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ABSTRACT 

 

The local unitary authorities of Calderdale, Kirklees and Bradford in West Yorkshire have 

joint jurisdiction over the South Pennine Moors Special Protection Area (SPMSPA). This 

is an upland protected area in the North of England. The SPMSPA provides feeding and 

breeding habitat for an assemblage of bird species of international conservation concern. 

Knowledge of the habitat associations of these species within the fringe of the SPA is 

lacking. Thirteen species form the bird assemblage that has been identified in collaboration 

with the project partners as in most need of ecological evidence within the moorland fringe 

landscape. Within this PhD, the ecology of these species was investigated in the context of 

the immediate 1 km fringe outside of the SPMSPA. The habitat composition of this fringe 

was found to be a heterogenous mosaic, predominantly characterised by smaller fields 

dominated by species-poor agricultural habitats. Curlew Numenius arquata, Lapwing 

Vanellus vanellus, Snipe Gallinago gallinago, Wheatear Oeanthe oeanthe and Golden 

Plover Pluvialis apricaria were found to be associated with fields comprising tussocks, 

wet flush and evidence of intensive grazing. Species richness was found to be greatest in 

habitats not typical of moorland or farmland. Bird diversity and species richness were 

lowest within 100 m of Small Wind Turbines (SWTs), with Magpie Pica pica and Starling 

Sturnus vulgaris negatively associated with proximity to SWTs. Landsat 8 imagery were 

found to be a good predictor of the distribution of habitat suitability for five moorland 

fringe bird species, especially when used to supplement empirical data. Building density 

was an important predictor for the majority of these species. The lack of unimproved 

grassland and particularly high land cover of improved and semi-improved agricultural 

land indicate that the SPMSPA fringe landscape is suboptimal for the conservation of 

moorland fringe bird diversity. The results of this research can be used as ecological 

evidence to assist future planning decisions and the conservation of habitats within the 

SPA fringe for birds of conservation concern. 
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CHAPTER 1: BIRDS IN A DEVELOPING MOORLAND FRINGE 

LANDSCAPE 

1.1. Global drivers of biodiversity decline 

The world is undergoing a period of dramatic decline in biodiversity as a consequence of 

human activity (Johnson et al., 2017). The anthropogenic causes of this biodiversity loss 

are diverse in nature and geographically widespread, with implications for ecosystems 

throughout the world (Steffen et al., 2015). The most publicised and widely recognised 

driver of biodiversity loss is climate change as the result of fossil fuel combustion 

(González-Orozco et al., 2016; Titeux et al., 2016). This focus on climate change is 

constructive in raising awareness of the negative ecological pressures of human activity, 

however other anthropogenic causes of biodiversity loss need to be considered. Climate 

change is certainly a driver of biodiversity loss at multiple biological scales including the 

genetic, species, community and ecosystem levels (Mantyka-Pringle et al., 2015) and 

across a broad range of taxa  (Bellard et al., 2012). Recent climate change however is a 

result of human activity and as such it is not the root anthropogenic cause of these 

biodiversity declines. Biodiversity loss has been attributed to factors such as meat 

consumption in developed countries (Stoll-Kleemann and Schmidt, 2017), overfishing 

(Boudouresque et al., 2017), the spread of infectious diseases from domestic animals to 

wildlife (Daszak, 2007), introduced species (Doherty et al., 2016), habitat loss and habitat 

fragmentation (Bartlett et al., 2016). Many of these factors are directly or indirectly related 

to human activities that have a deleterious effect on natural ecological systems such as 

deforestation (Barlow et al., 2016), agricultural expansion (Moraes et al., 2017) and urban 

sprawl (Dupras et al., 2016). The resultant habitat modification from these activities fall 

under the umbrella concept of land-use change. The diversity and pervasiveness of global 

land-use change means that the associated impacts on ecological systems are numerous and 

complex, presenting a major threat to global biodiversity (Newbold et al., 2015).  

The maintenance of biodiversity is essential for the health of ecosystem functionality 

(Oliver et al., 2015), which is in turn essential for the wellbeing of the human race through 

the provision of ecosystem services (Sandifer et al., 2015). Conservation efforts are critical 

in the preservation of biodiversity (Johnson et al., 2017), however uncertainty over the 

likely success of such efforts can be problematic to securing funding and resources to 

combat biodiversity loss (Waldron et al., 2017). As conservation resources are distributed 

at multiple spatial scales including at international, national and local levels, resolving 
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these uncertainties requires the gathering of coherent ecological and conservation impact 

evidence at multiple spatial scales, often in the context of one another (Baylis et al., 2016). 

1.2. Impacts of development on bird populations and communities 

Modern society is facing a multitude of developmental pressures that have the potential to 

be extremely detrimental to biodiversity, including bird populations and communities. 

These pressures include the expansion of urban areas, large scale agricultural expansion, 

land-use change, climate change as a result of fossil fuel burning, and paradoxically, 

renewable energy developments (Maggini et al., 2014; Thaxter et al., 2015; Batáry et al., 

2017; Quinn et al., 2017) . Studies have revealed that these forms of development can have 

pronounced negative impacts on residential and migratory bird populations and 

communities through habitat loss, degradation and fragmentation (Marzluff, 2001; Filippi-

Codaccioni et al., 2008; Marzluff and Ewing, 2008). Negative impacts include bird 

disturbance (Drewitt and Langston, 2006), adverse changes to bird behaviour (Larsen and 

Guillemette, 2007), changes in  community composition (Blair and Johnson, 2008), direct 

mortality (Grecian et al., 2010), loss/avoidance of nesting and breeding sites (Morrison et 

al., 2011), reduction in food resources (Mennechez and Clergeau, 2006) and increased 

competition from colonial and successional/invasive species that are more adapted to urban 

habitats (Bonier et al., 2007).  

The expansion of urban development and associated changes in land-use poses a 

number of threats to biodiversity and ecosystem function (Seto et al., 2012). The allocation 

of Special Protection Area (SPA) or Special Area for Conservation (SAC) status to key 

areas important for biodiversity provides a means of directly avoiding the physical effect 

of urban development by prohibiting or heavily restricting development in these areas 

(Morris, 2011). Nevertheless, it is important to understand how development and 

anthropogenic activity outside the boundary of a protected area might affect the ecological 

processes within, especially with regard to bird populations (Mas, 2005; Martínez et al., 

2007; Kharouba and Kerr, 2010; Guix and Arroyo, 2011; Pérez-García et al., 2011). 

External pressures with the potential to affect wildlife within protected areas include 

factors such as increased recreational pressure, increased pollution (light, noise and 

chemical), increased predation from domestic pets and the alteration or loss of habitat 

(Yalden, 1992; Pearce-Higgins et al., 2007; Reed and Merenlender, 2008; Mcdonald et al., 

2009; Aubrecht et al., 2010; Hölker et al., 2010; Radeloff et al., 2010; Wierzbowska et al., 

2012). A literature review by Mcdonald et al. (2009) examined 163 studies and found 22 
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potential negative effects of urbanization on protected areas including some of the 

ecological impacts outlined above. 

Bird species that are highly mobile may require habitat that extends beyond the 

boundary of a protected area as well as the habitat contained within. For example, in the 

UK, Golden Plover Pluvialis apricaria often fly greater than four kilometres between 

nesting and feeding sites (Whittingham et al., 2000). This species utilizes enclosed fields 

with abundant tipulid larvae as feeding habitat (Whittingham et al., 2000; Pearce-Higgins 

and Yalden, 2003) and breeds on heather moorland and blanket bog (Pearce-Higgins and 

Yalden, 2004). Thus, if breeding habitats are within the boundary of a protected area, but 

feeding habitats are situated mainly outside the boundary, there is the potential for urban 

development outside of the protected area to affect the survival of breeding populations 

within. One proposed solution to this problem involves ‘biodiversity offsetting’, where 

equivalent  habitats are created elsewhere in place of another lost to development (Regnery 

et al., 2013). This is a strategy that has been implemented for a variety of habitats around 

the world, including forest and shrubland in New Zealand (Norton, 2009), wetlands in the 

United States of America (Zedler, 1996), sub-montane forest in the Republic of Guinea 

(Kormos et al., 2014), freshwater and marine habitats in Canada (Quigley and Harper, 

2006) and habitats protected under the EU Habitats and Birds directives in France 

(Regnery et al., 2013). In the UK, DEFRA have published guidelines for the practice of 

biodiversity offsetting (DEFRA, 2011), however scientific case studies in the UK are 

elusive. For biodiversity offsetting to be successful it is necessary to understand the 

ecological requirements of the species assemblage at both landscape and temporal scales 

within the target habitat (Maron et al., 2012). Quantifying these requirements is difficult 

and as such the effectiveness of biodiversity offsetting remains largely untested, disputed 

or subject to suggestions for improvement (Hayes and Morrison-Saunders, 2007; Gordon 

et al., 2009; Quétier and Lavorel, 2011; Bull et al., 2013). One of the core concepts of 

biodiversity offsetting is the that of ‘no net loss’ to biodiversity, or more optimistically, a 

‘net gain’ where possible (Schoukens and Cliquet, 2016; Bull and Brownlie, 2017). The 

uncertainty in quantifying baseline biodiversity at development sites for offsets to be 

measured against has resulted in controversy over the implementation of biodiversity 

offsetting (Gordon et al., 2015). Part of this controversy comes from the fact that 

biodiversity offsets are often only gauged by the losses likely to be incurred as a direct 

result of a particular development, meaning that any losses that are predicted to occur 

under scenarios despite development can be transferred to the offset site, maintaining an 

overall biodiversity decline (Maron et al., 2015). Another controversial aspect of  
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biodiversity offsetting is that ecological damage will undoubtedly be caused in the area 

where development takes place, with no guarantee that the offset site will provide 

equivalent opportunities for biodiversity (Evans et al., 2015), partially through uncertainty 

over the success of mitigation activities at the offset site, but also through the inherent 

difficulty in quantifying geographically separate ecosystems as comparable 

(Apostolopoulou and Adams, 2017).  In addition, there are concerns over the ability of 

authorities to monitor adherence to biodiversity offsetting programs and to avoid the 

introduction of counter incentives that undermine biodiversity offsetting efforts (Maron et 

al., 2016). 

The ecological benefits of considering the wider landscape and its associated land 

use in the role of preserving biodiversity is  important, but can be difficult to achieve due 

to the complexity of ecological systems where community diversity, functional ecology, 

structural ecology and genetics all contribute to the health of biodiversity (Waldhardt, 

2003). In places where urban development encroaches on protected areas, it may be 

necessary to consider biodiversity offsetting in areas outside of the protected area, in an 

attempt to compensate for any negative effect on biodiversity, and to maintain habitat 

heterogeneity in the context of the wider landscape (Santos et al., 2008). The interface 

between a protected area and the unprotected surrounding habitats should be taken into 

consideration if we are to fully understand how  biodiversity and ecosystems may be 

affected by urban encroachment in the vicinity of protected areas (Palomino and Carrascal, 

2006; Filippi-Codaccioni et al., 2008; Knapp et al., 2008; McDonnell et al., 2008), 

particularly if unprotected  habitats are known to support species of conservation 

importance from nearby protected areas (Santos et al., 2008). 

In the United Kingdom, local governments are under increasing pressure to grant 

planning applications for new developments as a result of policies including the Local 

Development Framework (LDF) (DCLG, 2008) and the Strategic Housing Land 

Availability Assessment (SHLAA) (DCLG, 2007). These require the identification of 

suitable development sites, including areas that are potentially high in biodiversity such as 

rural settlements, brownfield sites outside of settlement boundaries and greenfield sites 

(Adams, 2011). The National Planning Policy Framework was established in order to 

provide a framework for sustainable development in the UK, facilitating economic and 

social development with some emphasis on environmental protection (DCLG, 2012). This 

includes avoiding any adverse effects of local development by adhering to obligations set 

out by the European Commission (EC) Birds and Habitats Directives (EEC, 1979, 1992; 

EC, 2009). This has resulted in a shift towards the empowerment of local governments and 
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rural communities with regards to planning decisions and is reinforced by the 2010 

Localism Bill (DCLG 2011). As such, local authorities are under obligation to prioritise 

areas for development, whilst maximising the integrity of local characteristics and 

biodiversity. 

1.3. Impact of agricultural land-use practices on birds 

In England, Agri-Environment Schemes (AES) are represented in the form of 

Environmental Stewardship programmes (ES). These were introduced in 2005 to take into 

account reform of the Common Agricultural Policy (CAP) and to place emphasis on 

financially reimbursing farmers for biodiversity enhancing activities (Baker et al., 2012). 

Historically, CAP rewarded farmers for intensification of farming practices, which led to 

severe declines in farmland bird populations (Donald et al., 2001; Gregory et al., 2005; 

Donald et al., 2006; Sanderson et al., 2006). The intensification of various agricultural 

practices e.g. increased livestock numbers and grazing activity (Fuller and Gough, 1999) 

rotational cropping, agro-chemical input and multiple silage cuttings have had a  negative 

effect on the breeding success, diversity and population densities of bird species 

(Chamberlain et al., 2000; Guerrero et al., 2011) at local and landscape levels by impacting 

habitat quality (Wilson et al., 1997; Donald et al., 2001), changes in food availability, and 

predation pressure (Fuller and Gough, 1999). 

The purpose of AES is to mitigate for any negative effects of farming 

intensification on bird populations and other aspects of biodiversity in Europe, and to 

enhance natural biodiversity in rural habitats. The uptake of AES on farmland close to 

areas of anthropogenic development has the potential to off-set some of the potential 

negative effects of local development on birds (Whittingham, 2011) by increasing the land 

coverage of food abundant habitats for birds. AES that adhere to the objective of 

improving bird populations have proven to be a success for a range of species including 

Cirl Bunting Emberiza cilus (Peach et al., 2001), Stone Curlew Burhinus oedicnemus and 

Corncrake Crex crex (Wilson et al. 2010). In addition to increasing food abundance, the 

promotion of a diverse crop and habitat structure has the potential to boost populations of 

birds that utilise moorland habitats such as Lapwing Vanellus vanellus , Redshank Tringa 

totanus, Skylark Alauda arvensis, Starling Sturnus vulgaris, Linnet Carduelis cannabina 

and Reed Bunting Emberiza schoeniclus by providing cover for feeding and for the 

avoidance of predation (Berg and Part, 1994; Wilson et al., 2005). AES are generally 

targeted at the local scale i.e. at individual field or farm level (Guerrero et al., 2012) and 

not necessarily at the landscape scale. Kleijn et al. (2006) and Vickery et al. (2009) argue 
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that for AES to be successful in the recovery of farmland bird populations, habitat 

configuration at the landscape scale and the requirement of specific species need to be 

considered, especially where the conservation of endangered species is a priority. 

Organic farming practices, leaving ‘set-aside’ (unfarmed land) and the maintenance 

of a mosaic habitat structure at the landscape level have all been suggested as important 

factors for the recovery of farmland birds (Wretenberg et al., 2010). Edge habitat and field 

margins have the potential to maintain habitat heterogeneity and should be considered as 

important components of the habitat landscape, however species specific requirements 

should be taken into consideration to optimise their efficacy (Sanderson et al., 2009; 

Kuiper et al., 2013). The combination of field margin maintenance and leaving set-aside 

are deemed to be extremely important for the recovery of many species, including Skylark 

(Alauda arvensis), Linnet (Carduelis cannabina), Common Whitethroat (Sylvia communis) 

and Whinchat (Saxicola rubetra) (Berg and Part, 1994). A mosaic of habitats with varied 

structural characteristics and plant species composition has been suggested as optimal for 

sustaining moorland bird population (Buchanan et al., 2006), suggesting that AES should 

be managed at a landscape level, where individual participants are not treated in isolation, 

but in the context of surrounding AES. 

1.4. Wind turbines and bird populations 

Research into the ecological effects of wind turbines has generally focussed on wind farms 

with multiple large turbines. With financial incentives available within the UK for small-

scale electricity generation, there is an increasing trend towards the construction of small 

wind turbines (SWTs) in areas of high wind resource availability. The ecological effects of 

SWTs on UK biodiversity are not well understood, making it difficult for local authorities 

to make informed planning decisions. To date, only one experimental scientific paper has 

empirically quantified SWT-bird interaction. Minderman et al. (2012) examined bird flight 

behaviour within 20m of 20 individual SWTs but did not find any negative effect on the 

flight behaviour of birds within this distance of SWTs. Other research has addressed the 

issue of integrating ecological evidence into planning policy, using the lack of empirical 

ecological evidence regarding SWTs as an example for advocating better communication 

between scientists and policy makers and planning departments (Park et al. 2013). 

Consistent terminology in the scientific literature is regarded by many as key to the mutual 

understanding of concepts between scientists. ‘Small Wind Turbine’ (Minderman et al., 

2012) and ‘Micro-Turbine’ (Park et al. 2013) are often used to mean an electricity 

generating wind turbine of generating capability <50kW.  
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There is a widespread misconception amongst some sections of society that the 

threat of wind turbines on birds is limited solely to the potential for bird strike (Leung and 

Yang, 2012). This is not aided by the fact that the majority of research attempting to 

reconcile bird ecology and wind turbines appears biased towards collision risk and direct 

mortality (e.g. De Lucas et al. 2008; Ferrer et al. 2012; Péron et al. 2013). There is a 

considerable and growing body of research that has focussed on the collision mortality of 

birds with onshore wind turbines, especially with regards to raptors (e.g. Barrios & 

Rodríguez 2004; De Lucas et al. 2008; Schaub 2012; Dahl et al. 2013; Hull & Muir 2013). 

Similarly, there is much research into the bird collision risk of offshore turbines for 

numerous migratory and marine birds (e.g. Plonczkier & Simms 2012; Johnston et al. 

2014). Determining if the rate or risk of collision is of ecological significance to bird 

populations is extremely complex, as it is deemed to be species specific, location specific, 

and size specific (in terms of the size of a wind farm and the turbines), associated with 

topography, weather, season and land (Herrera-Alsina et al., 2013). Collision risk however 

is only one of many factors that could present a potential threat to the viability of bird 

populations around wind turbines. Other threats include displacement as a result of 

disturbance, habitat loss and degradation, and the creation of barriers to movement, 

altering the migration routes or daily movement patterns of birds (Drewitt and Langston, 

2006; Masden et al., 2009, 2010; Plonczkier and Simms, 2012; Winiarski et al., 2014). 

This multitude of variables make it difficult to determine in advance whether a wind 

turbine development may adversely affect a bird population (Powlesland, 2009). 

Using standardized pre-construction surveys, informed placement of turbines can 

theoretically minimise negative impacts (Madders and Whitfield, 2006). The current 

consensus in the ecological community appears to be that prior monitoring of a proposed 

wind turbine site for bird activity and placement based on a ‘least impact’ basis is the best 

way to minimise risk, i.e. by conducting an Environmental Impact Assessment (EIA) 

(Desholm et al., 2006). Adopting EIAs seems logical and relatively simple, but different 

guilds of birds require different survey methodologies, different seasonal emphasis, and in 

some cases long term monitoring covering several years in order to make sound estimates 

of abundance and distribution (Niemuth et al., 2013). Furthermore, there is some evidence 

to suggest that the spatial arrangement of turbines within the landscape can negatively 

affect bird species such as Red Kite (Milvus milvus) (Schaub, 2012). An approach has been 

proposed that involves pre-empting conflict between birds and wind turbines at the 

landscape level (Bright et al., 2008). This involves avoiding the overlap of turbine 
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locations with areas of importance to birds that present a high turbine risk based on 

foraging range, collision risk and sensitivity to disturbance (Bright et al., 2008). 

1.5. Predicting the responses of birds to forms of development 

The terrain of UK uplands and the logistical constraints of conducting ecological surveys 

in these difficult to access areas makes estimating the abundance and distribution of upland 

birds problematic. Habitat quality and extent are known to be important determinants of 

bird densities on moorland (e.g. Haworth & Thompson 1990; Brown & Stillman 1993; 

Stillman & Brown 1994). As such, appropriate habitat data used in conjunction with 

reliable bird abundance–habitat association models could allow more accurate predictions 

of bird abundance across upland areas in relation to the potential for adverse effects from 

forms of development.  

Predictive modelling is an increasingly important analytical tool which enables 

ecologists to assess the influence of environmental variables and anthropogenic 

development on bird populations without conducting exhaustive surveys over large areas 

and over extensive periods of time. Typically, previous studies have involved constructing 

forms of regression models such as General Linear Models, (Martínez-Abraín et al., 2012), 

Generalised Linear Mixed Models (GLMMs) (Devereux et al., 2008) and Generalized 

Linear Models (GLMs) (Pearce-Higgins et al., 2009). One increasingly common and useful 

predictive approach is to use Species Distribution Modelling (SDM) to produce expected 

occupancy values over large areas where complete field surveys are not feasible. MaxEnt 

software (Phillips et al., 2006) has increasingly been used in recent years to model species 

distributions across disturbed landscapes to assess the impacts of habitat loss, 

fragmentation and degradation (e.g. Lu et al., 2012). This maximum entropy modelling 

framework identifies the environmental factors that are most related to the distribution of a 

species and the probability of occurrence in a given area using presence-only occurrence 

data (Phillips et al. 2006). MaxEnt is capable of dealing with both continuous and 

categorical environmental variables simultaneously (Phillips et al. 2006), and is 

particularly well suited for small sample sizes that are typical of many species occurrence 

data sets (e.g. Pearson et al. 2006; Wisz et al. 2008). Fitzpatrick et al. (2013) argue that 

MaxEnt does not provide a direct estimate of occurrence probability, rather an index of 

habitat suitability. However, for planning decision making purposes this is likely to be 

sufficient. 

There are other SDM models available and one approach is to adopt a consensus or 

ensemble approach, employing a suite of commonly utilized SDM techniques to project 
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and compare predicted current species distributions and potential future species 

distributions (Araújo and New, 2007; Marmion et al., 2009). This approach can be 

implemented using the BIOMOD framework (Thuiller et al., 2009) within the R 

programming environment (R Core Team, 2013). The BIOMOD computational framework 

aims to maximize the predictive accuracy of current species distributions and the reliability 

of potential future distributions using several different statistical modelling techniques 

(Thuiller, 2003; Thuiller et al., 2009) including machine learning techniques and regression 

techniques. Stevens et al. (2013) used a combination of MaxEnt SDM analysis and Binary 

Logistic Regression models to determine the influence of wind turbines on the likelihood 

of habitat occupancy of several grassland-dependent bird species. No significant effects of 

the turbines were found for most of the target species except for Le Conte’s Sparrow 

Ammodramus leconteii, where evidence for displacement by turbines was shown. The 

study did not take into account other environmental variables such as wind speed, rain or 

cloud cover. 

Models have also been developed for the site selection of wind turbine 

development based on factors other than (but incorporating) ecological impact. One 

example is the use of Spatial Multi-Criteria Analysis (SMCA) in a Geographic Information 

System (GIS) to select suitable sites for turbine construction based on ecology, economics, 

wind resource and geology (van Haaren and Fthenakis, 2011). This approach does not 

replace EIA as a measure for site selection, but allows the filtering of sites prior to EIA, 

thus reducing cost and resource use whilst improving efficiency and efficacy. 

1.6. Moorland habitats in the United Kingdom 

The creation of SPAs and SACs have brought international recognition to the threatened 

biodiversity of semi-natural moorland habitats throughout the United Kingdom 

(Littlewood et al., 2006). The UK uplands are of international conservation importance for 

their range of moorland and blanket bog plant communities and associated breeding bird 

assemblage (Thompson et al., 1995). The upland moorland habitats of blanket bog and 

dwarf heath (including heather moorland) cover around 23.6% of Scotland, 3% of England 

and 6.2% of Wales, and are considered to be biodiversity action plan priority habitats by 

the Centre for Ecology and Hydrology (CEH) in the UK (Carey et al., 2008). There are 19 

constituent plant communities of upland habitats, 13 of which are listed under the EC 

'Habitats Directive' 92/43/EEC and five of which are almost entirely confined to Britain 

(Evans et al., 2006). Modern upland moorland in the UK is distinctive for the low, dense 

vegetation associated with these habitats, however these are the product of almost 4000 
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years of human land management (Birks, 1988 in Littlewood et al., 2014). Before this, the 

UK uplands were dominated by woodland and scrub, which was gradually deforested to 

make way for agriculture and in the 19th century the moors began to be manipulated for 

commercial scale grouse shooting (Simmons, 2002). The management practices of 

vegetation burning and livestock grazing over these years have led to complex successional 

changes in vegetation, and are vital in the maintenance of the semi-natural habitats of UK 

uplands (Simmons, 2002; Yallop et al., 2006). Moorland habitats are of high ecosystem 

service value, with provisions including water supply, climate regulation, carbon 

sequestration, recreation and aesthetic value (Bonn et al., 2009; Ostle et al., 2009). 

Moorlands also provide genuine economic income through employment and tourism 

associated with the perceived natural beauty and cultural heritage of the areas (Orr et al., 

2008).  

Between 1947 and 1980, around 20% of upland heather moorland present in 

England and Wales was transformed due to afforestation, agricultural reclamation, high 

grazing pressures and bracken Pteridium aquilinum invasion (Thompson et al., 1995). Of 

the remaining, 70% was estimated to be at risk of further change, with more recent 

research citing atmospheric deposition, climate change, and peat erosion due to the legacy 

of overgrazing as risks to moorland habitats (Holden et al., 2007). The international and 

national importance of biodiversity supported by the UK uplands is reflected by the fact 

that much of the area it covers is under legislative protection such as Special Protection 

Area (SPA), Special Area of Conservation (SAC) or Site of Special Scientific Interest (Orr 

et al., 2008). However, protected status isn’t necessarily indicative of the health of upland 

habitats. For example 16% of UK uplands are designated as Sites of Special Scientific 

Interest (SSSI) (Reed et al., 2009) but a large proportion of these are in unfavourable 

condition (similarly for upland SACs) (Williams, 2006).  

Ownership of land in the UK uplands is complex, with property rights distributed 

amongst stakeholders with different agendas and priorities (Quinn et al., 2010). The 

majority of moorland is privately owned and managed for red grouse and sheep production 

(Reed et al., 2013), but other landowners and stakeholders include water companies, the 

Forestry Commission and conservation NGOs (Quinn et al., 2010). This multitude of 

bodies alongside the largely unrestricted recreational access under the CROW 

(Countryside Rights of Way) act 2000 creates a difficult set of challenges when trying to 

gain consensus on the perceived threats to moorland habitats and their potential solutions. 
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1.7. Moorland bird communities: ecology and threats 

Upland moorland habitats support internationally important breeding populations of 

migratory and resident bird species, including eight species listed under annex 1 of the EC 

birds directive (Thompson et al., 1995). These species are Peregrine Falco peregrinus, 

Golden Plover Pluvialis apricaria, Short-eared Owl Asio flammeus Merlin Falco 

columbarius. Hen Harrier circus cyaneus, Greenland White-fronted Goose Anser albifrons, 

Golden Eagle Aquila chrysaetos and Red Kite Milvus milvus. The first four of these are 

represented within the SPMSPA. Other species of international importance supported by 

moorland habitat include Greenshank Tringa nebularia, Curlew Numenius arquata, 

Meadow pipit Anthus pratensis, Dunlin Calidris alpine, Skylark Alauda arvensis, Great 

Skua Stercorarius skua, Whimbrel Numenius phaeopus, Twite Acanthis flavirostris, Raven 

Corvus corax and Red Grouse Lagopus lagopus (Thompson et al., 1995). Upland 

moorland also supports several additional species of UK conservation concern including 

Lapwing Vannellus vannellus, Snipe Gallinago gallinago, Redshank Tringa totanus, 

Common Sandpiper Actitus hypoleucos, Whinchat Saxicola rubetra, Wheatear Oenanthe 

oenanthe and Ring Ouzel Turdus torquatus (Eaton et al., 2009).  

Forty percent of forty moorland bird species ranges and populations contracted or 

declined between the early 1970s and early 1990s as a result of afforestation, persecution, 

heavy grazing pressure and land drainage (Thompson et al., 1995). More recent research 

assessing the impacts of some of these pressures on moorland bird diversity as well as 

population trends for individual species are varied in their results. Pearce-Higgins and 

Grant (2006) show that declines in moorland heather cover over two decades have reduced 

habitat availability for only two of nine species, and that heterogeneity of vegetation 

composition and structure are more important for moorland bird diversity. This landscape 

mosaic approach is championed for upland bird diversity by others too, both within the 

core moorland area and in the surrounding landscape (Dallimer, Marini, et al., 2010). The 

management practices of vegetation burning and predator control undertaken on grouse 

moors can affect populations in both positive and negative ways for bird species (Grant et 

al., 2012). 

1.8. Moorland fringe land-use and bird communities 

Farmland often dominates the moorland fringe habitats that span protected area 

boundaries, meaning that there may be a conflict of interest between these programmes and 

the conservation objectives of the protected area. This problem is compounded when land 

owners manage land both within and outside a protected area. For example, there may be 
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occasions when a farm implements AES within the protected area, but not in surrounding 

moorland fringe farmland (Dallimer, Marini, et al., 2010). For some moorland species such 

as Snipe and Curlew, there is a clear association between moorland habitat management 

and the management of the surrounding farmland in terms of the success of these species 

(Dallimer et al., 2012). The relationship between usage of these habitats differs between 

species, with some species such as Lapwing and Skylark being more typical of farmland 

but also utilizing moorland areas. Species such as Meadow Pipit, Snipe and Curlew favour 

both habitats whereas others such as Golden Plover favour moorland but also utilize 

farmland and moorland fringe to supplement their feeding ecology (Pearce-Higgins and 

Yalden, 2003; Dallimer et al., 2012). Within core moorland habitats, loss of nests at the 

start of the breeding season (April) due to heather burning may result in a decrease in 

breeding productivity for species such as Oystercatcher, Peregrine Falcon, and Wheatear 

(Moss et al., 2005). As such, it is important to consider how moorland bird species utilize 

the moorland fringe habitat surrounding the protected area boundary (at the species level 

and at the population level) and manage the landscape in a way that balances the survival 

and productivity of these with the livelihoods and practices undertaken by stakeholders and 

land managers. This is particularly relevant where the management practices undertaken on 

core moorland do not appear to explain moorland bird population trends (Calladine et al., 

2014). 

1.9. Moorland fringe landscape and local development 

Policies which influence land use within SPAs and the surrounding moorland fringe are 

traditionally based on conservation practices that restrict planning or development (Bright 

et al., 2008). However, recent years have seen a significant increase in proposals for 

residential, commercial, recreational and renewable energy development on  SPA 

moorlands and within the fringe bordering these protected areas (Pearce-Higgins et al., 

2012) that pose a significant threat to the moorland birds (Douglas et al., 2012; Pearce-

Higgins et al., 2012). Moorland fringe habitats are now viewed as transitional areas 

between proposals for local development and core areas for conservation (Dallimer, 

Gaston, et al., 2010). The benefits of wind-turbine technologies are well established in 

terms of the reduction of greenhouse gases (Pearce-Higgins et al., 2012) whilst further 

residential, commercial and recreational development are necessary to deal with the 

increasing urban pressures (Bright et al., 2008)(Bright et al., 2008). However, local 

governments lack the evidence base which would enable them to understand the impacts 

on threatened bird species of proposals within Local Development Frameworks that 
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allocate areas for new development as well as setting out policies for renewable energy. 

Therefore, to ensure the international status of SPAs and their purpose in maintaining 

viable populations of threatened birds requires a better understanding of the distribution 

and abundance of habitats and birds within the moorland fringe landscape surrounding 

moorland SPAs and identifying causal links between forms of local development and the 

effects on bird populations across these landscape mosaics. 

1.10. Overall Aim of the PhD and objectives of chapter 

The overall aim of the PhD is to characterise the habitats and bird communities of the 

moorland fringe landscape of the South Pennine Moors Special Protection Area 

(SPMSPA), in northern England. These data will enable cross boundary local 

governmental co-operation to assess how these bird populations may be impacted by 

different development scenarios and permit sustainable local planning decisions to be 

made for residential and recreational development, and small scale (micro) wind turbine 

construction for the moorland fringe buffering the SPA. The SPMSPA consists of three 

spatially distinct areas of core moorland habitat embedded in a landscape mosaic of urban 

and fringe moorland habitats and as such, presents an important ecological site at UK 

national and European level. 

 

The PhD has the following objectives: 

(1) To map the distribution and estimate the extent of the different habitats within the 

moorland fringe landscape. 

(2) To identify patterns of bird community composition and abundance across the 

moorland fringe landscape and determine how these are influenced by the habitat 

characteristics of developed and undeveloped areas within the SPA.   

(3) To determine whether abundance and distribution of birds are influenced by the 

presence of small-scale (micro) wind turbines. 

(4) To develop species distribution models for the most threatened moorland bird species 

that enables sustainable development planning decisions to be made by authorities with 

joint custody of the SPMSPA. 
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1.11. Scope of Chapters 

 

Each chapter is designed to investigate an aspect of the moorland fringe bird community in 

relationship to either built development or agricultural activity. The findings are intended 

to provide evidence that can be used by the local authorities of Calderdale, Kirklees and 

Bradford in assisting planning decisions required within 1km of the SPMSPA. 

Chapter 2: Characterization of the moorland fringe landscape around the South Pennine 

Moors Special Protection Area  

This chapter describes and quantifies the habitats found across the SPA moorland fringe 

landscape. Data from field surveys, Centre for Ecology and Hydrology (CEH) datasets and 

Landsat images are used to quantify the extent of different habitats and examine temporal 

changes across the fringe within 1km buffer from the SPMSPA boundary from 1990, 2000, 

2007, 2012 and 2013. 

 

Chapter 3: Patterns of bird community composition and habitat associations of moorland 

fringe bird populations 

In this chapter, data from line transect surveys are presented to reveal the patterns of 

species richness, diversity and evenness across the different habitat categories of the 

moorland fringe landscape. Non-metric multidimensional scaling (NMDS) and generalized 

additive models (GAMs) are used to identify the key features of the habitat that influence 

the abundance of the conservation priority bird species.  

 

Chapter 4: Influence of small wind turbines on the abundance and distribution of 

moorland fringe bird species 

In this chapter data from additional line transect and habitat surveys are used to examine 

the richness, diversity, abundance and habitat associations of birds in designated small 

wind turbines (SWTs) and to determine whether SWTs cause displacement of these species 

within the fringe landscape. Associations between the presence of individual bird species 

and distance to SWTs are investigated. 

 

Chapter 5: Predicting species distributions across moorland fringe landscapes 

This chapter will determine the distribution of conservation priority moorland fringe bird 

populations across the whole SPMSPA fringe landscape. Bird-habitat distributions are 

modelled using biomod2 in R Development software. These models can then help frame an 
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appropriate conservation agenda for these species and facilitate sustainable development 

planning decisions to be made by local authorities and stakeholders with joint custody of 

the SPMSPA. 

 

Chapter 6: Summary 

In this final chapter I outline the main findings of the PhD and make recommendations for 

future bird research on moorland fringe landscapes.  
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CHAPTER 2: HABITAT CHARACTERIZATION OF THE 

MOORLAND FRINGE LANDSCAPE 

2.1. Abstract 

 

Buffer zones of reduced anthropogenic activity around protected areas have the potential to 

help maintain the conservation integrity of protected areas. The South Pennine Moors 

Special Protection Area (SPMSPA) is an upland protected area in the North of England 

that is protected specifically for its breeding bird assemblage that is surrounded by historic 

industrial conurbations and farmland. Intensification of farming practices over the latter 

half of the twentieth century have resulted in the declines of many bird species across the 

United Kingdom and residential areas are under pressure to grow from governmental 

housing policy. This chapter aims to; (1) describe the landscape and quantify the habitats 

associated with the SPMSPA moorland fringe within the unitary authority areas of 

Calderdale, Kirklees and Bradford; (2) examine temporal habitat change within the fringe 

landscape; (3) Determine gradients in building density, elevation and moorland habitats as 

a function of increasing distance from the SPA and (4) Classify the moorland fringe 

landscape using Landsat 8 remotely sensed spectral bands.  

Habitat surveys were undertaken in 2012 and 2013 for 1,284 fields within 1km of 

the SPMSPA boundary. Temporal change in habitat coverage in relation to the habitats 

within the SPMSPA was assessed using Centre for Ecology and Hydrology (CEH) data. 

Landsat 8 data were used to undertake classification of the moorland fringe landscape. 

Gradients in building density, elevation and habitat were assessed in the fringe landscape. 

Fourteen habitat categories were recorded. Most fields comprised agricultural 

habitats. Upland habitats were in the minority. Upland habitats were found to increase in 

coverage from 1990 to 2000 and decrease again between 2000 and 2007. Building density 

was linear as a function of the SPMSPA boundary. As much of the fringe is improved, it is 

recommended that monitoring agricultural intensification and upland habitat loss would 

provide insight into SPMSPA bird conservation. 
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2.2. Introduction 

For many protected areas, maintaining site integrity - a term used to describe an authority’s 

responsibility for assessing potential adverse impact factors on protected areas - should 

involve the inclusion of buffer zones and connecting areas that extend beyond a protected 

area’s boundary (Rees et al., 2013). These buffer zones have the potential to mitigate edge 

effects inflicted by encroaching anthropogenic development and activity (Gurrutxaga et al., 

2010). The expansion of urban development and associated changes in land-use poses a 

number of threats to biodiversity and ecosystem function in these areas (Seto et al., 2012). 

The allocation of Special Protection Area (SPA) or Special Area of Conservation (SAC) 

status to key areas important for biodiversity provides a means of directly avoiding the 

physical effect of urban development by prohibiting or heavily restricting development in 

these areas (Morris, 2011). However, it is also important to understand how development 

and anthropogenic activity outside the boundary of a protected area might affect the 

ecological processes and species populations within, especially with regard to threatened 

bird populations in the case of SPAs (Mas, 2005; Martínez et al., 2007; Kharouba and 

Kerr, 2010; Guix and Arroyo, 2011; Pérez-García et al., 2011). External anthropogenic 

pressures outside protected areas with the potential to affect wildlife within the protected 

area include increased recreational pressure, increased pollution (light, noise and 

chemical), increased predation from domestic pets and the alteration or loss of habitat 

(Yalden, 1992; Pearce-Higgins et al., 2007; Reed and Merenlender, 2008; Mcdonald et al., 

2009; Aubrecht et al., 2010; Hölker et al., 2010; Radeloff et al., 2010; Wierzbowska et al., 

2012).   

The moorland fringe habitats of the UK uplands have been subject to intense 

agricultural improvement over the latter half of the twentieth century through practices 

such as drainage, the application of inorganic fertiliser, reseeding for pasture, and 

increased sheep grazing (Dallimer et al., 2010). In contrast, farmland within the moorland 

fringe landscape is generally considered to be less intensively managed than land at lower 

altitudes due to remoteness, inaccessibility for heavy machinery and lower expected 

returns on agricultural intensification (Murray et al., 2016).  In the UK bird species such as 

the declining Whinchat Saxicola rubetra rely on habitat that is not intensively managed, 

but is not at too high an elevation (Calladine and Bray, 2012). As such, the moorland 

fringe presents an ideal habitat for bird species that can tolerate or thrive in moderately 

high elevational areas, but require low intensity farmland. Upland bird species that utilise 

the moorland fringe such as Lapwing Vanellus vanellus, Snipe Gallinago gallinago, 

Skylark Alauda arvensis, Twite Carduelis flavirostris and Reed Bunting Emberiza 
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schoeniclus have experienced declines in recent years in the UK (Fuller et al., 2002). As 

such, it is imperative to understand the agricultural landscape of moorland fringe areas in 

the context of the habitat requirements of birds such as these. Natural England describe the 

agricultural landscape in the South Pennines moorland fringe as a mosaic of small to 

medium fields dominated by relatively intense sheep farming, but with the presence of less 

improved habitats such as wet grassland, rush pasture and species rich meadows (Natural 

England, 2012). These fringe habitats have the potential to provide breeding and/or feeding 

grounds for threatened moorland bird species such as Snipe, Lapwing, Skylark and Twite 

(Fuller et al., 2002; Hoodless et al., 2007), including individuals that use the moorland 

SPA. In order to make inferences about how these birds might be distributed within the 

moorland fringe, it is important to understand the spatial configuration of the habitat types 

within the fringe, both in relation to one another and also in relation to the SPA boundary. 

Although there are some efforts to describe moorland SPA fringe landscapes in qualitative 

terms, e.g. as part of the National Character Profile for the South Pennines area in northern 

England (Natural England, 2012), few quantitative data are readily available. The collation 

and analysis of such data would improve the understanding of the relationship between 

SPAs and their surrounding landscape, providing a framework to plan and manage 

developmental pressures alongside agricultural trends whilst minimising impacts on SPA 

biodiversity.  

 Qualitatively, agricultural land utilised by some moorland birds within moorland 

fringe is often referred to as ‘in-bye’ but this lacks a tangible definition in terms of the 

habitat and landscape characteristics. French and Dolmans (2002) define in-bye based on 

the aggregation of broad habitat categories described in the 1980 UK Countryside Survey 

(Barr et al., 1993). The French & Dolmans (2002) definition of in-bye describes a 

landscape composed of all managed grasslands, including intensive and sown swards, less 

intensively managed grasslands in lowland or enclosed situations, dune grasslands and 

unmanaged grass/tall-herbs, usually in a lowland or in-bye situation but that does not 

include recreational grass or upland/moorland grass. This is extremely broad, and has the 

ambiguity of including the term ‘in-bye’ within the definition. French & Picozzi (2002) 

provide a similar definition, however provide some management context by including 

grazed pastures and hay/silage fields. Other studies highlight the practice of sheep farming 

as an important component of in-bye habitat (Mackay, 1975; Mitchell and Renton, 1983; 

Conington et al., 1995; Stott et al., 2012). Other definitions of in-bye are not habitat or land 

use specific, but rather relate to the spatial characteristics of the land. Examples include 

“the fenced in land nearest the homestead” (Royal Commission on Common Land, 1958), 
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“enclosed ground” (Phillips, 2012) and “a field close to the centre of a farm, or a field on a 

farm” (OED, 2015). It would appear from these definitions that although in-bye may not be 

synonymous with moorland fringe, or indeed not even associated with moorland habitat, it 

is likely to make up a significant component of the SPMSPA fringe based on the 

qualitative landscape characteristics (Natural England, 2012). The term ‘moor edge’ was 

previously used by French & Picozzi (2002) in reference to the landscape immediately 

neighbouring moorland and upland habitats (except where this is in-bye) such as arable 

land and forest.  

The agricultural and ecological landscape of SPA fringe habitats are interwoven 

with the ever-expanding landscape of urban development. There is currently extreme 

pressure on local government in the UK to identify areas for residential development 

(DCLG, 2012) and areas for other forms of development, potentially in close proximity to 

SPAs. To better understand the ecological pressures of development within the SPA fringe 

habitat, it is first necessary to understand the current spatial patterns of development and 

habitat types in relation to the location of the SPA boundary.  

This chapter aims to describe and quantify the habitat configuration of a moorland fringe 

landscape surrounding the SPMSPA, in Northern England. An empirical spatial analysis of 

the moorland fringe landscape surrounding the SPMSPA will be provided and  the 

configuration of habitats within 1 km of the SPMSPA boundary using data collected in 

habitat surveys conducted in 2012 and 2013 will be quantified. Temporal changes in 

habitat coverage will be examined using Centre for Ecology and Hydrology (CEH) Land 

Cover Map (LCM) datasets from 1990 (Fuller, 1995), 2000 (RM Fuller et al., 2002), and 

2007 (Morton et al., 2011). Patterns in habitat coverage with increasing distance from the 

SPMSPA boundary and hotspots of moorland habitat in the SPA 1km fringe will be 

analysed also using LCM. Trends in topography and the quantity and density of buildings 

with increasing distance from the SPMSPA boundary will be investigated using Ordnance 

Survey data. Landsat 8 data will be used to perform a supervised classification of the 

SPMSPA fringe (within 1km of the SPMSPA) using the habitat data collected during 

habitat surveys. Using the results of this classification, the habitats of the SPMSPA fringe 

will be inferred and investigated in the context of Natural England’s National Character 

Profile (Natural England, 2012). If the hypothesis that farmland improvement and 

agricultural intensification is low within the SPMSPA moorland fringe (as described by 

Natural England), then this is likely to be beneficial for bird species utilising the moorland 

fringe, as agricultural intensification is known to cause declines in bird populations (Butler 
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et al., 2010). If agricultural intensification is high, then this presents a potential mechanism 

for bird species declines within the moorland fringe landscape. 

2.3. Methods 

2.3.1. Study Site 

The South Pennine Moors Special Protection Area (SPMSPA) phase 2 is a 2,800km2 area 

of upland habitat located immediately north of the Peak District National Park (SPMSPA 

Phase 1) and south of the Yorkshire Dales National Park (Fig. 2.1). The industrial 

conurbations of Bradford and Huddersfield are in close proximity to the east of the SPA, 

with the large industrial areas of Greater Manchester and Lancashire situated to the west. 

In addition, a number of medium to large towns are in close proximity including Halifax, 

Keighley and Burnley. The SPMSPA phase 2 falls within the jurisdictional boundaries of 

eight local authorities, of which three encompass the target area for this project - the 

unitary authorities of Bradford, Calderdale and Kirklees. The joint boundaries of the 

SPMSPA and the Peak District Moors SPA align with the boundary of the South Pennine 

Moors SAC.  

The SPMSPA phase 2 is one of 269 SPAs in the UK. It contains a landscape 

mosaic of remote but expansive upland moorland habitats including blanket bog, wet 

heath, dry heath, grassland and oak woodland (JNCC, 2011). The landscape of the SPA 

hosts a diverse range of historical and contemporary land-uses associated with northern 

English upland moorland habitats, including rough grazing of livestock, management for 

grouse shoots (vegetation burning and predator control), water reservoirs, recreational 

routes, transport routes and renewable energy production (Pearce-Higgins et al., 2007; van 

der Horst and Toke, 2010; Douglas et al., 2014). SPMSPA habitats provide breeding and 

foraging grounds for an internationally important assemblage of upland bird species 

including Curlew Numenius arquata, Short-eared Owl Asio flammeus, Merlin Falco 

columbarius, Golden Plover Pluvialis apricaria, Wheatear Oenanthe oenanthe, Ring Ouzel 

Turdus torquatus, Whinchat Saxicola rubetra, Lapwing Vanellus vanellus and Twite 

Carduelis flavirostris (JNCC, 2006). The immediate 1km fringe of the SPMSPA phase 2, 

constrained by the boundaries of Kirklees, Bradford and Calderdale unitary authorities are 

of primary interest to this project due to the development pressures faced by the three 

unitary authorities. Due to the close proximity and shared SAC status of the SPMSPA 

phase 1 and the SPMSPA phase 2, a portion of the SPMSPA phase 1 fringe within 

Kirklees unitary authority is included as part of the study site. 
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2.3.2. Habitat surveys 

Habitat surveys were undertaken in the SPMSPA fringe between 2012 and 2013. Kirklees 

and Calderdale authority moorland fringe areas (hereafter referred to as ‘Kirklees’ and 

Figure 2.1 The SPMSPA and the extent of the 1km fringe study site constrained 

by the boundaries of Calderdale, Kirklees and Bradford unitary authorities. 
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‘Calderdale’) were surveyed by staff from the ecological consultancy West Yorkshire 

Ecology, in July-September 2012. Bradford authority moorland fringe areas (hereafter 

referred to as ‘Bradford’) were surveyed by staff from the Urban Edge Environmental 

Consulting company and also West Yorkshire Ecology in June-July 2013. All surveys 

were conducted by recorders who were familiar with the habitats and the survey method. 

The survey undertaken in Bradford 2013 followed a different methodology (see below) and 

formed part of a separate project by a third party. All habitat surveys were undertaken at 

the field level, utilising landscape boundaries such as walls, fences, roads and paths as 

habitat unit divisions. In 2012, habitats were surveyed from line transects that were used 

for bird surveys in the same year. A total of 88 km of line transect was surveyed for habitat 

in Calderdale 2012 and 44 km of line transect was surveyed for habitat in Kirklees 2012. A 

similar line transect methodology was employed in 2013, however the data was 

supplemented with habitats inferred from aerial imagery and visits to fields that did not lie 

along line transects. Data are not available on the length of the line transects used in 2013. 

The 2012 habitat surveys were conducted only in the Calderdale and Kirklees 

authority areas. Surveys were conducted during the late breeding bird season or 

immediately after the breeding bird season in 2012. Surveys were conducted only during 

conditions of good visibility whilst walking along line transects that were used for bird 

surveys previously the same year. Line transects sites were established by West Yorkshire 

Ecology in consultation with the three unitary authorities. The dominant habitat in each 

field (>75% cover) was classified according to a system developed by West Yorkshire 

Ecology (Appendix 1), based on the British Trust for Ornithology (BTO) Breeding Bird 

Survey (BBS) and Defra Environmental Stewardship guidance for improved and semi-

improved grassland identification (Defra, 2005). Surveys were conducted primarily within 

the 1km fringe of the SPMSPA phase 2, however in the case of Kirklees, surveys extended 

to the 1km fringe of the Peak District Moors SPA (SPMSPA phase 1). Fields that lay 

completely outside of the 1km SPA fringe and fields that intersected the SPMSPA 

boundary were excluded from analyses.  

Bradford habitat surveys in 2013 were undertaken by Urban Edge Consulting in 

association with West Yorkshire Ecology and under the guidance of Bradford unitary 

authority (Urban Edge Consulting, 2014). Surveys were undertaken at the individual field 

level, within 2.5km of the SPMSPA and within 1km of settlements. Survey sites were 

selected after consultation with the unitary authority, and were located in areas identified 

for potential development and in areas that were associated with perceived established 

patterns of key SPMSPA bird species occurrence. Habitat categories were designed to 
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complement the 2012 Calderdale and Kirklees habitat surveys and in some cases, were 

directly comparable to the surveys of 2012. However, some of the habitat category 

definitions in 2013 differed to those of 2012 (Appendix 2).  

2.3.3. LCM, Mastermap and elevation data 

Land Cover Maps (LCM) covering the study site were downloaded from EDINA Digimap 

(University of Edinburgh, 2015). These datasets were produced by the Centre for Ecology 

and Hydrology (CEH) and represent land cover data for three years, 1990 (Fuller, 1995), 

2000 (RM Fuller et al., 2002), and 2007 (Morton et al., 2011). Each dataset consisted of a 

raster at 25m x 25m resolution representing discrete habitat categories, created by the 

classification of satellite imagery. Habitat categories differed between years, both in 

number of categories (25 for 1990, 26 for 2000 and 23 for 2007) and in description of 

classes. The latest Ordnance Survey Mastermap dataset, from December 2014, and 

covering the study site was obtained from EDINA Digimap (University of Edinburgh, 

2015). These data were vector datasets available as 10km x 10km parcels referenced to the 

GB national grid. Fourteen parcels were selected to cover the study area: SD82, SD83, 

SD90, SD91, SD92, SD93, SD94, SE00, SE01, SE02, SE03, SE04, SE10 and SE14. The 

parcels were merged and duplicate features removed using ArcGIS (ESRI, 2014). 

Buildings were extracted and cropped to the study area. Elevation data were obtained in 

the form of the Ordnance survey Terrain 5 DTM dataset for the study area was obtained 

from EDINA digimap (Ordnance Survey, 2015). This dataset is a 5m x 5m resolution 

raster containing an elevation value in metres. 

 

2.3.4. Landsat 8 data collection 

Landsat 8 satellite imagery was freely available through Google Earth Engine 

(GEE) from the US Geological Survey (USGS), with images regularly taken over the 

SPMSPA fringe. A set of four Landsat 8 composite images were created using the tools 

available in GEE, representing the four British seasonal periods, spring (March-May), 

summer (June-August), autumn (September - November) and winter (December-February. 

Initial inspection of images revealed that the study area was subject to high year-round 

cloud cover, resulting in large areas of unusable imagery in seasonal composites from a 

single year. To resolve this issue, seasonal composites were built using Landsat 8 imagery 

taken over a three-year period (2013, 2014 and 2015). A total of 148 Landsat 8 images 

were used to make seasonal composites with 31 images representing winter, 34 

representing spring, 47 representing summer and 36 representing autumn. Prior to 
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compositing, a cloud mask was applied to each of the 148 images and the images were 

cropped to the 1km SPMSPA buffer. In addition, permanent waterbodies were masked 

using the waterbody mask described by Hansen et al. (2013). The Landsat 8 images each 

consisted of 11 surface reflectance spectral bands representing wavelength ranges of 

electromagnetic reflection from the surface of the earth at a resolution of 30m x 30m 

(Table 2.1). The median value (per seasonal period) of individual Landsat 8 spectral bands 

was taken at each pixel location using the portions remaining from each image after cloud 

masking. The values for each spectral band from each seasonal composite were 

subsequently normalised. The Landsat 8 images used belonged to the Standard Terrain 

Collection (L1T) and had been pre-processed by USGS into topographically and radio-

metrically corrected surface reflectance. These images represent the highest quality post-

processed Landsat 8 imagery available from USGS and did not require any further post 

processing (USGS, 2017). 

 

Table 2.1 Bands associated with Landsat 8 imagery. Each band in sensitive to a different 

wavelength of the electromagnetic spectrum (Roy et al., 2014). 

Band identifier and colour sensitivity Wavelength (μm) 

Band 1, Ultra blue (coastal/aerosol) 0.43-0.45 

Band 2, Blue 0.45-0.51 

Band 3, Green 0.53-0.59 

Band 4, Red 0.64-0.67 

Band 5, Near Infrared (NIR) 0.85-0.88 

Band 6, Shortwave Infrared 1 (SWIR1) 1.57-1.65 

Band 7, Shortwave Infrared 2 (SWIR2) 2.11-2.29 

Band 8, Panchromatic 0.50-0.68 

Band 9, Cirrus 1.36-1.38 

Band 10, Thermal Infrared 1 (TIRS1) 10.6-11.19 

Band 11, Thermal Infrared 2 (TIRS2) 11.50-12.51 

 

2.3.5. Habitat survey data analysis 

Descriptive statistics for dominant habitats within the 1km SPMSPA fringe were 

calculated for each unitary authority and for all unitary authorities combined. Fields that 

were located partially within the SPA and fields that were completely outside the 1km 

fringe were excluded. 
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2.3.6. LCM data analyses 

Land Cover Map datasets for the years 1990, 2000 and 2007 were each produced using a 

different remote sensing methodology, representing technological and software 

improvements over time. As a result, the spatial accuracy of habitat boundaries was 

different between years. This makes the datasets useful for habitat comparisons between 

different areas of the UK in the same year, but less suitable for the analysis of temporal 

change. This is compounded by the fact that that the habitat classification categories differ 

between years, creating further problems in making temporal comparisons. In order to 

standardise the datasets and allow temporal habitat patterns within the SPA fringe to be 

explored, a two-stage process was employed.  

The first stage of the process was designed to overcome mismatches in habitat 

classification by reclassifying the habitats in each year into two broad categories that were 

consistent from year to year. The mean of the number of 25m x 25m pixels for each habitat 

type that fell within the SPMSPA phase 2 were calculated for each year of LCM data. 

Habitat types that were greater than the mean for a given year were deemed to be habitat 

characteristic of the SPMSPA phase 2. Pixels representing these habitats occurring within 

the SPA, within the SPA 1km fringe and within surrounding areas, were reclassified as 

‘typical of SPMSPA phase 2 habitat’. All other habitats were reclassified as ‘not typical of 

SPMSPA phase 2 habitat’. The second stage of the process was designed to overcome 

differences in the spatial accuracy of habitat boundaries between years arising from 

differences in the remote sensing methodologies used by CEH. As CEHs methods were 

consistent within each year of Landcover data production, the ratio of pixels typical of 

SPMSPA phase 2 habitat within the SPMSPA phase 2 boundary to the pixels typical of 

SPMSPA phase 2 habitat within the SPA 1km fringe should be consistent between years. 

This allowed the coverage of reclassified habitat within the SPA 1km fringe as a 

proportion of reclassified habitat within the SPMSPA phase 2 to be compared between the 

three years. 

The three reclassified LCM datasets were drawn as maps in ArcGIS and compared 

for temporal change. The ratios of habitat typical of SPMSPA phase 2 within the 1km 

fringe to the same habitat within the SPMSPA phase 2 were plotted and compared for each 

individual unitary authority and for all unitary authorities combined. As the 2007 

landcover dataset was the most recent of the three datasets and represented the most 

advanced dataset in terms of the spatial accuracy of habitat boundaries, it was used to 

detect clustering of habitat typical of SPMSPA phase 2 within the 1km SPA fringe. This 
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was achieved using zonal statistics within ArcGIS (see Fig. 2.2). Each pixel classed as 

‘habitat typical of the SPMPSA phase 2’ was assigned a value of 1, and every other pixel 

was assigned a value of 0. The sum of pixels within a 100m distance of each individual 

pixel was calculated and colour coded on a scale of green to amber to red based on the 

magnitude of the summed value. Although pixels outside of the 1km SPA fringe were 

incorporated into this analysis to account for neighbour habitat, the results were cropped to 

the 1km SPA fringe. 

 

2.3.7. Gradient analysis 

Ten buffers of 100m width were calculated outside of the SPMSPA boundary between 0m 

to 1,000m, and cropped to the boundaries of the unitary authorities in ArcGIS. The 

resultant ten distance bands were used to separate a number of developmental and 

landscape features, allowing patterns to be studied as a function of distance from the SPA 

boundary, here referred to as gradient analysis. The developmental features chosen were 

quantity of buildings and building density. Gradient analysis using these distance bands 

was also undertaken to observe patterns of ‘habitat typical of the SPMSPA phase 2’ within 

the 1km SPA fringe using the reclassed 2007 CEH landcover data and elevation patterns 

using the OS Terrain 5 DTM dataset. 

Number of buildings and building density were calculated in ArcGIS using the OS 

Mastermap dataset. Building centroids were calculated and used to determine absolute 

number of buildings in each SPA distance band. Thiessen polygons were calculated from 

the building centroids with the area of the thiessen polygon associated with each building 

assigned to its respective building centroid. These values were inversely proportional to the 

Figure 2.2 Illustration of the concept of focal statistics used to assess upland habitat clustering. 
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proximity of a building to all other immediate surrounding buildings, creating a measure of 

density per building. This approach was favoured over simply calculating the density of 

building centroids within a distance band, because it allowed the mean density of 

individual buildings within a distance band to be calculated whilst taking into account the 

proximity of surrounding buildings that may fall into neighbouring distance bands. 

 

2.3.8. Landsat 8 image Classification 

The four seasonal Landsat 8 composite images were exported from GEE for analysis in R 

(R Core Team, 2013). Cirrus and aerosol/coastal bands were excluded from each 

composite image and remaining spectral bands (see Table 2.1) from each seasonal 

composite were compiled into a multiband raster comprising a total of 36 bands. Ordnance 

Survey Terrain 5 DTM elevation data was added to the multiband raster to improve 

classification performance. The DTM was resampled from 5m x 5m to 30m x 30m using 

cubic convolution in ArcGIS. The resultant 37 band raster represented 99.7% of the 

terrestrial coverage within the 1km SPMSPA fringe, (Fig. 2.3). Permanent waterbodies 

were excluded from classification. 

Fields surveyed that did not have >75% coverage of a single habitat type, were 

‘other’ habitats or were were excluded from supervised classification. The habitat type of 

the remaining fields will be referred to as ‘dominant habitats’. Dominant habitats were 

converted to point data, using the centroids of individual Landsat pixels that coincided with 

surveyed fields as extraction points. Habitats represented by less than 350 pixels in the 

Landsat data were excluded from further analysis due to underrepresentation. The excluded 

habitats were enclosed acid grassland, amenity grassland, dry dwarf shrub heath and wet 

heathland/mire leaving six habitat categories for classification (Table 2.2). Mastermap 

building data were aggregated so that any buildings within 60m of one another were 

merged into a single polygon and any resultant building polygons that were less than 

900m2 in area were excluded. This was because 900m2 represents a single pixel of Landsat 

8 data and therefore anything less than this area cannot be represented reliably at this 

resolution. These data were not included in classification, but were added to the final 

classification as a polygon mask. Habitat data points were split into a 50% training set and 

a 50% validation set data balanced by habitat class, using the caret package in R (Kuhn, 

2008; R Core Team, 2013). 
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Table 2.2 Dominant habitat categories of the fields surveyed in 2012 and 2013 for use in 

supervised classification. Habitat categories that were underrepresented were excluded 

from analysis. The number of points represents the total number of pixels represented in 

the Landsat 8 data used in classification. These points were split into 50% training and 

50% testing data. 

 

Habitat category 

used in classification 

Original habitat survey categories  Number of data 

points 

 2012 2013  

Improved Grassland Amenity Grassland 

Improved grassland 

Amenity Grassland 

Improved grassland 

10,451 

Species poor semi 

improved grassland 

Semi-improved, 

species poor 

grassland 

Semi-improved grassland 

(species poor) 

14,321 

Species rich semi 

improved grassland 

Semi-improved 

grassland 

Semi-improved grassland 1,306 

Dry heath/ acid 

grassland mosaic 

Dry heath/ acid 

grassland mosaic 

Dry heath/ acid grassland 

mosaic 

1,717 

Rush pasture Rush pasture Rush pasture 4,986 

Wet heathland/ acid 

grassland mosaic 

Wet heathland/ acid 

grassland mosaic 

NA 2,808 

NA Dry dwarf shrub 

heath 

Dry dwarf shrub heath NA 

NA NA Upland acidic grassland 

(enclosed) 

NA 

 

Supervised classification of the SPMSPA 1km fringe was undertaken using a Random 

Forest algorithm within the RStoolbox R package (Leutner and Horning, 2017).  All 37 

bands of Landsat 8 and elevation data were included as predictor variables. The model was 

trained using the habitat data training set and the testing set was used to validate the model 

using a confusion matrix to determine classification accuracy. To balance the habitat 

classes within the model, 600 data points were randomly selected from each habitat type 

within the training set and used for model construction. The value of 600 points was 

chosen as it approximately reflects the number of points available for training in the habitat 
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category with the least data available (Species rich semi improved grassland. The Random 

Forest was constrained to 500 trees to avoid excessive computational time. A confusion 

matrix was constructed using the testing set and overall accuracy was used as a measure of 

model performance. Maps were subsequently produced using the random forest model to 

predict habitat categories in the entire SPMSPA 1km fringe. 

Figure 2.3 The area within the South Pennine Moors Special Protection Area 1km fringe 

where Landsat 8 imagery was available for supervised classification. Permanent 

waterbodies were excluded from analysis. 
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2.4. Results 

2.4.1. Composition and extent of habitats within the SPMSPA fringe 

 

A total of 548 fields were surveyed in Kirklees 2012 (Fig. 2.4), 889 in Calderdale 2012 

(Fig. 2.5) and 1,504 in Bradford 2013 (Fig. 2.6). Following data cleaning, fields available 

for analysis (i.e. those with a dominant habitat of >75% coverage per field in 2012 and 

2013 within the 1km fringe but not extending into the SPMSPA) totalled 360 in Kirklees 

2012, 613 in Calderdale 2012, and 311 in Bradford 2012. In order to describe the habitats 

exclusively within the SPA fringe, fields that extended into the SPMSPA and fields that 

lay completely outside of the SPMSPA 1km fringe were removed, reducing the dataset to 

360 fields in Kirklees 2012, 613 fields in Calderdale 2012 and 326 in Bradford 2013.  

The fields surveyed within the SPMSPA 1km fringe consisted of a highly 

heterogeneous landscape mosaic, with fields of similar habitat within the 1km fringe 

generally appearing to be locally clustered (Figs 2.7-2.9). Fourteen dominant habitat types 

were recorded which varied in relative proportions between the three unitary authority 

areas. Of these 14 habitat types, nine were present across all three authority areas. Three of 

the habitats surveyed in Bradford 2013 had no directly comparable habitat category 

surveyed in Calderdale and Kirklees 2012, with only one habitat surveyed in Calderdale 

and Kirklees 2012 had no directly comparable habitat category in Bradford 2013 (Table 

2.4). Nine dominant habitats types were recorded in Kirklees, 10 in Calderdale and 11 in 

Bradford (Table 2.5). Semi-improved (species poor) grassland made up the largest 

proportion of surveyed fringe habitat in Calderdale (35.4%), in Bradford (53.6%), across 

all three authorities combined (37.6%) and was the second most commonly encountered 

habitat in Kirklees (25.4%). Improved grassland was the most commonly encountered 

habitat in Kirklees (35.4%) and was the second most commonly encountered habitat in 

Calderdale (23.6%) and Bradford (20.6%). Between all three authority areas, improved 

grassland and semi-improved species poor grassland combined accounted for 63.5% of all 

habitat surveyed. Dry dwarf shrub heath had the lowest coverage of any habitat 

encountered in Kirklees whereas semi-improved grassland had the lowest coverage in 

Calderdale and dry heath/ acid grassland mosaic had the lowest coverage in Bradford. All 

habitats encountered in Kirklees were found in at least one other authority area. 

Species rich semi-improved grassland/ unimproved grassland was surveyed in all 

three authority areas but was absent from Calderdale and Kirklees and only recorded as a 

dominant habitat in Bradford in two fields (Table 2.5). Wet upland habitats were rarely 

encountered in Kirklees where only a single field of wet heathland/ acid grassland was 
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recorded. This habitat was relatively common in Calderdale, making up 17.47% of the total 

area surveyed in the Calderdale fringe. Wet heathland/ mire was absent in Kirklees and had 

low coverage in Calderdale. Blanket bog was not found in any authority area. Wet upland 

habitats were not recorded in Bradford; however it is unclear from the survey methodology 

whether these habitats were not encountered or simply not surveyed (Urban Edge 

Consulting, 2014). There was noticeable variation in the mean field areas and coverage of 

some habitats between authorities (Table 2.5). Generally, mean field area within the fringe 

was greatest in Bradford and lowest in Kirklees. The mean area of improved grassland 

fields in Bradford was almost twice that of those in Calderdale or Kirklees, however 

amenity grassland mean field size was much larger in Kirklees than in Calderdale or 

Bradford. Semi-improved grassland coverage was low in Kirklees and Calderdale but 

relatively high in Bradford. Dry heath/ acid grassland mosaic was far more commonly 

encountered in Kirklees than in Calderdale or Bradford and in larger fields. Rush pasture 

made up a large proportion of the total habitat surveyed in Kirklees and Bradford but was 

rarely encountered in Bradford.  

 

Table 2.3 Comparison of the habitat categories recorded in 2012 and 2013. Equivalent 

habitats between the two years are shown side by side. 

Kirklees and Calderdale 2012 Bradford 2013 

Amenity grassland Amenity grassland 

Improved grassland Improved grassland 

Semi-improved, species poor grassland Semi- improved grassland (species poor)  

Semi-improved grassland Semi-improved grassland 

Species rich/ Unimproved grassland Species rich semi-improved grassland/ 

Unimproved grassland 

No directly comparable habitat Rough grassland 

No directly comparable habitat: no 

distinction in pH was made 

Upland acidic grassland (enclosed) 

Dry dwarf shrub heath Dry dwarf shrub heath 

Dry heath/acid grassland mosaic Dry heath/ acid grassland mosaic 

Blanket bog/ mire No directly comparable habitat 

Wet heathland/ mire No directly comparable habitat 

Wet heathland/ acid grassland mosaic No directly comparable habitat 

Rush pasture Rush pasture 

Other Other 
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Figure 2.4 Locations of fields included in habitat surveys conducted Calderdale 2012, 

concentrating on the South Pennine Moors Special Protection Area 1km fringe. 



49 

 

 

 

Figure 2.5 Locations of fields included in habitat surveys conducted in Kirklees 2012, 

concentrating on the South Pennine Moors Special Protection Area 1km fringe. 
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Figure 2.6 Location of fields included in habitat surveys conducted in Bradford 2013, 

extending to 2.5km from the South Pennine Moors Special Protection Area boundary. 
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Figure 2.7 Distribution of fields with dominant habitats (>75% in a single field) surveyed 

in the Kirklees South Pennine Moors Special Protection Area 1km fringe in 2012. 
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Figure 2.8 Distribution of fields with dominant habitats (>75% in a single field) surveyed 

in the Calderdale South Pennine Moors Special Protection Area 1km fringe in 2012. 
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Figure 2.9 Distribution of fields with dominant habitats (>75% in a single field) surveyed 

in the Bradford South Pennine Moors Special Protection Area 1km fringe in 2013.
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Table 2.4 Summary of the Special Protection Area 1km fringe habitats surveyed in Calderdale and Kirklees 2012 and Bradford 2013. Only 

fields that had >75% coverage of a single habitat type were included. Fields that extended into the South Pennine Moors Special Protection 

Area were not included. Habitats surveyed across all three authority areas are shaded in green. Habitat category follows terminology of the 

Bradford 2013 survey (see Methods). NP = not present, ND = no direct comparable habitat surveyed. 

 Kirklees Calderdale Bradford All three authorities 

Habitat 

N
u

m
b
er o

f field
s 

M
ean

 field
 size 

(h
a) 

T
o

tal area (h
a) 

%
 o

f to
tal area 

N
u

m
b
er o

f field
s 

M
ean

 field
 size 

(h
a) 

T
o

tal area (h
a) 

%
 o

f to
tal area 

N
u

m
b
er o

f field
s 

M
ean

 field
 size 

(h
a) 

T
o

tal area (h
a) 

%
 o

f to
tal area 

N
u

m
b
er o

f field
s 

M
ean

 field
 size 

(h
a) 

T
o

tal area (h
a) 

%
 o

f to
tal area 

Amenity grassland 3 2.1 6.4 1.0 7 0.8 5.7 0.5 12 0.7 8.0 1.3 22 0.9 20.0 0.9 

Improved grassland 163 1.4 219.5 35.4 228 1.2 267.9 23.6 58 2.2 125.9 21.1 449 1.4 613.3 26.1 

Semi- improved 

grassland (species poor) 

97 1.6 157.2 25.4 265 1.5 401.3 35.4 184 1.7 311.6 52.2 546 1.6 870.1 37.1 

Semi-improved grassland 9 1.8 16.5 2.7 2 2.0 4.0 0.4 18 4.5 80.4 13.5 29 3.5 101.0 4.3 

Species rich semi-

improved grassland/ 

Unimproved grassland 

NP NP NP NP NP NP NP NP 2 2.9 5.7 0.9 2 2.9 5.7 0.2 

Rough grassland ND ND ND ND ND ND ND ND 4 1.8 7.2 1.2 4 1.8 7.2 0.3 

Upland acidic grassland 

(enclosed) 

ND ND ND ND ND ND ND ND 9 1.5 13.1 2.2 9 1.5 13.1 0.6 

Dry dwarf shrub heath 1 1.3 1.3 0.2 2 4.8 9.7 0.9 1 7.1 7.1 1.2 4 4.5 18.1 0.8 

Dry heath/ acid grassland 

mosaic 

8 11.1 88.7 14.3 2 2.3 4.5 0.4 2 1.2 2.4 0.4 12 8.0 95.6 4.1 

Blanket bog/ mire NP NP NP NP NP NP NP NP ND ND ND ND NP NP NP NP 

Wet heathland/ mire NP NP NP NP 1 5.5 5.5 0.5 ND ND ND ND 1 5.5 5.5 0.2 

Wet heathland/ acid 

grassland mosaic 

1 2.4 2.4 0.4 13 15.3 198.3 17.5 ND ND ND ND 14 14.3 200.7 8.5 

Rush pasture 66 1.2 78.3 12.6 80 2.3 182.8 16.1 3 4.6 13.7 2.3 149 1.8 274.8 11.7 

Other 12 4.1 49.0 7.9 13 4.2 54.9 4.8 18 1.2 22.2 3.7 43 2.9 126.2 5.4 

Total 360 1.7 619.4 - 613 1.9 1134.5 - 311 1.9 597.3 - 1284 1.8 2351.2 - 
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2.4.2. Extent of SPMSPA Phase 2 habitat within the moorland fringe landscape 

Analysis of the 1990, 2000 and 2007 CEH LCM datasets showed that across all three 

authority areas in all three years, the SPA fringe contained a proportion of habitat that was 

representative of SPMSPA Phase 2 habitat and that the spatial distribution of this habitat 

appeared to differ between years (Figures 2.10a-2.10c). Moorland fringe SPA phase 2 

habitat appeared to be locally distributed in 1990 when compared to 2000 and 2007 and 

more fragmented in 2000 than in the other years. The extent of this habitat increased from 

1990 to 2000 within the 1km fringe but subsequently decreased between 2000 and 2007 for 

each unitary authority area and across all three authorities combine (Fig. 2.11). There were 

fundamental differences in the spatial distribution of data in 1990 compared to 2000 and 

2007 which are likely due to changes in differences in data processing by CEH between 

years. Although this limits comparability, the standardisation of data into relative 

proportions of SPSMPA Phase 2 habitat within years allows the comparison of relative 

areas of SPMSPA Phase 2 habitat between years. 
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Figure 2.10a The distribution of habitat representative of the South Pennine Moors Special 

Protection Area  phase 2 at 25m x 25m resolution in Calderdale derived from Centre for 

Ecology and Hydrology (CEH) Landcover Maps (LCM)   datasets for the years 1990, 2000 

and 2007.  
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Figure 2.10b The distribution of habitat representative of the South Pennine Moors 

Special Protection Area  phase 2 at 25m x 25m resolution in Calderdale derived from 

Centre for Ecology and Hydrology (CEH) Landcover Maps (LCM) datasets for the years 

1990, 2000 and 2007.  
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Figure 2.10c The distribution of habitat representative of the South Pennine Moors Special 

Protection Area  phase 2 at 25m x 25m resolution in Calderdale derived from Centre for 
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Ecology and Hydrology (CEH) Landcover Maps (LCM)  datasets for the years 1990, 2000 

and 2007. 

 

Figure 2.11 The proportion of habitat within the South Pennine Moors Special Protection 

Areafringe representative of SPMSPA phase 2 habitat for the years 1990, 2000 and 2007.  

 

After applying focal statistics on the 2007 CEH Landcover data, Calderdale appears 

to have the greatest area of contiguous SPMSPA phase 2 habitat, with several clusters 

extending to the edge of the 1km fringe (Fig. 2.12). In Bradford, more clusters were 

apparent in the south than in the north part of the authority area. In Kirklees, clusters were 

more interspersed with areas not representative of the SPMSPA phase 2 habitat. In the 

whole SPMSPA 1km fringe, areas that were particularly dense in SPMSPA phase 2 habitat 

include the northern edge of the Peak District SPA, the south east of Oxenhope, the west of 

Queensbury, the south of Hebden Bridge, the north of Heptonstall, areas around Marsden 

and areas to the north of Lydgate (Fig. 2.12). 
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Figure 2.12. Heat map displaying the results of focal statistics applied to the 2007 

Landcover data within the South Pennine Moors Special Protection Area 1km fringe. 
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The proportional coverage of habitat representative of SPMSPA phase 2 habitat 

with increasing 100m distance bands from the SPA boundary decreased as a function of 

distance from the SPA boundary (Fig. 2.13). Across all three authority areas, SPA phase 2 

habitat was most common within the first 100m from the SPMSPA boundary. Beyond 

100m the proportion of phase 2 habitat decreased sharply with increasing distance from the 

SPA until reaching a threshold between 500m and 600m from the SPA boundary (Fig. 

2.13). The proportion of SPA Phase 2 habitat declined further beyond 700m in the Kirklees 

and Bradford fringe, but increased slightly in Calderdale. These patterns appeared to 

correspond to patterns of change in mean elevation as a function of distance from the SPA 

boundary (Fig. 2.14). Sharp declines in the proportion of SPA Phase 2 habitat were evident 

within the first 200m of the SPA boundary in the Kirklees SPA fringe, and within 300m of 

the SPMSPA boundary in the Bradford fringe (Fig. 2.13), however there were no apparent 

sharp declines in mean elevation within these areas at these distances from the SPA (Fig. 

2.32).   

 

 

Figure 2.13 The proportion of habitat similar to that of the SPMSPA phase 2 in 100m 

distance bands extending from the South Pennine Moors Special Protection Area boundary 

to 1,000m for each authority area and all three areas combined. 
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Figure 2.14 Mean elevation in the South Pennine Moors Special Protection Area 1km 

fringe in 100m distance bands extending from the SPMSPA boundary to 1000m for each 

authority area and all three areas combined. 

 

2.4.3. Built development within the SPMSPA moorland fringe landscape 

Buildings were a common landscape feature of the SPMSPA moorland fringe across all 

three authority areas. Both the number of buildings (Fig. 2.14) and density of buildings 

(Fig. 2.15) increased as a function of distance from the SPMSPA boundary. Buildings 

density was broadly linear across all councils, with increasing density towards the outside 

of the 1km SPMSPA fringe. This linear relationship indicates sparsely distributed 

buildings towards the edge of the SPMSPA probably largely represented by agricultural 

buildings and small villages. The more densely distributed buildings towards the outside 

edge of the fringe indicate an increase in larger residential and commercial components of 

the landscape. Sharp increases in the number of buildings within the 400-600m in the 

Calderdale area, between 500m and 800m in Kirklees and between 500m and 700m in 

Bradford revealed that the more intermediate distances of the SPA fringe were more 

heavily developed than areas close to the SPMSPA boundary, and in some cases than the 

edge of the 1km fringe. This is reflected when buildings in all three authorities are 

combined, where the number of buildings more than doubled between the SPA boundary 
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and 400m before peaking at around 3,000 buildings between 700m and 800m with a 

subsequent decrease to the edge of the 1km fringe. 

 

 

Figure 2.15 Total number of buildings within 100m distance bands extending from the 

South Pennine Moors Special Protection Area  boundary to 1,000m for each authority area 

and in total. 

 

 

Figure 2.16 Mean density of buildings within 100m distance bands extending from the 

South Pennine Moors Special Protection Area boundary to 1,000m for each authority area 

and in total. Building density was represented by a 30m x 30m raster where each pixel the 
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number of buildings within a 500m radius of that pixel. Units on the y-axis are mean 

number of buildings within a 500m radius. 

 

2.4.4. Landsat 8 classification of habitats within the SPMSPA fringe 

Supervised classification of the SPMSPA 1km fringe was achieved with an overall 

accuracy of 93.11% (based on the testing dataset). A confusion matrix of classification 

results shows that user’s accuracy and producers accuracy (per habitat class) are high, with 

every class achieving over 90% for both (Table 2.6). The greatest confusion was found 

between the habitat categories of improved grassland and semi-improved species poor 

grassland. There was also moderate confusion between semi-improved species poor 

grassland and semi-improved species rich grassland, and between rush pasture and semi 

improved species poor grassland.  

 

 

Table 2.5 Confusion matrix displaying the results of supervised classification a = 

Dry heath/ acid grassland mosaic, b = Improved grassland, c = Rush pasture, d = Semi-

improved, species-poor grassland, e = Semi-improved, species-rich grassland, f = Wet 

heath/ acid grassland mosaic. 

 

  Reference  

  a b c d e f Sum 
User’s 

Accuracy 

P
re

d
ic

ti
o

n
 

a 823 9 8 5 4 6 855 96.26% 

b 8 4850 61 265 25 4 5,213 93.06% 

c 3 22 2273 105 4 21 2,428  93.62% 

d 21 339 131 6732 104 16 7,343 91.68% 

e 1 2 0 7 516 0 526 96.26% 

f 2 3 19 27 0 1311 1,362 98.10% 

Sum 858 5,225 2,492 7,141 653 1,358 17,727  

 
Producer’s 

accuracy 
95.92% 92.82% 91.21% 94.27% 79.02% 96.54% 

Overall accuracy = 

93.11% 

 

 Using the final random forest model, habitat categories were predicted for the 

entire SPMPSA 1 km fringe. Based on these predictions, coverage areas for each habitat 

were calculated using the number of pixels classified multiplied by the pixel area (900 m2). 

the habitats with the greatest predicted areas were semi-improved species-poor grassland 

(145.0 km2) followed by improved grassland (65.6 km2). The habitat with the least 
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predicted area was Semi-improved species rich grassland (5.0 km2). Both dry and wet 

heath/ acid grassland mosaics were predicted to have very low areas (8.8 km2 and 14.3 

km2) respectively (Figure 2.17). 

 

 

 

 

 

Figure 2.17 Areas of six habitat types within the South Pennine Moors Special Protection 

Area 1km fringe, as predicted by random forest classification. 

 

 Maps were subsequently created for the SPMSPA fringe (Figs 2.18-2.20) using the 

predictions for each habitat class. In Kirklees, wet heath/acid grassland mosaic occurred in 

largely contiguous areas, mostly close to the SPMSPA boundary whereas dry heath/ acid 

grassland mosaic extended to the edge of the SPMSPA 1km fringe with one particularly 

large patch in the north (Fig 2.18). In Calderdale, dry heath/ acid grassland mosaic was 

fragmented and occurred in small patches. In contrast, wet heath/ acid grassland mosaic 

occurred in large contiguous patches in Calderdale that often extended to the edge of the 

SPMSPA 1 km fringe (Fig. 2.19). Coverage of these two habitats was low in Bradford with 

small, fragmented patches occurring close to the SMPSMA boundary (Fig 2.20). Large, 

contiguous patches of species-poor semi improved grassland were present in the SPMSPA 

1 km fringe of all unitary authories, becoming more fragmented towards the edge of the 

fringe and being replaced by improved grassland (Figs 2.18-2.20). Kirklees was dominated 
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by improved grassland, especially in the north (Fig 2.18). Rush pasture was predicted to 

occur in large contiguous patches close to the SPMSPA boundary in both Calderdale and 

Kirklees (Figs 2.18-2.19). In Bradford, the SPMSPA 1 km fringe was dominated by 

species-poor semi improved grassland with rush pasture predicted to occur in small patches 

close to the SPMSPA (Fig 2.20). 

 

Figure 2.18 Habitat coverage map for Kirklees predicted by random forest supervised 

classification using Landsat 8 imagery. 
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Figure 2.19 Habitat coverage map for Calderdale predicted by random forest supervised 

classification using Landsat 8 imagery. 
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Figure 2.20 Habitat coverage map for Bradford predicted by random forest supervised 

classification using Landsat 8 imagery. 
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2.5. Discussion 

 

The SPMSPA moorland fringe is a heterogeneous landscape mosaic containing agricultural 

habitats, upland habitats and building development with an elevational gradient that 

gradually decreases with increasing linear distance from the SPA boundary. The 

agricultural component of the fringe landscape is dominated by species poor semi-

improved grassland, improved grassland and rush pasture whereas the more botanically 

diverse habitats of semi-improved grassland and unimproved grassland are rare. This is in 

keeping with the findings of Haines-Young et al. (2003) that documented the loss of acid 

grassland and its replacement with improved grassland in the British uplands over a decade 

ago, and may reflect the legacy of the Common Agricultural Policy (CAP), a long standing 

European initiative that has historically encouraged agricultural intensification (van Zanten 

et al., 2014). Tzanopoulos et al. (2012) suggest that reform of the CAP in 2003 may have 

resulted in livestock on farms being concentrated in fields that have better pasture- 

resulting in an increased cover of high intensity grassland, whilst rough grazing becomes 

neglected. For the SPMSPA this could be interpreted as the improvement of semi-

improved fields to improved fields, resulting in a high proportion of improved fields and 

perhaps under-management or abandonment of rush pasture allowing rush species to 

dominate, resulting in a high proportion of fields with >75% rush cover. The 

heterogeneous nature of the study area is not completely atypical of what may be expected 

of moorland fringe landscapes (French and Dolmans, 2002; French and Picozzi, 2002), 

however it would appear than there is a strong bias towards intensively modified habitats 

within the SPMSPA fringe. 

The scarcity of upland habitats (most notably blanket bog and mire) is in stark 

contrast to the habitat composition of the SPMSPA and SPMSAC where dry heaths and 

blanket bogs dominate (JNCC, 2011), suggesting that core habitat for SPMSPA moorland 

birds does not often extend into the SPA fringe study site. Interestingly, wet heathland/ 

acid grassland had relatively high cover in Calderdale and although this habitat was not a 

primary reason for the selection of the SPMSAC, northern Atlantic wet heath makes up 

6.7% of the SAC (JNCC, 2011) and is on annex 1 of the habitats directive (EEC, 1992). 

Wet heath is an important breeding and/or feeding habitat for Merlin Falco columbarius, 

Golden Plover Pluvialis apricaria, Curlew Numenius arquata, Red Grouse Lagopus 

lagopus, Black Grouse Tetrao tetrix (Hampton, 2008) and Skylark Alauda arvensis 

(Chamberlain and Gregory, 1999), and as such represents an important component of the 

SPMSPA fringe for supporting upland birds.  
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Within the SPA fringe, habitats that are similar to the dominant habitats within the 

SPMSPA (i.e. upland habitats) are locally clustered and not evenly distributed over the 

study area. Part of this is likely to be due variation in topography, as these habitats are 

representative of the uplands and may be restricted to higher elevation areas. However, the 

concept of ‘upland’  in the UK is informally recognised as land above the line of enclosure, 

usually occurring at between 200m and 300m above sea level (Orr et al., 2008). Mean 

elevation for the SPMSPA 1 km fringe and cover of habitat representative of the SPMSPA 

were found to decrease gradually as a function of distance from the SPA, reinforcing the 

expectation that upland habitats are more likely to occur close the SPMSPA. Another 

explanation for the clustering of core moorland habitats in the SPA fringe may be the 

intensification of farming practices resulting in the expansion of improved farmland and 

potentially resulting in the fragmentation and replacement of upland habitats. This is 

evidenced by the temporal analysis of CEH Landcover datasets, which showed that 

habitats typical of those found in the SPMSPA were much less extensive in the fringe in 

2007 than in 1990 or in 2000, suggesting that the range of upland habitat extending beyond 

the SPA boundary has been converted to non-upland habitats. As the moorland fringe 

upland habitats are likely to support a similar bird assemblage to that found within the 

SPMSPA, this pattern may have important conservation implications for upland specialist 

birds in the SPMSPA fringe landscape. An increase between 1990 and 2000 in SPA habitat 

in the fringe suggests that the decline is not constant and may be recoverable. It is likely 

that these observed patterns (especially in 1990) are not quantitatively accurate due 

methodological differences employed by CEH between years, a problem encountered by 

other research using CEH landcover to make temporal inferences using these data (e.g. 

Pearce-Higgins et al. 2006). Efforts were made to standardise differences between years 

during data analysis and as such the general temporal pattern of these results should not be 

disregarded, especially as the CEH LCM datasets represent the best available full 

landcover data in the UK (to the authors knowledge). These datasets are produced 

periodically, and the results presented here allow a benchmark for future patterns to be 

compared to. It would be prudent to apply the method used here to future datasets in order 

to assess further temporal patterns in the coverage of upland habitats within the SPMSPA 

fringe. 

The number of buildings peaks within the central distance bands of the 1km fringe, 

suggesting that development is relatively high within the central portions of the SPMSPA 1 

km fringe, but not in close proximity to the SPMSPA. Further information on this pattern 

can be gained from the fact that building density increasing linearly with increasing 
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distance from the SPMSPA, suggesting that the buildings found in the central portions of 

the SMPSPA fringe are numerous, but spatially separate. This is indicative of less densely 

developed areas than might be expected towards the edge of the SPMSPA fringe where 

numerous medium sized towns lie. The effect of housing density on moorland fringe bird 

habitat suitability will be investigated in chapter 5. Urban encroachment on protected areas 

is a globally recognised phenomenon, with 25% of the worlds protected areas projected to 

be within 15km of a city with a population of at least 50,000 by 2030 (up from 17% in 

1995) while in western Europe this figure is predicted to rise to 3% by 2030 (up from 4% 

in 1995) (Mcdonald et al., 2008). Previous studies from the USA have found that housing 

growth rates since the 1960s have been consistently greater within 1km of protected areas 

than the national average (e.g. Radeloff et al., 2010). In the UK, European protected sites 

including SPAs have been allocated Impact Risk Zones (IRZs) which serve to highlight 

situations where potential developments within certain distances of a protected area may 

impact on the ecology of the protected area (Natural England, 2014). Although the use of 

IRZs is designed to take the potential negative effects of development around protected 

areas into consideration, there is no scientific literature on these impact zones and the 

evidence used to create them is not readily available. Where the objective is to avoid the 

concentration of ecologically poor anthropogenic land cover (e.g. buildings and 

hardstanding), it may be appropriate to avoid further development in distance bands that 

are already highly developed and close to the protected area, and distribute development 

more evenly throughout the fringe landscape. The linear relationship between building 

density and distance from the protected area is encouraging, however a peak density in 

Kirklees at 800-900m suggests that there may be some encroachment of intense 

development within the SPMSPA 1km fringe. This should be monitored and the linear 

relationship of building density maintained.  Historically mapped building data exists in 

the UK, and the use of these data to further analyse patterns of developmental 

encroachment on protected areas should be encouraged, in conjunction with research into 

the potential effects of these developments on the ecological functionality of protected 

areas. 

Remote sensing is useful in classifying vegetative cover over large areas where 

field surveys are not possible (Xie et al., 2008), and for monitoring temporal changes in 

land-use and land cover. As such, there is a high potential application for remote sensing in 

the SPMSPA fringe because an understanding of land use change and habitat cover over 

time may be critical to the ecological functionality of the SPA. Remote sensing has been 

successfully used for applications similar to those required for the SPMSPA fringe, 
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including classifying habitat cover in areas where natural and semi-natural habitats 

interface with agricultural land (Lu et al., 2012), for characterising moorland vegetation in 

the UK (Buchanan et al., 2005) and to model urban sprawl (Taubenböck et al., 2012). The 

use of satellite imagery for categorising agricultural grasslands on their management 

intensity is not a well-studied field (Franke et al., 2012). Nevertheless it has been proven 

possible with very high resolution (6.5m) satellite imagery (RapidEye) and with frequent 

images taken of the same area, reducing the potential of cloud cover and allowing many 

images representing a short time period to be incorporated into the classification algorithm 

(Franke et al., 2012).  

The final objective of this chapter was to classify the SPA fringe landscape using 

remote sensing techniques. An  accuracy estimation of  85% is widely adopted as the 

threshold for an acceptable degree of  accuracy (Congalton and Green, 2009) so the 

SPMSPA moorland fringe classification accuracy of 93.11% can be viewed as extremely 

reliable, especially as intra-class accuracies were also all above 90%. The previously 

mentioned Natural England description of the SPMSPA fringe agricultural landscape as a 

mosaic of small to medium fields dominated by relatively intense sheep farming, but with 

the presence of less improved habitats such as wet grassland, rush pasture and species rich 

meadows (Natural England, 2012) is consistent with the habitat patterns found here. 

However, the coverage of less improved habitats such as wet and dry heath/ acid grassland 

mosaic and semi-improved species rich grassland were extremely low. Low intensity 

farmland provides structural heterogeneity which is beneficial to birds utilising farmland 

through the provision of foodplant diversity, cover from predators and refuge from extreme 

weather (Wilson et al., 2005). As such, the domination of improved grassland and semi-

improved species-poor grassland throughout the SPMSPA fringe may be detrimental to 

bird populations that feed and breed within the fringe. The pattern of semi-improved 

species poor grassland towards the edge of the SPMSPA merging into improved grassland 

over much of the SPMSPA fringe suggests that areas close to the SPMSPA are less 

intensively managed. For birds commuting between the SPMSPA and the surrounding 

fringe, this is likely to be a benefit as these birds do not need to travel great distances to 

relatively low intensity farmland. It would be prudent to extrapolate the classification 

model constructed here on historic Landsat data to identify whether this ecotone is stable 

or represents encroachment of improved grassland from the outside edges of the SPMSPA 

fringe towards the boundary of the SPMSPA. 

The ability of Landsat 8 imagery to provide accurate classification of farmland 

habitat is encouraging, especially considering that the division between habitat categories 
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is not always a definitive boundary, but is more of a transitional continuum (e.g. semi-

improved species poor grassland and semi-improved species rich grassland). As Landsat  

imagery is freely available and backlogged to the 1970s, it provides a great opportunity as 

a remote sensing tool to assess trends in agricultural intensification.  

A limitation of the classification undertaken is the omission of habitat categories 

that were not surveyed such as woodland, hedgerows, rivers and bare rock and the 

omission of minority habitats. Although this was necessary for the improvement of 

classification accuracy within the six habitat categories used, it undoubtedly means that 

some habitats that have been classified here will in fact be habitats not included in the 

classification process. As such, the classification used here is useful for the study of 

landscape scale patterns, but should not be used as an exhaustive classification map.   

The next chapter will explore the relationship between the habitats described within this 

chapter and moorland fringe birds. 
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CHAPTER 3: MOORLAND FRINGE BIRD COMMUNITY 

COMPOSITION AND HABITAT ASSOCIATIONS 

3.1. Abstract 

 

The moorland fringe landscape is composed of a heterogenous mosaic of habitats including 

upland semi-natural habitat, farmland habitat and residential areas (Chapter 1). Bird 

species that use moorland protected areas also use farmland habitat within the fringe 

landscape. The intensification of agriculture in recent years has negatively impacted many 

farmland bird species, and has the potential to negatively impact moorland bird species that 

utilise agricultural habitats. The expansion of residential areas may further compound this. 

This chapter investigates the associations of field level habitat characteristics such as 

dominant habitat type, management regime, wildflower richness and wet flush presence 

and gradient with five moorland fringe bird species that are known to depend on an inland 

Special Protect Area (SPA). Field level habitat characteristics are presented as three 

moorland fringe habitat gradients that were determined using Non-metric 

Multidimensional Scaling (NMDS). The patterns of association with these gradients and  

Curlew Numenius arquata, Lapwing Vanellus vanellus, Snipe Gallinago gallinago, 

Wheatear Oenanthe oenanthe and Golden Plover Pluvialis apricaria were investigated. 

The relative bird diversity of moorland fringe habitats was also explored.  

Evenness was relatively low across within the moorland fringe with 71% of all bird 

records represented by only five species. Bird species richness was greatest in habitats not 

typical of moorland or farmland indicating the importance of broad habitat diversity in 

maintaining bird diversity within the moorland fringe. All five moorland fringe bird 

species that were investigation for habitat gradient associations showed a significant 

preference for fields that have tussocks, wet flush and are intensively grazed and a 

preference against fields where the vegetation is mechanically cut. In addition, Snipe and 

Wheatear have preference against semi-improved grassland and a strong preference for 

fields with a dominant cover of rush. 
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3.2. Introduction 

 

Anthropogenic land use around protected areas is a source of potential stress to ecological 

processes within protected areas (Hansen and DeFries, 2007), especially where habitat 

outside of the protected area plays a role in supporting species that the designated area is 

designed to support (Berger, 2004; Hamilton et al., 2013; Xun et al., 2014). Many species 

are ecologically dependent not only on the habitats within protected areas, but also on the 

landscape within the immediate vicinity through the provision of additional feeding and 

breeding habitat (Fahrig, 2007; Gaston et al., 2008). At the edges of protected uplands in 

the UK, where moorland habitats interface with farmland and developed land (i.e. villages 

and small towns), bird species may use multiple habitats. The preferences of upland birds 

for these habitats vary between species. Lapwing Vanellus vanellus and Skylark Alauda 

arvensis have preferences for farmland but also use moorland. Some species such as 

Meadow Pipit Anthus pratensis, Snipe Gallinago gallinago and Curlew Numenius arquata 

favour both habitats, and others such as Golden Plover Pluvialis apricaria favour 

moorland but also use farmland to supplement feeding (Pearce-Higgins and Yalden, 2003; 

Dallimer et al., 2012). In cases like this, where bird species are protected within an area but 

are likely to use habitat outside of the protected area, it is important to understand the bird-

habitat associations within the fringe landscape of the protected area. As an extension of 

this, the management of habitats within the fringe areas may play an important role in the 

conservation of a species within a protected area. This is true for moorland bird species 

such as Snipe and Curlew for which there is a clear association between moorland habitat 

management and the management of the surrounding farmland in terms of the success of 

these species (Dallimer et al., 2012). 

The landscapes surrounding protected areas are often heterogeneous matrixes (Maestas 

et al., 2003; Hamilton et al., 2013), containing a variety of  habitats that incorporate 

remnant or similar habitats found within the protected area, as well as more anthropogenic 

disturbed habitats that are used primarily as agricultural land use or for housing 

development (Maestas et al., 2003; Joppa et al., 2009). The land-use gradient within these 

landscapes often follows a general trajectory from more undisturbed, natural areas in close 

proximity to the boundary of the protected area, to areas of more intensive land use, 

dominated by land converted for agricultural and housing development, at increasing 

distances from the boundary (Łowicki and Walz, 2015). In addition, where protected areas 

lie in close proximity to urban areas, management practices and local planning decisions 
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can have a profound effect on the extent to which the protected area fringe is able to 

support biodiversity and ecosystem services (Łowicki and Walz, 2015).  

The intensification of agricultural land-use practices and associated degradation 

and fragmentation of habitat suitable for birds is a problem that is global in scale (Kehoe et 

al., 2015). It has been advocated that a landscape scale approach to the management of 

agricultural intensification may be more beneficial to preserving the biodiversity of a 

protected area than local level management (Tscharntke et al., 2005). However, in the case 

of ground nesting farmland birds in Europe, a combination of landscape level and field 

level approach to management should be considered in order to maximise conservation 

benefits to breeding birds (Guerrero et al., 2012). There are many circumstances in which 

birds use different habitat types on a localised or landscape basis (Dunning et al., 1992; 

Dallimer, Gaston, et al., 2010) because they are mobile and require different resources 

from these habitats (Whittingham et al., 2000; Söderström et al., 2001; Mckenzie et al., 

2013; Galitsky and Lawler, 2015). The conservation of bird populations across these 

heterogeneous landscapes therefore relies not only on the extent and quality of multiple 

habitat types (Dallimer, Marini, et al., 2010), but also on knowledge of the bird community 

composition and the attributes of the habitat influencing their abundance. This represents a 

significant conservation challenge for local government authorities, especially where 

protected area designation focus on a single or few habitats, excluding the adjacent matrix 

and potentially over simplifying ecological processes by focussing on the spatial 

constraints of protected areas (Fischer and Lindenmayer, 2007; Santini et al., 2016). In 

addition, the composition of habitat external to protected areas should be managed to avoid 

losing connectivity to habitat that may be used by species within the protected area (Goetz 

et al., 2009). In the United Kingdom, this is especially true of Special Protection Areas 

(SPAs) created to protect moorland habitats and their bird populations. Across Europe, 

upland SPAs are typically designated based on bird breeding sites and consequently can 

exclude important matrix habitats such as the surrounding agricultural areas. The creation 

of SPAs has brought benefits in terms of the international recognition to the biodiversity of 

semi-natural UK moorland habitats. These habitats are particularly important for 

populations of numerous threatened bird species of European significance, as they are 

highly dependent on core moorland areas and the surrounding fringe landscape for 

breeding and foraging (Pearce-Higgins and Grant, 2006; Dallimer, Marini, et al., 2010; 

Dallimer et al., 2012). Recent years have seen a significant increase in anthropogenic 

activity in and around moorland SPAs including planning proposals for residential 

development, renewable energy developments and increased recreational access (Pearce-
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Higgins et al., 2007, 2008). In addition, recent changes in government farming subsidies 

have resulted in a transitional agricultural landscape that has the potential to affect 

populations of moorland birds using agricultural land (Acs et al., 2010). 

In the previous chapter, the types and extent of habitats that make-up the moorland 

fringe landscape surrounding the South Pennine Moors Special Protection Area (SPMSPA) 

were characterised. The spatial data analyses revealed that the SPMSPA moorland fringe is 

a heterogeneous landscape mosaic containing various agricultural habitats, a smaller 

proportion of upland habitats and areas of building development, with an elevational 

gradient that gradually decreases with increasing linear distance from the SPA boundary. 

In this chapter, the associations between field level habitat variables and the bird 

community composition, across the SPMSPA moorland fringe landscape were explored to 

help guide strategies for bird conservation and development proposals for the three local 

government authorities (councils) responsible for managing the SPA and fringe landscape. 

This involved comparing bird species richness, diversity and abundance across all 

moorland fringe landscape habitats, and examining whether these patterns are similar 

across the three different regions managed by the three different local councils, compared 

to the whole SPA moorland fringe landscape. Additionally, gradients in habitat and 

management characteristics of moorland fringe fields across the landscape were 

investigated using ordination techniques. The associations between these gradients and the 

abundance of some of the conservation-priority bird species were investigated and the 

implications for the conservation management of these habitats and species was discussed. 

3.3. Methods 

3.3.1. Study site 

Bird and habitat surveys were conducted at sites located within the SPMSPA moorland 

fringe landscape. A detailed description of the SPMSPA and the composition and 

configuration of the habitats of the surrounding fringe landscape are provided in Chapter 

Two.  

 

3.3.2. Bird surveys 

Bird surveys were conducted within the British breeding bird season during April-July of 

2012, 2013 and 2015, with two visits undertaken in each of these years (early season and 

late season Survey methodology was based on the British Trust for Ornithology (BTO) 

Common Bird Census (CBC) and Breeding Bird Survey (BBS) methods (Marchant 1983; 

Risely et al 2013). All surveys were conducted only during hours and days of suitable 
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weather conditions. Surveys were undertaken by employees of West Yorkshire Ecology 

(WYE), the ecological records service for West Yorkshire working on behalf of the local 

authorities of Calderdale, Kirklees and Bradford. As a professional ecological service, 

WYES used surveyors competent in upland bird survey techniques and bird identification.  

A series of 241 1km2 quadrats were selected within 1 km of the SPMSPA boundary 

in 2012 (n = 53) and 2013 (n = 107), and within 2.5 km in 2015 (n = 64). Within each 

quadrat, two line transects along public rights of way were established, each approximately 

1 km in length. Transects within 1 km survey squares were positioned as near to parallel as 

possible and separated by 500m where possible. Transects were walked at a steady pace 

(1km per hour) between the hours of 0800hrs and 1800hrs. Where transects were repeated 

during the same breeding season, the direction of travel was reversed to maximise observer 

visual coverage of the area without bias caused by topographic gradients and visual 

blockages. Vantage point (VP) surveys were undertaken by WYE in addition to the line 

transect surveys and due to inseparability of the VP data from the line transect data, were 

included as supplementary data in analysis for this chapter. All bird encounters (sight and 

sound) within 250m of the transect were recorded on a 1:5000 map, with notes on activity 

(flight, breeding and feeding). Although distance sampling would have been beneficial for 

this study, distances were not recorded and transect routes were not available for all 

transects undertaken prohibiting post-hoc inferences of distances. 

Thirteen bird species were identified by project partners as of special survey 

interest due to their conservation significance and their possible utilization of the moorland 

fringe landscape (Table 3.1).  in relation to the SPMSPA (table 1), however the survey 

method implemented allowed all species encountered to be surveyed.  

 

3.3.3. Habitat surveys  

Habitat surveys were undertaken in the SPMSPA fringe between 2012 and 2013. Kirklees 

and Calderdale were surveyed by staff from the ecological consultancy WYE in July-

September 2012. Bradford moorland fringe areas were surveyed by staff from Urban Edge 

Environmental Consulting company and WYE in June-July 2013. All surveys were 

conducted by professional ecologists who were familiar with the habitats and the survey 

method. Methodology was agreed between surveyors to provide standardisation of results. 

Further details are provided in Chapter Two. 
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Table 3.1 List of the Conservation priority bird species and their UK conservation status 

(as of 2014). 

Target species RSPB 

conservation 

status 

Rationale for inclusion as a target 

species 

Dunlin (Calidris alpina) Red Protected under the jurisdiction of the 

SPMSPA. Red status in the UK. 

Twite (Carduelis flavirostris) Red Historic stronghold around the 

SPMSPA. Uses SPMSPA as a 

breeding ground. Red status in the 

UK. 

Ring Ouzel (Turdus torquatus) Red Uses SPMSPA as breeding ground. 

Red status in the UK. 

Lapwing (Vanellus vanellus) Red Uses SPMSPA as breeding ground. 

Red status in the UK. 

Common Sandpiper (Actitis 

hypoleucos) 

Amber Uses SPMSPA as breeding ground. 

Short-eared Owl (Asio 

flammeus) 

Amber Protected under the jurisdiction of the 

SPMSPA. 

Merlin (Falco columbarius) Amber Protected under the jurisdiction of the 

SPMSPA. 

Snipe (Gallinago gallinago) Amber Uses SPMSPA as a breeding ground 

Curlew (Numenius arquata) Amber Uses SPMSPA as breeding ground. 

Near threatened status on IUCN red 

list 

Wheatear (Oenanthe oenanthe) Amber Uses SPMSPA as breeding ground. 

Golden Plover (Pluvialis 

apricaria) 

Amber Protected under jurisdiction of 

SPMSPA. 

Whinchat (Saxicola rubetra) Amber Uses SPMSPA as breeding ground. 

Redshank (Tringa tetanus) Amber Uses SPMSPA as breeding ground. 

 

3.3.4. Measures of bird community composition 

Flying bird records and duplicated individuals (i.e. where the same individual was recorded 

in multiple localities) were removed from subsequent analyses, leaving only perched 

individuals. Where duplicated individuals existed in the dataset, only the first recorded 

detection was used. As the primary objective of this chapter was to explore field level bird-

habitat associations, birds recorded in fields that were not included in the habitat survey 

(see Chapter Two) were removed from analysis.  
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Measures of community composition were calculated for all habitats within the 

three unitary authority areas, and for all three authorities combined using the BiodiversityR 

package  (Kindt and Coe, 2005) using the R Development Software (R Core Team, 2013).  

Bird species diversity was represented by three different indices: the Shannon–Wiener 

index (H’), Simpson’s diversity index (1/D) and the Berger-Parker diversity index. 

Simpson’s index is weighted by the commoner species in a sample, whereas the Shannon-

Wiener index is weighted by the rarer species and by species richness (Magurran, 2004). 

As both emphasise different aspects of biodiversity, and to facilitate direct comparison 

with other studies (future and past) it was decided that both Simpson’s index (D) and the 

Shannon-Wiener index ( ) would be calculated and discussed separately in light of the 

biases of each. The value of D decreases as diversity increases, therefore 1/D was 

calculated as a more intuitive index (increase in value represents increase in diversity). In 

an effort to describe evenness separately from species richness, Shannon’s measure of 

evenness ( ) and Simpson’s measure of evenness (E1/D) were calculated. The Berger-

Parker (d) index is a simple, intuitive and biologically meaningful measure of diversity that 

describes the relative importance of the most  dominant species in an assemblage 

(Magurran, 2004). This was calculated to allow conclusions to be drawn on consensus 

between multiple biodiversity indexes (see Appendix 3 for diversity index equations). 

To allow comparison of species richness between habitats where sampling effort 

differed, individual based rarefaction curves were calculated for bird species richness by 

habitat. Individual based rarefaction is calculated by repeatedly randomly subsampling n 

individuals from a sample of birds (in this case, the sample was habitat) and averaging the 

number of species present in gradually increasing values of n (Gotelli and Colwell, 2010).  

Further comparison of estimated species richness between habitats was achieved by 

extrapolation for all unitary authorities combined, a technique that extends the rarefaction 

curve to the number of individuals present in the largest sample (Gotelli and Colwell, 

2010). In addition, 95% confidence intervals were calculated for each rarefaction curve. In 

a pairwise comparison of rarefaction curves, where the 95% confidence interval of the 

smaller sample does not overlap the rarefaction curve of the larger sample, a difference in 

species richness with P<0.05 can be assumed (Gotelli and Colwell, 2010) Rarefaction and 

extrapolation were calculated using EstimateS software (Colwell, 2013). 
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3.3.5. Habitat gradient associations of moorland fringe birds 

Ordination of field level habitat characteristics within the moorland fringe landscape was 

undertaken using Non-metric multidimensional scaling (NMDS), a well-established 

technique that has been used extensively to identify ecological communities and gradients 

in bird communities (e.g. Clough et al., 2009; Borges et al., 2016; Fazaa et al., 2017), but 

can also be used to determine habitat gradients (e.g. Laurance, 1994). In this study, NMDS 

was used to cluster relationships between measured environmental variables and to provide 

a quantitative measure of gradients along these habitat variables. The variables measured 

are summarised in table 3.2. In order to emphasise habitat gradients and remove ambiguity, 

categorical variables were converted to dummy variables (i.e. binary variables for each 

category). Dummy variables and binary variables where presence represented <5% of the 

total number of fields or did not fall into a definitive category (i.e ‘other’) were removed 

from analysis. As multiple variable types were used in NMDS analysis (binary, ordinal and 

continuous) a Gower dissimilarity matrix was deemed to be most appropriate (Gower, 

1971) and due to the relative sparsity of presences for some categories after conversion to 

dummy variables, a step-across transformation was applied (Williamson, 1978; Bradfield 

and Kenkel, 1987). Two, three and four NMDS dimensional axes were tested in analysis 

with the final number of dimensions selected using the lowest convergent stress value 

produced after 100 iterations (three axes). The NMDS procedure was undertaken using the 

vegan package in R (Oksanen, 2008). 

 

Table 3.2  Descriptions of the variables used to describe habitat gradients and determine 

bird-habitat gradient associations. 

Habitat variable Description 

Dominant habitat Categorical variable. Habitat with greater >75% 

coverage within a single field. After removal of 

categories with low representation, habitat types were; 

Improved grassland; Rush pasture; Semi-improved 

species poor grassland. See chapter two  

For full descriptions. 

Management Categorical variable. Categories are; none (no obvious 

management); Cut/Mown; Grazed. 

Flush Binary variable. Presence or absence of a flush 

(waterlogged land fed by ground water) within a field.  

Molehills Binary variable. Presence or absence of molehills 

within a field. 

Tussocks Binary variable. Presence or absence of tussocks within 

a field. 

Dry stone wall Binary variable. Presence or absence of dry stone wall 

as a field boundary. 
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Gradient Ordinal variable. Steepness of slope within a field. 0 = 

flat, 1 = <5o, 2 = 5 o -10 o, 3 = >10 o. 

Grazing intensity Ordinal variable. How heavily is the vegetation grazed 

within a field. 0 = ungrazed, 1 = lightly grazed, 2 = 

moderately grazed, 3 = heavily grazed. 

Wildflower Ordinal variable. Of four wildflower types (dandelion, 

sorrel, thistle and hawkbit), how many are present in a 

field. 

Building density Continuous variable. The inverse density of buildings 

as calculated using thiessen polygon. See chapter two 

for details.  

 

Using the resultant NMDS axis scores as a proxy for habitat gradient, habitat gradient 

associations of conservation-priority bird species (table 3.1) were assessed using 

Generalized Additive Models (GAMs). Only species with greater than 20 presence records 

were included in analysis. The five species remaining for analysis were Curlew, Snipe, 

Golden Plover, Lapwing and Wheatear. All GAMs were fitted using the package mgcv in 

R (Wood, 2006), using an automated algorithm for optimising splines. Each species was 

fitted to the habitat gradients using seven GAMs, representing all additive combinations of 

the three habitat gradient NMDS axes used in analysis. Akaike's Information Criterion 

(AIC)  was used to determine the best fitting model for each species and the significance of 

each axis on the presence of these species calculated using a chi-squired test. 
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3.4. Results 

 

3.4.1. Measures of moorland fringe bird community composition 

During the surveys conducted across 2012, 2013, and 2015 a total of 6,142 records, 

numbering 9,303 individual perched adult birds, and corresponding to 70 species across 15 

habitat types, distributed over 2,903 fields across Kirklees, Bradford and Calderdale 

unitary authorities were recorded (Table 3.3). The most commonly encountered species 

were Starling Sturnus vulgaris (n=3,303), Lapwing Vanellus vanellus (n=1,050), Carrion 

Crow Corvus corone (n=842), Curlew (n=741) and Meadow Pipit Anthus pratensis 

(n=706) where n is the number of individuals. Of the conservation-priority species, 

Lapwing was the most commonly encountered species, followed by Curlew, Golden 

Plover Pluvialis apricaria (n=167), Wheatear Oenanthe oenanthe (n=122), Twite 

Carduelis flavirostris (n=64), Snipe Gallinago gallinago (n=60), and Short-eared Owl Asio 

flammeus (n=28). There were very few records for the remaining conservation-important 

species: Redshank Tringa totanus (n=14), Common Sandpiper Actitis hypoleucos (n=12), 

Whinchat Saxicola rubetra (n=6), Merlin Falco columbarius (n=5), Ring Ouzel Turdus 

torquatus (n=4) and Dunlin Calidris alpine (n=1). The moorland fringe bird community 

for each unitary authority area followed a similar pattern in that they were dominated by a 

few abundant species with only a few rare species. This was also true for all unitary 

authorities combined. This is illustrated by the fact that the five most abundant species 

represented 82.2% of all birds recorded in Bradford, 69.7% in Calderdale, 73% in Kirklees 

and 71.4% for all unitary authorities combined.  A rank abundance plot (Fig. 3.1) reveals 

similarities in evenness between Calderdale, Kirklees and all unitary authories combines, 

whereas Bradford was less even with a relatively low number of species dominating the 

bird community. Conversely, Bradford had fewer species of low abundance that other 

unitary authorities, but also a much lower species richness. Species richness was greater 

when all three unitary authorities were treated collectively as opposed to any one 

authorities being treated individually (Fig. 3.1).  

Measures of moorland fringe bird community composition are shown in Table 3.3 

for all unitary authority areas combined. The habitats which supported the greatest number 

of individual birds were semi-improved species-rich grassland and improved grassland, 

whereas habitats with the least number of individual birds were dry dwarf shrub heath, 

blanket bog/mire, enclosed upland acidic grassland and wet heathland/mire (Table 3.3). 

Bird species richness (Sobs) was highest in habitats not typical of moorland or farmland, 

such as woodland or gardens. Other habitats with high observed species richness included 



90 

 

improved grassland, semi-improved species poor grassland and fields with no single 

habitat with >75% coverage (Table 3.3). Species poor-habitats (those with very low Sobs) 

included dry dwarf shrub heath, blanket bog/mire, rough grassland, unimproved grassland 

and enclosed upland acidic grassland, all of which had fewer fields (Table 3.3). Patterns of 

estimated bird species richness (Sest), achieved through extrapolation broadly matched 

observed species richness, with semi-improved species poor grassland, improved grassland, 

fields with no single dominant habitat and those not typical of moorland or farmland 

having the greatest species richness. Species poor habitats were rough grassland, dry dwarf 

shrub heath, blanket bog/ mire, unimproved grassland, enclosed upland acidic grassland, 

amenity grassland, wet heathland/mire, and rush pasture (Fig. 3.3). 

Shannon-Wiener (H’), inverse Simpsons (1/D) and Berger-Parker indices all 

estimated that bird diversity was highest in habitats not typical of moorland or farmland 

and rush pasture, with broad agreement between these indices that diversity was high in 

fields with no single habitat with >75% coverage and heathland/ acid grassland mosaics 

(wet and dry). In addition, H’, 1/D and Berger-Parker estimated that rough grassland, 

amenity grassland, dry dwarf shrub heath were the least diverse (Table 3.3). Bird species 

diversity was most evenly distributed in upland acidic grassland, dry dwarf shrub health 

and blanket bog/ mire, with amenity grassland and improved grassland having the least 

even 

diversity.

 

Figure 3.1  Rank abundance of moorland fringe bird species from moorland fringe habitats 

across all through unitary authorities. 
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Rarefaction analysis was difficult to interpret due to the large number of habitat 

categories used (Fig. 3.2), however after grouping number of individuals (n) by the sample 

size of each habitat type to aid comparability, some significant patterns became apparent 

(Fig.3.2). Significance here was determined by assessing whether confidence intervals 

overlap. This method is endorsed by the authors of EstimateS in the assessment of 

significance at P≤0.05 when comparing rarefaction curves (Colwell et al., 2004, 2012). 

The method is conservative, meaning that any significant differences found are likely to 

exceed the level of P≤0.05, however some true differences between species richness may 

be identified as not different (Colwell et al., 2012). The habitats of dry dwarf shrub heath, 

blanket bog and enclosed upland acidic grassland were grouped into the category of n<14 

and did not show any difference in rarefied species richness. In the category of n > 18 but 

<69, wet heathland/ mire and unimproved grassland were of comparable rarefied species 

richness, however at equivalent number of individuals, the species richness of both of these 

habitats were significantly greater than that of rough grassland. Where n > 111 but <189 

the three habitats of amenity grassland, dry heath/ acid grassland mosaic and wet heath/ 

acid grassland mosaic were all significantly different in species richness from one another. 

Of these, amenity grassland had the lowest species richness, followed by wet heathland/ 

acid grassland mosaic and then dry heath/ acid grassland mosaic. Where n is >253 but 

<670, fields with no dominant habitat were significantly greater in species richness than 

semi-improved species rich grassland and rush pasture. Semi-improved species rich 

grassland had significantly higher species richness than rush pasture. In the category of n> 

779 but < 3468, representing the most commonly encountered habitats, habitats not typical 

of moorland (‘other’) had a significantly greater species richness than improved grassland 

and semi-improved species poor grassland.  
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Figure 3.2 Rarefaction curves of estimated species richness by habitat across all councils, separated into groups by sample size (number of individual birds 

detected). Curves are presented side by side to facilitate comparison of species richness estimates between habitats. Habitats are indicated by letters; a = 

Amenity grassland; b = Improved grassland; c = Semi-improved species poor grassland; d = Semi-improved species rich grassland; e = Rough grassland; f = 

Unimproved grassland; g = Upland acidic grassland (enclosed); h = Wet heath/ acid grassland mosaic; i = Dry heath/ acid grassland mosaic; j = Wet 

heathland/ mire; k = Dry dwarf shrub heath; l = Rush pasture; m = Blanket bog/ mire; n = Other; o = No dominant habitat. 
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Extrapolation has the advantage of allowing comparability for all habitat type 

simultaneously. However, it has the disadvantage of larger confidence intervals for 

categories with low encounter rates of birds. Despite this, after extrapolation habitats that 

were not typical of moorland habitats were significantly greater in species richness than all 

other habitat types other than where fields did not contain a single dominant habitat, 

however this difference was close to significant based on the overlapping of confidence 

intervals (Figure 3.3). There appeared to be two distinct groupings of species richness with 

semi-improved species poor grassland, improved grassland, no dominant habitat and 

habitats not typical of moorland habitats all having significantly greater species richness 

than all other habitats except for dry heath/ acid grassland mosaic. The confidence intervals 

of dry heath/ acid grassland mosaic were too large for any meaningful differences between 

this and other habitats to be investigated through extrapolation (Figure 3.3). 

 

 

Figure 3.3 Extrapolated species richness with 95% confidence intervals of bird species 

recorded in each habitat across all three unitary authority regions. 
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There was considerable variation in the number of fields surveyed representing the 

different habitat types between the three council moorland fringe areas (Tables 3.4 to 3.6), 

with the most commonly encountered habitats corresponding to improved grassland and 

semi-improved species rich grassland across all three regions. Number of individual birds 

and observed species richness (Sobs) were highest in improved grassland at Kirklees (Table 

3.3), whereas more individuals were recorded from semi-improved species-rich grassland 

habitat from the other two council areas (Tables 3.4 and 3.5). Observed species richness 

was highest in fields with no single habitat with >75% coverage at Calderdale and semi-

improved species-rich grassland in Bradford. There was pronounced variation in the 

different measures of community composition between habitats within each of the three 

council areas (Tables 3.4, 3.5 and 3.6). Berger-Parker, Simpsons and Shannon-Wiener 

diversity indexes were in agreement that fields with no dominant habitat and habitats not 

typical of moorland/farmland were the most diverse habitats within Kirklees (Table 3.3). 

Similarly, fields with no dominant habitat were the most diverse according to these three 

diversity indexes in Bradford. However, in Calderdale neither of these habitat were the 

most diverse according to any diversity index, instead improved grassland and rush pasture 

were the most diverse habitats (Table 3.5). 

Least diverse bird communities were found in semi-improved species poor 

grassland and amenity grassland in Kirklees according to the Berger-Parker index, with 

these habitats scoring low using Simpsons index and Shannon-Wiener also. Interestingly, 

species-rich semi improved grassland had lower biodiversity than species-poor semi 

improved grassland according to the Shannon-Wiener index in Kirklees, however sample 

size for species-rich semi improved grassland was low at 11 fields.  In contrast to the 

relatively high diversity associated with fields not typical of moorland or farmland when 

the three councils are combined, this habitat was the lease diverse according to the Berger-

Parker index and Simpsons index in Calderdale, suggesting that although diversity in 

habitat types is important at the landscape scale in maintaining bird species diversity, at the 

regional scale (i.e. between council areas), this is variable. Amenity grassland was lower in 

species diversity according to all three biodiversity indexes in Bradford by a considerable 

margin.  

The habitat type with the greatest evenness in Kirklees was the category of habitats 

not typical of farmland or moorland. At face value this was not surprising, as multiple 

habitats were included in this category. However, this hypothesis does hold when applied 

to Calderdale where habitats not typical of moorland or farmland scored intermediate 

evenness. Rush pasture, wet heathland and dry heath/ acid grassland mosaics had the most 
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even communities in Calderdale, whereas habitats not typical of moorland or farmland, 

Rush pasture and upland acid grassland supported the most even bird communities in 

Bradford. When habitats are compared between council moorland fringe areas, evenness 

was consistently higher in Kirklees than in Calderdale or Bradford. A graphical 

representation of all diversity indexes and evenness scores can be found in Figure 3.4. 
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Table 3.3 Measures of bird community composition in habitats within the SPMSPA fringe habitat across all three council areas. S(obs) = 

observed species richness; Sest = estimated species richness (extrapolated to 3,467 individuals) ± 95% confidence intervals; Berger-Parker = 

Berger-Parker diversity index; H’ = Shannon-Weiner index; 1/D = Inverse Simpson’s Diversity, J’ = Shannon’s measure of evenness; E1/D  = 

Simpson’s measure of evenness.  
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fields 
62 2 8  43 790 431 166 27 128 1112  68 9 17 36 4  

Number of 

individuals 
112 10 6 156 2834 863 669 68 254 3745 344 22 13 188 19 

S (obs) 9  5 4 19 39 35 43 5 18 36 16 7 7 14 8 

S (est)  ±  

95% CI 

9.9  

± 3.6 

7.7 

 ± 6.6 

6.5 

 ± 6.2 

34.9  

± 32 

39.5  

± 1.8 

40.3  

± 9.4 

49.2  

± 10 

5.5  

 ± 2.6 

18.5  

± 2 

36  

± 7.5 
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± 1.1 

7.9  

± 3.5 

8.4  

± 4.2 

17.9  

± 10.3 

11.8  

± 9.7 

Berger-Parker 0.68 0.4 0.5 0.28 0.47 0.24 0.2 0.63 0.3 0.39 0.3 0.45 0.31 0.24 0.42 

 
1.19 1.42  1.24  2.14  2.15 2.43 2.79 1.01 2.22 2.16 2.02 1.62  1.82 2.06 1.75  

1/D  2.07  3.57 3 5.81 4.02 7.7 10.49 2.15  6.33 5.06 5.6 3.78 5.45 6.27 4.25 

 
0.54  0.88 0.9 0.73 0.59  0.68  0.74 0.63 0.77 0.6 0.73 0.83 0.93 0.78  0.84 

E1/D  0.36  0.83 0.87 0.45 0.22  0.33 0.38 0.55 0.51 0.24 0.47 0.72 0.88 0.56 0.72 
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Table 3.4 Measures of bird community composition in habitats within the SPMSPA fringe habitat in Kirklees council region. S(obs) = 

observed species richness; Berger-Parker = Berger-Parker diversity index; H’ = Shannon-Weiner index; 1/D = Inverse Simpson’s Diversity, J’ 

= Shannon’s measure of evenness; E1/D  = Simpson’s measure of evenness. NA indicates no community measure due to low sample size. 
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fields 
3 1 2 26 215 65 27 43 118 11 0 4 0 

Number of 

individuals 
22 7 3 83 1411 183 413 144 594 92 0 4 0 

S(obs) 4 4 1 13 26 18 30 13 13 6 0 3 0 

Berger 0.64 0.57 NA 0.39 0.59 0.26 0.26 0.52 0.66 0.5 NA 0.5 NA 

 
1.03 1.15 NA 1.9 1.67 2.12 2.45 1.59 1.2 1.12 NA 1.04 NA 

1/D  0.55 0.61 NA 0.78 0.63 0.83 0.87 0.68 0.53 0.6 NA 0.62  NA 

  2.2 2.58 NA 4.61 2.69 5.92 7.79 3.08 2.14  2.49 NA 2.67  NA 

E1/D  1.43 3.88 0.53 4.33 4.53 4.95 7.43 3.47 2.35 1.44 NA 5.45  NA 
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Table 3.5 Measures of bird community composition in habitats within the SPMSPA fringe habitat in Calderdale council region. S(obs) = 

observed species richness; Berger-Parker = Berger-Parker diversity index; H’ = Shannon-Weiner index; 1/D = Inverse Simpson’s Diversity, J’ 

= Shannon’s measure of evenness; E1/D  = Simpson’s measure of evenness. NA indicates no community measure due to low sample size. 
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fields 
10 1 4 5 274 119 31 78 353 3 0 32 4 

Number of 

individuals 
1 3 3 9 379 275 139 102 656 2 NA 184 19 

S(obs) 1 1 3 6 22 24 20 12 23 1 NA 13 8 

Berger  NA NA NA 0.22 0.26 0.32 0.55 0.23 0.53 NA NA 0.25 0.42 

 
NA NA NA 1.74 2.34 2.24 1.82 2.06 1.74 NA NA 2.01 1.75 

1/D  NA NA NA 5.4 7.3 6.1 3.09 6.44 3.16 NA NA 6.07 4.25 

  NA NA NA 0.97 0.76 0.71 0.61 0.83 0.56 NA NA 0.78 0.84 

E1/D  NA NA NA 0.94 0.47 0.39 0.31 0.66 0.25 NA NA 0.57 0.72 
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Table 3.6 Measures of bird community composition in habitats within the SPMSPA fringe habitat in Bradford council region. S(obs) = 

observed species richness; Berger-Parker = Berger-Parker diversity index; H’ = Shannon-Weiner index; 1/D = Inverse Simpson’s Diversity, J’ 

= Shannon’s measure of evenness; E1/D  = Simpson’s measure of evenness. NA indicates no community measure due to low sample size. 
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Number of 

fields 
48 2 11 274 229 100 27 3 623 53 9 17 

Number of 

individuals 
89 0 60 979 322 117 68 8 2217 249 22 13 

S(obs) 6 0 5 20 16 9 5 4 26 12 7 7 

Berger 0.85 NA 0.73 0.41 0.29 0.24 0.63 0.5 0.51 0.42 0.45 0.31 

 
0.62 NA 0.91 1.88 2.1 1.84 1.01 1.21 1.76 1.8 1.62 1.82 

1/D  1.36 NA 1.78 4.27 6.31 5.62 2.15 2.91 3.41 4.19 3.78 5.45 

  0.35 NA 0.56 0.63 0.76 0.84 0.63 0.88 0.54 0.73 0.83 0.93 

E1/D  0.31 NA 0.5 0.33 0.51 0.7 0.55 0.84 0.22 0.51 0.72 0.88 
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Figure 3.4 Relative diversity index scores between council moorland fringe areas and 

between habitat types. 

 

3.4.2. Moorland fringe habitat gradients 

Non-metric multidimensional scaling (NMDS) analysis resulted in three habitat gradients 

across the moorland fringe landscape. The loadings for NMDS1 (Fig 3.5) suggest that this 

axis corresponded to a habitat gradient spanning fields that are at least partially wet (i.e. 

contain a flush), which contain tussocks and are grazed intensively (negative end of the 

axis) to fields that have been managed through grass cutting (positive end of the axis). 

NMDS1 therefore corresponded to a gradient from fields that are typically upland in their 

characteristics, but still actively used for grazing, reflecting traditional methods of land 

management close to or encroaching onto moorland where sheep grazing predominates. 
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The other end of the gradient reflects fields that may be cut for silage or hay (fields that are 

used for the growth of crops for feedstock) but with no single habitat dominating NMDS1.  

Fields described by NMDS2 (Fig. 3.5) correspond to a habitat gradient spanning 

predominantly improved grassland that are grazed (negative end of the axis) to fields that 

are at least partially wet (i.e. contain a flush), contain tussocks and are dominated by semi-

improved grassland (positive end). Thus, NMDS2 describes a gradient spanning fields that 

are composed of lush grass that are used for intensive grazing, to fields that are less 

intensively managed and ungrazed. Fields at the positive end of NMDS2 fall broadly in 

line with field that are typical of ‘set-aside’- areas that may be under Environmental 

Stewardship (ES) subsidy which have been left unfarmed to promote biodiversity, whereas 

the fields at the negative end of the axis are typical of fields that are not in receipt of ES 

subsidies and are intensively farmed purely for agricultural output. 

Interpretation of NMDS3 characteristics (Fig. 3.4) were less clear at the positive 

end of the axis, due to relatively low loading values for all variables, but the presence of 

tussocks, flush and rush vegetation were common. The other end of the gradient was 

composed of fields dominated by semi-improved grassland, suggesting that the NMDS3 

gradient incorporates fields that are less intensively managed (wildflower richness and 

molehills also featured at the negative end of NMDS3), however these fields appear to 

grazed intensively. The habitat gradient moves toward fields that featured fields dominated 

by rushes along with flushes, tussocks and dry stone walls. This may reflect fields that are 

on the very edge of the SPA that are wet and more typical of upland farmland, however the 

fact that improved grassland is included at this end of the gradient makes interpretation less 

clear. 

3.4.3. Bird-habitat associations 

NMDS stress is a measure of the goodness of fit of the resultant ordination feature space as 

compared to the original data feature space, where zero is equal to perfect representation 

(Boyra et al., 2004). Three-dimensional NMDS ordination resulted in a stress value of 0.16, 

with convergence in stress achieved within 50 permutations. Pairwise biplots of the first 

two NMDS dimensions revealed significant overlap between the habitat associations of 

Curlew, Lapwing, Snipe, Golden Plover and Wheatear, however the associations of Snipe 

and Golden Plover appeared more constrained and directional than other species (Fig. 3.5). 

Snipe were associated with the presence of tussocks, flush, rush pasture, wildflower 

diversity and gradient, whereas Golden Plover were associated with similar variables (Fig. 

3.4). The presence of these five conservation-priority species ordinated along the negative 
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end of the NMDS1 gradient, whereas less presence/absence association was evident with 

either NMDS2 or NMDS3, except for Snipe. 

 

 

Figure 3.5 NMDS ordination showing pairwise biplots for three axes of habitat variability 

(3.5A shows NMDS1 vs NMDS2; 3.5B shows NMDS1 vs NMDS3; 3.5C shows NMDS2 

vs NMDS3). Loadings for habitat characteristics are displayed in the left column of figures, 

with the length of arrows indicating association with NMDS axes. The column on the right 

shows individual fields as green points. 95% confidence ellipses are shown for Curlew 

(black solid line), Lapwing (red solid line), Golden Plover (black dotted line), Wheatear 

(black dashed line) and Snipe (red dashed line), indicating fields associated with these 

species. 
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Figure 3.6 Distribution of non-metric multidimensional scaling ordination scores for fields 

with presence or absence of Curlew, Lapwing, Golden Plover, Wheatear and Snipe. 

Statistical associations are shown in Table 3.7. 

 

Examination of the distribution of NMDS ordination scores (Fig 3.6) reveals a clear 

differentiation in the axis scores for presence versus absence for all five species across 

NMDS1. All species showed clear association for presence with negative scores whilst 

absences were distributed over the entire range of NMDS1 scores (Fig 3.6). Differences 

between the distribution of presence and absence ordination scores across NMDS2 were 

less clear, however Golden Plover and Snipe appeared to be associated with central scores, 

indicating that these species do not prefer the extremes at either end of this habitat gradient. 

(Fig 3.6). The distribution of NMDS3 scores were similar for Curlew, Lapwing and 

Golden Plover, in contrast to Snipe and Wheatear where presences appeared to favour the 

positive end of the habitat gradient, especially for Snipe (Fig 3.6). The best explanatory 

combinations of habitat gradients NMDS1, NMDS2 and NMDS3 were determined using 

Generalised Additive Models (GAMs). The Statistical relationships between habitat 

gradients used in the best performing GAMs as determined by Akaike Information 
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Criterion (AIC) and the five bird species were tested for significance using a chi-squared 

test. 

The results of Generalised Additive Models (GAMs) exploring the relationship 

between the five analysed bird species and three habitat gradients represented by the 

NMDS axes are presented in Table 3.7. The habitat gradient described by NMDS1 was 

chosen in all best performing models, with significant associations found in all species 

(table 3.7). Curlew was the only species that was best described solely by NMDS1 with a 

complex relationship relative to other species showing a general trend towards presence of 

this species at the negative end of the gradient (Figure 3.7a). This pattern of association 

with NMDS1 is more pronounced in Lapwing and Snipe (Figure 3.7b and 3.7g), where 

automated spline choice was simplified to a linear relationship. Although the relationships 

between NMDS1 and Golden Plover and NMDS1 and Wheatear appear less pronounced 

(Figures 3.7d and 3.7j), there was a significant decrease in presences towards the positive 

end of the gradient (Table 3.7). These results show that all five species have a preference 

for fields that are less intensively managed for agriculture and are more similar to the core 

SPA habitats in their characteristics than intensively managed fields that are cut for silage 

or hay. Although NMDS2 contributed to the best models for Golden Plover and Snipe, 

these associations were not significant and AIC was not greatly higher than that of the next 

best model (Table 3.7). Taking this into account along with the fact that NMDS2 played no 

role in the best performing models for Curlew, Lapwing or Wheatear, it is fair to say that 

that these species showed no preference for any fields along a gradient from high 

agricultural output improved fields to land that has been removed from active agriculture, 

perhaps intentionally to promote biodiversity under ES. The habitat gradient represented 

by NMDS3 contributed to the best performing models for all species except Curlew. For 

Lapwing and Golden Plover however this contribution was not significant. For Wheatear, 

the association with NMDS3 was near significant (P=0.06), and for Snipe NMDS3 

contributed significantly in explaining presence of this species (Table 3.7). The presence of 

Snipe and Wheatear were linearly positively associated with the values of the NMDS3 axis 

(Figure 3.7i and 3.7j). This suggests that these species have a preference for wet fields with 

Tussocks and Rush and are significantly unassociated with semi-improved grassland. 
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Table 3.7 Generalised Additive Models (GAMs) showing influence of the three NMDS 

ordination habitat gradients (described in the text) on the relative abundance of five 

conservation-priority bird species. Significance of association was testing using χ 2  where 

na = not applicable as the habitat gradient was not included in the best model. AIC = 

Akaike’s Information Criteria; ∆AIC = change in AIC values between models. Lower AIC 

values indicate better models. 

Species 
Model (* indicates best 

performing model) 
AIC ∆AIC 

Contribution of 

habitat gradients to 

best performing 

model 

Curlew 

NMDS1* 1639.6 0.0 

NMDS1:  

χ 2=99.43, P<0.001 

NMDS2 = na 

NMDS3 = na 

NMDS2 1718.2 78.6 

NMDS3 1738.0 98.4 

NMDS1+NMDS2 1641.3 1.7 

NMDS1+NMDS3 1641.3 1.7 

NMDS2+MDS3 1719.8 80.2 

NMDS1+NMDS2+NMDS3 1643.0 3.4 

Lapwing 

NMDS1 720.8 0.4 

NMDS1: χ 2= 34.62, 

P<0.001 

NMDS2 = na 

NMDS3: z= 3.22, 

P=0.24 

NMDS2 751.6 31.2 

NMDS3 760.4 40.1 

NMDS1 + NMDS2 721.3 1.0 

NMDS1 + NMDS3* 720.4 0.0 

NMDS2 + NMDS3 750.9 30.6 

NMDS1+NMDS2+MDS3 720.8 0.4 

Golden 

Plover 

NMDS1 234.5 6.3 
NMDS1 χ 2=- 8.36, 

P= 0.02 

NMDS2: χ 2= 4.03, 

P=0.24 

NMDS3: χ 2= 5.93, 

P=0.17 

NMDS2 249.2 21.0 

NMDS3 251.1 23.0 

NMDS1 + NMDS2 233.7 5.5 

NMDS1 + NMDS3 229.5 1.3 

NMDS2 + NMDS3 241.6 13.4 

NMDS1+NMDS2+NMDS3* 228.2 0.0 

 

Snipe 

NMDS1 289.0 15.5 
NMDS1: χ 2= 16.96, 

P<0.001 

NMDS2: χ 2=3.46, 

p=0.46 

NMDS3: χ 2=13.13, 

P<0.001 

NMDS2 321.1 47.6 

NMDS3 315.1 41.6 

NMDS1 + NMDS2 287.4 13.9 

NMDS1 + NMDS3 274.4 0.8 

NMDS2 + NMDS3 300.5 27.0 

NMDS1+NMDS2+NMDS3* 273.5 0.0 

Wheatear 

NMDS1 331.9 1.4 

NMDS1: χ 2= 7.54, 

P<0.05 

NMDS2 = na 

NMDS3: χ 2=3.48, 

P=0.06 

NMDS2 342.1 11.6 

NMDS3 338.1 7.5 

NMDS1 + NMDS2 333.4 2.8 

NMDS1 + NMDS3* 330.5 0.0 

NMDS2 + NMDS3 339.8 9.3 

NMDS1+NMDS2+NMDS3 331.9 1.4 
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Figure 3.7a-k The relationship between the abundance of the five conservation-priority 

bird species, and the NMDS habitat gradients that exhibited significant influences on bird 

abundances identified from Generalized Additive Models (GAMs). 
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3.5. Discussion 

 

Fields with a heterogeneous habitat arrangement were estimated to have amongst the 

highest bird diversity by all calculated diversity indices. Heterogeneous fields were 

represented by heathland and acid grassland mosaics, fields with no single dominant 

habitat and fields with habitats not typical of moorland or moorland fringe farmland. 

Maintaining habitat heterogeneity within upland vegetative communities has long been 

understood to be of conservation importance for upland bird species diversity in the UK 

(Usher and Thompson, 1993) and similarly for farmland bird species, where bird species 

with different life history strategies require structural variation to accommodate for variety 

in predator avoidance responses, feeding requirements and breeding behaviour (Benton et 

al., 2003). The results of this study show that habitat heterogeneity at the landscape level is 

important for the conservation of bird diversity in moorland fringe. From a management 

perspective, this means incorporating habitat types into the SPMSPA fringe that are not 

typical of moorland or farmland such as woodland, waterbodies and gardens. In addition to 

this, bird diversity was high in fields with no single dominant habitat, showing that 

heterogeneity of habitats at the field level is also important for maintaining high bird 

diversity. Previous studies have shown that in-field heterogeneity is also important for 

breeding waders including Lapwing and Redshank (Verhulst et al., 2011), highlighting that 

maintaining a variety of habitats within individual field may benefit birds associated with 

the SPMSPA as well as bird diversity as a whole.  This highlights the importance of taking 

a multiscale approach to the conservation of birds in moorland SPA fringe areas where bird 

diversity is a priority. Many other studies have advocated a multiscale approach to 

studying and conserving bird diversity in a broad range of habitats including urban 

environments (Jokimäki and Kaisanlahti-Jokimäki, 2003), rural-urban interfaces (Taylor et 

al., 2016), woodland (Grand et al., 2004) , grassland (Thompson et al., 2014), farmland 

(Rudolphi et al., 2014) and upland habitats (Mahon et al., 2016). Multiscale approaches to 

bird conservation have been used extensively to study the effects of anthropogenic stresses 

including wildfire (Herrando and Brotons, 2002), urbanisation (Gagné et al., 2016) and 

agricultural intensification (Jeliazkov et al., 2016). This is often achieved through spatially 

oriented predictive modelling within a species distribution modelling or habitat suitability 

modelling framework. This will be discussed further in Chapter Five. 

Species richness and evenness were lower within the SPA fringe of the unitary 

authority of Bradford than in Calderdale or Kirklees. Additionally, species richness was 

much higher when all three authorities were combined than any one individually. These 

results suggest that the combined efforts of multiple decision making authorities with joint 
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jurisdiction over a protected area are highly important in preserving bird diversity. The 

importance of cross boundary co-operation in the management of protected areas is 

recognised at the Country level (i.e. where protected areas span two or more nations) to 

promote and enhance biodiversity corridors without anthropogenic barriers to movement 

(Zimmerer et al., 2004). This concept can be extended to boundaries at other spatial and 

political scales including unitary authorities, where distinct decision making units are 

responsible for managing the same landscape. One could argue that it is indeed more 

important at this scale, where in addition to cross boundary ecological similarity, the 

political motivations and overarching policy goals are set by a central government 

(Westminster and Brussels in the case of English SPAs) and therefore conservation goals 

should align between local authorities. 

The presence of Curlew, Golden Plover, Snipe, Lapwing and Wheatear were all 

significantly negatively associated with fields described by the habitat gradient presented 

by NMDS1, i.e. a gradient from fields with wet flush and tussocks that are heavily grazed 

(negative end of the habitat gradient) to fields where the vegetation is mechanically cut 

(positive end of the habitat gradient). This could be advantageous from a landscape 

management perspective as encouraging the implementation of practices that broadly 

match the negative end of this habitat gradient is likely to benefit all five of these species. 

Using habitat gradients to inform management practices has the advantage of maintaining 

generalisation and is less prescriptive than using individual habitat components. This 

allows an approach to be undertaken that is less concerned with individual field 

composition (which may result in field heterogeneity, but increase homogeneity at the 

landscape level) and instead allows a more casual approach to management. In general 

terms for the five species, grazing is more beneficial than cutting, fields with a waterlogged 

portion and a high proportion of tussocks are more important than wildflower diversity or 

molehill cover. The importance of grazing and ground wetness has previously been shown 

for the presence of breeding waders such as Lapwing, Redshank and Black-tailed Godwit 

Limosa limosa  (Tichit et al., 2005; Smart et al., 2006; Verhulst et al., 2011) at wetland and 

coastal sites. This study shows that the same is true for upland waders and passerines using 

the moorland fringe. The habitat gradient described by NMDS3 had an influence in 

addition to NMDS1 over the presence or absence of Snipe and Wheatear. Whereas 

NMDS1 shows field improvement/ semi-improvement and the presence of dry stone walls 

to have relatively little influence over the presence of Curlew, Lapwing and Golden-Plover 

in comparison to other habitat characteristics, this is not true for Snipe or Wheatear. For 

these species, (especially Snipe) there is a strong preference against semi-improved 
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grassland and a strong preference for fields with a dominant cover of rush. Molehill cover 

does not appear to have a positive effect on the presence of Snipe or Wheatear. Molehill 

abundance has been shown to be positively related to the presence of some bird species, 

with the hypothesis that molehills indicate a proxy for earthworm abundance (Atkinson et 

al., 2005).  The results of this study suggest that earthworms are not an important food 

source for Snipe or Wheatear, or that molehills are not a good indicator of earthworm 

abundance. 

Of the 13 species of conservation importance identified as part of this study, less 

than half were encountered frequently enough within the SPMSPA fringe for habitat 

association analysis. These species were Curlew, Lapwing, Golden Plover, Wheatear and 

Snipe. An explanation for the fact that eight species were only found in low numbers could 

lie in that most the SPMSPA fringe landscape was composed of habitats mainly associated 

with farmland as opposed to habitats typical of moorland (see Chapter Two). Breeding 

Curlew, Lapwing and Snipe have all been shown to be associated with farmland habitats, 

especially less intensively managed (i.e. less improved) farmland (Henderson et al., 2002). 

In contrast to this, Curlew and Snipe have also been shown to be associated with improved 

grassland cover by Whittingham et al. (2010). Golden Plover have been shown to feed in 

enclosed farmland, with males and females commuting to these habitats at night and day 

respectively with greater commuting distances in the day (Pearce-Higgins and Yalden, 

2003). As bird surveys undertaken as part of this study were only undertaken during the 

day, it is possible that an incomplete picture of the habitat associations of this species have 

been explored. Golden Plover are associated with cotton grass and other sedges at the field 

level (Dallimer, Marini, et al., 2010), suggesting that this species has strong preference 

against improved fields. Molehills have been shown to be a good predictor of Golden 

Plover foraging in enclosed fields, possibly representing a surrogate for earthworm 

abundance (i.e. prey availability) hence their inclusion in this study (Whittingham et al., 

2000). Species with very low encounter rates included Short-eared Owl, Merlin, Dunlin, 

Ring Ouzel and Whinchat. These species are generally associated with typical upland 

habitats such as heather, heather/ grassland mosaics, blanket bog  (Stillman and Brown, 

1994; Buchanan et al., 2003). Twite are known to use habitat within moorland fringe 

(Wilkinson and Wilson, 2010), preferring sites that are close to water bodies and low in 

rush cover (Brown et al., 1995) and with high coverage of flower meadows (Langston et al., 

2006). Unfortunately, this species has declined markedly in its breeding population and 

distribution across the whole of the UK, and indeed within the SPMSPA (Raine et al., 

2009). The last available data in the literature are from 2004/05 showing only 10 known 
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historical Twite breeding sites remaining in Lancashire and West Yorkshire out of 43 in 

1967/68 (Raine et al., 2009). Taking this into account, the low encounter rate of Twite in 

this study is not surprising. Redshank are known to use moorland fringe habitats including 

enclosed meadows (Jefferson, 2005; Moss et al., 2005), however have shown population 

declines in recent years in upland habitats (Jefferson, 2005). Breeding Common Sandpiper 

are associated with the banks of waterbodies such as reservoirs and rivers in the uplands 

(Holland and Yalden, 1991; Yalden, 1992), a component of the SPMPSA that may require 

further investigation to determine the assosications of Common Sandpiper. 
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CHAPTER 4: INFLUENCE OF SMALL WIND TURBINES ON 

MOORLAND FRINGE BIRDS 

4.1. Abstract 

 

There is a considerable body of literature on the ecological impacts of large wind turbines 

and wind farms, however there is almost no scientific literature exploring the ecological 

effects of Small Wind Turbines (SWTs). Here we adopt the definition of an SWT to mean 

a wind turbine of energy generating capability <50kW. These are usually free-standing 

turbines that are used to supplement electricity supply in a domestic setting or on a farm. 

This chapter aims to investigate the ecological effect of SWTs on bird communities and the 

presence of moorland fringe bird species. The aims of the chapters are; (1) To determine 

habitat composition around SWTs; (2) To determine bird community composition around 

SWTs; (3) To investigate the effect of distance from SWTs on the presence of bird species. 

Bird surveys were at undertaken at 16 SWT sites. Habitat surveys were undertaken 

along the same transects used for bird surveys. Habitat heterogeneity was assessed between 

turbine sites and between distance bands from as were bird-habitat associations. Logistic 

regression was used to determine the effect of distance from SWTs on birds. 

A total of 16 different habitat types were recorded around SWTs. No differences in 

habitat between distance bands from turbines were detected, however habitat composition 

differed significantly between turbine sites. The surveyed bird community around SWTs 

comprised 54 species. Species diversity was lowest within 100m of SWTs, suggesting that 

that there may be a displacement effect within 100m of SWTs. Magpie Pica pica and 

Starling Sternus vulgaris were found to be significantly associated with distance from 

SWT when controlling for habitat type. The effect of distance from SWTs is discussed in 

the light of these results and results from previous studies on larger turbines. 
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4.2. Introduction 

Research into the ecological effects of wind turbines has largely focussed on wind farms 

with multiple large turbines. With financial incentives available within the UK (as of 2013) 

for small-scale electricity generation, there is an increasing trend towards the construction 

of small wind turbines (SWTs) in areas of high wind resource availability. Consistent 

terminology in the scientific literature is regarded by many as key to the mutual 

understanding of concepts between scientists. ‘Small Wind Turbine’ (Minderman et al., 

2012) and ‘Micro-Turbine’ (Park et al. 2013) are often used to mean an electricity 

generating wind turbine of generating capability <50kW. The international safety standard 

for SWTs states that Micro-Turbines have a generating output of <500W, whereas SWTs 

have <50kW output. As the latter definition best fits the turbines investigated by 

(Minderman et al. (2012), (Park et al. (2013) and by the research conducted in this chapter, 

the term SWT will be used here. In addition to power output, SWTs are defined by a swept 

rotor area of  <200m2 which translates to a rotor length of approximately 8m.  The 

ecological effects of SWTs on UK biodiversity are not well understood, making it difficult 

for local authorities to make informed planning decisions (Minderman et al., 2012). Some 

studies have addressed the issue of integrating ecological evidence into planning policy, 

using the lack of empirical ecological evidence regarding SWTs as an example for 

advocating better communication between scientists and policy makers and planning 

departments (Park et al. 2013). There is a widespread misconception that the threat of wind 

turbines on birds is limited solely to the potential for bird strike (Leung and Yang, 2012). 

This is not aided by the fact that the majority of research attempting to reconcile bird 

ecology and wind turbines appears biased towards collision risk and direct mortality (e.g. 

De Lucas et al. 2008; Ferrer et al. 2012; Péron et al. 2013). A considerable body of 

research has focussed on the collision mortality of birds with onshore wind turbines, 

especially with regards to raptors (e.g. Barrios & Rodríguez 2004; De Lucas et al. 2008; 

Schaub 2012; Dahl et al. 2013; Hull & Muir 2013). Similarly, there is much research into 

the bird collision risk of offshore turbines for numerous migratory and marine birds (e.g. 

Plonczkier & Simms 2012; Johnston et al. 2014). Determining the rate or risk of collision 

is of ecological significance to bird populations is extremely complex, as it is deemed to be 

species specific, location specific, and size specific (in terms of the size of a wind farm and 

the turbines), associated with topography, weather, season and land (Herrera-Alsina et al., 

2013). This multitude of variables make it difficult to determine in advance whether a wind 

turbine development may affect a bird population (Powlesland, 2009). Collision risk 

however is only one of many factors that could present a potential threat to the viability of 
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bird populations around wind turbines. Other threats include displacement as a result of 

disturbance, habitat loss or degradation, and the creation of ‘barriers’ (i.e. the ‘ barrier 

effect’) altering migration or daily movement patterns (Drewitt and Langston, 2006; 

Masden et al., 2009, 2010; Plonczkier and Simms, 2012; Winiarski et al., 2014). 

Using standardized pre-construction surveys, informed placement of turbines can 

theoretically minimise these negative impacts (Madders and Whitfield, 2006). The current 

consensus  appears to be that prior monitoring of a proposed wind turbine site for bird 

activity and placement based on a ‘least impact’ basis is the best way to minimise risk, i.e. 

by conducting an Environmental Impact Assessment (EIA) (Desholm et al., 2006). 

Adopting EIAs seems logical and relatively simple, but different guilds of birds require 

different survey methodologies, different seasonal emphasis, and in some cases long term 

monitoring, covering several years in order to make sound estimates of abundance and 

distribution (Niemuth et al., 2013). Furthermore, there is some evidence to suggest that the 

spatial arrangement of turbines within the landscape can affect bird species such as Red 

Kite (Milvus milvus) (Schaub, 2012). An approach has been proposed that involves pre-

empting conflict at the landscape level (Bright et al., 2008) which involves avoiding the 

overlap of turbine location with areas of importance to birds that present a high turbine risk, 

based on foraging range, collision risk and sensitivity to disturbance (Bright et al., 2008). 

In this chapter the effect of Small Wind Turbines (SWTs) on moorland fringe bird species 

is investigated. Specifically, the following research questions apply: (1) does the habitat 

composition around SWTs differ as a function of distance from SWTs? (2) Does habitat 

composition differ between SWT sites? (3) do measures of bird community composition 

differ with distance from SWTs; (4) is the presence of individual bird species affected by 

proximity to SWTs? 

4.3. Methods 

4.3.1. Study site 

Bird and habitat surveys were conducted at wind turbine sites located within the South 

Pennine Moors Special Protection Area moorland fringe landscape. Details of the 

SPMSPA and the surrounding fringe are provided in Chapter Two. In order to select 

suitable sites,  the UK planning portal database was searched using various synonyms and 

variations of the keyword ‘turbine’ in the districts of Calderdale, Bradford and Kirklees. 

Turbines fitting the defined criteria of SWT and having gained planning permission were 

identified, and these sites were subsequently reduced to turbines within 3 km of the 

SPMSPA boundary. All sites that met these criteria were visited and inspected for 
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construction status prior to ecological survey (n= 95). Turbines that were positively 

identified as constructed were split into two categories: (1) Individual turbines that were 

more than 1 km in distance from any other SWT (n=16); (2) Cluster of turbines where two 

or more turbines were less than 1 km apart (n=42). Buffers were calculated and drawn 

around the turbine locations (as defined in the planning permission documentation) in 

ArcGIS, at 100m radial intervals up to 500m, hereon referred to as ‘distance bands’. 

 

4.3.2.  Bird surveys 

The bird survey method was based on the British Trust for Ornithology (BTO) Common 

Bird Census (CBC) and Breeding Bird Survey (BBS) methods (Marchant 1983; Risely et 

al 2013). Survey transects following public rights of way that crossed as many distance 

bands as possible, with minimal intersection as possible were identified and selected from 

ordnance survey maps. A total of 23 turbines were selected for surveys, comprising of both 

individual turbines (n=15), and one cluster of turbines (n=8) (Appendix 4). Between 16th 

May 2013 and 18th July 2013, a total of 65.4km of line transect were surveyed, a period 

representing the breeding bird season in the UK. Transect surveys were categorised into 

early and late breeding season period, with the early period ending on 14th June 2013 and 

the late period beginning on 30th June 2013. Most turbine sites were surveyed twice (once 

in the early period and once in the late period), however time and resources available 

restricted some turbine sites only having one survey. All bird surveys were undertaken 

between the hours of 0800 and 1800 to avoid peak activity and any associated bias in bird 

detectability and the direction of travel along transects was rotated for transects that were 

surveyed twice. Two surveyors undertook the surveys, each working individually with 

walking rate standardised at 1 km/h. All bird encounters within a 100m perpendicular 

distance of the line transect were recorded, and all individuals up to 50m in front of the 

observer. No bird records behind the perpendicular of the line transect and the surveyor 

were recorded. Birds observed only in flight were recorded if the bird was observed to 

cross the perpendicular of the transect at the point of the surveyors location. Bird 

encounters were digitally projected in space using a handheld Global Positioning System 

(GPS) unit and a laser range finder to provide more accurate bird locations and to facilitate 

entry into a GIS. Where multiple individuals were encountered in the same group, the 

location of the group was recorded at the closest bird to the surveyor and the number of 

individuals was noted. Turbine locations were verified using a projected GPS waypoint 

where access to the turbine was not available, or by an unprojected waypoint where access 

was possible. A ‘burn in’ distance was applied to the wind turbine line transects which 
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involved walking into the survey area at the standardised walking pace from a minimum 

radial distance of 1,000m from the turbine location. This was to minimise any disturbance 

created by observers preparing to begin surveys. Environmental variables recorded at the 

start of the burn in location including wind speed, temperature, cloud cover, visibility and 

rainfall. Where possible, the rate of spin of the turbine blades was recorded on a four-point 

scale.  

 

4.3.3. Habitat surveys 

Habitats were surveyed in 50m2 quadrats at each intersection where a length of line 

transect crossed the midpoint of a turbine distance band. Habitat variables were selected 

based on their potential significance in influencing bird distributions around turbines, with 

the intention to use these data as covariates in later statistical analyses. Both qualitative and 

quantitative habitat variables were recorded at every intersection between the midpoint of a 

turbine distance band based on the location of the turbine as described in the planning 

permission documentation and a bird survey line transect (Table 4.1). The habitat survey 

area was defined by three points along the line transect; a point at the intersection between 

the line transect and the midpoint of the distance band; a point 25m in one direction along 

the line transect from the intersection; a point 25m in the opposite direction along the line 

transect from the intersection. A perpendicular distance of 50m on either side of the 

transect at the location of these points dictated the two dimensional area of the habitat 

survey area (hereon referred to as ‘habitat quadrat’). The areas on either side of the line 

transect were treated and surveyed as two distinct habitat quadrats. Primary and secondary 

habitat describe the two habitats that compose the largest and second largest proportion of 

a habitat quadrat by surface area coverage (Table 4.2). 

 

4.3.4. Spatial data processing 

Bird records were entered into a GIS attribute table in ArcGIS and associated with their 

respective GPS coordinates. All line transects were digitised with 100m buffers on either 

side of the transect to simulate the area surveyed. Bird records were cropped by these 

buffers to remove all bird records outside of the survey area and misplaced GPS points. 

Sampling effort was determined by intersecting the 100m line transect buffers with the 

turbine distance bands using Quantum GIS and calculating the subsequent area. Survey 

effort was then calculated as m2 per turbine, m2 per distance band and m2 per distance band 

per turbine. Turbine locations were verified and corrected (where necessary) in ArcGIS, 
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post survey using the GPS waypoints collected during surveys and aerial imagery (Table 

4.3). Radial distance bands of 100m increments were calculated around the corrected 

turbine locations, and bird records associated with the distance band they geographically 

fell within. For the analyses the distance bands were increased to 600m to account for 

potential shifts in line transect location relative to the turbine positions. Bird records were 

then allocated habitat data based on the closest habitat quadrat. Where a bird record had 

equal proximity to two or more habitat quadrats, one habitat quadrat was randomly 

assigned. Habitat quadrats were split between turbine distance bands for analysis 

independent of bird records in two ways. Where area of habitat was of interest, the 

quadrats were intersected by the turbine distance bands in ArcGIS and the resultant total of 

each habitat per distance band calculated. For analysis of habitat quadrat counts, habitat 

area split by distance band biased the data and forfeited statistical integrity (because an 

artificially high number of habitat units was generated through intersection), thus the 

centroid of the habitat quadrat was calculated and allocated to a distance band.  
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Table 4.1 Quantitative and qualitative habitat measurements taken at each habitat sampling site 

 

 

 

Measurement variable Data type Description 

Primary habitat Categorical (see table 4.2) The habitat category that makes up the largest proportion of the 

sampling area. If two habitats are equal, both habitats will be recorded 

as a primary habitat in the format x/y where x is one habitat type and y 

is another. 

Secondary habitat Categorical (see table 4.2) The habitat category that makes up the second largest proportion of the 

sampling area. If there is only one habitat present, secondary habitat 

will be recorded as 0. If two habitats are equal in abundance by area, 

secondary habitat will be recorded as 0. 

Livestock Binary (presence/absence), 

Categorical (livestock species) 

An indicator that livestock were present in the habitat quadrat during 

habitat survey. If livestock were present in the same field as a field 

occurring within the quadrat, livestock was recorded as present. Species 

of livestock were recorded. Present =1, absent = 0. 

Trees Binary (presence/absence) One or more trees occur within the habitat sampling quadrat. Present 

=1, absent = 0. 

Hedgerows Binary (presence/absence) One or more hedgerows occur within the habitat sampling quadrat. 

Present =1, absent = 0. 

Buildings Binary (presence/absence) One or more buildings occur within the habitat sampling quadrat. 

Present =1, absent = 0. 

Visibility Continuous A measurement in metres of perpendicular ground visibility from the 

transect line. Measurements >100m were recorded as >100m. 
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Table 4.2 primary and secondary habitat categories. Habitats were categorised prior to habitat survey based on informal observation during 

earlier bird survey. These categories relate to primary habitat (the habitat with the highest proportion of land cover within the habitat quadrat) 

and secondary habitat (the habitat with the second highest proportion of land cover within the habitat quadrat). 

Habitat type Habitat description 

Woodland An area dominated by trees 

Scrubland An area dominated by low lying, dense vegetation 

Farmland (unimproved) An area of land clearly used for agricultural purposes with high vegetative species diversity and is not 

dominated by bright green/lush grasses.  

Farmland (semi-improved) An area of land clearly used for agricultural purposes with medium vegetative species diversity and/or is 

not dominated by bright green, lush grasses. 

Farmland (improved) An area of land clearly used for agricultural purposes with low vegetative species diversity and/or 

dominated by bright green, lush grasses. 

Grassland (unimproved) An area of land that is not clearly used for agricultural purposes with high vegetative species diversity 

and is dominated by grasses. 

Grassland (semi-improved) An area of land that is not clearly used for agricultural purposes with medium vegetative species 

diversity and is dominated by grasses. 

Grassland (improved) An area of land that is not clearly used for agricultural purposes with low vegetative species diversity 

and is dominated by grasses. 

Garden An area of land that represents an outdoor section of a dwelling. 

Bare rock An area of land with no soil substrate and visible bedrock or boulders. 

Running water A visibly mobile body of water (e.g. rivers and streams). 

Standing water A body of water that appears to be non-mobile (e.g. lakes, ponds, canals). 

Bog/waterlogged land An area of land that has a soil substrate but is visibly saturated with water. 

Moorland An area of land that is dominated by moorland plant species (e.g. Calluna vulgaris, Erica tetralix, 

Vaccinium myrtilis, Juncus spp.).  

Other Any area of land that does not fall into the above categories. 

None Only relevant to the secondary habitat categories. Indicates that only a primary habitat is present. 
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4.3.5. Habitat and bird community data analysis 

Primary and secondary habitat composition between distance bands was analysed using a 

Pearson’s chi squared test of association in SPSS Statistics (IBM Corp, 2012). The 

centroid of each habitat quadrat was used to group habitat by turbine distance band. Bird 

community composition for each turbine distance band was examined using Shannon-

Weaver index (H’), Simpson’s index (D), Shannon’s measure of evenness (J’), and 

Simpson’s measure of evenness (E1/D) calculated using the BiodiversityR package in R 

(Kindt and Coe, 2005; R Core Team, 2013) (See Appendix 3 for equations). Rank 

abundance curves were calculated for each turbine distance band in order to assess and 

compare species richness and evenness. Rarefaction curves and extrapolated species 

richness values were calculated for each distance band using the computer program 

EstimateS (Colwell, 2013).   

One-way ANOVA with Tukeys Honestly Significant Difference (HSD) tests were 

used to examine overall and pairwise differences in habitat sampling area between distance 

bands with ‘area sampled per distance band per turbine’ as the dependent variable and 

‘turbine distance band’ as the independent variable. For species with > 20 detections, 

habitat associations were determined initially using Pearson’s chi-squared test of 

association in SPSS (IBM Corp, 2012) with primary habitat used as the categorical 

independent habitat variable and bird species presence or absence as the dependent 

variable. Presence data were used as they are more reliable than counts of individual birds 

for agile species and species that flock in large numbers (Stevens et al., 2013). 

In order to test for associations between distance band and bird species presence, 

binary logistic regression was undertaken using the glm function in the stats R Package (R 

Core Team, 2013) with a logit link function. Species presence/ absence was used as the 

dependent variable. Turbine distance band was included as a numeric predictor variable 

and primary habitats were included as a categorical predictor variable. As categorical 

variables are converted to dummy variables by stats, habitats were reclassed in order to 

reduces the number of factor levels and by extension, reduce the total number of predictor 

variables used in modelling. All semi-improved and unimproved grassland and farmland 

were relabelled ‘semi improved and unimproved’; improved grassland and improved 

farmland were grouped to become ‘improved’; running water and standing water were 

grouped into ‘water bodies’; the single record of bare rock was grouped with moorland 

(this record was known to occur in a moorland area) to become ‘moorland’. Woodland, 

scrubland and garden remained the same. ‘Other’ habitats were excluded from analysis, as 

were any bird records associated with this habitat. This resulted in seven distinct habitat 
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categories. Only distance bands with over 33ha of survey area were used for the analysis, 

excluding the 500m-600m band. Species with <20 records were excluded from binary 

logistic regression. The Z-statistic returned for all predictor variables (including individual 

habitat categories) by glm was used to assess significance and direction of association. 

4.4. Results 

4.4.1. Composition of moorland fringe habitats around Small Wind Turbines 

A total of 16 turbine sites were surveyed, comprising of 15 individual turbines (density = 

0.76 turbines/km2 per turbine site within 500m radial distance) and a single cluster of eight 

turbines (density = 0.39 turbines/km2 within 500m combined radial distance of all turbines). 

Correction of turbine geographic location from the planning permission documented 

location to confirmed turbine location resulted in a mean geographic shift of 68m ± 19.2m 

(SE). In total, 544 habitat quadrats were sampled (Fig. 4.1) corresponding to an area of 

139.5 ha (  quadrat area= 0.257 ha ±0.002 ha). Mean habitat sampling areas per turbine  

distance bands were significantly different from one another (F = 2.496, P = 0.037). 

Pairwise post-hoc analysis showed that these differences were between 200m-300m and 

500-600m distance bands (P = 0.036) and 300-400m and 500m-600m distance bands (P = 

0.047). All other pairwise comparisons of habitat sampling areas were not significantly 

different, suggesting that only the 500m-600m distance band was underrepresented. 

Figure 4.1 Total area of habitat sampled across all turbine distance bands for sixteen SWT 

sites within the SPMSPA fringe habitat. The 0-100m distance band was under-sampled as 

a result of a reduced total area due to a naturally reducing function of area by radial 

concentric bands around a point. The 500m-600m distance band was under-sampled due to 

a difference between expected turbine site locations versus actual turbine site locations and 

the associated shift in relative line transect position to the turbines. 
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Improved farmland accounted for over 40% of all primary habitat in all turbine 

distance bands except 500m-600m (Fig. 4.2). Semi-improved grassland made up a larger 

proportion of primary habitat in the 0m-100m distance band that in any other distance band 

(Fig. 4.2).  Both primary and secondary habitat composition were heterogeneous within 

distance bands and appeared to be relatively evenly distributed between distance bands 

(except for 500m-600m). Few immediate differences in primary or secondary habitat 

composition by area between turbine distance bands were apparent, except for the furthest 

500m-600m band. A large proportion of the habitat quadrats were composed only of one 

habitat type i.e. the primary habitat. Likelihood ratio chi squared test results for similarity 

in habitat between turbine distance bands and between turbine sites revealed that primary 

habitat was significantly different between distance bands when all distance bands were 

included in the analysis (Table 4.4). When the data for the 500m-600m distance band was 

removed from the analysis, there was no significant difference in primary habitat 

composition between distance bands, indicating that primary habitat was similar across all 

sites between all distance bands up to 500m. Secondary habitat was significantly different 

between turbine distance bands whether or not the furthest distance band data was included. 

All combinations of primary and secondary habitat were significantly different between 

distance bands when the 500m-600m distance band was excluded from analysis, but were 

similar across distance bands when 500m-600m was included. Both primary and secondary 

habitat were significantly different in composition between all turbine sites. 
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Figure 4.2 Composition of habitats by area across the different turbine distance bands, for 

16 small wind turbine sites, in the SPMSPA fringe habitat. Primary habitat represents the 

most abundant habitat per quadrat, secondary habitat represents the second most abundant 

habitat. 
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4.4.2. Bird species abundance, richness and diversity around SWTs 

A total of 54 bird species were recorded within 600m of turbines, comprising 1,360 

detections and 2,687 individuals. Two measures of community composition, the Shannon-

Wiener and Simpson’s indices revealed that bird diversity was lowest within 100m of 

SWTs (Table 4.4) with diversity also being low between 200-300m of SWTs. Shannon-

Weiner H’ index of bird species diversity was highest within 300-400m of SWTs, whereas  

the Simpsons index revealed bird diversity highest at 400-500m (Table 4.4). Bird 

community evenness was greater at distances greater than 300m from the wind turbines 

(Table 4.4). 

Figure 4.3 shows the relative abundance of species within each distance band. 

Jackdaw Corvus monedula was the most abundant species, dominating the 0-100m 

distance band with Starling Sturnus vulgaris being the most abundant at 100-200m from 

SWTs. The relative abundance of the most abundant species in closer distance bands to 

SWTs generally decreased with increasing distance from the SWTs. Unique species were 

encountered in all distance bands except 0-100m but most of these species were 

represented by <3 individuals e.g. Little Owl Athene noctua, Mallard Anas platyrhyncos, 

Nuthatch Sitta europaea, Treecreeper Certhia familiaris and Sparrowhawk Accipiter nisus 

were all unique to the 100m-200m turbine distance band, Wheatear was the only species 

unique to 200m-300m, Grasshopper Warbler Locustella naevia, Grey Wagtail Motacilla 

cinerea and Sand Martin Riparia riperia were all unique to 300-400m, Kingfisher Alcedo 

atthis was unique to 400m-500m and Grey Heron Ardea cinerea was unique to 500m-

600m. 
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Table 4.3  Likelihood ratio chi squared test results for similarity in habitat between turbine distance bands and between the different turbine 

sites within the SPMSPA fringe habitat. Significant P values are highlighted in bold. Likelihood ratio statistic were chosen over Pearson’s chi 

squared statistic due to the fact that many expected values were <1. 

Variables used in analysis Filter parameters for analysis Likelihood ratio df P 

Primary habitat, turbine distance band 

 

 97.0 70 0.040 

Primary habitat, turbine distance band 

 

No distance band 500m-600m 70.7 56 0.090 

Secondary habitat, turbine distance band 

 

 104.6 75 0.014 

Secondary habitat, turbine distance band  

 

No secondary habitat ‘none’ 92.6 70 0.037 

Secondary habitat, turbine distance band, no 

500m-600m 

 

 85.0 60 0.018 

Secondary habitat, turbine distance band, No 500m-600m, distance band, no 

secondary habitat ‘none’ 

77.6 56 0.030 

Primary habitat, secondary habitat 

 

 367.0 210 <0.001 

Combination of primary and secondary habitat, 

turbine distance band 

 

 443.5 420 0.206 

Combination primary and secondary habitat, 

turbine distance band 

 

No distance band 500m-600m 387.8 332 0.019 

Primary habitat, turbine site 

 

 534.2 210 <0.001 

Secondary habitat, turbine site 

 

 333.6 225 <0.001 

Secondary habitat, turbine site No secondary habitat ‘none’ 294.1 210 <0.001 
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 Table 4.4 Measures of bird community composition across the different distance intervals from SWTs at 16 sites within the SPMSPA fringe. 

Measures represent the Shannon-Weiner index (H’), Simpson’s index (as 1-D), Shannon’s measure of evenness (J’) and Simpson’s measure 

of evenness (E1/D). Ranking of each distance band according to the index value (where 1 = least diverse or even and 6 = most diverse or even) 

is presented in brackets.  

 0m-100m 100m-200m 200m-300m 300m-400m 400m-500m 500m-600m Total 

Detections 147 332 298 338 196 49 1360 

Abundance 269 662 620 708 344 84 2687 

Species richness 26 44 38 40 33 22 54 

(rank) 2.58 (1) 2.91 (4) 2.71 (2) 2.97 (6) 2.96 (5) 2.80 (3) 3.03 

1-D (rank) 0.866 (1) 0.900 (3) 0.890 (2) 0.929 (5) 0.932 (6) 0.926 (4) 0.923 

 (rank) 0.793 (3) 0.770 (2) 0.744 (1) 0.805 (4) 0.848 (5) 0.906 (6) 0.760 

E1/D (rank) 0.29 (3) 0.23 (1) 0.24 (2) 0.35 (4) 0.44 (5) 0.61 (6) 0.24 
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Rank abundance plots reveal that bird community composition across all distance 

bands consisted of a range of rare, uncommon, and abundant species (Fig. 4.3). Individual-

based rarefaction (Figs. 4.4a-o) showed that estimated species richness (Sest) approached an 

asymptote towards observed species richness (Sobs) for all turbine distance bands except 

500m-600m. Species richness at equivalent n was lower within the 0m-100m turbine 

distance band than 100-200m, 200-300m, 300-400m and 400-500m. Species richness at 

equivalent n was higher within the 100-200m turbine distance band than within 200-300m, 

300m-400m and 400m-500m. Species richness at equivalent n was almost the same within 

the 300m-400m turbine distance band as within  400-500m and 500-600m. When 

extrapolated to the highest abundance of birds found in any turbine distance band (300-

400m, n =708), Sest was highest in the 100m200m distance band, followed closely by 

400m-500m, 300m-400m and 200m to 300m. 500m-600m and 0-100m both had a much 

lower Sest than other turbine distance bands.  

Individual based species richness extrapolation was calculated to the size of the 

largest turbine distance band sample (n=708) using the methods provided within the 

framework of the computer program EstimateS (Colwell, 2013). Extrapolation to 708 

individuals found that the 500m-600m turbine distance band had the lowest estimated 

species richness (Sest = 25.6), followed by 0-100m (Sest = 26.7), 200-300m (Sest = 39), 

300m-400m (Sest = 40), 400-500m (Sest = 40.3) and the highest estimated species richness 

within the 100-200m turbine distance band (Sest = 44.6). Confidence intervals overlapped 

between turbine distance bands (Fig. 4.5).
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Figure 4.3 Rank abundance plots for each turbine distance band. Evenness is similar between all distance bands, however species richness is 

lower in the 0m-100m and 500m-600m distance bands than any other. 
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Figure 4.4a-c Pairwise rarefaction curves. Rarefied species richness is lower in 

the 0m-100m distance band than in all other distance band other than 500m-600m. 

No other distance bands have any difference in species richness to other distance 

bands. 
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Figures 4.4d-f Pairwise rarefaction curves continued. 
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Figures 4.4g-i Pairwise rarefaction curves continued. 
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Figures 4.4j-l Pairwise rarefaction curves continued. 
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Figures 4.4m-o Pairwise rarefaction curves continued. 
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Figure 4.5 Estimated species richness by individual based extrapolation. The 0m-100m 

distance band had lower species richness than all other distance bands except 500m-600m. 

The 500m-600m distance band had a lower extrapolated species richness than 100m-200m 

and 200m-300m. 

4.4.3. Bird-habitat associations and SWT effect 

Survey effort differed significantly between at least two distance bands (F = 8.215, P 

<0.001). These differences were apparent between the 0-100m distance band and all other 

distance bands except 400-500m and 500-600m (100-200m, P = 0.043; 200-300m, P = 

0.002; 300-400m, P = 0.005). Significant differences were also found between the 500-

600m distance band and all other distance bands other that 0m-100m (100-200m, P = 0.02; 

200-300m, P <0.001; 300-400m, P <0.001; 400-500m, P = 0.011). Consequently, survey 

area per turbine distance band per turbine site were used as a measure of survey effort and 

as a weighting variable in further analyses. Bird species with >20 total detections were 

analysed for species-habitat association using a Likelihood ratio Chi-squared test of 

association. Of the 21 species analysed, thirteen found to have significant habitat 

associations (P < 0.05). These included: Blackbird Turdus merula, Chaffinch Fringilla 

coelebs, Collared Dove Streptopelia decaocto, Great Tit Parus major, Greenfinch 

Carduelis chloris, House Sparrow Passer domesticus, Jackdaw C. monedula, Meadow 

Pipit Anthus pratensis, Robin Erithacus rubecula, Starling S. vulgaris, Swallow Hirundo 

rustica, Willow Warbler Phylloscopus trochilus and Wren Troglodytes troglodytes. 

Species that did not display significant habitat associations were Magpie Pica pica, 

Woodpigeon Columba palumbus, Blue Tit Cyanistes caeruleus, Carrion Crow Corvus 

corone, Pied Wagtail Motacilla alba, Goldfinch Carduelis carduelis, Linnet Carduelis 

cannabina, and Dunnock Prunella modularis (Table 4.6). 
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Table 4.5 Habitat associations of twenty-one bird species with >20 detections. A Likelihood ratio χ2 test of association was used. Significant 

habitat associations are highlighted in bold.  

Primary habitat category 2 3 4 5 6 7 8 9 11 12 13 14 16 17 Total Likelihood ratio χ²  P 

Number of sampling ‘sites’ 56 77 5 47 348 4 88 32 81 1 14 1 20 6 780   

Corvids                  

Jackdaw 6 6 0 3 44 0 15 5 15 0 7 0 7 2 110 29.2 0.006 

Magpie 5 3 0 1 27 0 2 1 6 0 1 0 0 0 46 13.1 0.443 

Carrion Crow 3 7 0 1 36 0 6 4 5 0 1 0 0 1 64 13.1 0.439 

Granivorous passerines                   

House Sparrow 2 1 0 0 7 0 4 1 16 0 0 0 1 0 32 40.7 <0.001 

Greenfinch 2 5 0 0 12 0 5 7 11 0 0 0 0 0 42 32.1 0.002 

Chaffinch 11 11 0 3 18 0 7 4 11 0 2 0 0 0 67 25.5 0.020 

Linnet 0 2 0 1 9 0 0 0 0 0 0 0 0 0 12 12.2 0.510 

Goldfinch 4 7 0 3 24 1 10 2 9 0 2 0 1 1 64 6.8 0.911 

Insectivorous passerines                   

Robin 11 7 0 1 9 0 8 2 3 1 1 0 2 0 45 34.0 0.001 

Willow Warbler 8 6 0 0 3 1 7 0 1 0 1 0 0 0 27 40.8 <0.001 

Wren 7 4 0 0 3 1 4 1 1 0 1 0 0 2 24 34.6 0.001 

Great Tit 7 6 0 0 6 0 2 2 4 0 0 0 0 0 27 23.8 0.033 

Blue Tit 9 8 0 5 13 1 7 2 6 0 1 0 1 0 53 17.5 0.177 

Dunnock 3 6 0 2 14 0 2 2 8 0 1 0 0 0 38 10.8 0.627 

Pigeons                   

Collared Dove 3 1 0 0 2 0 1 1 6 1 0 0 0 0 15 26.9 0.013 

Woodpigeon 3 5 0 6 11 0 2 1 1 0 0 0 0 0 29 15.1 0.300 

Starlings                   

Starling 2 1 0 1 36 0 9 3 14 0 1 0 1 0 68 24.9 0.024 

Swallows and swifts                   

Swallow 1 11 2 5 77 1 20 7 7 0 2 0 3 0 136 33.8 0.001 

Thrushes                   

Blackbird 15 15 0 3 28 0 8 2 16 0 2 0 0 1 90 33.8 0.001 

Wagtails and pipits                  

Meadow Pipit 1 6 3 12 49 0 11 3 0 0 0 1 5 0 91 58.1 <0.001 

Pied Wagtail 0 1 0 2 26 0 2 2 2 0 0 0 0 0 35 20.8 0.078 
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Only two species were found to have a significant association with turbine distance 

band. These were Magpie and Starling (Table 4.7).  To corroborate these results, similar 

binary logistic regression models were built for these two species, using only turbine 

distance as a predictor variable. Results were compared to a null model using a z-statistic, 

further reinforcing this significant relationship: Magpie (deviance from null model = 6.6, 

p<0.01); Starling (deviance from null model = 6.9, p< 0.01). The presence of both Magpie 

and Starling showed a positive relationship with distance from turbine, with median 

distance band for absence records at 200m-300m and 300-400m for presence records in 

both species (Figure 4.6). 

Figure 4.6. Differences in presence records (1) and absence records (0) for Magpie and 

Starling by distance from turbines in 100m bands. These species were the only two species 

found to have a significant association with turbine distance bands (table 4.7). 
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Table 4.6 The results of binary logistic regression examining species-habitat association and species-turbine distance band associations. Z-test scores are 

shown for all species all predictor variables. Significant associations are highlighted in bold.  

Species 
Number of 

detections 

Turbine 

Distance band 
Improved  

Semi improved 

and unimproved 
Moorland Scrubland Woodland Waterbody 

Z P Z P Z P Z P Z P Z P Z P 

Blackbird 85 -1.01 0.31 -3.4 <0.01 -3.01 <0.01 -0.03 0.98 -0.26 0.80 0.62 0.54 -0.63 0.53 

Blue tit 51 1.56 0.12 -1.04 0.30 0.73 0.47 -0.31 0.76 0.80 0.43 1.69 0.09 -0.09 0.93 

Carrion Crow 63 0.94 0.35 1.06 0.29 0.05 0.96 -0.02 0.99 0.54 0.96 -0.14 0.89 -0.05 0.96 

Chaffinch 65 -0.78 0.43 -2.43 0.02 -1.37 0.17 -0.02 0.99 0.12 0.85 1.07 0.28 0.06 0.95 

Dunnock 36 0.07 0.94 -1.80 0.07 -1.74 0.08 -0.02 0.99 -0.34 0.73 -1.14 0.25 -0.33 0.74 

Goldfinch 63 -0.54 0.59 -1.41 0.16 -0.58 0.56 -0.93 0.35 -0.57 0.57 -0.82 0.41 0.18 0.86 

Great Tit 23 -0.17 0.86 -1.17 0.24 -0.99 0.32 -0.01 0.99 0.98 0.33 1.217 0.22 -0.01 0.99 

Greenfinch 41 -1.00 0.32 -3.54 <0.01 -1.86 0.06 -0.02 0.99 -1.58 0.12 -2.10 0.04 -0.02 0.99 

House Sparrow 30 1.27 0.20 -5.13 <0.01 -3.76 <0.01 -1.51 0.13 -2.83 <0.01 -2.34 0.02 -0.02 0.99 

Jackdaw 106 -1.55 0.12 -1.60 0.11 -1.43 0.15 1.26 0.21 -2.09 0.04 -1.66 0.10 2.24 0.03 

Magpie 41 2.53 0.01 0.10 0.92 -1.41 0.16 -0.02 0.99 -0.77 0.44 0.85 0.40 -0.15 0.88 

Meadow Pipit 90 1.19 0.24 0.02 0.98 0.02 0.98 0.02 0.98 0.02 0.98 0.02 0.98 0.02 0.98 

Pied Wagtail 34 -0.71 0.48 1.48 0.14 0.12 0.91 -0.01 >0.99 -0.56 0.56 -0.01 0.99 -0.01 >0.99 

Robin 43 -0.11 0.91 -0.97 0.33 0.8 0.42 1.62 0.11 1.23 0.22 2.72 <0.01 0.46 0.65 

Starling 67 2.51 0.01 -1.84 0.07 -2.38 0.17 -1.43 0.15 -2.75 <0.01 -2.09 0.04 -1.21 0.23 

Swallow 132 0.52 0.60 2.43 0.02 1.98 <0.05 0.65 0.52 0.95 0.34 -1.55 0.12 0.50 0.62 

Willow Warbler 25 -1.56 0.12 -0.39 0.70 0.85 0.39 -0.02 0.99 1.72 0.09 2.30 0.02 1.27 0.20 

Woodpigeon 25 -1.73 0.08 0.01 0.99 0.01 0.99 <0.01 >0.99 0.01 0.99 0.01 0.99 <0.01 >0.99 

Wren 21 -0.92 0.36 -0.37 0.71 0.89 0.37 -0.02 0.99 1.26 0.21 2.00 <0.05 1.22 0.22 
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4.5. Discussion 

4.5.1. Composition of fringe habitat around Small Wind Turbines 

Fringe habitat composition within 600m of turbine sites was heterogeneous with sites 

differing in the proportion of available habitats. However, this heterogeneity was found to 

be non-uniformly distributed between turbine distance bands. Habitat composition also 

differed significantly between turbine sites. This confirms that SWTs are non-randomly 

positioned and that the selection criteria used to determine their location are not habitat 

specific. Site descriptions of onshore wind turbine studies in the UK include unenclosed 

upland habitats such as moorland, rough grassland and blanket bog (Pearce-Higgins et al., 

2009), with others more generally categorising sites as coastal and upland (Bassi et al., 

2012) or coastal and inland (Sinden, 2007). Minderman et al. (2012) collected 

environmental and linear feature data in their study on the effects of SWTs on birds e.g. 

proximity of turbines to hedgerows and treelines. However these authors did not further 

assess habitat composition in the vicinity of SWTs. Large scale wind turbine sites are not 

randomly distributed in a landscape, rather they are selected based on minimising negative 

impacts such as visual impact, noise impact, and ecological impacts (Saidur et al., 2011) 

and maximising potential energy yield through wind resource (Sturge et al., 2014). Similar 

considerations are given to Small Wind Turbines (Bahaj et al., 2007; Allen et al., 2008), 

however the potential ecological effects of SWTs are not as well studied as those of large 

wind turbines (Minderman et al., 2012).To the best of my knowledge, this research 

represents the first attempt to describe and quantify the habitat characteristics at a small 

number of selected SWT sites in the UK. 

The most commonly encountered primary habitat in all distance bands was 

improved farmland, indicating that in this area, farmers are maximising the use of their 

land by allowing the constructing and use of turbines on worked agricultural farmland. It is 

not uncommon for large turbines to be built on farmland in the UK, however there is 

limited evidence of the effect of these turbines on birds, with one study suggesting that 

negative impacts may be limited (Devereux et al., 2008). Surprisingly, moorland habitat 

was not common within 600m of the selected SWTs, making up only 3.8% of primary 

habitat and 2.1% of recorded secondary habitat at the study sites. Of the 31 habitat 

quadrats that contained moorland as either a primary or a secondary habitat, 24 were 

within 1km of the SPMSPA boundary including eight quadrats that were within the 

SPMSPA. A further two quadrats were found within 1km-2km of the SPMSPA, and five 



 

 

145 

 

 

moorland habitat quadrats were found within 2km-3km. Considering that the study area 

was immediately adjacent to the SPMSPA (an extensive area of moorland habitat), this 

may seem surprising. However, as the SPMSPA is also an SAC with the specific purpose 

of protecting the moorland habitat, this result may simply reflect the fact that SWTs are not 

permitted to be built within the boundary of the SPMSPA, and that the majority of 

moorland habitat is enclosed within the SPMSPA (see Chapter Two). Another explanation 

is that SWTs are selected at sites that are not in close proximity to moorland areas outside 

the SPMSPA. For this to be confirmed, a more comprehensive survey of the habitats in the 

SPMSPA fringe would have to be undertaken in relation to the location of SWTs. 

Although a total of 54 bird species were recorded around the SWT sites, only three 

of these were target conservation priority species: Curlew, Lapwing and Wheatear, all of 

which were recorded in very low numbers. Considering the proximity of the survey sites to 

the SPMSPA and its associated moorland habitat, the low abundance of target species was 

unexpected, especially considering that moorland birds are anecdotally expected to utilise 

the surrounding farmland. Curlew Numenius arquata and Snipe Gallinago gallinago have 

both been shown to prefer habitats with a heterogeneous structure and composition 

(Pearce-Higgins and Grant, 2006). This may explain these species low abundance as the 

majority of habitat around SWTs consisted of improved farmland, where sward structure is 

likely to be uniform and vegetation diversity low. Pearce-Higgins and Yalden (2004) show 

that Golden Plover chicks show very low preference for grassland within their home range 

when there are moorland habitats nearby. If this is also apparent for the adult Golden 

Plovers, then the proximity of the SPMSPA and its associated habitats may deter 

individuals from the surrounding moorland fringe landscape. Elsewhere in UK uplands, 

Golden Plovers are known to utilise enclosed fringe habitat abundant in tipulids for feeding 

(Pearce-Higgins and Yalden, 2003). No data were collected on invertebrate abundance for 

this study, but it is possible that food scarcity in the study area and a lack of suitable tipulid 

populations may have been a factor, and this merits further research in the future. 

Despite the low numbers of target species, 26 of the species recorded are of UK 

conservation concern, with seven listed as red and 19 listed as amber by the RSPB (Eaton 

et al., 2009). Of these, two red listed species (House Sparrow and Starling) and four amber 

listed species (Willow Warbler, Swallow, Meadow Pipit and Dunnock) were recorded in 

sufficient numbers for analysis. Of these, Starling had a significant negative association 

with proximal turbine distance bands. Magpie was the only other species to exhibit any 
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significant relationship with turbine distance band. In a study of non-breeding bird 

communities, Devereux et al., (2008) also found no evidence of displacement in three 

functional groups of wintering farmland birds or in wintering Skylark in the United 

Kingdom. Other studies have found displacement and avoidance effects on birds within set 

distances of wind turbines, but the displacement effect and extent of displacement varies 

among sites, operational status of turbines and is also species-specific (Barrios and 

Rodríguez, 2004; Smallwood et al., 2009; Stevens et al., 2013). Larsen and Madsen (2000) 

report a displacement effect on the foraging behaviour and habitat utilization by Pink-

footed Geese within 100m or 200m of wind turbines, depending on whether the 

configuration of turbines was linear or clustered respectively. Pearce-Higgins et al (2009) 

found displacement evidence in species densities extending 100–800 m from turbines for 

seven moorland species studied within the United Kingdom. However, this study did not 

have identical control sites for the surveyed turbine sites - a problem that is ubiquitous 

across heterogeneous landscapes which are subject to turbine development. Amongst 

wintering grassland-dependent birds in the USA, studies have shown that displacement by 

wind turbines on habitat occupancy tends to be species specific (e.g. Stevens et al., 2013) 

with turbines influencing the densities of grassland birds within 180m of wind turbines 

(Leddy et al., 1999) and that displacement may depend in part on the extent of habitat 

modification during wind turbine construction (Pearce-Higgins et al., 2012). Within this 

study, extrapolated bird species richness was found to be significantly lower within 100m 

of SWTs than all other distance bands out to 500m and greatest 100-200m from turbines. 

In addition, bird species diversity according to the Shannon-Wiener index and Simpson’s 

index was found to be lowest within 100m of SWTs. These findings suggests that there 

may be a displacement effect on the bird community within 100m of SWTs. It is clear that 

SWT development proposals must consider the habitats proposed for citing and 

construction. Planning decisions for the citing of SWTs should consider the potential for 

small-scale displacement effects on fringe bird species within 100m of the SWT, but 

landscape level factors are critical in the decision making for granting planning 

applications for clusters of SWTs. One of the major concerns for unitary authorities is the 

pressure for further housing development within the moorland fringe landscape, which has 

the potential to reduce the amount of suitable land for bird populations and SWTs. Thus it 

is important to identify where are the most important sites for birds within the moorland 
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fringe, particularly for the conservation-priority bird species. This will be the focus for the 

next chapter of this PhD.  
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CHAPTER 5: HABITAT SUITABILITY MODELLING OF BIRDS IN 

THE MOORLAND FRINGE 

 

5.1 Abstract 

 

Encroaching urban development and agricultural land intensification have the potential to 

negatively affect the efficacy of protected areas in their conservation objectives by 

modifying supplementary habitat and disrupting corridors to movement. However, 

planning departments lack sufficient evidence to make ecologically sound planning 

decisions with regards housing developments. In the case of upland SPAs such as the 

South Pennine Moors Special Protection Area (SPMSPA), breeding bird species of 

conservation concern such as Golden Plover Pluvialis apricaria, Lapwing Vanellus 

vanellus and Curlew Numenius arquata are likely to use farmland outside of the SPA as 

well as moorland habitat within the SPA for feeding and breeding.  This chapter aims to; 

(1) Develop Habitat Suitability Models for Lapwing Vanellus vanellus, Curlew Numenius 

arquata, Golden Plover Pluvialis apricaria, Snipe Gallinago gallinago, Reed Bunting 

Emberiza schoeniclus, and Wheatear Oenanthe oenanthe; (2) Assess the predictive 

capability of Landsat 8 data for these models (3) To assess the relative importance of 

empirical predictors in predicting habitat suitability (4) To assess a suite of algorithms for 

Habitat Suitability Modelling to determine the most appropriate algorithms for these 

species. Landsat 8 spectral bands performed well as predictor variables in habitat 

suitability modelling, especially when used to supplement empirical data. Building density 

was an important predictor variable for all species except Golden Plover. Indicators of 

agricultural activity did not contribute much to models. The best performing modelling 

algorithms were consistently Random Forest and Generalised Boosting Models. 
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5.2 Introduction 

 

The expansion of urban development and the creation of new housing is necessary to 

accommodate a globally increasing human populous, but has the potential to negatively 

impact biodiversity (Seto et al., 2012; Güneralp and Seto, 2013). The negative ecological 

impacts of housing development are taxonomically broad and complex in nature 

(McKinney, 2002), but includes detrimental consequences to bird species populations 

(Sushinsky et al., 2013) and bird diversity (Pidgeon et al., 2014). Encroaching urban 

development and agricultural land intensification have the potential to disrupt the 

conservation value of protected areas through the modification of supplementary habitat 

required by species within the protected area, and by limiting connectivity to these habitats 

(Radeloff et al., 2010). In landscapes where urban-rural or urban-natural gradients exist 

and protected areas are nearby, the complexity of the landscape means that conservation 

oriented planning decisions are complicated by a multitude of interacting ecosystem 

processes (Radeloff et al., 2005; McDonnell et al., 2008; Lookingbill et al., 2014; Baró et 

al., 2017). Intuitively, one might expect larger residential developments to have the 

greatest impact on protected areas.However it has been proposed that lower density 

residential developments may have more of an impact on species within protected areas, 

due to the fact that they are more likely to occur within close vicinity of a protected area 

than large urban conurbations (Hansen et al., 2005). 

Rural areas are generally higher in biodiversity than urban areas, even when both 

are protected for their ecological value (Knapp et al., 2008). In the case of Europe and the 

United Kingdom (UK), farmland birds attract conservation consideration as many species 

have shown dramatic declines in recent years due to agricultural intensification (Donald et 

al., 2006; Sanderson et al., 2013; Aebischer et al., 2016). In addition, in the UK uplands, 

moorland specialist breeding bird species such as Golden Plover Pluvialis apricaria, Short-

eared Owl Asio flammeus and Dunlin Calidris alpina are often protected by Special 

Protection Areas (SPAs) (Hancock et al., 2009; Pendlebury et al., 2011; Hayhow et al., 

2015). Development is heavily restricted within the boundaries of these SPAs, however 

some species such as Golden Plover use farmland that may fall outside of SPAs as 

supplementary feeding habitat (Whittingham et al., 2000). As such, any planning 

developments in these upland SPA/farmland/urban mosaics should consider the potential 

for a development site to harbour not only typical farmland bird species, but also moorland 

bird species. It is therefore important to understand the effects that urban development, 
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farming practises and environmental characteristics have on upland birds within the 

moorland fringe. This chapter aims to investigate these factors on thirteen bird species that 

have been identified as priority species of conservation concern (see chapter three).  

  Investigating the habitat associations of birds often takes the approach of measuring 

environmental variables in the field, conducting bird surveys and statistically relating one 

to the other. This is robust and allows for detailed habitat associations to be determined, 

however without complete geographical coverage of the environmental variables, this 

approach is of limited use for the evidence based site selection of planning developments 

where least ecological impact is desired. As ecological surveys rarely have complete 

coverage due to resource limitations, other approaches to determining suitable areas for 

development (or conversely, suitable habitat for a species) are required. One family of 

methods used to determine relative habitat suitability over large areas is Species 

Distribution Modelling (SDM). Different terminology is often used for different 

applications of SDM, which include Habitat Suitability Modelling and Ecological Niche 

Modelling. The differences between these is subtle and relate mainly to the desired 

practical application. For the purpose of this chapter, the term Habitat Suitability 

Modelling will be used, as it reflects the application of determining the relative value of 

habitat throughout the moorland fringe study site. 

Landcover data are often used to investigate bird habitat associations where 

complete coverage of a region is needed, for example Corine in Europe (e.g. Radović and 

Tepić, 2009), National Land Cover Data in the United States (e.g. Wood et al., 2014) and 

Land Cover Map in the UK (e.g. Fuller et al., 2004). Such datasets are usually reliant on 

the supervised classification of remotely sensed data from satellite imagery (Yu et al., 

2014). A degree of uncertainty is inherent in the process of modelling remotely sensed data 

into discrete classes (Congalton et al., 2014), and similarly a degree of uncertainty is 

inherent in the process of producing Habitat Suitability Models (Lin et al., 2015). As an 

alternative to using classified spectral data, a potential method for reducing cumulative 

error is to use continuous variables in the form of unclassified remotely sensed spectral 

data, or derived indices such as Normalised Difference Vegetation Index (NDVI) to create 

Habitat Suitability Models (Bradley and Fleishman, 2008; Shirley et al., 2013). The 

Landsat satellite program has been in service since 1972, with the current Landsat 8 

satellite producing freely available images in ten spectral bands at 30m x 30m resolution. 

Using these raw data to model habitat suitability provides an opportunity for low cost, 

standardised, fine scale Habitat Suitability Models to be built, with the potential 
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opportunity for historic trends in suitability to be identified using time-series analysis 

(Shirley et al., 2013; Dutrieux et al., 2016). 

The aims of this chapter are; (1) Assess the efficacy and accuracy of raw Landsat 8 spectral 

data in modelling habitat suitability for five moorland bird species of conservation concern, 

within a moorland fringe landscape and determine the most appropriate spectral bands in 

modelling each of these species; (2) Create Habitat Suitability Models for these five 

species using fine scale (30m x 30m) predictor variables encompassing measures of the 

built environment, farming practises and topographical factors and compare these models 

to models built using Landsat 8 data at the same resolution; (3) Assess whether combings 

Landsat 8 data improves Habitat suitability models (4) Assess which spectral bands and 

which environmental variables contribute to the best models for each species; (5) Use a 

suite of algorithms for Habitat Suitability Modelling to determine the most appropriate 

algorithms for these species. 
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5.3 Methods 

5.3.1. Bird survey method and species selection 

Bird surveys were conducted within the British breeding bird season during April-July of 

2012, 2013 and 2015 by qualified ecologists from West Yorkshire Ecology (WYE), 

commissioned by council ecologists from Calderdale, Kirklees and Bradford. Full details 

on the bird survey method and survey sites are provided in Chapter Three. Thirteen 

conservation priority species identified by the three local authorities were initially selected 

for analysis: Lapwing Vanellus vanellus, Curlew Numenius arquata, Golden Plover 

Pluvialis apricaria, Common Sandpiper Actitis hypoleucos, Short-eared Owl Asio 

flammeus, Snipe Gallinago gallinago, Reed Bunting Emberiza schoeniclus, Twite Linaria 

flavirostris Ring Ouzel Turdus torquatus, Merlin Falco tinnaeus, Dunlin  Calidris alpine, 

Whinchat Saxicola rubetra and Wheatear Oenanthe oenanthe. These species were 

considered conservation priority species because of their dependence in part, on moorland 

habitats, and their populations are in regional and national decline (see Chapter Three). 

Presence records for these species obtained from the bird surveys were cropped to the 

SPMSPA 1km fringe. This geographical constraint resulted in extremely low sample sizes 

for seven of the 13 species, resulting in model failure during preliminary investigation for 

Short-eared Owl (n = 17), Common Sandpiper (n= 15), Reed Bunting (n = 13), Twite (n = 

11), Whinchat (n = 5), Ring Ouzel (n = 3), Merlin (n = 2) and Dunlin (n = 1). As modelling 

could not be completed for these species, they were omitted from analysis. 

5.3.2. Selection of landscape predictor variables 

A series of candidate predictor variables were selected for modelling habitat suitability of 

the five conservation priority bird species. All candidate predictor variables belonged to 

one of two categories; (1) Landsat 8 predictor variables and (2) Empirical predictor 

variables. These two sets of predictor variables will be described below. 

 

5.3.3. Landsat 8 predictor variables 

These data comprised four composite raster images, each with nine bands representing 

surface reflectance electromagnetic spectral wavelengths corresponding to Blue, Green, 

Red, Near Infrared (NIR), Shortwave Infrared (SWIR) 1 and 2, Panchromatic and Thermal 

Infrared (TIRS) 1 and 2 (see table 2.1). Cirrus and coastal/aerosol spectral bands were 

omitted from each composite image. The rasters were constructed from Landsat 8 scenes 

taken in 2013, 2014 and 2015 and represented the British seasonal periods (spring, summer, 
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winter and autumn) in the location of the SPMSPA 1km fringe. The composite images 

were created in Google Earth Engine (GEE) using cloud free, orthorectified and 

topographically corrected Landsat 8 pixels. These data were identical to the Landsat 8 data 

used to perform classification of the SPMSPA fringe landscape in chapter 2 (see chapter 2 

for further details). The four seasonal composite images were stacked into a single 

multiband raster (36 bands in total), with each band representing a potential predictor 

variable for habitat suitability modelling. Pearson product moment correlation coefficient 

and VIF (Variance Inflation Factor) were used to reduce collinearity amongst predictor 

variables in models using the usdm package in R (R Core Team, 2013; Naimi, 2015). The 

vifcor function was used, which calculates the maximum pairwise Pearson product moment 

correlation coefficient between all variables  and removes from the pair the variable with 

the greatest VIF (Naimi, 2015). This process was reiterated until all pairwise correlation 

coefficients are below a predefined threshold, in this case r<0.7. The resultant set of 

variables were used to investigate the efficacy of  Landsat 8 data in habitat suitability 

modelling of the five moorland fringe bird species. 

 

5.3.4. Empirical predictor variables 

A total of eight variables were considered for use as empirical model predictors. These 

variables were either direct representations of third party data or calculated from third 

party data and were selected based on their potential importance in predicting the habitat 

suitability of the five species to be modelled. Collinearity between numerical variables was 

determined using the vifcor method described in section 5.3.3. The eight predictor 

variables are described below.  

Elevation and slope were chosen as predictor variables due to known associations 

of Lapwing (Smart et al., 2013), Curlew (Douglas et al., 2014), Golden Plover 

(Whittingham et al., 2000), Snipe (Amar et al., 2011) and Wheatear (Henderson et al., 

2004) with the UK upland landscape. Elevation and slope were derived from Ordnance 

Survey Terrain 5 DTM data. The raw DTM data were presented as a raster of elevation in 

metres at a spatial resolution of 5m x 5m. Cubic convolution was used to resample 

elevation to 30m x 30m resolution, and slope was calculated from the resampled DTM in 

angular degrees using the slope tool in ArcMap 10.2.2. Elevation is shown in Figure 5.1 

and slope is shown is Figure 5.2. 
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Figure 5.1 Elevation within the SMPSPA 1km fringe. Areas excluded from modelling due 

to incomplete coverage of at least one predictor variable are shown. Resolution is 30m x 

30m.  
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Figure 5.2 Slope within the SMPSPA 1km fringe. Areas excluded from modelling due to 

incomplete coverage of at least one predictor variable are shown. Resolution is 30m x 30m.  
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Roads have the potential to cause ecological disturbance to birds through a variety 

of mechanisms including habitat loss and fragmentation (Kociolek et al., 2011), traffic 

noise (Ware et al., 2015) and collision mortality (Summers et al., 2011). These factors can 

lead to the avoidance by birds of areas in close proximity to roads, reducing the area of 

available habitat (Thompson et al., 2015). As such, density of roads was included as a 

predictor variable in habitat suitability models. An OS Mastermap Integrated Transport 

Network (ITN) dataset was used to calculate road density. All roads were extracted from 

the dataset as line vectors and converted to a 30m x 30m resolution raster using the Line 

Density tool in ArcMap 10.2.2. Each raster cell represented the length of road within a 

6om radius from the centre of that cell. Road density is shown in Figure 5.3. Building 

density was calculated using Ordnance Survey Mastermap data. All buildings in the study 

area were extracted as polygons and centroids for individual buildings were calculated. A 

building density raster was created at a resolution of 30m x 30m using the point density 

tool in ArcMap 10.2.4. The values of the raster represented the number of buildings within 

a 500m radial distance of any given pixel. Building density is shown in Figure 5.4. The 

impact of Small Wind Turbines (SWTs) on birds within the 1km SPMSPA fringe were 

investigated in Chapter Four, however the species under investigation in this chapter were 

not encountered in sufficient numbers for analysis. In this chapter, the impact of SWT 

density on the habitat suitability of Golden Plover, Snipe, Curlew, Lapwing and Wheatear 

will be investigated by including SWT density as a variable in habitat suitability modelling 

and determining the variable importance of this predictor relative to other predictor 

variables. Density of SWTs was calculated using point data for each SWT site that had 

been confirmed visually as built (n= 58) within 3km of the SPMSPA in Bradford, 

Calderdale and Kirklees (see Chapter Four). The Point Density tool in ArcMap 10.2.2 was 

used to create a raster at 30m x 30m resolution where each pixel was represented by an 

integer value indicating the number of SWT sites within a 1km distance of each pixel. 

SWT density is shown in Figure 5.5. 
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Figure 5.3 Density of roads within the SMPSPA 1km fringe. Areas excluded from 

modelling due to incomplete coverage of at least one predictor variable are shown. Spatial 

resolution is 30m x 30m. 
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Figure 5.4 Density of buildings (number of buildings within 500m) within the SMPSPA 

1km fringe. Areas excluded from modelling due to incomplete coverage of at least one 

predictor variable are shown. Spatial resolution is 30m x 30m. 
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Figure 5.5 Density of Small Wind Turbines (SWTs) within the SMPSPA 1km fringe. 

Densities represent SWTs within 500m. Areas excluded from modelling due to incomplete 

coverage of at least one predictor variable are shown. Spatial resolution is 30m x 30m. 
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Agricultural intensification is a known driver of farmland bird declines in the UK, 

and as such the agricultural landscape was deemed to be integral in modelling the habitat 

suitability for the five species of moorland fringe bird species within this chapter. Three 

predictor variables encapsulating agricultural activity were included in habitat suitability 

models. The first was derived from the Provisional Agricultural Land Classification (ALC) 

and was obtained from Natural England (Natural England, 2012). This dataset represented 

agricultural land quality and are derived from factors including climate (temperature, 

rainfall, aspect, exposure, frost risk), site (gradient, micro-relief, flood risk) and soil (depth, 

structure, texture, chemicals, stoniness). and consisted of seven categories representing five 

qualitative grades of agricultural land (grade 1 = best, grade 5 = worst) and two non-

agricultural categories (urban and ‘non-agricultural land’). Data were converted from 

spatial vector to a 30m x 30m resolution raster (Figure 5.6). The habitat classification map 

produced in Chapter Two was included as a predictor variable and represented dominant 

habitats within fields in the SPSMPA 1 km fringe at a resolution of 30m x 30m. Habitats 

represented were improved grassland, species rich semi-improved grassland, species poor 

semi-improved grassland, wet heath/ acid grassland matrix, dry heath/ acid grassland 

matrix and rush pasture (Figure 5.7). See Chapter Two for further details on the method 

used to create the habitat classification map.  
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Figure 5.6 Agricultural grade of land according to the Natural England Agricultural Land 

Classification (ALC) within the SMPSPA 1km fringe. Nationally, Grade 1 represents the 

lowest quality agricultural land and Grade 5 the highest quality. Areas excluded from 

modelling due to incomplete coverage of at least one predictor variable are shown. Spatial 

resolution is 30m x 30m. 
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Figure 5.7 Distribution of habitats within the SMPSPA 1km fringe as modelled in Chapter 

Two. Areas excluded from modelling due to incomplete coverage of at least one predictor 

variable are shown. Spatial resolution is 30m x 30m. 
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The final empirical predictor variable represents Environmental Stewardship (ES) uptake 

within the SPMSPA 1km fringe landscape. Area of ES was calculated using a combination 

of ES data obtained from Natural England through a Freedom of Information Request and 

OS Mastermap data. The ES data consisted of point data for each land parcel within the 

study site that was engaged in an ES scheme from 2005 (the year ES was implemented) to 

2015. This dataset was standardised (temporally) with the bird survey data by extracting 

ES sites that were live in Bradford in 2013, Calderdale in 2012 and Kirklees in 2012. As 

Calderdale was surveyed in 2015 as well as 2012, the best margin of error was achieved by 

including live ES agreements from 2015, but only in areas covered by the 2015 bird survey 

squares. Duplicated parcels were removed using parcel reference ID numbers (to avoid 

artificially inflating area of ES where multiple ES schemes were implemented on the same 

patch of land). In addition, ES schemes that were deemed irrelevant to moorland fringe 

bird species were removed from the dataset leaving 71 scheme types across Entry Level 

Stewardship (ELS), Higher Level Stewardship (HLS) and Organic Entry Level 

Stewardship (OELS). Each data point indicated area of ES was assigned to land parcels 

from Mastermap. Where more than one data point fell into a land parcel (e.g. two parts of a 

single field were used for spatially separate ES schemes), the area of the agreement was 

summed for that parcel. The resultant dataset was a vector layer representing the 

continuous variable of area of ES per land parcel (Figure 5.8). 

 

5.3.5. Combined Landsat 8 and Empirical predictor variables 

 

In order to assess whether introducing Landsat 8 data improves habitat suitability models 

based on empirical variables, a 44 band raster was created using all Landsat 8 predictor 

variables and empirical variables. In order to reduce collinearity between the numerical 

variables within this raster, the vifcor method was employed as described in section 5.3.3. 

 

 

 

 

 

 

 

 



168 

 

 

Figure 5.8 Area of land committed to Environmental Stewardship in m2 (see text for 

details). Areas excluded from modelling due to incomplete coverage of at least one 

predictor variable are shown. Spatial resolution is 30m x 30m. 
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5.3.6. Habitat Suitability Modelling 

After pre-processing predictor variables as described above, the R package biomod2 

(Thuiller et al., 2016) was used to perform habitat suitability modelling for Lapwing, 

Curlew, Snipe, Golden Plover and Wheatear within the 1km SPMSPA fringe.  

Each species was modelled separately using (1) Landsat 8 predictor variables, (2) 

Empirical predictor variables, and (3) combined Landsat 8 and Empirical Predictor 

variables. For each model, a sample of pseudo-absences were randomly chosen from the 

background data using a ‘disk’ approach. This meant that only background data outside a 

radial distance of the square root of the area of the resolution of the predictor data of each 

presence point for each model could be selected as a pseudo-absence location. As the 

resolution of all predictor variables was 30m x 30m, the minimum distance a presence 

point could be from a pseudo-absence was 30m. The number of pseudo-absence was set at 

10,000 which provided a reasonable compromise between computational time and pseudo-

absence sample size. 

Pseudo-absences were randomly chosen separately for each species, and predictor 

variable set, resulting in 15 modelling datasets. As an objective of this chapter was to 

investigate the relative performance of different modelling algorithms, each of the 15 

datasets was used for habitat suitability modelling with nine different modelling algorithms. 

Pseudo-absences remained constant between models using the same dataset to facilitate 

comparability of results between algorithms within each modelling group. The modelling 

algorithms selected for habitat suitability modelling were a mixture of statistical and 

machine learning methods. The biomod2 package calls upon a mixture of internal R 

functions and other packages to implement the model fitting process. The algorithms and 

associated packages used for this chapter were Generalised Linear Model (GLM) from the 

glm function in package pstats (R Core Team, 2013); Generalised Additive Model (GAM) 

from the gam package (Hastie, 2016); Generalised Boosting Model (GBM) from the gbm 

package (Ridgeway, 2015); Classification Tree Analysis (CTA) from the  rpart package 

(Therneau et al., 2015); Artificial Neural Network (ANN) from the nnet package (Venables 

and Ripley, 2002); Surface Range Envelope (SRE), from the biomod2 package; Multiple 

Adaptive Regression Splines (MARS) from the earth package (Hastie and Milborrow, 

2016); Random Forest (RF) from the randomForest package (Liaw and Wiener, 2002) and 

Maximum Entropy (MaxEnt) which is linked to a standalone software package (Phillips et 

al., 2006). Bird presence data were split into 70% training data and 30% test data for model 

training and validation respectively. Due to the large number of models (n = 135), most 
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hyperparameters were left at the default settings in biomod2. Exceptions were of the 

number of splines used in GAMs (k = 4) and the number of additional cross folds 

performed by ANN and GB (set to 2) in Landsat 8 and combined Landsat 8/Empirical 

models (due to model failure at default settings).  

5.3.7. Model validation and thresholds 

Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) (Fielding 

and Bell, 1997) was calculated for each model undertaken using the 30% testing data. 

There are many validation metrics that can and have been applied to accuracy assessment 

in species distribution modelling (Liu et al., 2011), however AUC was chosen as it is a 

threshold-independent measure of model accuracy that illustrates a model’s discrimination 

ability between two categories (Fielding & Bell, 1997). An AUC value of 0.5 indicates a 

model with no better discrimination than chance and an AUC value of 1 indicates perfect 

discrimination. The modelling algorithm and predictor dataset with the greatest mean AUC 

for a given species was deemed to be the best habitat suitability model.  

Thresholding can be used to produce a set of binary prediction maps (i.e. suitable 

habitat versus unsuitable habitat. There are many available methods for the calculating 

dichotomous thresholds (Liu et al., 2005) and each thresholding method will produce a 

different dichotomous map of habitat suitability. In order to remove subjectivity, a 

thresholding method was not used here. Habitat suitability outputs were kept as raw 

probability outputs on a scale of 0 to 1. These outputs  do not directly represent probability 

of occurrence, but represent a ranked scale of habitat suitability which allows the visual 

identification of the most suitable areas of habitat for a given species. 

 

5.3.8. Variable importance and model comparisons 

As part of the modelling process, biomod2 allows a relative variable importance score to 

be calculated for each independent term specified in the model. This algorithm shuffles 

each predictor in turn and compares the predictive output to the output of the model with 

unshuffled data, using Pearson’s product moment correlation (Thuiller et al., 2016). This 

procedure was undertaken during the validation process with a relative importance score 

calculated for each predictor. In order to determine the most appropriate spatial resolution 

for each species. AUC was compared between empirical and Landsat models in order to 

determine which of the two predictor variable groups is the better predictor for each of the 

moorland fringe species.   
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5.4 Results 

5.4.1. Variable selection 

There was high collinearity between Landsat predictor variables. After VIF selection 

collinearity was removed and the Landsat predictor set was reduced to 13 variables (Table 

5.1). None of the continuous Empirical predictor variables had collinearity issues as 

determined by the VIF protocol (max r = 0.35), and as such all seven predictor variables 

were used in modelling (Table 5.1). Presence data varied between species and across 

resolutions.  After masking to the SPMSPA 1km fringe, five species remained with 

sufficient detections for modelling. Detection rates were: Curlew (n = 901), Lapwing (n = 

604), Snipe (n = 85), Wheatear (n = 85) and Golden Plover (n = 68).  

 

 

Table 5.1 Predictor variables remaining after removing collinearity by reducing correlation 

to less than 0.7 (r<0.7) and minimising VIF. 

Landsat 8 

Spring 

Landsat 8 

Summer 

Landsat 8 

Autumn 

Landsat 8 

Winter 

Empirical 

Blue Blue Blue NIR Slope 

NIR NIR Panchromatic SWIR2 Road density 

TIRS2 SWIR2 TIRS2 TIRS1 Habitat classification 

 TIRS1   Environmental Stewardship 

    Elevation 

    Building density 

    SWT density 

    Agricultural class 

 

5.4.2. Model performance 

Model performance as determined by AUC varied between modelling algorithms, between 

species and between predictor variable sets (Fig. 5.9). GBM and RF consistently 

performed better than other model algorithms, with GBM best predicting the habitat 

suitability of Golden Plover (AUC = 0.88) and Wheatear (AUC = 0.70) and RF best 

predicting habitat suitability for Curlew (AUC = 0.79), Lapwing (AUC = 0.90) and Snipe 

(AUC = 0.84) . Combining Landsat and Empirical data produced the best models for all 

species, except for Wheatear which was best modelled using Empirical data only (Fig. 5.2).  
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Figure 5.9 AUC values for all habitat suitability models constructed. AUC values were 

calculated using 30% testing data. 

 

5.4.3. Variable importance 

Predictor variable importance scores for the best performing models varied between 

species (Fig. 5.10). The most important variables for predicting the habitat suitability of 

Curlew were Landsat 8 Near Infrared (NIR) data from Spring and building density (Fig 

5.3). Building density was also an important predictor for Wheatear, Snipe and Lapwing. 

The most important Landsat 8 predictor variables for Lapwing were NIR from Spring and 

Summer and Spring NIR for Snipe. Landsat 8 variables did not contribute to the habitat 

suitability model for Golden Plover, where Elevation appeared to be the most important 

predictor by far.  Elevation was also important in the model for Snipe and Wheatear. Slope 

was the most important predictor for lapwing and contributed highly to the model for 

Wheatear. Of the empirical predictor variables, Environmental Stewardship area, SWT 

density, road density, agricultural class and habitat classification (as produced in chapter 2) 

did not contribute much to any of the habitat suitability models. 
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Figure 5.10 Variable importance scores values for the best performing models for each 

species (Curlew = Random Forest , Lapwing = Random Forest, Snipe = Random Forest, 

Golden Plover = Generalised Boosting Model, Wheatear = Generalised Boosting Model). 

Compined Landsat 8 and Empirical predictors produced the best models for all species 

except Wheatear which was best described by Empirical predictor variables. Scores are 

relative within models and are not directly comparable between models. 
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5.4.4. Habitat suitability estimates 

 

Spatial predictions for habitat suitability from best performing models were relatively 

similar for all five species (Figures 5.11-5.14). Generally, the most suitable areas are 

towards the edge of the SPMPSA, however for all five species there are relatively suitable 

areas of habitat that extended across the entire SPMSPA 1km fringe. Where the fringe cuts 

into the SPMSPA, there are large areas of relatively suitable. As building density was an 

important predictor for most species, built development should be avoided in these areas.   

A notably consistent area that is predicted to have low habitat suitability is in the north of 

Bradford. This area is the location of Ilkley- a medium sized town with population of 

approximately 14,000. This pattern reinforces the importance of areas that are not 

developed for maintaining suitable habitat for moorland fringe bird species of conservation 

concern. As the values shown in Figures 5.11-5.14 are relative scores of habitat suitability, 

it is difficult to make inferences about areas of suitable habitat. However, pixels with 

relatively high scores appear to be grouped in several locations for all species. These areas 

should be the focus of habitat conservation efforts to benefit the bird species studied here. 
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Figure 5.11 Map of habitat suitability for Curlew at 30m x 30m resolution, modelled using 

Random Forest with empirical predictor variables combined with Landsat 8 variables. 

Colours show relative suitability and are histogram equalised.  
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Figure 5.12 Map of habitat suitability for Lapwing at 30m x 30m resolution, modelled 

using Random Forest with empirical predictor variables combined with Landsat 8 variables. 

Colours show relative suitability and are histogram equalised.  
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Figure 5.13 Map of habitat suitability for Golden Plover at 30m x 30m resolution, 

modelled using Random Forest with empirical predictor variables combined with Landsat 

8 variables. Colours show relative suitability and are histogram equalised.  
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Figure 5.14 Map of habitat suitability for Snipe at 30m x 30m resolution, modelled using 

Random Forest with empirical predictor variables combined with Landsat 8 variables. 

Colours show relative suitability and are histogram equalised.  
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Figure 5.15 Map of habitat suitability for Wheatear at 30m x 30m resolution, modelled 

using Random Forest with empirical predictor variables combined with Landsat 8 variables. 

Colours show relative suitability and are histogram equalised.  
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5.5 Discussion 

 

Raw Landsat8  data have been shown to have good predictive accuracy when used at the 

native resolution of 30m2 to model species distributions (Shirley et al., 2013), however 

Landsat data is rarely used in its raw form for such applications. It has been advocated that 

when fine scale data is available and the resolution is ecologically relevant, then these data 

should be used for SDMs (Merow et al., 2014). The current study found that Landsat 8 

data provides good predictive capability for moorland fringe bird habitat suitability 

modelling, but is nest when used in conjunction with other more ecologically interpretable 

data. 

Maps of continuous values were chosen over logistic thresholding. This has the 

benefit of allowing relative site habitat suitability to be determined. In terms of local 

planning decisions, this may be beneficial if several sites are being considering for a 

development, as it allows sites to be ranked by probability of impact upon a given species. 

If a dichotomous distribution map is explicitly required, then careful assessment of the 

output should be undertaken, perhaps with expert opinion as a validation method (Gastón 

et al., 2014). 

 No one single set of spectral bands were found to be the best predictors of the 

species distributions within this study. This makes justifying the use of remotely sensed 

spectral data for use in Species Distribution Models difficult in terms of ecological 

relevance. As reducing collinearity between spectral bands was undertaken using a 

mathematical process and not ecological theory in this study, this problem is compounded. 

Vegetative indices have been developed to overcome this problem (Cohen and Goward, 

2004) and the use of such indices to supplement empirical data can improve model 

performance. As raw Landsat 8 data was used here, vegetative indices were not employed. 

Further investigation into the complementarity of raw spectral data with non-correlated 

vegetative indices is recommended, as it may have the potential to improve habitat 

suitability performance. The results of this study suggest that the raw spectral data does not 

detract from good model performance, with some models attributing greater importance to 

raw spectral bands than empirical data. 

The use of empirical data in this study represents a more traditional approach to 

Species Distribution Modelling, however studies are normally conducted at coarser 

resolutions using km2 rather than m2 (e.g. Araujo et al., 2005). Species Distribution Models 

should be used at a resolution that is ecologically relevant to the study species (Austin and 
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Van Niel, 2011). In the case of this thesis, the usage of fields by moorland fringe birds is of 

primary interest. As such, coarse resolutions would reduce the interpretability of 

distribution models at the field level. Good predictive accuracy was found for all species in 

this study using empirical data at 900m2 indicating that this is an appropriate resolution. 

Across the Landsat and Empirical models, no one algorithm performed better than any 

other, although RF and GBM were consistently best performing. This shows the 

importance of using multiple modelling algorithms to guide conservation practice where 

Species Distribution Models are used as a tool. Based on the results of this study, GBM or 

RF are recommended as first port of call modelling algorithms for habitat suitability 

modelling. Although no consensus approach was used here, model averaging techniques 

exist (Araújo and New, 2007; Zhang et al., 2015) and may be appropriate where there is 

disagreement between modelling algorithms. This is especially true as the link between 

ecological theory and different modelling methods is poorly understood (Elith and Graham, 

2009). 

In summary, Landsat reflectance data has the potential to be a very useful tool in 

species distribution mapping, but is best used in conjunction with empirical data. The 

empirical data used here also proved to be a good predictor of moorland fringe bird species 

habitat suitability. Empirical data collection can be costly in terms of time and resources, 

especially if primary data collection is involved. This study shows that where resources are 

not available for such data collection, the use of freely available Landsat 8 data may be a 

good proxy. The predictor variables contributing to the habitat suitability models for each 

species differed, indicating that the moorland fringe should be managed taking the 

requirements of each priority species into account individually. Lapwing, Curlew, Snipe 

and Wheatear appear to be the most sensitive species to increased housing density.  
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CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 

 

6.1 Main research findings 

6.1.1. Moorland fringe habitat characteristics 

The UK uplands are of international conservation importance and for their range semi-

natural moorland habitats (Littlewood et al., 2006) and many of these landscapes have 

been granted SPA (Special Protection Area) status due to their breeding bird assemblages 

(Thompson et al., 1995). The upland moorland habitats of blanket bog and dwarf heath 

(including heather moorland) cover around 23.6% of Scotland, 3% of England and 6.2% of 

Wales, and are considered to be biodiversity action plan priority habitats by the Centre for 

Ecology and Hydrology (CEH) in the UK (Carey et al., 2008). The South Pennine Moors 

Special Protection Area (SPMSPA) is a typical upland SPA in the North of England that is 

surrounded by historically industrial town and cities and a matrix of farmland and smaller 

residential areas. Between 1947 and 1980, around 20% of upland heather moorland in 

England and Wales was subject to adverse land-use change (Thompson et al., 1995). Of 

the remaining, 70% was estimated to be at risk of further change, with more recent 

research citing atmospheric deposition, climate change, and peat erosion due to the legacy 

of overgrazing as risks to moorland habitats (Holden et al., 2007).  

Chapter two of this thesis aimed to investigate the composition of habitats within 

the moorland fringe landscape using the SPMSPA as a case study. The key findings were: 

 

• Temporal change in the coverage of habitats typically associated with the SPMSPA 

but within the SPMSPA fringe were investigated. It was found that between the 

years 1990 and 2000 these habitats increased in proportional coverage by around 

5%, with a subsequent decrease in proportional coverage of around 7% between 

2000 and 2007. If generalised, this finding is concerning as this would represent 

significant degradation and loss of upland habitats is prevalent in the fringe 

landscapes of upland protected areas in the UK.  

 

• The SPMSPA fringe landscape is composed of a heterogenous habitat mosaic, 

predominantly composed of smaller fields dominated by agricultural habitats with 

larger but less frequently encountered patches of upland habitat. From a 

conservation perspective, the most concerning finding was that improved grassland 

and semi-improved species poor grassland were the most abundant habitats, 
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dominating 78% (63% by area) of all fields surveyed within 1km of the SPMSPA 

whereas semi-improved species rich grassland and unimproved grassland was only 

encountered in two fields in a single unitary authority (Bradford).  

 

• A supervised classification of the SPMSPA fringe habitat was achieved with an 

overall accuracy of 93.11%. This high accuracy provides evidence that farmland 

habitat categories incorporating an element of management intensity can be 

inferred from Landsat 8 data. Predicting the entire SPMSPA fringe habitat showed 

that the pattern of high coverage semi-improved species poor grassland and 

improved grassland is generalisable. 

 

6.1.2. Moorland fringe bird habitat associations 

Upland moorland habitats in the United Kingdom (UK) support important breeding 

populations of migratory and resident breeding bird species. Some of these species are 

listed under annex 1 of the EU birds directive (Thompson et al., 1995) including Golden 

Plover Pluvialis apricaria, Short-eared Owl Asio flammeus and Merlin Falco columbarius. 

Other species of international conservation concern that are supported by the uplands 

within the UK include Dunlin Calidris alpina, Curlew Numenius arquata and Twite 

Acanthis flavirostris (Thompson et al., 1995) alongside species of UK conservation 

concern including Lapwing Vannellus vannellus, Snipe Gallinago gallinago, Redshank 

Tringa totanus, Common Sandpiper Actitus hypoleucos, Whinchat Saxicola rubetra, 

Wheatear Oenanthe oenanthe and Ring Ouzel Turdus torquatus (Eaton et al., 2009). These 

thirteen species were identified in collaboration with the local unitary authorities of 

Calderdale, Kirklees, and Bradford in West Yorkshire, UK to be of priority for the study as 

part of this project into their relationship with the moorland fringe landscape of the 

SPMSPA. (Dallimer et al., 2010). It is known that there is an association between 

moorland habitat management and the management of the surrounding farmland in terms 

of the success of some of these species (Dallimer et al., 2012). Lapwing, Snipe, Curlew 

and Golden Plover are amongst the species that are known to use both moorland and 

farmland habitat to varying degrees in their breeding and feeding ecology (Pearce-Higgins 

and Yalden, 2003; Dallimer et al., 2012). Chapter two described habitat gradients within 

the moorland fringe landscape using NMDS (Non-metric Multidimensional Scaling) with a 

variety of quantitative field-level variables. The associations between these habitat 

gradients and the presence of five moorland fringe bird species were investigated (Golden 

Plover, Lapwing Snipe, Curlew, Wheatear). Numbers of records of other species were two 
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low for analysis. Overall bird diversity was also explored in relation to the primary 

moorland fringe habitat types surveyed as part of Chapter two. Key findings of Chapter 

three were: 

 

• The presence and absence of Golden Plover, Lapwing, Snipe, Curlew and Wheatear 

can all be described by the same habitat gradient. The end of this gradient that is 

favoured by these species comprises fields with tussocks, wet flush and evidence of 

intensive grazing. All this species showed preference against fields where the 

vegetation is mechanically cut. 

 

• The habitat preferences of Snipe and Wheatear included a second gradient where 

fields dominated with rush were preferred over semi-improved grassland. Building 

density did not appear to influence the presence of these species over field level 

habitat and management variables.  

 

• In terms of bird diversity, extrapolated species richness was found to be greatest in 

habitats not typical of moorland or farmland (e.g. woodlands, gardens and 

waterbodies). This shows the importance of maintaining a broad range of habitats 

within the moorland fringe landscape to preserve overall bird diversity.  

 

6.1.3. Small Wind Turbines and birds 

The availability of financial incentives for small-scale electricity generation within the UK 

has led to an increasing trend towards the construction of SWTs (Small Wind Turbines) in 

areas of high wind resource availability. The impacts of large wind turbines on birds are 

well studied (e.g. Bright et al., 2008; Schaub, 2012; Péron et al., 2013), however the 

ecological effects of SWTs (energy generating capability <50kW) on UK biodiversity are 

not well understood, making it difficult for local authorities to make informed planning 

decisions. Minderman et al. (2012) is the only experimental scientific paper has 

empirically quantified SWT-bird interaction finding no negative effect on the flight 

behaviour of birds within 20m of SWTs. Chapter four investigated the habitat composition 

around SWTs, the effect of SWTs on bird diversity within 600m and the effect of SWTs on 

21 bird species within 600m. The key findings were: 

• No difference in habitat composition was found within 600m of individual SWTs, 

however there were significant differences in habitat composition between SWT 

sites. In addition, 15 habitat types were encountered within 600m of SWTs. This 
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indicates that SWTs are sited in locally heterogenous areas, but that there is no 

consistency in the habitat configuration that SWTs are built in.  

 

• Bird diversity and species richness was consistently found to be lower within 100m 

of SWTs than any other distance out to 600m. In addition, extrapolated species 

richness was greatest 100-200m from SWTs. This suggests that there may be a 

displacement effect on some species within 100m of SWTs.  

 

• Distance from SWT (up to 500m) had a significant positive effect on the presence 

of Magpie Pica pica, Starling Sternus vulgaris relationship was found between 

distance from SWTs and other species.  

 

6.1.4. Habitat Suitability Modelling of moorland fringe birds 

The large extent of UK uplands and the logistical constraints of conducting ecological 

surveys in these remote areas, makes it difficult to estimate the abundance and distribution 

of upland birds. This also applies to the moorland fringe, where land ownership and lack of 

complete access can complicate surveys. Species Distribution Modelling (SDM) or Habitat 

Suitability Modelling is a well-established technique that is used to produce expected 

occupancy values/ habitat suitability index values over large areas where complete field 

surveys are not feasible. Many modelling algorithms have been developed or adapted to 

implement Habitat Suitability Modelling, however there is considerable debate and 

uncertainty over which of these are the most appropriate under different scenarios (Li and 

Wang, 2013). Habitat Suitability Models invariably rely on predictor variables that are 

easy to interpret such rainfall or vegetative habitat characteristics (e.g. Porzig et al., 2014). 

Remotely sensed satellite images such as those acquired by the Landsat missions have the 

potential to provide high resolution predictor variables for Habitat Suitability Models, but 

have only been used in a limited number of studies (e.g. Shirley et al., 2013). More 

frequently, classified satellite imagery is used, which results in loss of data (by converting 

continuous data to categorical) and the potential amplification of error through cumulative 

modelling (i.e. modelling habitats, then modelling habitat suitability). Sometime derived 

vegetative indices are used, which maintain resolution and data integrity, but only for a 

limited number of spectral bands. In Chapter five of this thesis, Habitat Suitability models 

were built for five moorland fringe bird species using readily interpretable environmental 

variables (referred to as Empirical variables) and raw Landsat 8 spectral data.  

The key findings of Chapter five were: 
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• Random Forest (RF) and Generalised Boosting Model (GBM) were consistently the 

best performing modelling algorithms as determined by AUC. It Is recommended 

that these algorithms are the first choice for modelling the habitat suitability of 

moorland fringe bird species. 

 

• Supplementing Empirical data with Landsat 8 data improved the predictive 

performance of habitat suitability models for Curlew, Lapwing, Golden Plover and 

Snipe. 

 

• Of the empirical predictor variables, building density was the most important 

predictor of habitat suitability for Wheatear, Curlew and Snipe. Slope was the most 

important for Lapwing and elevation for Golden Plover. Road density, area of 

Environmental Stewardship land, SWT density, agricultural class and habitat 

classification (as produced in chapter 2) all had very little influence on the best 

performing models across all species. 

 

6.2 Conservation and management implications 

 

This thesis has attempted to assess the SPMSPA fringe landscape in its ability to support 

thirteen bird species that are inextricably associated with the SPMSPA alongside the 

fringe’s importance for maintaining bird diversity. This was achieved by describing the 

habitats, topography and the built environment of the fringe landscape; determining habitat 

gradients within the landscape; investigating the associations of priority bird species and 

bird diversity with these landscape characteristics; assessing the importance of agricultural 

practices, building densities and Small Wind Turbines in influencing the distribution and 

habitat associations of bird species; and attempting to model suitable habitat for five of the 

conservation priority species. The aim was to provide the ecology and planning 

departments of three unitary authorities in West Yorkshire (Calderdale, Kirklees and 

Bradford) with an evidence base that can be used to inform ecologically sound planning 

decisions in an upland and agricultural landscape that is under pressure to be built on, and 

is home to an important upland SPA. The following conservation management 

recommendations apply: 

 



194 

 

• Upland habitats within the SPMSPA fringe were found to be regionally localised in 

Chapter two. As maintaining habitat connectivity around and between protected 

areas is important for providing corridors to movement for species, the 

conservation of these areas should be a priority task in the management of the 

SPMSPA fringe landscape in the context of planning development decisions. This 

is further emphasised by the fact that upland habitats were found to decrease in area 

in the SPMSPA fringe between the years 2000 and 2007. The loss of upland 

habitats in the SPMSPA fringe were determined using landcover data which is 

periodically produced by CEH (Centre for Ecology and Hydrology) in the UK. It is 

recommended that this trend be monitored over time by applying the methods used 

here on future datasets as they are released. This also allows geographical hotspots 

of change to be identified allowing intervention efforts to be focussed in areas of 

high risk.  

 

• The lack of unimproved grassland and particularly high land cover of improved and 

semi-improved agricultural land should be addressed to maintain heterogeneity of 

the agricultural landscape. The improvement of agricultural land is associated with 

the loss of bird species richness and biodiversity as a whole (Billeter et al., 2008) 

indicating that the SPMSPA fringe landscape is sub optimum for the conservation 

of bird diversity. The pattern of loss of unimproved grasslands in favour of 

improved meadows has been documented elsewhere in upland landscapes, with 

Graf et al. (2014) reporting a 20% decrease in unimproved meadows between 1987 

and 2010 in a region of the Swiss Alps. As the primary function of the SPMSPA is 

the conservation of breeding moorland birds, efforts should be made to promote 

less intensive agricultural practices in the moorland fringe. 

 

• A single habitat gradient were found to be of importance to Snipe, Curlew, 

Lapwing, Golden Plover and Wheatear. These species show preference for grazed 

fields with tussocks and wet flushes and preference against mechanically cut 

grassland. In addition, Snipe and Wheatear show preference for fields dominated 

by rushes and preference against semi-improved grassland. As very little species 

rich-improved grassland was found within the SPMSPA fringe, this can be 

interpreted as species-poor semi improved grassland. Understanding the association 

of moorland fringe bird species with species-rich semi improved grassland and 

unimproved grassland would require further research at another location. 
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• The impact of SWTs (Small Wind Turbines) was found to be minimal within 200-

600m, however with 100m there was a decrease in bird diversity. A radial distance 

of 100m should be interpreted as a distance between two SWTs of 200m. This 

should be taken into consideration when making planning decisions for SWTs 

where SWTs are already in situ to avoid cumulative effects. This is likely to be 

particularly important where many SWTs are located near to one another, however 

the effect of clustered turbines was not investigated within this project. There was 

an association between distance from turbine with the presence of Starling and 

Magpie. No other species appeared to show any association within 500m. 

 

• The fact that habitat composition was significantly different between SWT sites but 

not between SWT distance bands indicates that SWTs are sited in locally 

heterogenous areas, but that there is no consistency in the habitat configuration 

where SWTs are built. This means that there is potential for interaction between 

SWTs and a broad range of bird species exhibiting different life history strategies. 

This is in contrast to large wind farms, where soaring and flocking migratory birds 

are often considered to be of primary concern (e.g. Barrios and Rodríguez, 2004; 

Plonczkier and Simms, 2012). This is highlighted by the fact that Magpie, Collared 

Dove, House Sparrow, Great Tit and Willow Warbler showed associations with 

SWT distance, suggesting that the assemblage of birds that have the potential to be 

negatively affected by SWT are not necessarily the same as those affected by larger 

wind turbines. 

 

• Habitat Suitability Model maps produced in Chapter five can be used as a 

tool to assist planning permission decisions for development. Although these maps 

do not show the absolute probability of habitat suitability, they provide a relative 

measure. This gives a good indication of areas that are the most suitable for 

supporting Curlew, Lapwing, Golden Plver, Snipe and Wheatear. 

 

The relative importance of empirical variables used in Habitat Suitability Modelling in 

Chapter five show that building density was the most important predictor of habitat 

suitability for Wheatear, Curlew and Snipe, indicating that building density within the 

SPMSPA fringe should be kept low wherever possible.  
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There are opportunities to expand on the research undertaken within this thesis. This would 

help to gain a better understanding of the relationship between the habitats within 

moorland fringe landscapes and the birds that use these habitats. Some suggestions are 

outlined below. 

 

• Much of the SPMSPA fringe landscape is composed of agricultural grassland and 

the use of satellite imagery for categorising agricultural grasslands based on their 

management intensity is not a well-studied field (Franke et al., 2012). Exploring the 

classification of moorland fringe habitats using remotely sensed data in more detail 

would be useful. Alternative algorithms may yield better predictive performance 

than those achieved within chapter two of this study. Datasets such as Light 

Detection and Ranging (LIDAR) are increasing in their geographical coverage, 

which may add predictive capability to the landcover classification within the 

moorland fringe. Unmanned Aerial Vehicles (UAVs) are becoming widely 

recognised as useful tools to collect remotely sensed data from remote areas, 

allowing more data to be accrued to improve classification. If accuracy of 

classification is achieved, then it may be viable to use such datasets in Habitat 

Suitability Modelling. In addition, this would allow time-series analysis to be 

achieved which would provide valuable information on changes in land use 

configuration over time (Jia et al., 2014). As some remotely sensed products such 

as Landsat data are freely available, there is the potential for low cost tools to be 

developed that aid ecologically sound planning decisions for local authorities. 

 

• As some or the priority bird species identified as part of this study were 

encountered too infrequently to be analysed, it would be useful to study the 

moorland fringe habitat requirements of these species in upland regions of the UK 

other the SPMSPA. These species include Short-eared Owl, Common Sandpiper, 

Twite, Dunlin, Whinchat, Ring Ouzel and Merlin.  

 

• Bird-habitat associations and Habitat Suitability Modelling within this project 

relied on logistic presence-absence data. Distance sampling is a well-established 

method for obtaining densities of species, including birds (Buckland et al., 2005). 

Using distance sampling methods to survey birds within the moorland fringe would 

provide additional information in the form of species densities which could be used 
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to better understand the relationship between these species and the moorland fringe 

landscape 

 

• The study of SWTs within this project was limited to 21 turbines over the breeding 

season of a single year. As evidence is severely lacking for the ecological impact of 

SWTs, it is recommended that further research be undertaken with a larger sample 

size and over a longer time period. Ideally this would be undertaken using a Before 

and After, Control and Impact (BACI) approach. 

 

• The potential for Landsat data to be used in Habitat Suitability Modelling was 

explored in Chapter five of this thesis. Further research to validate such models is 

required, as spectral data is difficult to interpret ecologically. 

 

• Much of the conservation protection in the UK uplands is governed by EU 

(European Union) legislation, including the SPMSPA and other SPAs. Considering 

the UKs recent decision to withdraw from the EU it is more important than ever for 

ecologists to collaborate with UK national and local government in gathering and 

applying scientific ecological evidence to be used in guiding planning policy as 

well as conservation policy. This means undertaking more research and 

communicating results and recommendations effectively with policy makers and 

stake holders. 
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APPENDIX 

 

Appendix 1. Detailed descriptions of the habitat categories used for the habitat surveys of 2012 and 2014 in Calderdale and Kirklees (Taken from 

West Yorkshire Ecology, unpublished). 

Habitat type Habitat description 

Amenity grassland Intensively managed, regularly mown grasslands, typical of lawns, playing fields and golf course fairways (Phase I habitat J1.2). 

Improved grassland Meadows and pastures affected by heavy grazing, drainage, or the application of herbicides, inorganic fertilizers, slurry or high doses of 

manure, and have lost many sward species. Very limited range of grasses and a few common forbs, mainly those resistant to grazing (Phase I 

habitat B4). Cover of rye-grasses and white clover >30%. Sward is species-poor (up to 8 species/m2, including grasses). Low cover of 

wildflowers and sedges (< 10%), excluding white clover, creeping buttercup and injurious weeds (FEP Guidance 008). 

Semi-improved, 

species-poor grassland 

Cover of rye-grasses and white clover <30%. Moderately species-rich (more than 8 species/m2, including grasses). Cover of wildflowers and 

sedges greater than 10% or more, excluding white clover, creeping buttercup and injurious weeds. Fewer than 4 semi-improved wildflower 

indicators occasional in sward. (FEP Guidance 008). For neutral grassland see: Phase I habitats B6 and B2.2 (below). May also be acidic. 

Semi-improved 

grassland 

If neutral: Cover of rye-grasses and white clover <30%. Moderately species-rich (more than 8 species/m2, including grasses). Cover of 

wildflowers and sedges greater than 10% or more, excluding white clover, creeping buttercup and injurious weeds. Four or more semi-

improved wildflower indicators occasional in sward. (FEP Guidance 008). For neutral grassland: Phase I habitat B2.2. Typically NVC 

communities: MG1, MG6, MG9-10, MG12-13. 

If acidic: Enclosed and often more species-rich than the acid grassland communities within the moorland line, it is often described as lowland 

acidic grassland. Phase I habitat B1.2. Typical NVC communities: U4 – Festuca ovina – Agrostis capillaris – Galium saxatile and others. More 

typical of lowland areas. Not apparently managed intensively for farming (i.e. probably no herbicides; probably no, or very low, fertilizer 
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inputs). Typically occurring on upland, hill-grazing land, usually on peaty, acidic soils. Enclosed with fences, walls, hedgerows etc. Generally 

dominated by Sheep’s fescue and Common bent, with a high proportion of herbs, such as Betony, Devil’s-bit scabious, Bitter vetch, Harebell, 

Heath bedstraw, Lady’s bedstraw and Mountain pansy. 

Species-rich/ 

Unimproved grassland 

If neutral: Cover of rye-grasses and white clover <10%. Species-rich (more than 15 species/m2, including grasses). Cover of wildflowers and 

sedges greater than 30% or more, excluding white clover, creeping buttercup and injurious weeds. (FEP Guidance 008). For neutral grassland: 

Phase I habitat B2.1. Typically NVC communities: MG1-5, MG8-10, MG12.  

If acidic: Upland (unimproved) acid grassland is widespread within the moorland line where it exists as extensive species-poor communities on 

the open fell or as enclosed rough grazing (rough grassland). Phase I habitat B1.1. Typical NVC communities: U2 – Deschampsia flexuosa; U5 

– Nardus stricta – Galium saxatile; U4 – Festuca ovina – Agrostis capillaris – Galium saxatile (more typical of lowland areas). Unpalatable 

grasses such as mat grass may dominate. Not apparently managed intensively for farming (i.e. probably no herbicides; probably no, or very 

low, fertilizer inputs). Typically occurring on upland, hill-grazing land, usually on peaty, acidic soils, without fences, walls, hedgerows etc. 

Where it is more species-rich and enclosed it is often treated as lowland acidic grassland (see below). 

Dry dwarf shrub heath Occurs on well drained shallow peat <0.5m deep. Comprises heather, bell heather, bilberry, western gorse with tormentil and grasses (Phase I 

habitat D1). 

Dry heath/ acid 

grassland mosaic 

Occurs on well drained shallow peat <0.5m deep. Comprises heather, bell heather, bilberry and western gorse. Dominated by acidic grasses 

(Phase I habitat D5). 

Blanket bog/ mire Occurs on deep peat deposits >0.5m deep. Formed on areas normally over 200m. Numerous pools and raised hummocks, which are formed by 

Sphagnum mosses. Vegetation comprises heather, cross-leaved heath, cotton-grasses, deer-grass, crowberry, bog asphodel and sedges. 

Sphagnum mosses are frequent (Phase I habitat E1.6.1).  

Wet heathland/ mire Occurs on lower slopes too dry or steep for deep peat deposits normally under 200m. Peat depth is up to 0.5m. The vegetation comprises of 

heather, cross-leaved heath, bilberry, deer grass, and purple moor grass with Sphagnum mosses (Phase I habitat D2; Agri-environment Scheme 

Management Plan – Heather moorland).  

Wet heathland/ acidic 

grassland mosaic 

Occurs on lower slopes too dry or steep for deep peat deposits normally under 200m. Peat depth is up to 0.5m. The vegetation comprises of 

heather, cross-leaved heath, bilberry, deer grass, and purple moor grass with Sphagnum mosses. Molinia caerulea is abundant and domininant. 

Unpalatable grasses such as mat grass and purple moor-grass and rushes may be present – see Upland acidic grassland/ Grass moor 

(unenclosed) (Phase I habitat D6; Agri-environment Scheme Management Plan – Heather moorland). Full title used in survey was “wet 

heathland/ mire/ acidic grassland mosaic (molinia dominant)”. 
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Appendix 2. Full descriptions of the habitat categories used for the habitat surveys of 2013 in Bradford, taken from Urban Edge Consulting 

(2014). 

Rush pasture Juncus-dominated (>75%) improved and semi-improved (including species-poor semi-improved) or acidic grassland.  

Other Abandoned (currently disused fields, often with some trees and shrubs), Garden (garden property , usually adjacent to a house), work sites, 

tilled land, bare ground, arable etc.  

Habitat type Habitat description 

Amenity grassland Intensively managed and regularly mown grasslands, typical of lawns, playing fields and golf course fairways. Often dominated by perennial 

rye-grass Lolium perenne and white clover Trifolium repens and containing forbs such as daisy Bellis perennis or broad-leaved plantain 

Plantago major (Phase I habitat J1.2). Generally treated with herbicide and fertiliser and may be disturbed by recreational use making them 

of little intrinsic botanical interest or value to feeding birds from the South Pennine Moors SAC and SPA. 

Improved grassland Includes meadows and pastures affected by heavy grazing, drainage, or the application of herbicides, inorganic fertilizers or high doses of 

manure. Contain very limited range of grasses, mainly those resistant to grazing. Perennial rye grass often formed > 90% of the sward with 

other grasses e.g. crested dogs tail Cynosurus cristatus and Yorkshire fog Holcus lanatus and ruderal vegetation being present along field 

edges. Conforms to Phase 1 habitat B4. Falls within MG7 Lolium perenne leys and related grasslands of the National Vegetation 

Classification (NVC; Rodwell ed., 1992). Agriculturally productive grasslands are generally species poor, heavily grazed or frequently 

mown. 

Semi-improved 

grassland (species poor) 

Meadows less affected by fertilizer or herbicide application but still contain a low numbers of species (more than 8 species/m2, including 

grasses but less than four wildflower indicators (FEP Guidance 008). Common grasses included perennial rye grass, crested dogs tail, 

Yorkshire fog and cock’s foot Dactylis glomerata. The majority of forbs usually comprised ruderals including thistle Cirsium spp and broad-

leaved dock Rumex obtusifolius and creeping buttercup Ranunculus repens. 

Semi-improved 

grassland 

Meadows less affected by fertilizer or herbicide application and contained a reasonable diversity of species (more than 8 species/m2, 

including grasses and more than four wildflower indicators (FEP Guidance 008). Commonly recorded forbs include common knapweed 
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Centaurea nigra, pignut Conopodium majus, ox-eye daisy Leucanthemum vulgare and yellow-rattle Rhinanthus minor. Meadow buttercup 

Ranunculus acris also frequent. Corresponds to MG6 Cynosurus cristatus/Lolium perenne grassland) but not as heavily affected by 

applications of herbicide and fertiliser. Conforms to Phase 1 habitat type B2.2.  

Species-rich/ 

Unimproved grassland 

This habitat type was rarely recorded and often existed as remnant habitat within more improved grassland fields on steep inaccessible 

slopes. Contains low proportion of perennial rye-grass with Yorkshire fog, crested dog’s tail, sweet vernal grass Anthoxanthum odoratum, 

red fescue Festuca rubra and tufted hair grass Deschampsia caespitosa being more abundant. Forbs abundant with >30% cover of 

wildflowers and sedges (FEP Guidance 008). Most common species include glaucous sedge Carex flacca, carnation sedge Carex panacea, 

lousewort Pedicularis sylvatica, yellow-rattle, common bird’s-foot trefoil Lotus corniculatus, common knapweed Centaurea nigra, betony 

Stachys officinalis and devil’s bit scabious Succisa pratensis. Conform to MG5 Centaurea nigra – Cynosurus cristatus grasslands.  

Rough grassland 

(enclosed) 

Unmanaged grassland often found at field edges, abandoned pastures or road verges, dominated by coarse grass tussocks e.g. cocksfoot, 

tufted hairgrass, false oatgrass Arrhenatherum elatius and Yorkshire fog (corresponds to NVC community MG1). Tall rank swards appear 

scruffy and unkempt but rich in weed seeds. 

Upland acidic grassland 

(enclosed) 

Typically recorded as part of an acid grassland and dwarf shrub heath mosaic. Grasses included wavy hair grass Deschampsia flexuosa, mat 

grass Nardus stricta, fescues such as Festuca ovina and bents such as Agrostis capillaris or A. stolonifera. Heather Calluna vulgaris 

occasionally present as are tormentil Potentilla erecta, heath bedstraw Galium saxatile and bilberry Vaccinium myrtillus. Cotton grasses 

Eriophorum spp also present. Typical NVC communities for this habitat type include U2 – Deschampsia flexuosa and U5 – Nardus stricta – 

Galium saxatile. 

Dry dwarf shrub heath Occurs on well drained shallow peat. Comprised of abundant heather, cross-leaved heath Erica tetralix, bilberry, and occasional western 

gorse Ulex europaeus. Tormentil, heath bedstraw and grasses. Characteristic acid grassland species sometimes present. Sometimes 

fragmented and restricted to steep slopes and moorland edges. 

Dry dwarf shrub heath / 

Acid grassland mosaic 

Mosaic of upland acidic grassland and dry dwarf shrub heath (see above). 

Rush pasture Typically grassland either semi-improved or improved with >75% coverage of rushes Juncus spp. Tend to be sheep grazed, although 

sometimes grazed by cattle. Occur more frequently towards the moorland fringe. Sward comprises of a combination of semi-improved acid 

and neutral grassland species interspersed with tussocks of soft rush Juncus effusus with frequent marsh thistle Cirsium palustre. Sometimes 

occurs in a mosaic with areas of acid grassland or semi-improved neutral grassland. Distinction between areas dominated by more or less 

than 75% rushes can be difficult. Occasionally recorded are marsh valerian Valeriana dioica, hemlock water dropwort Oenanthe crocata, 
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square stalked St John’s wort Hypericum tetrapterum and ragged robin Lychnis flos-cuculi. Rush-dominated areas sometimes subject to 

herbicide application and may be species poor. 

Other habitats Includes abandoned fields, often with some trees and shrubs, gardens, work sites, tilled land, bare ground, arable and woodlands. 
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Appendix 3. Diversity index equations. 

 

 

 

 

𝐷 =  ∑ (
𝑛𝑖(𝑛𝑖 − 1)

𝑁(𝑁 − 1)
) 

 

𝐻′ =  − ∑ 𝑝𝑖 ln𝑝𝑖 

 

𝑑 = 𝑁𝑚𝑎𝑥/𝑁 

 

𝐽′ =
𝐻′

𝐻max
= 𝐻′/ln𝑆 

 

𝐸1/𝐷 =
(1 𝐷⁄ )

𝑆
 

 

S = the number of species 

ni = the number of individuals in the ith species 

N = the total number of individuals 

pi = the proportion of individuals found in the ith species (ni/N) 
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Appendix 4. Descriptions of each Small Wind Turbine survey site. Of the sixteen turbine sites surveyed, fifteen were individual turbines separated 

by at least 1km from any other turbine and included all individual turbines within 3km of the SPA. The remaining site comprised of a cluster of 

eight turbines and was included for comparison to individual turbines. 

Turbine site code Number of turbines  Unitary authority Corrected location (lat, long, WGS84) 

1 1  Kirklees 53.642963, -1.904151 

2 1  Calderdale 53.763759, -1.891442 

3 1  Calderdale 53.752511, -2.032275 

4 1  Calderdale 53.705692, -2.023518 

5 1  Bradford 53.803501, -1.897331 

6 1  Kirklees 53.631872, -1.893248 

7 1  Kirklees 53.629814, -1.926745 

8 1  Calderdale 53.718733, -2.074016 

9 1  Calderdale 53.750541, -1.92775 

10 1  Calderdale 53.745353, -2.05027 

11 1  Calderdale 53.73565, -1.975745 

12 1  Calderdale 53.650934, -1.95492 

13 1  Kirklees 53.645026, -1.932935 

14 1  Kirklees 53.602379, -1.956652 

15 1  Calderdale 53.622555, -1.917172 

16 8  Calderdale 53.741334,  -2.125095 (mean centre) 
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