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Arabinoxylans from  rice bran  and  wheat  immunomodulatory potentials: A 

Review Article 

 
Abstract 

 
Purpose - The purpose of this review is to discuss recent research on arabinoxylans 

from rice bran and wheat by-products and their immunomodulatory potential. Also, a 

potential receptor for arabinoxylans is proposed in relation to arabinoxylan structure. 

 

Design/methodology/approach - This review summarises recent publications on 

arabinoxylans from rice bran and wheat, classification of arabinoxylans, a brief 

background on their methods of extraction, and their immunomodulatory potential as 

they induce proinflammatory responses in vitro, in vivo and humans. The mechanism 

of action by which arabinoxylans modulate immune activity has yet to be discovered, 

however, we have proposed a potential receptor for arabinoxylans in relation to 

arabinoxylans’ structure and molecular weight. 

 

Findings - The effects of arabinoxylans from rice bran and wheat on the immune 

response  was  found  to  cause  a pro-inflammatory  response  in vitro,  in vivo  and 

humans. In addition, the immune response depends on their structure, the degree of 

branching and origin. 

 

Originality/Value - This review paper focuses on the effects of arabinoxylans from 

rice bran and wheat on immunomodulatory potential in vitro, in vivo and humans. A 

new mechanism of action has been proposed based on the literature and via the link 

between arabinoxylan and lipopolysaccharide structures, molecular weight and a 

proposed receptor, which might be activated via both molecules. 

 

Keywords:  Arabinoxylans;  dietary  fibre;  non-starch  polysaccharides;   rice  bran, 

wheat 



 

 

 
 
 
 

Introduction 
 

 
 

Cereal  grains  contain  variable  amounts  of  non-starch  polysaccharide  (NSP), 

namely cell wall material. Cereal grains are composed of hemicelluloses, celluloses, 

and  other  materials  such  as  lignins  and  pectins,  and  collectively  are  known  as 

dietary fibre (Comino et al., 2016, Ma et al., 2017) 

 
Arabinoxylans (AXs) are the main NSP constituents of many cereals, and they are 

predominantly found in the outer layers (bran) and starchy endosperm (flour) (Zhou 

et al., 2010, Haile et al., 2017). AXs are found in many cereals such as maize, rye, 

barley,  oats,  sorghum,  wheat  and rice.  They  constitute  about  1.37-2.06%  of  the 

wheat endosperm (Li et al., 2015). Whereas, in rice they constitute about 4.84-8.5% 

of the  bran (Hashimoto et al., 1987a) 

 
Studies have suggested that AXs extracted from different cereals may have 

desirable biological effects (Li et al., 2015). Other studies found that AXs extracted 

from enzymatically modified rice bran, MGN 3 with a low molecular weight, can 

stimulate both the adaptive and innate immune systems by enhancing dendritic cell 

maturation, macrophage phagocytosis, and natural killer cell activity (Ghoneum and 

Matsuura,  2004).  On  the  other  hand,  AXs  extracted  from  rice  bran,  without  any 

enzyme   pre-treatment,   have  shown   anti-complementary   and  anti-inflammatory 

activities in vitro (Wang et al., 2008, Hoshino et al., 2010). Recently, a study showed 

that AXs from wheat endosperm have the potential to induce nitric oxide (NO) 

production  and  interleukin  8 (IL-8)  in a dose-dependent  manner  from  U937  and 

Caco-2 cell lines (Li et al., 2015). The immunomodulatory properties of AXs from 

different  sources  have  been  reported  to  act  as  pro-inflammatory   and/or  anti- 



 

 

 

 
 
 

inflammatory which is strongly related to promote or supress growth of cancer cells 

 
(Zamarron and Chen, 2011). 

 

 
 

In this review, we aim to provide an overview of the immunomodulatory potential 

of  AXs  from  rice  bran  and  wheat,  as they  are rich in AXs. We also  propose  a 

potential receptor for AXs to which AXs might bind to prior immunomodulatory 

activities. 

 
Arabinoxylans (AXs) 

 

 
 

The NSPs are indigestible by human gut enzymes and are therefore referred to as 

dietary fibre. NSP makes up 75% of the cell wall and is composed of glucomannan, 

(1-3)  (1-4)  β  glucan,  cellulose  and  arabinoxylans  (pentosans)  (Pedersen  et  al., 

2014). Pentosans or arabinoxylans are the major hemicellulosic polysaccharides in 

cereals, and they make up more than 80% of the NSP in wheat and 10% of rice bran 

(Malathi and Devegowda, 2001, Mansberger et al., 2014). 

 
Arabinoxylans are the major NSPs found in many cereals and are composed of 

backbone chains of β-(1-4)-linked D-xylopyranosyl residues to which α-L- 

arabinofuranose units are linked as side chains in the second and/or third carbon- 

positions (Courtin et al., 2000, Roubroeks et al., 2000, Zhou et al., 2010). Figure 1 

shows the structure of AXs (Izydorczyk and Biliaderis, 1995). 

 
AXs are classified as either water-extractable AXs or water-unextractable AXs 

(Moers et al., 2005, Malunga and Beta, 2015, Moza and Gujral, 2017). It has been 

reported that AXs in rye are part of the CWM and they are bound covalently and 

non-covalently to other CWMs such as proteins, cellulose or lignin. In contrast, AXs 

in wheat are loosely bound to the surface of the cell wall (Merali et al., 2016). Sasaki 



 

 

 

 
 
 

et al. (2000) suggested that the difference in water extractability of AXs in cereals is 

due  to  the  degree  of  cross-linking  with  other  CWMs.  These  cross-links  can  be 

covalent ester bonds between the carboxylic acid group of uronic acids and AXs 

hydroxyl groups or di-ferulic acid bridges between adjacent AXs chains (Fry, 2004, 

Qiu et al., 2017). It has been reported that wheat endosperm contains between 31 

and 111 mg/100g ferulic acid (Michniewicz et al., 1990, Acosta-Estrada et al., 2014) 

whereas, rice bran contains 303 mg/100g (Jung et al., 2007) which might affect AXs’ 

solubility. Recent reports have shown that ferulic acid side chains are esterified to 

some arabinose residues (Snelders et al., 2013). 

 
Moreover, these cross-links make extraction of AXs challenging and there is a 

need  to  use  other  treatments  such  as  enzymes,  alkali  solutions  or  mechanical 

methods to effectively remove the AXs from what is a very stable network of covalent 

and non-covalent  crosslinks  (Courtin and Delcour, 2001, Jacquemin et al., 2012). 

The low solubility of AXs could also be due to the close packing of the cell content, 

which is proposed to be due to steric hindrance (Faulds et al., 2006). 

 
Several studies (Table 1) have shown that the percentage of Water Extractable 

Arabinoxylans (WEAX) is generally far lower than the Water Un-extractable 

Arabinoxylans  (WUAX).  Therefore,  increasing  and  improving  WUAX  solubility  is 

crucial  for those  who  are interested  in converting  WUAX  to WEAX.  It has  been 

reported that treating WUAX with alkali resulted in releasing WUAX from CWM due 

to the breaking up of bridges between the AXs and the covalent bonds and hydrogen 

atoms of the CWM (Gruppen et al., 1991, Mansberger et al., 2014). In another study 

carried  out  by  Courtin  and  Delcour  (2001),  the  possibility   of  increasing   the 

extractability  of AXs from wheat using enzymes  was investigated.  WUAX treated 



 

 

 

 
 
 

with endoxylanases resulted in an increase in the solubility of AXs due to the 

degradation  of  the  xylan  backbone.  Additionally,  this  led  to  a  reduction  in  the 

molecular weight of the extracted AXs fraction (Li et al., 2013). However, there is a 

limit to the increase in solubility from treating with endoxylanase due to the branched 

sections, which are not affected by the endoxylanase. On the other hand, several 

reports  show  that  AXs’  solubility  depends  on  the  AXs’  degree  of  branching 

(Mandalari et al., 2005). AXs with high arabinose substitution have a higher solubility 

in water and vice versa. Arabinoxylans’ degree of branching and potential molecular 

weight distribution determine to a large extent their potential immunological activities 

(Li et al., 2013, Li et al., 2015, Ma et al., 2017).. 

 
Rice bran AXs (MGN-3/Biobran) 

 

 
 

MGN-3/Biobran is an arabinoxylan extracted from rice bran with modification by 

hydrolysing enzymes from shiitake mushrooms, and its structure is composed of a 

xylose backbone attached to arabinose monomers with a molecular weight of 30-50 

kDa (Ghoneum and Matsuura, 2004, Pérez-Martínez et al., 2015). There are several 

in vivo, in vitro and human studies suggesting that MGN-3 is capable of enhancing 

the function of both innate and adaptive immune cells such as B cells, T cells, 

macrophages, natural killer cells and dendritic cells (Ghoneum and Brown, 1998, 

Ghoneum and Abedi, 2004, Ghoneum et al., 2004, Ghoneum et al., 2008, Cholujova 

et al., 2009, Ghoneum and Agrawal, 2014, Badr El-Din et al., 2016a, Badr El-Din et 

al., 2016b). The mechanism of action of biobran/MGN-3 is not fully understood. 

However, it has been suggested that modification of the long-chain arabinoxylans is 

involved and that reducing their molecular weights is important in order for them to 

be  taken  up  by  M  cells  (microfold  cells)  in  the  Peyer’s  patches.  In  M  cells, 



 

 

 

 
 
 

polysaccharides might be transported to the underlying immune cells (Samuelsen et 

al., 2011). Moreover, it was suggested that low molecular weight AXs can be 

transferred  directly  to  the  blood-stream  or  can  be  diffused  into  the  bloodstream 

through the intestinal walls, and then transported to different immune cells residing in 

lymph nodes (Ghoneum and Jewett, 1999). 

 
MGN-3 in vitro studies 

 

 
 

Several studies have investigated the effect of MGN-3 on different cell lines. It has 

been  reported  that  MGN-3  is  able  to  transform  human  monocytes  to  immature 

dendritic cells in the presence of two cytokine solutions, LPS and IFNγ and IL-1β, 

TNFα  and  IL-6  (Cholujova  et  al.,  2009).  MGN-3  showed  a  substantial  (190%) 

increase  in phagocytosis  by  U937  macrophages.  It  has  also  been  reported  that 

MGN-3 can increase the IL-6 and TNFα in treated macrophages from U937 and 

RAW264.7 (murine macrophage cell line) (Ghoneum and Matsuura, 2004, Ghoneum 

and Agrawal, 2011, Ghoneum and Agrawal, 2014). 

 
Recently, a study showed that MGN-3 can increase the expression of dendritic 

cells-205 in a dose-dependent manner and it can also increase the production of IL- 

29 and Type III interferon in human monocyte-derived dendritic cells, suggesting that 

MGN-3 can efficiently activate dendritic cells. Therefore, MGN-3 might be used for 

augmenting an efficient immune response against cancer and infections (Ghoneum 

and Agrawal, 2014). 

 
More recently, treatments with MGN-3 showed a significant increase in NK cell 

cytotoxicity against several in vitro cells including K562 erythroleukemia, NB1691 

neuroblastoma    and   A673   Ewing   sarcoma    (Pérez-Martínez    et   al.,   2015). 



 

 

 

 
 
 

Furthermore, another study showed that MGN-3 caused inhibition of 34% of human 

neutrophil HL-60 cells. It also induced phagocytosis in a concentration-dependent 

manner. 

 
MGN-3 in vivo studies 

 

 
 

Several in vivo studies have investigated the functionality of MGN-3 on animal 

immune systems. Badr El-Din et al. (2008) investigated the effect of intra-tumoural 

and intra-peritoneal supplementation of MGN-3 on Ehrlich carcinoma-bearing  mice, 

reporting that a concentration of 40 mg/kg body weight of MGN-3 can delay tumour 

growth.  The inhibitory  effect  of MGN-3  treatment  on tumour  growth  had positive 

effects from day 14 post-injection, with tumour weight and volume reducing by 45% 

and  63%  respectively  in  mice  at  day  35.  Moreover,  MGN-3  showed  antitumour 

effects and an increase in IFNγ production by 154%, apoptotic activity of 76%, TNFα 

secretion of 11% and NK cell activity of 100%. These results suggested that the 

antitumour effect of MGN-3 is due to its ability to induce IFNγ and TNFα. 

 
Recently, a study investigated the effect of MGN-3 on NOD-Scid IL-2 rgunull mice. 

It was found that there was a significant  neuroblastoma  growth inhibition  in cells 

treated with MGN-3 (Pérez-Martínez et al., 2015). A more recent study examined the 

ability of MGN-3 to enhance the apoptosis of tumour cells in mice bearing Ehrlich 

ascites carcinoma (EAC). It was found that inhibition of tumour growth after MGN-3 

treatment was associated with an increase in apoptosis and DNA damage of tumour 

cells, as well as a decrease in cancer cell proliferation. Their findings suggest that 

supplementation  of MGN-3  can enhance  tumour  cell demise  (Badr  El-Din  et al., 

2016a). 



 

 

 

 
 
 

MGN-3 human  studies 
 

 
 

Several  in  vitro  and  in  vivo  studies  have  been  conducted  to  investigate  the 

biological activities of MGN-3. However, only a few studies have examined MGN-3 

effects in humans. Ghoneum and Jewett (1999) conducted the first human trial on 

twenty-four healthy subjects for two months. They found that MGN-3 ingestion 

enhanced NK cell activity against two cancer cell lines (K562 and Raji). This effect 

was  concentration-dependent   and  the  highest  response   was  observed   at  46 

mg/kg/day of MGN-3. Moreover, NK cells’ binding capacity was increased by 310% 

after one month  of MGN-3  oral administration  at (45 mg/kg  per day)  which also 

confirms the immunoenhancing activity MGN-3 has against tumour cell lines. 

 
In another study conducted by Ghoneum and Brown (1998), 32 cancer patients 

ingested  3g of MGN-3 every day for a month. It was found that the ingestion  of 

MGN-3 significantly improved NK cell cytotoxicity by a 10-fold. Moreover, MGN-3 

enhanced B cell and T cell function in all cancer patients throughout measuring 

proliferation activity of B and T cells against several mitogens. Furthermore, no hypo- 

responsiveness in patients was observed post treatment, suggesting MGN-3 is 

nontoxic, and its use could be encouraged in conjunction with chemotherapy in order 

to dampen the effect of immunosuppression. 

 
Recently, in a study conducted in 32 multiple myeloma patients, MGN-3 was 

administered on a daily basis for 3 months. It was demonstrated that MGN-3-treated 

patients had higher NK activity compared to the placebo group. Moreover, the level 

of  myeloid  dendritic  cells  had  significantly  increased,  suggesting  MGN-3  may 

participate  in  activation  of  the  innate  immunity  of  multiple  myeloma  patients 

(Cholujova   et  al.,  2013).  The  immunomodulatory   potential  of  MGN-3  is  well 



 

 

 

 
 
 

documented in vitro, in vivo and humans. However, MGN-3 is a modified form of AXs 

from rice bran, and there is limited research on the non-modified rice bran AXs and 

other polysaccharides. 

 
Immunomodulatory effects of rice bran polysaccharides 

 

 
 

There  is  a  limited  research  on  the  polysaccharides  extracted  from  rice  bran 

without modification, including AXs. In 2008, Wang et al. studied the effect of a rice 

bran  hetero-polysaccharide  (RBPS2a)  extracted  with  hot  water  on  anti- 

complementary activity. The study indicated that RBPS2a has the ability in vitro to 

induce   red   blood   cell   lysis   and   complement   consumption   through   residual 

complement activity (Wang et al., 2008). Another study extracted different fraction of 

arabinoxylan from rice bran using carbohydrate hydrolysing enzymes for a longer 

period. The extracted arabinoxylan had a low molecular weight and structure similar 

to MGN-3. Mast cells treated with the arabinoxylan (0.3 mg/ml) showed a remarkable 

depletion  in β-hexosamindase  secretion  post-antigen  stimulation.  In addition,  IL-4 

and   TNF-α   secretion   were   inhibited   after   treating   the   mast   cells   with   the 

arabinoxylan,  proposing  that  AXs  extracted  from  rice  bran  have  the  ability  to 

suppress cytokine secretion and degranulation of mast cells (Hoshino et al., 2010). 

 
In   a   recent   study,   feruloylated   AXs   from   rice   bran   induced   IL-6,   IL-1β, 

prostaglandin  E2 (PGE2), NO and TNF-α in RAW264.7 macrophages,  suggesting 

that feruloylated AXs may be able to enhance innate immunity and protect against 

chronic inflammatory diseases (Fang et al., 2012). 

 
More recently, Wang et al. (2016b) investigated the effect of rice bran 

polysaccharides  on NO and TNF α production  in RAW264.7  macrophages.  Their 



 

 

 

 
 
 

results suggest that the antitumour activity of rice bran polysaccharides is mediated 

through macrophage activation which in turn induces the secretion of NO and TNF α 

in a dose-dependent manner. 

 
Immunomodulatory  effects  of  wheat  bran  and  wheat  endosperm 

arabinoxylans 

 
It has been reported that oral administration  of AXs extracted from wheat bran 

using xylanases and alkali extraction have an immune-modulatory effect on both the 

innate and adaptive immune system (Zhou et al., 2010, Cao et al., 2011).Alkali- 

extracted  arabinoxylans  from  wheat  bran  showed  an  inhibitory  effect  on  tumour 

growth and IL-2 production at 100-400 mg/kg on S 180 tumour- bearing mice. The 

most significant  results were at the highest concentration  (400 mg/kg). Moreover, 

there was an increase in leukocyte count and stem cell proliferation was enhanced 

after oral administration of AXs (Cao et al., 2011). 

 
Another study conducted by Zhou et al. (2010) indicated that 200 mg/kg oral 

administration  of  enzyme-extracted  wheat  bran  AXs  exhibits  immune-stimulatory 

effects  on both innate  and adaptive  immunity.  The enzyme-extracted  AXs (AXE) 

were  reported  to  stimulate  phagocytosis  by  macrophages  and  postpone 

hypersensitivity more than alkaline-extracted arabinoxylans (Zhou et al., 2010). 

 
Recently, Li et al. (2015)investigated the effect of enzyme-extracted arabinoxylans 

from wheat endosperm pentosan on U937 and Caco-2 cell lines. They reported that 

AXE generate higher nitric oxide (NO) levels than water-extracted arabinoxylans 

(WEAX) and the increase in NO production was dose-dependent.  It was reported 

that AXE is more effective than WEAX in stimulating IL-8 production. 



 

 

 
 
 

It is clear that there are several factors affecting the immunomodulatory potential 

of  AXs  including  the  method   of  extraction,   enzyme/chemical   treatments   and 

botanical source. It is well documented that AXs from different sources have 

immunomodulatory activities. However, to date, AXs’ cellular mechanism of action is 

not well-investigated  Therefore,  we will propose  a potential  receptor  for AXs that 

might provide new insights into AXs’ mechanism of action. 

 
Potential arabinoxylan receptors 

 

 
 

Previous  studies  suggested  that AXs  from  different  sources  have 

immunomodulatory potential and it is possible to speculate that their mechanism of 

action is by acting like Pathogen-associated Molecular Patterns (PAMPs). 

Fascinatingly,  extracted  AXs  from  cornhusk  and  rice  bran  have  shown  some 

similarities in terms of molecular weight and structure to lipopolysaccharide  (LPS) 

from Gram-negative bacteria (Ghoneum and Ogura, 1999, Ogawa et al., 2005). As 

an example,  LPS has in its outer core hexoses  such as glucose  and galactose, 

which  are found  in AXs. Another  similarity  is that the structure  of LPS and AXs 

includes  C-3  branched  polysaccharides  (Rietschel  et  al.,  1994,  Heinrichs  et  al., 

1998). Figure 2 shows the structure of LPS (Miller et al., 2005). Moreover, enzyme- 

treated AXs from wheat endosperm pentosan had low molecular weights (1-25 kDa) 

(Li et al., 2015) which are within the molecular weight range (10-20 kDa) of LPS 

(Mangoni et al., 2008). Therefore,  AXs might activate phagocytes  by attaching to 

Toll-like  receptors  expressed  on the  surface  of  phagocytes.  Since  LPS  binds  to 

TLR4 specifically, it suggests that TLR4 may also be a potential receptor for AXs. If 

true, AXs may compete with LPS for the TLR4 receptor in the presence of infection, 

thus  mediating  the  LPS-induced  immune  response.  Figure  3 shows  a simplified 



 

 

 

 
 
 

overview of the potential arabinoxylan receptor and how it might work on the LPS 

 
receptor. 

 

 
 

Other receptors besides TLRs may also act as receptors for AXs. These include 

the Dectin-1 receptor, which has been reported to be a β glucan receptor. However, 

Sahasrabudhe  et al. (2016)  have reported  that arabinoxylan  from wheat  has the 

ability to stimulate Dectin-1 receptors and it enhanced IL-23, and IL-4 expression in 

Dectin-1 stimulated dendritic cells (Sahasrabudhe et al., 2016). 

 
Structure-activity relationship 

 

 
 

It has been suggested that the activity of AXs is dependent on their sugar 

compositions, molecular weight and degree of branching (Zhou et al., 2010, Cao et 

al., 2011, Mendis et al., 2017). The most investigated type of AXs (MGN-3) has a low 

molecular weight with a low arabinose-to-xylose ratio (0.5) (Zhang et al., 2015) which 

is similar to the enzyme-extracted  wheat bran AXs (Zhou et al., 2010). Both of the 

polysaccharides showed the ability to activate the macrophages. However, MGN-3 

appeared to be more effective,, which might be due to differences in the sugar 

composition since MGN-3 has more glucose and galactose side chains (Zhang et al., 

2015).  In contrast,  alkaline-extracted  arabinoxylans  from wheat  bran and banana 

peel showed substantial immunomodulatory activity, despite the molecular weight of 

the AXs being large, 288 and 352 kDa, in banana peel and wheat bran respectively, 

suggesting several receptors may be involved (Zhang et al., 2008, Zhou et al., 2010, 

Cao et al., 2011). Table 2 shows the relationship between the structural properties of 

AXs from different sources on immunomodulatory activities. 



 

 

 
 
 

Conclusions 
 

 
 

AXs are important dietary fibres found in many cereals. Arabinoxylans from rice 

bran and wheat have been reported to modulate the immune responses. Several in 

vitro, in vivo and human trials have demonstrated the immunomodulatory potential of 

AXs from rice bran and wheat. The mechanism of action has yet to be discovered. 

The conclusion from the literature indicates that the biological activities of AXs are 

associated with several factors such as the source of AXs, their degree of branching 

and their molecular weight. Moreover, there are structural similarities between LPS 

from Gram-negative bacteria and AXs, which suggest that LPS and AXs might share 

the same receptor. Thus, future studies should focus on investigating of the AXs and 

to not be limited to one receptor only as other receptors might contribute as well. 

Furthermore, future studies should also focus on studying the molecular structure of 

AXs and how this affects their immunomodulatory properties. 
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Figure 1. Arabinoxylan structure (Izydorczyk and Biliaderis, 1995). 
 

Arabinoxylan structure is composed of backbone chains of β-(1-4)-linked D-xylopyranosyl 
residues to which α-L-arabinofuranose units are linked as side chains in the second and/or 
third carbon-positions. 



 

 

 
 
 
 

 
 

Figure 2. Lipopolysaccharide (LPS) structure 
 

a. LPS lipid A, O-antigen and core oligosaccharide. b. TLR4-MD2-CD14 receptor 
complex (Miller et al., 2005). 



 

 

 
 
 
 
 
 
 

 
 

Figure 3. Simplified representation of the macrophage TLR 4 receptor with AXs and 

LPS 
 

AXs might compete with LPS on TLR4 receptor of macrophages, in which the 

immune response will be modulated. 



 

 

 
 
 

Table 1. Water extractable and water-unextractable AXs in rice and wheat (dry 
weight basis) weight basis 

 

WEAX and WUAX in some cereal grains and cereal by-products (dry weight basis) 
 

Cereal 
 

Tissues 
Total 

AXs% 

 

WEAX% 
 

WUAX% 
 

References 

 

 
 
 

Rice 

Defatted 
pericarp 

 

26.7 
 

NA 
 

NA 
 

(Wang et al., 2016) 

Defatted 
aleurone 

 

13.2 
 

NA 
 

NA 
 

(Wang et al., 2016) 

 

Cooked 
 

0.5 
 

NA 
 

NA 
(Dodevska et al., 

2013) 

Germinated 
whole grain 

2.97- 
6.84 

 

NA 
 

NA 
 

(Kim et al., 2015) 

 

 
 
 
 
 
 
 
 
 

Wheat 

De-starched 
bran 

 

29.1 
 

NA 
 

NA 
(Koegelenberg and 

Chimphango, 2017) 
 

Bran 
 

26.2 
 

NA 
 

NA 
(Koegelenberg and 

Chimphango, 2017) 

Bran 23 NA NA (Wang et al., 2015) 

Endosperm NA 8.23 NA (Li et al., 2015) 

Endosperm 1.5-2.5 0.3-0.75 1.2-1.7 (Li et al., 2013) 
 

Endosperm 
1.52- 

1.75 

 

0.42-0.68 
 

1.07-1.1 
(Marcotuli et al., 

2016) 
 

White flour 
 

5.1 
 

2.1 
 

2.96 
(Pavlovich-Abril et 

al., 2016) 
 

Bran 
 

13 
 

2.86-4.29 
 

8.71-10.14 
(Sárossy et al., 

2013) 

Bran 26 0.71 25.29 (Zhang et al., 2016b) 



 

 

 
 
 

Table2. Structural properties of AXs 
 
 
 

Origin Extractio  Immunomodulat Mw  Glu Ga Xyl Ara  Ar/X Referenc 

 n  ory activity (kDa  % l % %  y es 
  method  )  %   

Wheat alkaline Tumour 352 7.7 na 50. 41. 0.83 (Zhou et 
bran  inhibition, Mφ    2 8  al., 2010) 

  activation   
Wheat enzyme  Mφ activation  32.5  2.8  na  62. 34. 0.55  (Zhou et 

 bran  4  8  al., 2010)   
Rice enzyme Mφ, DCs and NK 30- 6 5- 48- 22- 0.5 (Zhang et 

bran  activation 50  7 54 26  al., 2015) 
Structural properties of AXs in relation to the extraction method and immunomodulatory  activity in rice bran 

and wheat bran 


