
Please cite the Published Version

Ectors, W, Reumers, S, Lee, WD, Kochan, B, Janssens, D, Bellemans, T and Wets, G (2018) Op-
timizing Copious Activity Type Classes based on Classification Accuracy and Entropy Retention.
In: Transportation Research Board 97th Annual meeting, 07 January 2018 - 11 January 2018,
Washington, D.C., US. (Unpublished)

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/619542/

Usage rights: In Copyright

Additional Information: This is an Author Accepted Manuscript of a paper presented at the
Transportation Research Board 97th Annual Meeting. This paper was revised and published as a
peer-reviewed article, available at: https://e-space.mmu.ac.uk/623483/

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://e-space.mmu.ac.uk/619542/
https://rightsstatements.org/page/InC/1.0/?language=en
https://e-space.mmu.ac.uk/623483/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Ectors, Reumers, Lee, Kochan, Janssens, Bellemans and Wets

  1 

OPTIMIZING COPIOUS ACTIVITY TYPE CLASSES BASED ON CLASSIFICATION ACCURACY 1 
AND ENTROPY RETENTION 2 

 3 
 4 

 5 

Wim Ectors, Corresponding Author 6 
Hasselt University, Transportation Research Institute (IMOB),  7 

Agoralaan, BE-3590 Diepenbeek, Belgium 8 

Tel.: +32(0)11 26 91 14; Fax.: +32(0)11 26 91 99; Email: wim.ectors@uhasselt.be 9 

 10 

Sofie Reumers 11 
Hasselt University, Transportation Research Institute (IMOB),  12 

Agoralaan, BE-3590 Diepenbeek, Belgium 13 

Tel.: +32(0)11 26 91 60; Fax.: +32(0)11 26 91 99; Email: sofie.reumers@uhasselt.be 14 

 15 

Won Do Lee 16 
Manchester Metropolitan University, Crime and Well-being Big Data Centre, 17 

All saints, M15 6BH Manchester, England 18 

Tel.: + 44(0)161 247 6538; Email:w.lee@mmu.ac.uk 19 

 20 

Bruno Kochan 21 
Hasselt University, Transportation Research Institute (IMOB),  22 

Agoralaan, BE-3590 Diepenbeek, Belgium 23 

Tel.: +32(0)11 26 91 47; Fax.: +32(0)11 26 91 99; Email: bruno.kochan@uhasselt.be 24 

 25 

Davy Janssens 26 
Hasselt University, Transportation Research Institute (IMOB),  27 

Agoralaan, BE-3590 Diepenbeek, Belgium 28 

Tel.: +32(0)11 26 91 28; Fax.: +32(0)11 26 91 99; Email: davy.janssens@uhasselt.be 29 

 30 

Tom Bellemans 31 
Hasselt University, Transportation Research Institute (IMOB),  32 

Agoralaan, BE-3590 Diepenbeek, Belgium 33 

Tel.: +32(0)11 26 91 27; Fax.: +32(0)11 26 91 99; Email: tom.bellemans@uhasselt.be 34 

 35 

Geert Wets 36 
Hasselt University, Transportation Research Institute (IMOB),  37 

Agoralaan, BE-3590 Diepenbeek, Belgium 38 

Tel.: +32(0)11 26 91 58; Fax.: +32(0)11 26 91 99; Email: geert.wets@uhasselt.be 39 

 40 

 41 

Word count: 5988 words text + 4 tables x 250 words + 2 figures x 250 words = 7488 words 42 

 43 

 44 

 45 

 46 

 47 

Paper submitted: July 31, 2017 48 

Revised version submitted: October 31, 2017  49 



Ectors, Reumers, Lee, Kochan, Janssens, Bellemans and Wets

  2 

ABSTRACT 1 
Despite the advantages, big transport data are characterized by a considerable disadvantage as well. 2 

Personal and activity-travel information are often lacking, making it necessary to deduce this 3 

information with data mining techniques. 4 

However, some studies predict many unique activity type classes (ATCs), while others merge 5 

multiple activity types into larger ATCs. This action enhances the activity inference estimation, but 6 

destroys important activity information. Previous studies do not provide a strong justification for this 7 

practice. An objectively optimized set of ATCs, balancing model prediction accuracy and preserving 8 

activity information from the original data, becomes essential.  9 

 Previous research developed a classification methodology in which the optimal set of ATCs 10 

was identified by analyzing all possible ATC combinations. However, for the US National Household 11 

Travel Survey (NHTS) 2009 data set which comprises 36 ATCs (home activity excluded), this approach 12 

is practically impossible in a finite amount of time since there would be 3.82*10^30 unique 13 

combinations. 14 

The aim of this paper is to optimize which original ATCs should be grouped into a new class, 15 

and this for data sets for which it is impossible or impractical to simply calculate all ATC combinations. 16 

The proposed method defines an optimization parameter 𝑈 (based on classification accuracy and 17 

information retention) which is maximized in an iterative search algorithm. The optimal set of ATCs 18 

for the NHTS 2009 data set was determined. A comparison finds that this optimum is considerably 19 

better than many expert opinion activity type classification systems. Convergence was confirmed and 20 

performance gains were benchmarked. 21 

 22 

 23 

 24 

 25 

Keywords: Activity type classification, (Big) transport data annotation, optimal set of activity types, 26 

local search algorithm, classification accuracy, entropy indices  27 
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INTRODUCTION 1 
These days big data sets are collected continuously and in real time, making large amounts of data that 2 

are temporally and spatially referenced available to researchers (1). Furthermore, advancements in ICT 3 

and the improvement of location-aware technologies facilitate the collection of transport data, e.g. daily 4 

trajectories. The new transport data-collection methods support researchers with refined, detailed data 5 

sets of real-time data. These large collections of spatio-temporal information offer research 6 

opportunities, i.e. they enable a better investigation and understanding of human travel behavior. 7 

 Due to the availability of temporal information (e.g. time stamps), big transport data are very 8 

effective in exploring individual mobility patterns. Despite the advantages, big transport data are 9 

characterized by a considerable disadvantage as well. Personal and activity-travel information are often 10 

lacking (2), making it necessary to deduce this information from the available travel patterns. 11 

In order to overcome this shortcoming, behavioral data mining techniques are frequently used 12 

to infer activity types (sometimes otherwise denoted as trip or travel purposes, activity classes, activity 13 

categories or activity encoding) from behavioral attributes, such as temporal attributes and spatial 14 

information (e.g. (3–5)). In recent studies on activity-travel data mining, different inference techniques 15 

are investigated. However, in these researches different classifications of activity types exist. Some 16 

studies infer many activity classes, while others aggregate or group several activity types, limiting the 17 

number of activity type classes (ATCs) (6). As argued in (6), in none of these studies a strong 18 

justification is established. The activity type classification in the majority of researches merely relies on 19 

the travel survey design, due to a lack of clear standards for ATCs which is grounded by a theoretical 20 

background (7). The ATCs (and the size of this set of classes) strongly affect the classification accuracy. 21 

Often, activity types are aggregated in order to enhance the activity inference estimation. However, by 22 

aggregating activity types, and thus enhancing the activity inference estimation, important activity 23 

information is lost. Therefore, the need for a standardized method for activity categorization arises. An 24 

optimal set of activity types is an essential prerequisite for a robust and sound transport data annotation. 25 

The proposed method is an objective alternative to the subjective ATCs based on intuition. 26 

 Previous research (6) developed a classification methodology using a rule-based heuristic 27 

algorithm in which the optimal grouping of ATCs was identified. The optimization method searches for 28 

an optimal balance between improving model accuracy and preserving activity information from the 29 

original data set. This method focused solely on the temporal attributes (i.e. activity start time and 30 

activity duration) from household travel survey (HTS) data sets, in order to develop a generic 31 

categorization method which is applicable to as many big data sources as possible. Other types of 32 

attributes, e.g. spatial information, can however also be used in the proposed method. The method was 33 

applied to two HTSs, i.e. the Seoul HTS and the Flanders (Belgium) HTS called OVG. 34 

 The optimization method in (6), however, might not be appropriate when the initial data set 35 

contains too many unique ATCs. The optimization strategy comprises three stages, where in the first 36 

stage all possible combinations of ATCs are generated. This brute-force approach calculates 37 

approximately 117,000 unique sets of combinations of classes for both the OVG and Seoul HTS as both 38 

HTS data sets consist of only 10 distinct activity types, when the ‘Being at home’ activity is excluded 39 

from the experiment. The home activity was excluded from the experiment, because this activity type 40 

is quite easy to classify and is mostly predicted with a very high accuracy (e.g. (8)). Additionally, due 41 

to a large share of home activities in the data set, its good classification capability obscures the 42 

suboptimal or bad classifications of out-of-home activities. In the second stage of the optimization 43 

strategy, classifiers are trained and tested on the data that were transformed according to the ATC 44 

combinations of the first stage. Finally, the optimal set of ATCs is defined in the third stage of the 45 

optimization method. On a server equipped with two intel Xeon EQ-2643 v2 processors (running at 46 

approximately 80% capacity, i.e. 20 threads) estimating 117,000 classifiers took roughly 30 hours of 47 

computation time. However, for the US National Household Travel Survey (NHTS) 2009 data set (9) 48 

which comprises 36 ATCs (home activity excluded), calculating classifiers for all possible grouping 49 

combinations is impossible since the increase in distinct combinations is exponential. In other words, a 50 
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large number of initial activity types (n in Table 1) which are considered for aggregation will result in 1 

an extremely large set of grouping combinations that needs to be processed as shown in Table 1. 2 

Therefore, the computation time of the second stage of the optimization method would rise up to 3 

1.13*10^23 years for the US NHTS data set on the same server using 20 threads. Note that the age of 4 

the universe is only 13.8*10^9 years (10).  5 

 6 
TABLE 1 Number of possible activity type class (ATC) combinations as a function of the number of activity 7 
types, n 8 

n # of ATC combinations n # of ATC combinations 

1 1 21 4.748698E+14 

2 2 22 4.506716E+15 

3 5 23 4.415201E+16 

4 15 24 4.459589E+17 

5 52 25 4.638590E+18 

6 203 26 4.963125E+19 

7 877 27 5.457170E+20 

8 4,140 28 6.160539E+21 

9 21,147 29 7.133980E+22 

10 115,975 30 8.467490E+23 

11 678,570 31 1.029336E+25 

12 4.213597E+06 32 1.280647E+26 

13 2.764444E+07 33 1.629596E+27 

14 1.908993E+08 34 2.119504E+28 

15 1.382959E+09 35 2.816002E+29 

16 1.048014E+10 36 3.819715E+30 

17 8.286487E+10 37 5.286837E+31 

18 6.820768E+11 38 7.462899E+32 

19 5.832742E+12 39 1.073882E+34 

20 5.172416E+13 40 1.574506E+35 

 9 
TABLE 2 Examples of household travel survey data sets with their number of distinct activity type classes 10 
(ATCs) 11 

Data set Country (or region) 

of origin  

Number of 

person days 

surveyed 

Number of ATCs 

(home activity 

excluded) 

AUS VISTA 2007 & 2009 (11, 12) Australia 67,060 12 

BEL Beldam 2010 (13) Belgium 11,279 11 

BEL OVG 3.0-4.5 (14) Belgium (Flanders) 13,522 10 

CHE Thurgau 2003 (15) Switzerland 8,522 25 

DEU Mobidrive 1999 (16) Germany 13,244 22 

FIN HLT 2010-2011 (17) Finland 10,137 19 

FRA ENTD 2008 (18) France 17,996 31 

GBR NTS 2009-2014 (19) United Kingdom 551,234 22 

IRL NTS 2009 (20) Ireland 5,023 9 

KOR Seoul HTS 2010 (21, 22) South Korea 219,269 10 

NLD OViN 2013 (23) The Netherlands 34,710 13 

SVN Ljubljana 2013 (24) Slovenia 3,426 12 

SWE RVU 2011-2014 (25) Sweden 31,457 25 

USA NHTS 2009 (9) United States of 

America 

257,586 36 
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 Considering that the US NHTS is not the only data set which consists a large number of activity 1 

types, this computation time issue will surface for other travel data sets. In the UK HTS data set (26), 2 

for example, 22 distinct activity types are employed. In Table 2, several travel data sets are listed, 3 

together with the number of activity types that are considered in each case.  4 

 To overcome this process time issue, the research in this paper proposes an update of the 5 

optimization categorization methodology using a ‘local search’ algorithm. The local search algorithm 6 

starts from a predefined ATC grouping combination and iteratively tries to optimize this group by 7 

applying random changes, and thus reducing the required computation process time. The remainder of 8 

this paper is structured as follows. The next section describes the data and clarifies the methodology. 9 

Subsequently, the results of the convergence of the local search algorithm are presented, followed by 10 

the optimal ATCs for annotation. Finally, a conclusion is formulated. 11 

 12 

METHODOLOGY  13 

Data description 14 
Two HTSs were used in this research. The first HTS, the Seoul HTS, was organized in the Seoul 15 

Metropolitan Area (SMA), Republic of Korea, in 2010. This data set consists of self-reported daily 16 

household activity-travel data from approximately 76,000 individuals. As reported in Table 2, this data 17 

set contains 11 distinct trip motives (or activity types), of which the ‘home’ activity will be excluded as 18 

justified in the introduction. The Seoul HTS was included in this study to confirm the correct 19 

convergence of the proposed search algorithm to the optimum which was found in (6), and to benchmark 20 

the algorithm’s performance gains. The convergence on this data set will be discussed and the 21 

performance of the algorithm will be compared to the approach in (6), justifying the need and benefits 22 

of the iterative search approach. The optimum set of ATCs of this data set will however not be discussed 23 

here. Interested readers may find a thorough analysis in (6). 24 

 The second HTS used in this study is the NHTS from the USA in 2009. It contains surveyed 25 

information from 308,901 individuals. This massive data set contains detailed trip information of 26 

approximately 1.17*10^6 trips, of which the trip purpose is encoded in 37 distinct classes. After 27 

excluding trips having the ‘home’ trip purpose, approximately 768,000 records remain to train activity 28 

type classifiers. The copious activity types in this data set are the reason for the development of the 29 

proposed methodology, as explained in the introduction. To the author’s best knowledge, this is the 30 

richest activity type encoding in a HTS (not considering time-use surveys); see also Table 2. It is 31 

therefore a challenge to find the optimal set of activity types, which may be used in any activity type 32 

inference or annotation research. Additionally, this data set is employed in many studies to train their 33 

models. Finding and using an optimal set of activity types may enable the seamless consolidation of 34 

multiple research outcomes. 35 

 As mentioned earlier in the introduction, only temporal variables such as activity start time and 36 

duration are used to train classifiers in this study. All other variables in the data are disregarded. This 37 

choice was made in order to make this research as compatible as possible with other study areas. 38 

Additionally, many applications start from e.g. GPS recordings, smart card data etc. for which 39 

classification based on temporal variables gives already good results (27). 40 

 The data was split in a train set (75%) and test set (25%). According to common practice, the 41 

train set is used to train a classifier, whilst the test set is used to evaluate its prediction accuracy on ‘new’ 42 

data. 43 

 44 

Grouping of activity types 45 
This section discusses the combinatorial challenge of grouping or aggregating of activity types into new 46 

classes. For example, in the set of ATCs [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]], activity types 3 47 

and 6 may be merged into a new class as such: [[1], [2], [3, 6], [4], [5], [7], [8], [9], [10]]. The number 48 

of possible ATCs grows exponentially with the number of distinct activity types: 𝑛. This is the result of 49 

all the permutations of activity types across possible groups and the different combinations of possible 50 
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group sizes. The order of activity types within a group, and the order of the groups among themselves 1 

does not matter. The possible group size combinations for a given 𝑛 may be obtained by computing the 2 

integer partitions. For example, for 𝑛 = 4 the integer partitions are {1+1+1+1, 2+1+1, 2+2, 3+1, 4}. 3 

Each element in these partitions represents a group’s size. The first partition represents the case where 4 

no activity types are merged, the final one represents the case where all 4 activity types are grouped in 5 

one group of size 4. For each partition 𝑖: 𝑔1 + 𝑔2 + ⋯ + 𝑔𝑗 = 𝑛, there are 𝑥𝑖 number of ways to 6 

distribute 𝑛 activity types across the groups: 7 

𝑥𝑖 =
𝑛!

∏ (𝑔𝑗! ∙ √𝑓𝑗!

1
𝑓𝑗

)𝑗

 
(1) 

where 𝑓𝑗 the frequency of a particular element in the partition (which represents a group’s size). For 8 

example, in the partition 2+1+1, element ‘2’ has a frequency of 1. In partition 2+2, element 2 has a 9 

frequency of 2. The factor ∏ ( √𝑓𝑗!

1
𝑓𝑗

)𝑗  corrects 𝑥𝑖 for the permutations of equal-sized groups as the 10 

order of these equal-sized groups is unimportant, and should not increase 𝑥𝑖 (that is, 2𝑎 + 2𝑏 = 2𝑏 +11 

2𝑎). The total number of possible ATC combinations is the sum of all 𝑥𝑖 for a given 𝑛 and its integer 12 

partitions 𝑖. These values are listed in Table 1. One observes how the increase of possible combinations 13 

increases exponentially, hereby strengthening the justification for the need of the proposed 14 

methodology. 15 

 16 

Optimization through local search 17 
In order to optimize the ATCs, the proposed method combines some of the original activity types into 18 

a new class, and subsequently calculates the classification accuracy and entropy of the activity type 19 

variable. The classification accuracy represents the performance of predicting an ATC, and the entropy 20 

represents the amount of information such a prediction is giving. The entropy (or embedded 21 

information) is greatest when no activity types are merged into a new class, yet the classification 22 

accuracy increases when activity types are merged into new classes (as there are fewer classes to 23 

predict). The aim of this paper is to optimize which original activity types should be grouped into a new 24 

class, and this for data sets for which it is impractical or impossible to simply calculate all ATC 25 

combinations (due to an extremely large amount of combinations). The proposed method defines an 26 

optimization parameter 𝑈 which is maximized in an iterative search algorithm. 27 

At the heart of the optimization strategy in (6) is the optimization parameter which may be 28 

calculated using Equation (2) 29 

𝑈 =
𝐴𝑖 − 𝐴0

𝑅𝐴
− 𝑎

𝐸0 − 𝐸𝑖

𝑅𝐸
 (2) 

where 𝐴𝑖 is the test set accuracy and 𝐸𝑖 the activity type entropy of a particular combination of ATCs 𝑖. 30 

𝐴0 and 𝐸0 are, respectively, the test set accuracy and activity type entropy of the reference case of no 31 

activity type aggregation into new classes. 𝑅𝐴 = 𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛 is the range in test set accuracy 32 

improvement and 𝑅𝐸 = 𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛 is the range in entropy reduction, observed within the set of 33 

results of all ATC combinations. 𝑎 can be used to give a relative weight to either the classification 34 

accuracy improvement or to the entropy retention if there exists such an intrinsic bias for one of these 35 

indices. A sensitivity analysis of this parameter is described in (6). The entropy may be calculated with 36 

Equation (3): 37 
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𝐸 = − ∑ 𝑝𝑖 log2(𝑝𝑖)

𝑖

 (3) 

where 𝑝𝑖 is the probability on class 𝑖. 1 

However, Equation (2) can only be used when the results from all ATC combinations are 2 

known, as RE depends on the minimum entropy 𝐸𝑚𝑖𝑛, and RA requires the maximum classification 3 

accuracy 𝐴𝑚𝑎𝑥 to be known. Note that the maximum entropy 𝐸𝑚𝑎𝑥 and minimum classification 4 

accuracy 𝐴𝑚𝑖𝑛 can however be obtained from the reference case in which no activity types are grouped 5 

into a new class. In (6), the optimization parameter 𝑈 was calculated only after the entropy and 6 

classification accuracy for all approx. 117,000 ATC combinations were calculated. Since calculating 7 

the entropy and classification accuracy for all possible combinations of ATCs is impossible given a 8 

large number of distinct activity types in the USA NHTS 2009 (see Introduction), 𝐸𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 need 9 

to be substituted. 10 

The answer consists of allowing the trivial solution, that is the case when all activity types are 11 

grouped into a single large class. In this trivial case, the entropy is zero (all activity type information is 12 

lost) and the classification accuracy is 100% (as only one class remains to predict). The results in (6) 13 

reveal that in practice 𝐸𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 are in fact very close to, respectively, zero and one, thus 14 

supporting the proposed measure. Doing so, Equation (2) may be simplified to the following form in 15 

which all parameters (except 𝐴𝑖 and 𝐸𝑖) can be calculated from the start: 16 

𝑈 =
𝐴𝑖 − 𝐴0

𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛
− 𝑎

𝐸0 − 𝐸𝑖

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
=

𝐴𝑖 − 𝐴0

1 − 𝐴0
− 𝑎

𝐸0 − 𝐸𝑖

𝐸0
 (4) 

As a result, 𝑈 may be calculated without the need to calculate the classification accuracy and entropy 17 

for all possible ATC combinations beforehand. An iterative optimization approach is now possible. The 18 

proposed optimization algorithm performs the following steps: 19 

 20 

1. Start without grouping activity types into new classes (all activity types form their own 21 

group). This is the reference set of ATCs, e.g. this set of ten distinct activity types: [[1], [2], [3], [4], [5], 22 

[6], [7], [8], [9], [10]]. For now this is the best grouping scheme. 23 

2. Generate a new grouping scheme based on the above ‘best’ grouping scheme, but with some 24 

random changes, e.g. the case where activity type ‘2’ and ‘10’ are merged into a new class: [[1], [2, 10], 25 

[3], [4], [5], [6], [7], [8], [9]]. A random change is defined as the exchange of one activity type from 26 

one group to another (this can be an empty group). The number of random changes that are applied are 27 

according to an exponential distribution: the probability of a single change is 64.4%, that of two changes 28 

23.7%, that of three changes 8.7% etc. and this up to a maximum of ten random changes. Using this 29 

approach decreases the probability that the algorithm gets stuck in a local optimum and increases the 30 

probability that it will reach the global optimum. Note that this step is not completely random, as 31 

previously generated random grouping schemes are never used again (for obvious performance 32 

reasons). The random change generator is insensitive to the size of an existing group. This prevents a 33 

bias of large groups getting only larger, or vice versa. Multiple blocks of ATCs can arise without 34 

biasness. 35 

3. For this new set of ATCs, train a decision tree (DT) on the train set and calculate activity 36 

classification accuracy based on the test set, and calculate entropy retention in the data. Compute 𝑈 37 

(Equation (4)) while taking 𝑎 = 1 for this study. 38 

4. If the newly calculated 𝑈 is larger than the 𝑈 of the best grouping scheme, replace the best 39 

grouping scheme with the newly found grouping scheme. 40 

5. Repeat step 2 to 4 until a stopping criterion is satisfied, indicating that the algorithm 41 

converged to a (local) optimum (which is possibly equal to the global optimum). For the Seoul HTS 42 
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2010 data set, iterations stopped after 100 cycles without a change in best 𝑈, whilst for the NHTS 2009 1 

data set this threshold was set to 2000 cycles. 2 

6. Step 1 to 5 can be repeated (optionally with different ‘seed’ set). Each case could potentially 3 

converge to a different local optimum. If however consistently the same solution is found, this may be 4 

considered evidence for a global optimum. 5 

 6 

The C4.5 (J48 in Weka (28)) DT classification algorithm yields an excellent classification 7 

accuracy and requires only a short time to train it (6). This was the classifier of choice in step 3. In step 8 

5 it was explained that after a predefined number of iterations without change of the optimum, the 9 

algorithm would stop. This predefined number was chosen after initial experimentation and may not be 10 

optimal. It is however critical that this number is chosen sufficiently large for cases of copious distinct 11 

activity types. This is important since more combinations of classes are possible and thus the optimal 12 

becomes more difficult to find. The algorithm needs sufficient time to try random different combinations 13 

before one can conclude convergence. 14 

In the experiments described in this paper, the algorithm was run for 10 (Seoul HTS 2010) or 15 

15 (NHTS 2009) times as described above in step 6. Due to the random changes applied in step 2, each 16 

run had a different path of convergence. Yet, as will be discussed in the results section, consistently the 17 

same optimum was found giving evidence for a global optimum 18 

 19 

RESULTS 20 

Convergence of the local search algorithm 21 
First the proposed algorithm was run for the Seoul HTS 2010 data set, similar as in (6). The intention 22 

of this experiment is to confirm that the proposed algorithm works, and that it yields major 23 

improvements in performance. Compared to (6), slightly different values for 𝑈 are expected since an 24 

adapted formula is used in this study. The algorithm ran for 10 times (independently) and converged 25 

each time to the same optimum, which was reassuringly also the same as was found in (6). Figure 1 26 

illustrates the convergence of these runs. Although each run started at a different U value due to the 27 

random change at the start of the algorithm, they all converged to the same optimal U value. Notably, 28 

this exact same result could be found in just a couple of minutes, whilst in the approach of (6) 29 

approximately 30 hours on 20 threads of a high-end server were needed. As also concluded in that study, 30 

this optimum is considerably better than many ‘expert opinion’ activity type classification systems being 31 

used. 32 

After having confirmed the excellent performance of the method on the Seoul HTS, the 33 

experiment was repeated on the NHTS 2009 data set. Within 15 parallel runs, approximately 97,000 34 

distinct combinations were calculated in total. Table 3 lists a selection of all those combinations, 35 

including also the most optimal set of ATCs as the first entry in the table (see also next section). The 36 

first run found the optimum in just over 40.5 hours (after 4,324 iterations), the last one in just under 92 37 

hours (10,072 iterations). Mind that in all runs the final 2000 iterations were part of the stopping 38 

criterion. Note that this is a mere fraction of the 3.82*10^30 sets of ATC combinations that would have 39 

to be analyzed with the method of (6). Compared to the Seoul HTS, processing time for NHTS 2009 40 

took considerably longer. This is a consequence of the increased time to transform the ATCs in the data 41 

and subsequently train the DTs on this large data set.  42 

Figure 2 illustrates the convergence of the 15 runs. One immediately notices how all seem to 43 

have converged to the same maximum 𝑈 value. However, there are two runs who failed to converge to 44 

this maximum value, of which one run is clearly visible up to approximately iteration 6,000. The 𝑈 45 

value at which these runs reached the stopping criterion is inferior to the one at which the 13 other runs 46 

converged. This may be caused by too few iterations before the stopping criterion is fulfilled (set to 47 

2,000 in this experiment) or that these runs were stuck in a local optimum. The latter is unlikely, since 48 

by allowing up to 10 random changes on the previous best scheme (see Methodology section) it would 49 

be very likely that any local optimum could be avoided, on the condition that the algorithm was given  50 
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 1 

FIGURE 1 Convergence plot for 10 independent runs on the Seoul HTS 2010 data set. The slowest run 2 
finished in just under 13 minutes (Intel Core i5-4210M CPU @ 2.60GHz) and needed 255 iterations (100 3 
part of the stopping criterion). All 15 found the same optimum 4 
 5 

 6 
FIGURE 2 Convergence plot for 15 independent (parallel) runs on the NHTS 2009 data set. The last thread 7 
finished in just under 92 hours (Intel Xeon E5-2660 v4 CPU @ 2.00GHz). All but two found the same 8 
optimum 9 
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TABLE 3 Most optimal sets of the combined results of the 15 parallel runs on the NHTS 2009 data set and 1 
some interesting sets to compare with. Table 4 lists the encoding of the activity types. The best set of activity 2 
classes (1st row in table) was the end result in 13 out of 15 runs. The italic* sets of activity classes represent 3 
multiple variations with 10: ‘Work’ (see text) 4 

Sets of activity classes 

(only grouped activity types are shown) 

Test Set 

Accuracy 

Entropy U (↓) 

[22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82] 0.734 2.216 0.114272 

[10, 23], [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82] * 0.734 2.216 0.114268 

[23, 70], [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82] 0.734 2.214 0.113756 

[10, 23, 70], [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82] 0.734 2.214 0.113751 

[10, 62], [23, 70], [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 

82] * 

0.734 2.214 0.113751 

[10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [30, 40, 41, 42, 43, 

50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73, 

80, 81, 82, 83, 97] (ref.: (29)) 

0.851 0.977 0.001754 

Reference case (original 36 activity types) 0.340 4.276 0 

[10, 11, 12, 13, 14], [20, 21, 22, 23, 24, 30, 40, 41, 42, 43, 

50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73, 

80, 81, 82, 83, 97] (ref.: (4)) 

0.895 0.618 -0.014185 

[10, 11, 12, 13, 14], [23, 24, 30, 40, 41, 42, 43, 50, 51, 52, 

53, 54, 55, 63, 64, 80, 81, 82, 83, 97], [20, 21, 22, 60, 61, 

62, 65, 70, 71, 72, 73] (ref.: e.g. (30)) 

0.733 1.271 -0.107685 

[10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [40, 41, 42, 43], 

[50, 51, 52, 53, 54, 55], [60, 61, 62, 63, 64, 65], [70, 71, 72, 

73], [80, 81, 82, 83] (ref.: (9) (first digit NHTS codes)) 

0.476 2.754 -0.150825 

[24, 30, 40, 41, 42, 43, 61, 64, 65, 82], [10, 11, 12, 13, 14, 

20, 21, 70, 71, 72, 73], [22, 23, 50, 51, 52, 53, 54, 55, 60, 

62, 63, 80, 81, 83, 97] (ref. e.g. (31)) 

0.632 1.539 -0.197553 

[10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [30, 40, 41, 42, 

43], [50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 70, 71, 

72, 73, 80, 81, 82, 83, 97] (ref.: (32)) 

0.599 1.741 -0.200993 

[40, 41, 42, 43], [70, 71, 72, 73], [10, 11, 12, 13, 14], [20, 

21, 22, 23, 24], [50, 51, 52, 53, 54, 55], [30, 60, 61, 62, 63, 

64, 65, 80, 81, 82, 83, 97] (ref.: (33)) 

0.485 2.429 -0.213240 

 5 

enough time. Both runs would also converge to the same optimum as the others with a better setting of 6 

the stopping criterion. The other 13 runs, which started at different random variations on the initial 7 

scheme, converged to the same optimum which is greater than that of the two which did not converge 8 

to this 𝑈 value. This gives confidence for a globally optimal set of ATCs. 9 

 10 

Optimal activity type classes for annotation 11 
Table 3 lists some interesting results from the experiments on the NHTS 2009 data. The first entry is 12 

the most optimal ATC combination: 10, 11, 12, 13, 14, 20, 21, 23, 24, 50, 52, 54, 55, 60, 61, 62, 63, 64, 13 

65, 70, 72, 80, 81, 83, 97, [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82]. Compared to the reference case, 14 

its test set classification accuracy has more than doubled from 34.0% to 73.4% . This comes at a cost of 15 
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losing 2.06 bits of information. It suggests these 26 distinct classes (excl. ‘Home’) are more optimal 1 

compared to the original 36. It merges the following activity types into a new class: 2 

 3 

 22: Go to religious activity 4 

 30: Medical/dental services 5 

 40: Shopping/errands 6 

 41: Buy goods: groceries/clothing/hardware store 7 

 42: Buy services: video rentals/dry cleaner/post office/car service/bank 8 

 43: Buy gas 9 

 51: Go to gym/exercise/play sports 10 

 53: Visit friends/relatives 11 

 71: Pick up someone 12 

 73: Drop someone off 13 

 82: Get/eat meal 14 

 15 

This is a class which is hard to define. Some are flexible in nature (buying goods,…) yet others have 16 

obligations to third parties and are not flexible (e.g. picking up or dropping off someone). However, 17 

none of them usually have a very long duration and could in theory occur at almost any time within a 18 

day. All activity types occur at a relatively high frequency (see Table 4). Many of these activities are 19 

likely to be chained together: picking up or dropping off people whilst visiting friends/relatives or going 20 

to play sports, or getting something to eat before (or after) doing some shopping etc. This makes it hard 21 

to distinguish between these activity types based on only temporal profiles, and hence it makes sense to 22 

merge them into a single class. 23 

The next ATC schemes in the list combines 10: ‘Work’ with all other activity types which are 24 

not in the large group of the most optimal scheme (24 distinct combinations, e.g. [10, 23]; [10, 70]; [10, 25 

62]; etc.) and finally it also joins the large group. Because of space constraints, only the best performing 26 

of all those variations is listed in italics in Table 3. From Table 4 one observes that activity type 10 is 27 

slightly peculiar, as its weighted frequency is many orders of magnitude smaller than other activity 28 

types. It is clearly different from ‘Go to work’ as the latter has a frequency which is approximately 105 29 

times larger. The exact definition of the ‘Work’ activity could not be found. Because of the very low 30 

frequency, the impact of this activity type on the classification accuracy and entropy retention is very 31 

small. This experiment concludes that in practice these variations with activity type 10 may not be 32 

different from the most optimal scheme and one could most likely ignore them. 33 

Subsequently in Table 3 one finds the scheme where, in addition to the large group from before, 34 

also 23: ‘Go to library: school related’ and 70: ‘Transport someone’ are merged into a single class. This 35 

could make sense as this experiment used only time-related variables to train the DTs, and one could 36 

intuitively think the temporal distributions of both activity types may be similar. Again different 37 

combinations with activity type 10 are listed afterwards. The schemes discussed so far perform similar 38 

as the most optimal scheme. One has to be cautious when interpreting the rank in Table 3 as the 39 

algorithm does not guarantee to find all ATC combinations. 40 

Next in Table 3 are seven interesting activity class combination schemes from literature to 41 

compare with the optimal scheme. An attempt was made to merge ATCs in a similar fashion as in these 42 

studies. The most obvious comparison may be made with an ATC scheme based on the first digit of the 43 

NHTS codes (9). Even though there are much fewer activity classes to predict compared to the most 44 

optimal scheme, its classification accuracy is much lower at 47.6% compared to 73.4%. This deficiency 45 

outweighs the fact that this scheme retains slightly more information than the optimal scheme. The 46 

scheme based on (33) performs similarly. The ones inspired by (31) and (32) perform worse than the 47 

optimal scheme on both the classification accuracy and information retention. The schemes inspired by 48 

(4), (29) and (30) have similar of better classification accuracies compared to the optimal scheme, 49 

however these lost a major portion of their information content as a consequence. 50 
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Depending on the research, there might exist a reason for employing one of the suboptimal 1 

schemes (e.g. some activity types need to be predicted and may not be merged, or a predefined number 2 

of ATCs is required). Yet, without such justification, this work suggests one should strongly consider 3 

using the revealed most optimal set of ATCs in order to simultaneously maximize the prediction 4 

accuracy and the information in that prediction. 5 
 6 
TABLE 4 Trip motive codes in NHTS 2009 which were used in this study’s optimization of activity type 7 
classes. There are 37 distinct codes (including ‘Home’) 8 

NHTS 2009 

codes 

Description of trip motive Weighted 

frequency 

1 Home 1.35E+11 

10 Work 2.16E+05 

11 Go to work 3.11E+10 

12 Return to work 5.73E+09 

13 Attend business meeting/trip 1.07E+09 

14 Other work related 7.90E+09 

20 School/religious activity 1.13E+09 

21 Go to school as student 1.18E+10 

22 Go to religious activity 6.98E+09 

23 Go to library: school related 4.54E+08 

24 OS - Day care 8.29E+08 

30 Medical/dental services 6.30E+09 

40 Shopping/errands 7.10E+09 

41 Buy goods: groceries/clothing/hardware store 4.40E+10 

42 Buy services: video rentals/dry cleaner/post office/car service/bank 1.12E+10 

43 Buy gas 6.60E+09 

50 Social/recreational 3.78E+09 

51 Go to gym/exercise/play sports 1.34E+10 

52 Rest or relaxation/vacation 3.28E+09 

53 Visit friends/relatives 1.76E+10 

54 Go out/hang out: entertainment/theater/sports event/go to bar 6.84E+09 

55 Visit public place: historical site/museum/park/library 1.85E+09 

60 Family personal business/obligations 4.48E+09 

61 Use professional services: attorney/accountant 1.11E+09 

62 Attend funeral/wedding 6.68E+08 

63 Use personal services: grooming/haircut/nails 1.47E+09 

64 Pet care: walk the dog/vet visits 2.94E+09 

65 Attend meeting: PTA/home owners association/local government 1.61E+09 

70 Transport someone 3.09E+08 

71 Pick up someone 1.10E+10 

72 Take and wait 1.19E+09 

73 Drop someone off 1.20E+10 

80 Meals 7.92E+08 

81 Social event 2.49E+09 

82 Get/eat meal 2.04E+10 

83 Coffee/ice cream/snacks 2.98E+09 

97 Other reason 2.59E+09 

  9 
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CONCLUSION 1 
As demonstrated in previous research (6), there is a strong need for activity categorization standards in 2 

the domain of trip purpose annotation (activity type classification). An optimal set of activity type 3 

classes (ATCs) is an essential prerequisite for a robust and sound transport data annotation, or any 4 

modeling exercise. Most existing researches use a suboptimal set of ATCs in their methodology 5 

(without providing a justification), leading to high classification accuracies, but low information in the 6 

prediction. An optimization strategy that was proposed in previous research (6), has shown a limitation: 7 

the issue of copious distinct ATC combinations and its associated long computation time.  8 

The aim of this paper is to optimize which original activity types should be merged into a new 9 

class, and this for data sets for which it is impractical or impossible to simply calculate all ATC 10 

combinations due to an extremely large amount of combinations. The paper suggests a revision of the 11 

optimization method in (6). The proposed method defines an optimization parameter 𝑈, based on 12 

classification accuracy and information retention, which is maximized in an iterative search algorithm. 13 

To confirm the correct convergence of the search algorithm and to benchmark the performance 14 

gains needed, the algorithm was run for ten times (independently) on the Seoul household travel survey 15 

in 2010. These converged to the same optimum as in (6) in just a couple of minutes, whilst in the 16 

approach of (6) approximately 30 hours on 20 threads of a high-end server were needed. 17 

In fifteen parallel runs on the very large national household travel survey (NHTS) of the U.S. 18 

in 2009, approximately 97,000 distinct combinations were calculated. Thirteen runs found the same 19 

most optimal set of ATCs in merely 40.5 hours (after 4,324 iterations) to 92 hours (10,072 iterations) 20 

instead of an estimated 1.13*10^23 years (3.82*10^30 sets of ATC combinations ) using the method of 21 

(6). The two remaining runs reached the stopping criterion prematurely. The most optimal set of ATCs 22 

for the NHTS 2009 creates only a single group, in which the following NHTS 2009 activity types are 23 

merged into a new class: 24 

 25 

 Go to religious activity 26 

 Medical/dental services 27 

 Shopping/errands 28 

 Buy goods: groceries/clothing/hardware store 29 

 Buy services: video rentals/dry cleaner/post office/car service/bank 30 

 Buy gas 31 

 Go to gym/exercise/play sports 32 

 Visit friends/relatives 33 

 Pick up someone 34 

 Drop someone off 35 

 Get/eat meal 36 

 37 

This is a class which is hard to define, but the activity types have in common that they usually don’t 38 

have a very long duration and that they could in theory occur at almost any time within a day. All activity 39 

types occur at a relatively high frequency. Many of these activities are likely to be chained together. 40 

Additionally merging the ATCs ‘Go to library: school related’ and ‘Transport someone’ into a second 41 

group is also acceptable as this forms the second most optimal set of ATCs found. 42 

An attempt was made to merge the original ATCs in a similar fashion as in other studies, in 43 

order to compare those approaches to the optimal set of ATCs found in this study. All tested 44 

combinations are inferior to the revealed optimal one, either by classification accuracy, by retained 45 

information or by both indices simultaneously. 46 

Depending on the research, there might however exist a reason for employing one of the 47 

suboptimal schemes (e.g. some activity types need to be predicted and may not be merged, or a 48 

predefined number of ATCs is required). Yet, without such justification, this work suggests one should 49 
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strongly consider using the objectively determined most optimal set of ATCs of the NHTS 2009 in order 1 

to simultaneously maximize the prediction accuracy and the information in that prediction.  2 

 Future research will include also spatial and regional variables to apply the methodology to a 3 

big transport data activity type annotation problem. Furthermore, the application of data fusion based 4 

on annotated optimized ATCs will be investigated. Models based on traditional ATCs and optimized 5 

ones can be compared. 6 

 7 

 8 
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