Resistive Index [RI], Pulsatility Index 

[PI] and peak blood-flow velocity [PVel] values demonstrated different patterns of change 

(Figure 4.5.3). At 0mmHg cuff pressure, PWD spectral images showed normal (healthy) 

tri-phasic waveform patterns of peripheral blood flow within their lower limbs (Figure 

4.5.3) (Crişan, 2012; Wood et al, 2010). As cuff pressures of up to 100mmHg were added, 

PVel values did not alter significantly. However, PVel then decreased at 120mmHg cuff 

pressure compared to 100mmHg. 

 

The stable PVel values up to and including 100mmHg could be explained by considering 

both the structure of the femoral artery and the intravascular pressure of the blood 

flowing through it. The presence of elastin fibres within the tunica media of an artery 

provide structural support (Pugsley and Tabrizchi, 2000) which may allow it to resist 

deformation at low degrees of extravascular pressure. Whilst intravascular arterial 
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pressure can vary depending upon blood flow, vascular tone and pulse pressure, normal 

mean arterial pressure [MAP] in adults is typically between 70mmHg and 100mmHg 

(Roberts and Hedges, 2009). Within the study cohort, MAP was 88.9 (± 7.3) mmHg. It 

could be suggested, therefore, that up to 100mmHg of extravascular pressure exerted 

upon the femoral artery by the thigh cuff was not sufficient to universally overcome 

intravascular MAP in this cohort and deform the shape of the femoral artery. Arterial 

cross-sectional area [CSA] and pulsatile flow through the femoral artery would have been 

largely preserved, which in turn maintained peak blood-flow velocity in the downstream 

popliteal artery. In contrast, 120mmHg was sufficient to overcome MAP in all of the 

cohort. This may have been sufficient to deform the femoral artery, reduce its CSA and 

reduce downstream popliteal PVel. It is acknowledged that this explanation depends 

upon the assumption that upper limb (brachial) blood pressures were similar to lower-

limb blood pressures within each study participant, as the latter were not recorded in this 

study.  

 

In contrast, peripheral veins are susceptible to low levels of extravascular compression by 

design due to their relatively thin tunica media (Pugsley and Tabrizchi, 2000). Ordinarily, 

this property combined with the presence of one-way valves within venous vasculature 

allows adequate venous return of blood from the peripheries of the body (Korthuis, 2011; 

Meissner, 2005) despite low intravascular pressure and the absence of a pulsatile venous 

flow. Applying cuff pressures up to 100mmHg could have gradually narrowed and then 

collapsed the lumen of the femoral vein under the thigh cuff, preventing venous return 

and causing progressive lower-limb venous congestion within the lower leg. For example, 

Partsch and Partsch (2005) demonstrated that 50-60mmHg of external calf compression 
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was sufficient to fully collapse the saphenous vein and posterior tibial vein within 

participants in a resting seated position.  

 

Whilst there is an apparent lack of evidence that determines the extravascular pressure 

required to cause complete femoral vein occlusion in sitting, the femoral vein has a larger 

diameter than veins found more distally (Hertzberg et al 1997; Asbeutah et al, 2014). It 

could be therefore argued that an extravascular pressure greater than 60mmHg is 

required for complete occlusion, although narrowing of the lower-limb veins (in a 

standing position) may begin with as little as 19mmHg of external thigh compression 

(Mosti et al, 2009).  

 

In the Phase I study, any venous congestion in the lower leg would have increased 

vascular resistance distal to the popliteal artery measurement site, presenting upon PWD 

spectral images as an increased magnitude of reverse diastolic flow during cardiac cycles 

(Figure 4.5.3). It could be this mechanism that raised RI and PI values, and lowered the 

mean velocity (and thus flow) of blood travelling through the popliteal artery over the 

time-course of a PWD spectral image. 

 

At 120mmHg of cuff pressure, it is possible that the extravascular pressure exerted upon 

the segment of femoral artery under the thigh cuff started to exceed intravascular arterial 

pressure and was sufficient to begin narrowing the femoral artery lumen. This artificially-

induced stenosis could have blunted pulsatile flow distal to the thigh cuff and would 

explain why peak blood-flow velocity significantly reduced at the popliteal measurement 

site, compared to 100mmHg (Mehra, 2010). In turn, the blunting of pulsatile flow may be 

responsible for the reduction in magnitude of reverse diastolic flow occurring during 
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diastole at 120mmHg compared to ≤100mmHg (Figure 4.5.3). Combined, these changes 

would have modulated RI and PI and explain why RI and PI did not continue to increase 

beyond the values seen at 100mmHg cuff pressure.  

 

 

Figure 4.5.3. Acute haemodynamic responses to lower-limb blood-flow restriction, 
measured at the popliteal artery. Representations of the pulsed-wave Doppler spectral 
waveforms for one cardiac cycle are displayed below each cuff pressure heading. Note the 
normal tri-phasic spectral waveform of blood flow at 0mmHg, an increase in the 
magnitude of reverse flow and slight narrowing of the forward-flow peak at 40-
100mmHg, followed by a reduction in both peak blood flow velocity [PVel] and reverse 
diastolic flow at 120mmHg.  
 

 

In summary, the author proposes that the reduction in lower-limb mean blood flow 

velocity at thigh-cuff pressures up to 100mmHg is due predominantly to an increase in 

peripheral vascular resistance of the lower leg caused by femoral vein 
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restriction/occlusion. At cuff pressures greater than 100mmHg, up to 120mmHg, further 

reductions in mean blood-flow velocity are likely caused by partial compression of the 

femoral artery. Femoral occlusion and thus complete haemostasis of lower-limb blood 

flow would then occur at a cuff pressure somewhere above 120mmHg. It should be 

stated that this may not hold true for healthy individuals who are dissimilar to those 

subpopulations tested within this study. Likewise, individuals who are not healthy due to 

a disease or comorbidity may also undergo different degrees of lower-limb blood flow 

restriction at the cuff pressures up to 120mmHg. 

 

The pattern by which %PBfR reduced as thigh-cuff inflation pressure increased was similar 

to that reported by Hunt et al (2016). A review of their graphical data suggests that 60% 

%PBfR occurred at approximately 92mmHg among their cohort of 47 participants. Within 

the Phase I study, 60% PBfR occurred within the cohort at 75.3mmHg. The findings of 

Crenshaw et al (1988) and Loenneke et al (2012b; 2015a) indicated that the cuff pressure 

required to fully occlude arterial flow decreases as cuff width increases. As Hunt et al 

(2016) utilised a narrower-width cuff than the Phase I study (13.5cm vs. 21cm, 

respectively), an explanation may be that the width-dependent relationship also holds 

true at sub-occlusive thigh-cuff pressures. 

 

Within-subject heart rate demonstrated a statistically significant change over the course 

of the five cuff pressures, reducing as cuff inflation pressure was increased. Despite this 

statistical significance, the actual magnitude of change between 0mmHg and 120mmHg 

cuff pressure was low; 3.97% or 2.6 beats per minute. Existing BfRT literature is sparse 

regarding the heart rate response to lower-limb BfR applied without exercise. Karabulut 

et al (2011b) reported small increases in heart rate as cuff pressure was incrementally 
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increased. However, the sample size was small (n=5) and prevented the use of inferential 

statistics. Loenneke et al (2012c) applied five, 5-minute bouts of BfR at 70% of 

participant’s arterial occlusion pressure (n=9). Results indicated that heart rate increased 

during cuff inflations, but not to a statistically-significant degree. The fifth cuff inflation 

increased heart rate by 11 beats per minute compared to baseline (p = 0.057). In light of 

study findings and previous literature, short periods of lower-limb BfR applied at rest, do 

not appear to adversely raise or lower heart rate within healthy individuals. 

 

4.5.6.3 Correlations between physical characteristics and %PBfR 

Participant-mean %PBfR demonstrated statistically significant bivariate correlations 

across eight cohort physical characteristics (p ≤ 0.05), particularly those relating to 

physical mass (Table 4.5.7). Whilst this could be suggestive of physical characteristics 

having some influence over %PBfR during sub-occlusive thigh-cuff pressures, the 

generated r values for these correlations were universally low. The Phase I study was 

insufficiently-powered to provide reasonable 95% confidence intervals for correlations 

with an r value < 0.50. Therefore, it would be inappropriate to reject the study’s null 

hypothesis based upon these findings alone.  

 

The amount of thigh-cuff pressure calculated to induce 60% PBfR showed variation 

between individuals (75.3 mmHg, ± 18 mmHg). Yet this variation was not correlated to, or 

explained by, the physical characteristics of the cohort. Hunt et al (2016) found greater 

Pearson r values when relating the cuff pressure required to attain a predetermined %BfR 

against physical characteristics, such as mean arterial pressure (r = 0.58, p < 0.05) and 

Body Mass Index (r = 0.44, p < 0.05). This may have occurred due to Hunt and colleagues 

investigating a greater degree of BfR (equivalent to 40% PBfR) and applying each cuff 
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pressure for longer periods of time than the Phase I study (120 seconds vs. 30 seconds). 

Hunt et al (2016) also recorded haemodynamic measurements during the last thirty 

seconds of each 120-second inflation period. Combined, these factors could have 

increased the rate and magnitude of venous congestion occurring within the lower limb, 

amplifying associations between %PBfR and physical characteristics in comparison to the 

current study. Despite these methodological differences, Hunt et al (2016) still found that 

physical characteristics were unable to explain the majority of between-subject variance 

in the thigh-cuff pressure required to achieve 40% PBfR. 

 

4.5.7 Study Strengths and Limitations  

Strengths 

The use of randomisation to vary the order in which thigh-cuff inflation pressures were 

delivered among the cohort prevented any cumulative confounding effect that repeated 

bouts of extravascular pressure may have had upon the latter cuff inflations during the 

testing protocol. For example, if pressures had been applied in ascending order 

[40/60/80/100/120mmHg], repeated shear stress due to changes in blood flow and 

extravascular pressure may have caused a late dilatory response within arterioles, 

potentially confounding the %PBfR values at 100mmHg and 120mmHg. Instead, if any 

confounding effect did exist, this was spread equally across all tested cuff pressures. The 

results of intra-rater reliability testing suggest that non-blinded analysis of ultrasound 

images by the primary researcher should not have significantly confounded blood-flow 

measurements. The resting ultrasound-derived haemodynamic measurements of the 

popliteal artery also agreed with those of other work (Holland et al, 1998), which 

supports the validity of measurements attained within this study. In addition, it was 

possible to test physical characteristics, such as body mass, across a greater range and a 
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larger cohort size than the most recent study on the topic (Hunt et al, 2016). 

 

Limitations 

This study was under-powered to detect statistically significant bivariate correlations of 

the degrees seen within this study, without also generating very wide confidence 

intervals (i.e. thigh circumference; r = 0.296, 95% CI 0.048 – 0.509, p = 0.047). In 

particular, the lower limits of these confidence intervals were always close to nil, casting 

doubt upon whether meaningful correlations truly exist. This limitation could have been 

addressed through the recruitment of additional participants to narrow the 95% 

confidence intervals, to provide a more robust indicator of the validity of these 

correlations. However, this would have taken a much larger cohort (n=300) to narrow the 

confidence intervals by a reasonable degree (i.e. r = 0.296, 95% CI 0.19 – 0.395). Future 

research may address this issue, but the time and resources required to collect and 

process this amount of data within the doctoral project was beyond that of the primary 

researcher.  

 

Additional factors may have contributed to a portion of the variance seen in %PBfR across 

the cuff pressures used in the Phase I study. There are a myriad of methodological pitfalls 

and spectral artefacts that can confound blood-flow readings taken via Doppler 

ultrasound (Nelson and Praetorius, 1988; Pozniak et al 1992). In addition, the primary 

researcher also observed transient variances in resting popliteal blood flow due to talking, 

coughing, or slight contraction of any lower-leg musculature. Whilst considerable efforts 

were made by the researcher to pre-empt and prevent each of these factors from 

confounding Doppler measurements, a small degree of error may have invariably existed 

within collected data. Unmeasured factors such as inter-subject variations in basal 
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vascular tone or vasomotor control may have also existed (Korthuis, 2011). These may 

have affected both the immediate response to the extravascular pressure generated by 

the thigh cuff and the rate of venous congestion distal to the thigh cuff among individuals 

to an unknown degree, independent of any measured physical characteristics. 

 

4.5.8 Conclusions 

In conclusion, the first two objectives of this Phase I main study were achieved. The acute 

haemodynamic responses to lower-limb BfR within a cohort of sixty-one individuals who 

differed in height, weight, gender and limb dimensions were observed and examined. 

When sub-occlusive thigh-cuff pressures were applied to healthy adults between the ages 

of 18 and 40 in this study, the physical characteristics of these individuals were not 

significantly associated with the initial degree of lower-limb arterial BfR that they 

experienced. In addition, the amount of thigh-cuff pressure required to achieve a specific 

%PBfR of 60% varied between individuals and was not associated to, or explained by, the 

eighteen physical characteristics measured within the study. Therefore, it was not 

possible to fully meet the third objective; to build a statistical model that predicts the 

%PBfR that would occur at the onset of a given thigh-cuff pressure using physical 

characteristics. However, it was possible to derive a polynomial equation that provides 

some indication of the percentage of arterial BfR occurring, based upon thigh-cuff 

pressure alone. In combination with the results presented by Hunt et al (2016), the utility 

of physical characteristics alone to accurately induce a predetermined %PBfR appears 

low. Further research should either seek alternative variables to predict lower-limb 

%PBfR, or investigate the utility of physical characteristics in determining %PBfR within 

other populations such as the elderly or comorbid.  
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Haemodynamic findings suggest that, when cuff pressures of up to 100mmHg are applied 

to a resting individual via a 21cm-wide blood-pressure cuff, blood-flow through the lower-

limb appears to reduce due predominantly to venous restriction or occlusion of the 

femoral vein(s). At cuff pressures exceeding 100mmHg, arterial restriction of the femoral 

artery is likely responsible for further reducing lower-limb blood flow. Ultimately, this 

finding has value to clinicians wishing to utilise a thigh blood-pressure cuff to apply lower-

limb BfR to populations similar to those investigated in this study. The proposed intention 

of BfR is to generate acute lower-limb vascular pooling, local metabolite accumulation 

and tissue hypoxia by retaining arterial inflow and occluding venous outflow (Loenneke et 

al, 2014; Pope et al, 2013). In respect of this, Phase I findings suggest that this 

haemodynamic state occurs in the lower-limb at pressures ≤ 100mmHg when using a 

thigh blood-pressure cuff. Pressures as low as 40mmHg may still provide an adequate 

state of BfR in some individuals. However, research is required to determine whether BfR 

induced at these thigh-cuff pressures generates a change in the acute physiological and 

perceptual responses of low-intensity resistance exercise or un-resisted, or ‘no-load’ 

exercise. The next chapter details Phase II of the doctoral research project, which looks to 

address this point specifically.   
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CHAPTER FIVE 

 
PHASE TWO  

The Acute Physiological and Perceptual Effects of Adding 
Lower-limb BfRT to a Seated, Unweighted Knee Extension 

Exercise 

 

5.1 Chapter Introduction 

This chapter details of the second phase of this doctoral research project. A summary of 

existing academic evidence regarding the potential potency of low-load resistance 

exercise to produce favourable muscular adaptations is first given, with discussion as to 

why un-resisted (‘no-load’) exercise alone may struggle to maintain muscular size and 

performance within a rehabilitation context. Specific focus is given to the acute effects of 

muscle contraction upon local haemodynamics, providing rationale as to why research 

into the addition of BfR to ‘no-load’ exercise is warranted. Following this, the remainder 

of the chapter describes the implementation and outcomes of a pilot study involving a 

single participant, and a main study involving a larger, uninjured cohort (n=16). Findings 

of the main study have subsequently been presented at the World Confederation for 

Physical Therapy Congress in July 2017 (Appendix VIb). 

 

5.2 Phase II Aim 

To investigate whether the addition of lower-limb BfR to an un-resisted, ‘no-load’ knee 

exercise produces a significant change to the acute physiological and perceptual 

responses of the exercise session, across a range of thigh-cuff inflation pressures. 
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5.3 Background 

To maximise strength development and muscle hypertrophy, The American College of 

Sports Medicine [ACSM] recommends a resistance exercise programme that uses high 

external loads; typically loads that meet or exceed 70% of an individual’s one-repetition 

maximum [1RM] (ACSM, 2009). Meta-analysis work completed before and after the 

ACSM’s publication broadly supports this recommendation; Rhea et al (2003) proposed 

that 60-80% 1RM elicits maximal strength gains in untrained individuals, whereas 80% 

1RM was more appropriate for trained individuals. Schoenfeld et al (2014) found that 

loads ≥ 65% 1RM were superior than lower loads in promoting strength and hypertrophy 

response. Schoenfeld et al (2014) did acknowledge, however, that training with loads ≤ 

60% 1RM still produced a significant strength and hypertrophy response. The described 

potency of lower-load training was verified experimentally by Schoenfeld et al (2015), 

who demonstrated that equal muscle hypertrophy occurred in eighteen well-trained 

males whether they were allocated to a group completing low-load resistance training to 

failure, or to high-load resistance training. Morton et al (2016) also demonstrated that 

forty-nine resistance-trained males undergoing a 12-week whole-body resistance training 

programme significantly increased muscle strength and size. Participants were allocated 

to either a group using 30-50% 1RM loads or a group using 75-90% 1RM loads. Both 

groups increased upper and lower limb muscular size and strength to similar extents. 

Both groups performed each exercise set to volitional failure. The authors suggested that 

training to volitional failure allowed maximal activation of motor units in both groups, 

which was the determinant for longitudinal gains in muscular size and performance. 

Crucially, the amount of mass lifted by participants was not the primary determinant of 

these gains; external load was essentially unimportant. Meta-analytic work continues to 

be produced that ratifies the usefulness of lower-load resistance training. For example, 
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Csapo et al (2016) suggests training at ~45% 1RM is effective at gaining muscle strength 

within the elderly; although age-related blunting of the hypertrophy response at all 

exercise intensities seemed apparent.  

 

Following a significant orthopaedic lower-limb injury or surgical intervention, an extended 

period of impaired weight bearing is often enforced during the acute and sub-acute 

stages of injury rehabilitation (Logerstedt et al, 2010; Porter and Shadbolt, 2015; 

Vioreanu et al, 2007). Whilst harnessing the established muscular benefits of resistance 

training during this time would be ideal, the use of high or low loads are often 

contraindicated due to pain and the risk of mechanical forces causing re-injury. As a 

result, the prescription of active rehabilitation exercises can often be limited to un-

resisted, or ‘no-load’ exercise. Although this mode of active movement may transiently 

improve local blood-flow, synovial fluid exchange and perceived pain (Lederman, 2005), it 

is very unlikely to result in volitional failure of exercising lower-limb musculature and the 

generation of significant exercise-induced metabolic stress. For example, Sjøgaard et al 

(1986) demonstrated that healthy participants performing seated knee extensions at 5% 

MVC could maintain this continuously for one hour, resulting in only a moderate increase 

to cohort perceived exertion (1.9 to 4.5) and a mean pre-post reduction in MVC of 12%. 

Ultimately, the day-to-day metabolic and physiological demands placed upon an injured 

limb and its muscle tissue are reduced far below normal, producing marked atrophy and 

loss of strength within the lower-limb musculature (Bodine, 2013; Campbell et al, 2013; 

Psatha et al, 2012). Thus, clinicians are resigned to a lengthy process of rebuilding 

muscular strength and size once weight bearing is indicated. This could contribute to an 

impairment of long-term function. Following an ankle fracture for example, concomitant 

deficits in muscle torque are still present within the ankle plantar flexors after ten weeks 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sj%C3%B8gaard%20G%5BAuthor%5D&cauthor=true&cauthor_uid=3788624
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of rehabilitation following cast removal (Stevens et.al, 2004). Fourteen months after ankle 

fracture over half of patients report difficulty climbing stairs and 45% of those who 

enjoyed participating in sport pre-injury had failed to regain a similar level of ability post-

injury (Nilsson et al, 2003). Modalities are therefore required to address this. Treatments 

that prevent or attenuate muscle atrophy and strength loss during impaired weight-

bearing periods, by inducing regular exercise-induced metabolic stress without a notable 

external load needing to be applied, are warranted and desirable. 

 

A factor in determining the ability to perform exercise, and the subsequent degree of 

exercise-induced metabolic demand and stress that occurs within an exercising muscle, is 

blood-flow through the muscle itself. At the onset of seated, active knee extensions for 

example, a rapid increase in peripheral blood flow occurs which is maintained during the 

exercise period (Paterson et al, 2005; Rådegran and Saltin; 1988). During the rhythmic 

contractions of the quadriceps, intramuscular pressure is raised, which exerts 

extravascular pressure upon the microvascular bed of the muscle(s). This vascular 

compression propels blood through the veins of the lower limb towards the heart 

(Korthuis, 2011). During the brief rest period between muscular contractions, 

microvascular patency is restored and muscle tissue is re-perfused with blood. These 

large, contraction-dependent variations in blood flow have also been demonstrated 

upstream of the exercising musculature, within the femoral artery (Walløe and Wesche, 

1988). With repeated contractions and/or increased metabolic demand from the 

exercising tissues, local mechanisms such as arterial vasodilation increase the 

microvascular surface area available for oxygen exchange (Korthuis, 2011; Sarelius and 

Pohl, 2010). Sympathetic activity also increases cardiac output to increase intra-arterial 

blood pressure, blood-flow rate and ultimately oxygen delivery rate to exercising 
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muscle(s) (Korthuis, 2011). This autoregulation of blood flow allows oxygen delivery to 

exercising muscle tissue to match oxygen demand, allowing the exercise to continue.  

 

The capacity to match oxygen delivery to oxygen demand within exercising muscles via 

blood-flow is functionally limited, however. For example, Sadamoto et al (1983) 

demonstrated that intramuscular pressure, and therefore the extravascular pressure 

exerted within contracting limb musculature, is sufficient to completely cease muscular 

blood flow at 50-64% MVC. Rådegran and Saltin (1998) also found that femoral arterial 

blood-flow could be impeded during the contraction phases of a dynamic knee extension 

exercises performed at ~65% of peak power output.  

 

Understandably, the energy demand of muscle fibres performing high-intensity 

contractions can be significant. If the oxygen subsequently delivered during the resting 

(re-perfusion) periods between repeated muscular contractions does not meet the 

temporal oxygen demands of the exercising muscle fibres, tissue oxygenation within the 

muscle tissue drops and the fibres rely upon anaerobic respiration to provide energy. This 

has been demonstrated during rhythmic active knee extensions performed at 70-80% 

1RM, which produced rapid drops in tissue oxygen saturation within the vastus lateralis 

(Miyamoto et al, 2013; Tanimoto and Ishii, 2006) with a subsequent post-exercise 

increase in blood lactate concentration (Tanimoto and Ishii, 2006). The rate and extent at 

which this occurs is modulated by the training status of the individual and the parameters 

of the exercise itself, such as the external load used, the length of exercise sets and the 

duration of rest period between both exercise sets and muscular contractions.  

 

If sufficient exercise-induced metabolic stress occurs, cellular pathways will mediate 
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exercise-related adaptions to muscular and vascular tissues. This includes muscle 

hypertrophy via suppression of the myostatin-Smad pathway and activation of the 

Akt/mTOR pathway (Egerman and Glass, 2014; Wackerhage, 2014) and angiogenesis 

through the expression of vascular endothelial growth factor (Bloor et al, 2005; Gavin et 

al, 2007). Longitudinally, these processes can maintain or improve the exercise capacity 

and performance of skeletal muscle. 

 

Reviewing the above mechanisms, it is understandable why very-low load, or ‘no-load’ 

exercise may generate minimal metabolic stress within exercising muscle tissue. 

Blangsted et al (2005) demonstrated that ten minutes of isometric elbow flexion at a 10% 

MVC raised intramuscular pressure within the exercising muscles. However, tissue oxygen 

saturation remained constant throughout, suggesting muscular blood flow was sufficient 

to match oxygen delivery with demand. Sjøgaard et al (1986), whilst demonstrating that 

healthy participants could perform seated knee extension at 5% MVC for one hour, found 

that blood flow through the femoral vein of the exercising leg remained patent and 

unchanged following an initial increase at the start of the exercise. Whilst tissue 

oxygenation was not directly measured, it could be argued that the ability to complete 

such a long period of exercise whilst blood throughput within the limb was maintained 

resulted in adequate oxygen exchange and minimal metabolic stress. Whereas, in studies 

such as Tanimoto and Ishii (2006) and Miyamoto et al (2013), it is reasonable to suggest 

that muscular blood-flow was impeded during concentric and eccentric muscular 

contractions due to the intramuscular pressure that was likely generated from this high-

load training. This in turn created the oxygen deficits within the vastus lateralis and 

exercise-induced metabolic stress, indicated by lactate accumulation. 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sj%C3%B8gaard%20G%5BAuthor%5D&cauthor=true&cauthor_uid=3788624
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Through comparison of the work by Blangsted et al (2005) and Sjøgaard et al (1986) 

against that of Miyamoto et al (2013) and Tanimoto and Ishii (2006), it is reasonable to 

argue that a high external load is the catalyst towards attaining significant exercise-

induced metabolic stress. Yet this assumption can be challenged by examining a recent 

study by Counts et al (2016). The authors compared within-subject, between-arm 

changes to brachial muscle thickness and strength after completing eighteen sessions of 

elbow flexion exercises performed using either a high-load (70% 1RM) or no load. 

Thirteen participants completed ‘no-load’ exercise sessions by maximally contracting 

their biceps through the full range of elbow motion. Pre-post brachial muscle thickness 

increased in both high-load and ‘no-load’ arms by a similar magnitude (p ≥ 0.203). 

Muscular strength (tested via 1RM) and muscular endurance also increased in both arms 

but to a greater degree within the high-load arm. It could be argued that the use of 

maximal voluntary contraction during the ‘no-load’ exercise may explain why increases in 

muscle size and strength were seen.  

 

As per Sadamoto et al (1983), contracting at approximately 100% MVC should have 

induced cessation of muscular blood-flow during muscular contractions via the 

generation of significant extravascular pressure. Repeated contractions at such a high 

intensity could have induced significant metabolic demand and an oxygen deficit that was 

amplified due to the impedance of blood-flow and thus exercise-induced metabolic 

stress. Longitudinally, cellular signalling pathways responsible for the development of 

muscular strength and hypertrophy may have been stimulated in similar ways between 

biceps exercised at ‘no-load’ and 70-80% 1RM. Within Counts et al (2016), the superiority 

of the ‘high-load’ training in terms of muscle strength and endurance may be linked to 

between-arm differences in exercise parameters. The ‘no-load’ arms were exercised for 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sj%C3%B8gaard%20G%5BAuthor%5D&cauthor=true&cauthor_uid=3788624
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four sets of 20 repetitions, with 30 seconds of rest between sets. The high-load arms 

were exercised for four sets of 8-12 repetitions, with the external load increased if 

participants could exceed 12 repetitions. Indeed, over the course of the experiment, the 

volume of work that the high-load arm completed increased from 786.6 (± 308.7) kg in 

the first half of the programme to 927.5 (± 341.0) kg in the latter half. In contrast, 

participants who completed all twenty repetitions in the ‘no-load’ arm from the outset 

were not progressed. It could be argued that high-load arms experienced greater degrees 

of metabolic stress throughout the experiment, as load was adjusted in a way that 

participants would have exercised to failure (or close to this). Whereas the ‘no-load’ arms 

were unlikely to have been exercised to volitional failure from the outset. 

 

In light of the above, it could be argued that the solution to preventing lower-limb muscle 

strength and size loss within injured individuals unable to complete loaded resistance 

training may simply be to ask them to contract maximally whilst completing ‘no-load’ 

exercises, to volitional failure. Yet this may still prove difficult to achieve or maintain 

within individuals inexperienced in exercise, those who are elderly or comorbid, or those 

whom maximal contraction is prevented due to pain and discomfort from the injury site. 

A method of artificially raising metabolic demand within muscle tissue, producing 

significant exercise-induced metabolic stress during the early stage of lower-limb 

rehabilitation whilst avoiding maximum voluntary contraction, is therefore warranted. 

 

Adding BfR to low-intensity knee extensions has been shown to significantly effect 

haemodynamics within the lower limb, and the resultant tissue oxygenation of the vastus 

lateralis. Cayot et al (2016) had seven males perform isometric knee extensions at four 

exercise intensities; 20, 40, 60 or 80% MVC. These sessions were then repeated with BfR 
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applied. Total haemoglobin mass within the vastus lateralis was higher at all MVCs when 

blood flow restriction was superimposed (p ≤ 0.05). Significantly higher levels of de-

oxygenated haemoglobin were also seen during sessions performed 20 and 40% MVC 

with BfR than without (p ≤ 0.05) but this was not evident at 60 or 80% MVC. It could be 

argued that the additional pressure exerted upon thigh tissue by the cuff may have 

lowered the % MVC required to cease muscular blood flow during muscular contractions 

from that suggested by Sadamoto et al (1983). This in turn raised or amplified the 

mismatch in oxygen delivery and oxygen uptake at 20/40%MVC, leading to the increased 

levels of de-oxygenated haemoglobin. The increasing total haemoglobin mass across 

sessions may have also indicated venous congestion at the measurement site caused by 

partial occlusion of the femoral vein. In a separate study, Downs et al (2014) delivered a 

three-set leg press exercise to healthy participants (n=13) across multiple visits. The 

exercise was performed at 80% 1RM, 20% 1RM, or 20% 1RM with blood flow restriction 

applied at either 1.3x systolic or 1.3x diastolic brachial blood pressure. BfR significantly 

blunted femoral and popliteal artery blood flow before and during leg press exercise, 

compared to blood flows seen at 80% 1RM or 20% 1RM without BfR (p < 0.05). Tissue 

oxygen saturation decreases by approximately 50% during blood-flow restricted sessions, 

by 35% in the 20% 1RM session without restriction and by 20% in the 80% 1RM session. 

Tissue oxygen saturation during the rest periods was significantly lower during the blood-

flow restricted sessions than sessions completed without restriction (p < 0.05). Similar 

findings in regards to total haemoglobin levels and tissue oxygenation saturation have 

also been demonstrated within the vastus medialis oblique (Ganesan et al, 2015). In 

combination, it could be suggested that low-intensity (or low load) BfR does amplify the 

acute metabolic demand of an exercise session, without having to modulate the 

parameters of the exercise itself. 
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At present, however, there appears to be a lack of evidence investigating whether BfR can 

alter the acute metabolic demand of a ‘no-load’ lower-limb exercise. Work by Downs et al 

(2014) and Cayot et al (2016) indicates superimposing BfR over exercise performed at a 

low intensity or load does amplify local, acute metabolic stress via drops in tissue oxygen 

saturation. But whether it is possible to replicate this during ‘no-load’ exercise is unclear. 

If a favourable effect can be demonstrated, this could bolster the validity of applying ‘no-

load’ BfRT during the acute stages of low-limb injury rehabilitation. Clinicians may 

ultimately gain a tolerable and low-risk method of attenuating losses to lower-limb 

muscle strength and size during extended periods of impaired weight bearing. 

 

5.4 Phase II Pilot Study 

5.4.1 Pilot-specific Objectives 

To pilot the suitability of a BfRT protocol for use in the main Phase II study. Specifically; 

1. To observe whether changes in vastus lateralis muscle SmO₂, haemoglobin and 

heart rate levels could be detected during an unweighted knee extension exercise, 

if thigh-cuff pressures of up to 80mmHg were applied to an exercising lower-limb. 

2. To determine whether the exercise protocol described in chapter 3.5 was 

physically achievable under 80mmHg thigh-cuff pressure, without reaching the 

agreed cut-off values for subjective levels of pain (≥ 40 out of 101). 

 

5.4.2 Methods 

Following informed consent and completion of the project’s health screening 

questionnaire, one healthy male (age; 35.8 years, height; 1.83m, weight; 82.1kg) initially 

participated in the pilot study. The participant was physically active, being a regular fell-

runner with and scoring 11.9 (out of a possible 15) on the Baecke Habitual Physical 
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Activity Questionnaire (Baecke, 1982). Upon arrival, anthropometric measurements of 

the participant were taken using the methods described in chapter 3.3.1. The participant 

then completed four exercise sessions, each separated by at least 48 hours. 

 

Exercise Session Methodology 

At each exercise session, the pilot participant was taken into the same temperature-

regulated room and fitted with a 21cm-wide thigh blood-pressure cuff [MDF2090471; 

MDF Instruments®, California, USA] in standing, situated as high on the upper thigh as 

possible without contacting the groin (Figure 3.3.1). The participant was seated upon a 

height-adjustable plinth to achieve approximately 90° hip flexion and 80° knee flexion 

with both feet placed flat on the floor (Figure 3.3.2). A near infrared spectroscopy device 

[Moxy Monitor, Fortiori Design LLC; Minnesota, USA] was fitted to overly the distal vastus 

lateralis of the test leg to record tissue oxygen saturation percentage [SmO₂], total 

haemoglobin mass [tHb] and deoxygenated haemoglobin mass [HHb] within the muscle. 

Heart rate [HR] was recorded via a wireless chest strap [Garmin International; Kansas, 

USA] fitted at the level of the participant’s xiphisternum.  

 

Before the knee exercise commenced, resting HR, SmO₂, tHb and HHb were continuously 

recorded over a period of three minutes. During the last thirty-seconds of this three-

minute period, an ultrasound imaging machine [MyLab™ 70; Esaote SpA, Italy] equipped 

with a linear, phased-array ultrasound probe [Biosound LA523; Esaote SpA, Italy] was 

used to determine blood flow within the popliteal artery of the test leg, as described in 

chapter 3.3.2. The thigh cuff was then left deflated at 0mmHg (control), or inflated to a 

predetermined pressure by the researcher (40mmHg during appointment 2, 60mmHg 

during appointment 3, or 80mmHg during appointment 4) via a hand-held aneroid 
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sphygmomanometer [MDF848XPD, MDF Instruments®; California, USA]. Immediately 

upon reaching the target pressure, blood flow measurements of the popliteal artery were 

repeated.  

 

In the seated position, the participant then completed three sets of a unilateral, un-

resisted knee extension exercise as described in chapter 3.5. If a positive thigh-cuff 

pressure was applied (40-80mmHg), this was maintained throughout the exercise and rest 

periods and for one minute following the completion of the third exercise set. Upon cuff 

deflation, the participant remained in the seated position for three minutes. 

Measurements of HR, SmO₂, tHb and HHb were continuously recorded throughout the 

exercise and rest periods. Immediately after each exercise set, the participant rated the 

level of perceived exertion experienced within his active thigh muscles using the OMNI-

RES (Appendix Ie) and rated any perceived pain using a numerical rating scale for pain 

(Appendix Ic). For additional clarity, a visual representation of one Phase II testing session 

is shown in Figure 5.4.1. 
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Figure 5.4.1. A flowchart describing the time-course and data collection points of a one 
testing session within Phase II. 

 

5.4.3 Results 

All four exercise sessions were completed without adverse or unexpected events. Mean 

resting values for vastus lateralis SmO₂, tHb, HHb and HR across the pilot study are shown 

in Table 5.4.1. The coefficient of variation in resting vastus lateralis SmO₂, tHb, HHb and 

HR values, taken before each of the four sessions began, are shown in Table 5.4.2. Mean 

resting blood flow within the popliteal artery of the test leg across the pilot study was 

36.91 mL/min (SD 4.94 mL/min).  

 

The application of thigh-cuff pressure reduced blood flow in the popliteal artery 
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immediately before the first exercise set commenced, generating a %PBfR of 61.8% at 

40mmHg, 42.8% at 60mmHg and 49.8% at 80mmHg. During session one, where no thigh-

cuff pressure was applied, blood-flow remained stable (%PBfR 101.3%). The mean 

changes to vastus lateralis SmO₂, tHb, HHb and HR during each exercise session are 

shown in Table 5.4.3.  

 
Table 5.4.1. Mean values recorded during the three-minute, pre-exercise baseline 
periods of the Phase II pilot study (n=1). 

Outcome Measure 
Mean 

Baseline 
Value 

Standard 
Deviation 

SmO₂ [%] 49.59 4.79 

Total Haemoglobin Mass [g/dL] 13.06 0.07 

Deoxygenated Haemoglobin Mass [g/dL] 6.58 0.60 

Heart Rate [Beats Per Minute] 74.7 4.09 

 
 

Table 5.4.2. The coefficient of variation in haemodynamic values taken from each three-
minute, pre-exercise baseline period of the Phase II pilot study (n=1). 

Outcome Measure 

Coefficient of Variation (%) 

Prior to 
Session 1 
(0mmHg) 

Prior to 
Session 2 

(40mmHg) 

Prior to 
Session 3 

(60mmHg) 

Prior to 
Session 4 

(80mmHg) 

SmO₂ [%] 11.58 9.51 7.00 6.19 

Total Haemoglobin Mass 
[g/dL] 

0.82 0.58 0.49 0.59 

Deoxygenated Haemoglobin 
Mass [g/dL] 

10.22 6.97 6.76 7.24 

Heart Rate [Beats Per Minute] 3.50 8.16 4.88 4.34 
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Table 5.4.3. The mean relative change in haemodynamic values during the Phase II pilot 
study exercise sessions, compared to pre-exercise baseline values (n=1). The ‘+’ and ‘-‘ 
symbols denote the direction of change compared to that session’s pre-exercise baseline 
period. 

Outcome Measure 

Amount of Thigh-cuff Pressure Applied 

During 
Session 1 
(0mmHg) 

During 
Session 2 

(40mmHg) 

During 
Session 3 

(60mmHg) 

During 
Session 4 

(80mmHg) 

SmO₂ [%] + 6.48 + 3.29 - 6.40 - 11.90 

Total Haemoglobin Mass 
[g/dL] 

- 0.06 - 0.02 + 0.06 + 0.13 

Deoxygenated Haemoglobin 
Mass [g/dL] 

- 0.87 -0.43 + 0.87 + 1.62 

Heart Rate [Beats Per Minute] + 3.87 + 3.66 + 3.51 + 6.78 

 

 

Second-by-second values for the outcome measures reported in Table 5.4.3 were plotted 

graphically to visualise any between-session differences in vastus lateralis SmO₂ (Figure 

5.4.2) and HR (Figure 5.4.3). Rates of perceived exertion for each exercise set are shown 

in Figure 5.4.4. The participant reported no pain during any exercise session. 
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Figure 5.4.2. A graphical representation of in-session changes to vastus lateralis SmO₂ 
during the Phase II pilot study. The three-minute pre-exercise baseline period (0-180 
seconds) is not shown. The cuff was inflated at 180 seconds and deflated at 600 seconds. 
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Figure 5.4.3. A graphical representation of in-session changes to heart rate during the 
Phase II pilot study. The three-minute baseline period (0-180 seconds) is not shown. The 
cuff was inflated at 180 seconds and deflated at 600 seconds. 
 
 

 

Figure 5.4.4. Set-by-set OMNI-RES scores recorded during the exercise sessions of 
the Phase II pilot study. 
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5.4.4 Discussion 

The addition of thigh-cuff pressure during an un-resisted knee extension exercise 

produced numerical and visual differences to vastus lateralis SmO₂, tHb, HHb. At 0mmHg 

and 40mmHg, SmO₂ increased whilst tHb and HHb decreased. At 60mmHg and 80mmHg, 

however, this trend was reversed. Heart rate during the unweighted knee exercise 

increased slightly during all testing sessions, however the mean change in heart rate 

(Table 5.3.3) and its pattern of change across each testing session (Figure 5.4.3) remained 

similar.  

 

The values recorded by the wireless chest strap and the NIRS device were all within 

normal physiological ranges. The coefficient of variation in resting HR derived from the 

wireless chest strap during resting baseline periods was low within each testing session, 

whilst being consistent between testing sessions. This was also true of vastus lateralis 

SmO₂, tHb and HHb derived from the NIRS device (Table 5.4.2). It is very possible that a 

portion of the within-session variances reported by these devices may have been due to 

natural physiological fluctuations to maintain homeostasis, rather than any accuracy issue 

with the devices themselves. Given the presented data, the primary researcher was 

happy to incorporate the devices into the main study.  

 

The rate of perceived exertion scores indicated that the addition of BfR to the 

participant’s knee extension increased the perceptual effort of the exercise. At 80mmHg 

thigh-cuff pressure, the reported exertion scores corresponded to between ‘somewhat 

hard’ and ‘hard’ on the OMNI-RES worded headings. The pilot participant reported no 

pain throughout the four exercise sessions, suggesting that thigh the pressures up to 

80mmHg may increase only exercise-related discomfort and not pain due to tissue 
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compression. Whilst the participant never reached the pain cut-off value (≥ 40 out 101 on 

the numerical rating scale), it is possible that individuals with a smaller thigh mass (or less 

experience in differentiating pain from exercise-related discomfort) could register 

positive pain scores in the main study. The addition of extra testing sessions to investigate 

cuff pressures greater beyond 80mmHg may have also discouraged individuals from 

volunteering, or increased the risk of them withdrawing, due to having to attend 5+ 

appointments. In light of this, the testing protocol remained at four appointments/testing 

sessions (0/40/60/80mmHg). 

 

5.4.5 Conclusions 

This study looked to pilot the suitability of a BfRT protocol for use in the main Phase II 

study. Both objectives of the pilot study were met. The protocol demonstrated numerical 

differences in vastus lateralis muscle SmO₂ and haemoglobin levels between exercise 

sessions completed with or without the application of thigh-cuff pressures up to 

80mmHg. At 60-80mmHg, pilot results appear to indicate that this degree of cuff pressure 

was adequate to reduced popliteal arterial blood flow by approximately 50%. ‘No-load’ 

BfRT sessions were also demonstrated to be safe and tolerable at these cuff pressures. In 

consideration of the pilot study findings, no changes were made to the testing protocol in 

advance of the main Phase II study. 

 

5.5 Phase II Main Study  

5.5.1 Main Study Objectives 

1. To observe and examine the acute haemodynamic and perceptual responses to a 

‘no-load’ knee exercise upon a cohort of individuals, both with and without BfR 

applied. 
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2. To determine whether the magnitude of these acute responses are associated 

with the amount of thigh-cuff pressure applied and/or the physical characteristics 

of individuals within the cohort. 

 

5.5.2 Hypotheses 

H0 – The addition of lower-limb BfR to a ‘no-load’ knee extension exercise will produce no 

significant change in the acute metabolic demand or perceptual response of the exercise. 

H1 - The addition of lower-limb BfR to a ‘no-load’ knee extension exercise will produce a 

significant change in the acute metabolic demand or perceptual response of the exercise. 

 

5.5.3 Methods and Statistical Analysis 

Healthy males and female volunteers were recruited as described in chapter 3.2. 

Volunteers completed the bespoke health screening questionnaire and provided 

informed consent prior to their participation. Upon arrival at the testing location, 

anthropometric measurements of height, weight, supine brachial blood pressure and leg 

dimensions were taken (chapter 3.3.1). A Habitual Activity Questionnaire (Baecke et al, 

1982) was completed by each participant to acquire a measure of physical activity levels 

over the previous twelve months (chapter 3.3.3.5). The lower-limb to undergo all four 

exercise sessions was allocated by way of a Microsoft Excel Macro. 

 

5.5.3.1 Exercise Session Methodology 

At each exercise session, participants were taken to the same temperature-regulated 

room and fitted with a 21cm-wide thigh blood-pressure cuff [MDF2090471; MDF 

Instruments®, California, USA] in standing, situated as high on the upper thigh as possible 

without contacting the groin (Figure 3.3.1). The protocol of the exercise session then 
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proceeded in an identical fashion to the pilot study, already reported in chapter 5.4.2, 

page 161.  

 

5.5.3.2 The Degree of Lower-Limb Blood-flow Restriction Applied 

The percentage of popliteal arterial blood-flow remaining [%PBfR] following the 

application of a thigh-cuff pressure was calculated for each appointment for each 

participant (Figure 3.3.11). During the control session, it was expected that blood-flow 

should remain stable, giving a %PBFR of approximately 100%. 

 

5.5.3.3 The Acute Metabolic Demand of the Knee Exercise 

For each appointment, the raw values recorded for HR, SmO₂, tHb and HHb during the 

three-minute baseline period were collated and mean values calculated for each variable. 

This process was repeated for HR, SmO₂, tHb and HHb measurements recorded during 

the exercise session itself. Mean values recorded during the exercise were then 

subtracted from mean values taken during the baseline period, to provide a direction and 

magnitude of exercise-related change in each variable. Statistical analysis by way of 

repeated-measures ANOVA determined whether the addition of thigh-cuff pressures 

during the un-resisted knee exercise had a significant acute effect upon acute metabolic 

demand, indicated via HR, SmO₂ or HHb. Statistical differences in tHb between thigh-cuff 

pressures would indicate whether any acute haemodynamic changes in vastus lateralis 

muscle blood volume were generated by BfR.   

 

5.5.3.4 Subjective Responses 

For each exercise session, the perceived exertion and pain scores recorded during the 

three exercise sets were collated and a mean score calculated for ‘session-RPE’ and 
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‘session-pain’. Statistical analysis by way of repeated-measures determined whether 

thigh-cuff pressure had a significant effect upon ‘session-RPE’ and ‘session-pain’. 

Perceived exertion and pain scores for each exercise set were also reviewed to determine 

whether thigh-cuff pressure had a significant effect upon ‘within-set RPE’ and ‘within-set 

pain’. 

 

5.5.3.5 Associations with Physical Characteristics 

Bivariate correlational analysis was performed to indicate whether associations existed 

between the anthropometric measurements taken from participants and the %PBfR 

experienced at each of the four thigh-cuff pressures. Associations between 

anthropometric measurements and the magnitude of change in HR, SmO₂, tHb and HHb 

during each testing session were also reviewed. A priori analysis using G*Power (Faul et 

al, 2017) suggested that sixteen participants provided adequate statistical power (1-β > 

0.80) to detect bivariate correlations with an r value of > 0.60, using a two-tailed p value 

of 0.05. 

 

5.5.4 Results 

Sixteen participants (n=9 male, n=7 female) completed all four exercise sessions without 

the occurrence of adverse or unexpected events; Age 32.8 ± 4.3 years, Height 173.2 ± 

9.7cm; Weight 76.4 ± 16.7kg; BMI 25.2 ± 3.9 kg/m². Participants’ Habitual Physical Activity 

score, via the Baecke Questionnaire, ranged from 5.9 to 11.9 out of 15 (mean 8.9 ± 1.68). 

Data was obtained for SmO₂, tHb, HHb and RPE for all sixty-four test sessions. Heart rate 

data was missing for six out of the sixty-four test sessions. During four of these sessions, a 

consistent HR signal could not be acquired despite repositioning or interchanging of the 

participant’s heart rate strap. Post-session data corruption resulted in the loss of HR data 
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in the remaining two sessions. Ultimately, full HR data was available for twelve 

participants. Mean lab temperature across appointments was 22.8 ± 0.9° Celsius. Data are 

presented as mean ± standard deviation unless otherwise stated. Statistical significance 

was set a p ≤ 0.05. 

 

5.5.4.1 The Degree of Lower-Limb Blood-flow Restriction Applied  

Compared to a 100% baseline, 40mmHg of thigh-cuff pressure induced a %PBfR of 73.1 (± 

14.3), 60mmHg induced 61.1 (± 14.9) and 80mmHg induced 47.6 (± 8.8). At 0mmHg thigh-

cuff pressure, the two blood flow readings were similar, producing a %PBfR value of 108.5 

± 18.8%.  

 

A one-way repeated measures ANOVA was conducted to determine any statistically 

significant within-subject difference in %PBfR values recorded across the four cuff 

pressure conditions. There were no outliers in the data, assessed by visual inspection of a 

boxplot. %PBfR values were normally distributed, as assessed by Shapiro-Wilk's test (p > 

0.05). Mauchly's test of sphericity indicated that the assumption of sphericity had not 

been violated, χ2(5) = 4.559, p = 0.473. %PBfR values during the exercise intervention 

were different across the four cuff pressure conditions, to a statistically significant level; 

F(3, 45) = 81.659, p < 0.0001, partial η2 0.845. Post hoc analysis with a Bonferroni 

adjustment revealed that %PBfR values were statistically different between every cuff 

pressure combination (p ≤ 0.008), with the exception of 40mmHg vs. 60mmHg (p = 0.09). 

 

5.5.4.2 The Acute Metabolic Demand of the Knee Exercise 

Resting (baseline) mean values for each haemodynamic variable are shown in Table 5.5.1 

for the cohort.  
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Table 5.5.1. Resting [baseline] haemodynamic mean values for the Phase II 
cohort [n=16]. 

 

Vastus 

Lateralis 

SmO₂ 

(%) 

Vastus 

Lateralis 

tHb 

(g/dL) 

Vastus 

Lateralis 

HHb 

(g/dL) 

Heart 

Rate 

(bpm) 

Popliteal Blood-

Flow (ml/min) 

Mean 66.78 11.95 4.04 75.08 42.57 

Std. Deviation 12.14 0.44 1.49 11.34 20.24 

 

SmO₂ 

Cohort SmO₂ within the vastus lateralis muscle at rest was similar to that reported within 

other literature utilising different NIRS devices (Downs et al 2014; Karabulut et al, 2014; 

Kennedy et al, 2006; Miyamoto et al, 2013). Compared to baseline, vastus lateralis SmO₂ 

increased by a mean of 6.01 ± 6.40 points. during the control exercise session at 0mmHg 

cuff pressure. At other cuff pressures, vastus lateralis SmO₂ decreased during the exercise 

compared to baseline (40mmHg; -1.28 ± 5.03; 60mmHg; -7.22 ± 7.39; 80mmHg; -12.74 ± 

6.81). 

 

A one-way repeated measures ANOVA was conducted to determine whether a 

statistically significant within-subject difference existed in SmO₂ across the four exercise 

sessions. There were no outliers in the data, as assessed by inspection of a boxplot. SmO₂ 

values were normally distributed, as assessed by Shapiro-Wilk's test (p > 0.05). Mauchly's 

test of sphericity indicated that the assumption of sphericity had not been violated, χ2(5) 

= 3.716, p = 0.592. SmO₂ was different across the four exercise sessions to a statistically 

significant level; F(3, 45) = 42.464, p < 0.0001, partial η2 0.739. Post hoc analysis with a 

Bonferroni adjustment revealed that SmO₂ values during exercise were statistically 

different between all cuff pressures combinations (p ≤ 0.033). 
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Second-by-second changes to SmO₂ during exercise sessions at each thigh-cuff pressure, 

compared to resting baselines, are plotted visually in Figure 5.5.2. 

 
Figure 5.5.2. Changes in cohort vastus lateralis SmO₂ values during the Phase II study 
exercise protocol performed at different thigh-cuff inflation pressures. Mean values are 
displayed. Whiskers represent standard deviations. Where positive cuff pressure was 
applied, thigh cuff began inflation at 180 seconds and was deflated at 600 seconds. 

 

Cohort tHb 

Compared to baseline, vastus lateralis tHb decreased during the knee extension exercise 

performed under 0mmHg and 40mmHg cuff pressure. Vastus lateralis tHb increased 

during the knee extension exercise performed under 60mmHg and 80mmHg cuff pressure 

(Table 5.5.2).  
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Table 5.5.2. Phase II cohort changes in vastus lateralis tHb during un-resisted knee 
exercise at different thigh-cuff inflation pressures. 

  0mmHg 40mmHg 60mmHg 80mmHg 

Median -0.11 -0.01 0.07 0.20 

Range 0.44 0.34 0.58 0.56 

Mean -0.11 -0.02 0.10 0.22 

Std. Deviation 0.09 0.10 0.15 0.15 
 

 

There were three outliers in tHb data for 0mmHg cuff pressure, as assessed by inspection 

of a boxplot. Therefore, the non-parametric Friedman test was run in place of a one-way 

repeated measures ANOVA to determine any statistical difference in tHb median values 

during the four exercise sessions. Vastus lateralis tHb during the exercise was statistically 

significantly across the four cuff pressure conditions, χ2(3) = 30.225, p < 0.001. Pairwise 

comparisons were performed with a Bonferroni correction for multiple comparisons. 

Statistical significance was not seen at 0mmHg vs. 40mmHg, 40mmHg vs. 60mmHg or 

60mmHg vs. 80mmHg, (p ≥ 0.240). Statistical significance was seen all other cuff pressure 

comparisons (p ≤ 0.01). Second-by-second changes to tHb during exercise sessions at 

each thigh-cuff pressure are plotted visually in Figure 5.5.3. 
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Figure 5.5.3. Changes in cohort vastus lateralis tHb across the Phase II study exercise 
protocol performed at different thigh-cuff inflation pressures. Mean values are 
displayed. Whiskers represent standard deviations. Where positive cuff pressure was 
applied, the thigh cuff began inflation at 180 seconds and was deflated at 600 seconds. 

 

Cohort HHb 

Data are mean (± standard deviation). Compared to baseline, vastus lateralis HHb 

decreased during the knee extension exercise performed under 0mmHg cuff pressure;  

-0.75 g/dL (± 0.77). At all other cuff pressures, vastus lateralis HHb increased during 

exercise compared to baselines [40mmHg; 0.15 (± 0.61) g/dL, 60mmHg; 0.91 (± 0.90) 

g/dL, 80mmHg; 1.64 (± 0.85) g/dL)]. 

 

A one-way repeated measures ANOVA was conducted to determine any statistically 

significant difference in HHb values recorded during the four exercise sessions. There 
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were no outliers in the data, as assessed by inspection of a boxplot. HHb values were 

normally distributed, as assessed by Shapiro-Wilk's test (p > 0.05). Mauchly's test of 

sphericity indicated that the assumption of sphericity had not been violated, χ2(5) = 3.524, 

p = 0.621. HHb values during the exercise intervention were statistically significantly 

different across the different cuff pressure conditions, F(3, 45) = 47.400, p < 0.0001, 

partial η2 0.760). Post hoc analysis with a Bonferroni adjustment revealed that HHb values 

during exercise were statistically different between all four cuff pressures conditions (p ≤ 

0.020). Second-by-second changes to HHb during exercise sessions at each thigh-cuff 

pressure are plotted visually in Figure 5.5.4. 

 

 
Figure 5.5.4. Changes in cohort vastus lateralis HHb across the Phase II study exercise 
protocol performed at different thigh-cuff inflation pressures. Mean values are 
displayed. Whiskers represent standard deviations. Where positive cuff pressure was 
applied, the thigh cuff began inflation at 180 seconds and was deflated at 600 seconds. 
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Cohort Heart Rate 

Compared to baselines, heart rate increased slightly during all exercise sessions; 0mmHg 

3.6 ± 2.8 beats per minute, 40mmHg 3.1 ± 2.5, 60mmHg 1.8 ± 2.7; 80mmHg 3.2 ± 3.7. 

 

A one-way repeated measures ANOVA was conducted to determine any statistically 

significant difference in heart rate values recorded during the four exercise sessions. 

There were no outliers in HR data, as assessed by inspection of a boxplot. Heart values 

were normally distributed, as assessed by Shapiro-Wilk's test (p > 0.05). Mauchly's test of 

sphericity indicated that the assumption of sphericity had not been violated, χ2(5) = 7.173, 

p = 0.210. HR change during exercise was not statistically significantly different across the 

four cuff pressure conditions, F(3, 33) = 1.013, p = 0.399, partial η2 0.084). Second-by-

second changes to HR recorded during exercise sessions for each thigh-cuff pressure are 

plotted visually in Figure 5.5.5. 
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Figure 5.5.5. Changes in cohort heart rate across the Phase II study exercise protocol 
performed at different thigh-cuff inflation pressures. Mean values are displayed. 
Whiskers represent standard deviations. Where positive cuff pressure was applied, the 
thigh cuff began inflation at 180 seconds and was deflated at 600 seconds. 

 

5.5.4.3 Subjective Responses 

The rate of perceived exertion recorded for each exercise session [session RPE], reported 

via the OMNI-RES, tended to increase in the cohort as greater thigh-cuff pressure was 

added (Table 5.5.3).  

Table 5.5.3. Session OMNI-RES* scores reported during un-resisted knee exercise at 
different thigh-cuff inflation pressures. 

 0mmHg 40mmHg 60mmHg 80mmHg 

Median 2.0 2.8 3.5 4.8 

Range 4.3 4.7 6.7 6.3 

Mean 2.1 2.7 3.7 4.8 

Std. Deviation 1.3 1.1 1.5 1.5 

* The OMNI-RES Scale is scored between 0 and 10. 
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There were outliers in session RPE data at 60mmHg and 80mmHg thigh-cuff pressures, as 

assessed by inspection of a boxplot; one participant reported unusually low RPE scores 

during these sessions. Therefore, the non-parametric Friedman test was run in place of a 

one-way repeated measures ANOVA to determine any statistical difference in session-RPE 

median values across the four exercise sessions. Session RPE was statistically different 

across the four cuff pressure conditions, χ2(3) = 35.837, p < 0.001. Pairwise comparisons 

were performed with a Bonferroni correction for multiple comparisons. Statistical 

significance was not seen when comparing session RPE at 0mmHg vs. 40mmHg, 40mmHg 

vs. 60mmHg or 60mmHg vs. 80mmHg, (p ≥ 0.120). Statistical significance was seen when 

comparing session RPE at all other cuff pressure combinations (p ≤ 0.037). 

 

The rate of perceived exertion recorded for each exercise set (within-set RPE) numerically 

increased as thigh-cuff pressure was increased. There were outliers among the within-set 

RPE data across all three exercise sets. Therefore, a Kruskal-Wallis H test was performed 

for each exercise set, to determine whether within-set RPE differed significantly for each 

thigh-cuff pressure. Distributions of within-set RPE were statistically different between 

cuff pressures (Set 1, χ2(3) = 25.346, p < 0.001; Set 2, χ2(3) = 22.903, p < 0.001; Set 2, χ2(3) 

= 18.703, p < 0.001). Pairwise comparisons were performed with a Bonferroni correction. 

Statistical differences of within-set RPE were evident when comparing 0mmHg vs. 

60mmHg during exercise set 1 (p < 0.007). Statistical differences were also seen when 

comparing 0mmHg vs. 80mmHg (p ≤ 0.005) and 40mmHg vs. 80mmHg (p ≤ 0.005) across 

all three exercise sets. All other comparisons were not statistically significant (p ≥ 0.122). 

 

5.5.4.3 Association with Physical Characteristics 

Data for each measured physical characteristic were assessed for outliers and normal 
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distribution by visual inspection of boxplots and Shapiro-Wilk tests respectively. No 

significant outliers were present. Only diastolic blood pressure displayed a non-normal 

distribution (Shapiro-Wilks p = 0.017). Data for %PBfR, session SmO₂, session tHb and 

session HHb for each cuff pressure (0-80mmHg) were also reviewed. Only tHb during the 

control session showed outliers and a non-normal distribution (Shapiro-Wilks p = 0.44). 

Finally, values for the average change recorded for %PBfR, SmO₂, tHb, and HHb for each 

participant over the 3 sessions in which positive cuff pressure was applied were reviewed. 

These are denoted %PBfR3, SmO₂3, tHb3, and HHb3. No outliers were present. Normal 

distributions of data were evident throughout (Shapiro-Wilks p ≥ 0.191). Bivariate 

correlations between physical characteristics and all other stated variables were then 

assessed by way of Pearson’s correlation or Spearman’s Rank as appropriate. 

 

Physical Characteristics and their Relationship to %PBfR 

At each individual cuff pressure (0-80mmHg), bivariate correlations between physical 

characteristics and %PBfR were infrequent. Whilst, Body Mass Index showed statistical 

significance at 60mmHg cuff pressure (Pearson r = 0.593, p = 0.015) and near-significance 

at 80mmHg (Pearson r = 0.446, p = 0.083), the study was underpowered to robustly 

detect correlations with an r value < 0.60. This was also the case with thigh length at 

40mmHg (Pearson r = 0.530, p = 0.035). %PBfR was not significantly correlated with 

physical characteristics at any other cuff pressures. 

 

There was a statistically significant bivariate correlation between %PBfR3 and Body Mass 

Index (Pearson r = 0.606, p = 0.013). A review of the scatterplot for this correlation 

showed that one data point may have exerted a high influence upon the Pearson r value 



185 
 

(Figure 5.5.6). Re-analysis without this data point produced a non-significant correlation 

(Pearson r = 0.461, p = 0.084). 

 

Figure 5.5.6. A scatterplot showing the bivariate association between Body Mass Index 
and mean %PBfR experienced over the three BfRT sessions. The outlying data point is 
shown in solid black. 

 

Physical Characteristics and their Relationship to SmO₂ / tHb / HHb 

During the control exercise session at 0mmHg, no statistically-significant bivariate 

correlations existed between any measured physical characteristic and SmO₂, tHb or HHb. 

During the sessions performed at each cuff pressure, bivariate inverse correlations were 

seen at 40mmHg (Pearson r = -0.778, p < 0.001), 60mmHg (Pearson r -0.604, p = 0.013) 

and 80mmHg (Pearson r -0.618, p < 0.011) for HHb vs. Body Mass Index. Correlations of 

similar strength were seen for body weight vs. HHb at 40mmHg and 60mmHg, and for 

thigh circumference vs. HHb at 40mmHg (Appendix IVc). These correlational findings were 

largely replicated for SmO₂ values versus physical characteristics (Appendix IVa). This is 
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understandable as SmO₂ is highly influenced by HHb, the former being partly a function of 

the latter. Other statistically significant correlations were found (two-tailed p value 

≤0.05), however this study was underpowered to detect these robustly. There were 

significant inverse correlations between HHb3 and body weight (Pearson r = -0.731, p = 

0.001), HHb3 and Body Mass Index (Pearson r = -0.794 p < 0.001) and HHb3 and thigh 

circumference (Pearson r = -0.695, p = 0.003). Very similar correlations were seen 

between SmO₂3 and the same physical characteristics (Appendix IVd). 

 

5.5.5 Discussion 

5.5.5.1 The Degree of Lower-Limb Blood-flow Restriction Applied 

At rest, blood flow within the popliteal artery was slightly lower compared to the Phase I 

cohort (Mean; 42.57 ± 20.24 ml/min vs. 67.62 ± 40.24 ml/min. Median; 36.60 ml/min vs. 

53.10 ml/min). This is understandable, as from Phase I results it is known that popliteal 

blood flow at rest was positively correlated with physical characteristics of size. 

Comparison of the two cohorts’ physical characteristics shows that Phase II participants 

tended to be smaller in mass (Table 5.5.4), and this could explain the lower popliteal 

blood-flow. There was no significant correlation between resting popliteal blood flow and 

physical characteristics in the Phase II cohort itself. However, cohort size was 

comparatively small (n=16) compared to the Phase I cohort (n=61). It may be that an 

insufficient number of Phase II participants were tested to elucidate these correlations. 

 

%PBfR values decreased within the cohort as the thigh-cuff pressure employed during 

exercise sessions was increased. However, %PBfR values were slightly lower than those 

seen during the Phase I study (40mmHg; 73.1% vs. 81.6%, 60mmHg; 61.1% vs. 68.2%, 

80mmHg; 47.6% vs. 56.9%). In real terms, the between-cohort differences in %PBfR at 
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each cuff pressure equate to only a few millimetres of popliteal blood flow per minute. 

Whether these differences would be nullified if additional Phase II participants were 

tested is unknown. 

Table 5.5.4. A comparison of physical characteristics between the Phase I and Phase II 
study cohorts. 

 
Height [cm] Weight [kg] Body Mass Index 

 Phase I Phase II Phase I Phase II Phase I Phase II 

Median 177.8 175.3 84.2 78.1 26.2 24.3 

Min Value 148.8 158.4 52.7 53.4 19.5 19.5 

Max Value 198.3 186.7 113.3 103.1 32.1 34.7 

Range 50.0 28.3 60.7 49.7 12.6 15.3 

Mean 177.8 173.2 81.5 76.4 25.5 25.2 

 

 

5.5.5.2 The Acute Metabolic Demand of the Knee Exercise 

To understand how the addition of lower-limb BfR to the un-resisted knee exercise 

affected SmO₂ (Figure 5.5.2), tHb (Figure 5.5.3) and HHb (Figure 5.5.4) of the vastus 

lateralis muscle, the change in these variables during the control session (0mmHg cuff 

pressure) will first be discussed. 

 

Following the baseline resting period (0-180 seconds), tHb, HHb remained stable between 

180 and 239 seconds. SmO₂ also remained unchanged, itself being a function of tHb and 

HHb. Stability of these three variables was expected, as the cuff remained deflated and 

no active movement was performed during this period. Therefore, homeostasis would 

have been maintained within the lower-limb. At the onset of the first exercise set (240-

260 seconds) a decrease in tHb and HHb occurred, more so in HHb, leading to an initial 

increase in SmO₂ compared to baseline. The action of concentric quadriceps contractions 

would have compressed the venous vasculature of the whole thigh, creating a muscle-
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pump effect that propelled blood towards the femoral vein and ultimately the heart 

(Sarelius and Pohl, 2010). Within the vastus lateralis itself, increased intramuscular 

pressure would have mechanically hindered arterial inflow by compression of 

microvasculature (Rådegran and Saltin, 1998). As the foot was lowered to the floor 

eccentrically, the vastus lateralis would have been re-perfused with oxygenated blood as 

intramuscular pressure reduced. A fast vasodilator response would have further 

increased local tissue perfusion (Korthius, 2011). The combined effects of the muscular 

pump and the fast vasodilation response would have increased blood flow rates through 

the vastus lateralis, increasing oxygen delivery rate above that of oxygen extraction and 

resulting in the early increase of vastus lateralis SmO₂. As the quadriceps would have 

been under an amount mechanical tension in both the concentric and eccentric phase of 

the exercise, a degree of extravascular compression would have been present throughout 

the majority of each exercise repetition. It could be suggested that this enhanced venous 

return and would explain why the rate of blood flow through the vastus lateralis may 

have increased, but the actual mass of blood contained within the muscle decreased.  

 

As the exercise continued (261-299 seconds), the decrease in tHb slowed whilst HHb 

stabilised, preventing a further increase in vastus lateralis SmO₂. During this period, a 

degree of metabolite accumulation would have likely lowered the partial of pressure of 

oxygen within the exercising muscle tissue (Korthius et al, 2011). Oxygen demand of the 

active muscle tissue would have also risen to generate sufficient ATP to continue 

muscular contractions (Chiras, 2013). Oxygen diffusion across, and extraction from 

arterioles would have therefore increased. It could be suggested that blood flow and thus 

oxygen delivery to the vastus lateralis was still sufficient to meet oxygen demand, which 

is why stabilisation of SmO₂ occurred during this period rather than further SmO₂ 
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reduction. 

 

Upon completion of the first exercise set and the subsequent rest period (300-359 

seconds), tHb, HHb and SmO₂ began returning to baseline levels. Oxygen demand within 

the vastus lateralis muscle would have decreased with a concomitant reduction in the 

concentration of metabolites, leading to reduced oxygen extraction rates, displayed as 

falling HHb and rising SmO₂ levels. Absence of the muscular pump would have likely 

reduced venous return through the lower-limb, leading to a temporal slowing of blood-

flow clearance from the muscle tissue and a return of tHb to near-baseline levels.  

 

Throughout the remaining exercise and rest periods, the haemodynamic patterns were 

repeated. It is important to note the lack of HHb build-up throughout this control session. 

In fact, HHb during the actual exercise session (240-600 seconds) appeared to decrease 

compared to baseline (-0.75 ± 0.77 g/dL) contributing to an overall increase in SmO₂ (6.01 

± 6.40%). This may indicate that the conventional un-resisted exercise session caused 

minimal disruption to the homeostasis of the vastus lateralis muscle tissue. Oxygen 

demand matched oxygen delivery through the auto-regulation of lower-limb blood flow 

and tissue perfusion, leading to a negligible metabolic disturbance. Without these 

disturbances, such as the tissue hypoxia and lactate accumulation seen during high-

intensity knee extensions (Tanimoto and Ishii, 2006), exercise-induced metabolic stress to 

quadriceps muscle tissue may have been minimal.  

 

In contrast to the ‘no-load’ exercise performed without BfR, the addition of thigh-cuff 

pressure altered haemodynamics within the lower-limb during exercise sessions. At the 

onset of cuff inflation (180-209 seconds) and the maintenance of the target cuff pressure 
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before the exercise began (210-239 seconds), vastus lateralis tHb increased. As described 

in chapter four, narrowing of large lower-limb veins at rest can occur with a little as 

19mmHg extravascular pressure (Mosti et al, 2009). The extravascular compression 

created proximally by the thigh cuff would have compressed venous vasculature within 

the thigh, leading to venous congestion and a build-up of blood within the distal vastus 

lateralis. HHb also increased slightly during this time. It could be suggested that the 

oxygen extraction rate of the vastus lateralis remained stable, but the rate of blood-flow 

through the muscle slowed. More oxygen had to be extracted per unit of blood, leading 

to a slow drop in SmO₂ within the sampled muscle tissue. These effects appeared to be 

amplified as the thigh-cuff pressure was increased (Figure 5.5.2) (Repeated measures 

ANOVA; main effect of cuff pressure between 210-239 seconds upon tHb, p < 0.0001), but 

the difference in the rate and extent of tHb increase between 60mmHg and 80mmHg cuff 

pressure was not significant (post-hoc Bonferroni with adjustment for multiple 

comparisons, p = 1.00).  

 

Other evidence has demonstrated that 50-60mmHg of external calf compression was 

sufficient to fully collapse the saphenous vein and posterior tibial vein within participants 

in a resting seated position (Partsch and Partsch, 2005). It may be that 60mmHg of thigh-

cuff pressure was sufficient to achieve venous closure in the femoral vein during the 

current study, and would explain why 80mmHg did not further amplify the increase of 

tHb in the period prior to the first exercise set. However, further research would need to 

quantify venous closure via MRI scans or Doppler ultrasound of the femoral artery 

proximal to the thigh cuff. 

At the onset of the first exercise set (240-260 seconds) both tHb and HHb decreased in a 

similar way to that seen during exercise without BfR. This occurred at all cuff pressures, 
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despite venous occlusion caused proximally by the thigh cuff. This suggests that the 

muscular pump effect overcame the extravascular pressure exerted proximally and still 

generate venous outflow during active exercise. During the remainder of the exercise set 

(261-299 seconds) tHb continued to decrease and then stabilise, whilst HHb began to 

increase. Again, in a way similar to that seen during the control session.  

 

During the first rest period (300-359 seconds), tHb and HHb both increased, more so with 

HHb, leading to a continuing drop in SmO₂ despite the cessation of active muscle 

contractions. Absence of the muscular pump likely led to a state of venous restriction or 

occlusion proximally, impeding venous outflow from lower-limb and musculature distal to 

the cuff, including the vastus lateralis. Oxygen extraction per unit of blood passing 

through the sampled muscle tissue then had to increase, leading to a progressive increase 

in HHb and a drop in SmO₂. These haemodynamic patterns were then replicated during 

the remaining exercise and rest periods (360-600 seconds).  

 

In summary, addition of BfR at thigh pressures of 60-80mmHg caused a build-up of HHb 

and reduction of SmO₂ within the exercising vastus lateralis; an effect that was absent 

from the control session and negligible at 40mmHg cuff pressure. Indeed, reductions in 

SmO₂ and increases in HHb are associated with the need for anaerobic respiration and 

lactate accumulation within exercising lower-limb musculature (Miura et al, 2000; 

Tanimoto and Ishii 2006). It could be proposed that increased HHb and reduced SmO₂ 

levels during BfR sessions at 60mmHg and 80mmHg indicated an increased metabolic 

demand within the vastus lateralis, compared to the control session performed at 

0mmHg cuff pressure. This was driven by the restriction of blood flow, and thus oxygen 

delivery, to contracting muscle fibres. Greater oxygen extraction from the blood that was 
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still available may have occurred to maintain the contraction of these active fibres, or to 

allow additional muscle fibres to take up this duty. Speculatively, this may have led to 

greater degrees of exercise-induced metabolic stress within the vastus lateralis overall, 

but further research would need to quantify this via measurements of blood lactate post-

exercise, for example. BfR at 80mmHg also raised tHB progressively above baseline across 

the exercise session, indicating the accumulation of blood within the muscle, as seen 

within other studies (Cayot et al, 2016; Ganesan et al, 2015). 

 

Heart Rate Response 

Heart rate tended to increase compared to baseline during the performance of each 

exercise set, with a subsequent return to baseline during each minute-long rest period. 

The magnitude and patterns of change in HR were visually similar for the cohort at each 

thigh-cuff pressure (Figure 5.5.6), with HR rarely increasing by more than 20 beats per 

minute during exercise. Combined with a lack of statistical within-subject differences in 

heart rate between the four exercise sessions, it could be suggested that adding BfR to 

the chosen ‘no-load’ knee exercise did not increase the systemic cardiovascular demand 

of the exercise session. 

 

5.5.5.3 Subjective Responses 

In this study, the low RPE scores reported during the control exercise session may reflect 

the minimal metabolic demand that this type of exercise appeared to generate. By adding 

BfR, within-subject RPE was increased as greater cuff pressures were employed, without 

the reporting of any pain. It could be reasonable to presume that the addition of BfR 

resulted in a greater degree of acute metabolic demand via mild hypoxia and some 

accumulation of hydrogen protons (de Frietas et al, 2017). In turn, free nerve endings 
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within muscle tissue were stimulated by a change in pH to a degree that raised perceived 

exertion (Mense, 2008). 

 

5.5.5.4 Associations with Physical Characteristics 

A trend was seen towards body mass, and possibly thigh mass (indicated via thigh 

circumference) being associated with the amount of HHb that accrues within the vastus 

lateralis during un-resisted knee extensions performed with BfR. Several explanations for 

this could be suggested. 

 

As cuff width was fixed at 21cm, smaller individuals would have experienced thigh-cuff 

compression across more of their thigh length than larger individuals, and had less soft 

tissue mass over which to dissipate this compression. Whilst thigh mass was not 

measured directly in Phase II to substantiate this, Phase I study data demonstrates that 

thigh circumference taken via tape measure is strongly, positively associated with leg 

mass (Pearson r = 0.890, p < 0.0001). Due to these potential differences in thigh mass, the 

superficial vasculature within and around the distal vastus lateralis may have been 

compressed to a greater degree within smaller individuals, with a greater degree of 

restriction of the proximally-situated femoral vein. This could have produced a 

comparatively greater slowing of blood through the vastus lateralis at rest in smaller 

individuals. More oxygen would have then been extracted per unit of blood passing 

through, or pooling within, the vastus lateralis. This may have amplified the magnitude by 

which HHb increased and SmO₂ dropped over the course of the entire exercise session. 

 

Larger individuals also had greater lean tissue mass within their lower-limb than smaller 

individuals. This can be demonstrated from Phase I study data, where lean leg mass 
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recorded via DXA was positively associated with thigh circumference taken by tape 

measure (Pearson r = 0.716, p < 0.0001) and Body Mass Index (Pearson r = 0.680, p < 

0.0001). As lean mass includes muscle tissue, larger individuals may have had a greater 

number of thigh muscle from which to draw from during the ‘no-load’ exercise. Thus, at 

such a low-intensity of exercise, larger Phase II individuals may have had to recruit a 

lower proportion of their available thigh muscle fibres to generate un-resisted knee 

extensions than smaller individuals, leading to comparatively lower oxygen uptake over 

the course of an exercise set. In addition, if less compressive force was generated by the 

cuff per cubic unit of thigh muscle in larger individuals, then the intravascular pressure 

generated by the contraction of thigh musculature distal to the cuff may have been better 

able to overcome the extravascular pressure exerted proximally by the cuff. This would 

have allowed a greater percentage of blood to exit the vastus lateralis (and the thigh as a 

whole) during exercise periods. Ultimately, better maintenance of blood throughput and 

reduced muscle fibre recruitment could have blunted the rise in HHb and drop in SmO₂ 

within larger individuals over the course of the entire exercise session.  

 

Initially, there was a significant bivariate correlation between the average %PBfR 

experienced by participants across the experiment’s three BfR session and Body Mass 

Index within the Phase II cohort (Pearson r = 0.606, p = 0.013). This was in direct contrast 

to the findings of the Phase I study, which demonstrated no significant correlation 

between average %PBfR and Body Mass Index (Pearson r = 0.226, p < 0.08). It is presumed 

that the strength of the correlation seen in the Phase II cohort was misleading as the data 

contained one highly-influential data point. The removal of which produced a non-

significant correlation (Pearson r = 0.461, p = 0.084). This is further substantiated by the 

absence of other physical characteristics displaying robust correlations with average 
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%PBfR, and the lack of Body Mass Index showing significant correlations with %PBfR 

recorded at each individual thigh-cuff pressure. It is possible that physical characteristics 

of mass have some minor association with the %PBfR experienced at rest, before 

exercise. Determining this, however, would take a substantial number of additional 

participants to elucidate.  

 

5.5.6 Study Strengths, Limitations and Future Research Directions  

The changes to tHb, HHb and SmO₂ seen in the distal vastus lateralis during BfR may not 

be indicative of what was occurring within quadriceps muscle tissue physically under 

compression by the thigh cuff. It was impossible to quantify this with the equipment 

used. It is known that tissue oxygenation of the vastus lateralis can vary depending upon 

the sampling location (Kennedy et al, 2006; Miyamoto et al, 2013). Work by Sjøgaard et al 

(1986) also found that variations in knee-extensor intramuscular pressure during 5% MVC 

knee-extensions was related to alternating recruitment of various parts of the knee-

extensors as the exercise progressed. This may induce heterogeneity in blood flow and 

oxygenation within and among each contracting quadricep, further complicating matters 

in respect of repeatable measurements. Further studies could modify the thigh cuff to 

incorporate a transparent window may allow NIRS to be used to detect changes to tHb, 

HHb and SmO₂ under the cuff itself. This could be combined with the use of additional 

NIRS monitors (placed on the vastus medialis, gastrocnemius or hamstrings for example) 

to address and further investigate variations in lower-limb tissue oxygenation during 

exercise, both with and without BfR. 

 

The order in which cuff pressures were delivered were not randomised. To the author’s 

knowledge, the blood-pressure cuff utilised within the Phase II study was wider than 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sj%C3%B8gaard%20G%5BAuthor%5D&cauthor=true&cauthor_uid=3788624
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restriction devices implemented within previous BfRT literature. A progressive, sequential 

increase in cuff pressure over several sessions was also common practice in Warrington 

Wolves Rugby League Club and implemented practically within longitudinal BfRT studies 

(Corvino et al, 2014; Iversen et al, 2015; Sakamaki et al, 2011; Takarada et al, 2000b). It 

therefore made ethical and clinically-relevant sense to introduce cuff pressures in 

increasing order, rather than randomly. It is acknowledged that this method may have 

potentially confounded RPE scores, due to participants becoming accommodated to 

blood-flow restricted exercise and thus diminishing the RPE scores reported at the higher 

cuff pressures. 

 

Further objective measures may have provided a more complete picture of the actual 

metabolic stress occurring during and after ‘no-load’ exercise sessions, both with and 

without BfR. Whilst drops in muscle tissue oxygenation of the vastus lateralis are related 

to an increase in lactate (Tanimoto and Ishii, 2006), the presence of lactate or other 

metabolites was not directly measured within the Phase II study. If the study were to be 

repeated, the measurement of post-exercise lactate levels via a blood sample may 

strengthen the proposed link between drops in tissue oxygenation during blood-flow 

restricted exercise and exercise-induced metabolic stress. LiBfRT has previously been 

shown to alter post-exercise gene expression, increasing muscle protein synthesis and 

causing inhibition of catabolic cellular signalling pathways (Fry et al, 2010; Fujita et al, 

2007; Laurentino et al, 2012). Therefore, the use of muscle biopsies to quantify whether 

this occurs following ‘no-load’ BfRT would be both favourable and warranted in future. 

 

Finally, modifying the training protocol in future research to increase cuff pressure 

beyond 80mmHg and/or increasing the duration of the exercise sets to achieve volitional 
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failure, may produce greater drops in tissue oxygenation and a greater magnitude of 

exercise-induced metabolic stress to occur during ‘no-load’ exercise. If this can be 

achieved within injured individuals particularly, the likelihood of the exercise generating a 

longitudinal attenuate of muscle strength and size loss during impaired weight-bearing 

periods may well be improved. 

 

5.5.7 Conclusions 

In summary, this study looked to observe and examine the acute haemodynamic and 

perceptual responses to a ‘no-load’ knee exercise upon a cohort of healthy individuals, 

both with and without BfR applied. The conventional ‘no-load’ knee exercise session 

appeared insufficient to produce drops in tissue oxygenation of the distal vastus lateralis. 

Arguably, this translates to the ineffectiveness of such an exercise to produce an acute, 

local metabolic stress within the exercising muscle of the tested population. However, 

adding BfR at thigh-cuff pressures of 60-80mmHg altered lower-limb haemodynamics and 

increased perceived exertion, whilst producing statistically-significant reductions in tissue 

oxygenation of the vastus lateralis across exercise and rest periods. Therefore, the null 

hypothesis of this study is rejected, and the alternative hypothesis is accepted.  

 

it is proposed that adding BfR to a ‘no-load’ lower-limb exercise increases the acute 

metabolic (and perceived) demands of the exercise, without the need to alter other 

parameters such as the addition of an external load. This proposal may be of significant 

importance to HCPs if this type of exercise can also produce a degree of metabolic stress 

that stimulates muscle protein synthesis or attenuates muscle protein degradation. ‘No-

load’ BfRT could be used as a treatment adjunct during lower-limb injury rehabilitation to 

attenuate muscle atrophy and strength loss during periods where resistance exercise is 
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contraindicated or impossible. During blood-flow restricted exercise, there may be an 

association between individuals’ physical characteristics of mass and the magnitude of 

change they experience in the chosen indicators of acute metabolic stress. This may 

indicate a need to modulate cuff pressure, delivering higher pressures to larger 

individuals, to achieve more consistent results across populations. Further research is 

recommended to directly measure the acute haemodynamic effect upon musculature 

directly under the thigh cuff, and the quantification of metabolic stress through methods 

additional to NIRS. 

 

The next chapter will discuss the implementation and outcomes of using ‘no-load’ BfRT 

within the rehabilitation programmes of a case series of athletes with lower-limb injuries.  
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CHAPTER SIX 
 

PHASE THREE 
The Application of Lower-limb BfRT among Injured 

Elite Rugby-League Players: A Real-world Case Series 

 

6.1 Chapter Introduction 

This chapter details the third phase of this doctoral research project, describing the 

implementation and outcomes of a pilot study involving one elite rugby-league player, 

followed by a subsequent case series of three players. Results have been accepted for 

presentation at the national Chartered Society of Physiotherapy conference 

(Physiotherapy UK) in November 2017. 

 

6.2 Phase III Aim 

To examine the haemodynamic, perceptual and physical responses to the application of 

lower-limb BfRT programmes among a case-series of participants recovering from a 

significant lower-limb musculoskeletal injury 

 

6.3. Phase III Pilot Study 

6.3.1 Pilot-specific Objectives 

To pilot the suitability of a BfRT protocol for use in the main Phase III study. Specifically; 

1. To observe whether changes in vastus lateralis muscle SmO₂, haemoglobin and 

heart rate levels could be detected during an unweighted knee extension exercise, 

if thigh-cuff pressures of up to 120mmHg were applied to an exercising lower-

limb. 
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2. To determine whether the exercise protocol described in chapter 3.5 is physically 

achievable under 120mmHg thigh-cuff pressure, without reaching the agreed cut-

off values for subjective levels of pain (≥ 40 out of 101). 

 

6.3.2 Methods 

The existing evidence-based BfRT protocol used among injured Warrington Wolves Rugby 

League Club players involved stepped increases in the degree and duration of BfR applied 

over several rehabilitation sessions (Table 6.3.1). A maximum thigh-cuff pressure of 

130mmHg was employed as existing evidence suggested that this was pressure was 

sufficient to interrupt the pulse within the tibial artery at rest (Laurentino et al, 2008). 

Thus, pressures higher than this may have had no additional occlusive effect upon 

players. Progression through the protocol was dependent upon injury status and the 

completion of the previous BfRT session without pain or indicators of potentially-adverse 

events (such as prolonged numbness or altered lower-limb sensation). Five minutes of 

BfR at the target cuff pressure, without exercise, also preceded each of the sessions 

described in Table 6.3.1. If this five-minute pre-session BfR period made the subsequent 

BfRT session too difficult to tolerate, it was moved to occur after the BfRT session instead. 

The parameters of the seated knee exercise used at the club were retained by the 

researcher and are described in chapter 3.5. The stepped nature of the BfRT protocol was 

also retained. Maximum cuff pressure was reduced from 130mmHg to 120mmHg to 

reduce the potential occurrence of full arterial occlusion, as full arterial occlusion is now 

considered to be unnecessary during BfRT (Laurentino et al, 2012; Pope et al, 2013). To 

further simplify the protocol, the five-minute period of resting BfR applied before or after 

the exercise session was abandoned. These revisions produced the BfRT pilot protocol 

described in Table 6.3.2. 
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Table 6.3.1. The existing stepped blood-flow restriction training protocol in place at 
Warrington Wolves Rugby League Club at the commencement of the project. 

Session 
Number 

Target Cuff 
Pressure 

Exercise 
Sets/Duration 

Inter-set Rest 
Period 

Cuff deflated 
between sets? 

1 100mmHg 3 x 1 minute 1 minute Yes 

2 100mmHg 3 x 1 minute 1 minute 
Yes, for 30 seconds 
of the rest period 

3 100mmHg 3 x 1 minute 1 minute 
Yes, for 30 seconds 
of the rest period 

4 130mmHg 3 x 1 minute 1 minute 
Yes, for 30 seconds 
of the rest period 

5+ 130mmHg 3 x 1 minute 1 minute No 

 

Table 6.3.2. The revised BfRT protocol used within the Phase III pilot study. 

Session 
Number 

Cuff 
Pressure 

Sets/Duration 
Inter-set Rest 

Period 
Cuff deflated 

between sets? 

1 0mmHg 3 x 1 minute 1 minute N/A 

2 100mmHg 3 x 1 minute 1 minute Yes 

3 100mmHg 3 x 1 minute 1 minute No 

4 120mmHg 3 x 1 minute 1 minute Yes 

5+ 120mmHg 3 x 1 minute 1 minute No 

 

Following informed consent and completion of the project’s health screening 

questionnaire, one professional male rugby player participated in the Phase III pilot study 

(age; 28.0 years, height; 1.87m, weight; 101.3kg). Whilst no acute lower-limb injuries 

were present, a left posterior cruciate ligament reconstruction and femoral condylar 

micro-fracture had been performed twenty-two weeks earlier, from which the player had 

recovered well. The player was due to undergo two separate shoulder arthroscopies in 

the weeks following recruitment into the pilot study, followed by appropriate upper limb 

rehabilitation programmes. 
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The player was selected despite the lack of an acute lower-limb injury due to being 

contraindicated from normal team training programmes for several weeks per upper-limb 

surgery. This allowed initial piloting of the lower-limb BfRT protocol within the context of 

a daily rehabilitation routine, without risking reoccurrence or exacerbation of an acute 

lower-limb injury. 

 

Before each exercise session the participant was fitted with a 21cm wide thigh-cuff 

[MDF2090471; MDF Instruments®, California, USA] around their upper thigh and seated 

in the test position described in chapter 3.3.2.  A near-infrared spectroscopy device [Moxy 

Monitor, Fortiori Design LLC; Minnesota, USA] was affixed to the right distal vastus 

lateralis to record microvascular tissue oxygenation [SmO₂], total haemoglobin mass [tHb] 

and deoxygenated haemoglobin mass [HHb]. A wireless heart rate monitor was affixed 

around the chest of the participant to record heart rate [HR]. The participant maintained 

the resting seated position for three minutes to obtain baseline values for vastus lateralis 

SmO₂, tHb, HHb and heart rate. The participant then completed three sets of the seated, 

unweighted, unilateral knee extension exercise as described in chapter 3.5. SmO₂, tHb, 

HHb and HR values were recorded continuously during the exercise and for four minutes 

after completion of the last exercise set. Immediately after each exercise set, any 

subjective pain experienced during the previous set was recorded via a numerical rating 

scale (Appendix Ic). Rate of perceived exertion for the previous set of exercise was 

recorded using the OMNI-RES scale (Appendix Ie). 

 

During the first exercise session the thigh cuff remained deflated. During all subsequent 

sessions, the thigh cuff was inflated to reach a preselected pressure (100 or 120mmHg) 

thirty seconds before the beginning of the first exercise set. The cuff was either deflated 
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during each inter-set rest period, or remained inflated throughout the whole exercise 

session, depending upon the session number (Table 6.3.2). 

 

6.3.3 Results 

All five exercise sessions were completed without adverse or unexpected events. Mean 

resting values for vastus lateralis SmO₂, tHb, HHb and HR across the pilot study are shown 

in Table 6.3.3. The coefficient of variation in resting vastus lateralis SmO₂, tHb, HHb and 

HR values for each of the four sessions are shown in Table 6.3.4. The mean change to 

vastus lateralis SmO₂, tHb, HHb and HR during each exercise session are shown in Table 

6.3.5. Second-by-second values for the outcome measures reported in Table 6.3.5 were 

plotted graphically to visualise between-session differences in regards to vastus lateralis 

SmO₂ (Figure 6.3.1), heart rate (Figure 6.3.2). Rates of perceived exertion for each 

exercise set are shown in Figure 6.3.3. The participant reported no pain during any 

exercise session. 

Table 6.3.3. Mean values recorded during the three-minute, pre-exercise baseline 
periods of the Phase III pilot study. 

Outcome Measure 
Mean 

Baseline 
Value 

Standard 
Deviation 

SmO₂ [%] 43.50 6.67 

Total Haemoglobin Mass [g/dL] 12.61 0.12 

Deoxygenated Haemoglobin Mass [g/dL] 5.96 0.90 

Heart Rate [Beats Per Minute] 66.45 3.38 
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Table 6.3.4. The coefficient of variation in values taken over each three-minute, pre-
exercise baseline period during the Phase III pilot study. 

Outcome Measure 
Coefficient of Variation % 

0mmHg 100mmHg 
IM 

120mmHg 
IM 

100mmHg 
C 

120mmHg 
C 

SmO₂ [%] 7.12 4.97 6.12 5.27 4.37 

Total Haemoglobin 
Mass [g/dL] 

0.20 0.23 0.19 0.18 0.32 

Deoxygenated 
Haemoglobin 
Mass [g/dL] 

3.99 4.04 5.34 3.10 4.67 

Heart Rate  
[Beats Per Minute] 

6.25 2.99 3.79 5.39 4.41 

C = Continuous BfR, IM = Intermittent BfR.  
 
 
Table 6.3.5. The mean change in outcome measure values over the course of each 
exercise session, compared to pre-exercise baseline values, during the Phase III pilot 
study. 

Outcome Measure 

Amount of Thigh-cuff Pressure Applied  
and Mode of Application 

0mmHg 100mmHg 
IM 

120mmHg 
IM 

100mmHg 
C 

120mmHg 
C 

SmO₂ [%] + 5.99 - 6.16 - 8.13 - 15.63 - 19.80 

Total Haemoglobin 
Mass [g/dL] 

- 0.05 + 0.15 + 0.25 + 0.30 + 0.42 

Deoxygenated 
Haemoglobin Mass 
[g/dL] 

- 0.79 + 0.87 + 1.17 + 2.22 + 2.78 

Heart Rate  
[Beats Per Minute] 

+ 0.88 + 0.31 + 1.92 + 4.61 + 6.19 

C = Continuous BfR, IM = Intermittent BfR. The ‘+’ and ‘-‘ symbols denote the direction of 
change compared to that session’s pre-exercise baseline period. 
 



205 
 

 

Figure 6.3.1. A graphical representation of in-session changes to vastus lateralis SmO₂ 
during the Phase III pilot study. The three-minute baseline period (0-180 seconds) is not 
shown. C = Continuous BfR, IM = Intermittent BfR. 
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Figure 6.3.2. A graphical representation of in-session changes to heart rate during the 
Phase III pilot study. The three-minute baseline period (0-180 seconds) is not shown. C = 
Continuous BfR, IM = Intermittent BfR. 
 
 

 

Figure 6.3.3. Set-by-set OMNI-RES scores recorded during exercise sessions of the Phase 
III pilot study. C = Continuous BfR, IM = Intermittent BfR. 
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6.3.4 Discussion 

The mean values recorded during pre-exercise baseline periods of the Phase III pilot were 

similar to those seen in the Phase II pilot in respect of vastus lateralis SmO₂, tHb, HHb and 

HR. The overall effect of applying continuous thigh-cuff pressure during unweighted knee 

extensions upon NIRS data, namely the direction of in-session change in SmO₂, tHb and 

HHb, is similar between the Phase II and III pilot participants. Thus, it could be proposed 

that the mechanisms generating these changes were also similar. However, the 

magnitudes of change in SmO2, tHb and HHb during exercise were higher in the Phase III 

participant at 100mmHg and 120mmHg compared to the Phase II participant at 60mmHg 

and 80mmHg.  

 

The rate of perceived exertion scores indicated that the addition of BfR to the 

participant’s knee extension increased the perceptual effort of the exercise. Despite the 

use of higher cuff pressures, the Phase III pilot participant tended to record lower 

perceived exertion scores than the Phase II pilot participant. This could arguably be due to 

differences in pilot participants’ occupations and typical training modalities providing 

different references of perceived exertion from which to base their scores. 

 

6.3.5 Conclusions and Protocol Adjustments 

This study looked to pilot the suitability of a BfRT protocol for use within the main Phase 

III study. The protocol demonstrated the ability to alter popliteal blood flow and vastus 

lateralis muscle SmO₂, tHb and HHb values across thigh-cuff pressures up to 120mmHg. 

Applying a stepped protocol consisting of intermittent or continuous lower-limb BfRT, in a 

very similar way to that previously applied by Warrington Wolves, did appear to induce 

progressively greater exercise-induced metabolic stress in this pilot participant, without 
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changing the parameters of the exercise itself. The BfRT sessions were demonstrated to 

be safe and tolerable.  

 

In consideration of the pilot study findings, only one adjustment was made in advance of 

the main study. Of the protocol shown in Table 6.3.5, session 3 (100mmHg applied 

continuously) appeared to produce greater changes in SmO₂, tHb and HHb than session 4 

(120mmHg applied intermittently). Therefore, these sessions were swapped to ensure 

that other participants experienced a more consistent increase in session-difficulty as 

they progressed through the protocol. 

 

6.4 Phase III Main Study 

6.4.1 Main Study Objectives 

1. To examine the acute haemodynamic and perceptual responses to four different 

grades of lower-limb BfR, applied during an unweighted ‘no load’ knee exercise. 

2. To document longitudinal changes to thigh girth and subjective function during 

the application of rehabilitation programmes incorporating lower-limb BfRT. 

 

6.4.2 Methods 

The CARE reporting guidelines for case reports were consulted, to aide completeness and 

transparency of reporting across this case series (Riley et al, 2017).  Following informed 

consent, three male elite rugby-league players agreed to incorporate lower-limb BfRT into 

their injury rehabilitation programmes. Players were screened using the bespoke Health 

and Eligibility Questionnaire (Appendix Ia). Consultation with the Club’s performance 

team was also undertaken to ensure the use of BfRT was not contraindicated. Each player 
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had experienced a unilateral, lower-limb musculoskeletal injury within the last thirty days 

which continued to prevent normal training their ability to fully weight bear. 

Every exercise session consisted of three sets of unweighted, seated, unilateral knee 

extensions whilst sat upon a height-adjustable plinth (chapter 3.5). The order in which 

each leg was trained (injured or uninjured) was alternated at each session. The extent of 

BfR applied to the lower-limb was increased incrementally over several exercise sessions. 

This was achieved by modulating the amount of cuff pressure applied and whether the 

cuff was deflated during inter-set rest periods (Table 6.4.1). 

 
Table 6.4.1. The staged BfRT protocol used within the Phase III study. CON = Control,  
C = Continuous BfR, IM = Intermittent BfR. 

 

 

 

 

 

 

 

  

 

  

 

Upon completion of the fifth session without incident, players repeated this session four 

to five times per week until it was deemed that BfRT was no longer required. For 

example, upon the commencement of normal weight bearing and/or traditional low-

intensity resistance training. 

 

 

Session 
Number 

Session 
Code 

Thigh-cuff 
Pressure 
[mmHg] 

Number of 
Exercise 

Sets 

Inter-set 
Rest 

Period 

Thigh Cuff 
deflated 
between 

sets? 

1 CON 0 
3 x 1 

minute 
1 minute N/A 

2 100 IM 100 
3 x 1 

minute 
1 minute Yes 

3 100 C 100 
3 x 1 

minute 
1 minute No 

4 120 IM 120 
3 x 1 

minute 
1 minute Yes 

5 120 C 120 
3 x 1 

minute 
1 minute No 
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6.4.2.1 Lower-limb Measurements 

Thigh girth of both lower limbs were recorded at fortnightly intervals by the primary 

researcher. From a relaxed, supine position, a flexible tape measure was used to 

determine thigh girth at a point 40% distal from the ASIS to the superior pole of the 

patella, and from the widest portion of the vastus medialis oblique muscle. Each 

measurement was taken in triplicate to the nearest 0.5cm and a mean measurement then 

determined. Fortnightly mean measurements were used to monitor changes thigh girth 

between and within legs as an indicator of potential thigh-muscle atrophy (Lejkowski and 

Pajaczkowski, 2011). 

 

6.4.2.2 Haemodynamic Variables 

A near-infrared spectroscopy [NIRS] device [Moxy Monitor, Fortiori Design LLC; 

Minnesota, USA] was applied to the distal vastus lateralis of the leg to being trained prior 

to commencement of an exercise session (Figures 3.3.14 and 3.3.15, page 103). The NIRS 

device recorded tissue oxygen saturation percentage [SmO₂], total haemoglobin mass 

[tHb] and deoxygenated haemoglobin mass [HHb] within the vastus lateralis muscle. 

Heart rate [HR] was recorded via a wireless chest strap [Garmin International; Kansas, 

USA] fitted at the level of the participant’s xiphisternum. Before the knee exercise 

commenced, resting HR, SmO₂, tHb and HHb were continuously recorded over a three-

minute baseline period. Measurements of HR, SmO₂, tHb and HHb were then 

continuously recorded throughout the exercise and rest periods. Mean values recorded 

during the exercise were then subtracted from mean values taken during the baseline 

period, to provide a direction and magnitude of exercise-related change in each 

haemodynamic variable. 
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6.4.2.3 Subjective Outcome Measures 

Players were familiarised with a numerical rating scale to record pain [NRS Pain] 

(Appendix 1c) and the OMNI-RES scale (Roberston et al, 2003) to record rate of perceived 

exertion [RPE] (Appendix 1e) prior to each exercise session. NRS Pain and RPE scores were 

recorded by the player immediately after the completion of each exercise set. Scores 

were collated to provide mean and NRS Pain and RPE scores for each session listed in 

Table 6.4.1. To provide a subjective measure of lower-limb function, each player also 

completed a Lower Extremity Functional Scale [LEFS] (Binkley et al, 1999) at fortnightly 

intervals. 

 

6.4.3 Results 

6.4.3.1 Case One 

A player [age; 26.7 years, height; 185cm, weight 106.3kg] experienced a tibia and fibula 

fracture of the left leg during competitive match play. Surgical fixation was performed 

within twenty-four hours of the injury, followed by immobilisation of the limb via a rigid 

cast. The cast was removed one week post injury and replaced with a removable boot. 

Clot-prevention medication was administered daily for thirty days following surgery. A 

range of therapeutic interventions formed the player’s initial lower-limb rehabilitation 

programme, including soft tissue mobilisation, neuromuscular electrical stimulation, 

therapeutic ultrasound and passive joint mobilisation. BfRT was introduced at four weeks 

post-injury, where baseline limb measurements and a LEFS score were obtained by the 

researcher. Upon initiation of BfRT the player remained non-weight bearing upon the 

injured limb and ambulated using elbow crutches. 

 

Lower-limb BfRT was delivered four to five times per week for 12 continuous weeks, with 
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an intermission in the third week due to player vacation. The initial seven BfRT sessions 

were supervised by the primary researcher. Remaining BfRT sessions were supervised by 

the researcher or a member of the Club’s performance team.  

 

The player was permitted to fully-weight bear without a boot at eight weeks post-injury. 

Separate to BfRT, cardiovascular conditioning, resistance exercise and agility work were 

gradually introduced as recovery allowed. No adverse or unexpected events occurred 

during the BfRT protocol. Longitudinal lower-limb measurements and LEFS scores are 

displayed in Table 6.4.2. The player returned to first-team competitive fixtures 

approximately fifty-four weeks after the initial injury. 

Table 6.4.2. Longitudinal thigh girth measurements and LEFS scores; Phase III, case one.  

BfRT 
protocol 
length 

Baseline 
(0 weeks) 

2 
wks 

4 
wks 

6 
wks 

8 
wks 

10 
wks 

12 
wks 

Time since 
injury 

4  
weeks 

6 
wks 

8 
wks 

10 
wks 

12 
wks 

14 
wks 

16 
wks 

20 
wks 

25 
wks 

Thigh Girth (in centimetres) 

Injured 
Limb 

65.5 66 67.5 68.5 68.5 69.5 69.0 68.0 68.5 

Uninjured 
Limb 

67.5 67.5 68 68.5 69.0 69.5 69.5 68.5 69.5 

Vastus Medialis Oblique Girth (in centimetres) 

Injured 
Limb 

44.5 46.0 47.5 48.5 48 47.5 48 49.0 48 

Uninjured 
Limb 

48.0 48.0 48.0 49.0 49.0 49.5 49.5 49.5 49.5 

Lower Extremity Functional Scale 

LEFS Score 6 29 49 53 61 69 64 68 73 

 

 

6.4.3.2 Case Two 

A player [age; 26.4 years, height; 178cm, weight; 92.4kg] experienced an Achilles tendon 

rupture of the left lower leg during competitive play, followed by a surgical repair of the 
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tendon. A removal boot with a heel wedge was applied and ambulation was permitted 

using elbow crutches. Clot-prevention medication was administered daily for thirty days 

following surgery. A range of therapeutic interventions formed the player’s initial lower-

limb rehabilitation programme, including soft tissue mobilisation, neuromuscular 

electrical stimulation and active range-of-movement exercises.  

 

Lower-limb BfRT was performed four to five times per week for 10 weeks, commencing at 

five weeks post-injury. BfRT was not applied during weeks eight and nine due to player 

vacation. The initial six BfRT sessions were supervised by the primary researcher. 

Remaining BfRT sessions were supervised by the researcher or a member of the Club’s 

performance team.  

 

Full weight bearing without the boot was achieved at ten weeks post-injury. Separate to 

BfRT, cardiovascular conditioning, isometric and isotonic resistance exercise and agility 

work were gradually introduced as recovery allowed. No adverse events occurred during 

the BfRT protocol. During session five, the player reported mild tingling in his left (injured) 

foot at the end of the final set of the exercise. This resolved immediately upon deflation 

of the thigh cuff. Longitudinal thigh girth measurements and LEFS scores are displayed in 

Table 6.4.3. The player returned to first-team competitive fixtures approximately fifty-two 

weeks after the initial injury, at the beginning of the following season. 
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Table 6.4.3. Longitudinal thigh girth measurements and LEFS scores; Phase III, case two. 

BfRT 
protocol 
length 

Baseline 
(0 weeks) 

2 
wks 

4 
wks 

6 
wks 

8 
wks 

10 
wks 

Time since 
injury 5 weeks 

7 
wks 

9 
wks 

11 
wks 

13 
wks 

15 
wks 

19 
wks 

23 
wks 

Thigh Girth (in centimetres) 

Injured 
Limb 

61.5 63.0 64.0 64.0 - 63.5 64.0 64.5 

Uninjured 
Limb 

63.5 64.5 64.5 65.5 - 64.5 65.0 65.5 

Vastus Medialis Oblique Girth (in centimetres) 

Injured 
Limb 

41.0 40.5 40.5 40.5 - 40.5 41.0 42.0 

Uninjured 
Limb 

41.5 41.0 40.5 41.0 - 40.5 41.0 42.0 

Lower Extremity Functional Scale 

LEFS Score 28 35 38 41 - 52 51 54 

 

 

6.4.3.3 Case Three 

A player [age; 24.6 years, height; 188cm, weight; 102.1kg] experienced pain in the left 

knee during the latter stages of rehabilitation from a gross ankle dislocation and high 

fibula fracture. Following medical review and magnetic resonance imaging [MRI], the 

player was diagnosed with an osseous stress injury below the left medial tibial plateau 

(Grade II Fredericson) with patchy bone oedema within the medial femoral condyle. The 

player was barred from heavy resistance training and impactful activities for four weeks 

to prevent progression of the osseous stress injury and to allow the bone oedema to 

resolve. Full weight bearing without crutches was permitted when ambulating. 

 

BfRT commenced immediately and was performed 4 to 5 times per week for four weeks. 

No adverse events occurred during the BfRT protocol. A range of additional therapeutic 

interventions formed the player’s lower-limb rehabilitation programme, including 
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neuromuscular electrical stimulation, proprioception exercises and low-impact 

cardiovascular conditioning (swimming and ski-ergometer). A follow-up MRI scan was 

performed shortly after cessation of the BfRT protocol. The scan displayed a significant 

reduction in the signal intensity and extent of bony oedema within the medial half of the 

proximal tibia, with near complete resolution of the stress injury within the medial 

femoral condyle. The player began returning to traditional lower-limb resistance training 

and cardiovascular conditioning with speed and contact drills. Eight weeks post-injury, a 

third MRI scan demonstrated complete resolution of the femoral condyle stress injury 

and continued healing of the proximal tibial stress injury, with no new injury 

demonstrated. The player has subsequently returned to competitive first-team Rugby 

League. Longitudinal thigh girth measurements and LEFS scores are displayed in Table 

6.4.4. The player returned to first-team competitive fixtures approximately forty-four 

weeks after the initial injury, at the beginning of the following season. 

Table 6.4.4. Longitudinal thigh girth measurements and LEFS scores; Phase III, case 
three. 

BfRT protocol 
length 

Baseline  
(0 weeks) 

2 wks 4 wks 

Time since injury 
diagnosis 0 weeks 2 wks 4 wks 6 wks 

Thigh Girth (in centimetres) 

Injured Limb 65.5 64.5 64.5 66 

Uninjured Limb 65 65 64.5 66 

Vastus Medialis Oblique Girth (in centimetres) 

Injured Limb 46.5 46 46.5 47 

Uninjured Limb 46 46.5 46.5 47 

Lower Extremity Functional Scale 

LEFS Score 55 58 69 68 

 

 

6.4.3.4 Haemodynamic Variables 

The mean resting values for the exercising vastus lateralis SmO₂, tHb, HHb and HR 
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recorded across thirty BfRT sessions (five sessions per leg, per player) are shown in Table 

6.4.5. Standard deviations and within-subject, between-session coefficients of variation 

for each of these variables are also displayed. Resting haemodynamic values of the vastus 

lateralis were similar to those seen in the Phase II study and literature utilising other NIRS 

devices. (Downs et al 2014; Karabulut et al, 2014; Kennedy et al, 2006; Miyamoto et al, 

2013). The mean change in haemodynamic variables during the exercise sessions, 

compared to resting values, are shown in Table 6.4.6. A trend can be seen towards 

greater degrees of BfR generating greater increases of in-session tHb, HHb and HR, with 

an inverse decrease in SmO₂. 

Table 6.4.5. Resting mean values for haemodynamic variables recorded during the 
Phase III study. 

 Mean 
Standard 
Deviation 

Within-subject 
Coefficients of 

Variation 

SmO₂ (%) 54.32 7.04 7.14% - 13.87% 

tHb (g/dL) 12.72 0.37 0.53% - 1.80% 

HHb (g/dL) 5.82 0.98 8.09% - 20.59% 

HR (beats per minutes) 75.07 8.93 7.43% - 15.79% 

 
 

Table 6.4.6. The mean in-session change to haemodynamic variables recorded during 
Phase III exercise sessions, compared to resting values. Standard deviations are in 
brackets. 

 SmO₂ (%) tHb (g/dL) HHb (g/dL) HR (bpm) 

0mmHg (CON) +4.68 (4.29) -0.04 (0.10) -0.61 (0.55) +0.6 (4.4) 

100mmHg IM -6.62 (5.02) +0.10 (0.12) +0.90 (0.65) +3.4 (2.2) 

120mmHg IM -10.45 (3.56) +0.05 (0.15) +1.35 (0.45) +3.7 (2.7) 

100mmHg C -12.87 (4.93) +0.17 (0.20) +1.73 (0.69) +4.2 (3.6) 

120mmHg C -22.31 (7.64) +0.23 (0.15) +2.95 (0.94) +6.2 (3.9) 

 

 

NIRS data collated from all thirty BfRT sessions could be amalgamated, to display in-

session changes to SmO₂ (Figure 6.4.1), tHb (Figure 6.4.2), HHb (Figure 6.4.3) and HR 
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(Figure 6.4.4). Standard deviations for each five-second measurement block are 

represented by whiskers. In all figures, cuff inflation began at 180 seconds and reached 

target pressure at approximately 210 seconds. During intermittent BfRT sessions, cuff 

pressure was released immediately after each exercise set. Reinflation began thirty 

seconds before the next exercise set. During continuous BfRT sessions, cuff pressure was 

maintained until 600 seconds (one minute after completion of the final exercise set). 

 

6.4.3.5 Perceptual Responses to Exercise 

No pain was reported by any player during any BfRT session. The mean RPE values 

reported for each BfRT modality were similar for both the injured and uninjured lower 

limbs (Figure 6.4.5). 

 

Figure 6.4.1. Changes in vastus lateralis tissue oxygen saturation of Phase III case 
studies [n=3], relative to baseline, during unweighted knee extension exercise sessions 
performed under different modalities of blood flow restriction. CON = Control, C = 
Continuous BfR, IM = Intermittent BfR. 

 

0

10

20

30

40

50

60

70

80

90

100

-50
-45
-40
-35
-30
-25
-20
-15
-10

-5
0
5

10
15
20
25

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0C
h

an
ge

 in
 S

m
O

₂
re

la
ti

ve
 t

o
 r

es
ti

n
g 

b
as

e
lin

e

Session Running Time (seconds)

Exercise Period 0mmHg (CON) 100mmHg IM

100mmHg C 120mmHg IM 120mmHg C



218 
 

 

Figure 6.4.2. Changes in vastus lateralis total haemoglobin levels of Phase III case 
studies [n=3], relative to baseline, during unweighted knee extension exercise sessions 
performed under different modalities of blood flow restriction. CON = Control, C = 
Continuous BfR, IM = Intermittent BfR. 
 

 

Figure 6.4.3. Changes in vastus lateralis deoxygenated haemoglobin levels of Phase III 
case studies [n=3], relative to baseline, during unweighted knee extension exercise 
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sessions performed under different modalities of blood flow restriction. CON = Control, C 
= Continuous BfR, IM = Intermittent BfR. 

 

 

Figure 6.4.4. Changes in the heart rate of Phase III case studies [n=3], relative to 
baseline, during unweighted knee extension exercise sessions performed under different 
modalities of blood flow restriction. CON = Control, C = Continuous BfR, IM = Intermittent 
BfR. 
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Figure 6.4.5. Mean rate of perceived Exertion of the Phase III case studies (n=3), during 
unweighted knee extension exercise sessions performed under different modalities of 
blood flow restriction. CON = Control, C = Continuous BfR, IM = Intermittent BfR. 
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were delivered to the injured players that potentially contributed to atrophy prevention 

or hypertrophy. Neuromuscular electrical stimulation, for example, appears particularly 

effective at reducing quadriceps atrophy in circumstances where normal limb use has 

been prevented (Dirks et al, 2014; Dirks et al, 2015; Stevens-Lapsley et al, 2012). Whilst 

the maintenance or increase of thigh muscle mass may certainly have contributed to the 

longitudinal changes in girth measurements, this cannot be proven from the results of 

this study. 

 

6.4.4.2 Haemodynamic Variables 

During the control exercise session, a decrease in tHb occurred accompanied by a 

decrease in HHb of greater magnitude. Thus, a relative increase in vastus lateralis SmO₂ 

occurred. This is a very similar response to that seen during the Phase II study and could 

be explained via the same haemodynamic and mechanical factors discussed in chapter 

5.5.5.2 (page 187-189). Briefly, repeated thigh muscle contractions provided a 

haemodynamic pump effect to generate increased venous outflow from the muscle and 

lower-limb itself during exercise sets, lowering vastus lateralis tHb. A simultaneous 

increase in the rate of blood flowing through the vastus lateralis likely occurred due in 

part to rapid vasodilation and drops in intravascular pressure between muscle 

contractions. Oxygen delivery outweighed oxygen uptake and vastus lateralis SmO₂ 

increased.  

 

Likewise, exercise with continuous BfR applied produced very similar patterns of change 

in vastus lateralis SmO₂, tHb and HHb to those seen during the Phase II study. BfR applied 

continuously appeared sufficient to reduce blood throughput of the vastus lateralis 

during the exercise sets, by likely impairing any muscular pump effect and limiting venous 
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outflow proximally. During the inter-set rest periods, the absence of any muscular pump 

effect combined with the extravascular pressure provided by the cuff was likely sufficient 

to prevent venous outflow proximally, but did not prevent arterial inflow into the lower 

limb itself. This led to a local increase in vastus lateralis tHb. An overall slowing of the rate 

of blood flowing through the vastus lateralis resulted in increased oxygen extraction from 

that was blood available to tissues, leading to an increase in vastus lateralis HHb and a 

decrease in vastus lateralis SmO₂. 

 

During the exercise sessions performed with intermittent BfRT, vastus lateralis SmO₂, tHb 

and HHb returned rapidly to baseline during the inter-set rest periods where cuff pressure 

was released. This would be indicative of lower-limb venous outflow being restored upon 

cuff deflation, allowing blood throughput of the vastus lateralis to be normalised and 

tissue homeostasis achieved via adequate oxygen delivery.  

 

The undulation of heart rate in correspondence with exercise and rest periods was 

expected. During exercise sets, heart rate would have increased in response to raised 

venous return from the previously static lower limb. An increase in heart rate also works 

to raise cardiac output as a method of raising oxygen delivery rate to exercising muscles 

(Korthius, 2011). As the body returns to homeostasis during rest periods, heart rate then 

returns to baseline. Interestingly, the addition of BfRT did not greatly affect heart rate 

response, with magnitudes of change very similar to the lower cuff pressures utilised 

within the Phase II study. Phase III findings to therefore appear to reinforce the principle 

that BfR added to an unweighted knee exercise produced insignificant cardiovascular 

demand beyond that created by the knee exercise alone.    
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6.4.4.3 Subjective Outcome Measures 

Pain and RPE 

A promising finding was the absence of reported pain during Phase III BfRT sessions. 

Adding BfR to the unweighted knee exercise also raised RPE above that reported during 

the control sessions, suggesting an ability for the modality to increase the perceptual 

difficulty of the exercise without the need to increase exercise volume or add an external 

resistance.   

 

LEFS 

In relation to case one, work by Lin et al (2009) collated the results of three studies 

utilising the LEFS to quantify functional recovery from unilateral ankle fracture (n=306). 

The player, who experienced a fracture of the lower tibia and fibula, reported a similar 

trajectory of LEFS scores as those reported in Lin et al (2009) within one week of 

cast/boot removal (LEFS = 29 vs. 30.7, respectively), 4 to 6 weeks after cast/boot removal 

(LEFS = 53 vs. 53.8, respectively) and LEFS = 73 at 20 weeks after boot removal vs. 69.4 at 

24 to 26 weeks after cast removal, respectively). 

 

With case two, limited academic evidence exists as to LEFS trajectory scores following 

surgical repair of an Achilles tendon rupture. A study by Peng et al (2017) involving fifteen 

participants reported a mean LEFS score of 74.0 (95% CI, 67.9-74.9) at 4.2 (SD 1.1) months 

after surgery. This is notably higher than the score reported by the player a similar time 

point (51 at 19 weeks post-surgery). However, the player scored himself consistently low 

on questions with a sporting context, such as difficulty completing ‘your usual hobbies, 

recreational or sporting activities’ or ‘running on even ground’. Given that Peng et al 

(2017) studied older participants (45.1 years) of a nondescript sporting ability, the 
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discrepancy in LEFS scores between this study and the player may have been due to a 

difference in pre-injury sporting ability and thus the perceived distance from regaining 

this level of ability at 18 to 19 weeks post-surgery. 

 

No academic evidence appears to exist from by which case three’s LEFS can be directly 

compared. Reviewing the players baseline LEFS score however, the minimal clinically 

important change for the LEFS (9 points; Binkley et al, 1999) was exceeded after two 

weeks of the BfRT protocol, and again at four weeks. Supported by MRI findings showing 

the continued healing of the osseous stress injury, it could be surmised that the wider 

rehabilitation programme provided was appropriate and that BfRT element was non-

detrimental to bone healing. This appears to concur with an observational case review by 

Loenneke et al (2013b), who documented the non-supervised use of BfRT in a male 

bodybuilder with an osteochondral fracture. A repeat MRI and examination after 

approximately two weeks of BfRT suggested continued bone healing and a resolution of 

knee joint effusion and tenderness. Experimentally, both Karabulut et al (2011a) and Kim 

et al (2012) have investigated the longitudinal effect of BfRT upon bone turnover. Each 

study monitored serum levels of C-terminal cross-linking telopeptide of type 1 collagen 

[CTX] and bone alkaline phosphatase [BALP], indicators of bone resorption and osteoblast 

activity respectively. Three weeks of low-volume LiBfRT (20 repetitions per session at 20% 

1RM) did not alter pre-post CTX and BALP levels of 30 males studied within Kim et al 

(2012). However, six weeks of higher volume LiBfRT (75 repetitions per session at 20% 

1RM) in 37 older males saw significant pre-post increases in BALP (p = 0.03) compared to 

a non-exercising control group (Karabulut et al, 2011a). CTX also decreased in the LiBfRT 

group whilst increasing in the control group, however the difference was not statistically 

significant. Whilst large-scale studies investigating the use of BfRT within participants with 
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bony injuries are currently lacking, the existing evidence does appear to support its use 

under these conditions. 

 

6.4.5 Study Strengths and Limitations 

This study was able to draw upon an existing ‘real-world’ BfRT protocol during lower-limb 

injury rehabilitation, simplify and refine it, then deliver the protocol safely within the 

same clinical environment to injured participants. The lack of adverse events, the 

tolerability of the protocol by study participants, and the use of relatively inexpensive 

restriction equipment, all pertain to the suitability of this protocol for use within the elite 

sporting environment of rugby-league. 

 

This study was a case series. By design, a case series does not address risks of bias within 

its methodology as competently as other research designs, such as a blinded, randomised 

controlled trial. A sample size of three elite, male rugby-league players from the United 

Kingdom, combined with a lack of case-controls, currently prevents findings from being 

generalised to other sporting, non-sporting populations. The use of medical imaging or 

biopsy to quantify longitudinal changes in muscle CSA, volume and fibre-type would have 

enabled more robust confirmation of muscle atrophy attenuation during the BfRT 

intervention. Research that addresses these limitations is warranted, to increase the 

clinical relevance of the chosen BfRT methodologies and strengthen the validity of its 

proposed longitudinal effect upon muscle disuse atrophy. 

 

6.4.6 Conclusions 

In a case series of injured male rugby-league players, NIRS and RPE data indicates that 

adding BfR to an unweighted ‘no load’ knee exercise increases the acute, local metabolic 
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demand and perceptual exertion of this exercise. Over a period of up to twelve weeks, a 

staged lower-limb BfRT protocol applied 4 to 5 times per week can be delivered in a safe 

and tolerable way within a clinical (non-laboratory) environment via the use of a thigh 

blood-pressure cuff and manual sphygmomanometer. Results suggest that the holistic 

rehabilitation programme delivered to each player, of which ‘no-load’ BfRT was a part, 

prevented longitudinal thigh muscle atrophy and provided a return towards normal 

function and a return to competitive play. From this study alone, however, the extent to 

which ‘no-load’ BfRT contributed to this remains unclear. Further research by way of 

larger case-control study or a randomised-controlled trial to elucidate this information is 

warranted. 

 

The next chapter will summarise the aims, objectives and key findings of each of the three 

phases of this doctoral research project. Discussion will be made as to the clinical and 

research implications of these findings, with suggestions as to future pathways for BfRT 

research. 
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CHAPTER SEFVEN 

  
Project Conclusions and Implications 

 

7.1 Chapter Introduction 

This chapter begins by re-stating the overall aim and objectives of this doctoral research 

project. The key findings of each phase of this doctoral project are then described. 

Discussion is made as to how the objectives of this project have been met, combined with 

consideration of the potential clinical and research implications of study findings. Finally, 

suggestions upon which directions to proceed with future research are presented. 

 

7.2 Project Aim and Objectives 

The overall aim of this doctoral research was to develop and refine the use of BfRT within 

the context of lower-limb musculoskeletal injury rehabilitation. Two objectives were 

developed to achieve this, supported by the findings of the reviews described in chapters 

one and two; 

1. To develop an externally-valid lower-limb BfRT methodology using relatively 

inexpensive BfR equipment and protocols that may be replicated within clinical 

settings.  

2. To determine the physiological and perceptual effects of combining BfRT with un-

resisted (‘no-load’) lower-limb exercise.  

Across the three phases of this doctoral research project, the following key findings were 

obtained; 
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7.3 Key Findings 

7.3.1 Phase I 

 Within sixty-one healthy adults, resting in a seated position, lower-limb BfR could 

be applied in a safe and tolerable way using a thigh blood-pressure cuff to reduce 

the flow into the limb, distal to the cuff. The greater the cuff pressure applied (up 

to 120mmHg), the greater the degree of initial BfR that occurred. 

 Using ultrasound imaging techniques, results suggested that a thigh blood-

pressure cuff inflated to up to 80mmHg generated BfR predominantly via venous 

restriction or venous occlusion at thigh level. At 100mmHg to 120mmHg, an 

element of arterial restriction may have begun to contribute to further degrees of 

BfR. 120mmHg of thigh-cuff pressure did not appear to cause total occlusion 

(haemostasis) in any participant. 

 A degree of between-subject variance, unexplained by physical characteristics, 

was present in the %PBfR experienced at each tested cuff pressure. Physical 

characteristics could not be used to explain the variance in cuff pressure required 

to induce 60% PBfR (a reduction in popliteal arterial blood-flow of 40%.) 

 An equation was produced to provide a broad indicator for the degree of BfR that 

occurred in this cohort at any given cuff pressure between 40mmHg and 

120mmHg. 
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7.3.2 Phase II 

 In sixteen healthy adults, applying continuous BfR during one-hundred-and-twenty 

repetitions of a seated, un-resisted (‘no-load’) knee extension exercise appeared 

to increase the acute metabolic demand and perceptual effort of the exercise 

session. This was demonstrated by; 

o Significantly greater reductions in vastus lateralis tissue oxygenation during 

the exercise session by the addition of BfR, which increased in magnitude 

as the cuff pressure was increased from 40mmHg to 80mmHg. 

o Statistically significant increases in rates of perceived exertion reported 

during the exercise by the addition of BfR, with greater thigh-cuff 

pressures producing higher levels of perceived exertion. 

 In the tested population, the use of BfR during ‘no-load’ exercise appeared safe 

and tolerable;  

o No pain during BfR was reported and all participants completed all exercise 

sessions. 

o BfR at any tested cuff pressure did not significantly alter heart rate 

response compared to the exercise performed without BfR. 

 A negative correlation existed between physical characteristics of size and the 

mean magnitude of change in the exercising vastus lateralis across BfR sessions. 

Participants with a lower body weight, Body Mass Index or thigh circumference 

tended to experience greater magnitudes of change in vastus lateralis SmO₂ and 

HHb during exercise performed under BfR. 
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7.3.3 Phase III 

 Among three male elite rugby-league players with a unilateral low-limb injury, 

lower-limb BfR could be safely combined with the un-resisted knee extension 

exercise used in Phase II, delivered four to five times per week, for periods of up 

to twelve weeks; 

o No pain during BfR was reported and all players completed all exercise 

sessions. 

o No adverse events occurred within any player during any BfRT session. 

 Thigh-cuff pressures of up to 120mmHg produced similar patterns of change in 

vastus lateralis SmO₂, HHb and tHb, heart rate and perceived exertion to those 

seen in Phase II at lower thigh-cuff pressures. 

 Regular tape measurements indicated that no player lost thigh mass during the 

course of their BfRT intervention period, suggesting that thigh muscle atrophy was 

attenuated in these players as a result of their overall injury rehabilitation 

programme. 

 

7.4 Key Messages of This Doctoral Research Project 

 A thigh blood-pressure cuff and manual sphygmomanometer can be used to 

deliver lower-limb BfR in a safe and tolerable way, before and during an un-

resisted lower-limb exercise. This can be achieved among individuals with and 

without a lower-limb musculoskeletal injury, who are otherwise healthy. 

 Adding BfR to an un-resisted lower-limb knee extension exercise appears to 

increase the acute metabolic demand of the exercise within the vastus lateralis 
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muscle, without the need to add any external load or change other parameters of 

the exercise. 

 There is no current evidence to suggest that physical characteristics are highly-

correlated with, or can predict, the between-subject variance in the initial degree 

of lower-limb BfR that occurs following the application of a sub-occlusive thigh-

cuff pressure. 

 However, physical characteristics do appear to be correlated with the magnitude 

of change in acute metabolic demand that occurs in response to un-resisted 

exercise performed with BfR at sub-occlusive thigh-cuff pressures. Further 

research is required to substantiate this, with a view to providing individualised 

thigh-cuff pressures and a consistent degree of acute exercise-induced metabolic 

stress across individuals. 

 The findings of this doctoral research project are specific to the type and width of 

cuff used within it. Caution must therefore be taken when interpreting results, as 

the effects of BfR delivered via alternative cuff apparatus may differ to those seen 

within this project. 

 

7.5 The Achievement of Project Objectives 

How the key findings of this doctoral research project have met each of the project’s two 

objectives can be discussed in further detail, with further discussion as to the clinical 

implications of these findings. 

 

7.5.1 Objective One 

‘To develop an externally-valid lower-limb BfRT methodology using relatively inexpensive 

BfR equipment and protocols that may be replicated within clinical settings.‘ 
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Thigh blood-pressure cuffs, combined with manual aneroid sphygmomanometers, were 

used throughout all parts of this research project. The current retail price of the 

equipment used within the main studies of this doctoral research project is $104.27 (US 

Dollars) (MDF Instruments, 2017a). Although the model of aneroid sphygmomanometer 

used has become unavailable in the UK at present [MDF848XPD, MDF Instruments®; 

California, USA], a very similar model is available [MDF848AR, MDF Instruments®; 

California, USA] and can be paired with the same thigh cuff for £77.14 (MDF Instruments, 

2017b). This equipment costs considerably less than the current Kaatsu Master 

($4,795.00 USD, £5,000.00 GBP) and Kaatsu Nano ($2,850.00 USD, £2,600.00 GBP) 

devices (Kaastu Global©, 2017) and the Hokanson® system often used in BfR academic 

research (£3,210 GBP; PMS Instruments, 2017). Whilst the latter systems have additional 

functionality, such as rapid cuff inflation and automatic pressure regulation, the results of 

this doctoral research project demonstrate that generic blood-pressure equipment can 

also be used to safely maintain states of BfR before and during a lower-limb exercise. The 

degree of BfR can also be modulated objectively through the use of the manual 

sphygmomanometer’s pressure dial, giving a potential superiority in accuracy over other 

inexpensive options such as manual tourniquets bands ($17.97 USD; BfR Bands®, 2017). 

The author proposes that the data generated from this project will enable HCPs to access 

and deliver evidence-based BfRT in a way which is less expensive than most BfR systems, 

but which offer greater objective control than cheaper methods. 

 

The primary researcher is aware that new BfR-specific devices are emerging. At least one 

device now utilises a manual sphygmomanometer to inflate a cuff and maintain its 

pressure, much like the generic blood-pressure equipment used within this doctoral 

research project. The Occlusion Cuff® retails at between £79.99 and £138.00 (Occlusion 
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Cuff, 2017; Perform Better Ltd., 2017). This cost is similar to the equipment used within 

this doctoral research, which may itself help to boost the clinical accessibility and uptake 

of BfRT. However, the Occlusion Cuff® is narrow in width (8cm) and has a suggested 

lower-limb operating pressure of 150-250mmHg. A similar width-pressure combination 

can create bruising in 13.1% of users and numbness in 1.3% of users (Nakajima et al, 

2006). There was an absence of bruising or adverse events when utilising generic blood-

pressure equipment, conceivably due to lower operating cuff pressures (40-120mmHg) 

and a comparatively wide cuff (21cm). Therefore, beyond cost, a superiority of this latter 

equipment over the new BfR-specific system may still exist clinically. Distributing 

comparatively less pressure over a comparatively greater volume of tissue may generate 

a similar state of BfR within clinical populations whilst minimising the risk of compression-

related tissue damage. 

 

This project has generated and documented a method of applying BfR and delivering ‘no-

load’ lower-limb BfRT sessions to individuals. Firstly, this consists of a new BfR-specific, 

evidence-based, health screening questionnaire. Whilst of significant use within the 

project itself, this questionnaire may also aide HCPs to identify and screen for common 

BfR contraindications within their own clinical settings. It also provides a base from which 

HCPs can develop or add their own condition-specific or setting-specific contraindications. 

Previous work has discussed the safety aspects of BfRT in detail (Loenneke et al, 2011c) 

and work published after the generation of this project’s health screening questionnaire 

has created a risk assessment tool (Kacin et al, 2015). However, neither has collated and 

expressed the incidence of contraindications across the literature to interested readers. 

Given the scarcity of adverse events within BfRT studies, the author proposes that the 

project’s tabulated list of the most common contraindications, and the screening 
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questionnaire that incorporates these, is of significant value to clinicians.  

 

Secondly, Phase I results now provide reference data for the degree of initial lower-limb 

BfR that occurs across a range of individuals when utilising a blood-pressure thigh cuff at 

sub-occlusive thigh pressures up to 120mmHg. In addition, this reference data was 

collected from participants in a seated position - a position from which a range of other 

exercises could be delivered beyond the seated knee extension exercise used within this 

project. Prior to this information, HCPs would have had to draw upon data from studies 

that used narrower restriction cuffs attached to rapid cuff-inflation devices, with 

participants tested in a supine position (Hunt et al, 2016; Loenneke et al 2012b, 2015a), 

then make assumptions as to whether these findings would translate into their own 

clinical practice. 

 

The exercise and cuff-inflation protocols were derived from those already used among 

injured elite athletes within a clinical setting (Warrington Wolves Rugby League Club). 

These protocols were subsequently refined by the primary researcher and then 

redelivered in a safe and tolerable way within the same clinical setting, to a case series of 

participants from the same injured population. These same protocols were also replicated 

without adverse or unexpected events within healthy, non-athletic populations during 

Phase II, albeit with a lower thigh-cuff operating pressures (40-80mmHg). Enough 

information exists within this thesis to replicate these BfRT protocols directly within other 

clinical practice settings. This information could even be converted into a simple manual 

for HCPs if required. Beyond the purchase of the generic blood-pressure equipment, the 

minimum requirement of a plinth (or at least a stable surface on which achieve the seated 

position) is common-place within clinical settings. Additional relevant items such as a 



235 
 

stopwatch, a metronome and a goniometer for checking the individual’s sitting position, 

are all available as free software for use with electronic devices such as smartphones if 

required. 

 

The project used a validated functional subjective outcome measure (LEFS) to monitor 

the perceived longitudinal recovery of function within Phase III participants. This case 

series now compliments an existing case study by Lejkowski and Pajaczkowski (2011), 

who used a thigh blood-pressure cuff to deliver BfR during rehabilitation from ACL 

reconstruction and utilised the LEFS to measure subjective function. This provides HCPs 

with an insight as to the trajectory of functional recovery following significant lower-limb 

MSK injuries that incorporate ‘no-load’ BfRT into rehabilitation. Once the findings of 

Phase III are published, HCPs will have a greater evidence base of case studies from which 

to draw upon and inform their own clinical use of BfRT, both in the number of case 

studies available and in the types of lower-limb injuries documented. 

 

This doctoral research project also utilised subjective measures of pain and exercise-

related exertion that are already available to HCPs without cost. Results from all phases of 

the research project now provides a reference source from which HCPs can compare pain 

and perceived exertion scores reported by their service users during ‘no-load’ lower-limb 

BfR applied via blood-pressure equipment. In turn, this data provides a further route by 

which HCPs can clinically justify and refine the cuff pressure(s) delivered to clinical 

populations.  

 

The time taken to complete a unilateral ‘no-load’ lower-limb BfRT session can also be 

important within clinical settings, particularly in time-pressured environments such as an 
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elite sports club or a busy musculoskeletal outpatient department. Discounting the initial 

health-screening process, one unilateral ‘no-load’ BfRT session delivered as per described 

in this thesis (but devoid of measurement devices such as NIRS) would take 

approximately eight minutes. This is a very feasible timeframe for use within Warrington 

Wolves Rugby League Club and it is sensible to propose that other settings and HCPs 

would concur. Given the comparatively low cost of the blood-pressure equipment, it is 

also feasible to suggest that some settings would be able to purchase multiple kits. This 

may allow the use of ‘no-load’ BfRT sessions within small, supervised MSK outpatient 

classes, furthering the clinical applicability of BfRT as a potential treatment adjunct. 

 

Beyond ‘no-load’ BfRT specifically, the creation of the systematic review detailed in 

chapter two provides HCPs with a succinct summary and critical appraisal of the existing 

peer-reviewed evidence surrounding the use of BfRT to attenuate lower-limb muscle 

disuse atrophy following an MSK injury. This is the first systematic review on this specific 

topic, and once published, will accompany a rehabilitation-focused systematic review and 

meta-analysis created by Hughes et al (2017). The primary researcher suggests the 

benefit of this to be two-fold. Firstly, there is less demand upon HCPs to search for and 

synthesise data themselves from previous individual BfRT studies in order to learn and 

apply this modality in an evidence-based fashion within rehabilitation. Secondly, the 

evidence synthesised in both this doctoral project and Hughes et al (2017) highlights the 

large variations in BfRT methodologies implemented across existing literature, particularly 

in terms of the cuff widths and cuff pressures utilised. It is hoped that recognition of this 

will drive HCPs and researchers towards adopting a common overall methodology and 

BfR device, whilst still allowing for modulation of the cuff pressure(s) utilised to suit each 

service user and their physical or physiological condition. In turn, this may bolster the 
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clinical uptake of BfRT and improve concordance between the BfRT methodologies used 

in research environments and those used in real-world practice. 

 

7.5.2 Objective Two 

‘To determine the physiological and perceptual effects of combining BfRT with un-resisted 

(‘no-load’) lower-limb exercise.‘ 

 

At this time, only one peer-reviewed study investigating associations between individuals’ 

physical characteristics and the initial degree of lower-limb BfR generated across different 

sub-occlusive thigh-cuff pressures has been published Hunt et al (2016). Additional 

studies surrounding this topic do exist, but only the cuff pressure required to fully occlude 

limb blood flow was investigated (Loenneke et al, 2012b; 2015a). No published evidence 

exists as to the association between physical characteristics and the initial degree of BfR 

generated by cuff pressure in a seated position (only supine) or via the use of a blood-

pressure cuff as the restriction device, or the incorporation a sub-cohort of elite athletes 

into their population sample. Work completed in Phase I has addressed this, and is the 

first to generate an equation that broadly indicates the degree of sub-occlusive lower-

limb BfR that initially occurs when utilising a blood-pressure thigh cuff. In tandem with 

Hunt et al (2016), Phase I findings demonstrate that physical characteristics, be that thigh 

circumference, systolic blood pressure, or mean arterial pressure, are unable to explain 

the majority of between-subject variance in the degree of BfR that created by sub-

occlusive thigh-cuff pressures. 

 

Phase II of this doctoral research project produced evidence to document the acute 

physiological and perceptual responses to un-resisted ‘no-load’ lower-limb exercise 
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combined with BfR. No peer-reviewed evidence has been published on this topic to date, 

either with the use of a blood-pressure cuff to induce BfR or via other restriction 

equipment. More so, Phase II findings suggest that physical characteristics of size or mass 

may be implicated in degree of acute change in metabolic demand of the ‘no-load’ 

exercise. Considering the results of Phase I and Phase II together, the following could be 

hypothesised. The amount of lower-limb BfR initially induced by a predetermined thigh-

cuff pressure is not related to physical characteristics of size, but the effect of that cuff 

pressure upon lower-limb vasculature and the degree of acute metabolic demand 

generated during subsequent ‘no-load’ exercise is associated to physical characteristics of 

size. 

 

The above proposal would need be ratified by further experimental studies. If confirmed, 

however, the process of trying to set or ‘tailor’ a cuff pressure for a whole exercise 

session by only referring to what happens haemodynamically when external pressure is 

applied to a resting limb the prior to exercise may be an invalid one. For example, 

determining the cuff pressure required to totally occlude blood flow at rest and then 

using percentage of this value during exercise (Loenneke et al, 2015b; 2016), or trying to 

predict the actual %PBfR occurring at rest before the onset of exercise via physical 

characteristics, as per the Phase I study and Hunt et al (2016). Particularly in 

circumstances where exercises are not completed to volitional failure, such methods may 

still produce variations in the resultant degree of acute metabolic stress of the exercise 

session across physically-different individuals, because the degree of lower-limb BfR 

actually experienced during exercise sets (and their muscle contractions) may be 

different. 
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To address this issue in ‘no-load’ BfRT, focus would need to shift towards finding the 

lowest thigh-cuff pressure that occludes venous outflow in an individual both at rest and 

during very low-intensity muscular contractions, whilst still allowing arterial inflow into 

the lower-limb and its musculature. Physical characteristics such as indicators of thigh 

and/or muscle mass might be used to predict this ‘sweet-spot’ cuff pressure, with larger 

individuals still receiving a higher cuff pressure to maintain the required haemodynamic 

state of BfR throughout the exercise session. With the cuff used during this doctoral 

research, this ‘sweet-spot’ may well be between 60mmHg and 80mmHg for most 

individuals, but could be higher for very large or muscular individuals.  

 

Within LiBfRT, the situation may become more complex. Cuff pressures may have to be 

further modulated, being increased for higher exercise intensities (such as 30-50% MVC 

or 1RM) to prevent the force of muscle contractions from overcoming the venous 

occlusion generated proximally by the cuff and attenuating the efficacy of the BfRT 

session. Even further adjustment would be needed if the cuff width that used was not 

universal across research or clinical settings. Whilst purely hypothetical, examples of how 

these factors may be used determine ‘sweet-spot’ cuff pressures are demonstrated in 

Figure 7.5.1 and Figure 7.5.2. 

 

The absence of adverse events, 100% participant compliance with BfR sessions and lack of 

perceived pain during Phase II and Phase III BfRT sessions alludes to the acute safety and 

tolerability of this training modality within the populations tested across this research 

project. This is combined with the ability of BfR to increase the degree of perceived 

exertion of ‘no-load’ exercise. Whilst not specifically investigated in this project, it could 

be proposed that increasing the perceptual difficulty of sessions that involve ‘no-load’ 
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rehabilitation exercises, via the addition of BfR, may have a psychological benefit to 

individuals recovering from injury. Particularly among those who were occupationally 

active before their injury. Athletes, for example, can experience a range of psychosocial 

stressors during their injury recovery period Podlog et al (2011). Adding BfR to allow 

athletes to experience sensations of exercise-related discomfort during ‘no-load’ 

exercises which are closer to the sensations that they recall from pre-injury resistance 

training, for example, may positively impact upon stressors such as re-injury anxiety and 

the fear of a loss of physical fitness. Further research would be required to substantiate 

this proposal, however. 

 

 

Figure 7.5.1. A visual representation of how a thigh-cuff ‘sweet-spot’ pressure could be 
determined for use during LiBfRT, performed with a wide cuff at 40% MVC. 
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Figure 7.5.2. A visual representation of how a thigh-cuff ‘sweet-spot’ pressure could be 
determined for use during LiBfRT, performed with a narrow cuff at 20% MVC. 
 

 

7.6 Recommendations for Future Research 

A number of opportunities to build upon the research produced within the research 

project are still evident from the discussion and conclusions surrounding each study 

phase. These are highlighted below. 

 

7.6.1 Phase I 

An increase in the diversity of populations investigated and in the total number of 

participants recruited may further increase the clinical applicability of study findings. 

Previous evidence has delivered BfRT safely to clinical populations with hypertension, 

diabetes and heart failure (Gualano et al, 2010; Pinto et al, 2015; Takahishi et al, 2010; 

Tanaka et al, 2015). As these chronic conditions can adversely affect vascular and cardiac 

structure and function, considerable care would need to be taken to adjust the screening 
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questionnaire and test these populations. Yet, potential differences in vascular 

compliance and intravascular pressure within these individuals may produce more 

profound between-subject differences in the degree of initial BfR that a range of thigh-

cuff pressures generates within the lower limb, compared to healthy individuals. This may 

allow either the generation of alternative equations to indicate the BfR generated within 

these clinical populations, or allow a robust predictive model to be built which 

encompasses both heathy individuals and those with chronic disease. Alternatively, 

simply expanding the sample size of healthy participants in Phase I would generate 

greater statistical power to detect lower bivariate correlations and would narrow 

confidence intervals. This may elucidate more robust associations between the initial BfR 

experienced and physical characteristics across thigh-cuff pressures. Dependent upon 

results, this may again allow rejection of the Phase I null hypothesis and the creation of a 

pertinent predictive model.  

 

7.6.2 Phase II 

Current cohort associations exist between physical characteristics and the degree of 

change in SmO₂ and HHb of the vastus lateralis across the BfRT sessions delivered. Yet a 

larger cohort may allow the use of hierarchical linear modelling, with a view to predicting 

the degrees of change in SmO₂ or HHb that will occur at a given cuff pressure across 

physically different individuals. If this is possible, the selection or ‘tailoring’ of cuff 

pressures can start to be based upon what actually occurs haemodynamically and 

physiologically during the BfRT session, rather than from what occurs haemodynamically 

before it.  

 

Scope also exists to improve the study methodologically. Additional physiological 
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measures such as whole blood lactate could be used to further indicate the degree of 

metabolic stress occurring during ‘no-load’ BfRT exercise. Together with post-session 

measures such as changes in muscle protein synthesis or gene expression, the dose-

response of ‘no-load’ BfRT sessions could be better quantified. This may lead to more 

robust cuff-pressure recommendations to HCPs using this training modality in clinical 

practice. Investigating different exercises, such as sit-to-stands or seated hamstring curls, 

would provide further clinical value. 

 

7.6.3 Phase III 

Expanding Phase III to include a greater number of injured case studies may allow 

statistical inferences to be drawn from collected NIRS data during ‘no-load’ BfRT sessions, 

as among the uninjured cohort investigated within Phase II. In addition, bivariate 

correlations between Phase III cohort physical characteristics and the degree of change in 

variables such as SmO₂ or HHb could then be investigated. Following this, it may be 

possible to merge Phase II and Phase III data via hierarchical liner modelling, to start 

predicting shifts in vastus lateralis SmO₂ and HHb across the two sub-populations and 

across cuff pressures ranging from 0mmHg through to 120mmHg. As described in the 

previous section for Phase II, adding physiological measures such as whole blood lactate 

could be used to better quantify the dose-response of ‘no-load’ BfRT sessions across cuff 

pressures. Linking these to longitudinal measures of muscle fibre diameter via biopsy, or 

overall muscle volume via MRI or other medical imaging, may also substantiate the effect 

of BfR included within an injury rehabilitation programme has upon muscle atrophy 

attenuation. 
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7.6.4 Beyond Project Phases 

Finally, research designed to specifically examine the ‘sweet-spot’ cuff pressure proposed 

in chapter 7.5.2 (page 237-241) is warranted. Across a range of individuals, the study 

would aim to find a level of cuff pressure that would occlude venous outflow both at rest 

and during a given low-intensity of lower-limb exercise (such as 5% MVC/1RM), by just 

barely overcoming the extravascular pressure generated by the muscular pump effect of 

that particular exercise intensity. With sufficient resources, it may be possible to confirm 

that this state of BfR occurs throughout exercise sets via ultrasound imaging of the 

femoral vein and artery immediately proximal to the thigh cuff. Any between-subject 

variation in this ‘sweet-spot’ pressure may then be checked for associations with physical 

characteristics such as thigh mass (measured via tape, DXA or MRI) to detect any positive 

correlations. A predictive model may then allow identification of the ‘sweet-spot’ cuff 

pressure for differently-sized individuals during ‘no-load’ BfRT. The experiment could be 

repeated for different intensities of exercise, up to 60% MVC/1RM; the intensity at which 

BfR may generate no additional acute benefit (Cayot et al, 2015). Finding these ‘sweet-

spots’ would allow the state of BfR to be achieved (venous occlusion with maintenance of 

arterial inflow into the limb) but at the lowest possible cuff pressure for each exercise 

intensity. From an injury rehabilitation perspective, this could be invaluable in the 

attenuation or recovery from muscle disuse, where safety and a low re-injury risk is 

paramount. 

 

If a predictive model is produced, an RCT could then be constructed consisting of an 

injured population. Whilst the control group completed a ‘traditional’ exercise 

rehabilitation programme for their named injury or surgery, a second group would 

complete the same programme with BfR superimposed at ‘sweet-spot’ pressures relevant 
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to the intensity of the selected exercise. Acute changes to SmO₂, HHb, tHb and HR could 

be collected throughout, followed by measures of lactate and muscle protein synthesis. 

Longitudinal changes in thigh mass, 1RM, isokinetic strength, muscular endurance and 

physical function could then be compared for within and between-group differences, 

where appropriate. Whilst such as study may require significant resources to complete, 

results may greatly inform the clinical application of BfRT within the context of lower-limb 

rehabilitation. 

 

From the findings of this doctoral research project, it is apparent to the author that many 

unanswered questions and variations still exist in relation to the delivery of BfRT and its 

proposed longitudinal effects. Through the author’s awareness of current experimental 

work being completed by other researchers, there is little doubt that BfRT research will 

continue to emerge at a rapid pace, both within the context of lower-limb injury 

rehabilitation and beyond it. It is hoped that the findings and discussions presented in this 

thesis will influence future BfRT research and allow the potential benefits of this training 

modality to be fully realised. 
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Appendix Ia. Health Screening Questionnaire (Phase II Study Example) 

HEALTH & ELIGIBILITY QUESTIONNAIRE 

Study title: ‘The Effect of Different Thigh-cuff Pressures upon Blood-flow 
Volume and Thigh Muscle Oxygenation during Unweighted Knee Exercise 
Sessions.’ 
 
TO TAKE PART IN THIS STUDY, YOU NEED TO BE BETWEEN THE AGES OF 

18 AND 40 
 

- Please tick ONE box for each question below - 

1) Are you pregnant, or have you given birth within the last month?   
 ☐ Not Applicable ☐ YES 

 ☐ NO 

2) Do you regularly smoke tobacco products?  

(More than once a week, most weeks) ☐ YES 

 ☐ NO 

3) Have you currently been diagnosed with high blood pressure? ☐ YES 

 ☐ NO 

4) Are you currently diagnosed as obese or underweight? ☐ YES 

 ☐ NO 

5) Have you ever experienced any of the following; 

A Blood Clot (Deep Vein Thrombosis or an embolism) ☐ YES 

 ☐ NO 

A Stroke or a Transient Ischaemic Attack (TIA) ☐ YES 

 ☐ NO 

Angina or a Heart Attack  ☐ YES 

 ☐ NO 

Unexplained Chest Pains ☐ YES 

 ☐ NO 
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6) Do you have any other current health condition, disease, injury or 
illness? 

☐ YES  ☐ NO 

If YES, please write details of these here:  
 

 

7) Do you have any allergies, or take medication that can affect your blood 

pressure or circulation? ☐ YES  ☐ NO 

If YES, please write details of these here:  

 

 

8) Do you feel there is any other reason that could affect your ability to 

take part in this research study? ☐ YES  ☐ NO 

If YES, please write details here:  

 

 

ENTER YOUR GP/DOCTOR DETAILS BELOW. IF YOU WISH TO OPT OUT OF 
SUPPLYING THESE DETAILS, PLEASE SIGN YOUR INITIALS HERE >> 

Name of your GP/Doctor:  
Surgery Name:  
Surgery Telephone Number or Address:  

 
 

THIS BOX WILL BE COMPLETED AT YOUR FIRST APPOINTMENT 

The information I have entered onto this questionnaire is correct to the 
best of my knowledge and belief. Where I have had any questions or 
concerns, I have first spoken to the researcher for advice before signing 
below. 

Name……………………………………………………………………. 

Signature………………….……………….…………….…………… Date  / /
 (DD/MM/YY) 
 

Next of Kin:      Next of Kin – Phone: 
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Appendix Ib. A Written Consent Form (Phase I Study Example) 

 

 

 

Participant ID: 

 

CONSENT FORM 

Title of Study: Lower-Limb Blood Flow Restriction: The Relationship between Thigh-cuff 
Pressures and Physical Characteristics when Determining Target Blood Flow Rates 

 

Name of Primary Researcher: MR PHILIP SMITH 

- PLEASE INITIAL ALL BOXES BELOW - 

1. I have read and understood the Participant Information Sheet (version 2.3) for this 
study. I have had the opportunity to consider the information, ask questions and 
have had these answered satisfactorily. 

2. I understand that my participation is voluntary. I am free to withdraw at any time 
without giving a reason, without my medical care or legal rights being affected. 

3. I understand that my personal data (from which I can be identified) may be looked 
at by the Primary Researcher, University supervisors and regulatory bodies where it 
is relevant. I give permission for this. 

4. I agree to take part in the above study.    

 

 

 

 

             

Name of participant   Date    Signature 

                                
 

                      

Name of person taking consent   Date    Signature  
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Appendix Ic. The Numerical Rating Scale for Pain. 

 

Pain Intensity Scale 

At the end of each cuff inflation, place a cross on the scale to rate 
the level of any pain that you experienced 

FIRST INFLATION 
          

          

                                0       1      2       3      4       5      6       7      8       9     10 

   No           Moderate            Worst 
   pain                               pain            possible 
                  pain 

SECOND INFLATION 
          

          

                                0       1      2       3      4       5      6       7      8       9     10 

   No           Moderate            Worst 
   pain                               pain            possible 
                  pain 

THIRD INFLATION 
          

          

                                0       1      2       3      4       5      6       7      8       9     10 

   No           Moderate            Worst 
   pain                               pain            possible 
                  pain 

FOURTH INFLATION 
          

          

                                0       1      2       3      4       5      6       7      8       9     10 

   No           Moderate            Worst 
   pain                               pain            possible 
                  pain 

FIFTH INFLATION 
          

          

                                0       1      2       3      4       5      6       7      8       9     10 

   No           Moderate            Worst 
   pain                               pain            possible 
                  pain 
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Appendix Id. The Numerical Rating Scale for Discomfort. 

 

Discomfort Intensity Scale 

At the end of each cuff inflation, place a cross on the scale to rate 
the level of any discomfort that you experienced. 

FIRST INFLATION 
          

          

                                0       1      2       3      4       5      6       7      8       9     10 

   No           Moderate            Worst 
   discomfort                    discomfort           possible 
                  discomfort 

SECOND INFLATION 
          

          

                                0       1      2       3      4       5      6       7      8       9     10 

   No           Moderate            Worst 
   discomfort                    discomfort           possible 
                  discomfort 

THIRD INFLATION 
          

          

                                0       1      2       3      4       5      6       7      8       9     10 

   No           Moderate            Worst 
   discomfort                    discomfort           possible 
                  discomfort 

FOURTH INFLATION 
          

          

                                0       1      2       3      4       5      6       7      8       9     10 

   No           Moderate            Worst 
   discomfort                    discomfort           possible 
                  discomfort 

FIFTH INFLATION 
          

          

                                0       1      2       3      4       5      6       7      8       9     10 

   No           Moderate            Worst 
   discomfort                    discomfort           possible 
                  discomfort 
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Appendix Ie. The Omnibus Perceived Exertion Scale for Resistance Exercise 

 

Perceived Exertion 

 

At the end of each set of exercise, look at the chart 
above. Write down below how hard you feel your 
muscles worked during the last set, out of 10. 

 

FIRST SET     /10 

SECOND SET     /10 

THIRD SET     /10 
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Appendix II. A Dual-energy X-ray Absorptiometry [DXA] Scan Example 

 

An example full-body DXA scan captured during the Phase I study, displaying the 
placement of all body-region boundaries. 
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Appendix III. Phase I Cohort Anthropometrics 
 

 Cohort Subgroup 

 Rugby Male (n = 21) Male (n = 21) Female (n = 19) Total (N = 61) 

Physical Characteristic Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

Age (years) 23.9 3.8 27.7 5.4 26.6 5.6 26.0 5.2 

Height (cm) 185.6 5.6 178.9 7.5 168.1 8.6 177.8 10.1 

Weight (kg) 96.8 8.3 82.4 11.8 63.5 6.4 81.5 16.3 

Body Mass Index 28.1 1.7 25.7 3.2 22.5 1.8 25.5 3.2 

Thigh Circumference (cm) 65.1 2.8 60.9 4.7 57.4 3.2 61.2 4.8 

Leg Length (cm) 97.3 4.0 93.1 5.1 88.8 5.6 93.2 5.9 

Thigh Length (cm) 50.8 2.1 48.6 2.5 47.0 3.4 48.9 3.1 

Systolic Blood Pressure (mmHg) 125.0 7.1 120.8 10.3 108.9 5.6 118.5 10.3 

Diastolic Blood Pressure (mmHg) 76.0 5.8 74.1 6.6 68.6 6.2 73.0 6.8 

Mean Arterial Pressure (mmHg) 92.3 5.6 89.7 6.8 82.0 5.4 88.2 7.3 

DXA Body Tissue Fat (%) 17.9 4.5 23.5 9.5 28.0 7.6 23.0 8.5 

DXA Total Body Fat Mass (g) 16,692 5,243 19,274 9,468 17,354 4,855 17,787 6,883 

DXA Total Body Lean Mass (g) 75,799 6,110 59,699 6,889 43,250 5,717 60,118 14,639 

DXA Total Body Mass (g) 97,239 8,434 82,429 11,591 63,206 6,400 81,540 16,546 

DXA Test Leg Tissue Fat (%) 17.2 3.8 22.7 9.6 33.5 8.2 24.2 10.1 

DXA Test Leg Fat Mass (g) 2,849 765 3,408 1,833 3,968 1,030 3,390 1,357 

DXA Test Leg Lean Mass (g) 13,635 1,251 11,045 1,478 7,819 1,269 10,932 2,713 

DXA Test Leg Total Mass (g) 17,362 1,575 15,126 2,375 12,277 1,584 15,009 2,787 
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Appendix IV (a). Bivariate Correlations between In-session Changes to Vastus Lateralis SmO₂ and Physical  

Characteristics of the Phase II Cohort 

Variable & 
Cuff 

Pressure  

Height (m) 
Weight 

(kg) 
BMI Leg Length 

Thigh 
Length 

Thigh Circ. Systolic BP Diastolic BP 
Mean 

Arterial 
Pressure 

SmO2 
0mmHg 

Pearson r 0.426 0.483 0.396 0.462 0.377 0.481 -0.16 -0.166 -0.197 

Sig. (2-
tailed) 

0.1 0.058 0.129 0.071 0.15 0.059 0.554 0.54 0.465 

SmO2 
40mmHg 

Pearson r 0.344 .696** .759** 0.399 .506* .694** 0.447 0.187 0.36 

Sig. (2-
tailed) 

0.192 0.003 0.001 0.125 0.045 0.003 0.082 0.487 0.171 

SmO2 
60mmHg 

Pearson r 0.443 .634** .608* 0.269 0.183 .522* 0.185 0.319 0.316 

Sig. (2-
tailed) 

0.086 0.008 0.012 0.314 0.498 0.038 0.493 0.228 0.233 

SmO2 
80mmHg 

Pearson r 0.084 0.46 .596* -0.13 -0.205 0.494 0.423 0.443 .524* 

Sig. (2-
tailed) 

0.758 0.073 0.015 0.632 0.446 0.052 0.103 0.086 0.037 

Black and grey boxes indicate sufficiently and insufficiently powered, statistically significant bivariate correlations (p ≤ 0.05) 
respectively. 
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Appendix IV (b). Bivariate Correlations between In-session Changes to Vastus Lateralis tHb and Physical 
Characteristics of the Phase II Cohort 
 

Variable & 
Cuff 

Pressure  

Height 
(m) 

Weight 
(kg) 

BMI 
Leg 

Length 
Thigh 

Length 
Thigh 
Circ. 

Systolic 
BP 

Diastolic 
BP 

Mean 
Arterial 

Pressure 

tHb 
0mmHg 

Pearson r 0.068 0.073 0.032 0.061 0.155 -0.204 0.368 -0.039 0.162 

Sig. (2-
tailed) 0.802 0.789 0.906 0.821 0.567 0.449 0.161 0.887 0.549 

tHb 
40mmHg 

Pearson r -0.405 -0.269 -0.132 -0.346 -0.127 -0.308 -0.002 -0.013 -0.01 

Sig. (2-
tailed) 0.12 0.314 0.626 0.189 0.639 0.245 0.993 0.963 0.971 

tHb 
60mmHg 

Pearson r -0.425 -0.243 -0.078 -.508* -0.409 -0.174 -0.292 0.255 0.027 

Sig. (2-
tailed) 0.101 0.364 0.775 0.045 0.116 0.519 0.273 0.34 0.92 

tHb 
80mmHg 

Pearson r -.538* -.550* -0.434 -.519* -0.431 -0.443 -0.485 0.183 -0.122 

Sig. (2-
tailed) 0.032 0.027 0.093 0.039 0.096 0.086 0.057 0.497 0.652 

Grey boxes indicate insufficiently powered, statistically significant bivariate correlations (p ≤ 0.05) respectively. 
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Appendix IV (c). Bivariate Correlations between In-session Changes to Vastus Lateralis HHb and 
Physical Characteristics of the Phase II Cohort 
 

Variable 
& Cuff 

Pressure  

Height 
(m) 

Weight 
(kg) 

BMI 
Leg 

Length 
Thigh 

Length 
Thigh 
Circ. 

Systolic 
BP 

Diastolic 
BP 

Mean 
Arterial 

Pressure 

HHb 
0mmHg 

Pearson r -0.436 -0.493 -0.404 -0.466 -0.377 -0.49 0.149 0.155 0.184 

Sig. (2-
tailed) 0.091 0.052 0.121 0.069 0.15 0.054 0.582 0.567 0.496 

HHb 
40mmHg 

Pearson r -0.379 -.726** -.778** -0.43 -.525* -.720** -0.457 -0.197 -0.371 

Sig. (2-
tailed) 0.147 0.001 < 0.001 0.096 0.037 0.002 0.075 0.465 0.157 

HHb 
60mmHg 

Pearson r -0.439 -.628** -.604* -0.272 -0.19 -.518* -0.206 -0.305 -0.317 

Sig. (2-
tailed) 0.089 0.009 0.013 0.308 0.482 0.04 0.445 0.251 0.232 

HHb 
80mmHg 

Pearson r -0.106 -0.485 -.618* 0.103 0.183 -.524* -0.432 -0.401 -.500* 

Sig. (2-
tailed) 0.695 0.057 0.011 0.703 0.499 0.037 0.095 0.124 0.049 

Black and grey boxes indicate sufficiently and insufficiently powered, statistically significant bivariate 
correlations (p ≤ 0.05) respectively. 
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Appendix IV (d). Bivariate Correlations between the Mean Three-session Change to Vastus Lateralis Haemodynamic Variables and 

Physical Characteristics of the Phase II Cohort 

Variable 

 

Height 
(m) 

Weight 
(kg) 

BMI 
Leg 

Length 
Thigh 

Length 
Thigh 
Circ. 

Systolic 
BP 

Diastolic 
BP 

Mean 
Arterial 

Pressure 

BfR3 

Pearson 
r 

.241 .533* .606* .258 .395 .466 .064 .262 .214 

Sig. (2-
tailed) .368 .034 .013 .335 .130 .069 .815 .327 .426 

SmO²3 

Pearson 
r 

.356 .723** .791** .199 .160 .685** .415 .404 .493 

Sig. (2-
tailed) .176 .002 < 0.001 .460 .554 .003 .110 .121 .052 

tHb3 

Pearson 
r 

-.544* -.429 -.264 -.555* -.409 -.362 -.345 .191 -.045 

Sig. (2-
tailed) .029 .097 .323 .026 .116 .168 .191 .479 .869 

HHb3 

Pearson 
r 

-.369 -.731** -.794** -.215 -.171 -.695** -.428 -.379 -.482 

Sig. (2-
tailed) .160 .001 < 0.001 .424 .526 .003 .099 .148 .059 
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Appendix V (a). Data Synthesis Table 

  

Controlled Trials Other Research Designs 

 Cook et al 
(2010; 2014) 

Iversen et al  
(2015) 

Kubota et al  
(2008) 

Kubota et al 
(2011) 

Ohta et al  
(2003) 

Takarada et al 
(2000b) 

Hackney et al 
(2016) 

Lejkowski and 
Pajaczkowski  

(2011) 

Cohort size 16 24 15 11 44 16 13 1 

Injury Type No Injury 
Acute ACL 

Reconstruction 
No Injury No Injury 

Acute ACL 
Reconstruction 

Acute ACL 
Reconstruction 

No Injury 
Acute ACL 

Reconstruction 

Weight 
bearing Status 

Voluntary NWB Enforced NWB Voluntary NWB Voluntary NWB NWB to FWB Enforced NWB Voluntary NWB Enforced PWB 

Outcome 
Measures 

Thigh & calf 
muscle CSA via 

MRI; Muscle 
strength via 

1RM, MVC and 
IKD; Dynamic 

muscular 
endurance (# 

reps until 
failure) 

Thigh muscle CSA 
via MRI 

Muscular force 
via IKD; Serum 

growth hormone 
via blood 

sampling; Thigh & 
Leg 

circumference via 
tape 

measurement 

Muscular force 
via IKD; Thigh & 

Leg 
circumference via 

tape 
measurement 

Muscular force 
(knee) via IKD; 

Thigh muscle CSA 
via MRI; Muscle 
fibre diameter 

(vastus lateralis) 
via biopsy 

Thigh muscle CSA 
via MRI; 

Thigh (knee 
extensors) & Calf 
(planter flexors) 
muscle CSA via 
MRI; Muscular 

strength via 1RM; 
Dynamic 
muscular 

endurance  (# 
reps until failure) 

Thigh 
circumference via 

tape 
measurement; 

Subjective 
function via KOOS 

and LEFS 
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Intervention 
Duration 

30 days 14 days 14 days 14 days 16 weeks 

10 days (14 days 
between pre-post 
intervention MRI 

scans) 

25 days 12 weeks 

Exercise 
Type(s) 

Seated knee 
extension 

Isometric 
quadriceps, end-

of-range knee 
extensions, 

straight leg raises 
(all performed in 

long-sitting 
position) 

None None 

(Progressive) 
Straight leg raise, 
hip abduction, hip 

adduction, half-
squats, knee-
bend walking, 

step-ups 

None during 
occlusion, 
otherwise 
followed a 

'normal' rehab 
protocol - 

exercises not 
reported 

Supine leg press, 
supine calf raise 

Knee extension, 
heel slides, 

squats, lunges, 
step-ups 

# of BfR 
sessions per 

week 
3 14 14 14 6 14 3 4 to 5 

# of Sets 
3 sets to 

volitional failure 
5 sets of 5 mins of 

BfR 
5 sets of 5 mins of 

passive BfR 
5 sets of 5 mins of 

passive BfR  
4 sets 

5 sets of 5 mins of 
passive BfR  

3 sets to 
volitional failure 

2 sets 

Number of 
Repetitions 

N/A 
20 reps of 

exercise per 5-
minute set 

N/A N/A 30-15-15-15 N/A N/A 20 repetitions 

Rest Period 
Duration 

90 seconds 180 seconds 180 seconds 180 seconds Not reported 180 seconds 90 seconds 30 seconds 

Exercise 
Intensity 

20% MVC Unknown N/A N/A Various N/A 20-30% MVC Various 

Cuff Type/ 
Manufacturer 

Hokanson Delphi Mihuzo Mihuzo 
An 'air 

tourniquet' 
A 'pneumatic 

occlusion cuff' 
Hokanson Welch Allyn 
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Cuff Inflation 
Method 

E20 Rapid Cuff 
Inflator 

Manual 
sphygmomanome

ter  
Not reported Not reported 

Manual 
Sphygmomanome

ter 
Not reported 

E20 Rapid Cuff 
Inflator 

Manual 
Sphygmomanome

ter 

Cuff Width 6cm 14cm 7cm 7cm Not reported 9cm 6cm 15.2cm 

Main or Mean 
Cuff Pressure 

Applied 
(mmHg) 

150 (SD 10) 130-180 200 50 180 
238  

(Range180-260) 
140 (SD 10) 100 

Cuff Pressure 
Calculation 

Used 
1.3x SBP* None Not reported Not reported  Not reported 

None (cited 
earlier work to 

justify pressures 
used) 

1.3x SBP* Not reported 

BfR Modality Continuous Intermittent Intermittent Intermittent Not reported Intermittent Continuous 
Intermittent, then 
continuous after 

3 days 

*SBP = Systolic Blood Pressure 
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Appendix V (b). Risk of Bias Table 

 

 Potential Sources of Bias  

Selected Studies (First 
Author and Year of 

Publication) 

Selection Bias 

Performance 
Bias 

Detection 
Bias 

Attrition Bias 
Reporting 

Bias 
Other Bias 

Inadequate 
Randomisation 

Inadequate 
Concealment 

Cook et al (2010)               

Cook et al (2014)               

Iversen et al (2015)               

Kubota et al (2008)               

Kubota et al (2011)               

Ohta et al (2003)               

Takarada et al (2000b)               

        

KEY: Risk of Bias 
Judgement 

  Low Risk      

  High Risk      

  Unclear Risk      
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Appendix VI (a) A Conference Paper relating to The Phase I Main Study.  

 
Presented at the 4th (European Region) World Confederation for Physical Therapy 

Congress [ER-WCPT]. 11th and 12th November 2016. Liverpool, United Kingdom. 

 

Citation Information 

Smith, P., Azzawi, M., Stirling, B., Stockley, R., Goodwin, P. (2016) ‘Lower-limb Blood-flow 

Restriction Training: using physical size and thigh cuff pressure to predict the amount of 

restriction being delivered’. Physiotherapy 102(S1), pp. e135-136 DOI: 

http://dx.doi.org/10.1016/j.physio.2016.10.154 

 

Conference Abstract 

Relevance 
The conference theme of ‘Research, education and Practice’ is relevant to this work. 
Blood-flow Restriction Training [BfRT] involves the temporary, artificial reduction of blood 
flow through a limb, often during low-intensity exercise. Evidence suggests that BfRT may 
attenuate losses in thigh muscle size and strength if a non-weight bearing period occurs 
following lower-limb injury. However, the restriction equipment often employed in BfRT 
research can be inaccessible to many clinicians. Variations may also exist between 
individuals in the amount of blood-flow restriction [BfR] experienced at a given thigh cuff 
pressure. To maximise the impact of BfRT research upon clinical practice, work is needed 
to remedy these issues via the use of clinically-accessible restriction equipment and 
evidence-based, personalised cuff pressures. 

Purpose  
Using a thigh blood-pressure cuff, this study investigated whether the physical size of an 
individual was associated with, or could help clinicians to predict, the amount of BfR 
experienced at different cuff pressures. 

Methods/Analysis  
Ethical approval was gained from Manchester Metropolitan University. Following 
informed consent, 61 healthy adults aged <40 years were recruited into three subgroups 
(21 males, 19 females, 21 professional male rugby players). Physical measurements were 
recorded for each participant via Dual X-ray Absorptiometry and a flexible tape measure. 
In a resting seated position, five cuff pressures (40/60/80/100/120mmHg) were applied in 
a randomised order using a 21cm-wide blood pressure cuff fitted around one thigh. Each 
cuff inflation lasted thirty seconds, with three minutes separating each inflation. Changes 
in popliteal arterial blood-flow volume between baseline and each cuff pressure were 
recorded using Doppler ultrasound, then converted into percentages for each individual. 
Between-subgroup comparisons were calculated using parametric and non-parametric 
tests. Relationships between the applied cuff pressure, physical measurements and the 
percentage of popliteal blood-flow remaining [%PBfR] were analysed via Pearson 
correlation coefficients and multiple stepwise regression. 

Results 
A strong linear relationship existed between the cuff pressure applied and %PBfR for the 
cohort (Pearson r -0.77, p < 0.001). Subgroups were statistically different across nineteen 
physical size measurements (p < 0.001). However, a between-subgroup difference in 

http://dx.doi.org/10.1016/j.physio.2016.10.154
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%PBfR existed only at 40mmHg cuff pressure (p < 0.05). For the whole cohort, weak 
correlations were found across all cuff pressures between %PBfR and seven physical size 
measurements (Pearson r 0.12-0.15, p ≤ 0.05). A model was formed to predict %PBfR 
based predominantly upon the amount of cuff pressure applied, combined with tape 
measurements of thigh length and circumference (r 0.79, r² 0.63, p < 0.001). 

Discussion and conclusions 
Results suggest small associations between physical size and the %PBfR experienced at 
sub-occlusive thigh cuff pressures. Whilst some between-subject variations in the amount 
of BfR experienced still remain unexplained, the model produced will allow clinicians to 
begin calculating and justifying their cuff pressure selections. Further work will combine 
low-intensity exercise with different amounts of BfR to ascertain optimum cuff 
pressure(s) to use during rehabilitation sessions. 

Impact and implications 
This is the first study to aide clinicians in using a thigh blood-pressure cuff to induce 
known amounts of BfR. It will help optimise the delivery and clinical-accessibility of BfRT 
following lower-limb injury. 

Key words 
Blood-flow restriction; Lower-limb injury; Low-intensity exercise 

Funding acknowledgements 
This study was funded via a PhD Studentship from Manchester Metropolitan University.  
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Appendix VI (b) A Conference Paper relating to The Phase II Main Study. 

Presented at the World Confederation for Physical Therapy Congress [WCPT]. 4th July 

2017. Cape Town, South Africa. 

Citation Information 

Smith, P., Azzawi, M., Stirling, B., Stockley, R., Goodwin, P. (2017) ‘Increasing the 

metabolic stress of an unweighted knee exercise via Blood-flow Restriction Training: A 

potential treatment adjunct for physiotherapists’. Display number RR-PO-06-06-TUE. 

(Awaiting DOI). 

 

Conference Abstract 

Background 

Blood-flow Restriction Training [BfRT] involves the temporary, artificial reduction of blood 

flow through a limb, often during low-intensity resistance exercise. Following lower-limb 

injury or surgery, evidence suggests that BfRT can be used to minimise losses in thigh 

muscle size and strength or accelerate their return. However, the restriction equipment 

used in BfRT research is often inaccessible to frontline clinicians. There is also little 

evidence as to the acute metabolic effect of adding blood-flow restriction to un-resisted, 

or ‘no load’, rehabilitation exercises. 

Purpose 

Using an inexpensive restriction device, this study investigated whether adding lower-

limb blood-flow restriction to a rehabilitation-appropriate ‘no load’ knee exercise 

produced a significant change in the acute metabolic stress of the exercise session. 

Methods 

The height, weight and leg measurements of n=16 healthy participants (n=9 male) were 

recorded. Participants attended four exercise sessions separated by at least 48 hours. 

Each session consisted of three, one-minute sets of a single-leg, unweighted knee-

extension exercise. Throughout all sessions a 21cm-wide thigh blood-pressure cuff was 

wrapped around the thigh of the exercising limb. During the first exercise session the cuff 

was not inflated [control]. Over the remaining three sessions, the cuff was inflated to one 

preselected pressure [40/60/80mmHg] in order to restrict blood flow through the 

exercising limb. At the start of these sessions, the percentage of popliteal arterial blood-

flow volume remaining after cuff inflation [BfR] was determined using Doppler 

ultrasound. To indicate metabolic stress, near infra-red spectroscopy was used to record 

deoxygenated haemoglobin mass [HHb] of the vastus lateralis muscle before and during 

every exercise session. Cohort differences in BfR and HHb change for each exercise 

session were then compared. 

Results 

All participants completed all exercise sessions. BfR decreased as cuff pressure was 

increased, with 80mmHg inducing a mean BfR of 47.6% (95% CI 42.9% - 52.3%). HHb of 

the vastus lateralis muscle did not increase during the control session. HHb of the vastus 

lateralis muscle increased significantly when cuff pressures were applied during the three 

remaining sessions. (Repeated Measures ANOVA, p< 0.001, partial η2 0.65). Overall, a 
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higher Body Mass Index was associated with smaller changes in HHb of the vastus 

lateralis muscle during sessions in which cuff pressures were applied (Pearson R -0.794, R² 

0.630, p < 0.001). 

Conclusions 

Results indicate that adding lower-limb blood-flow restriction significantly increased the 

local, acute metabolic stress of a rehabilitation-appropriate knee exercise without the 

need to increase exercise load or repetitions. At cuff pressures up to 80mmHg, the degree 

of metabolic stress experienced during ‘no load’ BfRT differed between individuals and 

was associated with their Body Mass Index. 

Implications 

Using an inexpensive blood-pressure cuff as the restriction device, findings support the 

potential use of lower-limb BfRT as a treatment adjunct following lower-limb injury. To 

deliver a consistent level of metabolic stress among different individuals, clinicians may 

need to tailor the amount of thigh cuff pressure that they apply based upon an 

individual’s physical size. Further research is required to determine the potential 

magnitude of acute metabolic stress required to attenuate the effects of muscle disuse 

within injured populations. 
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