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Modulation of Innate and Adaptive Immune Responses by Arabinoxylans 30 

Abstract 31 

Humans are exposed to harmful pathogens and a wide range of noxious substances every day. 32 

The immune system reacts to, and destroys, these pathogens and harmful substances. The 33 

immune system is composed of innate and adaptive immunity, which liaise to protect the host 34 

and maintain health. Foods, especially cereals, have been reported to modulate the immune 35 

response. Arabinoxylans are non-starch polysaccharides that have been shown to possess 36 

immune-modulatory activities. This review article discusses the fundamentals of the immune 37 

system and provides an overview of the immunomodulatory potential of arabinoxylans in 38 

conjunction with their structural characteristics and proposed similarities with 39 

lipopolysaccharides. 40 

Practical applications 41 

Understanding how the immune system works is of vital importance to prevent unnecessary or 42 

excessive inflammatory responses. Consumption of arabinoxylans has been shown to possess 43 

immunomodulatory potential. However, their mechanism of action has not been elucidated. 44 

Arabinoxylans share some similarities with lipopolysaccharides (LPS), a molecule that induces 45 

substantial and sometimes excessive immune responses such as fever following infection by 46 

pathogens. Thus, we propose that arabinoxylans might possibly act on the same receptor as 47 

LPS. Competition between dietary-derived arabinoxylans and LPS at a shared receptor would 48 

then have the potential to inhibit or attenuate excessive LPS-induced inflammatory responses 49 

that are typical of infection/fever. In the absence of infection and consequently no competition 50 

at the LPS receptor, consumption of dietary arabinoxylans may protect against the risk of 51 

infection by moderately activating the receptor and heightening natural (background) levels of 52 

immunity. 53 
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1. Introduction 56 

The human body is continually exposed to pathogens or harmful agents. The immune system 57 

possesses a set of defence mechanisms against these harmful pathogens and  is composed of 58 

innate (non-specific) and adaptive (specific) immunity (Nicholson, 2016). The innate immunity 59 

encompasses chemical, microbiological and physical barriers, in addition to other elements of 60 

the immune system such as monocytes, macrophages, neutrophils, the complement system and 61 

cytokines (Sperandio et al., 2015). The innate response is immediate and non-specific, unlike 62 

the adaptive immunity, which is considered the hallmark of the immune system with its 63 

specific, yet slower response (Iwasaki & Pillai, 2014; Iwasaki & Medzhitov, 2015). Mounting 64 

an immune response against harmless foreign molecules is unnecessary and can lead to fatal 65 

outcomes such as anaphylactic shock (Patosuo, 2014). This deleterious response is typically 66 

avoided because the adaptive immune response is triggered by the innate immune system only 67 

when the latter recognises molecules of an attacking pathogen (Bonneaud et al., 2003; Lu et 68 

al., 2016). 69 

Performance of the immune system is vital for defending the body from  pathogens and  it plays 70 

a crucial role in health homoeostasis (Nairz et al., 2013). It has been suggested that ingestion 71 

of foods with immune-modulatory effects is able to prevent deterioration of immune function 72 

or reduce the risk of infection (Kaminogawa & Nanno, 2004; Goldsmith & Sartor, 2014). 73 

Studies have suggested that diet can improve depressed immune function by moderating the 74 

severity of infectious diseases and reducing infection rates (El-Gamal et al., 2011; Rajilić-75 

Stojanović et al., 2015). Cereals are staple foods and feed more than half of the world’s 76 

population; they are composed mainly of starch, protein, some minerals, and non-starch 77 
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polysaccharides that cannot be digested by human enzymes (Mohan et al., 2010). Arabinoxylan 78 

is the main non-starch polysaccharide of many cereals (Zhou et al., 2010; Lovegrove et al., 79 

2017). It has been reported that arabinoxylan possesses immune-modulatory effects (Li et al., 80 

2015).  Moreover, there is a structural similarity between arabinoxylans and the 81 

lipopolysaccharides of Gram-negative bacteria (Park et al., 2009; Park et al., 2017). The aim 82 

of this review is to give an overview of the immune system and how arabinoxylans might 83 

modulate the immune response. 84 

  85 
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2. Immune system 86 

The immune system of the human body is a complex network of molecules, cells and organs 87 

that interact and communicate together to respond to the invasion of pathogens and maintain 88 

the body’s homoeostasis (Thompson, 2015). The immune system consists of innate immunity, 89 

which is a stereotyped rapid response to a stimulus, and adaptive immunity, which is a slower 90 

but highly specific response (Iwasaki & Medzhitov, 2015). The innate immune response 91 

operates in conjunction with the adaptive through activation of signalling pathways (O'neill et 92 

al., 2013). Figure 1 gives an overview of the interactions between the innate and adaptive 93 

responses of the immune system. 94 

2.1. Innate immune system 95 

The innate immune system is the first line of defence in the human body and is composed of 96 

three stages (Orlowsky & Kraus, 2015). The first stage is the chemical and physical barriers 97 

while the second stage depends on cell-intrinsic mechanisms and digestive enzymes which 98 

destroy viruses, bacteria and other pathogenic invaders (Medzhitov & Janeway Jr, 2000; 99 

Mogensen, 2009; Iwasaki & Pillai, 2014; Iwasaki & Medzhitov, 2015). The third stage of 100 

defence relies on the recognition of preserved pathogenic features (pathogen-associated 101 

immune-stimulants) by the complementary system and phagocytosis by immune cells such as 102 

natural killer cells, neutrophils and macrophages (McCarthy et al., 2014). Pathogenic immune 103 

stimulants are referred to as Pathogen-Associated Molecular Patterns (PAMPs) and they 104 

include pathogen cell wall polysaccharides such as chitin and mannans from fungi, 105 

lipoolysaccharides (LPS) from Gram-negative bacteria and peptidoglycan from Gram-positive 106 

bacteria (Volman et al., 2008; Kawai & Akira, 2010; Wiersinga et al., 2014). 107 

PAMPs have been well studied, especially LPS (Okuda et al., 2016). This has the ability to 108 

initiate the host defence through recognition of its bioactive component, lipid A, via co-receptor 109 



6 
 

MD-2 and Toll-Like Receptor 4 (TLR4) (Saitoh et al., 2004; Ohto et al., 2012; Kang et al., 110 

2016). The structure of lipid A is composed of two glucosamine units with a β(1→6) linkage 111 

attached to six fatty acyl chains, 1 and 4 phosphate groups (Slocum et al., 2014; Trouw et al., 112 

2017). It has been reported that optimal immune activation of lipid A is derived from the acyl 113 

chains attached directly to the di-glucosamine (Raetz et al., 2009). 114 

The complement system is part of the innate immune system (Galluzzi et al., 2017) and is 115 

responsible for enhancing the ability of phagocytic cells to clear damaged cells and microbes 116 

from the system (Orsini et al., 2014). Three pathways have been identified for complement 117 

activation, which are the classical, alternative and lectin pathway (Takahashi et al., 2008; Merle 118 

et al., 2015). IgG or IgM antigen/antibody complexes are responsible for initiating the classical 119 

pathway through binding to the first protein of the cascade (C1q) which in turn activates the 120 

C1r, leading to formation of the membrane attack complex which eventually penetrates 121 

bacterial membranes creating pores which lead to bacterial lysis (Peerschke et al., 2016).  122 

The second pathway of the complement system is known as the alternative pathway or 123 

‘properdin pathway’, which is a failure to regulate low-level continuous formation of C3 124 

convertase (Miwa et al., 2013). Eventually, if a product of C3 convertase called C3b binds to 125 

a bacterial cell surface, this creates an amplification loop for other pathways (Galluzzi et al., 126 

2017; Trouw et al., 2017).  127 

The lectin pathway involves mannose-binding lectin (MBL). The initiating molecules for this 128 

pathway (MBL and ficolin) are multimeric lectin complexes (Amiri, 2015). These molecules 129 

bind to specific carbohydrates in the host to activate the pathway through enzymatic activity 130 

of mannan-binding lectin-associated serine protease (MASP). The structural similarities 131 

between C1 and MBL suggest that complement activation by C1 and MBL involves similar 132 

pathways (Kozarcanin et al., 2016). 133 
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All three pathways have the ability to activate the key components C 1-3, referred to as C3. 134 

This activation is critical for the complementary reaction as it triggers the inflammatory 135 

response, which in turn activates components C 5-9 (Ali et al., 2012).  136 

Activation of C 5-9 triggers a cascade of events that leads to activation and recruitment of other 137 

innate immune cells (Garred et al., 2016). The PAMPs from the invaders bind to Pattern 138 

Recognition Receptors (PRRs) which are displayed on  host immune cells (Takeuchi & Akira, 139 

2010; Kagan & Barton, 2015). PRRs include the Toll-Like Receptors (TLRs) which are found 140 

on the surface of phagocytes (dendritic cells, neutrophils and macrophages) (De Nardo, 2015). 141 

For example, Toll-Like Receptor-4 (TLR4) activates the innate immune response through 142 

recognition of LPS from the cell wall of Gram-negative bacteria (He et al., 2014). 143 

Post-activation, immune cells such as neutrophils, dendritic cells and macrophages secrete 144 

cytokines to communicate with other cells in the immune system and stimulate the immune 145 

response (Guilliams et al., 2014). On the other hand, activation of innate immune cells produces 146 

digestive enzymes and reactive oxygen radicals that destroy pathogens (Takahashi et al., 2008). 147 

Furthermore, dendritic cells play an important role in transferring ingested pathogens to the 148 

lymph nodes to activate T lymphocytes, thereby initiating a specific immune response that is 149 

part of the adaptive immune system (Kim et al., 2006; Ait-Oufella et al., 2014). 150 

2.2. Adaptive immune system 151 

Adaptive immunity protects the human body from certain death by infection (Wong et al., 152 

2014). Once the innate response is initiated, it calls the adaptive immune system into play; then 153 

both work together to eliminate pathogens (Zhu et al., 2015). Unlike the innate immune 154 

response, the adaptive immune response is slow but highly specific against pathogens, and its 155 

protection is long-lasting (Cooper & Alder, 2006). It is pointless to mount the adaptive immune 156 

response against harmless foreign molecules, otherwise the adaptive immune response might 157 
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be deleterious (Witztum & Lichtman, 2014). This is normally avoided because the adaptive 158 

immune response is triggered by the innate immune system only when the latter recognises 159 

molecules of the attacking pathogens such as PAMPs (Bonneaud et al., 2003; Lu et al., 2016). 160 

Dendritic cells, also known as pathogen-presenting cells, have surfaces packed with PRRs, 161 

which bind to the PAMPs of foreign pathogens and initiate phagocytosis (Visintin et al., 2001; 162 

Gringhuis et al., 2014). The dendritic cells, with the ingested pathogens, then move to a 163 

peripheral lymphoid organ or to a nearby lymph node where the dendritic cells present the 164 

antigens of the ingested pathogens to T lymphocytes (Cravens & Lipsky, 2002; Gringhuis et 165 

al., 2014). The cell surface of T cells is covered with various receptors that recognise 166 

extraneous antigens such as foreign polysaccharides or large proteins (Caramalho et al., 2003; 167 

Levine, 2015). To complete the activation of T cells, a co-stimulatory signal is sent from the 168 

dendritic cells, resulting in proliferation of T cells with the same receptor, thereby inducing 169 

antigen-specific adaptive immune responses (Chen & Flies, 2013). To eliminate the pathogen 170 

at the infection site, T cells mature and differentiate into different types of effector T cells 171 

including cytotoxic, helper and regulatory T cells (Mucida et al., 2013; Nishikawa & 172 

Sakaguchi, 2014). Cytotoxic T cells have the ability to detect substantial number of different 173 

antigens with high specificity and release lytic proteins thus eliminating pathogens that 174 

proliferate inside the host cell (Jones et al., 2017). 175 

Helper T cells can release cytokines that guide dendritic cells to stay in their active form and 176 

can stimulate antibody production from B cells that kill pathogens (Rissoan et al., 1999; Ise et 177 

al., 2014). Helper T cells can also express co-stimulatory proteins on their surface and release 178 

cytokines to activate more cytotoxic T cells and macrophages (Croft, 2003; Maude et al., 2014). 179 

The regulation and control of activated immune cells is mediated by regulatory T cells, which 180 

can inhibit the activity of cytotoxic T cells, helper T cells and dendritic cells to avoid 181 

autoimmunity (Sakaguchi et al., 2008; Ito et al., 2016). Activated B cells secrete serum proteins 182 
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and synthesize antibodies that bind directly to pathogens to inactivate them. They also recruit 183 

innate immune cells such as macrophages to eliminate invaders (Clark & Ledbetter, 1994; 184 

Amable et al., 2014). 185 

2.3. Monocytes 186 

Monocytes are white cells circulating in the blood (Guilliams et al., 2014). They can express 187 

CD11b and Toll-like receptor-4 (TLR4) associated with CD14, which are triggered by LPS 188 

from the cell wall of Gram-negative bacteria (Taylor et al., 2005; Frantz et al., 2013). 189 

Monocytes originate from haematopoietic stem cells in the bone marrow (Lee et al., 2015) and 190 

activation of these stem cells results in the differentiation of common myeloid progenitors 191 

(CMPs) which differentiate further into macrophage and granulocyte progenitors (Ogawa, 192 

1993; Ginhoux & Jung, 2014). Prior to the transformation of haematopoietic stem cells into 193 

circulating monocytes, they undertake a series of embryonic divisions (Chow et al., 2011; Lim 194 

et al., 2013). Monocytes circulate in the blood and have the potential to differentiate into 195 

dendritic cells or macrophages (Geissmann et al., 2010; Heidt et al., 2014). Differentiation to 196 

macrophages requires the activation of runt-related transcription factor that encodes the ETS 197 

family transcription factor PU.1, which needs to be constantly expressed at high levels to 198 

induce monocyte differentiation to macrophages (Lawrence & Natoli, 2011; Schneider et al., 199 

2014). 200 

 201 

2.4. Macrophages  202 

Monocytes circulate in the blood for up to two days followed by migration into tissues and 203 

differentiation into macrophages (van Furth & Cohn, 1968; Geissmann et al., 2010). 204 

Macrophages and neutrophils have the ability to take up pathogens through phagocytosis, a 205 

process which engulfs large particles (> 0.5 µm) into cells through an actin-dependent 206 
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mechanism (Silva, 2010; Linehan et al., 2014).  Activation of macrophages and subsequent 207 

phagocytosis occurs through PAMP-mediated recognition of Gram-negative and Gram-208 

positive bacteria by PRRs (Plüddemann et al., 2011; Martinez & Gordon, 2014). Macrophages 209 

have a range of PRRs including TLR, which when activated results in pro-inflammatory 210 

cytokine production including IL-23, IL-12, IL-6 and TNFα (Mosser & Edwards, 2008; O’neill 211 

& Pearce, 2016). Activated macrophages also express inducible nitric oxide synthase (iNOS), 212 

which is responsible for generating nitric oxide (NO), a key mediator for killing bacteria within 213 

macrophages (Murray et al., 2014; Martins et al., 2017). 214 

2.5. Initiate immune responses 215 

PAMPs are responsible for initiating the innate immune response through PRRs, of which the 216 

TLR family has been extensively investigated in recent years (Medzhitov, 2001; Akira & 217 

Takeda, 2004; Pradere et al., 2014). On recognition of PAMPs, PRRs at the cell surface triger 218 

intracellular pathways that lead to the transcription of chemokines and cytokines involved in 219 

antimicrobial and proinflamatory responses (Akira & Takeda, 2004; Gazendam et al., 2016). 220 

2.6. Toll-like receptor family (TLRs) 221 

The most investigated class of PRRs is the TLR family. The name is derived from their 222 

homology to the Toll protein in Drosophila melanogaster (Medzhitov et al., 1997; De Nardo, 223 

2015; Murofushi et al., 2015). The structural hallmarks of all known TLRs are an extracellular 224 

cysteine-rich domain, leucine-rich motifs (LRR) and a cytoplasmic signalling Toll/IL-1 225 

receptor (TIR) analogy domain in the intracellular region (Gay & Keith, 1991; Pietretti et al., 226 

2014; Ren et al., 2014). The intracellular signal transduction is due to receptor oligomerisation 227 

that is induced by ligand binding to TLRs (Futosi et al., 2013). To date, 10 TLRs have been 228 

identified in mammals, and each recognize distinct PAMPs derived from bacteria, viruses, 229 

fungi and protozoa (Akira & Takeda, 2004; Bonham et al., 2014).The TLRs include TLR1, 230 
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TLR2, TLR4 and TLR6 that recognize lipoproteins such as triacyl lipopeptides and LPS, while 231 

TLR3, TLR7, TLR8 and TLR9 recognize nucleic acids such as dsRNA or ssRNA (Curtale et 232 

al., 2013; Vacchelli et al., 2013; Gay et al., 2014). 233 

2.7. Lipopolysaccharides (LPS) 234 

LPS are a major component of the cell wall of Gram-negative bacteria (Guha & Mackman, 235 

2001), consisting of three parts; a polysaccharide side chain also known as O-antigen or O-236 

chain, a non-repeating core polysaccharide, and lipid A, which is hydrophobic (Speciale et al., 237 

2015). The polysaccharide side chain and non-repeating core polysaccharide are projections 238 

from the surface, while the hydrophobic domain is embedded in the outer membrane. The lipid 239 

A domain is a source of toxicity, while the O-chains are easily detected by the host antibodies 240 

and, to avoid detection, are often modified by bacteria (Lerouge & Vanderleyden, 2002; Miller 241 

et al., 2005; Eckert et al., 2013; Wu et al., 2013). Lipopolysaccharide structure is illustrated in 242 

Figure 2. Low levels of LPS are sufficient to induce a substantial inflammatory response of the 243 

innate immune system (Schwarz et al., 2014). LPS binds to the LPS Binding Protein (LBP) in 244 

serum, before being transferred to CD14 and then to MD2, which is associated with TLR4 245 

(Ryu et al., 2017). The receptor complex then promotes secretion of nitric oxide (NO) and pro-246 

inflammatory cytokines such as TNFα and IL-8 in monocytes and macrophages (Johnson et 247 

al., 2002; Termeer et al., 2002; Miller et al., 2005; Massey et al., 2015; Lee et al., 2016). 248 

2.8. Cytokines 249 

Cytokines are small, soluble proteins that affect the function or growth of cells. Cytokines can 250 

act in a paracrine way (affect nearby cells) or an autocrine way (affect the same cell). However, 251 

some cytokines such as IL-6, IL-8 and TNFα can have systemic effects. Cytokines act on 252 

immune cells and mediate inflammatory responses (Vilček & Feldmann, 2004; Le Maitre, 253 

2014).  254 
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2.9. Tumour necrosis factor alpha (TNFα) 255 

TNFα is a pro-inflammatory cytokine with various biological effects (Bekkering et al., 2014). 256 

TNFα is involved in apoptosis, differentiation and proliferation (Du et al., 2014; Sullivan et al., 257 

2014) and levels are elevated in inflammatory diseases such as rheumatoid arthritis (Motley et 258 

al., 2004; Garraway et al., 2014). Two receptors are known to mediate the effects of TNFα, 259 

TNFR1 and TNFR2. Local TNFα production is critical for elimination of local infections 260 

(Motley et al., 2004; Olmos & Lladó, 2014). Systemic TNFα release also plays a vital role in 261 

septic shock (Kanashiro et al., 2017). TNFα is released in macrophages and monocytes in 262 

response to foreign stimuli such as LPS from Gram-negative bacteria. The secretion of TNFα 263 

from T-cells is initiated by activation of the T-cell receptor (Manzo et al., 2017). In addition, 264 

natural killer cells and B cells can produce TNFα (Eissner et al., 2000; Yu et al., 2009). The 265 

effect of TNFα on endothelial cells includes the upregulation of leukocyte adhesion molecules 266 

that contribute to leukocyte recruitment (Huang et al., 2015).  267 

2.10. Nitric oxide (NO) 268 

Nitric oxide (NO) is a shor t-lived, gaseous, small molecule composed of one atom of oxygen 269 

and one atom of nitrogen, thus making it a free radical due to unpaired electrons (Pacher et al., 270 

2007). In the human body, NO is defined as a product of macrophage activation by pro-271 

inflammatory cytokines, microbial endotoxins such as LPS, or both (Rath et al., 2014). NO is 272 

a product of L-arginine degradation, the reaction being catalysed by an enzyme called inducible 273 

nitric oxide synthase (iNOS) (Bogdan, 2001; Palygin et al., 2015). This reaction requires 274 

several cofactors including calcium/calmodulin, flavin mononucleotide (FMN), nicotinamide 275 

adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), 276 

tetrahydrobiopterin (BH4), oxygen and haem (Baek et al., 1993; Marletta, 1994). There are 277 

three known isoforms of NOS; their names come from where they were first found. Inducible 278 
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NOS (iNOS) was found in macrophages, endothelial NOS (eNOS) found in endothelial cells 279 

and the neuronal NOS (nNOS) found in the brain. These isoforms are also known as NOS-2, 280 

NOS-3 and NOS-1 respectively (Alderton et al., 2001; Bogdan, 2015). 281 

2.10.1. NO role in macrophages  282 

NO production in macrophages depends on their activation in response to cytokine or bacterial 283 

endotoxin stimuli (Sadek et al., 2017). Macrophages act as patrolling cells and produce low 284 

levels of NO in quiescent conditions (Prolo et al., 2015). However, once activated by stimuli, 285 

macrophages produce excessive amounts of NO, releasing NO2- and NO3-, which are important 286 

in pathogen scavengers (Marletta et al., 1988; Hibbs, 2002). Although NO production is critical 287 

for macrophage phagocytosis, an excessive amount of NO has been associated with high levels 288 

of necrosis and apoptosis (He et al., 2016; Jakubowska et al., 2016). It has been reported that 289 

high levels of NO induce autoimmune reactions such as asthma and arthritis (Scichilone et al., 290 

2013), so it is crucial to dampen NO production in such conditions. Evidence suggests the 291 

modulation of immune function can be achieved by food (Zeng et al., 2016). 292 

2.11. Immunomodulating properties of food  293 

The functionality of the immune system is crucial for protecting the body from the attacks of 294 

pathogens or from cancer cell proliferation (Mittal et al., 2014). Thus, it plays a vital role in 295 

health homoeostasis (Nairz et al., 2013). However, many factors disturb immune functions 296 

such as an unhealthy lifestyle, malnutrition, physical stress, disease and ageing (Nahrendorf & 297 

Swirski, 2015). Evidence suggests that the ingestion of foods with immuneomodulatory effects 298 

prevents declining immune function or reduces the risk of infection (Kaminogawa & Nanno, 299 

2004; Goldsmith & Sartor, 2014). There are many studies suggesting that foods can improve 300 

depressed immune function by moderating the severity of infectious diseases and reducing 301 

infection rates (El-Gamal et al., 2011; Rajilić-Stojanović et al., 2015). Thus, foods with the 302 
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ability to improve immune responses, particularly in patients with impaired immunity such as 303 

cancer (Braga et al., 1996; Bradbury et al., 2014; Schnekenburger et al., 2014), are both 304 

clinically and commercially valuable.  305 

3. Arabinoxylans  306 

Arabinoxylan is a non-starch polysaccharide (Figure 3) with a backbone of β-(1-4)-linked d-307 

xylopyranosyl residues to which α-l-arabinofuranose units are linked as side chains in the 308 

second and/or third carbon-positions (Courtin et al., 2000; Roubroeks et al., 2000; Zhou et al., 309 

2010; Qiu et al., 2017). 310 

Arabinoxylan structure is characterised by substitution of the xylopyranose- linked xylan 311 

backbone. L-Arabinofuranose is the main sugar substitute for xylopyranose residues at O-2 312 

and/or O-3 via α-1, 2 and α- 1, 3 glycosidic linkages. This leads to three different forms namely, 313 

un-substituted xylopyranose, mono-substituted xylopyranose at O-2 or O-3 and di-substituted 314 

xylopyranose at O-2 and O-3 (Izydorczyk & Biliaderis, 1995; Saulnier et al., 2007; Broekaert 315 

et al., 2011; Qiu et al., 2017). However, arabinofuranose substitutions can form short 316 

oligosaccharide side chains that comprise of two or more arabinofuranose residues (Figure 4) 317 

(Saulnier et al., 2007). 318 

There are many techniques available for arabinoxylan extraction and different extraction 319 

methods give different yields and degrees of branching, molecular weight distribution and 320 

tertiary conformation (Lu et al., 2005), i.e. hot water extraction (Izydorczyk et al., 1998; Cyran 321 

et al., 2003; Iqbal et al., 2011; Yu et al., 2017) and ultrasound-assisted enzymatic extraction 322 

(Wang et al., 2014). 323 

Arabinoxylans can be classified according to their solubility in water, as either water-324 

unextractable arabinoxylans (WUAX) or water-extractable arabinoxylans (WEAX) (Moers et 325 

al., 2005). The structure of WUAX is different from that of WEAX as WUAX will not 326 
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solubilise in water, but will be solubilized in alkaline solutions (Gruppen et al., 1993). Table 1 327 

shows the water-extractable and water-unextractable arabinoxylans in some cereals. 328 

Reducing the molecular weight of the arabinoxylans not only increases their solubility in water 329 

but also increases their biological health benefits (Li et al., 2013). Recently, pronounced effects 330 

of low Mw arabinoxylans (66 kDa) have been observed to have a higher prebiotic stimulation 331 

in an in vitro study compared to higher Mw arabinoxylans (Hughes et al., 2007). Modification 332 

of the molecular characteristics of arabinoxylans such as Mw is important to achieve the 333 

optimum prebiotic, anti-tumour activities and immune stimulation (Li et al., 2013). 334 

It has been suggested that the activity of arabinoxylans is dependent on their sugar composition, 335 

molecular weight and degree of branching (Zhou et al., 2010; Cao et al., 2011). The most 336 

investigated type of arabinoxylans (MGN-3) has low molecular weight with a low arabinose- 337 

to-xylose ratio (0.5) (Zhang et al., 2015) which is similar to the enzyme- extracted wheat bran 338 

arabinoxylans (Zhou et al., 2010). Both polysaccharides could activate macrophages (Zhou et 339 

al., 2010; Zhang et al., 2015). However, MGN-3 appeared to be more effective, which might 340 

be due to differences in the sugar composition since MGN-3 has more glucose and galactose 341 

side chains (Zhang et al., 2015). Figure 5. shows a simplified representation of the macrophage 342 

TLR 4 receptor with arabinoxylans and LPS. 343 

3.1. Immunomodulatory potentials of arabinoxylans  344 

It has been reported that oral administration of arabinoxylans extracted from wheat bran using 345 

xylanases and alkali extraction has an immune-modulatory effect on both the innate and 346 

adaptive immune systems (Zhou et al., 2010; Cao et al., 2011). Alkali extracted arabinoxylans 347 

from wheat bran showed inhibitory effects on tumour growth and IL-2 production at 100-400 348 

mg/kg on S 180 tumour bearing mice. The most significant results were at the highest 349 
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concentration (400 mg/kg). Moreover, there was an increase in leukocyte count, and stem cell 350 

proliferation was enhanced after oral administration (Cao et al., 2011). 351 

Another study conducted by Zhou et al. (2010) indicated that (200 mg/kg) oral administration 352 

of enzyme-extracted wheat bran arabinoxylans exhibited immunostimulatory effects on both 353 

innate and adaptive immunity. The enzyme-extracted arabinoxylans stimulated phagocytosis 354 

by macrophages and delayed hypersensitivity more than alkaline-extracted arabinoxylans 355 

(Zhou et al., 2010). 356 

Recently, Li et al. (2015) investigated the effect of enzyme-extracted arabinoxylans (AXE) 357 

from wheat endosperm pentosan on U937 and Caco-2 cell lines. They reported that AXE 358 

generated higher nitric oxide (NO) levels than (WEAX) and the increase in NO production was 359 

dose-dependent. AXE was reported to be more effective than WEAX in stimulating IL-8 360 

production (Li et al., 2015).  361 

Previous studies suggested that arabinoxylans from various sources have immunomodulatory 362 

potential. It is clear that there are several factors affecting the immunomodulatory potential of 363 

arabinoxylans including the method of extraction, enzyme/chemical treatments and botanical 364 

source. Table 2 shows the structural activity of arabinoxylans from rice bran and wheat on 365 

different cells. 366 

3.2. Potential arabinoxylan receptors 367 

Although receptors for arabinoxylans have not been identified, some potential receptors have 368 

been proposed. AXs maybe acting like PAMPs since AXs from cornhusk and rice bran have 369 

shown similarities in terms of molecular weight and structure to LPS from Gram-negative 370 

bacteria (Ghoneum & Brown, 1999; Ogawa et al., 2005; Mendis et al., 2017). For example, 371 

LPS has outer core hexoses such as glucose and galactose, which are found in AXs. Another 372 

similarity between the structure of LPS and AXs includes C-3 branched polysaccharides 373 
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(Rietschel et al., 1994; Heinrichs et al., 1998). Moreover, AXE from wheat endosperm 374 

pentosan had low Mw (1-25 kDa) (Li et al., 2015) which is within the molecular weight range 375 

(13-20 kDa) of LPS (Mangoni et al., 2008). Therefore, arabinoxylans may activate phagocytes 376 

by attaching to Toll-like receptors expressed on their cell surface (Zhang et al., 2015). Since 377 

LPS specifically binds to TLR4, it suggests that TLR4 may also be a potential receptor for 378 

arabinoxylans (Mendis et al., 2016). If true, arabinoxylans may compete with LPS for the TLR4 379 

receptor during infection, thus mediating the LPS-induced immune response. 380 

Other receptors besides TLRs may also act as receptors for arabinoxylans. These include the 381 

Dectin-1 receptor, which has been reported to be a β glucan receptor (Karumuthil-Melethil et 382 

al., 2014; Kanjan et al., 2017). However, Sahasrabudhe et al. (2016) have reported recently that 383 

arabinoxylan from wheat has the ability to stimulate Dectin-1 receptors and it enhanced 384 

Interleukin 23 (IL-23), and Interleukin 4 (IL-4) expression in Dectin-1 stimulated dendritic 385 

cells (Sahasrabudhe et al., 2016). 386 

 387 

3.3. Structure-activity relationship 388 

The most investigated type of arabinoxylans (MGN-3) has a low molecular weight with a low 389 

arabinose- to-xylose ratio (0.5) (Zhang et al., 2015) which is similar to the enzyme- extracted 390 

wheat bran arabinoxylans (Zhou et al., 2010). Both polysaccharides appear to activate 391 

macrophages but MGN-3 appeared to be more effective, which might be due to the higher 392 

sugar composition (Zhang et al., 2015). Figure 5. shows a simplified representation of the 393 

macrophage TLR 4 receptor with arabinoxylans and LPS. 394 

4. Conclusions 395 

Cereals are by far the most important source of food all over the world. Arabinoxylans are the 396 

major non-starch polysaccharides in most of the cereals. Also, it has been reported that 397 
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arabinoxylans have immune-modulatory activities. The immunomodulatory potentials of 398 

arabinoxylans have been linked to their sugar composition, molecular weight and degree of 399 

branching. Furthermore, there are structural similarities between arabinoxylans and LPS in 400 

terms of molecular weight and structure, suggesting that arabinoxylans can modulate the 401 

immune response through activation the LPS receptor TLR 4. Future work should focus on 402 

understanding more of the arabinoxylan mechanism of action, which might help in modulating 403 

the immune response more efficiently.  404 
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Table 1. Water extractable and water-unextractable AXs in some cereals (dry weight basis) 993 

weight basis 994 

WEAX and WUAX in some cereal grains and cereal by-products (dry weight basis)  

Cereal  Tissues Total AXs % WEAX % WUAX % References 

Rice Bran 4.84-5.11 0.35-0.77 4.34-4.49  (Hashimoto, Shogren, 

Bolte, et al., 1987) 

Bran  8.5 0.2 8.3  (Choct, 1997) 

Hulls 8.36-9.24 0.11 8.25-9.13  (Hashimoto, Shogren, 

Bolte, et al., 1987)  

Cooked  0.5 NA NA (Dodevska et al., 2013) 

Germinated 

whole grain 

2.97-6.84 NA NA (Kim et al., 2015) 

Whole grain  2.64 0.06 2.58  (Hashimoto, Shogren, 

Bolte, et al., 1987) 

Wheat Bran 25 1 24  (Hollmann & Lindhauer, 

2005) 

De-starched bran 29.1 NA NA (Koegelenberg & 

Chimphango, 2017) 

Bran 26.2 NA NA (Koegelenberg & 

Chimphango, 2017) 

Bran 23 NA NA (Wang et al., 2015) 

Bran 19.38 0.88 18.5  (Hashimoto, Shogren, & 

Pomeranz, 1987) 

Endosperm NA 8.23 NA (Li et al., 2015) 

Endosperm 1.5-2.5 0.3-0.75 1.2-1.7 (Li et al., 2013) 

Endosperm 1.52-1.75 0.42-0.68 1.07-1.1 (Marcotuli et al., 2016) 

Flour  1.37-2.06 0.54-0.68 0.83-1.38  (Izydorczyk et al., 1991) 

White flour 5.1 2.1 2.96 (Pavlovich-Abril et al., 

2016) 

Whole grain  5.77 0.59 5.18  (Hashimoto, Shogren, & 

Pomeranz, 1987) 

Whole grain  8.1 1.8 6.3  (Choct, 1997) 
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Rye Whole grain  8-12.1 2.6-4.1 5.4-8  (Hansen et al., 2003) 

Bran 13 2.86-4.29 8.71-10.14 (Sárossy et al., 2013) 

Flour  3.2-3.64 2.2-2.65 0.99-1  (Cyran et al., 2003) 

Whole grain  8.9 3.4 5.5  (Choct, 1997) 

Corn  Bran 29.86 0.28 29.58  (Hashimoto, Shogren, 

Bolte, et al., 1987) 

Bran 26.0 0.71 25.29  (Zhang et al., 2016) 

 995 

  996 
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Table2. Structural properties of AXs 997 
 998 

  999 

Origin Extraction 

method 

Immunomodulatory 

activity 

Mw 

(kDa) 

Glu 

% 

Gal 

% 

Xyl 

% 

Ara 

% 

Ar/Xy References 

Wheat 

bran 

alkaline  Tumour inhibition, 

Mφ activation 

352 7.7 na 50.2 41.8 0.83 (Zhou et 

al., 2010) 

Wheat 

bran 

enzyme Mφ activation 32.5 2.8 na 62.4 34.8 0.55 (Zhou et 

al., 2010) 

Rice bran enzyme Mφ, DCs and NK 

activation 

30-50 6 5-7 48-

54 

22-

26 

0.5 (Zhang et 

al., 2015) 
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Figure Legends 1000 

Figure 1. Simplified overview of the immune system; IL- interleukin, TNF α- tumour necrosis 1001 

factor α, IF γ – interferon γ. Adapted from (Dranoff, 2004; Stevenson & Riley, 2004). 1002 

Figure 2. Lipopolysaccharide (LPS) structure 1003 

a. LPS lipid A, O-antigen and core oligosaccharide. b. TLR4-MD2-CD14 receptor 1004 

complex (Miller et al., 2005). 1005 

Figure 3. Arabinoxylan structure (Garófalo et al., 2011). 1006 

Figure 4. Simplified schematic representation of arabinoxylans AXs 1007 

(a) Wheat flour and (b) Wheat bran. Substituents above and below the backbone represent 1008 

C (O)-2 and C (O)-3 positions, respectively (Edwards et al., 2003; Zhou et al., 2010; 1009 

Qiu et al., 2017). 1010 

Figure 5. Simplified representation of the macrophage TLR 4 receptor with AXs and LPS 1011 

 1012 

 1013 

 1014 

 1015 

 1016 

 1017 

 1018 

 1019 
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 1020 

Figure 1. Simplified overview of the immune system; IL- interleukin, TNF α- tumour necrosis factor α, IF γ – interferon γ. 1021 

Adapted from [33, 34] 1022 
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 1023 

Figure 2. Lipopolysaccharide (LPS) structure 1024 

a. LPS lipid A, O-antigen and core oligosaccharide. b. TLR4-MD2-CD14 receptor complex [103]. 1025 

 1026 
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 1027 

Figure 3. Arabinoxylan structure [140]. 1028 

 1029 
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 1030 

Figure 4. Simplified schematic representation of arabinoxylans AXs 1031 

(a) Wheat flour and (b) Wheat bran. Substituents above and below the backbone represent C (O)-2 and C (O)-3 1032 
positions, respectively [14, 139, 144]. 1033 
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 1034 

Figure 5. Simplified representation of the monocyte TLR 4 receptor with AXs and LPS 1035 

 1036 

 1037 


