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Abstract:  Relaying over power line communication (PLC) chan- 

nels can considerably enhance the performance  and reliability of 

PLC systems.   This paper  is dedicated  to study and analyze the 

energy efficiency of multi-hop cooperative relaying PLC systems. 

Incremental decode-and-forward (IDF) relying is exploited  to re- 

duce the transmit  power consumption.  The PLC channel  is as- 

sumed to experience log-normal fading with impulsive noise. The 

performances of single-hop and conventional DF relaying systems 

are also analyzed in terms of outage probability  and energy effi- 

ciency for which analytical  expressions are derived.  Results show 

that using more relays can improve the outage probability  perfor- 

mance; however, this is achieved at the expense of increased power 

consumption due to the increased static power of the relays,  es- 

pecially when the total source-to-destination distance is relatively 

small. Results also demonstrate that the IDF PLC system has bet- 

ter energy efficiency performance compared to the other schemes. 

 

 
Index Terms: Decode-and-forward (DF), energy efficiency, impul- 

sive noise, incremental  DF, log-normal fading, multi-hop relaying, 

outage probability, power line communication (PLC). 

 

 
I. INTRODUCTION 

HE demand  for communication   services has fueled the 

rapid development of power line communication (PLC) 

technology  witnessed in recent times.  However, the power 

line channel is naturally unfavourable to communication sig- 

nals given its intrinsic properties  such as frequency-selectivity, 

high incidence of noise and unpredictable line impedance [1–3]. 

Collectively, these factors may result in low signal-to-noise ra- 

tio (SNR) values at the receiver. Notwithstanding, this harsh 

environment,  PLC has continued  to gain acceptance  in dif- 

ferent  applications  such as smart grid, smart home and other 

cyber-physical  systems [4–6]; thanks to advanced signal pro- 

cessing and multi-carrier  techniques available today. By us- 

ing the existing electrical wiring for transmitting  data signals, 

PLC eliminates the need for new physical medium which  dras- 

tically reduces the cost of deployment. Another key benefit of 

PLC is that it readily provides an alternative in environments 

where wireless technologies either fail or are unacceptably poor, 
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e.g., in cellars. According to existing  standards (such as IEEE 

1901 for HomePlug), the communication  between PLC nodes 

is based on carrier  sense multiple access with collision avoid- 

ance (CSMA/CA) over time division multiple access (TDMA) 

technique [7, 8]. While CSMA/CA allows the nodes to contend 

for access to the power line channel without collision, TDMA 

ensures contention-free  slots to serve applications  and services 

that require deterministic allocation of network resources. This 

combination improves the power line’s suitability for multi-hop 

topologies [7].  Therefore, by allowing the network  nodes to 

act as potential  repeaters, relaying  neighbour’s  messages, nodes 

mutually benefit from one another and the presence of multiple 

nodes can be exploited  to improve network performance; this is 

broadly referred to as cooperative relaying1  Different  forms of 

cooperative relay techniques have been considered in PLC with 

varying  degrees of performance and constraints. This mainly in- 

cludes amplify-and-forward (AF) and decode-and-forward (DF) 

relaying [8, 10, 11]. For example, it was shown in [11] that a 

dual-hop AF PLC system can remarkably  improve  the system 

capacity compared to direct-link (DL) transmission.  In addi- 

tion, the authors of [12] and [13] analyzed the performance of 

multi-hop AF and DF relaying PLC systems in terms of the end- 

to-end average bit error rate and ergodic capacity where they 

showed that PLC systems can be made more reliable by increas- 

ing the number of relays. However, increasing the number of 

PLC modems contributes more to the total power consumption 

due to the aggregate static power of the modems. 

Energy efficiency,  similar to wireless communication [14], 

has recently  become a trending  topic in PLCs. For instance, 

the authors of [15] and [16] investigated the power consumption 

in opportunistic DF relaying PLC systems. In [17], the authors 

evaluated the energy efficiency performance of a half-duplex DF 

PLC relaying network and later they extended this to MIMO 

PLC with DF relaying [18]. In addition, it was shown in [19] 

that adaptively adjusting the transmission parameters based on 

intelligent signal detection and resource allocation algorithms 

can considerably enhance the energy efficiency  of PLC systems. 

Very recently, however, instead of only minimizing  the transmit 

power  as in the aforementioned studies, the authors in [20–22] 

have proposed harvesting the impulsive  noise energy over PLC 

channels with various relaying and energy-harvesting protocols 

where it was shown that considerable gains can be attained over 

conventional systems. It is worth mentioning that impulsive 

noise is always detected and then eliminated  in PLC systems 

which can be energy inefficient,  see e.g., [23–25]  and the refer- 

ences therein. 
 

1 The concept of relaying was originally proposed in wireless systems, see e.g., 
[9]. 
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To the best of our knowledge, all the existing pieces of work 
1  2 

are limited  to single-hop or dual-hop relaying and none has eval- 
uated the energy efficiency  of multi-hop PLC systems.  Unlike 

previous work, the focus of this paper is to provide detailed 

mathematical analysis of the outage probability of multi-hop 

PLC systems with a view to improving their energy efficiency. 

We also analyze the performance of incremental DF (IDF) re- 

laying in PLC in the presence of impulsive noise. Throughout 

this paper, the performance of the single-hop PLC system is in- 

cluded to quantify the achievable gains. 

The contributions of this paper are as follows. First, closed- 
form analytical  expressions are derived for the outage proba- 
bility and energy efficiency of a single-hop  PLC system.  Note 
that the outage probability indicates decoding failure due to PLC 
channel fading and noise effects. After that, accurate analytical 
expressions are formulated  for the outage probability and energy 
efficiency of a multi-hop  DF PLC system.  The final contribu- 
tion is that we measure the impact of various parameters on the 
system performance; that includes the number of relays, impul- 

(a) Multi-hop DF relaying PLC system. 
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(b) Single-hop PLC system. 

 
Fig. 1. Basic diagrams of the systems studied in this work. 

 

 
they represent two approaches for solving the same problem. 

While the goal of the former is to maximize the number of trans- 

mitted bit per unit energy, the latter aims to minimize transmit 

energy per bit; the latter is adopted in this paper.  Because our 

power consumption profile takes into account not only the dy- 

namic power but also the static power of the PLC modems con- 

sumed by the circuitry [17, 30], the energy per bit can be deter- 

mined as 
Pt + P T x + P Rx 

sive noise probability,  distance, static power and various outage 
Eb = 

stc 

Rb 

stc , (1) 

probability  requirements.  The results reveal that, for a given 
source-to-destination  distance, increasing the number of relays 

can remarkably reduce the outage probability  at the expense of 

increased power consumption due to the increased static power 

where Eb is the energy/bit, Pt  is the source transmit power for 

a given outage probability,  Rb = ξB is the data rate in bits/s, ξ 

is the spectral efficiency  and B is the system bandwidth, in Hz, 

which is assumed to be 30 MHz in all our evaluations, P T x and 
of the relays. It is also shown that the IDF PLC relaying sys- 
tem can considerably improve the energy efficiency  of multi-hop 

PLC systems and this improvement  becomes more pronounced 

at relatively small distances. In addition, it is found that as the 

impulsive noise probability or the relay static power increases, 

the energy efficiency of multi-hop  PLC systems degrades. 

The rest of this paper is organized  as follows. In Section II, 

the system model is described. Section III  provides detailed 

analysis of the outage probability  and energy efficiency  of the 

single-hop, multi-hop  and IDF relaying  schemes over the log- 

normal fading PLC channel contaminated with impulsive noise. 

Numerical  examples and simulation  results are presented and 

discussed in Section IV, illustrating the impact of various sys- 

tem parameters on the outage probability  and energy efficiency. 

Finally,  the main conclusions are presented in Section V. 
 
 

II.  SYSTEM MODEL 

stc  are the static powers of the transmitting and receiving PLC 

modems, respectively 2 . It should be highlighted that in order to 

minimize  the energy consumption, the transmit power must be 

minimized since the static powers are circuitry-specific.  Below, 

we briefly discuss the channel and noise models deployed in this 

work. 
 

A. Channel Model 

The channel coefficients and the corresponding distances of 
the multi-hop  system are denoted respectively  as hn and dn as 

illustrated in Fig. 1(a), where n ∈ {0, 1, .., N } and N represents 
the number of hops, i.e. N = M + 1. For the DL system, the 
channel coefficient  and the source-to-destination  distance are 

denoted  as h0  and d0  = ΣN     dn , respectively.  The channels 

are assumed to be independent and identically  distributed fol- 

lowing log-normal distribution with a probability  density func- 

tion (PDF) 

 

The multi-hop relaying  system investigated in this study is 
shown in Fig.  1(a).  This system consists of a source  mo- 
dem (S) and a destination  modem  (D), between which there 

fZ (zn ) = √ ζ 

2πσn zn 

 
exp 

( 
(10log10 

− 
(zn ) − µn ) 

2σ2 

 
, (2) 

are M  intermediate relays. The mth relay is denoted  as Rm 

where m  ∈ [1, M ] and the end-to-end communication  is ac- 
complished via the M  relays. The PLC channel is assumed 
to have log-normal distribution,  [26], and the noise is modeled 

using the well-known two-term Gaussian-Bernoulli model con- 

sisting of both the background and impulsive  noise components 

[27]. As mentioned in the introduction, the DL approach, i.e. di- 

rect source-to-destination transmission without relaying, is also 

studied here, a block diagram of which is illustrated in Fig. 1(b). 

As a measure  of performance, energy efficiency  can be ap- 

proached in a variety  of ways. While in the traditional sense it 

refers to the number of transmitted bits per unit energy, it can 
also be measured as the transmit energy per bit [28, 29]. Hence, 

where zn  = h2 , n ∈ {0, 1, .., N }, ζ = 10/ln (10) is a scal- 
ing constant, µn and σn (both in decibels) are the mean and the 
standard deviation  of 10log10 (hn ), respectively. In addition, 

the PLC channel suffers  from high distance- and frequency- 

dependent attenuation and losses. This effect is also considered 

in our analysis and is referred to as A (f, d) , where d is the dis- 

tance and f is the operating frequency. 
 

B. Noise Model 

To accurately characterize the PLC channel impairments, the 

noise at all modems is assumed to consist of both background 
 

2 It is assumed that all the PLC modems have identical power consumption 
features and therefore P T x and P Rx are equal for all modems. stc stc 
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noise and impulsive  noise. These noise types are modeled using where γ0 = γ, γ1 = γ/β and β = 1 + σ2 /σ2  . i w 

the Gaussian-Bernoulli  noise model, [27], in which the back- 
ground component, nw , is considered complex  Gaussian with 

To simplify the analysis, we assume here high SNR approxi- 
mation. Hence, equation (7) can be approximated  as 

zero mean and variance σ2 , whereas the impulsive part, ni , 
is modeled as a Bernoulli-Gaussian  random process. Hence, 

n = nw  + ni , where n is the total noise, ni  = b g, g is com- 

 

OSH � Pr 
 
log2 

 

(γ)
1−p 

 
+ log2 

  
γ 

  p
 

< ξ 
β 

plex white Gaussian noise with mean zero and b is the Bernoulli 
process with Pr (b = 1) = p with p representing the probability 
occurrence of impulsive noise. Therefore, the PDF of the total 

� Pr 
 
γ < βp 2ξ 

1 
, (8) 

 

which is equivalent to 

noise can be simply  expressed as OSH � Fγ 

  
β  ∈ξ

 

  
, (9) 

 
1 

fn (n) =
    

pj CN 
 
n, 0, σ2 

 
, (3) 

j=0 

where Fγ (·) is the cumulative distribution function (CDF) of γ. 
It is known that the CDF of a log-normally  distributed random 

variable 
 
X 2 

  
can be given by 

where p0   = 1 − p, p1   = p, CN (·)  denotes the Gaussian 

PDF, σ2  = σ2 , σ2  = σ2  + σ2 and σ2 is the impulsive noise 

 

FX (x)    � 
1 

+ 
1 

erf 
2 2 

  
ζ ln (x) − 2µ 

 
 

√
8σ 

 
(10) 
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variance. The variances σ2
 and σ2  define the input signal- 

�   1 − Q 
  

ζ ln (x) − 2µ 
 

 
 

, (11) 
to-background noise ratio (SBNR)  and the signal-to-impulsive 

noise ratio (SINR) as follows: SBNR = 10 log10 

 
1/σ2 

   
and 

2σ 
 

where µ is the mean, σ is the standard deviation, erf ( ) and Q ( )
 

SINR = 10 log10 

 
1/σ2 

 
, respectively.  Without loss of gener- 

ality, we assumed throughout  our investigations that the noise 

 

denote the error function and the Q-function, 

Based on this definition, and since h2
 

· · 
respectively. 

statistical characteristics are identical at all PLC modems. It is 
worthwhile pointing out at this stage that narrow-band noise due 
to wireless interference is not explicitly considered in this work; 

0  is log-normally dis- 
tributed (hence, γ also has log-normal distribution),  the outage 
probability in (9) can be written  as 

for more details on this topic, the reader may refer to [19]. SH  1 1 
( 

ζ ln 
 
βp 2ξ 

 
− 2µh

 − ζ ln (Λ) 
\

 
 
 

III.  PERFORMANCE ANALYSIS 

O 
 
where 

� 
2 

+ 
2 

erf
 

√
8σh 

, (12) 

This section analyzes the outage probability  and energy effi- 

ciency performance. For better understanding, we first investi- 

gate the performance of a single-hop PLC system. 

Pt,SH A (f, d0 ) 
Λ = . (13) 

w 

Now, for a given outage probability requirement (O∗), we can 
show that the optimal transmit power is given by 

A. Single-Hop PLC System 

In this system, only two modems are engaged in the end-to- 
end communication,  namely, source and destination. Therefore, 

 

∗ 
t,SH 

 

βp 2ξ σ2 

A (f, d0 ) 

 
exp 

( √ 
8σh  erf−1 (2O∗ − ∞) + 2µh   

\
 

− 
ζ 

using (1), the energy consumed per bit in the single-hop system 

can be expressed as 
 

Pt,SH + P T x + P Rx 

(14) 
Finally, the energy per bit for the single-hop  system can be 

obtained by substituting (14) into (4). 

Eb,SH = 
stc 

Rb 

stc  , (4) B. Multi-Hop  PLC System 

In this section, we analyze the outage probability  and energy 
where Pt,SH is the source transmit power. To determine Pt,SH 

for a given outage probability,  we first need to derive the outage 

probability for this system as follows. The received signal at the 

destination, yD , can be written  as 

yD = Pt,SH A (f, d0 ) h
2 + nw  + ni . (5) 

Hence, the SBNR at the destination can be given by 

efficiency of various multi-hop relaying scenarios. It should be 

pointed out that relays are assumed to be spaced equally between 

the source and destination  modems; that is dn  = d/N  where 

n ∈ {1, 2, .., N }. 
 

B.1 Outage Probability and Energy Efficiency  when N = 2 

For the case when there are two hops in the system, the outage 

probability is expressed as 

Pt,SH A (f, d0 ) h
2 

γ = . (6) 
σ2 

M H 2 O 
= OSR    + Oc  OR  D , (15) 

w  where Oc
 is the complement of Oij , i.e., Oc

 = 1 − Oij  and 

With this in mind, the outage probability  in the presence of 

impulsive  noise can be calculated as [12, 13, 31] 

OSR1 
, and OR1 D are the outage probabilities  of the source-to- 

relay and relay-to-destination links. Following the same proce- 
dure as in the previous section, it is easy to show that  

1  
 

OSH = Pr 
  

 

j=0 

 
pj log2 (1 + γj ) < ξ 

 

 

, (7) OSR1  
� 1 − Q 

( 
ζ ln 

 
βp 2ξ 

 
− 2µh 

2σh1
 

− ζ ln (Υ1 ) 
\

 
 
, (16) 
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2σh2
 

− ζ ln (Υ2 ) 
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, (17) 

 

B.3 Generic Outage Probability and Energy Efficiency with N - 

hops 

The end-to-end outage probability  for a network  with N hops 
 

Υi  = 
PM H -2 A (f, di ) 

2 
w 

 

, (18) 
can be calculated  as 

rM 

M H 

 

−1 
( 

 

m−1  
\ 

with i ∈ {1, 2} and PM H -2 being the transmit power of the two- 
O

 
hop relaying system. 

Now, replacing OM H 2 in (15) with O∗, we can numerically
 

= OSR1 
+  

m=1 

ORm Rm+1 
× 

 

M −1   

  

 
i=1 

c ORi Ri+1 

 

1 

find the optimal value of PM H -2 (P ∗ ). Substituting P ∗ 
+ORM D ×  

m=1 

c ORm Rm+1 

c × OSR1 
,  (27) 

into (19)−with N  = 2−and then into (20) yields the energy 
consumed per bit for this system. 

 

where 
 

 
( 

ζ ln  βp 2ξ   − 2µ
 

 

 

− ζ ln (Φ ) 
\ 

P ∗ + P T x + P Rx h1  1 

ΓMH-N   =    M H -N   stc   stc  , (19) 
Rb 

 

c
 

OSR1  
� 1 − Q 

 

( 

 

2σh1
 

 
p  ξ

 

(28) 
 
\ 

Eb,MH-2 = OSR1 
ΓMH-2 + OSR1 

2ΓMH-2 . (20) 

It is worth noting that the first term in (20) indicates the en-
 ORm Rm+1  

� 1 − Q 
ζ ln  β 2 − 2µhm+1  

− ζ ln (Φm+1 ) 

2σ
 

 
ergy consumption when the decoding at the relay is unsuccess- 

hm+1  

(29) 

ful, i.e. lost packets and this energy is wasted. On the other 
hand, the second term represents the energy usage for success- ORM D � 1 − Q 

( 
ζ ln  βp 2ξ   − 2µh 

2σ
 

 
M +1 − ζ ln (ΦM +1 ) 

\
 

ful detection at the relay, i.e. packets are forwarded successfully 

to the destination. 

 

 
with 

hM +1 

 
 
PM H -4 A (f, di ) 

(30) 

B.2 Outage Probability and Energy Efficiency  when N = 3 

In this configuration, the overall outage probability can be 

Φi  = 

and i ∈ {1, 2, .., N }. 

2  
, (31) 

w 

calculated  as follows Now, to find the optimal transmit power for a given  outage 

M H 3  c  c
 probability (P ∗ ), we replace OM H in (27) with O∗ and solve 

O  = OSR1 
+ OSR1  

OR1 R2   
+ OR1 R2 

OR2 D  , (21) 

where OSR1 
, OR1 R2    

and OR2 D represent the outage proba- 

bilities of the source-to-relay1,  relay1-to-relay2  and relay2-to- 

the equation numerically. Substituting the resultant values of 
∗ into (19), and then into (32) gives the energy consumed 

per bit, where ΓMH  is given by (19). 

destination links, respectively. For the sake  of brevity, the 
derivation of those probabilities  are omitted in this paper. These 

Eb,MH  =OSR 1  
× ΓMH 
( 

c 
SR1 

\ 

probabilities are given by 

( 
ζ ln  βp 2ξ   − 2µh

 

 

− ζ ln (Ξ1 ) 
\

 

M −1 
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(m + 1) ORm
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ΓMH 

m−1   
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c ORi Ri+1 
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2σh1
 

, (22)  
c 
SR1 

M −1   
 
m=1 

 
c ORm Rm+1 

 

(M + 1) ΓMH . (32) 

OR1 R2   
� 1 − Q 

( 
ζ ln  βp 2ξ   − 2µh 

2σh2
 

( 
ζ ln  βp 2ξ   − 2µh

 

− ζ ln (Ξ2 ) 
\

 

 

− ζ ln (Ξ3 ) 
\

 

 
, (23) 

 

C. IDF Relaying PLC System 

In this system, the relays are only in cooperative mode if the 

DL does not meet the link quality requirement [32, 33]. To sim- 
OR2 D � 1 − Q 

3  
, (24) 

2σ plify the analysis, we assume that one relay Rm is selected  as 

 
where 

 
 
 
Ξi  = 

h3 

 
PM H -3 A (f, di ) 

2 
w 

 
 
 
, (25) 

a cooperative node. Therefore, the overall outage probability  of 

the IDF system is a function  of three outage probabilities,  given 

as 
 

I DF
 

and i ∈ {1, 2, 3}.  Replacing OM H 3 in (21) with O∗, and us- 
O  = OSD (OSRm  

+ (1 − OSRm 
) ORm D ) , (33) 

ing (22)-(25), the optimal value of PM H -3 (P ∗ ) can be nu- where OSD   is  the outage probability of  the source-to- 

merically calculated. Then, substituting P ∗ into (19)−with destination link and is given by (12), OSRm    
and ORm D are 

N  = 3−and then into (26), we can find the energy consumed 
per bit of this system. 

Eb,MH-3 = OSR  MH-3 
c  

R  R  MH-3 

the source-to-relay and relay-to-destination outage probabilities. 
The relay is assumed to be at the mid-point between the end 

modems since this usually offers the best performance.  There- 

fore, OSRm   
and ORm D can have the follow form 

c 
SR1 

c OR1 R2 
3ΓMH-3 (26)  

1 1 
x � +

 
 
erf

 

( 
ζ ln  βp 2ξ   − 2µh 

√ 

− ζ ln (Ψ) 
\

  
, (34)

 

where ΓMH-3 is given by (19) when N = 3. 
O  

2 2 8σhx 
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SH (analytical) 
0.9    MH (analytical) 

simulations 

Ψ = 
PI DF A (f, d/2)

 
w 

 

, (35) 
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Using (33), it is easy to show that the optimal transmit power 0.6 

of the IDF system (P ∗ ) can be found as the solution  of the  
0.5 

following equation 
 

X + Y + 3Z + X Z + Y Z − X Y − X Y Z = 8O∗ − 3, (36) 
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2σh1
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, (37) 
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, (38) 

 

 
Fig. 2. Average outage probability performance of the single-hop and multi-hop 

relaying PLC systems with various numbers of relays. Relays are spread 
evenly between the source and destination modems. 
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2σh0
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A. Average Outage Probability  Performance 

 

Although it is difficult to express (P ∗ ) in (36) in closed- First, we illustrate in Fig.  2 the analytical and simulated 
form, it is straightforward to find the solution numerically using 
software tools. Now, to determine the energy consumed per bit, 

outage probability  performance for the multi-hop  system with 
different numbers  of relays as  a  function of the source-to- 

we substitute the optimal transmit power (P ∗ 

(36) into 

) found from destination distance; results for a single-hop  system are also in- 
cluded. The analytical results for the single-hop approach are 
obtained from (12) whereas for the multi-hop  scheme, the re- 

P ∗ + P T x + 2P Rx 

Eb,I DF = Oc
 

   I DF  stc   stc 

Rb 

sults are obtained using (15), (21) and (27). It should be high- 
lighted that the total source-to-destination distance is kept con- 

2P ∗ + 2P T x + 3P Rx stant in all scenarios for fair comparison.  It is clear from the 
+ OSD O

c
 

     I DF  stc   stc × 
Rb 

 

results in Fig. 2 that the analytical and simulated results of both 

P ∗ T x Rx
 

systems are in perfect match which verifies the correctness of
 

+ OSD OSRm  
×    I DF  + Pstc   + 2Pstc 

Rb 
. (40) 

 

our analysis. It is also obvious that increasing the source-to- 

destination distance will always degrade performance for all the 

systems under study and that as we increase the number of re- 

lays, for a given distance, the outage probability  is enhanced. 
IV.  NUMERICAL RESULTS 

 

This section demonstrates some numerical  examples of the 

analytical  expressions derived above along with some Monte 

Carlo simulations. To characterize the distance and frequency- 

dependent attenuation  and losses of the PLC channel, we de- 

ploy a common model in which attenuation increases exponen- 

tially with distance, given by A (f, d)  = exp (−αd), where 
α = ao + a1 f k  is the attenuation factor, f is the frequency, 
k is the exponent of the attenuation factor, ao and a1 are con- 
stants determined  from measurements and d is the distance. 
More specifically, we use a0 = 9.4 × 10−3 , a1 = 4.2 × 10−7 , 

f = 30 MHz and k  = 0.7.  In addition, the other system 

parameters  used in this section,  unless  stated  otherwise,   are 

SINR = −15 dB, p = 0.01, SBNR = 25 dB and O∗ = 10−2 . 
We also assume that all links have equal variances  and means 

In addition, it can be seen that this enhancement becomes more 

obvious as the source and destination modems become more dis- 

tant and that when the distance is too large, the performance is 

severely affected irrespective of the number of relays deployed. 
 

Furthermore, to show the impact of the IDF system on the out- 

age probability in comparison to the conventional DF approach, 

we plot in Fig.  3 the outage probability of the two systems 

versus the source-to-destination  distance for various impulsive 

noise probabilities. Again, it is noticeable that the analytical re- 

sults of the IDF system, obtained from (33), closely match the 

simulated  ones.  The other observation  one can see from these 

results is that the IDF system always outperforms  the conven- 

tional DF scheme for a given pulse probability. More specif- 

ically, it is evident that the improvement is more pronounced 

when the source-to-destination distance is small and as this dis- 

such that σ2
 = 2 dB and µn = 3 dB where n ∈ {0, 1, .., N }. tance becomes larger, both systems show similar performance. 

These values are widely used by many researchers within the 
PLC community, see e.g., [1, 23, 34] and the references therein. 

In addition, clearly increasing the noise probability  will always 
worsen the outage performance for the two systems under test. 
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Fig. 3.  Average outage probability  performance of the dual-hop DF and IDF 
relaying PLC systems with various impulsive noise probabilities. 
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relaying  PLC systems as a function  of the relays static power. 
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relays becomes more pronounced. For instance, it is visible that 

at d0 = 1000m, the multi-hop  system with 3 relays has the best 

performance whereas the single-hop  scheme has the worst en- 

ergy efficiency. Furthermore, it is noticeable that the IDF has in 

general better performance at low distance and outperforms all 
the multi-hop scenarios when the distance is intermediate.  How- 

ever, when the distance is very large, multi-hop  systems with 2 

and 3 relays outperform the IDF-based scheme. 

We now investigate the impact of the static power on the en- 

ergy efficiency of three systems. Fig. 5 depicts the energy effi- 

ciency performance of the single-hop, multi-hop and IDF relay- 
10
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10
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10
3 ing systems as a function  of the static power when d0 = 100m. 
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Fig. 4.  Energy efficiency performance of the multi-hop relaying PLC system 

with several numbers of relays along with that of IDF and SH systems. 

 

 
B. Energy Efficiency Performance 

 

Although increasing the number of relays will improve the 

outage probability  as shown above, this is obtained at the ex- 

pense of more energy consumption. In this section, we investi- 

gate the energy consumption of the different systems under con- 

sideration  as shown in Fig. 4. This figure illustrates the energy 

consumption per bit for the single-hop system, multi-hop  sys- 

tem with different relays and the IDF system with respect to the 

source-to-destination  distance. These results are obtained from 

(14), (20), (26), (32) and (40). A number of important obser- 

vations can be noticed in this figure. Firstly, it is interesting to 

see that when the distance is relatively small, in this specific 
configuration d0  = 400m, the more relays we have the more 

energy-inefficient  the system becomes. In fact, in this region the 

single-hop approach has the best energy efficiency  compared to 

the other systems. This is because the energy losses due to the 

It is interesting to see the general trend that as the static power 

of PLC modems  increases, all systems  become  less energy- 

efficient. In addition, it can be observed that IDF relaying out- 

performs the multi-hop schemes regardless of the number of re- 

lays deployed.  However, compared to the single-hop configu- 

ration, the IDF system is more energy efficient when the static 

power is sufficiently low, i.e. lower than 0.9 Watt in this sce- 

nario; whereas when the static power becomes greater than 0.9 

Watt, the single-hop approach takes over and becomes more ef- 

ficient which is justified  as discussed previously. 

The last set of results in this section is presented in Fig. 6 

where the energy efficiency is plotted versus the outage prob- 
ability threshold for the three systems when d0  = 100m. It 

is evident from these results that increasing the threshold value 

leads to higher energy consumption for all the systems, which is 

intuitive. It should also be pointed out that when the probability 

threshold is sufficiently high, the change in the energy consumed 

per bit becomes less significant. The final remark on these re- 

sults is that IDF relaying is almost independent of the threshold 
values and that, at low threshold values, the IDF system has best 

performance relative to other schemes. 
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V. CONCLUSION 
 

This paper studied the performance of multi-hop cooperative 

relaying PLC systems in terms of the average outage probability 

and energy efficiency.  To improve the energy efficiency in such 

systems, IDF technique was also analyzed.  For comparison’s 

sake,  this work included also the performance of single-hop 

PLC networks.  Accurate numerical expressions for the outage 

probability  and energy efficiency for the single-hop, multi-hop 

and IDF relaying PLC systems were formulated  and validated 

with simulations. Results showed that increasing the number 

of relays will always improve the outage probability;  however, 

this is achieved at the expense of increased energy consumption 

since the deployment of more relays implies more static power 

consumption.  It was also presented that the IDF PLC system 

can provide better energy efficiency compared to the single- and 

multi-hop  systems when the total source-to-destination distance 

is relatively small. 
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