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Abstract

Motor Neurone Disease (MND) is a progressive, neurodegenerative

disease, for which there is no known cure. Electromyography (EMG) is

the standard technique for the detection of diagnostic indicators, such as

fasciculations (twitches). Ultrasound (US) imaging may provide a more

sensitive alternative to EMG for detection of fasciculations. However, only

one computational technique has previously been applied to image se-

quences to provide an objective measure of fasciculation occurrence. The

work presented here therefore describes the development and evaluation

of a new computational approach, based on foreground detection using

a mixture of Gaussians (GMM). In addition, the only other computational

analysis approach available, which is based on feature tracking and mu-

tual information analysis (KLT/MI) was further evaluated.

Two data sets were used to evaluate the computational approaches.

The first data set had previously been collected and comprised US images

from medial gastrocnemius (MG) and biceps brachii (BB) from healthy

(n = 20) and MND affected (n = 5) participants. The second data set

comprised simultaneously recorded US images and intramuscular EMG

from five muscles (medial gastrocnemius (MG), biceps brachii (BB), rec-

tus femoris (RF), trapezius (TRAP), rectus abdominis (RA) and thoracic

paraspinal (TP)) of healthy (n = 20) and MND affected (n = 20) partici-

pants. Accuracy of the approaches for fasciculation detection was eval-

uated against two measures of ground-truth: i) manual identification; ii)



intramuscular EMG. Accuracy was defined as the area under the receiver

operator curve and comparisons made between the performance of GMM

and KLT/MI.

Initial analysis was completed on the large limb muscles, MG and BB.

The GMM had better accuracy than the KLT/MI when compared against

operator identifications as the ground truth signal (88 – 94 % vs. 82 –

90 %). When EMG was used as the ground truth the GMM again had

higher accuracy (81 – 88 % vs. 70 – 79 This thesis has shown a GMM

computational analysis can detect fasciculations across a wide range of

muscles and also can be used for the characterisation of fasciculations as

they appear in ultrasound images, with significant differences being found

between the healthy and MND affected participant groups. It has provided

a foundation from which to build, with suggestions for future work being

collecting images of stimulated twitches in a wide range of muscles for

further characterisation and also a larger scale study prior to an official di-

agnosis being made to determine sensitivity and specificity values for this

method as a diagnostic test.
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Glossary

Aponeurosis White fibrous tissue, which resembles a flattened tendon

which holds muscles together.

Atrophy The decrease in muscle mass.

Attenuation The reduction in amplitude of the ultrasound wave as it passes

through different medium.

Biceps Brachii The superficial muscle in the upper arm.

Electromyography: A method for the detection of electrical activity within

skeletal muscle tissue. This technique can be conducted from the

surface of the skin or from within the muscle using a needle or fine

wire electrodes.

Fasciculation A relatively large scale, involuntary muscle twitch.

Fibrillation A small scale, involuntary muscle twitch caused by the loss of

a muscle fibres connection with it innervating axon.

Lower Motor Neuron Motor Neurons control voluntary movement, acting

as an intermediary between the brain and the skeletal muscles.

Medical Gastrocnemius The medial head of the superficial muscle in the

lower leg.



Motor Neurone Disease A progressive, neurodegenerative disease which

involves degeneration of both the upper and lower motor neurons.

Motor Unit AA group of muscle fibres which are innervated by the same

motor neuron.

Myocites A muscle fibre

Positive Sharps Wave A roundish fruit

Rectus Abdominis The strap shaped muscles locted at the front of the

abdomen.

Rectus Femoris A superficial muscle in the upper leg that forms part of

the quadriceps.

Thoracic Paraspinals The thoracic region of a number of muscles that

run the length of the spine.

Trapezius A large muscle located superficially, around the back and shoul-

der.

Ultrasound: Soundwaves with frequencies above 20 000 hertz. Proper-

ties of these waves can be used to produce images which can be

used for medical purposes such as the visualisation of internal or-

gans.

Upper Motor Neuron Motor neurons that originate in the brain and con-

nect and carry motor information to the lower motor neurons.
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Chapter 1

Introduction

Motor Neurone Disease (MND) is a progressive, neurodegenerative dis-

ease affecting both upper and lower motor neurons to varying degrees.

Prevalence in the UK is approximately 2 cases per 100,000 diagnosed

every year [1]. For a patient to receive even a ”clinically possible” MND di-

agnosis, either clinical or electrophysiological evidence of both upper and

lower motor neurone dysfunction must be found in one region, or lower

motor neurone dysfunction in two or more regions. Diagnostic certainty

increases as the number if regions symptoms may be found in increases.

If such conditions are not met, patients may have to wait for their con-

dition to deteriorate before they reach a level of diagnostic certainty. Cur-

rently, diagnosis tends to be based on a combination of the ”gold standard”

techniques of intramuscular electromyography (EMG) and nerve conduc-

tion tests. However, the diagnostic pathway can be lengthy and involve

a wide range of other procedures including magnetic resonance imaging

and blood tests if MND is not apparent from the outset. Symptoms can be
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highly variable between individuals but generally include; muscle weak-

ness, atrophy, spasticity and involuntary muscle twitches [2]. Average life

expectancy post diagnosis is 18 to 24 months. There is no known cure

and currently, the only treatment routinely used is Riluzole which has been

shown to have limited effect, extending life expectancy by approximately 3

months [3].

One of the clinical tools predominantly used in the diagnostic process

for neuromuscular disease is intramuscular electromyography (EMG), which

is an invasive procedure requiring the insertion needle electrodes into the

muscle tissue of the patient. In addition to its invasive nature, EMG has

a number of other limitations. For example, it has a small pick up volume

(approximately, 1-2 mm in diameter, dependent on needle gauge), which

means clinical indicators may be missed if not occurring at the needle tip

[4]. Also, due to the invasiveness of the procedure, a trained clinician is

required to conduct the assessment, which creates additional cost associ-

ated with this method.

A less invasive but more sensitive testing method for detection of in-

voluntary muscle activations would enable improvement in the diagnostic

experience for patients through the circumvention of painful testing such

as EMG and potentially speed up the time to diagnosis. In addition to this

there would be less of a barrier for repeat testing meaning a larger number

of longitudinal studies could be carried out, with implications for testing ef-

fectiveness of drugs in controlling symptoms associated with neuromuscu-

lar disease. B mode ultrasound imaging has been suggested as a possible

alternative for the diagnosis of neuromuscular disease [5], [6]. It provides
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visualisation of the muscle tissue from the skins surface and has a rela-

tively large field of view.

The majority of studies carried out into the use of ultrasound for non-

invasive assessment of muscle tissue focus on the ability of human opera-

tors to identify patients with MND. This is achieved from subjective assess-

ment of images, taking into account the structural information, number of

involuntary activations, or both. However, there are limitations associated

with subjective assessment of images. These include; the time consuming

nature of watching video sequences recorded from numerous muscles in

numerous patients, the cost involved with hiring individuals with the skills

to watch and interpret such images and also that objective assessment of

medical images have often shown comparable or improved levels of accu-

racy to those achieved by subjective, computational analyses [7], [8].

A wide variety of computational analyses have been applied to ultra-

sound images in order to detect and quantify activation and motion within

the muscle tissue. However, this is generally limited to large scale vol-

untary activations, with only one previous study assessing the viability of

computational analysis for the detection of involuntary muscle activations

[9]. This study implemented a Kanade Lucas Tomasi tracking algorithm

which uses features within images to track motion, coupled with mutual

information to provide an identifier of coherent motion within the image,

which was hypothesised to correspond to a fasciculation. A number of

limitations/ challenges with computational detection of fasciculations were

also highlighted, such as the inability of the method to disregard other

physiological motion such as blood vessel pulsations which can cause
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false positives within the signal.

1.0.1 Research Aims

The main research aim for this thesis is to determine if ultrasound images,

through the application of different computer vision algorithms, is an ac-

curate and robust tool for the detection of fasciculations and by extension

the possible diagnosis of neuromuscular disease. This will be achieved by

comparing the accuracy of computer vision methods to alternative fascicu-

lation detection methods such as human operator identifications and EMG,

with spatial and temporal characteristics of twitches being assessed to de-

termine whether they may indicate the presence of underlying pathology

within the muscle. This aim will be completed through the achievement of

four key objectives which include:

1. The development of an additional computational analysis technique

for comparison with the current method of a Kanade Lucas Tomasi

(KLT) analysis combined with Mutual Information (MI).

2. The comparison of the KLT and additional analysis techniques to

manual identifications and myoelectric signals in both healthy and

MND affected participants.

3. The application of one or both techniques to previously untested

muscles in MND affected participants.
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4. The comparison of spatial and temporal twitch characteristics in both

healthy and MND affected participants.

Research Question: Can ultrasound imaging be used to detect small

scale muscle activations such as fasciculations in healthy and MND af-

fected participants and are there any quantifiable differences in th charac-

teristics of such activations?

1.0.2 Overview of Thesis

In chapter 2, the first part of the literature review for the thesis is docu-

mented. This section of the literature review focuses on the physiological

processes that are required to produce contractions within the muscles

and how certain pathologies such as MND may affect these processes. It

also investigates the role imaging techniques, such as ultrasound can be

used to better understand the structure and activation of skeletal muscle

and how previous studies have applied it to diagnosis of neuromuscular

disease.

Chapter 3 forms the second part of the literature review and introduces

a number of computational methods for image analysis such as Kanade

Lucas Tomasi tracking, Horn - Schunck optical flow and foreground de-

tection using a mixture of Gaussians. Their potential suitability for motion

analysis from ultrasound image sequences is discussed and selection of

techniques for use in further chapters is made.

The first experimental chapter, chapter 4, compares the performance

of the computational methods selected in chapter 3 (i.e. KLT and GMM)
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in comparison to human operator identifications. These methods were ap-

plied to previously collected data that was used in the publication Harding

et al (2016) [9]. The aim of this chapter was to determine whether the

GMM could improve on the performance of the KLT in order to provide a

viable alternative to the previously used technique.

Chapter 5 extended the work carried out in chapter 4 by once again

comparing the KLT and GMM methods. This chapter compared their per-

formance to a novel EMG truth signal. The aim of this chapter was to

determine whether the GMM could provide a valid alternative to the KLT

by comparing it to the current gold standard technique for detection of elec-

trophysiological activation.

Chapter 6 aimed to determine the performance of the GMM across

a wider range of muscles such as Trapezius, Rectus Femoris, Rectus

Abodominis and Thoracic Paraspinals. This was required due to the need

for twitches to be identified across a wide range of muscles to diagnose

MND.

The final Experimental chapter, chapter 7 aimed to determine whether

differences between the health and MND affected participant groups could

be found using both spacial and temporal measures taken from ultrasound

images. This would indicate whether ultrasound coupled with the GMM

could indicate the presence of MND, without the requirement for human

analysis of images.

18



1.0.3 Contributions to Knowledge

This thesis will assess the viability of using computational analyses to de-

tect involuntary muscle activations from ultrasound image sequences that

can be an indicator of neuromuscular disease such as MND. It will intro-

duce new methods of analysis and compare performance to the KLT/ MI

technique that has previously been used to determine the optimal method

and compare to the previously used truth signal (human operator identi-

fications) as well as introducing a new truth signal for comparison (intra-

muscular EMG). This will allow for conclusions to be drawn as to which

technique has superior performance when compared to the truth signals,

but also whether these performance levels are within a range that would

support use as a diagnostic test. Finally, this thesis will assess whether

ultrasound imaging can be used to determine spatial and temporal char-

acteristics of fasciculations and whether these differ between healthy and

MND affected participants, yielding preliminary indications as to whether

computational analysis of ultrasound images can yield measures that dis-

criminate between healthy and pathological muscle activations.
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Chapter 2

Review of Literature I: Muscle

Physiology, Motor Neurone

Disease and Imaging Techniques

2.1 Motor Neurone Disease: Symptoms and Di-

agnosis

2.1.1 Clinical Diagnostic Criteria for Motor Neurone Dis-

ease

Motor Neurone Disease (MND) is a neurogenic, degenerative disease af-

fecting upper and lower motor neurons. Symptoms include muscle weak-

ness, atrophy, spasticity and involuntary muscle twitches. The term MND

can be used either as an umbrella term for four distinct neuromuscular dis-

eases or exchangeably with the term Amyotrophic Lateral Sclerosis (ALS),

as is the case in this thesis. When used as an umbrella term, MND cov-
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Table 2.1: Table showing the varients of MND and their onset and
prevelance.

ers ALS as well as Primary Lateral Sclerosis (PLS), Progressive Muscular

Atrophy (PMA) and Progressive Bulbar Palsy (PBP). PLS is specific to the

upper motor neurons and disorders such as Progressive Muscular Atro-

phy (PMA) and Progressive Bulbar Palsy (PBP) both affect only the lower

motor neurons [10] (Table 2.1 [11], [12], [13], [14]).

During the earlier stages of MND, the symptoms present may also over-

lap with other neurological disorders so the differential diagnosis will aim

to rule out mimics out by the body region that they affect. For example

upper motor neurone bulbar symptoms could also be explained by brain-

stem lesions, mass stroke and demyelinating forms of other degenerative

diseases; lower motor neurone bulbar symptoms could be explained by

cranial nerve palsies; limb upper motor neurone signs could be explained

by cervical myelopathy, cord tumor, hereditary spastic paraparesis, trans-

verse myelopathy and HIV-related myelopathy and limb lower motor neu-

rone signs could be explained by Radiculopathy, plexopathy and neuropa-
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thy [15].

The most effective way to diagnose MND has been a contentious issue

over the years leading to a number of different diagnostic criteria being

established, as well as additional amendments to those criteria. Initially,

guidelines for MND diagnosis were stated in the El Escorial criteria [16].

Currently, recommendations made by the Awaji – Shima Consensus and

Airlie House recommendations are used in preference to the El Escorial

Criteria (Figure 2.1 and Figure 2.2 [17]), which existed as the previous gold

standard for MND diagnosis [17].

One of the primary changes that were suggested in the Awaji – Shima

recommendations was the weight given to different types of muscle twitches

in the process of diagnosis. Previously greater weight was given to the

presence of fibrillations (involuntary activity of fibres) in comparison to fas-

ciculations (involuntary activity of groups of fibres) as an indicator of den-

ervation and therefore MND. However, the updated criteria has allowed

equal weighting for fasciculations and fibrillations, meaning a positive di-

agnosis could be reached on the basis of fasciculations alone.
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Figure 2.1: Pathway showing diagnostic criteria under the original El
Escorial Criteria and with the Awaji Shima recommendations.
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Figure 2.2: Levels of diagnostic certainty for MND and the criteria for
each category.

2.1.2 Fasciculations, Fibrillations and positive sharp waves

Fasciculations are a type of involuntary muscle twitch. They are localised

twitches of individual motor units and occur due to the spontaneous con-
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traction and relaxation the motor units within the muscle. If large enough

and near enough to the surface, they may be visible to the naked eye [18].

They can occur in healthy individuals, although if they appear with great

frequency and are widespread throughout the body, they may also indicate

the presence of certain neuropathies, including MND. However, fascicula-

tions are not observed in myopathic disorders [19].

Figure 2.3: Intramuscular EMG sequence including fasciculation
potentials (Left) close up of fasciculation potential in healthy participant

(Right)

A common tool for the detection of fasciculations of smaller size or from

deeper within the muscle is intramuscular EMG. The insertion of a needle

up to a few centimeters (depending on needle length) into the muscle tis-

sue allows for action potentials (electrophysiological activations) within the

muscle to be recorded. An example of a fasciculation potential can be

25



seen in Figure 2.3.

As fasciculation potentials can occur in both healthy and pathological

muscle tissue, methods to differentiate between the two are required. A

number of different characteristics of the fasciculation potentials may be

taken into account in order to achieve this. For example, duration of fasci-

culations can differ between MND sufferers and benign fasciculation syn-

drome. In the study carried out by Mills [20], it was reported that there was

a longer duration fasciculation potentials in benign fasciculation syndrome

sufferers, in comparison to MND patients (14.6 ms and 16.9 ms respec-

tively, with a p value of 0.005). In addition to this, the variability of the

duration of fasciculations was greater in MND patients and the discharge

interval was significantly shorter.

A number of factors can determine whether the fasciculation potential

itself arises from pathological origins or not. Complex fasciculation poten-

tials (polyphasic potentials of increased duration and/ or amplitude), along

with jitter (an indicator of irregular transmission) and blocking (an indicator

of failure in transmission) can all be indicators of MND [21].

Fibrillations are another type of involuntary muscle twitch. In compari-

son to fasciculations, fibrillations are the reaction of a single muscle fibre

when it loses its connection from its innervating axon. They occur on a

much smaller scale in comparison to fasciculations and are therefore not

visible through the skin [22]. When they occur rhythmically, they indicate

that a muscle fibre has lost the connection to its innervating axon. Their

origin may be related to the oscillation of the resting membrane potential

of the denervated fibres and additional acetylecholine receptors. Unlike
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fasciculations, fibrillations may occur in not only neurogenic disorders, but

inflammatory and dystrophic muscle diseases [23].

Figure 2.4: Intramuscular EMG Sequence including Positive Sharp
Waves (1.) and Fibrillation Potentials (2.) Taken from Mills (2005).

Fibrillation potentials will appear on an electromyogram as much smaller

spikes (of amplitudes between 20 and 300 µV in contrast to amplitudes of

fasciculations which are between 0.03 and 10 mV), in comparison to fasci-

culation potentials and will occur over a much shorter time period, lasting

less than 5 ms and having a firing rate of between 2 and 20 Hz (see Fig-

ure 2.4 [4]). They will be biphasic or triphasic in appearance and can be

differentiated from end plate spikes, which are potentials caused by neu-

rotransmitter binding at the neuromuscular junction, by their initial positive

direction [24].

Positive Sharp Waves are biphasic potentials with purely positive com-

ponents, in comparison to the initial negative inflection of fibrillation po-

tentials. They tend to be grouped with fibrillation potentials, as they both

represent abnormal firing from damaged nerve or muscle tissue and have
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similar amplitudes and short durations [25]. Along side fibrillations, posi-

tive sharp waves may also indicate a number of different neuropathic and

myopathic disorders and the reasons for their presence varies depend-

ing on the pathology. Although, both fibrillation potentials and positive

sharp waves tend to be given the same clinical significance and have the

same origin, their presence either together or individually may hold differ-

ent meanings [26]. For example positive sharp waves without fibrillation

potentials may be seen following local muscle trauma; and positive sharp

waves may be seen alone in some demyelinating polyneuropathies.

Current methods for the diagnosis of MND such as intramuscular EMG

are invasive and offer varying levels of certainty in diagnosis. In addition

to these points, time to diagnosis tends to be relatively long, with average

times of 12 months being reported [27]. The aim of this thesis is to address

current challenges in diagnosis and monitoring of MND. Detection of these

involuntary activations is typically done using EMG based techniques, in

order to fully understand the basis for these techniques and how findings

may relate to ultrasound imaging results the following section will discuss

the processes that occur between activation of the central nervous system

and subsequent contraction of the muscle tissue.
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2.2 Integration of Skeletal Muscle with the Ner-

vous System

EMG and ultrasound imaging are two very different methods which both

may be used to quantify the ”health” of the neuromuscular system. EMG

aids in providing insight into the electropysiological events that produce

mechanical activations within the muscle that can be visualised with ultra-

sound imaging. It is therefore important to understand the mechanisms

which underly muscle contraction from the generation of action potentials

in the nervous system to the generation of force from the muscle fibres.

Muscle motor units are the muscle fibres that are innervated by the

same motor neurone (Figure 2.5). In neuromuscular diseases such as

MND, as the muscle degenerates fibres will be denervated from their mo-

tor neurone once this occurs the fibre may be re-innervated by a nearby

motor neurone and included within a new motor unit. EMG electrodes are

used to detect the electrical activity across the muscle membrane during

muscle activity this will produce a waveform called a motor unit action po-

tential for each motor unit. During the denervation/ re-innervation process,

phenomenon such as complex and combined potentials may be encoun-

tered.

In contrast an ultrasound twitch (fasciculation) is the mechanical activa-

tion of the muscle produced due to the electrical stimulus provided by the

MUAP. This motion of the muscle tissue itself may be viewed using ultra-

sound imaging techniques due to the changes in shape caused by a twitch

and the good temporal resolution of the equipment.
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Figure 2.5: Diagram of the composition of a muscle down to motor unit
level and its connections with the motor neurons.

2.2.1 Action Potential Generation

The various electrophysiological events laid out in Section 2.1.2, are gen-

erally seen as abnormal events occurring due to denervation (although

fasciculations can occur in healthy individuals). In the healthy neuromus-

cular system, muscle contraction is achieved through the transmission of

action potentials, down the motor neurons and into the skeletal muscle.

Upper motor neurones, originating in the motor cortices of the central ner-

vous system (CNS), interlink with the peripheral nervous system (PNS)

and by extension, the muscles through synapses with the α - (lower) mo-

tor neurons, originating in the brain stem (head and neck) and spinal cord

(rest of the body) [28]. The α - motor neurons extend their axons into the

PNS and innervate skeletal muscle fibres directly (Figure 2.5).
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Figure 2.6: Diagram showing the Neuromuscular Junction

Following the generation of an action potential, it will propagate along

the motor neurons axon, until it reaches the terminal bouton of the axon.

This area, where the motor neuron axon ends and the sarcolemma (cell

membrane of the muscle fibre) begins, is called the neuromuscular junc-

tion (NMJ) [29], seen in Figure 2.6. The neuromuscular junction is a unique

type of chemical synapse, where the transmission of the action potential

from the axon to the muscle fibre takes place. The arrival of an action

potential causes the opening of voltage-dependent calcium channels and
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an influx of Ca2+ ions. This creates the conditions for binding of vescicles

containing the neurotransmitter Acetylcholine (ACh) to the cell membrane

and the release of the ACh into the synaptic cleft. This then binds with

acetylcholine receptors on the motor endplate [30]. Activations such as

fibrillations and positive sharp waves occur at this stage of transmission if

muscle fibres have lost contact with their innervating axon. This causes an

increase in ACh receptors on the endplate and causes hyper-excitability at

the membrane, causing repetitive, small scale potentials to appear in the

EMG signal.

Once transmission has occurred, the action potential generated at the

NMJ will propagate along the muscle fibre cell membrane (sarcolemma)

and into the networks of T - tubules. This action potential, traveling along

the muscle fibre membrane may be detected by the insertion of a needle

electrode into the muscle tissue [31] as described in section 2.1.2.

2.2.2 Skeletal Muscle: Normative Structure and Func-

tion

Once the action potentials generated in the nervous system reach the mo-

tor endplate, the process of force generation will begin. The mechanical

activation of the muscle tissue, which can only be inferred from the EMG

signals recorded, can be directly visualised using ultrasound imaging. The

visualisation of these events and how these events appear within the im-

ages can depend on a number of factors such as muscle architecture,
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motor unit size and motor unit type. The motor unit size and also num-

ber of certain types of motor unit have also been shown to differ between

healthy and MND affected populations [32], [33]. An understanding of

skeletal muscle structure and function is required in order to determine

how healthy and pathological muscle will appear in ultrasound images and

how that will correspond to the myoelectric activity of the muscle.

2.2.3 Anatomy of Skeletal Muscles and Muscle Architec-

ture

Within the body, there are 3 different types of muscle: smooth muscle,

skeletal muscle and cardiac muscle, each with their own unique structure

and functions. Skeletal muscle is a form of striated muscle or muscle that

appears striped due to bundles of contractile elements. It is generally un-

der voluntary control and is the specific type of muscle that allows for the

locomotion of the human body [34]. The term muscle architecture de-

scribes the macroscopic arrangement of muscle fibres relative to the axis

of force generation, which contributes to the muscles mechanical function.

There are a number of different types of fibre arrangement including paral-

lel, pennate, bipennate and circular [35]. These arrangements, along with

fibre length and cross sectional area determine the muscles force produc-

tion capabilities. Bundles of muscle fibres of varying sizes are known as

muscle fascicles and fibres inervated by the same motor neuron are col-

lectively known as motor units (Figure 2.5).
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Figure 2.7: Diagram of striations patterns of muscle fibres (top) and
structure of the actin (black) and myosin (grey) filaments (bottom).

Muscle fibres, also called myocytes, are the component parts of the

motor unit (muscle fibres innervated by a single motor neuron) and con-

tain myofibrils, the long protein cords which are the main contractile ele-

ments of the cell [36]. They contain four types of myofilaments which work

together to produce muscle contractions. These myofilaments are; thick

filaments composed of myosin, thin filaments composed of actin and pro-

teins involved in the regulation of contraction such as tropomyosin, which

covers myosin binding sites and troponin, which binds calcium ions re-

vealing the myosin binding sites. These interactions are the basis for force

generation and movement of muscle cells [37]. The striation patterns of

myofibrils are the result of bands of light and dark colouring (Figure 2.7.
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The A bands which are darker and the I bands which are lighter alternate

along the length of the myofibril, reflecting the repeating arrangement of

strands of thick (myosin) and thin (actin) protein filaments. A dark line,

known as the Z line (intersects the I band and forms an anchor point for

the actin filaments. At the centre of A band is a lighter area known as the

H zone, a region of the myosin filaments devoid of any motor domains.

The H zone also often contains a darker line, known as the M line. These

bands make up the sarcomere, the functional unit of the myofibril [38].

Physiologically, motor units may be classified into four main groups,

each having its own unique characteristics [39]. These groups are: Fast

fatigable (FF), fast fatigue resistant (FR), fast intermediate (FI) and slow

oxidative (SO). FF motor units produce high forces and fast contraction

speeds, but fatigue quickly (over a few seconds). In contrast, FR motor

units produce an intermediate force and fast contraction speeds, but are

resistant to fatigue. FI units are, as the name suggests, an intermediate

between FF and FR and SO produce a low force, slow contraction but they

are very resistant to fatigue [40]. For example, in [41] twitch contraction

times were assessed in feline ankle extensor muscles. Results reported

twitch times of less than 30 msec in both FF and FR motor units, with

SO unit types exceeding 40 msecs. Whereas the number of motor untis

in MND affected participants have been shown to decrease by about 80

percent, they were also found to be six times larger than those in healthy

participants. In addition to this, during denervation in MND [32], it has

been found that the FF were more vulnerable that the SO motor unit types
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[33]. These factors may have implications on any analysis of spatial and

temporal characteristics of involuntary activations.

2.2.4 Contraction Generation

The physiological actions outlined in section 2.2.1 and 2.2.2 are the insti-

gators for a number of processes that result in the contraction of muscle

fibres due to actin and myosin interactions. The mechanical output from

these interactions can be visualised using ultrasound imaging, allowing for

inferences to be made as to the presence of voluntary or involuntary acti-

vations of the muscle without the need for EMG.

The aforementioned interactions are know as the Cross-Bridge cycle

and outline the reaction of the muscle tissues to the electrical inputs from

the nerve that generate force as output [38]. The actin and myosin proteins

introduced in section 1.1 are the filaments that bind together to produce

muscle contraction.

There are four stages to the Cross-Bridge cycle. Action potentials

reaching the end plate will cause a reaction that releases Ca2+ ions into

the sarcoplasmic reticulum. The calcium binds to the troponin, changing

the configuration and exposing the active site of the actin. This allows the

myosin head to attach to the actin and bend to produce a power stroke,

which will pull the actin filament. This stage releases ADP and phosphate

molecules. An ATP molecule will then bind to the myosin head, causing it

to detach. The ATP is then hydrolised to ADP and phosphate molecules,
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returning the process to its initial conditions [42].

The previously mentioned processes allow for small movements be-

tween the filaments, but in order to produce a full scale contraction of the

muscle, synchronous activations must occur. Contraction of a single fi-

bre will produce a twitch contraction. However, tension must be sustained

beyond the fraction of a second generated by a twitch, in order for any

meaningful contraction to occur. Therefore, most skeletal muscle contrac-

tions in the body are tetanic contractions [43]. Due to the largely different

timescales over which an action potential and a muscle twitch can occur

(approximately 10 ms and 150 ms in the gastrocnemius muscle respec-

tively [4],[44]), a number of action potentials may stimulate the muscle fi-

bre in the time it takes for a single twitch. This allows for sustained tension

within the muscle as long a repeated stimulation of the fibre is maintained.

This phenomenon is known as the summation effect and is the reason why

full scale muscle contractions are possible [45]. Involuntary activations

such as fasciculations do not produce tetanic contractions as they are the

product of single action potentials activating single motor units. Therefore

within an ultrasound image of a particular muscle, fasciculations will be dis-

tinct from large scale voluntary activations as they will produce small scale

localised motion of the tissue over relatively short time scales in contrast

to larger scale, unified motion produced during tetanic contraction, which

will be of longer time duration. Fasciculations and voluntary activations

can also be distinguished from and EMG trace. Fasciculations will appear

as a single action potential from a single motor unit, in contrast voluntary
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contraction will appear as a large number of action potentials from various

motor units superimposed onto one another. These signals may be de-

composed to pick out the individual motor unit that are contributing to the

voluntary activation. This can be done by a number of methods. However,

template matching is a popular technique for EMG signal decomposition

and is the method used by software such as EMGlab, which matches the

shape of each action potential with each different shape belonging to an

individual motor unit. Fasciculations would not match with any other action

potentials due to them being a single occurrence.

2.3 Applications of Ultrasound Imaging to Neu-

romuscular Disease Diagnosis

2.3.1 Imaging Skeletal Muscle

A number of imaging modalities can be employed to visualise skeletal mus-

cle in vivo. Imaging techniques such as sonography, computed tomog-

raphy, scintigraphy, radiography, and magnetic resonance imaging (MRI)

have allowed for the non-invasive assessment of muscle structure as well

as the presence of injury and disease [46].

B-mode ultrasound is a non-invasive imaging modality. It allows for

real time acquisition of images of soft tissues within the body using high

frequency sound waves. It provides good spatial resolution (especially at
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Figure 2.8: Ultrasound image of the Medial Gastrocnemius and Soleus in
transverse probe orientation.

higher frequencies), allowing for the collection of structural information,

such as muscle thickness [47], fascicle length and pennation angles [48].

However, unlike MRI it provides good temporal resolution (with standard

frame rates of between 25 and 100 fps and high frame rate devices col-

lecting up to 10000 fps [49]) and is therefore frequently used in the assess-

ment of dynamic changes in skeletal muscle, within a small field of view

which is limited by the size of the transducer [50].

Owing to the differences of the echogenicity of the tissues, muscles

can be easily differentiated from fascia and skin, which will appear white

(hyperechoic) and bone, which will appear black (anechoic) [51]. They

may also be differentiated from each other by aponeuroses (the fascia

encasing the muscle) and by the orientation of the fascicles [52]. Such

information on density and structure is not only useful in determining and
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locating injuries within the muscles but has been used a number of times

to accurately distinguish between different types of myogenic and neuro-

genic diseases [53], [54]. However, some of these disease markers may

also be observed in images of aged muscle.

2.3.2 Imaging of Myogenic and Neurgenic Pathologies

Normal aging causes decline within the muscle, such as a loss of skeletal

muscle mass and strength. This decline (or sarcopenia) may be coupled

with a loss in functional mobility and frailty as individuals age [55]. Mor-

phological changes within the muscle can be viewed using ultrasound.

Besides allowing for measurement of muscle thickness and the subcuta-

neous fat layer, the echo intensity of the muscles within the image can

indicate the presence of increased levels of intramuscular fat and fibrous

tissue [56].

The atrophy visible in images of aging muscle has a number of under-

lying causes. As individuals age, the number of fibres and the number of

motor units declines [57]. This is due to the denervation of motor units.

Some of the fibres within these motor units may be incorporated into re-

maining motor units. However, those that are not are lost through dener-

vation atrophy [58].

Changes in neurophysiological properties can be noted in muscles dur-

ing old age and revealed through electromyography. For example factors

such as action potential amplitude and duration are significantly increased
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with age in myoelectric signals due to the aforementioned denervation/

reinnervation process [59].

The presence of different neurogenic and myogenic diseases can also

be determined from images acquired using b-mode ultrasound. In the

study [53] investigations were carried out into how images of skeletal mus-

cle varied in healthy controls and patients with different myopathies and

neuropathies. Results were based on a comparison of a number of mea-

sures (density, white-area index and inhomogenity) taken from the images

collected. Density was calculated using an average pixel value from the

section of the image selected for analysis and white-area index was quan-

tified by dividing the area of white patches (pixel values greater than 170)

by the total area of the image selected for analysis. The inhomogene-

ity measure was calculated by first applying a Sobel filter to the image,

which enhances edges by expressing gradients. This causes an inhomo-

geneous image to exhibit alternating patches of black and white pixels,

which is quantified by dividing the number of white areas by the area of

the image selected.

Findings suggested that neuropathies display normal densities and

white-area index, but high inhomogeneity levels. In comparison, myopathies

had increased densities, with often increased white-area index and some-

times increased inhomogeneity. However, as the age of the healthy par-

ticipants was increased the distinction between healthy and pathological

values decreased, suggesting that the sensitivity/accuracy of this method

may be decreased if the age criteria was raised for healthy participants.

This may have implications in distinguishing between healthy aging mus-
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cle and diseased muscle when applying computer vision techniques to

ultrasound images.

2.3.3 Ultrasound Imaging and Motor Neurone Disease

More recently, there have been a number of groups that have been at-

tempting to diagnose specific disorders using ultrasound images of the

muscles [60] and [6]. One of these disorders is Motor Neurone Disease.

Figure 2.9: Ultrasound image of the Medial Gastrocnemius and Soleus in
a Healthy Participant (left) and MND Affected Participant (Right).

The assessment of images, with the aim of forming a diagnosis, tends

to be separated into two techniques: using structural information [61], [53]

within the images such as muscle thickness (presence of atrophy) and

changes in echoicity (infiltration of fatty and fibrous tissues within the mus-

cle) these differences can be seen in Figure 2.9, or information on how

the muscle moves [62] such as the presence of fasciculations and fibrilla-

tions. As previously mentioned in section 2.1.2, fibrillation detection using
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ultrasound, where they appear as small, oscillating movements, has not

yet achieved accuracy levels high enough to be considered for clinical di-

agnostics. In [63] four out of eleven ultrasound images collected gave true

positives for fibrillations, with two out of eleven giving true negatives. How-

ever, this was only achieved if the fibrillations were firing at a rate of at least

5 Hz. A further study found sensitivity values of 43 - 63% and specificity

values of 33-73% in [64]. From this they conclude results do not reaching

boundaries that would be acceptable for diagnostic testing.

In contrast to fibrillation detection, ultrasound has been used to de-

tect fasciculations with greater levels of sucess, achieving sensitivity lev-

els of 96% and specificity levels of 84% respectively, using human opera-

tors to determine whether they had observed fasciculations in at least four

muscles from 12 muscle groups (including he sternocleidomastoid, biceps

brachii, forearm flexors, quadriceps, tibialis anterior and rectus abdomi-

nis). [6].

Despite previous studies being able to determine the presence of fas-

ciculation with good sensitivity/ specificity levels, a large number of these

are based on subjective assessment of US images by a human operator

to determine whether fasciculations are present or absent [6], [65], [5]. A

small number of studies have applied motion tracking techniques to de-

termine the presence of small stimulated twitches [66] and then involun-

tary twitches [9], however, no comparisons have currently been made be-

tween these automated techniques and electrophysiological activity within

the muscle. In addition to this, only one computer vision technique has
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currently been assessed in relation to twitch detection [9], meaning no

quantitative comparison of potential twitch detection techniques has yet

been carried out.

Additionally, no methods to determine differences between fascicula-

tions as they appear in the images to distinguish between healthy and

MND affected participants have been determined, although it is predicted

that this may be possible. During the progression of MND, fibres lose their

connection to the innervating axon of their original motor unit, the pro-

cess of re-innervation will occur to include the denervated fibre into a new,

nearby motor unit. This will cause the new motor unit to become larger,

due to the greater number of fibres contained within it. In relation to EMG

signals, motor unit action potentials will be of greater amplitude and in-

creased duration in comparison which are also of increased duration and

area (more single fibre action potentials summing) and are also more com-

plex in morphology. Due to the larger number of fibres per motor unit in

MND patients, each fasciculation will result in the contraction of a larger

number of fibres also. The area of tissue displacement in MND compared

to healthy participants could be predicted to:

1. Remain the same due to the reinnervated fibres being adopted by

other motor units that are close to the original motor unit, causing

additional motion but within the same area.

2. Increase, due to the greater number of fibres contracting during a

single fasciculation, which should result in greater force production.

This greater force production should cause a greater number of pas-
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sive fibres to be displaced by the active fibres, causing a larger area

of motion within the image.

2.4 Principles of Ultrasound Imaging Physics

B mode ultrasound imaging may be used to visualise the dynamic pro-

cesses occurring within the skeletal muscles such as voluntary activations

(muscle contractions) and involuntary activations (fasciculations). It may

also, due to the emission of sound waves and their interactions with dif-

ferent tissue media, give indications as to the properties of the muscle tis-

sue itself. The following section outlines the principles behind ultrasound

imaging and the phenomenon that allow the creation of images as well as

problems that may be encountered.

2.4.1 Overview of Ultrasound Imaging

The basis of ultrasound imaging relates to the transmission and reflec-

tion of sound waves through various mediums. The rapid vibration of

piezoelectric crystals located within the ultrasound transducer produces

the high frequency sound waves required for the generation of ultrasound

images.The waves produced travel in a longitudinal motion by the com-

pression and expansion of the molecules in the medium. Any reflections

of sound waves at boundaries between mediums will be detected by the

elements contained within the transducer [67] - see figure 2.10.
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2.4.2 Interactions between Ultrasound and Tissue

Attenuation

As ultrasound waves propagate through the tissue, the energy intensity

or amplitude of the wave is weakened. This is due to the waves being

reflected, refracted, absorbed, scattered or diffracted [68]. The amplitude

decay of a tissue can be modelled using the following equation:

A = A0e
−αz (2.1)

,

were α is the attenuation coefficient, A0 is the unattenuated amplitude and

A is the attenuated amplitude once the wave has travelled distance z from

the origin.

The attenuation coefficient (α) of a material describes how easily the

sound wave can propagate throughout that particular material:

Attenuation = αlf (2.2)

,

A small attenuation coefficient (α) indicates that the ultrasound wave

will travel through the medium without large losses in intensity, where as

a larger attenuation coefficient indicates that the sound wave intensity is

weakened more rapidly. Attenuation is proportional to the square of the

sound frequency due to the decrease in penetration with an increase in
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frequency [67] and can be calculated through the product of the distance

travelled, frequency and attenuation of the medium (Equation 2.4.2).

Absorption

The absorption (conversion of energy in the ultrasound to heat) of that

particular tissue will determine the colour of the image, ranging from white

images showing maximum reflection of sound waves (e.g. bone) to black

images showing vary little reflection (e.g. water). Absorption into the tissue

is the greatest contributor to the attenuation of the sound waves (Figure

2.11). It is the conversion of the energy from the sound waves into heat,

mainly due to the friction in particles when displaced by the wave [68].

Figure 2.11: Diagram Demonstrating the Absorption of Transmitted waves
Waves through a Particular Medium.
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Reflection

The theory behind ultrasound imaging is similar to those of optics. Once

an ultrasound wave is produced and is released into the body it will propa-

gate throughout the tissue as a pressure wave at approximately 1500 m/s

[69]. When a tissue boundary is reached, such as the boundary between

soft tissue and a blood vessel, the differing acoustic characteristics of the

two mediums will cause some of the wave to be reflected back. Some may

travel onwards through the tissue to continue this process until the entire

wave has been reflected, transmitted or converted into heat. This enables

an image of the area of interest to be constructed. This is demonstrated in

Figure 2.12 . The angle at which the wave hits the boundary is the same

as the angle it is reflected at [70].

Reflection occurs at the tissue boundaries in the body and this principle

is the basis of ultrasound imaging. At a tissue boundary, the characteristics

of the material will differ. In relation to ultrasound the most important prop-

erty of the material to be considered is the Acoustic Impedance. Acoustic

Impedance is the opposition to the flow of sound through a material and

the difference of Acoustic Impedance at a tissue boundary will determine

what percentage of the wave will be reflected and what percentage will

carry on through the tissue [71].
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Figure 2.12: Diagram Demonstrating the Transmission and Reflection of
Waves when Encountering a Change in Medium.

Refraction and Diffraction

Refraction occurs at boundaries between two materials, due to the differ-

ence in velocities of waves within the two mediums. This causes a change

in the angle at which the wave is travelling as it either speeds up or slows

down on entering the new material (Figure 2.12). This angle can be deter-

mined using Snell’s Law:

niSinθi = nrSinθr (2.3)

,

where θi and θr are the angles of incidence and refraction respectively and

ni and nr are the refractive indicies of each material [72].
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2.4.3 Frequency and Wavelength

The frequency and wavelength of the ultrasound waves are highly relevant

to medical ultrasound as they determine the depth to which the waves can

penetrate and the quality of the image. The frequency of a wave makes

reference to the number of cycles of a sound wave per second. Standard

ultrasound frequencies range between 1 - 13 MHz, although higher fre-

quencies can be attained [73]. When imaging skeletal muscle 4 - 8 MHz is

standard, however, higher frequencies may be required to visualuse small

muscles such as those in the hands and feet with sufficient detail [74].

The wavelength is the distance a wave travels during one cycle and is

inversely proportional to frequency. It is one of the main factors affecting

the axial resolution of an image and the scanning depth, due to increased

levels of attenuation as the frequency increases [75]. High frequency and

small wavelengths produce higher quality images, but cannot penetrate

the tissues and are therefore only useful on superficial structures, such as

the muscles. This is due to a linearly dependent relationship between fre-

quency and attenuation of the wave (see equation 2.4.2). Low frequency

and large wavelengths produce poorer quality images but can be used to

image structures at greater depths, such as the liver and kidneys, where

the structures are relatively large and less detail is required [68].
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2.5 Summary

There are a number of imaging techniques that can visualise muscle tis-

sue non-invasively. However, with the exception of ultrasound imaging,

none offer the required levels of spatial and temporal resolution required

to capture the transient motion associated with muscle fasciculations. Also

the interactions of ultrasound with tissue allow for relatively clear images

of muscle structure to be relayed in close to real time, relaying information

on muscle size, shape and fibre orientation, as well as tissue composition.

For ultrasound to be a viable method for the diagnosis of MND, it would

need to be effective in the identification of certain indicators of the dis-

ease. Of these indicators, arguably the most notable are the involuntary

activations that occur within the muscles. These activations, when shown

to be present across a wide range of muscles and being progressive in

nature can warrant a positive MND diagnosis. In contrast to the current

diagnostic technique, ultrasound offers a non invasive method to assess

fasciculations and possibly other muscle activity. However, current subjec-

tive methods of images analysis, such as human operator identifications

can be time consuming and highly subjective, indicating that an automated

detection method may be superior.
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Chapter 3

Review of Literature II:

Computational Motion Analysis

of Images

Recent studies into the use of ultrasound imaging to detect involuntary

muscle activations have generally been focused on the performance of hu-

man operators in this particular task [65], [6]. These studies have yielded

good results (accuracy over 80%), however they remain a largely sub-

jective method of analysis. Computational analysis of involuntay muscle

activations has also been investigated, however these particular studies

are few in number [66], [9]. In [66] the idea of an automated analysis was

introduced through the use of a Kanade Lucas Tomasi tracker coupled with

mutual information analysis was assessed in relation to the identification

of small scale stimulated muscle twitches with a high degree of success.

Further from that, a KLT/MI analysis method was implemented for the de-

tection of fasciculations, in [9]. Operator identifications were used as truth
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signals for comparison and results reaching 83 - 94% accuracy.

Although the few studies that have investigated the use of computa-

tional analysis for fasciculation detection have reached high levels of ac-

curacy, they highlighted a number of limitations such as accuracy reduction

in pathological muscle tissue and detection of other physiological motion

(such as blood vessels). These limitations are due to how the KLT and the

MI operate respectively. The KLT requires well defined corner features to

reliably track features from one frame to the next. However, pathologies

such as MND appear more homogenious in the ultrasound images com-

pared to the more hetrogenious images that are collected from healthy

participants. This causes difficulties associated with finding good corner

features to track, likely causing the reported drop in accuracy in the MND

affected participants.

The MI is based on differentiating between coherent and random mo-

tion within the image, with noise appearing as random motion and fascic-

ulations appearing as coherent motion. However, all physiological motion

within the image is coherent and therefore these motions will also appear

in the MI signal as a false positive.

Finally, although fasciculations are detected there is no indication whether

they are more likely to be healthy or related to some form of neuromuscular

disease. Subsequent chapters will explore the possibility of using different

image processing methods in order to solve these limitations.
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3.1 Feature Tracking using Kanade Lucas Tomasi

Analysis

A large number of the recent publications use the Kanade Lucas Tomasi

(KLT) tracking method for analysis of both voluntary and involuntary mus-

cle activations [66], [50], [9]. KLT object tracking works through a process

of feature selection, feature tracking and feature monitoring. It was initially

proposed for image registration purposes (a previously computationally

costly endeavour). The technique is generally based on the combined con-

tent of three papers, Lucas [76], who set out the general tracking method

used, Tomasi [77], who discussed the detection and tracking of feature

points and Shi [78], who determined good features to track and how to

analyse their persistence and quality through frames.

The Lucas Kanade feature tracking method is based on solving the dis-

placement (x+ ∆x, y+ ∆y) in the image between times t and t + ∆t, where

∆t is small. In order to estimate the optical flow, three assumptions are

made. Firstly, that the intensities of points will look the same in each frame

(brightness constancy constraint - equation 3.1). In addition to this, it is

also assumed that points will move coherently with their neighbours (spa-

tial coherency constraint) and that the motion will be small.

Brightness Constancy Constraint:

H(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (3.1)
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By calculating a Taylor series approximation of the image signal I (equa-

tion 3.1),

I(x+∆x, y+∆y, t+∆t) = I(x, y, t)+
δI

δx
∆x+

δI

δy
∆y+

δI

δt
∆t+HigherOrderTerms

(3.2)

the first order partial derivatives of the spatial and temporal coordinates

can be used to reduce the unknown terms when higher order terms are

presumed to be negligible and therefore ignored:

I(x+ ∆x, y + ∆y, t+ ∆t)− I(x, y, t) = Ix∆x+ Iy∆y + It∆t (3.3)

which gives:

Ixu+ Iyv + It = 0 (3.4)

based on the assumption that any motion between two frames will be ef-

fectively zero.

The above equation 3.1, defines a single local constraint, at a single

pixel, on the image. However, there are still two unknowns (u,v). To solve
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this, additional equations are needed. The first stage of this solution in-

volves the assumption that within a small neighbourhood area of pixels

(pi) of the point in question, displacement will be locally smooth and con-

sistent between frames. By using a least squares regression model

u
v

 = (ATA)−1AT b (3.5)

an approximation may be found and by implementing an iterative method,

re-introducing the higher order terms previously disregarded. The values

can then be refined and more accurate approximations made until conver-

gence.

u
v

 =

∑i f(x)(pi)
2,

∑
i f(x)(pi)f(y)(pi)∑

i f(y)(pi)f(x)(pi),
∑

i f(y)(pi)
2


−1 −∑

i f(x)(pi)f(t)(pi)

−
∑

i f(y)(pi)f(t)(pi)


(3.6)

Due to the local nature of this method of feature tracking, the method

will fail if the motion is larger than the predefined neighbourhood area.

This can be solved by applying the analysis at a number of pyramid levels.

By decreasing the resolution of the image, windows containing the same

number of pixels will account for larger areas. This coarse to fine method

enables the detection of larger displacements within the image.

The feature selection criteria used during the implementation of a KLT

tracker was determined in Tomasi and Kande (1991) [77]. Features are
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selected based on whether they have significant change in intensities in

both the x and y directions (corner features). This selection criteria is used

to solve what is known as the aperture problem [79]. The aperture prob-

lem occurs when motion is viewed through a small aperture (such as the

pixel neighbourhood used in Lucas Kanade optical flow calculations) in

this case, motion of edges cannot be determined unambiguously, there-

fore corner features must be used.

By analyzing the eigenvalues of A, it can be determine whether the

area of the image in question has the correct characteristics to be a ’good

feature’. By selecting only corner features, the aperture problem is solved.

This is because, at corners motion it easy to detect along both the hori-

zontal and vertical axes. A corner feature is represented by

A =

∑i f(x)(pi)
2,

∑
i f(x)(pi)f(y)(pi)∑

i f(y)(pi)f(x)(pi),
∑

i f(y)(pi)
2

 =

λ1 0

0 λ2

 (3.7)

where A represents the sum of gradients in relation to the x and y co-

ordinates within the window. There will be two eigenvalues (λ1, λ2) whose

magnitudes represent the type of point. If both eigenvalues have large

positive values, then the feature in question is a corner point. Selection

criteria is based on whether the values of the eigenvalues associated with

the feature point are greater than a predefined threshold:

min(λ1, λ2) > λ (3.8)

The KLT is a widely used method for analysis of motion in images and
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is regularly applied to ultrasound images of skeletal muscle. However, in

complex physiological systems and when using imaging modalities prone

to noise it exhibits a number of limitations. For example fasciculations

may be difficult to distinguish from the background noise due to their small

scale. Also, as there is no way to differentiate between fasciculations and

other physiological motion which may occur in the image. Additionally, the

KLT needs image heterogeneity (i.e. good corner features) to perform well

which, due to changes in muscle structure in neuropathies, may be re-

duced. To improve the accuracy of the technique, mutual information is

used as an additional stage in the analysis to improve results; this method

is expanded on in the below section.

Mutual Information for the Interpretation of the KLT Analysis Outputs

Using the above feature selection process and applying the Lucas - Kanade

method of optical flow, motion between frames may be determined. In

order to interpret these values and determine the presence of muscle

twitches, the statistical process of mutual information was proposed to

enable the differentiation of twitches, noise and other motion within the

images [66].

Mutual information is a measure of the mutual dependence of two vari-

ables, X and Y (equation 3.9).

MI(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y)log(
p(x, y)

p(x)p(y)
) (3.9)
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Where P(x,y) is the joint probability distribution of X and Y, and P(x) and

P(y) are the individual probability distributions of X and Y. In [9] it was hy-

potheised that the magnitude of the MI signal represents the likelihood of

that US image transition containing a muscle twitch. High mutual informa-

tion indicates movement coherence (I −→∞), such as a twitch; low mutual

information indicates noise or other random movement (I −→ 0). If zero

mutual information between two variables is found, it means the variables

are independent [80].

Overall, MI is an effective way of distinguishing between the small scale

coherent motions of fasciculations and the underlying noise of the image.

However, it has been reported that this method is unable to distinguish be-

tween fasciculations and other physiological motion such as blood vessels

as these too display coherent motion [9]. In order to successfully detect

fasciculations without also detecting other motion such as blood vessel

pulsations, alternative methods will be required.

3.2 Optical Flow Analysis

The KLT analysis used in studies for the identification of fasciculations in

ultrasound images [9] are based on the Lucas Kanade method of optical

flow [76]. Further methods for this application were also investigated to

find an appropriate alternative technique for comparison. The search for

new methods was conducted for the purpose of this thesis by investigating
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an additional method of optical flow; Horn-Schunck optical flow (see Ap-

pendix 9.1).

Horn Schunck

The Horn-Schunk method of optical flow, like the Lucas-Kanade method, is

a method to calculate movement within image sequences, providing con-

straints in relation to brightness patterns. Where Lucas-Kanade optical

flow is considered a local method of optical flow calculation, due to the cal-

culation of motions within local neighbourhoods. Horn-Schunck provides

a much more global approach [81]. Only one independent measurement

(u or v) is available from the image sequence at a point, while the flow

velocity has two components, meaning, a second constraint is needed. In

this case, this is known as the smoothness constraint, which can be rep-

resented by:

(
δu

δx
)2 + (

δu

δy
)2, (

δv

δx
)2 + (

δv

δy
)2 (3.10)

The additional constraint or brightness constraint (see Section 3.1) can

be expressed by minimising the square magnitudes of the gradient of the

optical flow velocity.
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∫ ∫
(Ixu+ Iyv + It)

2 + c(u2
x + u2

y + v2
x + v2

y) (3.11)

where c is the regularization constant, where larger values will lead to

smoother flow. Once both constraints have been formulated, it is required

that the sum of the errors are minimised through the equation:

eBC = Ixu+ Iyv + It (3.12)

for the brightness constraint error and

e2
SC = (

δu

δx
)2 + (

δu

δy
)2 + (

δv

δx
)2 + (

δv

δy
)2 (3.13)

for the smoothness constraint error. Therefore the combined error to be

minimised can be written as

= eBC + ceSC (3.14)

e =

∫ ∫
(Ixu+ Iyv + It)

2 + c(u2
x + u2

y + v2
x + v2

y) (3.15)

The minimisation process requires suitable values for the optical flow ve-

locity, u and v, to be found. By applying a laplacian mask and taking an

average of the four neighbours and subtracting from the central one and
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repeating the process until it converges, the minimization will be accom-

plished. The discrete version of smoothness error for each pixel may be

written:

(Ixu+ Iyv + It)Ix + c(u− uav) = 0

(Ixu+ Iyv + It)Ix + c(v − vav) = 0

(3.16)

Solve using an iterative scheme starting with k = 0:

uk = uav − Ix(
Ixuav + Iyv + It
c+ I2

x + I2
y

)

vk = vav − Iy(
Ixuav + Iyv + It
c+ I2

x + I2
y

)

(3.17)

where uk and vk are the velocity estimates for pixel (x,y) and uav and vav

are the neighbourhood averages.

The Horn Schunck method provides a global optical flow method where

the field is constrained by the local average as well as the optical flow

constraints. It not only requires consistency between intensities in image

sequences but also requires that changes be small providing smoothness

within the flow field.

The Horn-Schunck optical flow method offers a different solution to the

calculation of optical flow in contrast to the Lucas-Kanade method. Mo-

tion is calculated based on a more global analysis compared to the local

neighbourhood based analysis of the Lucas-Kanade. However, it still does

not offer the highly discriminatory motion analysis that would be required
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to solve a number of the limitations stated in [9] (such as the inclusion of

blood vessel pulsations) and be successfully applied to further muscles

which may raise further issues such as breathing motion in trunk muscles

and voluntary activation. In order to circumvent such issues, a more adap-

tive and discriminatory technique is required.

3.3 Foreground Detection Analysis

Gaussian Mixture Models

Mixture models are probabilistic models that represent subpopulations within

overall populations. Foreground detection is a technique which allows fore-

ground objects to be extracted from an image [82]. This method of image

analysis is frequently used for applications such as the detection of people

from CCTV images for the purposes of security and cars in traffic mon-

itoring. It is based on the assumption that the background will be more

frequently visible than any foreground events and that it has modes with

narrow variance. For example image regions with a person or car mov-

ing across it will show large variations in pixel intensity in comparison to

that of a wall or a road. In order to accurately detect objects of interest,

especially in noisy or busy scenes, the application of a Gaussian Mixture

Model (GMM) analysis requires a number of stages. Initially the model is

built based on the data contained within a set of training frames, this is

then used to assign pixels in subsequent frames to a specific distribution.

Outliers are classified as foreground, with all others being assigned to the
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background. A blob analysis can then be used to threshold the minimum

size of groups of pixels or ”objects”, to remove smaller scale objects that

may not be of interest.

The basis of the GMM is the assumption that every pixels intensity

value in the image may be modeled using K Gaussian distributions (GMM)

and each object that comes into view of a pixel is represented by a set of

states. [83]. The probability that a pixel has a value of Xt at time t is given

by:

p(Xt) =
K∑
j=1

wj,tη(Xt;µj,tθj,t), (3.18)

where ωk is the weight parameter of the jth Gaussian component η(X;µj,Σj)

is the Gaussian distribution of the jth component.

The Gaussian mixture model is defined as:

η(Xt, µ,Σ) =
1

(2π)n/2 | Σk |1/2
e−1/2(Xt−µt)T Σ−1

t (X−µt). (3.19)

There is a mixture model for every pixel in the image and every new

pixel value is compared against the existing K Gaussian distributions until

a match is found. If none of the distributions match the pixel value, the

least probable distribution is replaced with a distribution with the current
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value as its mean, an initially high variance and low prior weight. The first

B distributions are selected as background when:

B = argmin(
b∑

j=1

ωk > T ), (3.20)

where the threshold T is the minimum amount of the image that should be

accounted for by the background. This threshold is set as any pixel that is

more than 2.5 standard deviations from the B distributions [83].

When a Gaussian component is matched models are updated in ac-

cordance with the equations:

ŵN+1
k = (1− α)ŵNk + αp̂(ωk|xN+1), (3.21)

where α is the learning rate2 and 1/α is the time constant which determines

the speed with which the parameters change.

The values for µ and σ distributions, when unmatched remain the same,

but are updated when matched by:

µ̂N+1
k = (1− α)µ̂Nk + αp̂(ωk|xN+1), (3.22)

Σ̂N+1
k = (1− α)Σ̂N

k + ρ(xN+1 − µ̂N+1
k )(xN+1 − µ̂N+1

k )T , (3.23)

where

ρ = αη(xN + 1, µ̂Nk , Σ̂
N
k ), (3.24)
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p̂(ωk|xN+1) =


1; if ωk is the first match Gaussian component.

0; otherwise.
, (3.25)

Foreground objects are determined through analysis of the density dis-

tribution of foreground pixels using connected components [84]. Areas

of foreground pixels of size above a given threshold are classed as fore-

ground objects with all other, more sparsely distributed foreground pixels

disregarded. This can be parameterised for the specific application of the

GMM.

Due to the GMM analysis’ robustness to noise and the ability to train it

based on previous examples (i.e. frames), it is predicted it will be a suc-

cessful technique for the detection of involuntary motion within ultrasound

images. These motions tend to be random and sporadic, which are likely

to appear as foreground objects due to the high variance in contrast to

the image in general. Also with the GMMs ability to ignore small repet-

itive motions within the background scene [83], it is predicted that other

physiological motion such as blood vessels will also be ignored.

3.4 Summary

The KLT algorithm for motion tracking when applied to ultrasound images

has been used successfully in many different studies relation to skeletal
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muscle. However, for the task of identifying small scale involuntary mus-

cle activation, it is clear that this method has a number of limitations. For

this reason, a new method (GMM) will be assessed for its suitability in the

detection of fasciculations due to its ability to detect abnormalities within

a scene. The following chapters will assess the GMMs suitability through

comparisons with the KLT method as well determining its accuracy when

compared to EMG. It is predicted that the GMM will offer improved accu-

racy in comparison to the KLT due to its robustness to noise, adaptability

and non-reliance on heterogeneity of the image (i.e. corner features).
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Chapter 4

Ultrasound Image-based Motion

Analysis Techniques for the

Detection of Muscle

Fasciculations: Comparison of

Computational Analyses with

Manual Identifications

4.1 Introduction

This chapter introduces an alternative technique for the detection of fasci-

culations; the GMM approach (see 3.3), with the aim being to determine

whether a more adaptive technique can outperform the only other tech-

nique found in the literature, using operator ID’s as a truth signal. The
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GMM offers a more adaptive technique which is robust to noise and able

to ignore small scale repetitive motion. These features of the GMM are

particularly pertinent to ultrasound image analysis due to the high levels

of noise and presence of other physiological movements present in the

image. Although the KLT/ MI combination can disregard the incoherent

motion due to noise. However, other coherent motion such as voluntary

activation and blood vessels will still appear in the signal (as reported in

[9]). It is predicted that, for the aforementioned reasons the GMM will pro-

vide for a more suitable analysis technique.

In skeletal muscles, fasciculations are spontaneous, intermittent, in-

voluntary contractions of muscle fibres [85]. Although fasciculations can

occur in healthy individuals, their frequency, morphology and presence

across multiple muscles throughout the body can be an indicator of neu-

romuscular disorders such as Motor Neurone Disease (MND) [16].

Standard clinical diagnostic techniques for the detection of fascicula-

tions involve the insertion of needle electrodes into the muscles to detect

the electophysiological potentials associated with fasciculations (i.e. fasci-

culation potentials - see Section 2.1.2). However a number of studies have

demonstrated the use of ultrasound imaging as a more sensitive, less in-

vasive alternative [5], [86].

B mode ultrasound is a medical imaging modality with good spatial and

temporal resolution. This allows for the collection of greyscale images of

internal structures in close to real time, from the skins surface. Studies

such as [65] and [6] have investigated the viability of ultrasound for de-
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termining the presence of fasciculations when compared to human oper-

ator identifications. [6] examined the echo intensity of 12 different muscle

groups, whilst simultaneously screening for fasciculations. The combina-

tion of these two measures produced sensitivity and specificity values as

high as 96% and 84%, respectively, when distinguishing MND and MND

mimics.

Although operator identifications of fasciculations in ultrasound images

deliver promising results, a number of drawbacks exist with this method.

For example, the requirement of the assessment of large numbers of ultra-

sound image sequences by human operators can be time consuming and

requires high levels of operator concentration. This may become problem-

atic if ultrasound was to be introduced as a clinical diagnostic technique.

To address the issues of manual identifications, other studies such as

[9], applied computational analyses (Kanade Lucas Tomasi (KLT) feature

tracking with Mutual Information (MI)) to ultrasound images to provide an

automated method for fasciculation detection. In contrast to previous stud-

ies, manual identifications were based on each fasciculation event, rather

than classifying image sequences based on the presence or absence of

fasciculations. These also yielded high levels of accuracy (ROC - area

under the curve [87]), with results of 88-94% in healthy participants and

83-84

Although results from the automated analysis were high, variability was

noted between muscles and between healthy and MND images, with ac-

curacy decreasing by as much as 11 percentage points in MND affected

participants. This may be due to a number of limitations associated with
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Figure 4.1: Examples of ultrasound images collected in each muscle (MG
and BB) and each probe orientation (Longitudinal and Transverse),

demonstrating the diversity of image content.

the KLT and MI. Firstly, the KLT analysis requires heterogeneous structure

within the image to perform well (i.e clear definition between anatomical

features of the muscle [78]. Such structure is evident in a longitudinal

probe orientation (along the long axis of the muscle) but is not so defined

in transverse orientations, meaning that probe orientation relative to the

muscle could significantly affect algorithm performance. This problem can

be circumvented by ensuring great care is taken during probe placement,

however, this may be difficult to regulate if the approach were to be used

more widely (e.g. in the clinic). A change in muscle structure is also expe-

rienced due to MND [88],[53], this may have been the cause of a reduction
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in accuracy levels seen between healthy and MND muscle [9]. Other phys-

iological movements (blood vessels) were also detected by the KLT and

not disregarded, as the calculation of MI of the displacement values peaks

during coherent local movement, which a blood vessel pulsation appears

as within an ultrasound scan. In order to overcome issues highlighted in

previous studies and implement a more selective process for image mo-

tion, an adaptive algorithm is required.

Hypothesis: The GMM will offer improved accuracy when compared to

a human operator identification truth signal due to it robustness to noise

and more adaptive nature. This will yield an alternative method to the KLT,

less prone to false positives due to other physiological motion within the

ultrasound image sequences.

4.2 Methods

Participants and Data Collection

The dataset used within this chapter was all previously collected as part of

the Harding et al. (2016) study [9] and was a seperate dataset to that used

in Chapters 5, 6 and 7. An outline of the original data collection protocol is

noted below.

US sequences were collected from 20 healthy participants (10 female,

10 male, 33 ± 13 years, 172 ± 8.6 cm, 73 ± 21.8 kg), recruited from

the general population; and five MND affected participants (two female,
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time since diagnosis: 3–18 months, 61.7 ± 15.7 years, 170.67 ± 6.03 cm,

75.33 ± 14.74 kg), recruited through the Motor Neuron Disease Care and

Research Centre at the Royal Preston Hospital. All participants provided

informed consent, and the study was approved by Ethics committees at

Manchester Metropolitan University and Preston Royal Hospital. Ultra-

sound image sequences were collected (75 fps) from two muscles: the

biceps brachii (BB) in the upper arm and the medial gastrocnemius (MG)

in the lower leg. During data collection from the BB, participants were

in a seated position with their left arm supported in a relaxed position on

a bench, which was approximately shoulder height. The linear probe (7

MHz, 59 mm field of view, LogicScan 128, Telemed Ltd., Lithuania) was

coated in acoustic gel and placed parallel to the long axis of the muscle

(longitudinally). When studying MG, participants lay prone on a treatment

couch, with their legs fully extended. The US probe was placed centrally

in the muscle belly region of the MG. It was requested that participants

remained as still as possible during data collection. Two trials of duration

40s were collected in each of the two muscles.

Operator Identifications

This chapter reproduces the methods used in [9], with the addition of the

alternative GMM analysis for comparison.[9] compared a KLT/ MI analysis

of ultrasound images with human operator ID’s compiled by two separate

operators and then combined using the union and intersection of the ID’s.

Muscle twitches were defined as localized displacement of tissue [89].
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The manual ID truth signal consisted of the frame number at which each

twitch was identified as starting. Each sequence was viewed on a frame-

by-frame basis using video editing software (VirtualDub 1.10.4). Operators

viewed ultrasound sequences on a frame by frame basis and once tissue

displacement was visible, recorded the frame number, which were to be

compared with the computational analyses.

For the purpose of this study, only one (the operator with the great-

est levels of accuracy) of the two operators ID’s were used . In [9], out of

the two operators, operator A consistently delivered higher accuracy levels

when compared to the KLT analysis, therefore it is their identifications that

will be carried through as the truth signal for this study. However, operator

B’s accuracy values were always within 2 percentage points of operator A

and the intersection values being within 3 percentage points of both oper-

ators. This indicates that although A gave greater agreement with the KLT,

B was generally consistent with A.

Extensive calibration of the KLT and GMM techniques was carried out

to determine the optimal parameters for each muscle (see Appendix 9.1).

For this purpose, data from a subset of five, randomly selected, healthy

participants (not necessarily the same 5 used in [9], 3 female, 2 male)

were used for the purposes of calibration. These participants were then

removed from data set. The KLT analysis was parameterised based on

the MI bin sizes relating to speed and direction of motion (as in [9]) and

the GMM, which had a far more extensive parameterisation stage was cali-

brated based on the number of Gaussians, background area, learning rate

and blob size. This was done for each individual muscle (see Appendix
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9.1) - Table 1 and 2.

Application of Computational Analyses

KLT and GMM algorithms were implemented in Matlab 2013, using the

computer vision toolbox. The KLT analysis (as in [9]), was initialised by

reading in the image frame and overlaying an 80 x 100 Lucas Kanade fea-

ture grid to track on a frame by frame basis. The resulting displacement

values (magnitude and direction of displacement of each feature) were

then used to calculate the MI of the resulting values to distinguish coher-

ent from random movement. A windowing factor of 5 was also applied to

improve the signal to noise ratio of the KLT signal, as described in the orig-

inal paper. This compared every nth frame to frame n+5.

The GMM analysis was also applied to the same data set for compari-

son. The GMM works on the assumption that the background will be more

frequently visible than any foreground events and that pixel intensities will

have low variance (As described in Section 3.3). A model of the back-

ground is built based on the predetermined number of training frames. This

model reflects the mixture of Gaussian distributions that are based on each

pixels intensity value. Pixels that fall within a given threshold (2.5 standard

deviations) are classified as background and pixels that do not match with

the background are classified as foreground pixels. Foreground objects, or

groups of foreground pixels large enough to be above a set threshold are

then used to highlight areas of interest in the image. Five hundred training

frames were selected from the start of each image sequence to form the

76



model to which the remaining 2300 frames were compared.

Figure 4.2: Flowchart showing major steps in the GMM Analysis.

Statistical Analysis

Once both the motion analysis signals and the logical ID’s had been ob-

tained, statistical analyses in the form of Receiver Operator Characteristics

(ROC’s) were performed [87]. ROCs produce a curve which allows for the

assessment of accuracy between a signal and a binary classifier, at dif-

ferent thresholds, by comparing the sensitivity (number of true positives)

and 1 – specificity (number of true negatives). The area under the curve

(AUC) is used to quantify accuracy for comparison, where AUC give the
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accuracy of a technique as a percentage. Individual ROC curves showing

the performance of each technique across muscle types and probe orien-

tation and combined curves, showing differences in accuracy between all

data in the healthy control group and all data in the MND affected group

were produced.

4.3 Results

ROC Curves indicating the agreement between the two image analysis ap-

proaches and operator identifications are shown in Figure . Accuracy lev-

els varied dependent on the conditions and the method of analysis used.

Both the GMM and the KLT produced good percentage agreements

throughout all conditions, with all results over 82%, with the accuracy

reaching almost 94% when applying the GMM to healthy muscle.

indent Results for the GMM showed accuracy of 93.64% (Healthy) and

88.16% (MND) in the BB and 93.85% (Healthy) and 88.68% (MND) in

the MG. In contrast, the KLT achieved accuracy of 91.01% (Healthy) and

82.37% (MND) in BB and 88.53% (Healthy) and 84.17% (MND) in BB

(See Table 4.1). A reduction in accuracy for the MND affected muscle was

noted across all trials, with differences of between 4.36 percentage points

in the MG (KLT) and 8.64 percentage points in BB (KLT). The GMM deliv-

ered results within 1 percentage point between muscle groups, indicating

a robustness to changes in the structural differences present in images

of different muscles. A change in muscle caused changes in accuracy of
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Figure 4.3: ROC curves of GMM (Blue) and KLT (Red) analysis
approaches in BB (Top) and MG (Bottom) in healthy (Left) and patient
(Right) populations when compared with the manual identification truth

signal.

between 1.80 and 2.48 percentage points between the BB and MG results.

4.4 Discussion

This chapter investigated how a GMM approach would perform in compar-

ison to a previously tested KLT/MI analysis in the identification of fascic-
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Table 4.1: Agreement results for healthy participants (In Percent%) in MG
and BB for healthy and MND affected participants.

ulations in ultrasound images when using operator identifications as truth

signals. To our knowledge this is the first time a foreground detection ap-

proach has been applied to analyse ultrasound image sequences.

KLT Performance

However, the KLT results achieved fell short of those reported in [9], which

reported levels of accuracy of a similar level to the GMM in healthy data

(94% in the BB and 93% in the MG). This implementation only achieved

accuracy levels of 91% in BB and 89% in MG. However, the MND affected

results were comparable, with this study reporting accuracy levels of 82%

in the BB and 84% in the MG and [9] reporting accuracy levels of 83% in

the BB and 84% in the MG (see 4.3 and 4.1).

The differences in the healthy results (KLT) is likely due to the ran-

domisaton of participants during the parametersation stage. All partici-

pants included in the parameterisation were selected randomly and inde-

pendent of the initial parameterisation conducted in [9]. As this implemeta-

tion was constructed independently of the original implementation and as
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it is unknown the exact participants used for calibration of the technique,

differences in results were highly likely. Measures for speed and direction

of motion deemed optimal varied between studies. In[9] as 8 and π for

magnitude and direction of motion in the BB and 2 and π/2 for MG. In con-

trast, this study found optimal parameters of 1 and π/8 for magnitude and

direction in BB and 1 and π/4 for MG.

GMM Performance

Results showed consistently higher accuracy obtained using the GMM

analysis approach in comparison to the previously reported KLT/MI ap-

proach, with results sitting between 88 and 94%. Overall, the GMM was

more robust to changes in muscle type and the existence of pathology,

however, both analysis methods showed reductions in accuracy between

healthy and MND affected participants.

The higher results achieved by the GMM may be explained by its more

selective approach to motion detection. Although the KLT/MI analysis at-

tempts to provide a more selective approach by minimising motion with low

coherence, such as noise, it cannot discount other physiologically based

movements in the image such as blood vessel pulsation.
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Limitations

Lower values of accuracy for MND affected data for both analyses tech-

niques is likely attributed to the drastic changes that the muscle experi-

ences during MND and how these are exhibited within the images. These

changes, such as increased echogenicity and image homogeneity may af-

fect the performance of tracking techniques such as the KLT, which heavily

relies on the presence of ”trackable” features. Further from this, although

the GMM did outperform the KLT, it underperformed in relation to the re-

sults obtained from healthy data. Although this method does not rely on

corner features for tracking as the KLT does, it is also known to struggle in

images of low contrast [90]. In addition to the limitations of the image anal-

ysis, there are also a number of issues with the current truth signal. Firstly,

it has no clinical significance in relation to fasciculation detection/ diagno-

sis and ID’s cannot be confirmed to be fasciculations over other motions

within the muscle. In addition to this, as they are subjective assessments

made by human operators, their quality as a truth signal may be depen-

dent on variables such as skill level, fatigue, presence of distractions etc.

In order to provide further assessment of computational analyses of ul-

trasound images for the detction of fasciculations, additional truth signals

should be considered.
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4.5 Conclusion

Overall, the GMM analysis provided the highest levels of accuracy when

compared to operator identifications as a truth signal. The KLT underper-

formed in comparison to the GMM, however, previously reported values

for the KLT were comparable with the accuracy levels achieved with the

GMM.

Further work should be carried out to investigate additional truth signals

to further test the viability of computational analysis for fasciculation detec-

tion as although operator identifications can provide a proof of concept, it

would be difficult to apply this method to large scale analysis due to the

time commitment required for operator analysis of each video. In addition

to this ID’s have no physiological basis and are simply another measure of

what is occurring in the ultrasound images. To add further credence to the

computational analyses, comparisons should be made to myoelectric data

as the standard clinical test. This would allow for a greater level of cer-

tainty that positive identifications made using computational analysis were

fasciculations and not any other types of motion.
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Chapter 5

Ultrasound Image-based Motion

Analysis Techniques for the

Detection of Muscle

Fasciculations: Comparison

with Intramuscular

Electromyography

5.1 Introduction

This chapter introduces an alternative truth signal for comparison with the

two previously used techniques; the GMM and KLT/ MI approaches (see

Chapter4), with the aim being to determine which technique offers greater

accuracy in comparison to a clinically relevant truth signal, which has not
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previously been tested. A secondary aim of which technique shows more

consistent accuracy across different muscles and probe orientations will

also be explored.

Muscle fasciculations are one of a number of indicators of denervation

of muscle tissue and the possible presence of neuromuscular diseases

such as MND. The reliable, objective detection of fasciculations has long

been sought after as a possible alternative to current diagnostic meth-

ods, which are currently based on clinical and electrophysiological assess-

ments (see 2.1 and Figure 2.1). These assessments have long been crit-

icised in terms of accuracy and certainty of diagnosis [91] and tend to

be relatively invasive with the requirement of the insertion of needle elec-

trodes into the muscle to record the electrical activity across the muscle

membrane.

Hypothesis: The GMM will offer greater accuracy over the KLT when com-

pared to a intramuscular EMG truth signal due to its robustness to noise

and more adaptive nature.

Current Methods for the Detection of Fasciculations in Ultrasound

Images

The idea that ultrasound images can allow for the visualisation of fasci-

culations as they appear in muscle tissue has existed since it was first

tested in [44]. More recently, the use of ultrasound imaging for diagnosis

has been investigated, with specific focus on MND. Initially using human

operators to determine whether fasciculations were present or absent in
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images sequences of various muscles [65], [6], [9] (see 2.3.3 and 4.1).

This technique was found to be more sensitive than the current detection

method of intramuscular EMG [5]. However, a number of problems exist

with this method. Firstly this analysis method is very time consuming and

would likely require large numbers of operators if it were to replace the

current diagnosis methods. Large numbers of operators would introduce

variations in image interpretations between operators (as it is a very sub-

jective approach) and would also require any costs associated with the

training of operators for the task.

A computational analysis was introduced [9] in an attempt to avoid the

potential problems that would be encountered with human operator iden-

tifications and to provide an automated approach as an alternative to the

time consuming, subjective human operator analysis. An automated anal-

ysis would provide a fast, objective method for the identification of fascicu-

lations in ultrasound imaging. [9] was able to apply a combination of KLT/

MI algorithms (see Section 3.1)to produce high agreement (between 83%

and 94%) with operator ID’s, however a number of potential limitations

were highlighted such as the inclusion of motion due to blood vessels and

other physiological motion within the MI signal and the decrease in accu-

racy between healthy and MND affected participant data. This was also

confirmed in Chapter 4.

The GMM for the Detection of Fasciculations in Ultrasound Images

GMM analysis of ultrasound images offers a more adaptive method for

fasciculation detection than the KLT and remains an automated, objective
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technique in contrast to manual ID’s. It is used to classify the image into

foreground and background pixel, it operates on the assumption that the

pixel intensities of the background of the image will vary significantly less

between frames (see Section 3.3). In Chapter 4 the GMM was shown to

outperform the Matlab implementation of the KLT (see 4.1) and was com-

parable to KLT results reported in [9]. However, as the GMM and KLT were

compared to operators ID’s which is not an infallible truth signal and has

no clinical basis To improve the assessment of the accuracy levels of the

GMM and KLT techniques for fasciculation detection an additional, more

clinically relevant truth signal is required. For this purpose, intramuscular

EMG is suggested.

Introduction of Intramuscular EMG as a Truth Signal

EMG is a method used to record the electrophysiological activity occurring

within the muscle (see Section 2.1.2). Intramuscular EMG, which requires

the insertion of a needle electrode into the muscle tissue is the current

gold standard technique used in the diagnosis of certain neuromuscular

disease, such as MND. It is proposed that EMG would offer a more objec-

tive truth signal for comparison with the GMM and KLT and would provide

a level of certainty that all events indicated by the automated analyses are

definitely fasciculations, which operator ID’s cannot.

This chapter will again assess the accuracy of the GMM and KLT anal-

yses, but using simultaneously collected EMG as a novel truth signal for

comparison. The aim is to further validate the automated analyses tech-
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niques for the detection of fasciculations, whilst also determining if either

technique shows superiority over the other. It is predicted that as in chap-

ter 4 the more adaptive GMM analysis will outperform the KLT and show

more robustness for changes in image content (i.e. that may occur due to

pathology and in different muscle types etc.)

5.2 Methods

Participants

Twenty patients, who had previously been diagnosed with MND (59 ± 14

years, 174.8 ± 9.2 cm, 86.8 ± 13.2 kg, 1078 ± 1148 days since diagno-

sis) were recruited through Royal Preston Hospital. Twenty self-declared

healthy controls, who were free from any neurological disorders (54 ± 20

years, 168.8± 11.4 cm, 79.0± 18.1 kg), were also recruited from staff and

students at Manchester Metropolitan University and the general population

for comparison. The study was approved by both the Local Ethics Com-

mittee in Faculty of Science and Engineering at Manchester Metropolitan

University and the National Research Ethics Service Committee; written

consent was obtained from all patients and healthy controls prior to their

inclusion in the study in accordance with the WORLD Medical Associa-

tion Declaration of Helsinki (2008). In any cases where patients were not

physically able to write on the consent form (due to disease symptoms),

verbal consent was given for a witness (independent of the research team)

to sign on their behalf.
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Experimental Protocol

Ultrasound and myoelectric data were collected from the MG, a muscle

with oblique (pennate) fascicle alignment relative to the long axis of the

muscle and BB a muscle with fascicles arranged in parallel. The limbs to

be tested were rested on supports placed under the ankle and the knee

during assessment of MG and under the forearm for BB assessment. This

provided access to the muscles, while ensuring the limb and patient in gen-

eral, remained relaxed. To minimise infection risk, the ultrasound probe

was inserted into a sterile glove prior to the start of the data collection and

sterile ultrasound transmission gel was used as the intermediary between

skin and probe.

Ultrasound image sequences (approx. 82 fps) were collected using a

linear probe (8 MHz frequency, 59 mm long, LogicScan 128, Telemed Ltd,

Lithuania). The probe was manually held in position, alongside a con-

centric needle electrode (Teca 37mm length, 0.46mm diameter), which

had been inserted into the muscle by an experienced clinician (Dr. N.

Combes). Two 35 second trials were collected this duration of data col-

lection, the trial duration of 35 seconds was chosen so that it was in line

with the literature [9] and were largely dictated by the length of time both

researchers and participants could remain still and comfortable for. It has

been reported that between 90 seconds and five minutes to collect the

amount of EMG data required to detect [92], which is why multiple trials

were recorded. In addition to this, the needle electrode was placed prior

to the placement of the probe, with fasciculations and/ or other electro-
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physiological activity generally being observed prior to ultrasound image

acquisition. The ultrasound probe was/ positioned in either longitudinal or

transverse orientations relative to the long axis of each muscle. During the

trials participants were asked to remain as still and relaxed as possible.

Ultrasound and myoelectric data collection was initialized simultaneously

using the rising edge trigger output from the ultrasound device. Myoelec-

tric signals were collected at 48 kHz using the Matlab 2013 data acquisition

toolbox and a USB data acquisition device (X Series-USB 6341, National

Instruments, USA). Myoelectric data were amplified (x1000) using a Dan-

tec Keypoint Classic system or a Grass Amplifier (x 1000) for MND affected

and healthy participants, respectively (Figure5.1).

Myoelectric Signal Processing

Prior to comparison between the myoelectric and ultrasound derived data,

a number of pre-processing steps were completed. All myoelectric signals

were bandpass filtered (4th order Butterworth, 30-500 Hz cut-off), to re-

move any non-physiological noise. Voluntary activation, defined as the re-

peated, regular firing of individual motor units, was evident in some record-

ings. These were identified using a freely available Matlab add on software

(EMGlab 1.03) and removed from the original signal using template match-

ing, leave the sporadic, involuntary fasciculation potentials [93].The tem-

plate matching technique removes action potentials of the same shape

within a certain time frame, meaning that voluntary activation, showing

repetitive activation of the same motor units (which display the same shape
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Figure 5.1: Overview of Experimental Set-up

action potential) can be removed leaving sporadic fasciculation potentials.

These results were also confirmed through visual inspection of the final

signals.

Although the literature has many methods for the segmentation of vol-

untary activity within an EMG trace, there is very little that addresses the

identification of periods of sporadic, involuntary activity. For the purpose of

this study, Periods of involuntary activity were identified using thresholding

methods:
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n(mean(abs(x))), (5.1)

The optimal threshold was calculated using multiples (n) of the abso-

lute mean of the signal (x), which were compared to the original signal

using a receiver operator characteristic (ROC) (see Section 4.2) to main-

tain an accurate representation of the original signal but in binary form

(1 being activation, 0 being quiet periods) (Figure 5.2. To identify an ap-

propriate threshold for the collected data set, thresholds were applied to

approximately one third of the healthy participant group (n = 7), who were

randomly selected and not included in the final analysis. The number of

parameterisation participants were increased from 5 to 7 from the previous

chapter, due to the increased standard deviation of the age of participants

from ± 13 years to ± 20 years. As increased age can have a major im-

pact on the image content, a larger number of participants to parameterise

the technique was considered to be the best option to account for the in-

creased spread of the data.

A logical signal was produced classifying all activity above the thresh-

old as one and all below the threshold as zero. The value of X that pro-

duced the maximum accuracy levels between the logical signal and the

myoelectric signals was used as the standard value across signals from all

participants (Figure 5.3). This value allowed the maximum number of fas-

ciculations to be included, while rejecting peaks at levels which are likely

92



Figure 5.2: Example myoelectric signals showing fasciculation potentials
(Top left). Red lines indicate position of fasciculation potentials identified

using the describe threshold technique. Two identified potentials are
shown in detail on the right.

to be noise (Figure 5.2).

Figure 5.3: Plot of accuracy calculated by thresholding myoelectric
signals by method given in Equation 5.2. Plateau point shown by red line
and value of X taken forward to analysis stage shown by green dashed

line.
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Image Sequences and Motion Tracking

KLT and GMM analysis were parameterised and implemented as described

in Chapter 4.2. Prior to analysis, images were manually cropped to the

lower aponeuroses of the superficial muscle (i.e. gastrocnemius or biceps

brachii) in order to remove any muscles deep to those containing the EMG

needle. Due to the relatively large pick up area of the ultrasound, images

tended to contain multiple muscles (e.g. biceps brachii and brachialis in

the arm, gastrocnemius and soleus in the leg). As the myoelectric activity

is not conducted through separate muscles, any fasciculations appearing

in muscles deep to the ones containing the EMG needle, would appear as

false positives, despite not necessarily being so.

Statistical Analysis

Myoelectric based fasciculation potentials and physical twitches represented

in the ultrasound data occur over very different timescales (e.g. approx-

imately 10 ms [4] for fasciculation potentials and 500 ms [44] for twitch

contraction in MG). This would cause an underrepresentation of the sig-

nal accuracy without any additional processing of results. Therefore, to

ensure fair comparison, the start and end of each twitch peak in the ultra-

sound derived signals were determined by locating the points at which the

peaks fell below the noise level and compared to the fasciculation poten-

tials in the myoelectric signals. If a fasciculation potential occurred within

the time period between the start and end of the twitch, then the logical
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myoelectric signal was adjusted so the whole twitch time frame was clas-

sified as a positive event. This was based on the methodlogy used in [9].

Figure 5.4: Figure showing comparison of EMG signal (blue), muscle
force (red) and frame length (black).

The frame rate displayed on screen for the ultrasound was an average

value, with the exact individual frame times being variable. The approx-

imate frame rate given by the ultrasound was 80 fps, giving an average

frame length of 12.5 ms. The GMM and KLT signals were interpolated

based on the exact frame times output at the end of each data collection so

that a direct comparison with the EMG signals could be carried out. In ad-

dition to this there was a 30 ms (approximately 2.4 frames) delay between

the initiation of the trial and the collection of ultrasound data. In addition

to the constant to the ultrasound frame collectiong delay, there are also
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electromechanical delays between electrophysiological activity and force

production. As the EMG signal and ultrasound images were sampled dif-

ferently, comparisons were made by classing the entirty of the frame where

fasciculations were present as active. The frame duration at 80 fps was

higher than the electromechanical delay; approximately 10 ± 2.09 ms [94]

and 11.5 ± 1.51 ms [49] in the BB and MG, respectively, even if a fascic-

ulation were to occur at the end of a frame the total disparity between the

two signals would be no more than 1 frame. This potential disparity along

with a constant delay in the ultrasound frame collection was accounted for

by offsetting the EMG actiity signal by three frames.

Once both the motion analysis signals and the logical myoelectric sig-

nals had been obtained, statistical analyses in the form of ROC’s were

performed [87]. ROCs produce a curve which allows for the assessment

of accuracy between a signal and a binary classifier, at different thresh-

olds, by comparing the sensitivity (number of true positives) and 1 – speci-

ficity (number of true negatives). The area under the curve (AUC) is used

to quantify accuracy for comparison. Individual ROC curves showing the

performance of each technique across muscle types and probe orientation

and combined curves, showing differences in accuracy between all data in

the healthy control group and all data in the MND affected group were pro-

duced.
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Figure 5.5: ROC curves of GMM (Blue) and KLT (Red) analysis
approaches in BB (Left) and MG (Right) for different probe orientations
(Transverse: Solid line, Longitudinal: Dashed line) in healthy (Top) and
patient (Bottom) populations when compared with the myoelectric truth

signal.

5.3 Results

Results from Healthy Data

ROC Curves indicating the agreement between the two image analysis ap-

proaches and the myoelectric data and the accuracy in different muscles
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and probe orientations are shown in Figure 2.8. The levels of agreement

varied greatly between conditions and the method of image analysis used.

The GMM produced good percentage agreements throughout all con-

ditions, with most achieving results between 82 and 85%, with the ex-

ception of the healthy MG longitudinal condition, where accuracy reached

90.31%. The difference between probe orientation results in BB were ap-

proximately 2.14 percentage points (82.36% for longitudinal and 84.50%

for transverse), but increased to nearly 5 percentage point difference in

MG (90.31% for longitudinal and 84.91% for transverse).

The opposite was true for the KLT/MI, where the highest levels of agree-

ment occurred in the analysis of the MG, with an accuracy of 78.42%

and 78.80% for longitudinal and transverse probe orientation, respectively.

This was 3.56 percentage points less than the lowest result from the GMM.

The KLT/MI also had greater variation in results between probe orientation

and muscle type. Although agreement remained reasonably constant be-

tween probe orientations in MG, decreases in accuracy of between 6.59

and 4.52 percentage points were noted in BB for unaffected and MND af-

fected muscle. Agreement was also lower in BB when compared to MG

overall, with highest agreement levels in MG reaching 78.19% in contrast

to highest agreement levels in BB at 75.99%..

A small number of trials were not taken trough to analysis due to file

corruption of the raw data in either the EMG or ultrasound files. The total

number of trials collected and the number then taken forward to analysis

can be seen in Table 5.2.
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Table 5.1: Area under Curve of ROC Results for Healthy Participants

Table 5.2: Number of Trials Taken Forward to Analysis (Healthy
Participants)

Results from Motor Neurone Disease Affected Data

The results from MND affected participants showed a similar pattern to

the unaffected group. The GMM gave overall accuracy levels of between

84.05% and 86.21%. Between the MG and BB, changes in accuracy were

between 0.41 and 7.94 percentage points and probe orientation caused

variations in accuracy of between 0.84 percentage points in the MG and 3

percentage points in the BB.

In contrast the KLT/MI again gave results below 80%, with the best ac-

curacy achieved in the MG transverse probe orientation (79.83%) and the

lowest in the BB transverse probe orientation (70.79%). Changes in mus-

cle yielded changes in accuracy between 9.04 and 0.96 percentage points

and variations in probe orientations gave differences in accuracy of 3.72

and 4.36 percentage points for MG and BB, respectively.
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Table 5.3: Area under Curve of ROC Results for Motor Neurone Disease
Affected Participants

Table 5.4: Number of Trials Taken Foreward to Analysis (MND Affected
Participants)

Fewer number of trials were suitable to be taken forward to analysis in

the MND affected trials. This was due to a number of reasons such as

file corruption as in the healthy data, but also due to excessive voluntary

activation that could not be removed in EMGlab (possibly due to complexity

of the action potentials) and other electrophysiological activation such as

complex repetitive discharges. The total number of trials collected and the

number taken forward to analysis can be seen in Table 5.4.

Table 5.5: Number of fasciculations detected using GMM in healthy and
MND affected participants from BB and MG muscles).

Fasciculation numbers obtained from the GMM (Table 5.5) showed

generally higher numbers of fasciculations in MND affected participants
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than in healthy participants with 1102 occurences in MND affected partici-

pants and 882 in healthy participants in total. There was one exception, in

the MG in transverse orientation where the numbers were the same (208).

Greater numbers of fasciculations were generally detected in transverse

orientation than in logitudinal (true for seven of the eight cases). Trans-

verse orientation gave total faciculation numbers of 1143, in comparison

to longitudinal orientation which yielded 866. Similar numbers of fascicula-

tions were detected in longitudinal orientation for the BB adn MG muscles,

with 430 detected in BB and 436 detected in MG. In comparison, much

larger numbers of fasciculations were detected in transverse orientation in

BB (727) than MG (416). Individual participant fasciculation numbers can

be seen in Appendix 9.2

5.4 Discussion

This study evaluated: i) how a GMM approach would perform in compar-

ison to the previously reported KLT/MI in identification of fasciculations in

ultrasound images; and ii) how accurately each method performed when

compared to a myoelectric signal based ground truth.

Consistently higher accuracy was obtained using the GMM approach in

comparison to the previously reported KLT/MI approach. Overall, the GMM

was more robust to changes in muscle and probe orientation, whilst main-

taining good accuracy across both unaffected and MND affected groups.

The results may be explained by the GMMs more selective approach
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to motion detection. Although the KLT/MI analysis attempts to provide a

selective approach by minimising motion with low coherence (i.e. noise), it

cannot discount other physiologically based movements in the image se-

quences such as blood vessel pulsation [9]. In contrast the GMM is able

to classify regularly occurring motions such as blood vessel pulsation, as

background and detect large, sporadic events such as fasciculations.

Although the GMM outperformed the KLT/MI here, the accuracy of both

techniques fell short of that in previous work (83-94%) [9] (also see Chap-

ter 4). Human operator identifications were used as the truth signal for

comparison in the previous study, so both the KLT/MI and ground truth

comparator were based on analyses of motion in the image. In contrast,

myoelectric signals denote changes in muscle fibre membrane potential, a

precursor of muscle fibre contraction, not a measure of the motion of the

muscle tissue itself. In addition, the pick-up volume of the needle differs

greatly from the ultrasound pick-up area meaning that fasciculations may

appear in the ultrasound that may not appear in the myoelectric data and

vice versa.

Disparities between levels of activation detected by the two modalities

have frequently been reported, with larger levels of fasciculations being

detected in ultrasound in comparison to EMG [65], [5]. It may be that

the lower levels of agreement between the image based signals and myo-

electric data, in comparison to the KLT/MI and manual identifications, are

due to poorer detection of fasciculations by the truth signal rather than

the performance of the image analysis approaches. Although previous

studies have shown higher agreement levels when using manual ID’s as
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truth signals. This would not be a practical method to employ on a large

scale due to the time and work required. A possible alternative truth sig-

nal may be surface EMG arrays which provide more information on spatial

distributions of activations and cover a larger area of the muscle albeit the

superficial layers. This is an aspect which should be considered in future

work.

Limitations

To fully evaluate the capabilities of automated analysis of ultrasound im-

ages for the diagnosis and monitoring of neuromuscular disease, further

work will need to apply the analysis across a wider range of muscles in

order to demonstrate suitability for application to diseases such as MND,

which requires evidence of fasciculations in muscles across multiple body

regions [91]. In addition, assessment of spatial and temporal twitch in-

formation should be further explored to provide detailed characterisation

of the twitch events which may be valuable for patient stratification and/or

monitoring of disease progression. This information may be extracted from

the GMM, using data such as foreground object locations, area of objects

and peak durations.

5.5 Conclusion

The work presented here provides the first assessment of the accuracy

of two image analysis algorithms to detect fasciculations, compared to
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a myoelectric ground truth signal, and by extension their potential to be

applied to the diagnosis of neuromuscular disease. Differences do exist

between the performance of the algorithms when they are applied to dif-

ferent image content, with results indicating a more selective GMM based

analysis should be used in order to discount the physiological movements

(e.g. blood vessel pulsation, voluntary activation) and for greater tolerance

of differences in collected images resulting from the presence of disease,

muscle fascicle geometry and probe orientation. Further work is required

to evaluate performance of the GMM across a wider range of muscles of

different sizes, shapes and functions to further establish the viability of this

method as a means of non-invasively detecting involuntary muscle activa-

tion in the clinic.
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Chapter 6

Application of Foreground

Detection Analysis to Additional

Muscles

6.1 Introduction

This chapter explores the accuracy of the GMM, when compared to the

EMG truth signal, across a wider range of muscles than has previously

been assessed in the literature and in previous chapters of this thesis.

This is an important area to explore due to the need to provide evidence

of the presence of fasciculations in a number of regions to form any kind

of diagnosis of MND. It would also be the first instance where a computa-

tional technique has been applied to such a wide range of muscles.

MND is characterised by the degeneration of both upper and lower mo-

tor neurones to varying degrees. Electrophysiological signs of MND, such

as fasciculations and fibrillations are a major diagnostic indicator of the
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disease. However, the location and extent of these symptoms can vary

between patients.

Diagnostic criteria for MND are developing and changing as under-

standing of the disease increases. The most recent amendments (Awaji

Shima Recommendations) [91] were introduced in 2012. The amended

criteria require that there be evidence of lower motor neurone loss, reinner-

vation and the presence of fasciculation potentials or fibrillation potentials

and positive sharp waves. These signs should be apparent in a minimum

of two muscles in the cervical and lumbar – sacral region and a minimum

of one muscle in the bulbar and thoracic region. It is therefore necessary

for any diagnostic methods to be easily and successfully applicable to a

wide range of muscles across all spinal regions.

Hypothesis: The GMM will offer good accuracy and generalise well to

a wider range of muscles for the task of fasciculation identification when

compared to an EMG truth signal. This is due to its robustness to noise

and more adaptive nature, allowing it to ignore other underlying physiologi-

cal motion within the image which is particularly pertinent to trunk muscles

which contain clear breathing motion within th images.

Studies such as [65] have assessed ultrasound for diagnostic purposes

throughout a wide range of muscles (biceps brachii, rectus femoris, tibialis

anterior, rectus abdominis, extensors of the forearm and abductor pollicis

brevis). They showed promising results with increased detection of fasci-

culations in comparison to EMG in all muscles with ultrasound detecting

106



Figure 6.1: Examples of ultrasound images collected from muscles rectus
femoris, rectus abdominis, trapezius and thoracic paraspinals and in both

probe orientations (longitudinal and transverse).

fasciculations in 292 out of 391 instances in contrast to 182 out of 335

detected by EMG. However, the only analysis carried out was based on

whether image sequences and EMG traces showed a presence of fascic-

ulations or not and did not investigate frequency of occurrence, time dura-

tion of fascicualations or location of occurrence. The evidence does how-

ever show that fasciculations are visible in ultrasound image sequences

and therefore suggests they should be detectable using computational ap-

proaches.
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Previous applications of computational analysis for the purpose of fas-

ciculation detection, such as [9] and Chapter 4/5, have been restricted to

large muscles of the limbs (MG and BB). However, these muscles alone

would not be sufficient to support a diagnosis. MG and BB have a number

of characteristics that make them ideal for the application of computer vi-

sion techniques. They are limb muscles and therefore are not affected by

any motion due to breathing as muscles in the trunk may be. They also

have a relatively large surface area, with relatively simple architecture and

high contrast between connective and muscle tissue, which make them

relatively easy to image (See Figure 4.1 for examples of MG and BB and

Figure 6.1 for examples of RF, RA, TRAP and TP).

Figure 6.2: GMM signal (red) overlayed with EMG logical signal (blue)
and KLT/MI signal (right)

Chapters 4 and 5 have shown that when comparing the KLT/MI and
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GMM methods to both manual ID’s and EMG, the GMM is either compara-

ble or offers improved accuracy in contrast to the KLT. During preliminary

work, the appropriateness of the KLT for the purpose of fasciculation de-

tection in additional muscles in the trunk and limb was tested. This pro-

duced a signal that showed oscillations due to breathing with any potential

fasciculation events sitting little higher than the noise level (Figure 6.2).

This is likely due to breathing being the dominant motion within the image

meaning that fasciculation detection would be extremely challenging using

this approach. From this point onward due to the quality of the signal and

the previous superior performance of the GMM methods, it was concluded

that the GMM technique offered more benefits and therefore the KLT was

not taken through for further analysis.

It is apparent from current criteria that govern diagnosis of MND, that

any automated analysis should be robust to variations experienced in im-

ages of muscles with varying sizes, shapes and architecture (see Figure

6.1). This chapter will assess the performance of the improved analysis

method (GMM) across additional muscles in order to determine its per-

formance for fasciculation detection across a range if muscles that are

assessed during MND diagnosis.

This chapter will again assess the accuracy of the GMM as in chapter

5. However, with the primary aim of assessing the capability of the GMM

analysis across a wider range of muscles.
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6.2 Methods

Participants and Experimental Protocol

For this study, data collected from the 20 patients, who had previously

been diagnosed with MND (59 ± 14 years, 174.8 ± 9.2 cm, 86.8 ± 13.2

kg, 1078 ± 1148 days since diagnosis) was subject to GMM analysis for

the purpose of fasciculation detection. Data from healthy participants was

not assessed as not enough instances of fasciculations were contained

within the data for comparison, with many containing no fasciculations at

all. The dataset used was the same dataset used in Chapter 5 and was a

novel dataset collected for the purpose of this thesis.

Simultaneous ultrasound images and EMG data were collected from

four different muscles; rectus abdominis (RA), rectus femoris (RF), trapez-

ius (TR) and the thoracic paraspinal (TP) muscles (Figure 6.1). Data were

collected from participants while in the seated position with their legs sup-

ported except from the TP, when the participant was asked to lean forward

to allow for access for the probe and EMG needle. The protocol for image

data collection remained the same as described in Section 4.2, with im-

ages in both longitudinal and transverse orientation being collected for 35

seconds alongside EMG data.

Myoelectric Signal Processing

As in section 6.2, a number of pre-processing steps were completed. All

myoelectric signals were bandpass filtered (4th order Butterworth, 30-500

Hz cut-off), with voluntary activation removed from the original signal us-
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Figure 6.3: Overview of Muscles Assessed and their Innervation

ing template matching, leaving the involuntary fasciculation potentials [93].

As before, periods of involuntary activity were identified using threshold-

ing methods, with the optimal threshold calculated using multiples of the

absolute mean of the signal (Equation 5.2).

A logical signal was then produced, with all values above the threshold

classified as 1 and all values below the threshold classified as 0. These

threshold values for each muscle can be seen in Figure 6.4 .

The logical signal were then compared to thel EMG signal using a ROC

measures of accuracy. This technique was applied to approximately one

third of participants in each muscle/ probe orientation group and param-

eterisation was carried out for each individual muscle (RA, RF, TP and

TRAP). Participants were randomly selected and not included in the final

analysis. These values of accuracy were recorded and plotted and the
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plateau point of the curve was used to give the optimal value of n (Equa-

tion 5.2) for each individual muscle. These results can be seen in Figure

6.4.
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Image Analysis and Parameterisation

As healthy participants were not used in this study (due to the low level of

fasciculation occurrence in the selected additional muscles), participants

from the MND group were used for parameterisation, with all other param-

eterisation steps remaining the same as those carried out in Chapter 5.

Prior to analysis, images were manually cropped to the lower aponeuroses

of the superficial muscle in order to remove any muscles deep to those

containing the EMG needle. Due to the relatively large pick up area of the

ultrasound, images tended to contain multiple muscles. As the myoelec-

tric activity is not conducted across individual muscles, any fasciculations

appearing in muscles deep to the ones containing the EMG needle, would

appear as false positives, despite not necessarily being so. Once parame-

terisation was completed the remaining two thirds of participant data was

analysed using the GMM technique, with the number of foreground objects

present in each frame being used to construct a one dimensional signal for

comparison with the EMG.

Statistical Analysis

Once both the motion analysis (GMM) signals and the logical myoelec-

tric (EMG) signals had been obtained, statistical analyses in the form of

ROC’s were performed [87]. ROCs produce a curve which allows for the

assessment of accuracy between a signal and a binary classifier, at differ-

ent thresholds and are the same method used for a measure of accuracy
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in Chapter 4 and 5. The area under the curve (AUC) is used to quantify ac-

curacy for comparison. Individual ROC curves showing the performance of

each technique across muscle types and probe orientation and combined

curves, showing differences in accuracy between all data in the healthy

control group and all data in the MND affected group were produced.

6.3 Results

As in previous chapters, a number of trials were not taken through to anal-

ysis for an array of reasons. These were due to the presence of exces-

sive voluntary activation that could not be removed using EMGlab and

presence of excessive involuntary activations that were not the focus of

the work presented here (i.e. complex repetitive discharges), which were

particular problems in the TP and RA. A very small number of files were

discarded due to file corruption. //

Table 6.1: Number of Trials Taken Forward to Analysis (MND Affected
Participants)

In addition to this, a number of participants were ruled out for data col-

lection in the RA due to the presence of a feeding peg and one participant

115



was ruled out of data collection from the TP due to another present med-

ical condition. One participant was removed from data analysis in their

entirety due to uncertainty of initial diagnosis. The total number of trials

analysed can be seen in Table 6.1.

Figure 6.5: ROC curves of RF (top left), TR (top right), RA (bottom left),
TP (bottom right) muscles in longitudinal (blue) and transverse (red)

probe orientation for GMM analysis when compared with the myoelectric
truth signal.
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ROC Curves indicating the agreement between the two approaches

and the myoelectric data and the accuracy in different muscles and probe

orientations are shown in Figure 6.5. Results showed accuracy levels that

were generally between 80 and 90%, with the exception of RA in longitu-

dinal which gave 92.01% agreement. Reductions were apparent within all

muscle groups when probe orientation was changed from longitudinal to

transverse, with the exception of the thoracic paraspinals.

Table 6.2: Results Table for MND Affected Participants in RF, TR, RA and
TP.

The RF muscle yielded results of 89.73% in longitudinal probe orien-

tation and 85.68% in transverse, a difference of 4.05 percentage points.

In TR, results of 86.57% and 84.45% in longitudinal and transverse probe

orientation respectively, a difference of 2.12 percentage points. Results in

the RA were 92.01% in longitudinal and 86.37% in transverse, a difference

of 5.64 percentage points and the TP results yielded results of 80.17% in

longitudinal and 84.16% in transverse, a difference of 3.99 percentage

points (see Table 6.2).
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6.4 Discussion

The aim of this chapter was to assess the accuracy of the GMM, whilst

comparing to the EMG as the truth signal across a number of muscles.

These muscles have not previously been subject to any computational

analysis according to the literature. The selected muscles exhibit different

shapes, sizes and architectures (Figure 6.1) in contrast to muscles such

as the MG and BB which have previously been subject to computational

analyses. Robustness across a wide range of muscles would be required if

this method were to be applied for the diagnosis of neuromuscular disease.

The GMM continued to provide highly accurate fasciculation detection,

when compared to the EMG ground truth, with accuracy comparable to

that found in the limb muscles (Chapter 5), with the majority of results

between 80 and 90%. A reduction in accuracy was also found between

longitudinal probe orientation and transverse. This is likely due to less

visible structure in the transverse orientation compared to the longitudinal

(Table 6.2). The GMM requires contrast within the image, which exists in

longitudinal orientations as the white fascicles running through the image

in contrast to the dark muscle tissue. In transverse, this is less appar-

ent as the fascicles are viewed at a more perpendicular angle and so will

contribute to a smaller area of the image and creating less of a contrast

in the image. This is also likely why decreases in accuracy were seen

between healthy and MND participant groups in Chapter 4 and 5. The

findings also provide further evidence that the probe orientation is an im-
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portant factor to consider when developing and assessing computational

analysis approaches and should be considered in design of future experi-

mental studies, whether manual or computational analysis is to be used.

Whilst a number of studies have compared whether fasciculations are

present in ultrasound and EMG across a wide range of muscles [65], [6].

This is the first study which applies computational techniques for fascicu-

lation detection to such a wide array of muscles, with the focus previously

being the gastrocnemius and biceps brachii [9]. In addition to this there

are no studies that compare difference between the accuracy of compu-

tational analyses or human operators between probe orientations as pre-

vious studies have tended to collect image data in either longitudinal or

transverse. It further adds credence to the notion that GMM analysis of ul-

trasound images can act as a reliable alternative to EMG in the detection

of fasciculations and is likely to be applicable to MND diagnosis due to its

ability to retain high levels of accuracy across a number of different muscle

types.

This chapter also demonstrates the GMM’s ability to perform under cir-

cumstances which would cause non adaptive methods to fail, such as the

presence of breathing patterns in a number of these muscles such as TP,

RA and TR (See Figure 6.2). This is also emphasised in established MND

due to additional muscle recruitment for breathing.

As stated in Section 5.4, due to the small pick up volume of the EMG

needle electrode in comparison to the ultrasound imaging area, the two

methods are showing the same data from two different perspectives. Fur-

ther investigation should be carried out using different truth signal methods
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such as surface EMG, in particular array based methods [95], which pro-

vide a wider detection area with more spatial information in comparison

to intramuscular EMG, to further scrutinise of the GMM and its agreement

with the electrophysiological activity of the muscle.

6.5 Conclusion

The analysis of a further four muscles shows no drastic change in accu-

racy levels when compared to results from the larger limb muscles, pre-

viously assessed Chapter 5. The GMM analysis retained high levels of

agreement across TP, RA, TR and RF muscles and across both probe

orientations. However, differences in accuracy were noted between lon-

gitudinal and transverse probe orientations indicating that characteristics

of the image determined by probe orientation are an important factor in

fasciculation identification.

As this and the previous chapter has provided good results across a

wide range of muscles, further confirming its ability to be applied to MND

diagnosis, future work should assess the ability of the GMM to assess

twitch characteristics to provide a quantitative method through which pres-

ence of disease can be determined.
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Chapter 7

Comparison of Fasciculation

Characteristics in Motor

Neurone Disease Affected

Participants and Healthy

Controls

7.1 Introduction

This chapter aims to determine whether spatial and temporal character-

istics of fascicualtions extracted from ultrasound images of muscle tissue

can be used to differentiate between healthy and MND affected partici-

pants.

A positive diagnosis for MND can be a long, drawn out process with

varying degrees of certainty attached to it depending on symptoms present
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(Figure 2.2). It can also be characterised by the combined presence of a

number of symptoms (see Figure 2.1) including muscle atrophy and invol-

untary muscle twitches such as fasciculations. However, patients generally

will be subjected to a number of tests and procedures in order to build a

larger picture of the symptoms they are presenting with as well as other

possible disorders that can be ruled out. Although fasciculations can be

observed in healthy muscles, certain characteristics of the electrophysi-

ological activity in the muscle can indicate the presence of neuropathy.

EMG is the gold standard technique used as part of the diagnosis for MND

and the primary way which fasciculations are detected. Measures such as

variability of duration, frequency of occurrence and discharge interval as

well as phenomena such as complex fasciculations and jitter (see Section

2.1.2) can all add to the weight of an MND diagnosis.

Studies have shown that a number of measures of fasciculation po-

tentials differ between those attributed to MND and benign fasciculations.

For example in [20], number, time duration, number of turns and ampli-

tude were all greater in MND patients in comparison to those with Benign

Fasciculation Syndrome. Also, due to the patterns of denervation and rein-

nervation that occur during MND, fasciculation potentials display increased

complexity in comparison to those occurring in healthy individuals [21].

Quantitative analysis of fasciculations have been carried out using ul-

trasound images of healthy muscle, with [44] reporting duration in muscles

such as Gastrocnemius, Biceps and Triceps Brachii, Tibialis Anterior and

Paraspinals, for which a average time duration of 500 ms was recorded.
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However, it has not currently been investigated whether the twitches cap-

tured in ultrasound images can be determined to be from a healthy par-

ticipant or participant with neuromuscular disease in any quantitative way

other than the overall occurrence during each trial, such as in [65] and [6].

In order to allow for ultrasound to be considered as a valid technique

to aid diagnosis, as is the case for EMG, it is necessary to determine

whether individual fasciculations in healthy and MND affected participants

can be distinguished from the image sequences. The aim for this chapter

is to quantify any significant differences between twitch time duration and

morphology as they appear in ultrasound images when assessed using a

GMM analysis.

Hypothesis: Spatial and temporal characteristics of fasciculations ex-

tracted from ultrasound images can be used to differentiate between healthy

and MND affected participant groups.

7.2 Methods

For this study, data collected from 20 MND affected (59 ± 14 years, 174.8

± 9.2 cm, 86.8 ± 13.2 kg, 1078 ± 1148 days since diagnosis) and 20

healthy participants (54 ± 20 years, 168.8 ± 11.4 cm, 79.0 ± 18.1 kg)

as described in Chapter 4 was analysed. MG and BB data were selected,

with images collected in both longitudinal and transverse probe orientation.

This study was restricted to MG and BB as it was a comparative study be-
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tween fasciculations in healthy and MND affected participants; additional

muscles did not provide enough healthy fasciculations to allow for effective

comparison.

Figure 7.1: Example of the process through which individual twitches are
extracted from image for futher analysis using the one dimentional

foreground area signal (Example taken from MG in longitudinal
orientation from a MND participant).

A GMM analysis was performed on images as described in Chapter 5

at optimal parameters for each muscle and probe orientation (further de-
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tails in Appendix 2), however, for the purpose of this chapter, clusters of

foreground pixels were not rejected based on blob size and all were taken

into account. This was done in order to maintain the maximum amount of

information from the image. Twitches were segmented from the signal us-

ing the output GMM signal from Chapter 5, as this was cleaner and better

suited GMM signal for twitch identification purposes, but left little detail in

how the signal developed through time. Output values for each frame were

the total area of foreground pixels, the Euler number of the binary mask

and the foreground object centroid locations. The total area of foreground

pixels, which was represented as a one dimensional signal, demonstrates

how the amount of the image classed as foreground varies through time

(see Figure 7.1). The Euler number is calculated from a binary image

(foreground/ background pixels) and is the number of objects minus the

number of holes (see Figure 7.2), this will give an idea of the how concen-

trated or diffuse the foreground pixels were spread throughout the image.

The centroid locations will also give information on the spatial distribution

of foreground pixels during a fascicualtion and how the locations of objects

change throughout the duration of twitch.

Analysis of Temporal Twitch Characteristics

Start and end points of each twitch were determined by calculating the lo-

cation in the foreground area signal either side of the twitch where dy/dx

= 0. Due to the movement of twitches through the muscle tissue, twitches

present as a double peak in the GMM signal, due to the distinct contractile,
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Figure 7.2: Example of how the Euler number of a binary image is
calculated; number of foreground objects (white) minus the number of

holes (black) (Enum = Objf −Objb).

plateau and relaxation phases of the fasciculation. Therefore to obtain an

accurate measure of the twitch time duration the first minima point after

the twitch peak was ignored and the end point was counted as the next

frame where dy/dx = 0.

The difference between the start and end points was then calculated to

determine the twitch duration measures shown in Figure 7.3. Four timing

measures were calculated; total twitch duration, contraction phase dura-

tion, relaxation phase duration and inter peak duration and presented us-

ing boxplots.The total twitch duration represented the period of time that

motion was present in the image and was classed as a foreground object.

Twitches also generally displayed a double peak morphology, which was

split into what was considered to be the contraction and relaxation phase

of the twitch due to observations from images that showed a phase of
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Figure 7.3: A. Example of peak analysis measures: 1. Peak to peak
difference. 2. Maximum peak height. 3. Minimum peak height. B.

Example of twitch timing analysis measures: 1.Total twitch time duration.
2. Contraction phase duration. 3. Relaxation phase duration. 4. Inter

peak duration.

initial motion a period of tension and then another period of motion in the

opposite direction. These timing measures were calculated from the twitch

start point to the minimima and from the minima to the twitch end point for

the contraction and relaxation phase respectively. Finally, the peak to peak

time was calculated as the time between the two local maxima points (i.e.

peak contraction phase, peak relaxation phase).

7.2.1 Foreground Area Analysis

During the GMM analysis, data on the area of foreground pixels for each

frame was recorded. To ensure fair comparison, the total area of each

cropped image was also calculated and the foreground area signal was

divided by the total image area. Four different measures were calculated;
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Peak to peak distance, maximum peak height and minimum peak height

(Figure 7.3), these values were measured for each individual twitch. As

stated in the previous section, twitches generally displayed a double peak

morphology, which was split into what was considered to be the contrac-

tion and relaxation phase. These measures were then visualised using

boxplots so any variations during different twitch phases and across par-

ticipant group, muscle and probe orientation could be noted.

7.2.2 Foreground Object Centroid Analysis

The (x,y) values for the centroids of each foreground object in each frame

were used to determine how spread foreground objects were throughout

the image. Nearest neighbour values for each centroid location were cal-

culated and total distances were summed to give a value for the total dis-

tance between the foreground objects per frame. This value was divided

by the total area of the cropped image (which was dependent on muscle

size as it was presented in the image) to provide a fairer comparison be-

tween muscles which filled a larger proportion of the total image.

The Euler number of the binary mask of the image was also collected.

This gave the number of objects in the image minus the number of holes

in the object and will indicate how sparse or dense the distribution of the

foreground objects are.
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Figure 7.4: Example of the total distances (red) and the calculation of x
(green) and y (blue) components using k nearest neighbours from

foreground object centroids (pink)

7.2.3 Statistical Analysis

Statistical analysis was carried out to determine any significant differences

in temporal or area twitch characteristics between the healthy and MND af-

fected participants. The normality of the data was tested using an Anderson-

Darling test to determine the type of significance test that would be used.

Data as the twitch timing and peak height data appeared to have a log-

normal distribution, data was transformed by taking the log of all values

for the twitch timing data and the cube root transform of the twitch peak
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data. This produced data that looked to be normally distributed. Although

further tests to determine the distribution of the data rejected the null hy-

pothesis that it was normally distributed, as the data distribution looked

approximately normal according to histogram and qq-plots, it was decided

that an ANOVA would be used to calculate p values for the differences

between the healthy and MND affected participant groups as well as be-

tween the MG and BB muscle groups a mixed effects model was used

due to the presence of both fixed (muscle, probe orientation and partici-

pant group) and random effects (participant). Due to the reduced number

of tests when using an ANOVA, the critical level at which p values were

deemed significant were set at alpha = 0.05/4 or 0.0125, using a Bonfer-

roni correction [96].
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Figure 7.5: Two examples of data distributions successfully transformed
(top) and which could not be successfully transformed (bottom)

The distance between foreground objects was determined to be not

normally distributed and could not be successfully transformed, p values

were calculated using the non-parametric Wilcoxon signed rank test. Ex-

amples of the distribution of the data can be seen in Figure 7.5 the critical

level at which p values were deemed significant were set at α = 0.05/6 or
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0.0083.
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7.3 Results

7.3.1 Twitch Phase Timings

Results showed variations in most measures between the healthy and

MND affected participant groups. However, these variations did not ap-

pear to be conisitent across all muscle groups and probe orientations. The

distributions of results from each measure in for healthy and MND partici-

pants groups are shown as boxplots in Figure 7.6.

Figure 7.6: Boxplots showing comparisons of healthy (H) and MND (M)
results for twitch time duration
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Table 7.1: Table showing mean and standard deviation values for twitch
phase durations (shown in frames/ seconds) in healthy and MND affected
participants (1. total twitch time, 2. contraction phase time, 3. relaxation

phase time, 4. peak to peak time).

In the MG muscle for longitudinal probe orientation, there was a greater

spread in the total twitch duration for the MND participant group, with stan-

dard deviation of 0.094 in comparison to 0.084 in the healthy participants.

The MND affected data also displayed a slight skew towards twitches with

a greater duration in comparison to healthy participants, with mean dura-

tions of 0.291 and 0.274 seconds for MND and healthy twitches respec-

tively. The contraction phase was also longer in the MND group when

compared to healthy participants (mean values of 0.174 seconds in con-

trast to 0.155 seconds), however the relaxation phase was similar between

the two groups (0.117 for MND and 0.119 for healthy). The peak to peak

difference also showed greater twitch durations in the MND affected partic-

ipants in comparison to healthy, with mean twitch times of 0.176 seconds
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in MND and 0.171 seconds in healthy participants.

In contrast to the longitudinal probe orientation, the transverse orienta-

tion yielded shorter durations across all four measures for the MND af-

fected participant group, with mean values of 0.270, 0.145, 0.132 and

0.159 seconds for the total twitch time, contraction time, reaxation time

and peak to peak time respectively. In comparison, the corresponding

healthy values were 0.284, 0.153, 0.132 and 0.174 seconds. A full set of

mean and standard deviation values for the twitch timings as well as timing

results in number of frames can be found in Table 7.1.

Table 7.2: Results from ANOVA Calculations Showing P Values for
Muscle, Probe Orientation and Participant Groups for Each of the Four

Timing Measures.

The results from the BB in longitudinal probe orientation show similar

distributions of twitch durations as the MG, generally with greater dura-

tions being seen in the MND affected participant group. In the MND group

the mean values were 0.158 seconds for the total twitch duration, 0.087

seconds for the contraction phase, 0.071 seconds for the relaxation phase
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and 0.069 for the peak to peak time. The healthy participant group showed

mean values of 0.146, 0.089, 0.057 and 0.061 seconds across the same

measures. However, the differences were less pronounced in the con-

traction phase timings than in MG. Also, differences existed between the

groups for the relaxation phase in the BB (but were not noted in the MG).

The transverse trials showed the largest differences between all other

trials, with a large number of outliers. Large differences in the distribu-

tions between the total time and the peak to peak timings could be seen

between the MND affected and healthy participant groups, with the MND

being of longer duration. However, the mean values of these two mea-

sures did not differ greatly (0.212 in healthy and 0.213 in MND for total

twitch duration and 0.134 in healthy and 0.127 in MND for peak to peak

time). This may be due to the large number of outliers in the data. For the

contraction and relaxation phase timings the differences in the distributions

were smaller, but MND twitches still tended to be of longer duration.

Although the focus of this chapter was the differences between the

healthy and MND affected participant groups, it was anticipated that in-

teractions between muscle group, probe orientation and participant group

would have some effect on overall results. Therefore, a linear mixed ef-

fects model combined with an ANOVA was used for analysis of the results.

This allowed for the determination of levels of significance for each of the

groupings. P values calculated for each of the four measures between the

healthy and MND affected groups are shown in Table 7.2. For each of the

four twitch timing measures, the participant grouping (healthy/ MND) was
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significant for the timing of the relaxation phase of the twitch. This was

also the case for the muscle type grouping and probe orientation.

7.3.2 Characteristics of Twitch Amplitude

Boxplots were again used to show the differences between MND affected

and healthy participant groups for four measures based on the change

in the number of foreground objects as a proportion of the total image

size throughout the duration of a twitch. These again showed variations in

most measures between the healthy and MND affected participant groups,

which were not generally consistent between variations in muscle and

probe orientation. The three measures used (shown in Figure 7.1) were;

the difference between peaks, the maximum peak value and the minimum

peak value.

For the MG trials in longitudinal probe orientation, peak height differ-

ence and the maximum peak height were greater in the healthy partic-

ipants than in the MND affected group, with mean values of 0.082 and

0.069 in healthy participants and 0.069 and 0.055 in MND affected partici-

pants. However, the minimum peak value was greater in the MND affected

participants than in healthy participants, with mean values of 0.022 and

0.019 for minimum peak height in healthy and MND participants respec-

tively. The same patterns were apparent in the MG in transverse probe

orientation with greater peak difference and maximum peak values in the
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Figure 7.7: Boxplots to show comparisons of healthy (H) and MND (M)
results for total area of foreground pixels

healthy group (mean values of 0.088 and 0.072 in healthy and 0.056 and

0.036 in MND) and greater minimum peak.

The BB showed more differences between the longitudinal and cross

sectional probe orientation groups than in the MG. The longitudinal probe

orientation seemed to give comparable peak difference. However, the

mean values showed differences (with the peak difference giving values

of 0.001 in healthy participants and 0.0009 in MND affected participants).

The maximum and minimum peak height are greater in the MND affected

group, with mean values of 0.071 and 0.044 in healthy and 0.055 and

0.033 in MND participants. In cross sectional probe orientation, the peak

difference and the maximum peak value are greater in the healthy partic-
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Table 7.3: Table showing mean and standard deviation values for twitch
peak heights in healthy and MND affected participants (1. maximum peak

height, 2.minimum peak height, 3. peak height difference) Values are
reported as total foreground area as a proportion of the total area (in

pixels) of the cropped image.

ipant group, with mean values of 0.077 and 0.024 for healthy participants

and 0.065 and 0.025 for MND affected participants. The mean minimum

peak values were less in the MND participants (0.044) in comparison to

the healthy participants (0.053) , however, the healthy values had greater

spread, with a standard deviation of 0.053 compared to 0.035 and a higher

upper whisker value. The full set of results can be seen in Table 7.3.
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Table 7.4: Results from ANOVA Calculations Showing P Values for
Muscle, Probe Orientation and Participant Groups for Each of the Three

Peak Amplitude Measures.

P values calculated for each of the four measures between the healthy

and MND affected groups are shown in Table 7.4. The value used to deter-

mine significant results was found through the method described in 7.3.1

and gave a p value of 0.0125 or less. Significant values for the participant

group were seen for the relaxation phase peak height and the contraction

phase peak height, but was ot significant for the peak difference mea-

sure which yielded a p value of 0.712. Significant p-values were found

for peak difference and relaxation phase peak height, but not contraction

phase peak height which gave a p-value of 0.039. This was also seen

for the muscle type, which gave p-values of less than 0.0125 for the peak

dfference and relaxation phase peak height and a p-value of 0.573 for the

contraction phase peak height.
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7.3.3 Distance between Foreground Object Centroids

Results for the total distances between object centroids are shown in Fig-

ure 7.8, split into the x and y components. These boxplots show large dif-

ferences between the x and y distances for both groups in the BB, which

weren’t as pronounced in the MG. The total distance between the x compo-

nents of centroids was greater in the healthy twitches in BB in comparison

to the MND twitches. The y components were less consistent, showing

a greater distance in the healthy twitches when images were collected in

transverse orientation. However, in longitudinal orientation y distance val-

ues were comparable.

Results from MG showed greater distances (x component) in the healthy

group in longitudinal orientation (4.0× 10−4 and 1.0× 10−4 for healthy and

MND respectively), however the healthy data had much greater spread

(3.0× 10−4 compared to 1.0× 10−4). The same true in transverse orienta-

tion, with the total distance between the x component of centroids being

greater in healthy participants (2.0×10−4 compared with 1.0×10−4 in MND).

For total y distances vary few differences can be seen between the differ-

ent muscle, probe orientation and participant groups. All trials bar one

gave mean values of 5.0×10−4±1.0∗10−4, with the BB CROSS trial in the

MND affected participants giving a mean value of 4.0× 10−4 ± 1.0× 10−4.

As in 7.3.1. Al full set of mean and standard deviation values for total x

and y distances and Euler number can be viewed in Table 7.5.

Using the corrected α value of 0.0083 or less. The p values for the total

distances between object centroids reported in Table 6.2 show significant
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differences (p = 0.005 or less) between the healthy and MND affected par-

ticipant groups in all but the MG CROSS trial for the total x component

distances, where p = 0.07.

Figure 7.8: Boxplots showing total x and y distances between object
centroids for healthy and MND affected participant groups in MG and BB.
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Figure 7.9: Boxplots showing mean Euler number of image for twitches
from healthy and MND affected participant groups in MG and BB.

Mean Euler number values, shown in Table 6.2 showed highly signif-

icant results across both muscles and probe orientations, with the MND

affected participant group showing greater Euler number values for all four

trials (between 3.7×10−3 and 10.5×10−3 for healthy compared to between

9.2 × 10−3 and 17.3 × 10−3 for MND). These values were also generally

higher in BB than in MG and generally higher in transverse compared

to longitudinal with the exception on BB MND where mean values were

17.4× 10−3 for LONG and 17.3× 10−3 for CROSS (For all mean and stan-
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dard deviation values see Table 7.5. These differences all gave p values

of less than the corrected significance level of 0.0083. Distances between

foreground objects in the y direction were less conclusive, with the level of

significance only reached in the MG CROSS trial. However, the distances

between foreground objects in the x direction all gave p values that were

less than 0.04.
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Table 7.5: Table Showing the Mean and Standard Deviation Values for
Total X and Y Distances and Euler Number in Healthy (Top) and MND

Affected (Bottom) Participant Groups.

Table 7.6: Significance (P values) of total x and y distances between
object centroids and object area differences between healthy and MND

affected participant groups.)

The differences between the two participant groups were visualised

using 3D scatter plots, shown in Figure 7.10 it can be seen that although

there is overlap between the two groups, in three of the four trials (MG

LONG, BB LONG and BB CROSS) the majority of twitches cluster into

two distinct groupings. However, this is not the case in the MG CROSS

trials where the overlap of the two groups is absolute.
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Figure 7.10: 3D scatter plot showing total distances between object
centroids (x and y components) and Euler number in MG and BB with

MND participants in red and healthy participants in blue.
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7.4 Discussion

This chapter aimed to provide a more in depth, quantitative analysis of

muscle twitches as they occur in ultrasound images and consider two main

questions; are there differences between spatial and timing data related to

twitches when detected using the GMM and do these differ between mus-

cle and probe orientation?

Results were split in to three groups; time durations of the different

twitch phases, the variations in number of foreground objects during dif-

ferent twitch phases and the distances between object centroids. The

twitch timing duration measures showed similar patterns in the longitu-

dinal and cross sectional probe orientations of the BB. However, between

the two probe orientations in the MG the longitudinal generally showed

larger time durations in the MND affected group while the cross sectional

orientation generally showed greater time durations in the healthy partic-

ipant group. The possible reasons behind these differences between the

MG and BB may be due to the structural differences and fibre orientation

between the two muscles. With the BB being a parallel fibre orientation,

when the probe is orientated longitudinally images are collected along the

length of the fibres and perpendicular to the fibres in cross sectional ori-

entation. However, the MG is a pennate muscle meaning that when the

probe is placed either in longitudinal or cross sectional orientation the fi-

bres will run through the imaging window at an oblique angle, which may

explain the similarities in results in the BB and differences in the MG. Sig-

nificant differences were seen between the participant groups in one timing
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measure, which was the relaxation phase time. Although the contraction

phase did not reach a level of significance equal to alpha its p value was

less than 0.05, which could reach the alpha value with greater a number

of fasciculations. This is an expected outcome as it is likely due to the dif-

fering tissue properties of healthy and MND affected muscle that muscle

contraction and relaxation occur over different time scales.

The variations in number of foreground objects over time for MG showed

greater values for peak difference and maximum peak values in the healthy

participants, with the minimum peak value being greater in the MND group.

Minimum peak values showed the inverse, with healthy participants having

lower numbers of foreground objects during the secondary peak phase.

In the BB muscle, results were less consistent. In longitudinal probe

orientation, similar peak difference and maximum peak values were seen

between the two groups, with the MND group, generally having larger min-

imum peak values. In the cross sectional probe orientation, as in the

MG, the peak difference and the maximum peak values were larger in the

healthy participants. However, the Minimum peak values were larger in

the healthy participants. In three out of the four muscle/ probe orientation

combinations, lower peak difference and maximum peak values seemed

to indicate the presence of MND.

In BB, the occurrence of fasciuclations was infrequent in healthy partic-

ipants. This may be one reason why BB results were less consistent that

the results from the MG. This theory could be tested by collecting larger

amounts of data from healthy participants so that the number of twitches
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compared between the two groups was more even. Acceptable levels of

significance were achieved in two out of the four measures; maximum peak

height and minimum peak height.

The distance between foreground object centroids showed differences

that were clear in the BB x components (Figure 7.8), with the total dis-

tances being greater in the healthy participants. The y components in BB

CROSS showed again greater total distances in the healthy participants,

however, results were similar in BB LONG. Overall, p values calculate for

the differences between the healthy and MND affected participant groups

showed that all results in BB were significant. This was not the case in

MG and results were generally more varied. This is possibly due to the

different fibre architecture of the two muscles. The parallel architecture of

the BB means that a longitudinal probe orientation gives a view directly

parallel to the muscle fibres and a transverse orientation gives a view per-

pendicular to the muscle fibres. Due to the pennate architecture of the

MG, the view of the muscle collected in longitudinal and transverse probe

orientations will always be oblique to the muscle fibres. It is also possible

that this difference in architecture causes the fasciculation to move in a

different manner between the MG and the BB, causing the spread of the

foreground objects to be different between the two muscles and probe ori-

entations.

The Euler number values showed conclusive differences between the

healthy and MND affected participant groups and were significantly greater

in the MND twitches in comparison to healthy twitches. As the Euler num-
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ber is based on the number of foreground objects minus the number of

holes in the objects, this indicates that the healthy twitches show a smaller

total number of foreground objects or that such objects are more sparsely

clustered and contain a large number of holes. This may be due to the

reinnervation of denervated fibers to other motor units to create larger mo-

tor units.

By plotting the x and y component total distances against the Euler

number, the individual twitch values were seen to separate, with reason-

able distinction into two groups. However for one trial (MG CROSS) this

was not the case. The reason for this is not clear, however, in addition

to no clear groupings being apparent in the 3d plot, the MG CROSS also

showed the highest p values for total distances between the x and y com-

ponents of the centroids. It is possible that the probe orientation is just not

suitable for an analysis of this type and this should be kept in mind in any

future studies. It is also possible that due to awkward positioning required

for probe access in MG CROSS that the problems may also be due to

inferior image quality in comparison to other trials. Again this should be

considered should any future work take place.

7.5 Conclusion

The more in depth analysis of individual twitches yielded possible meth-

ods with which to differentiate between healthy, involuntary activation and

pathological, involuntary activation caused by MND. Although there were
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indications of differences between the two participant groups, these were

not necessarily consistent across the muscle and probe orientations, al-

though differences were generally significant. Overall, the timing mea-

sures and spatial analysis yielded more consistent significant differences

between the participant groups. To determine the feasibility of these mea-

sures as diagnostic markers, a larger scale study across a wider range of

muscles would be required. As the majority of muscles in healthy partici-

pants will not twitch frequently enough to provide the data required, motor

unit stimulation may also be an additional way to determine spatial and

temporal characteristics in twitches. In addition to this, probe placement

should be optimised on a per muscle basis to find the maximal differences

between the participant groups.
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Chapter 8

Discussion and Conclusions

The work presented here has answered a number of questions around the

viability of the use of ultrasound imaging for the detection and analysis

of involuntary muscle twitches, which may be applicable to MND diagno-

sis and monitoring. Firstly, the GMM analysis offers comparable accuracy

to the KLT technique in relation to operator ID’s and better accuracy in

comparison to intramuscular EMG. It has also demonstrated the GMMs

ability to perform across a number of muscles of different shapes, sizes

and architecture which is necessary if a technique is to be considered as

a potential tool for MND diagnosis. It has also provided a mixed number

of positive results in relation to discriminating between individual twitches

in the healthy and MND affected groups using spatial and temporal twitch

characteristics. This has provided a solid basis for future work and offered

potential methodological improvements that may enable future studies to

accurately differentiate between healthy and pathological twitches.
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Review and Suggestions for the GMM and Computational Analysis

The aims and objectives laid out for this thesis in Chapter 1.0.1 were fo-

cused on exploring the potential of computational analysis of ultrasound

images for the detection and characterisation of fasciculations in healthy

and MND affected participant groups. The objectives identified to achieve

this aim were; the development of an additional analysis technique, the

comparison of the new technique to the KLT, the application of techniques

to previously untested muscles and comparison of spatial and temporal

characteristics of twitches from the healthy and MND affected groups. The

objectives stated above and in the introduction have been successfully

carried out. Chapters 4 and 5 found high agreement between the KLT/

GMM analyses and the manual ID truth signal, confirming the GMM as

a valid fasciculation detection technique. The comparison with the EMG

truth signal showed the GMM to be the superior technique as it offered

improved accuracy compared to the KLT across both muscles and probe

orientations. This highlighted the best current technique for the potential

application of MND diagnosis, although as the GMM bases its identifica-

tions on the pixel intensity outliers rather than the actual motion between

frames a possible alternative may be a technique that is a combination of

both the GMM and the KLT, using the GMM to reduce noise and the optical

flow method to calculate motion to determine directions and velocities of

motion.

A further objective; extending the analysis to a wider array of muscles,

highlighted a weakness in the KLT. In muscles where breathing patterns
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were apparent, such as the TP and RA, the dominant component of the

output signal was due to the inhalation and exhalation of the participant,

with any underlying fasciculations lost. However, the GMM was able to

adapt to the repetitive motion of breathing and detected the underlying

fasciculations with good degrees of accuracy. This further supported the

GMM as the optimal computational technique identified to date.

The final objective of this thesis was the characterization of twitches as

either healthy or pathological based on their spatial and/ or temporal pro-

file. Although a number of trials were shown to have significant differences

between the healthy and MND affected participants this was not consis-

tent across all trials. The most promising results were shown in the timing

measures of twitch peaks and spatial analysis taken from the distribution

of foreground objects across the image (Section 7.3.1 and 7.3.3). Twitch

timing measures (total twitch duration, contraction phase duration, relax-

ation phase duration and peak to peak duration) in longitudinal orientation

as well as the Euler number and x distances in the spatial analysis consis-

tently and significantly higher in the MND group compared to the healthy

group (Figure 7.9). However, the timing analysis results for transverse

probe orientation showed less consistent differences, although differences

between the participant groups were shown to be significant.

The 3d plots of the x and y components of the total distances between

object centroids and the Euler number showed two clusters for healthy and

MND affected participant groups for all but the MG CROSS trials (Figure

7.10). Although the image and centroid analysis showed promising re-

sults with relatively consistent differences between the healthy and MND
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data, the peak amplitudes were not consistent between all trials (Section

7.3.1 and Section 7.3.2) and results were not always significant, meaning

that particular markers for MND in relation to peak height could not be

established with any great certainty. To further improve the computa-

tional analysis, one possible option would be to segment images during

analysis in order to separate the superficial and deep muscles. Currently,

images are cropped to include only the superficial muscles such as the

BB and the MG, with muscles such as the Soleus and the Brachialis not

included. A segmentation method such as active shape models (that have

previously been used on ultrasound images of skeletal muscle [97], [9]

would mean that a much larger amount of data could be analysed with no

additional data collection time required as analysis could be localised to

specific muscles. This methodology would also allow for assessments to

be made as to whether any differences, in relation to presence and char-

acteristics of fasciculations, exist between superficial and deep muscles

throughout the course of the disease.

Computational Analysis for Diagnosis and Clinical Trials

The characterisation of healthy and MND fasciculations was largely suc-

cessful, with significant differences between groups found for a number

of spacial and temporal measures. However, these results were only col-

lected in the BB and MG muscles, which for the purpose of MND diagnosis

would not be sufficient (due to the required presence of fasciculations in a

number of locations). If this technique were to be presented as a potential
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complimentary or alternative method to EMG, the methodology presented

in Chapter 6 would, at the very least, need to be extended to the RF, RA,

TP and TRAPS and additional muscles of different size, shape and archi-

tecture. These muscles could not be carried forward to analysis in Chap-

ter 7 due to fasciculations being all but absent in healthy participants. This

could potentially be remedied by conducting further studies into stimulated

twitches, potentially using similar methodology to that used in [66] where

twitches were stimulated from the skins surface and applying this across

a wider range of muscles to ensure a large enough number of instances

to enable a full scale analysis and comparison between groups. This may

also improve the statistical power of results collected from the MG and BB,

where fasciculations were captured in healthy participants, but in some

cases not in the numbers collected from MND affected participants. A

larger number of healthy fasciculations may decrease the p values that did

not reach the predefined alpha value to a level of significance.

This work further supports the positive contributions ultrasound imag-

ing could make for improved detection of involuntary activations in contrast

to the current gold standard technique of EMG. The GMM has been shown

to provide good agreement with two different truth signals and is robust to

different muscles and probe orientations. It also offers a more objective

alternative to the methods that currently exist within the literature [6], [65]

which are generally based on ultrasound image assessment by clinicians

or other expert operators. Such studies generally focus on distinguish-

ing between MND patients and other neurogenic or myogenic disorders,

156



which has not been the focus of this thesis. The work presented here has

focused on objective detection and determination of differences between

involuntary activations within healthy and MND participant groups, but has

stopped short of attempting to classify patients as MND affected based on

such data. In order to answer this question conclusively, a larger scale

data collection, potentially in the form of a clinical trial is needed (of either

MND or other similar pathologies), possibly when patients initially present

with particular symptoms at clinic. From these data, an attempt to clas-

sify patients as MND affected or MND unaffected could be made based

on number and characteristics of involuntary muscle events, with sensitiv-

ity and specificity values of this technique being calculated, bringing it in

line and enabling a direct comparison with the subjective analyses existing

within the literature [65], [6], [5] and enabling an assessment in terms of

what it may add to EMG protocols. Due to the relative rarity of MND, this

could potentially require large numbers of participants in order to ensure

enough cases of MND will be encountered.

Additional Future Work

In addition to previous suggestions for further work, it may also be of ben-

efit to combine the ultrasound with surface EMG (sEMG) arrays to map the

activation patterns of the myoelectric signals with the mechanical displace-

ment displayed in the ultrasound images [95]. The intramuscular EMG that

has been used for comparison with the ultrasound images in this thesis

has a very small pick up volume, therefore it can indicate if a twitch has
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occurred within the muscle, but gives no indication where it has originated

or how it has been conducted through the tissue. A sEMG array for more

localisation of activations which would allow for positions of activations to

be compared to locations of twitches in the ultrasound, in contrast to sim-

ply comparing activation in the images and EMG based on the time with

which they occur.

8.0.1 Limitations

This body of work has introduced an additional computational analysis

method as well as showing significant differences between twitches identi-

fied in healthy and MND affected participants. However, the number of par-

ticipants was relatively small (n = 40). Also the majority of MND affected

participants were usually at least 3 months post diagnosis (for some this

was years), with MND and its symptoms being well established. Therefore,

the differences found between participant groups can not be assumed to

exist during the early stages and this would require further investigation.

Also, muscles such as the RA and TP had fewer successful trials in com-

parison to the other muscles due to issues with access. Mobility issues

in some participants meant that they were unable to support themselves

away from the couch, which meant there was not enough space for probe

access. This could also not be remedied by repositioning participants as

many could not be placed in the prone position due to breathing difficulties.

In the RA participants were excluded from data collection in that particular
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muscle if a feeding peg was present. This was due to increased infection

risks that may be introduced by the needle electrode and probe.

Finally, lower accuracy levels still exist for the majority of results in the

images taken from MND affected participants compared to healthy partic-

ipants, which is likely due to the low contrast of the images from in partici-

pants with MND due to changes in the muscle tissue properties. Accuracy

levels were still above 80% in all cases, however, further investigation in

how to improve the GMM in lower contrast images should also be consid-

ered to make a fairer comparison between the healthy and MND affected

populations.

8.0.2 Conclusion

This thesis has contributed to validating an objective, computational anal-

ysis of ultrasound images as a non invasive means of the detection and

characterisation of involuntary muscle activations. Through the testing of

computer vision techniques for different probe orientations and a number

of muscles, this method, which has not previously been used for this ap-

plication has been found superior to the current analysis technique.

A number of different key contributions were made in this thesis, these

include:

1. Finding comparable results between the GMM and KLT when using

operator identifications as a truth signal.

2. Showing superior results from the GMM in contrast to the KLT, when
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using the intramuscular EMG as truth signals.

3. Showing good levels of agreement with the EMG truth signal, across

a wider range of muscles when using the GMM analysis.

4. Finding significant differences between the spatial and temporal char-

acteristics of fasciculations, as they appear in ultrasound images.

Further work should initially be focused on clarifying spatial and tem-

poral twitch markers through a much larger healthy participant dataset and

the collection of images of stimulated twitches from healthy and MND af-

fected participants. A larger data set may give greater statistical power

to those trials that had not achieved significant p values, with a stimu-

lated twitch study allowing for a comparative data collection across a wider

range of muscles, which has not been possible here due to low numbers

or absence of fasciculation in the healthy participant group. Once this

has been achieved, a large scale clinical study collecting data at the pre-

diagnosis stage with the aim of separating the MND data from all other

data through the computational analysis. In addition to this, a comparison

of the computational methods and surface EMG arrays would allow for

electrophysiological data to be collected from a area similar to that viewed

by the ultrasound potentially acting as an improved truth signal in contrast

to the intramuscular EMG. This further work should enable a full conclu-

sion to be made on whether computational analysis of ultrasound images
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is a valid method for MND diagnosis.
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1. Subsequent tables show parameterisation results for GMM analysis, showing accuracy 

results for test data set when using variable values for number of Gaussians, learning rate 

and background ratio. Optimum values in red. 
 

 

Table 1 

Parameterisation Results for GMM Analysis (Biceps Brachii) 

 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 90.09 

80 5 0.05 87.34 

80 5 0.005 86.50 

80 4 0.5 89.67 

80 4 0.05 87.32 

80 4 0.005 86.51 

80 3 0.5 86.34 

80 3 0.05 87.81 

80 3 0.005 86.51 

85 5 0.5 90.35 

85 5 0.05 88.94 

85 5 0.005 88.01 

85 4 0.5 87.00 

85 4 0.05 89.06 

85 4 0.005 88.01 

85 3 0.5 86.48 

85 3 0.05 87.62 

85 3 0.005 89.77 

90 5 0.5 77.56 

90 5 0.05 91.07 

90 5 0.005 88.73 

90 4 0.5 81.08 

90 4 0.05 91.52 

90 4 0.005 88.73 

90 3 0.5 88.55 

90 3 0.05 91.57 

90 3 0.005 88.73 
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and KLT/MI from Chapter 4
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Table 2 

Parameterisation Results for GMM Analysis (Medial Gastrocnemius) 

 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 88.6 

80 5 0.05 84.2 

80 5 0.005 83.45 

80 4 0.5 86.08 

80 4 0.05 84.39 

80 4 0.005 83.45 

80 3 0.5 83.07 

80 3 0.05 84.76 

80 3 0.005 83.45 

85 5 0.5 89.26 

85 5 0.05 87.9 

85 5 0.005 86.9 

85 4 0.5 87.04 

85 4 0.05 90.54 

85 4 0.005 86.9 

85 3 0.5 85.04 

85 3 0.05 90.61 

85 3 0.005 86.9 

90 5 0.5 92.04 

90 5 0.05 92.72 

90 5 0.005 93.16 

90 4 0.5 88.47 

90 4 0.05 92.73 

90 4 0.005 92.3 

90 3 0.5 82.52 

90 3 0.05 92.95 

90 3 0.005 92.3 

 

2. Subsequent tables show parameterisation results for KLT/ MI analysis, showing accuracy 

results for test data set when using variable values for direction and speed of motion. 

Optimum values in red. 
 

 

Table 3 



Parameterisation Results for KLT/MI Analysis (Biceps Brachii – Transverse) 

 

Direction 
of 

Motion 
�⃗⃗�  

Speed of Motion |m| 

1 2 4 8 

Π 75.21 75.21 75.21 75.21 
π /2 82.29 80.26 78.73 82.29 
π /4 84.33 81.57 74.71 84.38 
π /8 85.90 83.26 78.68 85.90 

 

 

 

Table 4 

Parameterisation Results for KLT/MI Analysis (Medial Gastrocnemius – Transverse) 

 

Direction 
of 

Motion 
�⃗⃗�  

Speed of Motion |m| 

1 2 4 8 

Π 78.61 78.61 76.11 80.85 
π /2 82.92 81.97 85.86 85.08 
π /4 88.65 87.55 86.45 83.59 
π /8 88.25 88.21 81.22 71.17 

 



 

 

 

 

1. Subsequent tables show parameterisation results for GMM analysis, showing accuracy 

results for test data set when using variable values for number of Gaussians, learning rate 

and background ratio. Optimum values in red. 

 

 

Table 1 

Parameterisation Results for GMM Analysis (Biceps Brachii – Transverse) 

 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 82.12 

80 5 0.05 69.55 
80 5 0.005 81.25 
80 4 0.5 80.01 
80 4 0.05 69.69 
80 4 0.005 81.25 
80 3 0.5 83.14 
80 3 0.05 69.91 

80 3 0.005 81.25 

85 5 0.5 81.26 
85 5 0.05 74.25 
85 5 0.005 79.89 
85 4 0.5 81.34 
85 4 0.05 74.37 
85 4 0.005 79.89 
85 3 0.5 82.06 
85 3 0.05 76.32 
85 3 0.005 79.89 

90 5 0.5 80.56 

90 5 0.05 62.6 
90 5 0.005 77.66 
90 4 0.5 80.15 
90 4 0.05 62.65 
90 4 0.005 77.66 
90 3 0.5 80.54 
90 3 0.05 62.94 
90 3 0.005 77.66 
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Table 2 

Parameterisation Results for GMM Analysis (Biceps Brachii – Longitudinal) 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 86.39 
80 5 0.05 73.55 
80 5 0.005 79.92 
80 4 0.5 84.96 
80 4 0.05 73.39 
80 4 0.005 79.92 

80 3 0.5 85.18 
80 3 0.05 74.53 
80 3 0.005 79.92 

85 5 0.5 86.48 
85 5 0.05 82.69 
85 5 0.005 81.62 
85 4 0.5 84.35 
85 4 0.05 82.76 
85 4 0.005 81.62 
85 3 0.5 85.15 
85 3 0.05 82.54 

85 3 0.005 81.62 

90 5 0.5 86.14 
90 5 0.05 82.08 
90 5 0.005 82.97 
90 4 0.5 84.46 
90 4 0.05 82.09 
90 4 0.005 82.97 
90 3 0.5 83.72 
90 3 0.05 81.8 
90 3 0.005 82.97 

 

Table 3 

Parameterisation Results for GMM Analysis (Medial Gastrocnemius – Transverse) 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 84.41 
80 5 0.05 80.81 
80 5 0.005 83.7 
80 4 0.5 84.43 
80 4 0.05 80.64 

80 4 0.005 83.7 
80 3 0.5 85.31 
80 3 0.05 83.14 



80 3 0.005 83.7 

85 5 0.5 84.33 
85 5 0.05 86.57 
85 5 0.005 84.04 
85 4 0.5 85.31 
85 4 0.05 86.57 
85 4 0.005 84.04 
85 3 0.5 83.28 
85 3 0.05 86.91 
85 3 0.005 84.04 

90 5 0.5 86.14 

90 5 0.05 82.08 
90 5 0.005 82.97 
90 4 0.5 84.46 
90 4 0.05 82.09 
90 4 0.005 82.97 
90 3 0.5 83.72 
90 3 0.05 81.8 
90 3 0.005 82.97 

 

Table 4 

Parameterisation Results for GMM Analysis (Medial Gastrocnemius – Longitudinal) 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 84.41 
80 5 0.05 81.75 
80 5 0.005 80.52 
80 4 0.5 85.15 
80 4 0.05 82.16 
80 4 0.005 80.52 
80 3 0.5 85.61 

80 3 0.05 82.3 
80 3 0.005 80.52 

85 5 0.5 83.52 
85 5 0.05 86.15 
85 5 0.005 82.03 
85 4 0.5 85.31 
85 4 0.05 86.16 
85 4 0.005 82.03 
85 3 0.5 83.28 
85 3 0.05 86.16 
85 3 0.005 82.03 

90 5 0.5 83.69 
90 5 0.05 86.56 



90 5 0.005 83.98 
90 4 0.5 85.67 
90 4 0.05 86.54 
90 4 0.005 83.98 
90 3 0.5 86.18 
90 3 0.05 85.76 
90 3 0.005 83.98 

 

 

 

2. The subsequent table shows parameterisation results for GMM analysis, showing 

accuracy results for test data set when using variable values for minimum blob area. 

Optimum values in red. 

 

Min blob area 

(as % of image) 

 

 

MG 

TRANS 

 

 

MG 

LONG 
BB TRANS BB LONG 

1  53.27  64.94 50.2 52.56 
5  72.69  74.68 46.61 61.73 
8  82.85  84.45 65.38 74.29 
10  85.95  87.81 74.55 79.54 
15  88.6  89.94 83.26 85.31 
20  89.13  89.57 82.8 86.34 
25  89.12  86.24 71.99 83.95 
30  88.82  85.48 49.07 83.38 
35  88.57  82.51 49.56 78.17 
40  88.63  82.66 49.81 75.08 

. 

 

 

3. Subsequent tables show parameterisation results for KLT/ MI analysis, showing accuracy 

results for test data set when using variable values for direction and speed of motion. 

Optimum values in red. 

 

Table 5 

Parameterisation Results for KLT/MI Analysis (Biceps Brachii – Transverse) 

Direction 
of 

Motion 
�⃗⃗�  

Speed of Motion |m| 

1 2 4 8 

Π 52.37 52.37 52.37 52.37 
π /2 74.07 74.89 75.16 75.05 
π /4 70.2 70.97 71.08 73.29 

π /8 54.89 53.67 48.58 62.41 

 



 

Table 6 

Parameterisation Results for KLT/MI Analysis (Biceps Brachii – Longitudinal) 

Direction 
of 

Motion 
�⃗⃗�  

Speed of Motion |m| 

1 2 4 8 

π  59.29 59.29 52.37 52.37 
π /2 74.07 74.89 75.16 75.05 
π /4 70.20 70.97 71.08 73.29 

π /8 54.89 53.67 48.58 62.41 

 

 

Table 7 

Parameterisation Results for KLT/MI Analysis (Medial Gastrocnemius– Transverse) 

 

Direction 
of 

Motion 
�⃗⃗�  

Speed of Motion |m| 

1 2 4 8 

π  52.80 59.29 53.35 53.35 
π /2 65.47 65.53 68.75 68.75 
π /4 64.93 68.73 71.04 75.95 
π /8 54.10 61.78 65.65 65.65 

 

 

Table 8 

Parameterisation Results for KLT/MI Analysis (Medial Gastrocnemius– Longitudinal) 

 

Direction 
of 

Motion 
�⃗⃗�  

Speed of Motion |m| 

1 2 4 8 

π  65.58 65.58 65.68 65.68 
π /2 70.99 70.88 70.81 71.12 
π /4 71.57 72.19 72.78 74.49 
π /8 67.13 68.16 71.68 74.99 

 

 



Table 9  

Parameterisation Results for GMM Analysis – Number of Training Frames 

No of Training 
Frames 

BB LONG BB CROSS MG LONG MG CROSS 

100 
300 
500 
700 

73.40 
75.17 
86.34 
83.05 

45.63 
45.43 
83.26 
83.07 

83.27 
84.26 
89.94 
83.53 

70.76 
74.78 
89.13 
78.05 

 



Table 1 

Parameterisation Results for GMM Analysis (Trapezius - Longitudinal) 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 78.53 
80 5 0.05 70.72 
80 5 0.005 64.85 
80 4 0.5 83.14 
80 4 0.05 70.67 
80 4 0.005 64.85 
80 3 0.5 86.16 
80 3 0.05 71.25 
80 3 0.005 64.85 

85 5 0.5 79.01 
85 5 0.05 79.63 
85 5 0.005 76.46 
85 4 0.5 83.53 
85 4 0.05 80.01 
85 4 0.005 76.46 
85 3 0.5 86.82 
85 3 0.05 81.00 
85 3 0.005 76.46 

90 5 0.5 79.86 
90 5 0.05 74.25 
90 5 0.005 85.03 
90 4 0.5 84.24 
90 4 0.05 76.11 
90 4 0.005 86.02 
90 3 0.5 86.95 
90 3 0.05 75.65 
90 3 0.005 85.26 

 

 

Table 2 

Parameterisation Results for GMM Analysis (Trapezius - Transverse) 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 72.80 
80 5 0.05 65.36 
80 5 0.005 65.8 
80 4 0.5 72.29 
80 4 0.05 65.42 
80 4 0.005 65.8 
80 3 0.5 74.39 
80 3 0.05 67.65 
80 3 0.005 65.8 

9.3 Appendix 3: Parameterisation and Suppli-
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85 5 0.5 73.83 
85 5 0.05 79.28 
85 5 0.005 66.95 
85 4 0.5 74.70 
85 4 0.05 79.38 
85 4 0.005 74.03 
85 3 0.5 77.63 
85 3 0.05 80.65 
85 3 0.005 66.95 

90 5 0.5 66.12 
90 5 0.05 79.71 
90 5 0.005 73.99 
90 4 0.5 77.17 
90 4 0.05 82.26 
90 4 0.005 80.03 
90 3 0.5 78.80 
90 3 0.05 79.49 
90 3 0.005 80.53 

 

 

Table 3 

Parameterisation Results for GMM Analysis (Rectus Femoris- Longitudinal) 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 79.39 
80 5 0.05 71.03 
80 5 0.005 74.80 
80 4 0.5 78.39 
80 4 0.05 71.16 
80 4 0.005 74.80 
80 3 0.5 79.88 
80 3 0.05 72.72 
80 3 0.005 74.80 

85 5 0.5 79.06 
85 5 0.05 78.23 
85 5 0.005 78.86 
85 4 0.5 78.89 
85 4 0.05 78.09 
85 4 0.005 78.86 
85 3 0.5 80.10 
85 3 0.05 78.59 
85 3 0.005 78.86 

90 5 0.5 79.45 
90 5 0.05 76.45 
90 5 0.005 80.71 
90 4 0.5 79.70 
90 4 0.05 78.14 
90 4 0.005 80.71 



90 3 0.5 78.85 
90 3 0.05 71.59 
90 3 0.005 80.71 

 

 

Table 4 

Parameterisation Results for GMM Analysis (Rectus Femoris- Trasverse) 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5        77.66 
80 5 0.05 67.30 
80 5 0.005 70.28 
80 4 0.5 77.10 
80 4 0.05 67.35 
80 4 0.005 70.28 
80 3 0.5 79.84 
80 3 0.05 67.71 
80 3 0.005 70.28 

85 5 0.5 78.87 
85 5 0.05 75.76 
85 5 0.005 75.77 
85 4 0.5 78.33 
85 4 0.05 76.28 
85 4 0.005 75.77 
85 3 0.5         76.62 
85 3 0.05 76.28 
85 3 0.005 75.77 

90 5 0.5 78.92 
90 5 0.05 76.05 
90 5 0.005 79.64 
90 4 0.5 80.30 
90 4 0.05 78.39 
90 4 0.005 79.64 
90 3 0.5 80.71 
90 3 0.05 76.27 
90 3 0.005 79.64 

 

 

 

 

 

 



Table 5 

Parameterisation Results for GMM Analysis (Thoracic Paraspinals - Longitudinal) 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 58.36 
80 5 0.05 65.22 
80 5 0.005 73.16 
80 4 0.5 49.8 
80 4 0.05 68.69 
80 4 0.005 73.14 
80 3 0.5 53.57 
80 3 0.05 73.3 
80 3 0.005 72.4 

85 5 0.5 59.11 
85 5 0.05 77.79 
85 5 0.005 75.18 
85 4 0.5 55.25 
85 4 0.05 76.63 
85 4 0.005 73.23 
85 3 0.5 59.27 
85 3 0.05 74.51 
85 3 0.005 72.92 

90 5 0.5 59.4 
90 5 0.05 63.09 
90 5 0.005 80.46 
90 4 0.5 61.34 
90 4 0.05 74.42 
90 4 0.005 83.28 
90 3 0.5 58.19 
90 3 0.05 78.16 
90 3 0.005 84.19 

 

 

Table 6 

Parameterisation Results for GMM Analysis (Thoracic Paraspinals – Transverse) 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 63.21 
80 5 0.05 61.61 
80 5 0.005 56.17 
80 4 0.5 60.2 
80 4 0.05 62.32 
80 4 0.005 56.07 
80 3 0.5 62.76 
80 3 0.05 65.27 
80 3 0.005 60.13 



85 5 0.5 64.68 
85 5 0.05 68.15 
85 5 0.005 67.94 
85 4 0.5 59.87 
85 4 0.05 67.23 
85 4 0.005 67.56 
85 3 0.5 63.79 
85 3 0.05 68.12 
85 3 0.005 59.48 

90 5 0.5 66.08 
90 5 0.05 75.36 
90 5 0.005 76.49 
90 4 0.5 78.2 
90 4 0.05 62.29 
90 4 0.005 76.83 
90 3 0.5 63.31 
90 3 0.05 74.85 
90 3 0.005 77.49 

 

 

Table 7 

Parameterisation Results for GMM Analysis (Rectus Abdominus – Longitudinal) 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 81.85 
80 5 0.05 69.25 
80 5 0.005 82.26 
80 4 0.5 84.4 
80 4 0.05 88.01 
80 4 0.005 82.26 
80 3 0.5 86.57 
80 3 0.05 66.1 
80 3 0.005 82.26 

85 5 0.5 81.85 
85 5 0.05 84.47 
85 5 0.005 71.84 
85 4 0.5 82.9 
85 4 0.05 81.98 
85 4 0.005 71.84 
85 3 0.5 85.73 
85 3 0.05 82.5 
85 3 0.005 71.84 

90 5 0.5 82 
90 5 0.05 85.23 
90 5 0.005 82 
90 4 0.5 83.3 
90 4 0.05 84.17 



90 4 0.005 82 
90 3 0.5 81.06 
90 3 0.05 84.49 
90 3 0.005 82 

 

 

 

Table 8 

Parameterisation Results for GMM Analysis (Rectus Abdominus – Transverse) 

Background 
Ratio 

No. of 
Gaussians 

Learning 
Rate 

Accuracy 
(%) 

80 5 0.5 72.92 
80 5 0.05 67.08 
80 5 0.005 62.62 
80 4 0.5 75.02 
80 4 0.05 66.47 
80 4 0.005 62.62 
80 3 0.5 79.01 
80 3 0.05 66.68 
80 3 0.005 62.62 

85 5 0.5 72.25 
85 5 0.05 81.59 
85 5 0.005 71.89 
85 4 0.5 75.57 
85 4 0.05 82.11 
85 4 0.005 71.89 
85 3 0.5 81.21 
85 3 0.05 82 
85 3 0.005 71.89 

90 5 0.5 73.01 
90 5 0.05 89.01 
90 5 0.005 82.26 
90 4 0.5 84.4 
90 4 0.05 88.13 
90 4 0.005 82.26 
90 3 0.5 85.97 
90 3 0.05 87.51 
90 3 0.005 82.26 

 

 

 

 

 



Table 9 

Parameterisation Results for GMM Analysis – Minimum Blob Area 

 

Min 
Blob 
Area 

(as % of 
image) 

TRAP 
LONG 

TRAP 
CROSS 

RF 
LONG 

RF 
CROSS 

TP 
LONG 

TP 
CROSS 

RA 
LONG 

RA 
CROSS 

1 56.95 61.49 52.61 51.88 37.15 54.19 51.47 59.36 
5 75.87 74.27 73.17 66.20 59.71 68.62 54.32 71.61 
8 86.80 81.29 78.55 76.37 79.01 79.00 79.30 80.51 
10 86.95 82.26 80.71 80.71 84.19 77.49 85.23 89.01 
15 85.79 57.28 75.08 81.68 81.48 68.91 81.97 86.87 
20 84.68 53.96 69.23 70.33 70.5 60.58 83.98 83.79 
25 80.15 49.63 67.47 60.04 49.74 56.76 83.45 84.21 
30 76.54 49.81 64.87 53.93 49.87 58.38 84.13 68.73 
35 73.43 49.94 62.30 54.09 50.00 54.67 80.45 49.87 
40 66.00 49.94 61.90 54.28 50.00 50.00 81.40 50.00 

 

 

Table 10 

Parameterisation Results for GMM Analysis – Number of Training Frames 

No. of 
Training 
Frames 

TRAP 
LONG 

TRAP 
CROSS 

RF LONG 
RF 

CROSS 
TP LONG 

TP 
CROSS 

RA 
LONG 

RA 
CROSS 

100 
300 
500 
700 

84.65 
84.85 
86.95 
84.90 

79.47 
76.35 
82.26 
81.97 

80.36 
80.95 
80.71 
78.32 

78.92 
79.09 
81.68 
80.70 

81.34 
84.90 
84.19 
82.21 

80.14 
79.81 
79.00 
78.81 

73.30 
77.02 
85.23 
77.51 

71.65 
73.58 
89.01 
75.23 

 



Table 9.1: Number of fasciculations detected using GMM in MND affected
(M) and healthy (H) participants from BB and MG muscles (Excluding 7

healthy participants used in parameterisation).
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APPLICATION FOR ETHICAL APPROVAL 
 
 
 
 
 

Introduction 
All university activity must be reviewed for ethical approval. In particular, all undergraduate, 
postgraduate and staff research work, projects and taught programmes must obtain approval from 
the Academic Ethics committee.  
 

Application Procedure 
The form should be completed legibly (preferably typed) and, so far as possible, in a way which 
would enable a layperson to understand the aims and methods of the research. Every relevant 
section should be completed. Applicants should also include a copy of any proposed advert, 
information sheet, consent form and, if relevant, any questionnaire being used. The Principal 
Investigator should sign the application form. Supporting documents, together with one copy of the 
full protocol should be sent to the Faculty/Campus Research Group Officer.  

  

 Your application will require external ethical approval by an NHS Research Ethics Committee 
if your research involves staff, patients or premises of the NHS (see guidance notes) 
 

Work with children and vulnerable adults 
You will be required to have an Enhanced CRB Disclosure, if your work involves children or 
vulnerable adults.  
 

The Academic Ethics Committee will respond as soon as possible, and where appropriate, will 
operate a process of expedited review. 
 

Applications that require approval by an NHS Research Ethics Committee or a Criminal Disclosure 
will take longer. 
 

1. Details of Applicants 
1.1. Name of applicant (Principal Investigator): Dr Nicholas Combes 

 

Telephone Number:  
 

Email address: Nicholas.Combes@lthtr.nhs.uk 
 
 

Status: Consultant Neurophysiologist  
 

Postgraduate Student (Taught or Research) 
 
Kate Bibbings (Postgraduate Research 
Student) 

 
Staff 
 
Dr Peter Harding (Research Associate) 
 

Department/School/Other Unit: School of Healthcare Science 
 

Programme of study (if applicable):  MPhil/PhD 

9.4 Appendix 4: NHS Application for Ethical

Approval
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Name of supervisor/Line manager: Dr Emma Hodson Tole 
 

1.2. Co-Workers and their role in the project: (e.g. students, external collaborators, etc)  
 

Name:  
 

Name: 

Telephone Number: 
 

Telephone Number: 

Role: 
 

Role: 

Email Address: 
 

Email Address: 

 

2. Details of the Project 
Title: Motor Neurone Disease Diagnosis: The utility of standard frame rate b-mode 
ultrasound imaging.  

2.1. Description of the Project:  (please outline the background and the purpose of the 
research project, 250 words max) 

 
Current diagnostic techniques for motor neurone disease (MND) involve the insertion of 
needles into the affected muscles to record electrical activity that can be used to confirm 
the presence of fasciculations and fibrillations, which are an indicator of neuromuscular 
degeneration. These electrical impulses lead to localised muscle contractions, visible via b-
mode ultrasound. Previous work has shown that ultrasound imaging provides an accurate 
means of identifying fasciculations, but previous work has only involved manual 
identification and classification of fasciculations and fibrillations. The project we propose 
will automate the process of identifying fasciculations and fibrillations in b-mode ultrasound 
recordings.   Previous work has shown that the analysis algorithm we have created can 
identify stimulated muscle twitches with a greater than 90 percent accuracy. We intend to 
extend this work and test the algorithm extensively on data collected from MND patients. 
 There are many advantages that ultrasound based diagnostic tests provide over traditional 
EMG recordings, even when disregarding the discomfort caused to the patient from 
intramuscular recording. Ultrasound may be used on a number of occasions without, in 
general, any discomfort, due to the low number of negative effects experienced from 
scanning. It is also very cheap and widely available, as well as not requiring specialist 
clinicians to operate the equipment. However, currently, the interpretation of ultrasound 
images, even by highly experienced individuals, is subjective in nature and takes time to 
complete. An automated method of detection, would remove subjectivity from the image 
analysis, decrease timescales and assist in the standardization of diagnosis. 
  
 

2.2. Describe what type of study this is (e.g. qualitative or quantitative; also indicate how 
the data will be collected and analysed).  Additional sheets may be attached. 

 
This study is the provisional investigation into the use of standard frame rate, b-mode 
ultrasound for MND diagnosis.  Data collected will be in the form of b-mode ultrasound 
(grayscale images of the body’s internal structures) and intramuscular EMG (recordings of 
electrical activity taken from the muscle). Images obtained of patients muscles could not be 
used to identify the participant. In addition to this, the data will been removed from site and 
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stored securely at Manchester Metropolitan University.  The data will be analysed in a number 
of ways.  Firstly, b-mode ultrasound footage will be manually viewed, and the presence of 
fasciculations and fibrillations (involuntary muscle activations) will be recorded.  This gives a 
qualitative measure of the presence of fasciculations in that specific muscle, and also a 
quantitative measure of the exact time (video frame) at which each of these artefacts 
occurred. The EMG data will be analysed so as to extract the presence and timing of 
fasciculations and fibrillations, which can be used to confirm the accuracy of the manual 
identifications.  Finally, the b-mode data will be analysed using our own algorithm, which 
identifies the presence of fasciculations and fibrillations automatically.  These data will then be 
compared to ascertain the relative accuracy of each technique.  The final method of analysis 
has not been confirmed, but our previous work made use of receiver operating characteristics 
and Cohen’s Kappa statistic to measure the agreement between multiple identification 
systems. The only data collected which may allow patients to be identified is name, age, 
height and weight.  This data will be stored securely, and the b-mode and EMG data 
associated with each participant will be stored separately from these data and with a random 
ID that does not allow the data to be linked back to identifiable participant data. 

 
 

2.3. Are you going to use a questionnaire?   
YES (Please attach a copy) 
NO 
 

2.4. Start Date / Duration of project: January 2014 
 

2.5. Location of where the project and data collection will take place: Royal Preston 
Hospital 
 

2.6. Nature/Source of funding: Motor Neurone Disease Association 
 

2.7. Are there any regulatory requirements? 
YES (Provide details, e.g. from professional bodies) 

NO 
 

 

3. Details of Participants 
3.1. How many? 60 

 

3.2. Age: 18 years plus 
 

3.3. Sex: Male and Female 
 

3.4. How will they be recruited? (Attach a copy of any proposed advertisement) Through 
Lancashire NHS Teaching Hospitals Specialist Motor Neurone Disease Nurses 
 

3.5. Status of participants: (e.g. students, public, colleagues, children, hospital patients, 
prisoners, including young offenders, participants with mental illness or learning 
difficulties.) 
Hospital Patients  

3.6. Inclusion and exclusion from the project: (indicate the criteria to be applied). 
      Previously diagnosed with Motor Neurone Disease  
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3.7. Payment to volunteers: (indicate any sums to be paid to volunteers). None 
 

3.8. Study information:  
Have you provided a study information sheet for the participants?   

YES (Please attach a copy) 
NO 
 

3.9. Consent:  
(A written consent form for the study participants MUST be provided in all cases, 
unless the research is a questionnaire.) 
Have you produced a written consent form for the participants to sign for your records?  

YES (Please attach a copy) 
NO 

. 
 

4. Risks and Hazards 
4.1. Are there any risks to the researcher and/or participants?  

(Give details of the procedures and processes to be undertaken, e.g. if the researcher 
is a lone-worker.)  

1. Risk from Sharps to researchers 
2. Small risk of infection to the participant 
3. Small risk of internal damage to the participant by misplaced EMG needle 

 

4.2. State precautions to minimise the risks and possible adverse events: 
 
Dr Nicholas Combes, Consultant Neurophysiologist will be the only member of the 
research team to handle the EMG needles. He is fully trained and highly experienced 
in the diagnosis of MND and the placement of intramuscular EMG. 

 
1. Researchers will be vaccinated against appropriate diseases and the 

coordination between the clinician (who will be placing the needle) and the 
researcher (who will be placing the ultrasound) will be practiced extensively in a 
safe environment before attempting a data collection with a patient. 

2. The ultrasound probe will be placed in a sterile glove and sterile ultrasound gel 
and sterile needles will be used All consumables will be discarded after each 
patient examination or if the researcher or clinician considers any item to have 
become contaminated. 

3. The PI of this project will be carrying out all invasive procedures, and has 
multiple years’ experience within the Neurophysiological field.  Additional to this, 
as one of the primary Neurophysiologists at Preston, he is highly likely to have 
been the diagnosing clinician that the patient originally saw. 
 

4.3. What discomfort (physical or psychological) danger or interference with normal 
activities might be suffered by the researcher and/or participant(s)?  State precautions 
which will be taken to minimise them: 
 
Intramuscular EMG will require the insertion of needles into the patient’s muscles. This 
may cause a small amount of pain/ discomfort for the patient during the examination 
and in extreme cases bruising or muscle soreness may be experienced on subsequent 
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days.  To counteract this we will take the same steps as were taken during their initial 
diagnosis. 
 Needles will be inserted by a consultant in Neurophysiology, who is fully trained in the 
practice of Intramuscular EMG. 
  
 

3.6  

5. Ethical Issues 
5.1. Please describe any ethical issues raised and how you intend to address these: 

1. A small risk of cell damage is possible when ultrasound is used. For this reason, 
only the required amount will be used in order to successfully yield results. There is 
an inbuilt safety feature present in the specific machines which we employ, that 
freezes all scanning after it has been active for over 10 minutes. We do not expect 
to be collecting more than 5 minutes of ultrasound footage from any single muscle. 
 

2. Although all participants will have previously been diagnosed with MND, if any 
further disorders become apparent from the data collected during the study, the 
participants GP will be informed of these provisional findings. 

 
 

3.7  

6. Safeguards/Procedural Compliance 
6.1. Confidentiality: 

6.1.1. Indicate what steps will be taken to safeguard the confidentiality of participant 
records.  If the data is to be computerised, it will be necessary to ensure 
compliance with the requirements of the Data Protection Act 1998. 

6.1.2. If you are intending to make any kind of audio or visual recordings of the 
participants, please answer the following questions: 

6.1.2.1. How long will the recordings be retained and how will they be stored? 
6.1.2.2. How will they be destroyed at the end of the project? 
6.1.2.3. What further use, if any, do you intend to make of the recordings? 
 

The nature of the image means that it would be very difficult to make any identification 
of the participant from their images. However, to safeguard the confidentiality of 
participants and their records, all recordings will be saved under names not relatable to 
the participant and kept on a password protected computer.  
 
Recordings will be retained for a minimum of 3 years, but preferably indefinitely.  The 
recordings will be stored on a password protected computer within a locked room, 
within Manchester Metropolitan University. Recordings will be stored on a RSA 
encrypted drive, which has a password distinct from that of the computer. 
 
At the end of the project, all files will be overwritten on at least 5 occasions with 
randomly generated binary streams. The probability of being able to recover the data at 
this point by any means is effectively zero. The data storage drive will also be securely 
disposed of. 
 
Recordings may be used to investigate previously undocumented techniques by which 
to diagnose MND. The recordings will never be used outside of persons directly related 
to this project (name people here? I.e. Pete?). 
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6.2. The Human Tissue Act 
The Human Tissue Act came into force in November 2004, and requires appropriate 
consent for, and regulates the removal, storage and use of all human tissue. 
 

6.2.1. Does your project involve taking tissue samples, e.g., blood, urine, hair etc., 
from human subjects?   

YES 
NO 

6.2.2. Will this be discarded when the project is terminated? N/A 
YES 
NO 

 
If NO – Explain how the samples will be placed into a tissue bank under the Human 
Tissue Act regulations: 
 

6.3. Insurance 
 
The University holds insurance policies in place to cover claims for negligence arising from 
the conduct of the University’s normal business, which includes research carried out by staff 
and by undergraduate and postgraduate students as part of their course.  This does not 
extend to clinical negligence.  
 
In addition, the University has provision to award indemnity and/or compensation in the 
event of claims for non-negligent harm. This is on the condition that the project is accepted 
by the insurers prior to the commencement of the research project and approval has been 
granted for the project from a suitable ethics committee. 
 
Research which is applicable to non-negligent harm cover involves humans and physical 
intervention which could give rise to a physical injury or illness which is outside the 
participant’s day to day activities. This includes strenuous exercise, ingestion of substances, 
injection of substances, topical application of any substances, insertion of instruments, 
blood/tissue sampling of participants and scanning of participants. 
 
The following types of research are not covered automatically for non-negligent harm if they 
are classed as the activities above and they involve: 
 
1) Anything that assists with and /or alters the process of contraception, or investigating 

or participating in methods of contraception 
2) Anything involving genetic engineering other than research in which the medical 

purpose is treating or diagnosing disease 
3) Where the substance under investigation has been designed and /or manufactured 

by MMU 
4) Pregnant women 
5) Drug trials 
6) Research involving children under sixteen years of age 
7) Professional sports persons and or elite athletes. 
8) Overseas research 



APPENDIX 2 
Application Number________________ 
Date Received____________________ 

Page 7 of 7 

 
Will the proposed project result in you undertaking any research that includes any of 
the 8 points above or would not be considered as normal University business?  If so, 
please detail below: 
N/A 
 

6.4. Notification of Adverse Events (e.g., negative reaction, counsellor, etc):  
(Indicate precautions taken to avoid adverse reactions.) 
 
Please state the processes/procedures in place to respond to possible adverse 
reactions. 
 
In the case of clinical research, you will need to abide by specific guidance.  This may 
include notification to GP and ethics committee.  Please seek guidance for up to date 
advice, e.g., see the NRES website at http://www.nres.npsa.nhs.uk/ 
 
 

 

SIGNATURE OF PRINCIPAL 
INVESTIGATOR: 

 
 

Date 14/01/14 

SIGNATURE OF FACULTY’S 
HEAD OF ETHICS: 
 
 

Date: 

 

Checklist of attachments needed: 
1. Participant consent form 
2. Participant information sheet 
3. Full protocol 
4. Advertising details 
5. Insurance notification forms 
6. NHS Approval Letter (where appropriate) 
7. Other evidence of ethical approval (e.g., another University Ethics Committee approval) 
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Tel: 01772 52255   
Fax: 01772 528160   

 

Lancashire Teaching Hospitals 
NHS Foundation Trust 

 

Department of Neurophysiology 
Royal Preston Hospital, 

Sharoe Green Lane, 
Fulwood, 

PRESTON. 
PR2 9HT 

 

20 March 2017 

 
Centre Number:  
Study Number:  
Patient Identification Number for this trial:  

 
CONSENT FORM 

 
Title of Project: Detecting muscle twitches with ultrasound imaging 
 
Name of Researchers: Dr Nicholas Combes / Dr Emma Hodson-Tole / Ms. Kate Bibbings 

Please initial box  
 
1. I confirm that I have read and understand the information sheet dated....................  
(version............) for the above study. I have had the opportunity to consider the information,  
ask questions and have had these answered satisfactorily.  
 
 
2. I understand that my participation is voluntary and that I am free to withdraw at any time  
without giving any reason, without my medical care or legal rights being affected. 
  
 
3. I understand that relevant sections of my medical notes and data collected during the study,  
may be looked at by individuals from Manchester Metropolitan University from regulatory 
authorities or from the NHS Trust, where it is relevant to my taking part in this research. 
I give permission for these individuals to have access to my records.  
 
4. I agree to my GP being informed of my participation in the study.  
 
 
5. I agree to take part in the above study.  
 
 
_____________  ________   _______________ 
 
Name of Patient       Date        Signature  
 
 
_____________  ________   _______________ 
 
Name of Person       Date                   Signature  
taking consent  
 
 

When completed: 1 for participant; 1 for researcher site file; 1 (original) to be kept in medical notes. 
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Tel: 01772 52255   

Fax: 01772 528160  

 

 Lancashire Teaching Hospitals 
NHS Foundation Trust 

 

 

 

        Department of Neurophysiology 

Royal Preston Hospital, 

Sharoe Green Lane, 

Fulwood, 

Preston. 

PR2 9HT 

 

20 March 2017 

 
 

PATIENT INFORMATION SHEET 

 

Title of Project: Detecting muscle twitches with ultrasound imaging 

 

You are being invited to participate in a research study done by Manchester Metropolitan University 

and their team at Lancashire teaching hospitals NHS trust. Please read the following information 

carefully before you decide whether to take part in the study or not.  

 

WHAT IS THE PURPOSE OF THIS STUDY? 

We are working on developing new methods of diagnosing degenerative diseases which affect skeletal 

muscles, an example of which is motor neurone disease. Currently, doctors usually diagnose conditions 

like motor neurone disease by using a technique called ‘needle EMG’. The technique involves placing 

a needle in different muscles and recording the electrical activity which occurs when the muscle is 

activated.  Different types of activation, or muscle twitches, occur between healthy and affected people.  

We wish to identify whether we can use ultrasound images of the muscles, recorded in the same way 

mothers are scanned during pregnancy, to identify the occurrence of different types of twitch and 

provide a painless, more sensitive diagnostic tool. 

 

The first step in this process is to develop a computer program which is able to analyse a sequence of 

images and accurately identify when twitches occurred.  The purpose of the study you are being invited 

to take part in is to collect needle EMG signals and image sequences which we can use to test the 

analysis program. 

 

WHAT IS THE DIFFERENCE IN TREATMENT? 

The research does not involve any treatment and will not affect any treatment you are currently 

receiving. 

 

WHY HAVE I BEEN CHOSEN? 

You have been chosen to take part in the study as you have been diagnosed as having motor neurone 

disease. It is important for us to test our computer software on images which have been recorded in 

people with the disease so we can establish its potential use in a clinic. 
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WHAT WILL HAPPEN IF I TAKE PART? 

A member of the research team will arrange for you to visit the MND care and research centre at 

Preston Royal Hospital.  During the visit we will record needle EMG and ultrasound images from six 

muscles: 

i) a muscle at the back of your lower leg [medial gastrocnemius] 

ii) a muscle in your thigh [rectus femoris] 

iii) a muscle in your upper arm [biceps] 

iv) a muscle on your shoulder [trapezius] 

v) a muscle on your back [thoracic paraspinal] 

vi) a muscle over your stomach region [rectus abdominis]. 

 

Recording the images involves placing a special probe, covered in a water based gel, over the top of the 

muscle of interest.  The probe sends waves of ultrasound through the muscle which are bounced back 

and used to create an image which can be viewed and recorded on a computer.  The images of your 

muscles’ are in monochrome (black and white), and just show features within your muscle.  Individual 

people cannot be identified from these images. 

 

Recording EMG involves inserting a needle into the muscle, which will detect the electrical activity in 

the muscle which occurs when it contracts or twitches. This is the same technique you underwent as 

part of your diagnosis. The procedure will be completed by Dr. Nicholas Combes, who is a highly 

experienced Consultant Neurophysiologist at Preston Royal Hospital with extensive experience of 

making these recordings. 

 

While we are collecting the EMG and the images you can sit on a chair or lie on a couch, depending on 

the muscle being scanned. You will not need to do anything else.  We want to take recordings of the 

naturally occurring, involuntary twitches which occur in muscles when they are affected by motor neurone 

disease. We will take three recordings from each muscle, each lasting 30 – 40 seconds.  

 

We will only need to visit once and in total it will take no more than 2 hours to collect all the ultrasound 

images and EMG required. 

 

WHAT ARE THE POSSIBLE BENEFITS OF TAKING PART? 

There will be no direct benefits to you for taking part in the study.  We hope however that the work will 

contribute to the development of a new, non-invasive method of diagnosing some degenerative muscle 

diseases. 

 

WHAT ARE THE POSSIBLE RISKS OF TAKING PART? 

There are no risks associated with the ultrasound imaging. It is a minimally invasive technique which is 

commonly used to assess muscle tissue and unborn babies in pregnant women. 

 

There are small risks associated with the needle EMG. It can cause a degree of pain and can lead to a 

small amount of bruising. There is also a very low risk of infection occurring at the site the needle was 

inserted. 
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WILL MY TAKING PART BE KEPT CONFIDENTIAL? 

Yes.  We will not need to record any of your personal information for this work. Details of your age, 

height, weight and period of time since your diagnosis will be noted but not linked to any information 

from which you could be identified.  All the ultrasound videos and EMG recorded will be saved on a 

computer with a unique alphanumeric participant identifier, which will not be linked to any of your 

confidential records. 

 

WHAT IF I CHANGE MY MIND ABOUT TAKING PART? 

Your standard of care will not be affected if you change your mind. You are not obligated in any way 

to take part in this study it is entirely your choice. Once you have signed the consent form you are still 

free to withdraw at any time and without giving a reason and we will delete any data we had collected 

from you. 

 

Contact details for further information 

 

Dr Nicholas Combes 

Consultant Neurophysiologist 

Department of Neurophysiology  

Royal Preston Hospital 

Shaore Green Lane 

Fulwood 

PRESTON 

PR2 9HT 

 

Tel. 01772 522559 

 

Dr. Emma Hodson-Tole 

School of Healthcare Science 

Manchester Metropolitan University 

Oxford Road 

Manchester, M1 5GD 

 

Tel: 0161 247 5923 

Email: e.tole@mmu.ac.uk 
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Study Name:  

Combination of Electromyography and B Mode Ultrasound for the Detection of Involuntary 

Muscle Twitches in Healthy Participants. 

Name of Researchers: Kate Bibbings 
 
Ethical Approval Number: 
 

Patient Identification Number for this trial:  
 
 

CONSENT FORM 
 
 

               Please initial box  
 
1.  I confirm that I have read and understand the information sheet dated for the above study. 
I have had the opportunity to consider the information, ask questions and have had these    
answered satisfactorily.  
 
 
2.     I understand that my participation is voluntary and that I am free to withdraw at any time  
without giving any reason, without legal rights being affected. 
  
 
3.     I understand that data collected during the study may be looked at by individuals from 
Manchester Metropolitan University from regulatory authorities or from the NHS. 
I give permission for these individuals to have access to these data.  
  
 
4.  I agree to take part in the above study.  
 
 
 
 
 
 
 
_____________  ________   _______________ 
 
Name of Participant      Date        Signature  
 
 
_____________  ________   _______________ 
 
Name of Person       Date                   Signature  
taking consent  
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PATIENT INFORMATION SHEET 

 

Title of Project: Detecting muscle twitches with ultrasound imaging 

 

You are being invited to participate in a research study carried out at Manchester 

Metropolitan University Please read the following information carefully before you decide 

whether to take part in the study or not.  

 

WHAT IS THE PURPOSE OF THIS STUDY? 

We are working on developing new methods of diagnosing degenerative diseases which 

affect skeletal muscles, an example of which is motor neurone disease. Methods have been 

previously developed at MMU that have provided a method that detect certain types of 

muscle twitches in ultrasound images. Currently, doctors usually diagnose conditions like 

motor neurone disease by using a technique called ‘needle EMG’. The technique involves 

placing a needle in different muscles and recording the electrical activity which occurs when 

the muscle is activated.  Different types of activation, or muscle twitches, occur between 

healthy and affected people.  We wish to provide healthy control data including both 

ultrasound and EMG, in order to initially test ultrasound based methods of twitch detection 

that have been developed and also provide a comparison to the patients muscle at a later date. 

 

WHAT WILL HAPPEN IF I TAKE PART? 

During the data collection we will record needle EMG and ultrasound images from four 

muscles: 

i) a muscle at the back of your lower leg [medial gastrocnemius] 

ii) a muscle in your thigh [rectus femoris] 

iii) a muscle in your upper arm [biceps] 

iv) a muscle on your shoulder [trapezius] 

 

Recording the images involves placing an ultrasound probe, covered in a water based gel, 

over the top of the muscle of interest.  The probe sends waves of ultrasound through the 

muscle which are reflected and used to create an image which can be viewed and recorded on 

a computer.  The images of your muscles are in monochrome (black and white), and just 

show features within your muscle.  Individual people cannot be identified from these images. 

 

Recording EMG involves inserting a needle into the muscle, which will detect the electrical 

activity in the muscle which occurs when it contracts or twitches. 

While we are collecting the EMG and the images you can sit on a chair or lie on a couch, 

depending on the muscle being scanned. You will not need to do anything else.  We want to 

take recordings of the naturally occurring, involuntary twitches which occur in healthy muscles. 

We will take three recordings from each muscle, each lasting 30 – 40 seconds. 

 

You will only need to participate once and in total it will take no more than 2 hours to collect all 

the ultrasound images and EMG required. 

 

WHAT ARE THE POSSIBLE BENEFITS OF TAKING PART? 
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There will be no direct benefits to you for taking part in the study.  We hope however that the 

work will contribute to the development of a new, non-invasive method of diagnosing some 

degenerative muscle diseases. 

 

WHAT ARE THE POSSIBLE RISKS OF TAKING PART? 

There are no risks associated with the ultrasound imaging. It is a minimally invasive 

technique which is commonly used to assess muscle tissue and unborn babies in pregnant 

women. 

 

There are small risks associated with the needle EMG. It can cause a degree of pain and can 

lead to a small amount of bruising. There is also a very low risk of infection occurring at the 

site the needle was inserted. 

 

WILL MY TAKING PART BE KEPT CONFIDENTIAL? 

Yes.  We will not need to record any of your personal information for this work. Details of 

your age, height, weight will be noted but not linked to any information from which you 

could be identified.  All the ultrasound videos and EMG recorded will be saved on a 

computer with a unique alphanumeric participant identifier, which will not be linked to any 

of your confidential records. 

 

WHAT IF I CHANGE MY MIND ABOUT TAKING PART? 

You are not obligated in any way to take part in this study it is entirely your choice. Once you 

have signed the consent form you are still free to withdraw at any time and without giving a 

reason and we will delete any data we had collected from you. 

 

WHO DO I CONTACT IF I FEEL MY RIGHTS HAVE BEEN VIOLATED? 

If you feel that your rights as a participant in this study have been violated, you may write to: 

 

The University Secretary and Clerk to the Board of Governors, 

Manchester Metropolitan University, 

Ormond Building, 

Manchester, 

M15 6BX 

Tel: 0161 247 3400 

 

 

Contact details for further information 

 

Kate Bibbings 

School of Healthcare Science 

Manchester Metropolitan University 

Oxford Road 

Manchester, M1 5GD 

 

Email: kate.bibbings@stu.mmu.ac.uk 
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Figure 2: Examples of Data Collection Set – up for  Medial Gastrocnemius 

and Biceps Brachii. 

Introduction 

Electromyography (EMG) is the standard diagnostic technique for the detection of fascicu-

lations (twitches) that present in neuromuscular disorders such as MND. This technique 

requires the insertion of needle electrodes into a number of the patients’ muscles in order 

to collect electrophysiological data  that may indicate the presence and nature of any ex-

isting pathology. Due to the unpleasantness of needle insertion, clinicians tend to avoid 

repeated  or prolonged testing, making research into areas such as disease progression 

difficult. 

Ultrasound (US) imaging may provide a more sensitive and painless alternative to EMG 

for detection of fasciculation's. However, most research has focused on image analysis 

using human operators, meaning results will have a certain level of subjectivity to them
[2]

. 

 Computational techniques have previously been used alongside human operator identifi-

cations of fasciculation's (ID’s), but have not previously been used to objectively identify 

involuntary tissue displacements in comparison to electrophysiological activity
[1]

.  

Methods 

US images of medial gastrocnemius (MG) and 

biceps brachii (BB) were collected from:  

 Young (18-35 years, N = 15)  healthy adults 

 Older (50+ years, N = 9) healthy adults  

 MND patients (N = 5). 

EMG was simultaneously collected from five 

participants in each group.  

Results 

 

Conclusions 

 The automated technique when compared to IDs, showed very high levels of agreement 
throughout all test groups and the EMG comparison yielded good agreement, through most 
test groups.  

 

 Differences in agreement levels between truth signals may be due to complexity of EMG sig-
nals, making it harder to extract fasciculation potentials. In addition, the EMG detection volume 
is also much smaller (approx. 0.07 mm

2
) than the area assessed by US, with images being 

collected in 50mm x 50mm slices. 

 

 The KLT algorithm was regularly outperformed by the GMM and the LK optical flow algorithms. 

 

 In relation to the EMG comparisons, the LK algorithm reports higher agreement in healthy 
muscles, where the muscles are generally quiet. In muscles with voluntary activations and oth-
er phenomenon such as complex repetitive discharges the GMM algorithm is superior. 

 

 An analysis technique using a combination of the LK and GMM methods may improve results.  

 

Computer vision techniques used for fasciculation detection: 

1. Kanade Lucas Tomasi (KLT) tracker with mutual information 

2. Lucas Kanade (LK) optical flow 

3. Foreground detection using a mixture of Gaussians (GMM) 
 
 

Agreement between the computational methods and the manual ID’s/ EMG was calculated using 

Receiver Operator Characteristics (ROC’s), which compare the true negatives and true positives 

of the signal and the ID’s / EMG at different threshold values. The area under the curve (AuC) 

was the method used to calculate the accuracy of each method in comparison to the two truth 

signals. 

Methods 

US images of medial gastrocnemius (MG) and 

biceps brachii (BB) were collected from:  

 Young (18-35 years, N = 15)  healthy adults 

 Older (50+ years, N = 9) healthy adults  

 MND patients (N = 5). 

EMG was simultaneously collected from five 

participants in each group.  

Figure 1: Examples of Fasciculations in an Electromyogram (L)  

and Motor Units (R)
[3]

. 
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Research Question 

How well do different computer vision techniques detect fasciculation's in ultrasound 

images when compared to: 

1. Manual identifications compiled by human operators 

2. Intramuscular electromyography 

ROC curves for Manual ID Comparisons 
 

Overlays of ROC curves calculated for comparisons between the computational techniques  

(KLT, LK and GMM)  and manual ID’s in the medial gastrocnemius. Each plot shows results for 
participant groups 18-35, 50+ and MND respectively. 

AuC 

 KLT (84.97%) 

 LK (94.09%) 

 GMM (94.29%) 

AuC 

 KLT (90.13%) 

 LK (93.39%) 

 GMM (94.41%) 

AuC 

 KLT (93.20%) 

 LK (93.75%) 

 GMM (90.96%) 

AuC 

 KLT (90.32%) 

 LK (90.05%) 

 GMM (91.60%) 

AuC 

 KLT (88.65%) 

 LK (91.20%) 

 GMM (91.75%) 

AuC 

 KLT (91.55%) 

 LK (95.43%) 

 GMM (93.48%) 

 

Overlays of ROC curves calculated for comparisons between the computational techniques 
(KLT, LK and GMM)  and manual ID’s in the biceps brachii. Each plot shows results for  

participant groups 18-35, 50+ and MND respectively. 

ROC curves for iEMG Comparisons 
 

 

Overlays of ROC curves calculated for comparisons between the computational techniques  

(KLT, LK and GMM)  and intramuscular EMG in the medial gastrocnemius. Each plot shows  

results for participant groups 18-35, 50+ and MND respectively. 

AuC 

 KLT (79.86%) 

 LK (80.02%) 

 GMM (82.47%) 

AuC 

 KLT (82.76%) 

 LK (90.53%) 

 GMM (86.59%) 

AuC 

 KLT (76.78%) 

 LK (96.16%) 

 GMM (89.71%) 

AuC 

 KLT (85.47%) 

 LK (80.78%) 

 GMM (83.75%) 

AuC 

 KLT (71.21%) 

 LK (79.50%) 

 GMM (81.11%) 

AuC 

 KLT (72.16%) 

 LK (86.72%) 

 GMM (84.35%) 

 

Overlays of ROC curves calculated for comparisons between the computational techniques 

(KLT, LK and GMM)  and intramuscular EMG in the biceps brachii. Each plot shows results for 

participant groups 18-35, 50+ and MND respectively. 

SCAN THIS CODE 

For our YouTube channel and a more in depth look at the techniques used in this poster 
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