
Please cite the Published Version

Werner, KM and Zank, H (2019) A Revealed Reference Point for Prospect Theory. Economic
Theory, 67 (4). pp. 731-773. ISSN 0938-2259

DOI: https://doi.org/10.1007/s00199-017-1096-2

Publisher: Springer Verlag

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/619610/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an Author Accepted Manuscript provided by Springer of a forth-
coming paper accepted for publication in Economic Theory.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1007/s00199-017-1096-2
https://e-space.mmu.ac.uk/619610/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Econ Theory (2019) 67:731–773
https://doi.org/10.1007/s00199-017-1096-2

RESEARCH ARTICLE

A revealed reference point for prospect theory

Katarzyna M. Werner1 · Horst Zank2

Received: 14 November 2016 / Accepted: 19 December 2017 / Published online: 13 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract Without an instrument to identify the reference point, prospect theory
includes a degree of freedom that makes the model difficult to falsify. To address this
issue, we propose a foundation for prospect theory that advances existing approaches
with three innovations. First, the reference point is not known a priori; if preferences
are reference-dependent, the reference point is revealed frombehavior. Second, the key
preference axiom is formulated as a consistency property for attitudes toward proba-
bilities; it entails both a revealed preference test for reference-dependence and a tool
suitable for empirical measurement. Third, minimal assumptions are imposed for out-
comes, thereby extending the model to general settings. By incorporating these three
features we deliver general foundations for prospect theory that show how reference
points can be identified and how the model can be falsified.
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732 K. M. Werner, H. Zank

1 Introduction

Prospect theory (PT; Tversky and Kahneman 1992) is regarded as one of the most
successful descriptive theories for risk and ambiguity (Starmer 2000; Kahneman and
Tversky 2000; Wakker 2010; Barberis 2013). Relative to classical expected utility
(EU), PT incorporates nonlinear treatment of probabilities (Preston and Baratta 1948;
Allais 1953; Quiggin 1982), or nonadditive event uncertainty resulting from ambigu-
ity (Ellsberg 1961; Schmeidler 1989) and reference-dependence. The latter requires
the existence of a reference point, relative to which outcomes are seen as gains or
losses, and constitutes a distinctive feature and a key assumption of PT. What exactly
determines the reference point has been left unspecified, and not offering a plausible
explanation for how the reference point is derived from primitives, i.e., from pref-
erences over prospects, is regarded as a major shortcoming of PT (Fudenberg 2006,
p. 696 footnote 2; Pesendorfer 2006, pp. 713–716).

We develop a revealed preference technique based on probabilitymidpoints to show
that PT can be obtained from preferences without assuming the reference point as
exogenously given. Starting from an indifference between two prospects, probability
midpoints are obtained by shifting probability mass across outcomes, such that a new
indifference results (Kuilen and Wakker 2011). By keeping the outcomes of these
prospects ordered in terms of preference and commonly fixed, and repeatedly shifting
probability mass across adjacent outcomes, one can elicit a sequence of probabilities
that are perceived equally far apart in terms of preferences.1 If the reference point is
meaningful for preferences, the elicited probability midpoints will be affected when
probability mass is shifted from losses to gains. This can be used to reveal the location
of the reference point. Indeed, this feature of behavior is exploited to show how the
reference point in PT is revealed from choices. It is in this sense that we obtain the
reference point endogenous to the model.

To position our contribution, let us recall that the von Neumann and Morgenstern
(1944) foundations for EU imply a linear treatment of probabilities. This means that
elicited probability midpoints are arithmetic midpoints and independent of the type or
magnitude of outcomes. The EU-axioms do not impose a specific interpretation for
outcomes or restrictions on utility, except for the latter being a cardinal measure. For
instance, one can interpret real-valued outcomes as final wealth positions (a frequent
assumption made in theoretical applications) or as changes relative to a reference
point (usually an implicit assumption made in experimental studies).2 In particular,
imposing a utility value of 0 at the reference point, and treating outcomeswith negative
utility values as losses and those with positive utility as gains, is compatible with the

1 This elicitationmethod is similar to the (dual analog) elicitation technique for utility measurement, where
standard sequences of equally spaced outcomes on the utility scale are obtained (Wakker andDeneffe 1996).
For PT-preferences, probability midpoints are equally spaced on the corresponding probability weighting
scales.
2 That the EU-axioms were not tied to a specific interpretation of outcomes was also noted by Kahneman
and Tversky (1979, p. 264). A similar argument holds for the rank-dependent utility model of Abdellaoui
(2002)who uses the vonNeumann andMorgenstern framework aswe do. AlthoughAbdellaoui’s preference
conditions allow for a nonlinear treatment of probabilities, they do not restrict the cardinal family of utility
functions in any way nor do they require a specific interpretation for outcomes.
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A revealed reference point for prospect theory 733

EU-axioms as long as probabilities are treated linearly. The requirement that utility is 0
at the reference point then appears as an arbitrary restriction of the class of admissible
cardinal utilities to a smaller ratio-scale subclass.By contrast, in PT such restrictions on
admissible utility functions follow from the asymmetric treatment of the probabilities
attached to gains and losses and, thus, properties that capture deviations from linearity
in probabilities. It is precisely this asymmetric nonlinear treatment of probabilities,
revealed as an inconsistency in elicited probability midpoints, that we exploit in order
to provide general foundations for PT.

A nonlinear treatment of probabilities has also been incorporated into the rank-
dependent utility (RDU) model (Quiggin 1981, 1982; Segal 1987; Wakker 1994).
RDU can be seen as a special case of PT where the presence of a reference point
is immaterial for attitudes toward probabilities. General foundations for RDU were
provided by Nakamura (1995), Abdellaoui (2002), Abdellaoui and Wakker (2005),
and Zank (2010), and they can readily be used to derive PT if the reference point is
known in advance. Without knowing that a reference point exists, deriving PT from
RDUbecomes a challenge. To achieve foundation for PT, we employ a consistency test
for specifically elicited probability midpoints. Consistency means that the treatment
of probabilities is insensitive to replacements of the stimuli used to elicit midpoints.
As our consistency property does not impose restrictions on the admissible probability
weighting functions under PT, probability midpoint consistency can accommodate a
wide range of behaviors (e.g., risk behavior captured through the popular inverse-S-
shaped probability weighting functions; Prelec 1998).

To give further intuition for our main preference tool, suppose we have identified
the reference point. Then our condition requires that probability midpoints elicited
from preferences are independent of the outcomes (i.e., the stimuli used in the elic-
itations), whenever the latter are of the same type (i.e., either they are all gains or
they are all losses). This is a natural requirement for the treatment of probabilities
under PT, where a distinct nonlinear treatment for probabilities of gains as compared
to probabilities of losses is explicitly allowed for; it can be inferred, for example,
from the reflection examples in Kahneman and Tversky (1979, p. 268). This feature of
reference-dependent behavior, which we call sign-dependence, has been widely doc-
umented.3 Sign-dependence can be inferred from the presence of distinct probability
midpoints for gains than for losses, as implied by empirically elicited parametric forms
(e.g., Tversky and Kahneman 1992; Abdellaoui 2000). Conversely, sign independence
of probability midpoints suggests that the reference point is immaterial for the treat-
ment of probabilities (as in EU or RDU). Hence, if we do not know the location of the
reference point, we can employ probability midpoints elicited for different outcomes
to test for sign independence. This leads to a revealed preference technique, where
replacing a gain by a different gain does not affect elicited probability midpoints and

3 For monetary outcomes, the term “sign-dependence” is sometimes used to indicate that the utility for
gains (i.e., positive outcomes) reveals a different shape than the utility for losses (negative outcomes), e.g.,
concave versus convex. Here we use the term “sign-dependence” to indicate that the weighting functions
under PT generate different weights for negative utility (from losses) as compared to the weights for positive
utility (from gains). There are plenty of studies providing empirical evidence of sign-dependence, including
Edwards (1953, 1954), Tversky and Kahneman (1992), Abdellaoui (2000), or Abdellaoui, l’Haridon et al.
(2010).
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734 K. M. Werner, H. Zank

neither should the replacement of a loss by a different loss affect such midpoints;
inconsistent midpoints are revealed only if a gain is replaced by a loss or vice versa. In
a nutshell, our main preference tool requires that sign independence of revealed prob-
ability midpoints is violated once at the most, in which case we identify the location
of the reference point.

In what follows, we present preliminary notation and formal expressions for the
models of EU, RDU and PT (Sect. 2), informally introduce probability midpoints,
and look at the distinct predictions for midpoints resulting from these models. In
Sect. 3 we proceed by recalling the preference conditions shared by all three models.
We highlight potential difficulties in deriving PT-foundations by giving examples of
reference-dependent preferences that are similar to PT-preferences, which do not, in
general, allow for the identification of both probability weighting functions. In the
literature such preferences have hitherto been circumvented. In Sect. 4 we formally
generalize the notion of probability midpoints and present our main preference con-
dition and theorem for the case where the set of outcomes is finite. Extensions are
discussed in Sect. 5. In particular, we allude to a procedure that shows how our proba-
bility midpoint tool can be employed to identify the location of reference points. The
literature on reference points is growing, and different models and approaches have
emerged; for instance, there are choice situations in which the reference point may not
be a unique degenerate outcome as in PT; thus, a brief summary of this literature is in
order. This is done in Sect. 6, where we also discuss issues related to midpoints, the
central tool for our PT-foundation. Concluding remarks are in Sect. 7. The Appendix
contains further elaborations and proofs.

2 Preliminaries

This section recalls the standard framework for decision under risk and the decision
models of expected utility, rank-dependent utility and prospect theory, explaining
how the second model extends the first through deviating from the linear treatment of
probabilities and how the latter model extends the second through the reference point
impacting the nonlinear probability treatment.

2.1 Notation

Let X denote the nonempty set of outcomes. A prospect is a finite probability distri-
bution over X . Prospects are labeled as P = (p1 : x1, . . . , pn : xn) with the usual
interpretation that outcome x j ∈ X is obtained with probability p j , for j = 1, . . . , n.
Naturally, p j ≥ 0 for each j = 1, . . . , n and

∑n
i=1 pi = 1. Let L denote the set of all

prospects.
A preference relation, denoted �, is assumed over L. Its restriction to subsets of

L (e.g., all degenerate prospects where one of the outcomes is received for sure) is
also denoted by �. The symbol � means “weak preference” from which � (strict
preference) and∼ (indifference) are defined as usual. The function V represents (or is
a representation of) the preference � on L, if V assigns a real value to each prospect,
such that for all P, Q ∈ L we have P � Q ⇔ V (P) ≥ V (Q). This general
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A revealed reference point for prospect theory 735

representation V will be required to satisfy several properties including those that
reflect the behavior corresponding to the treatment of probabilities.

Next, we recall the functional expressions of expected utility, rank-dependent utility
and prospect theory, which are specific representations of the preference � on L. In
all these models a utility function, u, for outcomes exists that is strictly monotonic
(that is, u : X → R satisfies u(xi ) ≥ u(x j ) ⇔ xi � x j ). As a result, outcomes that
are indifferent receive the same utility value. To simplify the exposition we henceforth
assume, without loss of generality, that no two distinct outcomes in X are indifferent.
This allows us to strictly rank outcomes from best to worst within a prospect; this
particular ordering of outcomes is meaningful in rank-dependent models.

2.1.1 Expected utility

Under expected utility (EU) prospects P = (p1 : x1, . . . , pn : xn) are evaluated and
compared using the representation

EU(P) =
n∑

j=1

p ju(x j ), (1)

for a utility function, u, which assigns a real number to each outcome and is strictly
monotone. Under EU the utility is cardinal, i.e., it is unique up to multiplication by
a positive number A and addition of a constant B. In EU the probabilities are treated
linearly. This can be inferred from the “weight” p j corresponding to the utility for
outcome x j in the above equation. The next model deviates from the linear treatment
of probabilities.

2.1.2 Rank-dependent utility

The nonlinear treatment of probabilities in rank-dependent models is incorporated by
making the relative position of outcomes meaningful for behavior. We can assume,
without loss of generality, that outcomes within a prospect are ordered, as traditionally
done, from best to worst in preference or rank-ordered; i.e., writing P = (p1 :
x1, . . . , pn : xn) explicitly means that x1 � · · · � xn . Rank-dependent utility (RDU)
holds if the preference is represented by

RDU(P) =
n∑

j=1

[
w

(
p1 + · · · + p j

) − w
(
p1 + · · · + p j−1

)]
u(x j ), (2)

where we use the convention that the sum
∑l

j=i p j = 0 for l < i . Utility in RDU is
similar to EU.Additionally, RDU involves aweighting function,w, for (decumulative)
probabilities that is uniquelydetermined. Formally, theweighting function is amapping
from the probability interval [0, 1] into [0, 1] that is strictly increasing with w(0) =
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736 K. M. Werner, H. Zank

0 and w(1) = 1. In this paper the axiomatically derived weighting functions are
continuous on [0, 1].4

The probability of obtaining a better-ranked outcome is referred to as good-news
probability (formally called rank in Wakker 2010, Definition 5.4.1). In Eq. (2) the
“decisionweight” corresponding to the utility for outcome x j is the difference between

transformed good-news probabilities. Denoting by pdj := ∑ j
i=1 pi the decumulative

probability of x j , j = 1, . . . , n, one can rewrite Eq. (2) as

RDU(P) =
n−1∑

j=1

w
(
pdj

) [
u(x j ) − u(x j+1)

] + u(xn).

Clearly, havingw(p) = p for all probabilities p in the latter equation implies EU. This
confirms that w under RDU captures deviations from linear treatment of good-news
probabilities.

To simplify the subsequent exposition, we also present the expression for RDU,
which uses the dual probability weighting function, ŵ(p) := 1 − w(1 − p) for
all p ∈ [0, 1]. The dual weighting function is defined over cumulative or bad-news
probabilities. Then, we can rewrite RDU for P as follows

RDU(P) = u(x1) +
n∑

j=2

ŵ
(
pcj

) [
u(x j ) − u(x j−1)

]
,

with transformed cumulative probabilities pcj := ∑n
i= j pi , j = 1, . . . , n.

2.1.3 Prospect theory

The main model of interest in this paper extends RDU by incorporating reference-
dependence. That is, it assumes an outcome, r ∈ X , called the reference point, such
that outcomes strictly preferred to it are gains and have a positive utility, and outcomes
strictly dispreferred to r are losses with a negative utility value. The treatment of
probabilities depends on whether the latter are associated with gains or with losses.
Specifically, under prospect theory (PT), a prospect P = (p1 : x1, . . . , pn : xn)
is evaluated according to the rank-ordering of outcomes and also according to the
position of outcomes relative to the reference point. That is, there are two weighting
functions w+ and w− and a utility function for outcomes with u(r) = 0, such that:

4 There is, however, empirical and theoretical interest in discontinuous weighting functions at 0 and at
1; see Kahneman and Tversky (1979), Birnbaum and Stegner (1981), Bell (1985), Cohen (1992), Wakker
(1994, 2001), Chateauneuf et al. (2007), al-Nowaihi and Dhami (2010), Webb and Zank (2011), Andreoni
and Sprenger (2010, 2012); we briefly discuss such potential extensions in Sect. 5. Webb (2017) suggests
continuous extensions for a class of piecewise linear probability weighting functions that are empirically
indistinguishable from those with discontinuities at 0 and 1 (see also Webb (2015) for event weighting
under ambiguity).
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A revealed reference point for prospect theory 737

• if all outcomes in P are (weakly) preferred to the reference point (i.e., we have no
losses), then P is evaluated by

PT(P) = RDU+(P) using the weighting function w+;

• if all outcomes in P are (weakly) dispreferred to the reference point (i.e., we have
no gains), then P is evaluated by

PT(P) = RDU−(P) using the weighting function w−;

• if P assigns positive probability to both gains and losses, then the PT-value of P
is the sum of P’s gain and loss parts. That is, with P+, the gain part of P , being
the prospect “P with all losses replaced by r” and the loss part, P−, being the
prospect “P with all gains replaced by r ,” the PT-value of P is given by

PT(P) = PT(P+) + PT(P−),

where the qualification u(r) = 0 applies. It is custom for PT to express the treat-
ment of probabilities for losses using the dualweighting function, ŵ−. For instance,
if r = xk for some 2 ≤ k ≤ n − 1, the PT-value of P is

PT(P) =
k−1∑

j=1

w+ (
pdj

) [
u(x j ) − u(x j+1)

]

+
n∑

j=k+1

ŵ− (
pcj

) [
u(x j ) − u(x j−1)

]
. (3)

From the preceding three cases one can infer that specific uniqueness results apply
for PT. Indeed, if X contains no losses (or if X contains no gains), then RDU holds.
Similarly, if w+ = w−, PT reduces to an RDU-representation irrespective of the
interpretation given to outcomes. In all of these cases we have a cardinal utility and a
(single) uniquely determined weighting function capturing the treatment of probabili-
ties. Thus, as the reference point is meaningless for that treatment so is the restriction
u(r) = 0. However, if X contains gains and losses and w+ 	= w−, we have two
weighting functions that are uniquely determined; (only) in this case u(r) = 0 must
hold and, therefore, the utility is a ratio scale (i.e., it is unique up to multiplication
by a positive constant). As a consequence, gains have positive utility and losses are
assigned a negative utility value; hence, we formally refer to the condition w+ 	= w−
as sign-dependence.

Except for Schmidt and Zank (2012), all existing foundations for PT assume the
reference point as given from the outset; hence, also the uniqueness of the reference
point is assumed. Here we drop the assumption of knowing the reference point in
advance and we also dispense of structural assumptions for outcomes (e.g., requiring
outcomes to be real valued) that are usually imposed for obtaining PT-foundations.
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738 K. M. Werner, H. Zank

Therefore, in our uniqueness results we explicitly state that for PT it is the sign-
dependence that implies the uniqueness of the reference point. This is indeed the
feature that distinguishes PT-preferences fromRDU-preferences and, hence, fromEU-
preferences. The corollary of this observation is that, in principle, sign-dependence can
be used to reveal the reference point from behavior. To do this, we employ preference
conditions that build on revealed or elicited probability midpoints. Next, we present
this tool, and we look at the implication of midpoints for the just presented models.

2.2 Probability midpoints

Probability midpoints are measurements revealed from preferences; they are derived
using shifts in probability mass across outcomes. To motivate the midpoint concept,
suppose we have two prospects P, Q over outcomes in the set {x1, xm, xn} ⊂ X, with
the usual ranking x1 � xm � xn . Let

P = (α : x1, 1 − p − α : xm, p : xn) and Q = (β : x1, 1 − q − β : xm, q : xn)

be such that α < β and P ∼ Q. (Similar arguments are used if β < α.) The
latter indifference indicates that the probability mass β − α for x1 compensates for
the difference between probabilities p and q for xn in the prospects P and Q. This
can be inferred from Fig. 1, which depicts the corresponding indifference sets in the
probability triangle with outcomes x1, xm and xn , where probabilities of xn (x1) are
indicated on the horizontal (vertical) axis and the remaining probability is given to
outcome xm .

We now shift probability mass β − α from xm to x1 in prospect P , which requires
a joint shift of probability mass γ − β from xm to x1 in prospect Q to obtain an
indifference between the resulting prospects, i.e., we have

P ′ := (β : x1, 1 − p − β : xm, p : xn) ∼ (γ : x1, 1 − q − γ : xm, q : xn) =: Q′.

Considering the vertical axis, Fig. 1 illustrates that the “preference-distance” β − α

between P and P ′ is similar to the preference-distance γ − β between Q and Q′.

Fig. 1 Elicited probability
midpoint β

mx nx

1x

β

q

1

α

1p

γ

P
Q

'P

'Q
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A revealed reference point for prospect theory 739

That is, substituting α for β in P leads to an improvement that is equivalent in terms
of the preference to the improvement resulting from substituting β for γ in Q. Thus,
in terms of the measured preference-distance, it means that β is perceived half-way
between α and γ based on the probability–outcome pairs (p : xn) and (q : xn) in P
and Q, respectively, as gauges. We call β a (revealed) probability midpoint between
α and γ .

The representations introduced in the preceding subsection make specific predic-
tions for probability midpoints. In particular, they all imply that probability midpoints
are, with model-specific qualifications, independent of the gauges used to reveal those
midpoints. We explore these implications next.

2.2.1 Model-specific midpoints

To illustrate the implications of midpoints for our models, consider EU first. Substi-
tution of EU for the indifferences P ∼ Q and P ′ ∼ Q′ used to reveal the probability
midpoint β in Fig. 1 implies, respectively,

αu(x1)+(1− p−α)u(xm) + pu(xn) = βu(x1) + (1 − q − β)u(xm) + qu(xn)

and βu(x1)+(1− p−β)u(xm) + pu(xn) = γ u(x1) + (1 − q − γ )u(xm) + qu(xn).

Taking the difference between the resulting two equations and cancelling common
terms yields

β = α + γ

2
,

proving that, beyond probability midpoints being independent of the outcomes used to
elicit them, EU demands that β is the arithmetic midpoint between α and γ . By con-
trast, RDU dispenses of such linearity in the treatment of probabilities, but maintains
the independence of the revealed midpoint from outcomes. Similar to the preceding
derivation, for RDU we obtain

w(β) = w(α) + w(γ )

2
,

showing that, on the probability weighting scale, β is perceived half-way between α

and γ .
As with RDU, PT allows for nonlinear treatment of probabilities, but it marginally

restricts the independence of probability midpoints from outcomes. Specifically,
implementing the preceding elicitation of probabilitymidpoints for the case that x1, xm
and xn are gains we obtain, similar to RDU,

w+(β) = w+(α) + w+(γ )

2
.
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740 K. M. Werner, H. Zank

The elicitation of midpoints for the case where the gains {x1, xm, xn} are replaced by
a set of losses {y1, ym, yn} can be implemented using the same α and β and initially
identifying p̃ and q̃ such that

P̃ := (α : y1, 1 − p̃ − α : ym, p̃ : yn) ∼ (β : y1, 1 − q̃ − β : ym, q̃ : yn) =: Q̃

and, subsequently, finding probability γ ∗ such that

P̃ ′ := (β : y1, 1 − p̃ − β : ym, p̃ : yn) ∼ (γ ∗ : y1, 1 − q̃ − γ ∗ : ym, q̃ : yn) =: Q̃′.

Now, substitution of PT in the preceding two indifferences, taking differences of the
implied equations and elimination of common terms, leads to

w−(β) = w−(α) + w−(γ ∗)
2

.

In general, we have γ 	= γ ∗ (unless we have sign independence under PT) and
this inconsistency means that β, the probability midpoint of α and γ for w+, is not
necessarily a midpoint of α and γ for w−. In the presence of sign-dependence it must
be the case that (at least some) probability midpoints for gains are not identical to
those for losses. It is indeed this observation that, in a reversed sense, is exploited to
formulate preference conditions that identify the reference point. Before doing so, we
recall the standard preference conditions that are shared by all the models considered
above.

3 Additive representation

The decision models presented in the preceding section share several properties that,
when combined, imply an additive representation over prospects. For our specific
framework these properties of preferences have been presented before (e.g., in Zank
2010); correspondingproperties for general rank-ordered setswere provided inWakker
(1993). For completeness we recall these properties here and summarize their impli-
cations for preferences in a lemma. This also allows us to highlight some potential
difficulties that are particular to PT-preferences. Since it simplifies the exposition, we
assume that the set of outcomes is finite, i.e., X = {x1, . . . , xn} for some natural num-
ber n. In Sect. 5we indicate how our results can be extended to infinite sets of outcomes
where, in contrast to the finite outcome case, preferences may be sign-dependent, but
the reference point need not be included in the outcome set. Corresponding examples
are then provided.

3.1 Traditional preference conditions

It is well known that, for the existence of a representing function for the preference, a
necessary requirement is that the preference relation� is complete (P � Q or P � Q
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A revealed reference point for prospect theory 741

for all P, Q ∈ L) and transitive; that is, the preference relation is a weak order. We
summarize this property as our first axiom.

Weak Order: The preference relation satisfies completeness and transitivity.

Further common properties for EU-, RDU- and PT-preferences are those of (first-
order stochastic) dominance and of continuity in probabilities. They are presented
next. We say that P first-order stochastically dominates Q if

∑
x∈X px ≥ ∑

x∈X qx
and P 	= Q, where px and qx refer to the probability that P , respectively, Q assign
to outcome x ∈ X .

Dominance:Thepreference relation satisfiesdominance (ormonotonicity in decu-
mulative probabilities) if P � Q whenever P first-order stochastically dominates
Q.

Since Herstein and Milnor (1953), it is custom to regard L as a mixture space
endowed with the operation of probability mixing. That is, for each probability μ ∈
[0, 1] and all prospects P, Q ∈ L, the μ-probability mixture of P and Q, denoted
μP+(1−μ)Q, which assigns probabilityμpx +(1−μ)qx to outcome x ∈ X , is also
a prospect in L. We use this operation in the definition of continuity for the preference
relation �.

Continuity: The preference relation � satisfies Jensen-continuity on the set of
prospects L if for all prospects P � Q and R there exist ρ,μ ∈ (0, 1) such that
ρP + (1 − ρ)R � Q and P � μR + (1 − μ)Q.

A monotonic weak order that satisfies Jensen-continuity on L also satisfies the
stronger Euclidean-continuity on L (see, for example, Abdellaoui 2002, Lemma 18).
Consequently, the three conditions taken together imply the existence of a continuous
function V : L → R, strictly monotonic in decumulative probabilities, that represents
� on L (Debreu 1954).5 The next subsection provides a condition under which the
representation V is additively separable. We present it separately, as the strong formu-
lation of the property implies EU and, thus, imposes a linear treatment of probabilities,
while the weaker version allows more flexibility for the treatment of probabilities as
required in RDU and PT.

3.2 Additive separability properties

This subsection presents an independence property that is shared by EU, RDU and
PT. It is formulated as a preference condition involving common shifts of probability
mass between outcomes.We have informally used shifts in probabilities when defining
elicited probability midpoints. Probability shifts can be regarded as substitutions of
an outcome with probability ε by a different outcome with that very same probability.
Given prospect P = (p1 : x1, . . . , pn : xn) we denote the prospect resulting from a
shift of probability ε from outcome xi to outcome x j in P as the prospect εi, j P :=

5 This function may be unbounded when the probability of xn approaches 0 or the probability of x1
approaches 1.
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742 K. M. Werner, H. Zank

(p′
1 : x1, . . . , p′

n : xn), with p′
i = pi − ε, p′

j = p j + ε, and p′
m = pm for m /∈ {i, j}.

Whenever we use this notation, it is implicitly assumed that pi ≥ ε > 0 to ensure that
εi, j P is a well-defined prospect in L.

In terms of the indifference sets of the preference, these substitutions mean that,
following aprobability shift, a prospect ismoved fromone indifference set to a different
one. We are interested in the effect of such substitutions for prospects that are on the
same indifference set. For example, EU satisfies independence of the preferences
under common probability shifts, meaning that indifference sets of a preference are
mapped into new indifference sets when common probability shifts are applied. This
property was termed “replacement invariance” in Machina (1989) and constitutes a
sure thing principle for risky prospects similar to Savage (1954) sure thing principle
for uncertainty. We adopt the latter terminology for the next axiom.

Sure Thing Principle for Risk: The preference relation � satisfies the sure
thing principle (STP) for risk if

P � Q ⇔ εi,i+1P � εi,i+1Q,

whenever P, Q, εi,i+1P, εi,i+1Q ∈ L.
STP is necessary for expected utility; it is also sufficient for EU in the presence of
weak order, first-order stochastic dominance and Jensen-continuity (see, for example,
Webb and Zank 2011, Theorem 5). The common consequence effect of Allais (1953)
constitutes a violation of the sure thing principle for risk. Accordingly, RDU and PT,
which both can accommodate the Allais paradox, satisfy a restricted version of the
principle:

Comonotonic STP: The preference relation � satisfies the comonotonic sure
thing principle (CSTP) for risk if

P � Q ⇔ εi,i+1P � εi,i+1Q,

whenever P, Q, εi,i+1P, εi,i+1Q ∈ L are such that pdi = qdi .

CSTP says that common probability shifts maintain the preference between two
prospects if the two prospects offer identical good-news probabilities for xi−1. That
is, the probability of obtaining xi , the outcome fromwhich probability is shifted away,
or a better outcome is the same in both prospects. This is equivalent to saying that
the cumulative probability of obtaining xi+1 or a worse outcome is the same in both
prospects, so they have identical bad-news probabilities too. Hence, a shift of a com-
mon probability in P and Q results in new prospects where the outcome xi is also
of common rank. If one writes prospects as (de)cumulative distributions over X , one
immediately observes that CSTP translates into an independence requirement on a
rank-ordered or comonotonic set of cumulated distributions, hence the name for this
property.

When CSTP is combined with the preference conditions in the preceding subsec-
tion, it implies an additive separability property across outcomes for the representing
function V . The result, formally stated here, generally applies to the preference
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restricted to all prospects except perhaps the best prospect (x1) and the worst prospect
(xn); the proof follows from Wakker’s (1993, Theorem 3.2) result for additive repre-
sentations on comonotonic sets.

Lemma 1 The following two statements are equivalent for a preference relation �
on L:
(i) The preference relation � on L\{x1, xn} is represented by an additive function

V (P) =
n−1∑

j=1

Vj (p
d
j ), (4)

with strictly increasing functions V1, . . . , Vn−1 : [0, 1] →Rwhich are continuous
and bounded with the exception of V1 and Vn−1, which could be unbounded at 1
and at 0, respectively.6

(ii) The preference relation � is a Jensen-continuous weak order that satisfies domi-
nance and the comonotonic sure thing principle for risk.

The functions V1, . . . , Vn−1 are jointly cardinal; that is, they are unique up to
multiplication by a common positive constant and addition of a real number. The
representation can continuously be extended to hold on L if V1 is bounded from above
and Vn−1 is bounded from below.

As shown in Wakker (1993, Proposition 3.5), by adding further preference con-
ditions that imply a separation of the treatment of probabilities from the utility
value assigned to outcomes, one can generally obtain boundedness of all functions in
Lemma 1. This has been exploited, for instance, in the RDU-derivations in Diecidue
et al. (2009) and in Webb and Zank (2011). For PT this also applies, provided that
there are at least two gains and two losses, whence proportionality arguments can be
exploited (see our Theorem 2). As we do not make assumptions about which outcome
is the reference point, we cannot, in general, invoke information about the number of
gains and losses from the outset. Thismeans that the potential unboundedness reported
in Lemma 1 cannot a priori be excluded. Consequently, this leads to difficulties for
deriving a standard PT-representation, as we discuss next.

3.3 Extended prospect theory

Based on the additive representation of Lemma 1, in this subsection we further explore
the consequences for obtaining PT-foundations when one of V1 or Vn−1 is unbounded.
In general, such unboundedness precludes the identification of probability weighting
functions as is required for PT. Our main result shows that we are able to obtain repre-
sentations for “extended PT-preferences” where a reference point can nonetheless be
identified and, further, a utility for losses and a corresponding probability weighting
function (if V1 is unbounded), or a utility for gains with the associated probability

6 As pdn = 1 for all prospects, Eq. (4 ) does not need to include the term Vn(1).
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weighting function (if Vn−1 is unbounded), can still be derived. In particular, at most
one of V1 or Vn−1 can be unbounded. We provide specific examples to illustrate these
extreme cases as they highlight specific types of preferences that are plausible when
general outcome sets and reference-dependence are jointly considered. In the founda-
tional literature on PT such behavior has hitherto been excluded due to the structural
requirements on the set outcomes and the properties reflected in the corresponding
utility functions.

Example 1 Assume that the representation of Lemma 1 holds for X = {x1, x2, x3}
with x1 � x2 � x3 and that V1 and V2 are bounded. Then, the representation is a
PT-functional with r = x2 as the reference point, unless � is represented by RDU.

The derivation of the PT-representation in Example 1 proceeds as follows. As
V1 and V2 are jointly cardinal, we can pick the representation of preferences with
V1(0) = 0 = V2(1). By setting w+(p) := V1(p)/V1(1) for all p ∈ [0, 1] and
u(x1) := V1(1), ŵ−(p) := 1 − V2(p)/V2(0) for all p ∈ [0, 1] and u(x3) := V2(0),
and further u(x2) := 0, we obtain

V (p1 : x1, p2 : x2, p3 : x3) = w+(p1)u(x1) + ŵ−(p3)u(x3), (5)

which is a PT-representation with reference point r = x2.
Ifw+(p) = w−(p) for all p ∈ [0, 1], one can show that Eq. (5) reduces to an RDU-

representation with the corresponding uniqueness results. For the case thatw+ 	= w−,
one can show that the values V1(0) and V2(1) are constants that are immaterial for
the ranking of prospects, such that the representation in Eq. (5) is indeed PT with the
corresponding uniqueness results; this aspect is further elaborated on in the Appendix.

For the case of Example 1, we are not aware of a preference condition, that explicitly
identifies x2 as a reference point in amanner that pins downPTwith a ratio-scale utility,
beyond the properties that imply additive separability as required in Lemma 1.7 More
generally, we observe that it is only in the case of n = 3 that a reference pointmay exist,
but that both V1 and Vn−1(= V2) in Lemma 1 are unbounded. Such unboundedness
precludes a separation of utility and sign-dependent probability weighting functions.
Including such representations under a general notion of PT-preferences means that
Lemma 1 already gives necessary and sufficient conditions for a corresponding rep-
resentation. Given this observation, from here onward we require that X has at least
four strictly rank-ordered outcomes. The next two examples show that the assumption
of more than three outcomes restricts, but does not eliminate unboundedness for a
representation in the presence of reference-dependence.

Example 2 Consider the case that n ≥ 4 and that the preference on L\{x1} is repre-
sented by

7 Amore powerful result is provided in Abdellaoui (2002), who proposes behavioral conditions that ensure
proportionality of the functions V1 and V2, thereby obtaining RDU where sign independence holds (see
also Chateauneuf 1999).
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W (P) = V1(p1) +
n∑

j=3

ŵ− (
pcj

) [
u(x j ) − u(x j−1)

]
, (6)

where u and ŵ− are as in PT with r = x2 and V1(p1) converges to ∞ when p1
approaches 1, e.g., V1(p1) = [ p1

1−p1
]u(x1) for some positive number u(x1).

One can regard the preference in Example 2 as that of a patient who has been
diagnosed with a severe disease, such as cancer. Suppose some potential medical
interventions can lead to a range of outcomes, the best being x1 =“fully cured from
cancer,” while other interventions may prolong life duration but do not offer positive
probability for x1. It is conceivable that the latter interventions are all perceived as
leading to losses and, hence, they are perceived unattractive relative to an intervention
with a positive probability for x1. A related example is documented in Thaler and
Johnson (1990) and analyzed in Barberis et al. (2001). After having faced a series of
losses, many investors attempt to break even by engaging in very risky trades, despite
the chances of breaking even being relatively small. Such investors appear to perceive
the event of breaking even as leading to an extremely attractive outcome, while the
complementary event is viewed as leading to losses of a tolerable magnitude in utility
terms. The counterpart of Example 2 is the following one.

Example 3 Consider the case that n ≥ 4 and that the preference on L\{xn} is repre-
sented by

W̄ (P) =
n−2∑

j=1

w+ (
pdj

) [
u(x j ) − u(x j+1)

] + Vn−1(1 − pn), (7)

where u andw+ are as in PTwith r = xn−1 and Vn−1 is as in Lemma 1 and converging
to −∞ at 0. Specifically, consider Vn−1(1 − pn) = [ pn

1−pn
]u(xn) for some negative

number u(xn).

The functional in Example 3 can be thought of as a representation for a prefer-
ence with an extreme form of aversion or pessimism, where the possible loss xn is
extremely unattractive (e.g., ruin) and any prospect with a positive probability for
xn will be regarded inferior to a prospect with zero probability for xn . Individuals
exhibiting this form of pessimism are willing to buy insurance at prices far above the
actuarially fair value to completely avoid the loss xn . Such behavior is reported in
relation to substantially increased demand for flood and earthquake insurance after
a corresponding event has occurred (Kunreuther et al. 1978; Palm 1995)8 and in the
willingness to pay for the complete elimination of risk associated with a hazardous
product (Viscusi et al. 1987).

Having elaborated on potential issues for deriving PT when the set of outcomes
includes a single gain or a single loss, we proceed by keeping in mind that in such

8 Etner and Jeleva (2014) explain underinvestment in prevention schemes through the treatment of prob-
abilities as captured in RDU.
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special cases extreme sensitivity in probabilities of best or worst outcomes may pre-
clude a derivation of PT in which both probability weighting functions are uniquely
specified. Instead, we may obtain what we term extended prospect theory: Preferences
are either represented by PT on L, or they are represented on L\{x1} by the functional
in Eq. (6) with V1 : [0, 1) → [0,∞) unbounded at p = 1, or they are represented
on L\{xn} by Eq. (7) with Vn−1 : (0, 1] → (−∞, 0] unbounded at p = 0. As the
preference conditions presented in the next section show, in such cases we can still
identify the reference point from behavior if preferences are reference-dependent.

4 Consistent probability midpoints

We have already established that for EU-preferences probability midpoints are alge-
braic midpoints, that they are independent of outcomes and, hence, reference point
independent. Similarly,RDU-preferences imply reference independence although, due
to flexibility in the treatment of probabilities, RDU allows probability midpoints to
differ from algebraic midpoints. PT-preferences are different. They allow for elicited
probability midpoints to depend on the type (i.e., gain or loss), but not the magnitude
of outcomes.

This section introduces consistency conditions for probability midpoints which,
when added to statement (ii) of Lemma 1, allow for the identification of a reference
point. To this aim, it is instructive to explore the implications of elicited probability
midpoints for the preference representation in Lemma 1. Recall the indifferences
P ∼ Q and P ′ ∼ Q′ in Fig. 1. After substitution of the additive representation,
subtracting the first equation from the second and cancelling common terms, we obtain
V1(β) − V1(α) = V1(γ ) − V1(β) or, equivalently,

V1(β) = V1(γ ) + V1(α)

2
. (8)

In terms of V1, which captures the treatment of probabilities associated with outcome
x1, Eq. (8) states thatβ is aV1-midpoint betweenα and γ . The properties of the additive
representation imply that locally one can always find midpoints and that the latter do
not depend on other outcome stimuli. For instance, taking an outcome xm′ 	= xm
such that x1 � xm′ � xn and considering preferences among prospects over the set
{x1, xm′ , xn} ⊂ X , one can find probabilities p̄, q̄ such that P̄ = (α : x1, 1 − p̄ − α :
xm′ , p̄ : xn) ∼ (β : x1, 1 − q̄ − β : xm′ , q̄ : xn) = Q̄. Now, shifting β − α from xm′
to x1 in P̄ requires an equivalent shift of γ̄ − β from xm′ to x1 in Q̄ to obtain a new
indifference, say P̄ ′ ∼ Q̄′. As before, substitution of the representation in Lemma 1
for the indifferences P̄ ∼ Q̄ and P̄ ′ ∼ Q̄′, subtraction of the resulting equations and
cancellation of common terms, gives

V1(β) = V1(γ̄ ) + V1(α)

2
,

which can only hold if γ̄ = γ , for otherwise Eq. (8) is violated.
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The preceding analysis shows that revealed probability midpoints elicited through
shifts of probability mass to x1 are meaningful for V1, i.e., they are consistent
and independent of stimuli other than x1. Similarly, midpoints for each function
Vj , j = 2, . . . , n − 1 can be elicited and are meaningful concepts given the addi-
tive separable representation of Lemma 1. Next we present properties that demand
further consistency for elicited probability midpoints.

4.1 Good-news and bad-news midpoint consistency

The properties presented next demand that probability midpoints derived from prob-
ability shifts to best (worst) outcomes are also midpoints when the same probability
mass is shifted to outcomes of intermediate rank. These behavioral qualifications for
preferences are referred to as consistency properties for probability midpoints.

Good- News Midpoint Consistency: For m ∈ {2, . . . , n − 1}, the preference
relation � satisfies good-news midpoint consistency (GMC) above xm , if for P =
(α : x1, pm − α : xm, pm+1 : xm+1, . . . , pn : xn) and Q = (β : x1, qm − β :
xm, qm+1 : xm+1, . . . , qn : xn) we have

P ∼ Q&(β − α)m,1P ∼ (γ − β)m,1Q ⇒ (β − α)m,m̃ P ∼ (γ − β)m,m̃ Q,

for all m̃ ∈ {1, . . . ,m} whenever α ≤ β ≤ γ are probabilities such that P, Q,

(β − α)m,1P, and (γ − β)m,1Q are from L.9
It is worth contrasting the normative content of GMC with that of the more restrictive
von Neumann and Morgenstern independence axiom. In GMC, the probability mass
β−α in (β−α)m,1P is additional good-news probability for x1 relative to P . Based on
preferences, this improvement is equivalent to the additional good-news probability
γ − β in (γ − β)m,1Q as compared to Q . GMC requires that such good-news
probabilities are of equivalent value for preferenceswhen shifted to a commonoutcome
xm̃ (i.e., a degenerate prospect) that is ranked between x1 and xm . The latter aspect
indicates that preferences may be sensitive to the rank-ordering of outcomes when
shifting equivalent good-news probabilities. Such rank-ordering restrictions do not
apply to the von Neumann and Morgenstern independence axiom where probability
mass is taken away proportionally from each outcome and shifted to another common,
and not necessarily degenerate, prospect S:

P ∼ Q ⇔ ρS + (1 − ρ)P ∼ ρS + (1 − ρ)Q

for all ρ ∈ [0, 1] and all P, Q, S ∈ L.10 Clearly, as no further restrictions are placed
on the “common risk” type S, the latter property applies more generally than GMC

9 In this definition we could have included the cases m = 1 andm = n as the property then trivially holds.
10 In the literature different formulations of the von Neumann and Morgenstern independence axiom have
been used, e.g., P � Q ⇔ ρS + (1 − ρ)P � ρS + (1 − ρ)Q for all P, Q, S ∈ L and all ρ ∈ [0, 1]. The
definition presented here is equivalent given the employed weak order, continuity and dominance properties
of �.
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and is, thus, more powerful. In particular, the independence axiom implies that elicited
probability midpoints are also algebraic midpoints, the characteristic property of EU-
preferences.

It can be verified that RDU satisfies GMC above xm for all m = 2, . . . , n − 1.
This has been shown in Zank (2010). Similarly, this holds for the preference with the
representation of Example 3. The next lemma shows that PT satisfies GMC above xm
if all outcomes above xm are gains, hence, in particular if xm is the reference point.

Lemma 2 Assume that the preference � on L is represented by PT (or by extended
PT on L\{xn}). Then � satisfies good-news midpoint consistency above x whenever
all outcomes ranked above x are gains.

The next property is the dual analog of GMC as it focuses on shifting equivalent
probability mass to outcomes of lower rank.

Bad- News Midpoint Consistency: For m ∈ {2, . . . , n − 1}, the preference
relation � satisfies bad-news midpoint consistency (BMC) below xm , if for P =
(p1 : x1, . . . , pm−1 : xm−1, pm − α : xm, α : xn) and Q = (q1 : x1, . . . , qm−1 :
xm−1, qm − β : xm, β : xn) we have

P ∼ Q&(β − α)m,n P ∼ (γ − β)m,nQ ⇒ (β − α)m,m̃ P ∼ (γ − β)m,m̃ Q,

for all m̃ ∈ {m, . . . , n}wheneverα ≤ β ≤ γ are probabilities such that P, Q, (β−
α)m,n P, and (γ − β)m,nQ are from L.
The preference represented by the function in Example 2 satisfies BMC below

xm for all m ∈ {2, . . . , n − 1}. Likewise, RDU-preferences satisfy BMC below each
outcome. The next lemma confirms that PT satisfies BMC below all outcomes which
are not gains, that is, below all losses and below the reference point.

Lemma 3 Assume that the preference � on L is represented by PT (or by extended
PT onL\{x1}). Then� satisfies bad-news midpoint consistency below x whenever all
outcomes ranked below x are losses.

If we have reference-dependence and we know the location of the reference point,
then it is easy to formulate a sign-dependent midpoint consistency condition that
characterizes PT when combined with the properties in Lemma 1. If there are two
or more gains and two or more losses, all we need is GMC above all outcomes that
are not losses and BMC below all outcomes that are not gains. Although not stated
formally, this result is new and provides PT-foundations for general sets of outcomes,
thereby directly extending the RDU foundations of Nakamura (1995), Abdellaoui
(2002), Abdellaoui and Wakker (2005), and Zank (2010). In the case that there is one
gain or one loss, we further need to assume that the additive representation consists of
bounded functions; alternatively, the domain of the preference is limited to all but the
best and worst prospects, in which case we obtain foundations for extended PT. Next
we proceed without assuming that we know the location of the reference point.
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4.2 Reference point revealing midpoint consistency

In general, we do not know which of the outcomes in X is the reference point. To
obtain PT-foundations we develop a technique to first reveal the reference point before
invoking the appropriate midpoint consistency properties. For instance, we can take
outcomes in turn and verify if probability midpoints are independent of the outcomes
used to reveal those midpoints. For PT-preferences a violation of this test of midpoint
consistency is allowed once at the most. By starting with probability midpoint elicita-
tions at best (worst) outcomes and moving sequentially toward lower (better)-ranked
outcomes, we can test for “probability midpoint consistency” for all outcomes. Having
finitely many outcomes means that this process will terminate with either universal
consistency (i.e., there is no reference point affecting preferences) or a single viola-
tion (i.e., there exists a reference point that affects preferences). Observing multiple
violations of consistency means that PT cannot hold. While this will be excluded by
our main preference condition, it is clear that our consistency test can also be used to
falsify PT. Applying the consistency property repeatedly comes down to an algorith-
mic procedure (see also Sect. 5.3) that allows us to identify outcomes that are gains
and outcomes that are losses if preferences are reference-dependent. This motivates
the following property.11

Reference Point Revealing Midpoint Consistency: The preference rela-
tion � satisfies reference point revealing midpoint consistency (RMC) if for each
m ∈ {2, . . . , n−1} the preference satisfies good-newsmidpoint consistency above
xm or bad-news midpoint consistency below xm−1 (or both).

Before turning to the main result, we elaborate further on some implications of
RMC. Suppose that mmax ∈ {2, . . . , n − 1} is the largest index such that GMC above
xmmax holds. Then, in the presenceof an additive representation, by repeated application
of GMC, one can show that GMC above x j holds for all j ≤ mmax, that is, for all
outcomes ranked above xmmax . Similarly, ifmmin ∈ {2, . . . , n−1} is the smallest index
such that BMC below xmmin−1 holds, then BMC below x j holds for all j ≥ mmin − 1
in the presence of an additive representation. Therefore, as RMC demands for each
m ∈ {2, . . . , n − 1} that GMC above xm or BMC below xm−1 holds, either mmax =
mmin = k, i.e., a single index k ∈ {2, . . . , n − 1} exists such that GMC above xk or
BMC below xk−1 holds, or (as shown in the Appendix) for all m ∈ {2, . . . , n − 1}
both GMC above xm and BMC below xm−1 hold. In the latter case we have sign
independence, while in the former case we have sign-dependence and r = xk is the
unique reference point. Under each of these conclusions one can derive (extended)
PT. We conclude this section by summarizing this result.

Theorem 1 The following two statements are equivalent for a preference relation �
on L:
(i) The preference relation � is represented by extended PT.

11 The idea of formulating preference conditions such that they imply the existence of an outcome where
behavior changes suddenly has also been used in Schmidt and Zank (2012).
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(ii) The preference relation � is a Jensen-continuous weak order that satisfies domi-
nance, the comonotonic sure thing principle for risk and reference point revealing
midpoint consistency.

Where they exist, the probability weighting functions are uniquely determined.
Further, if w+ = w−, utility is cardinal as preferences agree with rank-dependent
utility; otherwise, the utility function is a ratio scale and there is a unique index
k ∈ {2, . . . , n − 1} such that the reference point is r = xk .

The proof of the preceding theorem is in the Appendix. The next section looks at
extensions of our main result.

5 Extensions

In the previous sections we have assumed that no outcomes are indifferent. This
requirement can be relaxed if there are at least four strictly ordered outcomes in the
finite set X . All results remain valid if we restrict the analysis to the set of represen-
tatives for each indifference set of outcomes; within an indifference set all outcomes
have the same utility value. As pointed out in Sect. 3, our results also remain valid if
we include the case that there are exactly three strictly ordered outcomes, however,
then RMC trivially holds and, given Lemma 1 with boundedness conditions for the
additive representation satisfied, PT follows as indicated in Example 1. If boundedness
conditions do not hold one must allow for extended PT-representations as suggested
in Examples 2 and 3 , where the utility of the single gain, respectively, the single loss
and the corresponding probability weighting function cannot be identified separately
as the representing functions exhibit asymptotic behavior when approaching extreme
probabilities. Such behavior is excluded if preferences agree with RDU, the special
case of PT with sign independence. Finally, we recall that, in the trivial case of having
at most two strictly ordered outcomes, the dominance property ensures the existence
of an ordinal representation; it is well known that there is insufficient structure on the
set of prospects to obtain more meaningful results for the two-outcome case.

In our derivation of PT it has been essential that the weighting functions are con-
tinuous at 0 and at 1. Discontinuities at these extreme probabilities are, however,
empirically meaningful. We could adopt a weaker version of continuity for probabil-
ities that is restricted to prospects that have common best and worst outcomes each
with a positive objective probability. Such conditions have been used in Cohen (1992)
and more recently in Webb and Zank (2011) where probability weighting functions
are derived that are linear and discontinuous at extreme probabilities. These weight-
ing functions can then be described by two parameters. As Webb and Zank show,
this relaxation of continuity in probabilities comes at a price. They require additional
structural assumptions for the preference in order to obtain consistency of those param-
eters across sets of prospects with different worst and best outcomes. Also, specific
consistency principles that imply the uniqueness of those parameters are required. We
conjecture that in our framework such consistency principles can be formulated for
nonlinear weighting functions that are discontinuous at 0 and at 1. A formal derivation
of PT with such weighting functions is, however, beyond the scope of this paper.
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5.1 Omitting asymptotic behavior

In this subsection we provide a variant of the probability midpoint condition that
excludes unboundedness of the functions V1 and Vn−1 in Theorem 1. If sign-
dependence holds, the property can be seen as a condition that imposes the existence
of at least two gains and at least two losses. With a further outcome that acts as the
reference point, this property therefore assumes at least five strictly ordered outcomes.
Under this mild richness assumption for outcomes, the following property demands
consistent probability midpoints at the two best outcomes and, separately, consistent
midpoints at the two worst outcomes and, additionally, RMC.

Bounded RMC: The preference relation � satisfies bounded RMC (b-RMC) if
RMC holds and further GMC holds above x3 and BMC holds below xn−2.

The augmented b-RMC property uses the information that the two best outcomes
are of the same type (both are gains) and that the two worst outcomes are also of the
same type (they are losses). Such information is not usually available to the analyst,
although in some cases such assumptions can plausibly be made. For instance, when
a decision maker wishes to sell a good at an auction, there might be several low prices
at which selling would definitely be perceived as making a loss (being substantially
below the reservation price), while there might be several high prices at which selling
the good is perceived as a definite gain.

If the set of outcomes is too small, declaring some outcomes as gains and some as
losses may in fact pin down the model. For example, it should be clear that if there
are only four strictly rank-ordered outcomes in X , then b-RMC implies that GMC
holds above x3 and BMC holds below x2. For the additive representation in Lemma 1
this has the implication that probability midpoints for V1 are also midpoints for V2
(inferred from GMC above x3) and probability midpoints for V3 are also midpoints
for V2 (inferred from BMC below x2). Hence, midpoints are consistent throughout
and this excludes sign-dependence; hence, RDU is implied.

The next result explicitly assumes that there are at least five strictly ordered out-
comes, to allow for reference-dependence when b-RMC is invoked.

Theorem 2 Assume that the finite set of outcomes X has at least five strictly ranked
outcomes. The following two statements are equivalent for a preference relation � on
L:
(i) The preference relation � is represented by PT with either sign-dependence (in

which case the reference point is r = xk for some k ∈ {3, . . . , n − 2}) or sign
independence (RDU holds).

(ii) The preference relation � is a Jensen-continuous weak order that satisfies domi-
nance, the comonotonic sure thing principle for risk and bounded reference point
revealing midpoint consistency.

The probability weighting functions are uniquely determined. Further, ifw+ = w−,
utility is cardinal as preferences agree with rank-dependent utility; otherwise, the
utility function is a ratio scale and the reference point is unique.

The proof of the preceding result is in the Appendix. In Theorem2 we exploit the
fact that the set of outcomes is finite. If X is infinite a property like b-RMC cannot
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simply be extended because, for example, for uncountable sets identifying the two best
outcomes or the twoworst outcomes may not be possible. But RMC can be formulated
to hold on specific subsets of prospects as our next subsection shows. We now proceed
to the discussion of how to obtain extended PT-foundations for infinite outcome sets.

5.2 Infinite outcome sets

As in the preceding sections, we restrict our analysis to the case that there are no indif-
ferent outcomes. When X is infinite some of our properties need to be extended. Weak
order, continuity and dominance are as before. CSTP is invoked for each restriction of
the preference to sets of prospects over finitely many common outcomes. For a finite
set of outcomes Y ⊂ X denote by LY the set of prospects that give zero probability
to outcomes not contained in Y . We now formulate the extension of CSTP.

Comonotonic STP: The preference relation � satisfies the comonotonic sure
thing principle (CSTP) on L if � satisfies CSTP on LY for all finite sets Y ⊂ X .

One implication of (extended) PT is that, if the preference is restricted to prospects
over a finite set of outcomes that contains only gains or the reference point, call it Xg

(g stands for good outcomes), then RDU represents that restriction of the preference.
Similarly, RDU represents the preference restricted to prospects over a finite set of
outcomes that contains only losses or the reference point, say Xb (b referring to bad
outcomes). The two RDU functions need not have the same probability weighting
function; in particular, sign-dependence requires distinct weighting functions for the
probabilities of gains and losses. Then, for prospects over LXg∪Xb , RMC will be
satisfied only when the reference point is included in the union of the sets Xg and Xb.
For infinite sets of outcomes we, therefore, propose the following extension of RMC.

Extended RMC: The preference relation � satisfies extended reference point
revealing midpoint consistency (e-RMC) on L if for each outcome x ∈ X one (or
both) of the following statements apply:
(a) For each finite set Y with all outcomes ranked above x the preference �

restricted to LY∪{x} satisfies GMC above y and BMC below y for each y ∈ Y .
(b) For each finite set Z with all outcomes ranked below x the preference �

restricted to L{x}∪Z satisfies BMC below z and GMC above z for each z ∈ Z .

Before presenting the next result, we point out that, for obtaining extended PT-
foundations for � on L, we employ similar tools as in the derivation of Theorem 1 but
restricted to each set LY for finite Y ⊂ X . In the presence of weak order, continuity
and dominance, CSTP characterizes a general representation that is additive on each
setLY for finite Y ⊂ X . Similar results were provided in Chew andWakker (1996) for
the general setup with ambiguity. When combined with the other properties, e-RMC
implies extended PT on each set LY , but it need not imply the existence of a uniquely
determined reference point because the subset Y may not contain the reference point.
In general, the lack of structural assumptions on the set of outcomes X means that a
reference point r ∈ X may not exist, for instance, as it is not part of the considered
outcome set, even though preferences are sign-dependent. The following example
illustrates.

123



A revealed reference point for prospect theory 753

Example 4 Assume that X = [−50, 0) ∪ (0, 100] and that the preference � on LX is
represented by

V (p1 : x1, . . . , pn : xn) =
k−1∑

j=1

w+ (
pdj

) [
u(x j ) − u(x j+1)

] + w+ (
pdk

)
u(xk)

+ ŵ−(pck+1)u(xk+1)

+
n∑

j=k+2

ŵ− (
pcj

) [
u(x j ) − u(x j−1)

]
,

with strictly increasing and continuous weighting functions w+ and w−, and a utility
function defined as u(x) = x if x ∈ (0, 100] and u(x) = 2x if x ∈ [−50, 0), and k
denoting the number of positive outcomes in the prospect (p1 : x1, . . . , pn : xn).

The preference in Example 4 satisfies all properties required for the existence of
a general additive representation (weak order, Jensen-continuity, dominance, CSTP)
and also e-RMC. However, the value 0, which acts as a reference point, is not an
outcome that is contained in the set X . Hence, the preference is sign-dependent, but
no reference point within X exists; the reference point is “outside the model.”

Demanding convexity for the outcome set can circumvent the problems alluded to
in Example 4. But even if the set of outcomes is a closed interval, we may have sign-
dependent preferences but no reference point. This can be inferred from the following
example that resembles features from Example 3.

Example 5 Assume that X = [0, 100] and that the preference � on LX\{0} is repre-
sented by

V (p1 : x1, . . . , pn−1 : xn−1, pn : 0) =
n−2∑

j=1

w+ (
pdj

) [
u(x j ) − u(x j+1)

]

+w+(pdn−1)u (xn−1) −
[

pn
1 − pn

]

,

with strictly increasing and continuous weighting functions w+ and w−, and a utility
function defined as u(x) = x if x ∈ (0, 100] (that can discontinuously be extended to
u(0) = −1), and n − 1 referring to the number of positive outcomes in the prospect
evaluated by V .

To exclude preferences that are sign-dependent, but where a reference point cannot
be identified, such as the preferences in Examples 4 and 5 one needs to add further
structural assumptions for the set of outcomes or exclude extreme outcomes (e.g.,
requiring that X is an open interval in R). Alternatively, one can consider preferences
where the reference point is outside themodel as in the extended PT of Example 5 with
an “imaginary” reference point r∗. We provide foundations for both cases. The first
result provides a preference foundation for PT for the case that the set of outcomes is
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an open interval of the real numbers. As the set of outcomes is a connected separable
topological space that does not contain a best or worst outcome, the reference point
can be identified within the model.

Theorem 3 Assume X = (a, b) for some real numbers a < b and that the preference
over outcomes agrees with the natural ordering of real numbers. The following two
statements are equivalent for a preference relation � on L:
(i) The preference relation � on L is represented by PT.
(ii) The preference relation � is a Jensen-continuous weak order that satisfies domi-

nance, the comonotonic sure thing principle for risk and extended reference point
revealing midpoint consistency.

The probability weighting functions are uniquely determined. Further, ifw+ = w−,
utility is cardinal as preferences agree with rank-dependent utility. Otherwise, the
utility function is a ratio scale and the reference point r ∈ X is unique.

The proof of Theorem 3 is in the Appendix. From that proof one can infer that
Theorem 3 also applies for the case that X = R, which is themost frequent assumption
considered in the literature. The next result applies to the most general case in which
no best and worst outcomes are allowed.

Theorem 4 Suppose X is a set of outcomes that contains no extreme outcomes (i.e.,
X has no best and no worst outcome). The following two statements are equivalent
for a preference relation � on L:
(i) The preference relation � on L is represented by PT with a possibly imaginary

reference point.
(ii) The preference relation � is a Jensen-continuous weak order that satisfies domi-

nance, the comonotonic sure thing principle for risk and extended reference point
revealing midpoint consistency.

The probability weighting functions are uniquely determined. Further, ifw+ = w−,
utility is cardinal as preferences agree with rank-dependent utility. Otherwise, the
utility function is a ratio scale and, if the reference point r ∈ X, it is unique.

The proof of Theorem 4 is in the Appendix. Having explored how the probability
midpoint tool can be used to obtain information about sign-dependence and reference
points from a foundational perspective, we proceed to a practical application of mid-
point consistency. The next subsection indicates how the midpoint tool can be applied
to empirically test for sign-dependence.

5.3 Detecting reference points empirically

Our theoretical results, in particular the application of GMC and BMC as combined
in RMC suggests that it is possible to test for sign-dependence using probability
midpoints. Here we present a tool that can be used to experimentally implement such
a test. Suppose, for simplicity of exposition, that we have the best outcome, labeled
G ∈ X (which may objectively be seen as a gain), and the worst outcome, labeled
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L ∈ X (potentially regarded as a loss). Let there be finitely many outcomes ranked
between G and L , say G � y1 � · · · � ys � L for some s ≥ 2. Assume that this list
of intermediate outcomes is exhaustive and that we have PT-preferences, but do not
know if one of the y j ’s is the reference point. An example of a procedure to identify the
reference point involves repeated elicitations of probability midpoints and subsequent
checks for consistency for those midpoints. This results in an algorithm searching for
a reference point, as follows.

Step 1: Fix a small probability α (e.g., α = 0.15) and probabilities p, q (e.g.,
p = 0.1, q = 0.2). Next consider the prospect Pα

y1 = (α : G, 1 − p − α : y1, p : L)

and elicit the probability β that makes a subject indifferent between Pα
y1 and Qβ

y1 =
(β : G, 1 − q − β : y1, q : L) . Such elicitations can be facilitated by using, for
instance, choice lists in which outcomes are fixed and probabilities vary, as suggested
in Holt and Laury (2002).

Step 2: Replace α by β in Pα
y1 , hence obtaining Pβ

y1 , and elicit γ such that Pβ
y1 ∼

Qγ
y1 . This way the experimenter obtains a probability midpoint β between α and γ .
Step 3: Next, replace y1 by y2 in Pα

y1 and obtain the prospect P
α
y2 = (α : G, 1− p−

α : y2, p : L). Subsequently, elicit the probability q̃ that makes a subject indifferent
between Pα

y2 and Qβ
y2 = (β : G, 1 − q̃ − β : y2, q̃ : L).

Step 4: As in Step 2, replace α by β in Pα
y2 , giving Pβ

y2 , and elicit γ ∗ such that

Pβ
y2 ∼ Qγ ∗

y2 . The experimenter obtains a probability midpoint β between α and γ ∗.
If γ = γ ∗ we have observed a consistency, from which we conclude that y1 and y2
are outcomes with utilities of the same sign; we proceed to the next step. Otherwise,
if γ 	= γ ∗ we have an inconsistency, which can occur only if y1 and y2 have utilities
of a different sign. Therefore, y1 is identified as the reference point and the “search
algorithm” stops.

Step (3 + m) (m = 2, . . . , s): If γ = γ ∗ at Step (2 + m), repeat Steps (1 + m)

and (2 + m), with ym+1 and ym replacing ym and ym−1, respectively.
If this procedure terminates after Step (3+m∗) for some indexm∗ ≤ s, we conclude

that ym∗ is the reference point; otherwise, there is no reference point that affects the
treatment of probabilities.

A few comments on the above procedure are in order. Obviously, there are alter-
native ways of implementing the above search procedure. For instance, one can start
the procedure in Steps 1 and 2 at any outcome ym,m ∈ {1, . . . , s} and adjust the
subsequent elicitation steps, or one could elicit midpoints using outcome ys in Steps
3 and 4 in the above procedure and then continue the elicitation of midpoints by alter-
nation between the remaining best and worst ranked outcomes that have not yet been
identified as gains or losses by the procedure. If X is an open interval in R, one can
use this procedure to narrow down the interval of outcomes in which the reference
point is located by repeating the procedure on specific finite subsets Y of X .

While the above search procedure appears compelling and, from a theoretically per-
spective, feasible, implementing the procedure in experiments would need to account
for some practicalities. First, the probability interval is narrow such that small changes
in stimuli in the form of actual probabilities may hardly be noticed by subjects. This
can be circumvented by “scaling up” the stimuli, e.g., by framing choices as events
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resulting from draws using urns containing 100 or even 1000 equally likely balls.
Second, the midpoint procedure is based on eliciting indifferences. Irrespective of
whether indifferences are elicited by varying outcomes or by varying probabilities,
such elicitation tasks are cognitively demanding for many subjects and appropriate
experimental procedures are needed. The aforementioned choice lists design (Holt
and Laury 2002), which invokes an final interpolation step, has proven to be quite an
efficient mechanism in dealing with the issue of eliciting indifferences.

Third, the decision criterion in how far to tolerate differences between γ and γ ∗
in Step 4 of the above elicitation procedure usually needs to be specified as a rule
where small differences can be regarded as a measurement error and large ones as
a genuine inconsistency. What determines such bounds is essentially an empirical
question, and setting appropriate thresholds can be based on existing data regarding
empirically observed probability weighting functions. Fourth, chained measurements,
as employed in our search procedure, have been criticized on the grounds of incentive
compatibility and error propagation. Both aspects of the elicitation procedure are
theoretically important, but empirically, these issues are not a serious concern as
subjects treat choice tasks in isolation (Kahneman and Tversky 1979; Cubitt et al.
1998; see also Abdellaoui et al. 2005, on negligible error propagation).

Finally, in contrast to EU- or RDU-preferences, the choice of outcome stimuli to
detect sign-dependence is important. The experimenter needs to ensure that the range
of outcomes chosen to implement the above procedure is not too narrow (such that
reference points are excluded) and likewise that the number of stimuli is not too large
as this raises the number of required elicitations. This calls for a trade-off between
precision of the method and the cognitive demands put on subjects that, in turn, can
influence the precision in the obtained data. Finding the right balance is, however, a
common challenge for all experimental studies.

6 Discussion

Here, we review some of the literature on endogenous reference points before we
comment on the relation of our midpoint principle to midpoint notions developed
elsewhere.

6.1 Models with reference points

The majority of existing PT-derivations assume the reference point is exogenously
given (e.g., Tversky and Kahneman 1992; Wakker and Tversky 1993; Chateauneuf
andWakker 1999; Köbberling andWakker 2003; Neilson 2006). In alternativemodels,
attention has been paid to endogenous reference points that are choice-dependent
(e.g., Gul 1991; Sugden 2003; Delquié and Cillo 2006; Bleichrodt 2007; Schmidt
et al. 2008). Such multiple reference points are explicitly allowed for in the reference-
dependent theories of Munro and Sugden (2003) and Sagi (2006) where, motivated by
the status quo effect, adjustments of preferences to new reference points are permitted.
There the decision maker can be seen as having multiple preferences, each depending
on a reference point. Those preferences are required to be consistent in the sense that
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they do not generate cyclical choices. Such consistency requirements for behavior
are also appearing in theories that build on the classical revealed preference approach,
however, by using choice functions that are reference-dependent, such as inApesteguia
and Ballester (2009) and Bossert and Sprumont (2009).

Multiple reference points can also be found in the choice model of Ok et al. (2015).
Those reference points are feasible alternatives in a choice set, but they are always
dominated by some other alternatives and, hence, are never revealed preferred. By
contrast, the endogenous reference points in Shalev (2000, 2002), Kőszegi and Rabin
(2006, 2007), and Kőszegi (2010), correspond to a person’s rational expectations held
in the recent past, which in turn are determined in the so-called personal equilibrium.
Since there may be multiple equilibria, the decision maker is required to choose the
most preferred one, e.g., a preferred personal equilibrium in Kőszegi and Rabin (2006)
and Kőszegi (2010). Beyond the lack of uniqueness, the choice aspect is markedly
different to the reference point concept in PT where, as pointed out by Shleifer (2012,
p.1086), the reference point cannot be chosen deliberately.

Schmidt and Zank (2012) provide an alternative way to identify reference points
from primitives by exploiting PT features, such as diminishing sensitivity of the utility
(convexity for losses and concavity for gains) and consistent utility measurement
paired with sign-dependence. The present approach is complementary to Schmidt and
Zank (2012), and, unlike theirs, it does not impose structural richness on the set of
outcomes. As a result, the present foundations for PT can be extended to more general
settings like health and insurance where outcomes might be discrete, thus allowing
for wider applications of PT.

6.2 Outcome and probability midpoints

Consistency requirements for outcomes are familiar in economics and finance and are
commonly used for utility measurements or for comparative analyses. Specifically,
the shape of utility functions can be inferred from preference-based outcome mid-
points (Baillon et al. 2012, Theorem 2.2), where a strictly concave utility requires
that the utility midpoint of two outcomes is always below the corresponding algebraic
midpoint and, further, independent of the probabilities of those outcomes. Similarly,
consistently lower midpoints indicate more concavity of one utility relative to the
other. The utility midpoint tool, which applies likewise to expected utility and nonex-
pected utility theories, has been advanced further in Baillon et al. (2012) to compare
the utility for risk with that for ambiguity.

Similarly to the comparison of utility functions based on outcome midpoints,
attitudes toward probabilities can be inferred from comparisons of the probability
weighting functions for risk and ambiguity (Abdellaoui et al. 2011) by adopting an
analogous midpoint technique for probabilities. In Kuilen and Wakker (2011) it was
demonstrated that probability midpoints are suitable for experimental studies and their
elicitation is relatively easy. In empirical research, however, utilitymeasurementswere
required prior to the elicitation of probability weighting functions (Abdellaoui 2000;
Bleichrodt and Pinto 2000, and Kuilen and Wakker 2011). Our elicitation method
and the derived results suggest that one can completely dispense of utility-based mea-
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surements when employing the probability midpoint tool. Indeed, we advance the
probability midpoint tool in three different ways: Our PT-foundation delivers in one
stroke a new preference tool for experimental testing and empirical measurements, a
tool for comparative analyses and, more fundamentally, a method to identify reference
points endogenously from behavior.

7 Conclusion

A consequence of reference-dependence is that risk behavior in PT is manifested
through a combination of attitudes toward gains and losses, captured by a utility func-
tion (e.g., concave for gains and convex for losses), and attitudes toward probabilities
of gains and losses, captured by corresponding probability weighting functions (e.g.,
inverse-S-shaped), which together imply a fourfold pattern of risk attitudes (Tver-
sky and Kahneman 1992; Wu and Gonzalez 1996; Prelec 1998).12 Loss aversion, the
component of risk attitude expressed as a stronger sensitivity toward losses as com-
pared to equally sized gains (Wakker and Tversky 1993; Neilson 2002; Köbberling
and Wakker 2005; Blavatskyy 2011) is a further cornerstone of PT that completes the
picture on empirically observed choice behavior under risk. Yet, without knowledge of
the location of the reference point, both loss aversion and the fourfold pattern become
ambiguous concepts. While a model with an unspecified reference point gives addi-
tional flexibility for the analyst (e.g., it leads to an easier organization of experimental
and field data, or it allows for framing effects to be incorporated), the absence of
behavioral conditions that imply the existence of the reference point renders PT too
general and it makes themodel difficult to falsify. This is unwarranted both empirically
and foundationally.

The importance of having sound preference foundations for decision models, in
particular for PT, has recently been reiterated by Kothiyal et al. (2011, pp. 196–197).
If a continuous utility is not available because outcomes are discrete (e.g., as in health
or insurance), the relationship between the empirical primitive (i.e., the preference
relation) and the assumptions of PT becomes unclear. In that case, one can no longer
be sure that the PT-predictions are in line with the behavior underlying the preferences.

Our aim was to make PT falsifiable. We have addressed the foundational aspect of
the reference point in PT under risk and showed that a specific consistency property
for probability midpoints can be formulated in a way that allows for the identification
of the reference point and, jointly, of PT. The conditions presented here are necessary
and sufficient for PT; thus, they clarify which assumptions one makes by invoking the
model. In particular, the new foundations highlight the difference between expected
utility, rank-dependent utility and prospect theory in a transparentway.Before, thiswas
not possible as foundations for PT in the von Neumann and Morgenstern setting were
not available. In the presence of standard preference conditions, the two principles
of good-news and bad-news midpoint consistency, when combined as in our RMC
properties, are sufficient to obtain either RDU, a special case of PT, or PT with sign-

12 See also Wakker (2010), Abdellaoui et al. (2011), and the references therein for ambiguity.
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dependent probability weighting and a reference point endogenously revealed from
behavior. This way, we have obtained a complete foundation for prospect theory.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Before presenting the proofs of the lemmas and the theorems, we provide further
details on Example 1 as it clarifies the nature of the additive representation when X
consists of exactly three strictly rank-ordered outcomes.

Three strictly ordered outcomes

Further Elaboration on Example 1: Recall the additive representation V (p1 :
x1, p2 : x2, p3 : x3) = V1(p1) + V2(p1 + p2) in Example 1. For all probabilities
p ∈ [0, 1], set

w+(p) = V1(p) − V1(0)

V1(1) − V1(0)
,

which iswell defined as V1 is bounded at 1. Thus defined,w+ is a probabilityweighting
function. Set u(x1) := V1(1) − V1(0) > 0, and obtain that

V1(p1) = w+(p1)u(x1) + V1(0).

Next, define

w−(p) = V2(p) − V2(0)

V2(1) − V2(0)
.

We set u(x3) = V2(0) − V2(1) < 0 and obtain

V2(p1 + p2) = w−(p1 + p2)[V2(1) − V2(0)] + V2(0)

= −w−(p1 + p2)u(x3) + V2(0) + V2(1) − V2(1)

= [1 − w−(p1 + p2)]u(x3) + V2(1)

= ŵ−(p3)u(x3) + V2(1).

To obtain the last equation, we have used the dual ofw− and the fact that p1+ p2 =
1 − p3.
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Continuity of the weighting functions implies that

lim
p+q→0

0<p+q<1

V (p, 1 − p − q, q) = lim
p+q→0

0<p+q<1

[
w+(p)u(x1) + V1(0) + ŵ−(q)u(x3) + V2(1)

]

= V1(0) + V2(1).

To see that the just obtained sum is immaterial for the preference between prospects,
we note that

P � Q ⇔ V1(p1) + V2(p1 + p2) ≥ V1(q1) + V2(q1 + q2)

⇔ w+(p1)u(x1) + V1(0) + ŵ−(p3)u(x3) + V2(1) ≥ w+(q1)u(x1)

+V1(0) + ŵ−(q3)u(x3) + V2(1)

⇔ w+(p1)u(x1) + ŵ−(p3)u(x3) ≥ w+(q1)u(x1) + ŵ−(q3)u(x3).

By continuity in probabilities, p ∈ (0, 1) exists, such that (1 : x2) ∼ (p : x1, 1 −
p : x3). This implies 0 = w+(p)u(x1) + ŵ−(1 − p)u(x3). We must, therefore, set
u(x2) = 0. We have obtained a PT-representation from the additive representation of
the preference relation and have identified the reference point r := x2.

Recall that uniqueness results for additive representations specify joint cardinality
of V1 and V2. Thus, if instead of the latter pair we start our derivation of weighting
functions and utility with AV1+B1 and AV2+B2 for some positive A and real B1 and
B2, we obtainw+ and ŵ− as above, showing that the weighting functions are uniquely
determined. If w+ 	= w− the constraint u(x2) = 0 is binding for all admissible utility
functions, such that for a different utility, ũ, we obtain ũ(x j ) = Au(x j ); thus, utility
is a ratio scale. It can be shown that, if w− is identical to w+, this PT-representation is
in fact an RDU-representation to which the corresponding uniqueness results apply.
Hence, PT holds for the case that X contains exactly three strictly ranked outcomes
and the preference is represented by a bounded additively separable function.

Example 1 and the just provided elaborations show that, for the case of exactly three
strictly ordered outcomes, no additional preference requirements are needed to derive
PT, provided thatwe have an additive representationwith bounded functions. If exactly
one of those functions is unbounded, then extended PT holds trivially, while in the case
when both functions are unbounded,we can only identify r = x2 as the reference point,
but cannot identify the probability weighting functions separately of utility. Wakker
(1993, Theorem 3.2) provides conditions under which an additive representation can
be obtained for the preference restricted to the set of all prospects except the extreme
ones, i.e., for � on L\{x1, x3}. Wakker (1993, Proposition 3.5) indicates that, if the
additive representation consists of proportional functions, they can be assumed to be
finite at extreme outcomes; then the additive functions are bounded. Invoking such
proportionality requirements comes down to establishing RDU (see Abdellaoui 2002),
i.e., PT without sign-dependence. Thus, to allow for sign-dependence while excluding
unboundedness of the functions V1 and V2, weaker conditions than proportionality are
warranted. For instance, one can require conditions, which can also be formulated
for the case of more than three strictly ordered outcomes, such as those in Wakker
(1993, Theorem 3.3(c)), which ensure that the functions in the additive representation
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are bounded. Given our general approach, we have allowed for unbounded additive
representations and have provided behavioral conditions under which extended PT
holds.

Having elaborated on the case when the set of outcomes contains exactly three
strictly ordered outcomes, we assume, henceforth, that X contains at least four strictly
ordered outcomes. For this case Lemma 1 gives a preference foundation for an additive
representation of the preference� onL\{x1, xn}. The proof of the lemma follows from
Wakker (1993, Theorem 3.2); see also Zank (2010).

Proofs

Proof of Lemma 2: If RDU holds for � on L, then GMC above x follows for all
outcomes x ∈ X, as shown in Zank (2010). Thus, for the case when there are no gains
or the case when there are no losses, the statement in the lemma holds. Next we assume
that we have sign-dependence and that PT holds for � on L or that extended PT holds
onL\{xn}. Then, x1 is a gain and xn is a loss. Let xm ,m ∈ {2, . . . , n−1}, be a gain or the
reference point. Suppose that P = (α : x1, pm − α : xm, pm+1 : xm+1, . . . , pn : xn)
and Q = (β : x1, qm − β : xm, qm+1 : xm+1, . . . , qn : xn) and that the indifferences

P ∼ Q and (β − α)m,1P ∼ (γ − β)m,1Q

hold for α < β < γ such that P, Q, (β − α)m,1P, and (γ − β)m,1Q are well defined
(the case α = β which implies β = γ is trivial). Let m̃ ∈ {1, . . . ,m} be arbitrary. We
show that (β − α)m,m̃ P ∼ (γ − β)m,m̃ Q must hold.

Substitution of (extended) PT into P ∼ Q and (β − α)m,1P ∼ (γ − β)m,1Q,
taking differences of the resulting equation and cancelling common terms, gives:
w+(β) − w+(α) = w+(γ ) − w+(β), i.e., β is a w+-midpoint between α and γ , or
equivalently,

w+(β) = w+(γ ) + w+(α)

2
.

Assume, to the contrary, that (β−α)m,m̃ P � (γ −β)m,m̃ Q. Substitution of (extended)
PT into P ∼ Q and (β − α)m,m̃ P � (γ − β)m,m̃ Q, taking differences between the
resulting equation and, respectively, inequality, implies

w+(β) <
w+(γ ) + w+(α)

2
,

contradicting the preceding equation. The case (β − α)m,m̃ P ≺ (γ − β)m,m̃ Q leads
to a similar contradiction; hence, (β − α)m,m̃ P ∼ (γ − β)m,m̃ Q must hold. As
m̃ ∈ {1, . . . ,m} was arbitrary, it follows that (β − α)m,m̃ P ∼ (γ − β)m,m̃ Q holds
for all m̃ ∈ {1, . . . ,m}. Hence, GMC above xm holds. As m ∈ {2, . . . , n − 1} was
arbitrarily chosen such that xm is not a loss, this completes the proof of Lemma 2.

�
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Proof of Lemma 3: This proof is similar to the proof of Lemma 2. ��
Proof of Theorem 1: The derivation of statement (ii) from statement (i) follows from
the fact that extended PT is an additive representation of the preference � on L\{x1},
or on L\{xn}, or on L. Then statement (ii) of Lemma 1 applies. RMC follows from
Lemmas 2 and 3. This completes the derivation of statement (ii).

We now prove that statement (ii) implies statement (i) of the theorem. We note that
statement (ii) of the theorem implies statement (ii) of Lemma 1. Hence, we can assume
that the preference � on L\{x1, xn} is represented by an additive function

V (P) =
n−1∑

j=1

Vj (p
d
j ), (9)

with continuous strictly increasing functions V1, . . . , Vn−1 : [0, 1] → R which are
bounded except V1 (which can be unbounded at p = 1) and Vn−1 (which can be
unbounded at p = 0).

Next we invoke RMC. It says that for each m ∈ {2, . . . , n − 1} the preference
satisfies one of the following three conditions: (I) GMC above outcome xm , or (II)
BMC below outcome xm−1, or (III) it jointly satisfies both GMC above xm and BMC
below xm−1.We observe that GMC above x2 holds trivially (and similarly BMC below
xn−1 holds trivially). Next we consider several cases.

Case 1: Suppose that GMC above x3 does not hold. Then, RMC implies that
BMC holds below x2. Using similar arguments as in Zank (2010), one obtains by
induction, first locally then globally, that the functions V2, . . . , Vn−1 are proportional
on (0, 1). Following Wakker (1993, Proposition 3.5) these functions are bounded and
can continuously be extended to all of [0, 1]. Define

w−(p) := V2(p) − V2(0)

V2(1) − V2(0)

for all probabilities p ∈ [0, 1]. This is a well-defined (continuous and strictly
increasing) probability weighting function. Further, by proportionality of the func-
tions V2, . . . , Vn−1 it follows that for all j = 2, . . . , n − 1 we have

w−(p) = Vj (p) − Vj (0)

Vj (1) − Vj (0)

for all probabilities p ∈ [0, 1]. From the latter expression we obtain

Vj (p) = w−(p)[Vj (1) − Vj (0)] + Vj (0)

for all j = 2, . . . , n − 1, and for all probabilities p ∈ [0, 1].
As GMC does not hold above x3, V1 cannot be proportional to V2 (or to the Vj ’s,

j = 3, . . . , n − 1). This means that V2-midpoints exist that are not V1-midpoints.
In particular, GMC above xm cannot hold if m > 2. Therefore, x2 is a reference
point. Next we define u(x2) = 0 and u(x j+1) − u(x j ) = Vj (0) − Vj (1) < 0 for
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all j = 2, . . . , n − 1. This way, we have obtained a utility function for all outcomes
x j , j = 2, . . . , n. Then, for all j = 2, . . . , n − 1, and for all probabilities p ∈ [0, 1],
we obtain

Vj (p) = w−(p)[u(x j ) − u(x j+1)] + Vj (0)

= w−(p)[u(x j ) − u(x j+1)] + Vj (0) − Vj (1) + Vj (1)

= w−(p)[u(x j ) − u(x j+1)] + u(x j+1) − u(x j ) + Vj (1)

= [1 − w−(p)][u(x j+1) − u(x j )] + Vj (1).

Substitution into the additive representation for the preference on L\{x1} implies that
Eq. (9) can be written as

V (P) = V1(p1) +
n−1∑

j=2

[1 − w−(pdj )][u(x j+1) − u(x j )] +
n−1∑

j=2

Vj (1).

We observe that the last term in the representation is a constant that cancels out when
comparing two arbitrary prospects; hence, it is meaningless for the preference and
can be dropped. Further, by the definition of the dual weighting function, we have
[1−w−(pdj )] = ŵ−(pcj+1). Using these observations, our representation is rewritten
as

V (P) = V1(p1) +
n−1∑

j=2

ŵ−(pcj+1)[u(x j+1) − u(x j )].

If V1 is unbounded at 1 we cannot extend this representation to the degenerate prospect
that gives x1 for sure. For that case, we obtain an extended PT-representation for the
preference on L\{x1}. As the functions Vj , j = 1, . . . , n, were jointly cardinal, it
follows that w− is uniquely determined. Further, because of the requirement that
u(x2) = 0 the utility function is a ratio scale. The outcome xk with k = 2 is unique
with the property that the functions Vj , j ≥ k, have common probability midpoints
that are not commonmidpoints for the functions Vj , j < k. Hence, the reference point
r := x2 is unique.

If V1 is bounded, we can continuously extend the function to all of [0, 1] and we
obtain a representation on L, thus including the extreme outcome x1. Then we define

w+(p) = V1(p) − V1(0)

V1(1) − V1(0)

and obtain

V1(p) = w+(p)[V1(1) − V1(0)] + V1(0).
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Further, we set V1(1) − V1(0) = u(x1) − u(x2) > 0, such that our representation is
given by

V (P) = w+(p1)[u(x1) − u(x2)] +
n−1∑

j=2

ŵ−(pcj+1)[u(x j+1) − u(x j )],

where we have dropped the constant V1(0) as it commonly occurs in the evaluation
of each prospect. Hence, PT represents � on L. Uniqueness results for w−, u, and x2
follow by similar arguments as in the case where V1 was unbounded. Further, by joint
cardinality of the functions in the additive representation, the normalization used to
define w+ implies that the latter is unique. This completes the proof for the case when
GMC does not hold above x3.

Case 2: Next we consider the case when BMC does not hold below xn−2. Then,
RMC implies that GMCholds above xn−1. Using similar arguments as in Zank (2010),
one obtains by induction, first locally then globally, that the functions V1, . . . , Vn−2
are proportional on (0, 1). Following Wakker (1993, Proposition 3.5) these functions
are bounded and can continuously be extended to all of [0, 1]. We define

w+(p) = V1(p) − V1(0)

V1(1) − V1(0)

for all probabilities p ∈ [0, 1]. This is a well-defined (continuous and strictly
increasing) probability weighting function. Further, by proportionality of the func-
tions V1, . . . , Vn−2 it follows that for all j = 1, . . . , n − 2 we have

w+(p) = Vj (p) − Vj (0)

Vj (1) − Vj (0)

for all probabilities p ∈ [0, 1]. From the latter expression we obtain

Vj (p) = w+(p)[Vj (1) − Vj (0)] + Vj (0)

for all j = 1, . . . , n − 2, and for all probabilities p ∈ [0, 1].
As BMCdoes not hold below xn−2, Vn−1 cannot be proportional to Vn−2 (nor to any

of the other Vj ’s, j = 1, . . . , n−3). This means that Vn−2-midpoints exist, which are
not Vn−1-midpoints. In particular, BMCbelow xm cannot hold ifm < n−2. Therefore,
r := xn−1 is (the uniquely determined) reference point.We now use similar arguments
to those in Case 1, first to define utility for the reference point (u(xn−1) = 0) and,
iteratively, for the gains u(x j ) − u(x j+1) = Vj (1) − Vj (0) for j = 1, . . . , n − 2, and
second to obtain the representation

V (P) =
n−2∑

j=1

w+(pdj )[u(x j ) − u(x j+1)] + Vn−1(p
d
n−1),
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where constant terms that are irrelevant for comparing prospects have been dropped.
If Vn−1 is unbounded at 0 then we have obtained extended PT for � on L\{xn}.
Uniqueness results for w+ and u follow from the construction of the corresponding
functions and the joint cardinality of functions in the additive representation. If Vn−1
is bounded at 0 we can continuously extend Vn−1 and obtain an additive representation
with bounded functions for � on L including outcome xn . Then we define

w−(p) = Vn−1(p) − Vn−1(0)

Vn−1(1) − Vn−1(0)

for all probabilities p ∈ [0, 1]. Setting u(xn) − u(xn−1) = Vn−1(0) − Vn−1(1) < 0
and substituting into the above representation gives PT (after dropping the constant
term Vn−1(0)) with the corresponding uniqueness results. This completes the proof
for the case when BMC does not hold below xn−2.

Case 3: Assume that there is some index m̃ ∈ {3, . . . , n − 2} such that GMC
above xm̃ holds, but GMC above xm̃+1 does not hold. This means that X consists
of at least five strictly rank-ordered outcomes. By RMC it follows that BMC below
xm̃ holds. Following a similar line of arguments as used for the derivations in Cases
1 and 2 above, we first find that Vm̃, . . . , Vn−1, respectively, that V1, . . . , Vm̃−1 are
proportional. Proportionality implies that these functions are bounded and our addi-
tive representation can be extended to L. As GMC above xm̃ holds but GMC above
xm̃+1 does not hold, the functions Vm̃−1 and Vm̃ cannot be proportional. This implies
that BMC below xm̃−1 cannot hold. Therefore, xm̃ is unique with the property that
Vj -midpoints agree for all j ∈ {1, . . . , m̃ − 1} and that Vj -midpoints agree for all
j ∈ {m̃, . . . , n − 1}. Hence, r := xm̃ is the unique reference point. As in Cases 1
and 2, we can now uniquely define weighting functions for probabilities of gains and
losses, respectively, and a ratio-scale utility with u(xm̃) = 0. Hence, PT represents the
preference on L. This completes the proof of Case 3.

Case 4: The final case to consider is when two distinct outcomes xm′ � xm′′ with
m′,m′′ ∈ {2, . . . , n − 1} exist, such that GMC above xm′′ holds and also BMC below
xm′−1 holds. Then, we obtain proportionality of V1, . . . , Vm′′ and proportionality of
Vm′−1, . . . , Vn−1. As m′ < m′′ it follows that all functions in the additive representa-
tion are proportional. Using a similar line of argument as in Zank (2010), we obtain an
RDU-representation for preference on L with the corresponding uniqueness results.
This completes Case 4.

Cases 1–4 cover all possibilities. This completes the proof of Theorem 1. ��
Proof of Theorem 2: The proof that statement (i) implies statement (ii) is similar to
the corresponding proof in Theorem 1. To prove statement (i) from statement (ii) we
note that b-RMC implies RMC. Hence, PT or extended PT holds. Further, as GMC
above x3 holds andBMCbelow xn−2 holds, Cases 1 and 2 in the proof of Theorem 1 do
not apply. Therefore, only Cases 3 and 4 need to be dealt with; the proof is completely
analogous to the proof of Theorem 1; hence, PT holds. This proves statement (i) from
statement (ii). Uniqueness results also follow from Case 3, respectively, Case 4, of the
proof of Theorem 1. This concludes the proof of Theorem 2. ��
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Proof of Theorem 3: The proof that statement (i) implies statement (ii) is standard. In
particular, for each finite set of at least four strictly ordered outcomes, CSTP follows
from Theorem 1 when considering the preference restricted to prospects over that set.
Further, if PT holds for � on L, then either we have sign independence or we have
sign-dependence. In the former case RDU holds and e-RMC follows from Theorem 4
in Zank (2010). In the latter case it must be that RDU represents� restricted toLY∪{r}
whenever Y consists of gains and RDU represents � restricted to L{r}∪Z whenever
Z consists of losses. That is, for all x � r , statement (a) of e-RMC holds and for all
x � r statement (b) of e-RMC holds. Hence, e-RMC holds.

Next we prove statement (i) from statement (ii). In what follows, we consider only
subsets Y of X = (a, b) with at least four strictly ordered outcomes, since prospects
that assign positive probability to fewer outcomes are contained in these sets, such
that the derived representations apply to them too. First we show that the preference
on L is represented by a general additive representation. That is, the preference is
represented by a functional V : L → R that, for each nonempty set Y = {y1, . . . , yn}
with y1 � · · · � yn, of outcomes, evaluates prospects from LY by

V (py1 : y1, . . . , pyn : yn) =
n−1∑

j=1

VY
j (pdy j ) (10)

as in Lemma 1, except that all functions VY
j are bounded.W is also a general additive

representation of � on L if and only if for each nonempty set Y = {y1, . . . , yn} with
y1 � · · · � yn, of outcomes, we have WY

j = AVY
j + Bj for constants A > 0 and

Bj ∈ R.
Assume an arbitrary subset Y = {y1, . . . , yn} with y1 � · · · � yn for a natural

number n ≥ 4. We consider the restriction of the preference � on the set of prospects
over outcomes in Y, denoted LY . This restriction inherits from � on L all properties
stated in statement (ii) of Lemma 1. Hence, the preference on LY has an additive
representation V = ∑n−1

j=1 V
Y
j . As Y was arbitrary, this conclusion holds for all finite

subsets of X that contain at least four strictly ordered outcomes.
Since the set of outcomes X is open, a best or a worst outcome in X does not exist;

hence, we can always find outcomes y0 � y1 and yn � yn+1 and consider the additive
representation of the preference on LY∪{y1,yn+1} denoted Ṽ = ∑n

j=0 Ṽ
{y0}∪Y∪{yn+1}
j .

As both functions are representations of the preference on LY , by the uniqueness
results we can set VY

j = Ṽ {y0}∪Y∪{yn+1}
j for all j = 1, . . . , n − 1. In particular, this

shows that V {y0}∪Y∪{yn+1}
1 and V {y0}∪Y∪{yn+1}

n−1 are bounded. As before, given that Y was
chosen arbitrarily, this conclusion holds for all corresponding additive representations.

Let now Y,Y ′ be two arbitrary finite subsets of X each containing at least four
strictly ordered outcomes. Consider the corresponding additive representations VY

and VY ′
of the preference restricted to LY and LY ′ , respectively, and further the

additive representation VY∪Y ′
of the preference restricted to LY∪Y ′ . As LY ⊂ LY∪Y ′

and LY ′ ⊂ LY∪Y ′ the latter representation also represents the preference on LY and
on LY ′ . Given the uniqueness results for additive representations, we can choose
VY
j = VY∪Y ′

j for all y j ∈ Y and, similarly, VY ′
j = VY∪Y ′

j for all y j ∈ Y ′. As Y and
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Y ′ were chosen arbitrarily, we conclude that a general additive representation V for
� on L exists.

Next we invoke e-RMC to show that V is a PT-functional. We consider four cases.
Case I: Suppose that for all x ∈ X and sets Z = {z1, . . . , zn}with x � z1 � · · · � zn
for a natural number n ≥ 3, BMC below z j holds for each j = 1, . . . , n − 1 and that
GMC above zn holds for the preference� restricted toL{x}∪Z . Then, using arguments
presented in Zank (2010), it follows that RDU holds for the preference on L{x}∪Z .
This implies that, for each set of outcomes Z = {z1, . . . , zn} with z1 � · · · � zn for a
natural number n ≥ 3, RDU represents � on LZ . Hence, V is an RDU-representation
of � on L. This is the special case of PT with sign independence. The uniqueness
results for RDU-representations apply.
Case II:Suppose that for all x ∈ X and setsY = {y1, . . . , yn}with y1 � · · · � yn � x
for n ≥ 3, GMC above x holds and BMC below y j , for j = 2, . . . , n. Then, using
arguments presented in Zank (2010), it follows that RDU holds for the preference on
LY∪{x}. This implies that, for each set of outcomes Y = {y1, . . . , yn} with y1 � · · · �
yn for n ≥ 3, RDU represents � on LY . Hence, V is an RDU-representation to which
the corresponding uniqueness results apply, i.e., V is a PT-representation with sign
independence, of � on L.
Case III: Suppose that for an outcome x ∈ X and a set Z = {z1, . . . , zn} with
x � z1 � · · · � zn , n ≥ 3, for the preference � on L{x}∪Z BMC below z does not
hold for an outcome z ∈ Z or GMC above z′ does not hold for an outcome z′ ∈ Z .
In particular, this means that RDU does not hold for the preference � on L{x}∪Z .
Then e-RMC implies that for all Y = {y1, . . . , yn′ } with y1 � · · · � yn′ � x , BMC
below y holds and GMC above y holds for all y ∈ Y for the preference � on LY∪{x}.
By Theorem 4 in Zank (2010) this implies that RDU represents the preference � on
LY∪{x} for all Y = {y1, . . . , yn′ } with y1 � · · · � yn′ � x . That is, RDU holds for
� on L{y∈X |y�x}. Given our assumption that for the set Z = {z1, . . . , zn} and the
preference � on L{x}∪Z BMC below z does not hold for some z ∈ Z or GMC above
z′ does not hold for some z′ ∈ Z , it cannot be that for all x ′ ∈ X RDU holds for � on
L{y∈X |y�x ′} (for, otherwise, by Case II, RDU holds for � on L and in particular for
the preference � on L{x}∪Z , in violation of our assumption). Hence, the set

X ′ := {x ′ ∈ X | RDU holds for � on L{y∈X |y�x ′}}

is bounded from below. Let x∗ be the outcome such that RDU holds for � on
L{y∈X |y�x∗} and no outcome x∗∗ exists with x∗ � x∗∗ such that RDU holds for �
on L{y∈X |y�x∗∗}. As (a, b) is an interval in R, thus a connected and separable subset,
such an outcome exists. Then e-RMC implies that for all x∗∗ ranked below x∗ and all
sets Z ′′ = {z′′1, . . . , z′′n′′ }with x∗∗ � z′′1 � · · · � z′′n′′ , n′′ ≥ 3, BMC below z′′ holds and
GMC above z′′ holds for all z′′ ∈ Z ′′ when considering the preference� onL{x∗∗}∪Z ′′ .
Thus, RDU represents� onL{x∗∗}∪Z ′′ for all x∗∗ ≺ x∗ and all sets Z ′′ = {z′′1, . . . , z′′n′′ }
with x∗∗ � z′′1 � · · · � z′′n′′ , n′′ ≥ 3. Hence, RDU represents � on LZ ′′ for all finite
sets Z ′′ with outcomes below x∗, and therefore, RDU holds for � on L{z∈X |z≺x∗}.
This means that x∗ is the unique point with the property that RDU with the weighting
function w+ holds for � on L{y∈X |y�x∗} and RDU with the weighting function w−
holds for � on L{z∈X |z≺x∗}. That is, r := x∗ is the unique reference point.
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Next we show that PT with sign-dependence represents � on L. By e-RMC, one
of the following holds:

(a) For all finite sets Y with all outcomes ranked above r , BMC below y holds and
GMC above y holds for all y ∈ Y when considering the preference � on LY∪{r}.

(b) For all finite sets Z with all outcomes ranked below r , BMC below z holds and
GMC above z holds for all z ∈ Z when considering the preference � on L{r}∪Z .

If Subcase III(a) holds, we conclude that RDU+ with the weighting function w+
and strictly increasing utility u+ represents the preference � on L{y∈X |y�r}. Fur-
ther, we know that RDU− with the weighting function w− and strictly increasing
utility u− holds for � on L{z∈X |z≺r}. Also, we know that the general additive repre-
sentation of � on L in Eq. (10) represents the preference on both L{y∈X |y�r} and on
L{z∈X |z≺r}. Thismeans that, when restricted to the corresponding domain of prospects,
RDU+ and RDU− agree with the common representation in Eq. (10) if appropri-
ate cardinal transformations of the utility functions are chosen. We determine these
cardinal transformations. Consider, for arbitrary finite sets Y = {y1, . . . , yk−1} of
gains and Z = {zk+1, . . . , zn} of losses for some natural numbers k < n, such that
y1 � · · · � yk−1 � r � zk+1 � · · · � zn , the preference over LY∪{r}∪Z . This
preference is represented by

V (p1 : y1, . . . , pk : r, . . . , pn : zn) =
k−1∑

j=1

VY∪{r}∪Z
j (pdj ) + VY∪{r}∪Z

k (pdk )

+
n∑

j=k+1

VY∪{r}∪Z
j (pdj ).

We fix the location parameter for the otherwise jointly cardinal functions as follows:

VY∪{r}∪Z
j (0) = 0 for j = 1, . . . , k − 1,

and VY∪{r}∪Z
j (1) = 0 for j = k, . . . , n,

and we define the functions

Ṽ Y∪{r}∪Z
j (pcj ) := VY∪{r}∪Z

j−1 (1 − pcj )

= VY∪{r}∪Z
j−1 (pdj−1)

for j = k + 1, . . . , n. Our additive representation becomes

V (p1 : y1, . . . , pk : r, . . . , pn : zn) =
k−1∑

j=1

VY∪{r}∪Z
j (pdj ) +

n∑

j=k+1

Ṽ Y∪{r}∪Z
j (pcj ).

(11)

The restriction of the representation in Eq. (11) to LY∪{r} and to LZ also represents
the preference over the corresponding set of prospects. The former representation is
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obtained when the probabilities of all losses are equal to 0, while the latter is obtained
when the probabilities of all gains and the reference point are 0. Thus, for probabilities
p1, . . . , pk that sum to 1, we have

V (p1 : y1, . . . , pk : r) =
k−1∑

j=1

VY∪{r}∪Z
j (pdj )

which represents the preference on LY∪{r} and, because RDU+ also holds on LY∪{r},
unique numbers A+ > 0 and B+ exist such that

V (p1 : y1, . . . , pk : r) =
k−1∑

j=1

w+(pdj )A
+[u+(y j ) − u+(y j+1)] + A+u+(r) + B+.

Therefore,

A+u+(r) + B+ = 0

and VY∪{r}∪Z
j (pdj ) = w+(pdj )A

+[u+(y j ) − u+(y j+1)]

for j = 1, . . . , k − 1. We define u(y) = A+u+(y) + B+ for outcomes y � r .
Further, for probabilities pk+1, . . . , pn that sum to 1

V (pk+1 : zk+1, . . . , pn : zn) =
n∑

j=k+1

Ṽ Y∪{r}∪Z
j (pcj )

represents the preference onLZ and, becauseRDU− also holds onLZ , unique numbers
A− > 0 and B− exist such that

V (pk+1 : zk+1, . . . , pn : zn) = B− + A−u−(zk+1)

+
n∑

j=k+1

w̃−(pcj )A
−[u−(z j ) − u−(z j−1)].

We define u(z) = A−u−(z)+ B− for outcomes z ≺ r . Substitution into the represen-
tation in Eq. (11) gives

V (p1 : y1, . . . , pk : r, . . . , pn : zn) =
k−1∑

j=1

VY∪{r}∪Z
j (pdj ) +

n∑

j=k+1

Ṽ Y∪{r}∪Z
j (pcj )

=
k−1∑

j=1

w+(pdj )[u(y j ) − u(y j+1)] +

u(zk+1) +
n∑

j=k+1

w̃−(pcj )[u(z j ) − u(z j−1)],
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which is a PT-representation with the uniquely determined weighting functions. We
have fixed the location parameters for each of the additive functions VY∪{r}∪Z

j , which
makes them joint ratio scales. For the utility function u this means that it must be a
ratio scale.

As Y and Z were arbitrary sets of gains and losses, respectively, it follows that the
general additive representation in Eq. (10) is indeed a PT-representation. Hence, PT
represents � on L. This completes the derivation for Subcase III(a). In particular, as
u(r) = 0, it follows that RDU− represents the preference on the larger set L{z∈X |z�r}
rather than just on L{z∈X |z≺r} .

If Subcase III(b) holds,we conclude thatRDU+ with theweighting functionw+ and
the strictly increasing utility u+ represents the preference � on L{y∈X |y�r}. Further,
we know that RDU− with weighting function w− and strictly increasing utility u−
holds for � on L{z∈X |z�r}. Also, we know that the general additive representation of
� onL in Eq. (10) represents the preference on bothL{y∈X |y�r} andL{z∈X |z�r}. As in
Subcase III(a), we look for specific cardinal transformations for the utility functions
in RDU+ and RDU− such that they agree with the common representation in Eq.
(10). The analysis is similar to Subcase III(a) except that RDU− holds on L{r}∪Z ,
which means that when fixing the location parameters for the functions in the additive
representation we obtain

A−u−(r) + B− = 0 = VY∪{r}∪Z
k (1).

We conclude that also in Subcase III(b) PT represents� onL. Similar to Subcase III(a)
it follows that RDU+ represents the preference on the larger set L{y∈X |y�r} (instead
of just L{y∈X |y�r}). This completes the proof for Case III.
Case IV: In this casewe consider the remaining possibility, that for an outcome x ∈ X
and a set Y = {y1, . . . , yn} with y1 � · · · � yn � x , n ≥ 3, for the preference � on
LY∪{x} BMC below y does not hold for an outcome y ∈ Y or GMC above y′ does
not hold for an outcome y′ ∈ Y . In particular, this means that RDU does not hold for
the preference � on LY∪{x}. Exploiting e-RMC and using similar arguments to those
presented in Case III, we can identify the reference point and subsequently show that
PT represents the preference on L. This completes Case IV.

As Cases I–IV exhaust all possibilities, statement (i) of Theorem3 has been derived.
This concludes the proof of Theorem 3. ��

Proof of Theorem 4 That statement (i) implies statement (ii) is standard; it follows
from the properties of the PT-functional.We prove that statement (ii) implies statement
(i). That the preference is represented by a general additive representation follows
by similar arguments as in the proof of Theorem 3. Cases I and II are completely
analogous. In particular, they follow from the results in Zank (2010).

For the analog to Cases III and IV, the arguments are similar to those in the proof
of Theorem 3, except that a reference point within X may not exist. From e-RMC it
follows that the set of outcomes contains two sets Y and Z with Y ∪ Z = X such that
the preference onLY is represented by RDU+ and the preference onLZ is represented
by RDU−. If the sets Y and Z are not disjoint they contain a unique reference point
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r . Then, PT can be derived using arguments similar to those in Case III in the proof
of Theorem 3.

If Y and Z are disjoint, then Y contains only gains and Z contains only losses;
no reference point within X exists, even though preferences are sign-dependent (i.e.,
w+ 	= w−). Similar to Case III in the proof of Theorem 3, we normalize the additive
functions for gains and for losses and choose the unique cardinal transformations of
RDU+ and RDU− to obtain PT. Hence, we obtain statement (i) and the corresponding
uniqueness results. This concludes the proof of Theorem 4. ��
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