
Please cite the Published Version

Gonda, X, Sarginson, J, Eszlari, N, Petschner, P, Toth, ZG, Baksa, D, Hullam, G, Anderson, IM,
Deakin, JFW, Juhasz, G and Bagdy, G (2017) A new stress sensor and risk factor for suicide: the
T allele of the functional genetic variant in the GABRA6 gene. Scientific Reports, 7. 12887 ISSN
2045-2322

DOI: https://doi.org/10.1038/s41598-017-12776-8

Publisher: Nature Publishing Group

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/619387/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an Open Access article published in Scientific Reports, published
by Nature Publishing Group, copyright The Author(s).

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1038/s41598-017-12776-8
https://e-space.mmu.ac.uk/619387/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


1Scientific RepoRts | 7: 12887  | DOI:10.1038/s41598-017-12776-8

www.nature.com/scientificreports

A new stress sensor and risk factor 
for suicide: the T allele of the 
functional genetic variant in the 
GABRA6 gene
Xenia Gonda  1,2,3, Jane Sarginson  4,5, Nora Eszlari1,3, Peter Petschner1,3,6, Zoltan G. 
Toth1,7,8, Daniel Baksa1,8, Gabor Hullam1,9, Ian M. Anderson10, J. F. William Deakin  10,11, 
Gabriella Juhasz1,3,6,8,10 & Gyorgy Bagdy1,3,6

Low GABA transmission has been reported in suicide, and GABRA6 rs3219151 T allele has been 
associated with greater physiological and endocrine stress response in previous studies. Although 
environmental stress also plays a role in suicide, the possible role of this allele has not been investigated 
in this respect. In our present study effect of rs3219151 of GABRA6 gene in interaction with recent 
negative life events on lifetime and current depression, current anxiety, as well as lifetime suicide 
were investigated using regression models in a white European general sample of 2283 subjects. Post 
hoc measures for phenotypes related to suicide risk were also tested for association with rs3219151 in 
interaction with environmental stress. No main effect of the GABRA6 rs3219151 was detected, but in 
those exposed to recent negative life events GABRA6 T allele increased current anxiety and depression 
as well as specific elements of suicide risk including suicidal and death-related thoughts, hopelessness, 
restlessness and agitation, insomnia and impulsiveness as measured by the STOP task. Our data 
indicate that stress-associated suicide risk is elevated in carriers of the GABRA6 rs3219151 T allele with 
several independent markers and predictors of suicidal behaviours converging to this increased risk.

Every year suicide accounts for one million deaths worldwide (nearly 2% of all deaths), amounting to one every 
40 seconds, a mortality rate of 16/100,0001. Suicide and suicidal behaviour are not diagnosis-specific but a symp-
tom and are a feature of many psychiatric disorders2. The diathesis for suicide includes a genetic predisposition 
with heritability of suicide estimated at about 55%3 and a similar degree of heritability for nonfatal suicidal acts4. 
Familial and adoption studies indicate that transmission of suicidal behaviour is independent of Axis I and II 
disorders5,6 and is also influenced by developmental and rearing conditions. An accumulation of stressful and 
traumatic life events, losses, and acute and chronic somatic and mental illnesses contribute to neurobiological 
alterations3,7 emphasising the role of stress in the emergence of suicide.

As the major inhibitory neurotransmitter in humans, GABA plays an important role in downregulating 
HPA-axis in response to acute stress as demonstrated by the strong inhibitory effect of alprazolam on HPA-axis 
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activation following experimental stress8. Exposure to stress can have short- and long-term effects in the GABA 
system including altering the availability of GABA-A receptors as well as their composition and sensitivity to 
neurosteroid regulation which can in turn result in an altered response to subsequent or ongoing stressors9–12. 
Rs3219151 in GABRA6 appears to have a modulatory effect on HPA-axis activity as demonstrated by an associa-
tion between the T allele and higher plasma cortisol levels both at rest13 and also when stimulated during the Trier 
Social Stress Test14 suggesting this allele may increase the stress response.

Expression of several GABA-A receptor subunits has been shown to be strikingly upregulated across several 
brain regions in a large series of post mortem brains of suicide victims compared to controls15. The global change 
raises the possibility that genotypic variation may underpin these changes. In spite of its association with stress 
reactivity, the GABRA6 T allele has so far not been investigated in relation to suicidal behaviour. Gene expression 
studies in post mortem brain strongly implicating abnormal GABA function16,17 led us to explore phenotypes 
for suicide risk markers associated with this variant. In the present study we carried out exploratory analyses of 
association of GABRA6 rs3219151 with symptomatic and pathogenic risk factors of suicide in interaction with 
recent stressors in a large European nonpsychiatric population.

Results
No associations between genotype and demographic or lifestyle measures were identified. The Budapest and 
Manchester cohorts differ significantly for demographics (except for gender), exposure and outcome measures 
(Table 1). The Manchester cohort reported a higher level of recent negative life events (RLE). They also have 
higher levels of current depression (BSI-DEP) and current anxiety (BSI-ANX) symptoms, and higher rate of 
self-reported lifetime depression (DEP) and self-reported lifetime suicide attempt or deliberate self-harm (SUIC).

Depression, Anxiety and suicide attempt. The GABRA6 SNP rs3219151 showed no significant 
main effect on DEP, SUIC or BSI-DEP and BSI-ANX in the combined Level 1 cohort (Table 2). However, 
rs3219151 showed significant association with BSI-DEP (p = 0.001, FDR-q = 0.008) and BSI-ANX (p = 0.003, 
FDR-q = 0.012) scores when interacting with RLE score (Table 2). The minor homozygote (CC) group has lower 
mean symptom scores than the other two genotype groups in individuals with RLE scores equal or over 3 for both 
BSI-DEP (Fig. 1) and BSI-ANX (Fig. 2). An average of 27% increase in BSI-DEP and BSI-ANX was found in indi-
viduals with CC genotype compared to an average 114% with TT genotype when high (equal or over 3) and mild 
(0–1) RLE groups were compared (Figs 1 and 2). This means that the effect of high RLE score on either BSI-DEP 
or BSI-ANX was in average 4 times higher in TT compared to CC genotype individuals.

The rs3219151xRLE interaction effect was nominally significant on DEP (p = 0.029, FDR-q = 0.077) and 
showed a trend on SUIC (p = 0.093, FDR-q = 0.186) but none of them survived correction for multiple testing.

To help validate these results the two populations, Manchester and Budapest were analysed separately. The 
interaction effects on symptom scores were significant for both Manchester (BSI-DEP: p = 0.019; BSI-ANX: 
p = 0.043) and Budapest (BSI-DEP: p = 0.008; BSI-ANX: p = 0.013). Both populations showed similar patterns 
of change in mean BSI-DEP (Supplementary Fig. 1) and BSI-ANX (Supplementary Fig. 2) scores with increas-
ing RLE score. Again, individuals with the minor CC genotype showed a slower increase in mean BSI-DEP and 
BSI-ANX scores with increasing stress exposure than the other genotype groups.

The rs3219151 x RLE interaction effect was nominally significant on DEP (p = 0.013) and on SUIC (p = 0.037) 
in the Manchester population but no significant interaction can be seen in Budapest (DEP: p = 0.699; SUIC: 
p = 0.679) probably because the Budapest cohort represented an average population with low prevalence of DEP 
(21.4%) and SUIC (4.8%), while the Manchester cohort was enriched with subjects suffering from DEP (56.2%) 
and reporting SUIC (17.8%).

Sensitivity analysis. The genotype x RLE interactions remained statistically significant after exclu-
sion of individuals who reported a history of manic or hypomanic episodes, psychotic symptoms, or 
obsessive-compulsive disorder from the analysis (p = 0.002 for BSI-DEP and p = 0.007 for BSI-ANX (Table 2). 
This suggests the interactions are not explained by major effects in less common disorders associated with abnor-
mal mood.

Post hoc analysis of BSI items. To determine factors that might increase the risk of suicide, the items 
of BSI-DEP and BSI-ANX were tested separately in the combined population (Table 3). Significant interaction 
effects were apparent for specific elements of suicide risk such as directly suicide-related thoughts (thoughts of 
ending your life: p = 0.004, thoughts of death or dying: p = 0.002), hopelessness related thoughts (feeling hope-
less about the future: p = 0.019), restlessness and agitation (feeling so restless you could not sit still: p = 0.0008, 
feeling tense or keyed up: p = 0.012), insomnia (trouble falling asleep: p = 0.013), anhedonia (feeling no interest 
in things: p = 0.002), and acute anxiety attacks (spells of terror and panic: p = 0.00003). In addition, symptoms 
of depression secondarily related to suicide also showed significant association with rs3219151 x RLE interaction 
including depressed mood (feeling blue: p = 0.008) and depression-related thought contents (feelings of worth-
lessness: p = 0.004, feeling of guilt: p = 0.002).

Two items showed independent nominally significant replication in the two study cohorts, namely thoughts 
of ending your life (Budapest p = 0.025; Manchester p = 0.047) and spells of terror and panic (Budapest p = 0.014; 
Manchester p = 0.001). Regarding all items and cohorts the T allele increased the risk to report the given symp-
tom (Supplementary Table 1).

Post hoc analysis of additional risk factors for suicide. We tested personality factors neuroticism 
(NEUR) and impulsiveness (IMP)  to determine whether the T allele has main effect or gene x environmental 
effect on them that might be related to increased suicide risk. Furthermore, we tested specific facets of impulsivity 
in the Budapest sample (motor - mIMP, cognitive - cIMP, and non-planning –nIMP) and in the Manchester Level 
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2 sample (STOP task SSRT (stop signal reaction time)). None of them showed any significant direct association 
with the T allele but in interaction with RLE a strong association was found on the STOP task SSRT (p = 0.0009, 
Table 4) with the TT genotype carriers showing increased stop signal reaction time if moderate or high RLE were 
present (Fig. 3). In addition, a weak, nominally significant association was found on NEUR (p = 0.031) in the 
combined population. Finally, hopelessness was specifically tested in the Budapest sample, because it can reliably 
predict suicide risk18. Rs3219151 showed no main effect but a significant rs3219151 x RLE interaction on hope-
lessness scores (p = 0.002, Table 4).

Total population

Cohort Comparison 
(p-value)Budapest Manchester

Population size (N) 2283 975 1308

Demographics

Gender (% Male) 30.80% 31.40% 30.40% 0.597

Age (Mean ± SEM)  (range) 32.86 ± 0.223  (18–60) 31.22 ± 0.352  (18–60) 34.02 ± 0.286  (18–60) <0.0001

Adversity scores

Sum recent negative life events (Mean ± SEM) 1.22 ± 0.027 1.08 ± 0.038 1.32 ± 0.038 <0.0001

Lifetime depression

BGR lifetime depression (%) 41.30% 21.40% 56.20% <0.0001

Recent depression/anxiety

Current BSI depression score (Mean ± SEM) 0.8 ± 0.019 0.5 ± 0.022 1.07 ± 0.028 <0.0001

Current BSI anxiety score (Mean ± SEM) 0.8 ± 0.018 0.6 ± 0.023 1.02 ± 0.027 <0.0001

BSI-DEP items

Thoughts of ending your life (Mean ± SEM) 0.36 ± 0.019 0.25 ± 0.025 0.45 ± 0.027 <0.0001

Poor appetite (Mean ± SEM) 0.55 ± 0.021 0.42 ± 0.028 0.65 ± 0.029 <0.0001

Feeling lonely (Mean ± SEM) 1.19 ± 0.029 0.88 ± 0.040 1.42 ± 0.039 <0.0001

Feeling blue (Mean ± SEM) 1.26 ± 0.028 0.93 ± 0.037 1.50 ± 0.039 <0.0001

Feeling no interest in things (Mean ± SEM) 0.82 ± 0.026 0.40 ± 0.029 1.13 ± 0.038 <0.0001

Trouble falling asleep (Mean ± SEM) 1.05 ± 0.029 0.67 ± 0.036 1.33 ± 0.040 <0.0001

Feeling hopeless about the future (Mean ± SEM) 0.97 ± 0.028 0.64 ± 0.035 1.21 ± 0.039 <0.0001

Thoughts of death or dying (Mean ± SEM) 0.70 ± 0.025 0.52 ± 0.033 0.82 ± 0.035 <0.0001

Feelings of worthlessness (Mean ± SEM) 0.79 ± 0.026 0.39 ± 0.027 1.09 ± 0.039 <0.0001

Feelings of guilt (Mean ± SEM) 0.87 ± 0.026 0.54 ± 0.030 1.11 ± 0.037 <0.0001

BSI-ANX items

Nervousness or shakiness inside (Mean ± SEM) 1.29 ± 0.026 1.34 ± 0.040 1.26 ± 0.035 0.068

Suddenly scared for no reason (Mean ± SEM) 0.64 ± 0.022 0.48 ± 0.030 0.76 ± 0.032 <0.0001

Feeling fearful (Mean ± SEM) 0.84 ± 0.025 0.57 ± 0.031 1.05 ± 0.036 <0.0001

Feeling tense or keyed up (Mean ± SEM) 1.39 ± 0.027 1.15 ± 0.038 1.57 ± 0.037 <0.0001

Spells of terror or panic (Mean ± SEM) 0.46 ± 0.021 0.23 ± 0.022 0.63 ± 0.032 <0.0001

Feeling so restless you couldn’t sit still (Mean ± SEM) 0.66 ± 0.022 0.41 ± 0.026 0.84 ± 0.033 <0.0001

Suicide attempt/deliberate self-harm

SUIC (%) 12.30% 4.80% 17.80% <0.0001

Hopelessness

BHS (Mean ± SEM) NA 0.198 ± 0.005 NA

Neuroticism, impulsiveness

BFI Neuroticism (Mean ± SEM) 3.13 ± 0.019 2.82 ± 0.026 3.36 ± 0.025 <0.0001

IVE Impulsiveness (Mean ± SEM) 0.34 ± 0.005 0.3 ± 0.007 0.37 ± 0.006 <0.0001

BIS Nonplanning Impulsivity (Mean ± SEM) NA 3.273 ± 0.013 NA

BIS Motor Impulsivity (Mean ± SEM) NA 3.0 ± 1.786 NA

BIS Attentional Impulsivity (Mean ± SEM) NA 3.625 ± 1.995 NA

Genotype 0.158

TT (N) 750 324 426

TC (N) 1084 453 631

CC (N) 449 198 251

MAF (%) 43.40% 44% 43.30%

Table 1. Description of the Level 1 study populations. BFI, Big Five Inventory; BGR, background 
questionnaire; BHS, Beck Hopelessness Scale; BIS, Barratt Impulsiveness Scale; BSI, Brief Symptom Inventory 
(score range 1–4); BSI-ANX, BSI anxiety score; BSI-DEP, BSI depression score; IVE, Eysenck Impulsivity, 
Venturesomeness and Empathy Questionnaire; Minor Allele Frequency; SEM, standard error of mean; 
MAF, minor allele frequency; SUIC, self-reported suicide attempt/deliberate self-harm.
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In silico functional analysis. The GABRA6 SNP rs3219151 is located within the three prime untrans-
lated region (3′UTR) of the GABRA6 gene. In silico functional analysis predicted that rs3219151 was included 
in the target region for 4 miRNAs, hsa-miR-1178 (allele = T, score = 141, energy = −13.31; allele = C, 
score = 141, energy = −11.99) and hsa-miR-485-5p (allele = T, score = 147, energy = −15.83; allele = C, 
score = 142, energy = −14.03) where predicted to bind for either allele and hsa-miR-600 (allele = T, score = 155, 
energy = −14.36) and hsa-miR-920 (allele = C, score = 140, energy = −22.5) only one. Expression data was avail-
able for 3 of the miRNAs (hsa-miR-1178, hsa-miR-485 and hsa-miR-600) with all showing expression in the 
cerebellum and adrenal gland. Conservation score is PhyloP = 0.05.

Rs3219151 is located between 2 regions of high conservation and can be used to impute the genotype for 
5 additional SNPs (rs1992646, rs3811995, rs3811992, rs13184586, rs13172914) with a high level of accuracy 
(r2 > 0.8) in the Caucasian HapMap CEU population. The imputed SNP rs13172914 is located adjacent to a 
conserved DNase I hypersensitivity region suggesting that it is in or close to a region of potential transcrip-
tional activity (Fig. 4). In addition, a total of 9 SNPs (rs1992646, rs3811995, rs3811992, rs13184586, rs13171954, 
rs10155527, rs13172914, rs6556559, rs62381630 and rs35477281) and 2 indels (rs151249729 and rs35477281) 
were in linkage disequilibrium (r2 > 0.8) with rs3219151 in a British population sample. These SNPs span the 
length of the GABRA6 gene and include rs3811995 located in the 5′UTR of GABRA6 and rs13184586 a synony-
mous SNP located in exon 8 (Fig. 5). One SNP rs13171954 located in the final intron of GABRA6 was predicted 
to affect the binding of several transcription factors of the foxhead box family by RegulomeDB, with the minor G 
allele disrupting the site. All analyses were done using UCSC Genome Browser on Human Dec. 2013 (GRCh38/
hg38) with standard settings on all selected options.

Discussion
We identified a complex interaction between GABRA6 rs3219151 T allele and recent life stress in multiple pheno-
types associated with suicidal behaviour converging to a significant suicide risk. As no main effects of rs3219151 
on any investigated phenotypes were revealed this variant allele likely plays a role in mediating the effects of 
recent stress in the emergence of suicidal behaviour. After exposure to recent negative events, however, presence 
of the GABRA6 rs3219151 T allele increased risk of current depression (BSI-DEP) and anxiety (BSI-ANX), as 
well as specific elements of suicidal risk including directly suicide-related thoughts, hopelessness, restlessness 
and agitation, insomnia, and acute anxiety. We also found a strong association between cognitive impulsivity 
as measured by the STOP task and the T allele in interaction with stress exposure, while neuroticism and trait 
impulsiveness showed no association. Our data thus suggest a possible role of the T allele in stress-related suicide 
risk as a result of the constellation of several independent suicide-related phenotypes.

There is increasing evidence that response to environmental stressors has strong genetic determinants. In 
our study we observed no significant direct effect of the GABRA6 T allele on any of our investigated variables, 
suggesting that this variant plays a role in stress-induced psychopathology. Similarly, we found no signs of 
gene-environment correlation, as the investigated genotype showed no associations with any of the demographic 
or lifestyle measures investigated in our study. A strong increase in depression and anxiety scores were, however, 
observable with increasing recent life stress in carriers of the T allele.

The GABA system interacts with stressors playing a role in brain-level stress control9 inhibiting the HPA axis via 
GABA-A receptors in CRH neurons in the hypothalamus including the PVN19 and attenuating stress response10).  
Several studies have found associations between GABA-A subunit polymorphisms and stress reactivity. The 
GABA-A receptor alpha subunit family contains several isoforms including the alpha6 isoform encoded by a gene 
in chromosome 5q34.

Rs3219151 is located within the 3′ untranslated region (3′UTR) of GABRA6 which contains regulatory 
regions that post-transcriptionally influence gene expression, and has previously been predicted to alter at least 
one micro-RNA (miRNA) binding site20. In silico analysis supported this with hsa-miR-600 and hsa-miR-920 
predicted to bind with the T and C alleles respectively, supporting the idea that rs3219151 alters miRNA regula-
tion. miRNAs play a role in regulating gene expression levels including playing a key role in brain development, 
epigenetic programming and stress response21. Exposure to chronic stress has been shown to have long lasting 
effects on miRNA expression levels, which is of interest because alterations in the expression patterns of miRNAs 
have been reported in a number of psychiatric conditions22. The role of miRNA in regulating GABRA6 expression 
has also already been shown with a previous study showing miR-138-2 reduces GABRA6 expression by 30%. 
This study also showed an association between non-acrophobic panic disorder and the miR-138-2 tagging SNP 
rs12921781 in a Spanish cohort23.

Additionally, rs3219151 is in linkage disequilibrium with 9 additional SNPs and 2 indels in a British popu-
lation (Fig. 5) and imputes for 5 additional SNPs in a Caucasian HapMap CEU population some of which have 
potential functional effects (Fig. 4)14. One intronic SNP rs13171954 is predicted to affect the binding of several 
foxhead box family transcription factors, with the minor G allele disrupting the site, and a second SNP rs3811995 
is located in the 5′ untranslated region, while the imputed rs13172914 is in or close to a region of potential tran-
scriptional activity (Fig. 4).

Previous results suggested an association between hormonal and psychological stress response and the 
GABRA6 gene. Variations in GABRA6 and specifically rs3219151 T allele was found to be related to higher 
baseline salivary cortisol levels13 and higher ACTH, cortisol and blood pressure increase upon stress exposure 
in several studies14,24,25. These results suggest that decreased inhibition of the HPA axis due to GABA deficits 
may contribute to increased hormonal and physiological stress response14 which is well-known to be associated 
with risks of developing mental health problems including depression and suicide. Our present results indicat-
ing increased maladaptive psychological responses including depression and anxiety symptoms following stress 
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exposure in GABRA6 T carriers support and extend findings that this genetic variant may mediate the effects of 
stress.

In our study those carrying the T allele showed a significantly larger increase in the risk of current depression 
and anxiety after exposure to recent negative life events compared to CC carriers, while no such increase was 
observable in the absence of recent stress. Investigating our two subsamples separately, lifetime depression also 
showed a nominally significant association with the T allele in interaction with recent stress in the Manchester but 
not in the Budapest subsample likely due to the lower prevalence of depressed subjects in this latter subsample.

Previous research points to the possible involvement of GABA in the propensity of anxious and fearful traits 
and temperaments via its GABA-A receptor-mediated inhibitory effects with even minor genetic variation possi-
bly contributing to an alteration in anxiety-related traits and individual differences in threat-related responses26,27. 
Specifically, GABRA6 TT carriers were shown to exhibit increased harm avoidance and anticipatory worry26,28, 
and T carrier panic disorder patients showed increased reaction to fearful faces in an fMRI study24 thus suggest-
ing an association between GABRA6 and different aspects of anxiety14,24,25.

Similarly, there is increasing support for state-dependent GABA deficits in major depression29–31 including 
lower CSF, plasma and cortical GABA levels in in vivo MR studies32–34. Post-mortem results, however, although 
suggesting GABA dysfunction35, are more equivocal with prefrontal GABA levels showing an inverse association 
with depression severity in some studies36 and no GABA-related alterations in others16. Several antidepressants, 
anticonvulsants with antidepressant effects and electroconvulsive therapy increase GABA function37–39, and 
chronic antidepressant treatment has been demonstrated to normalize GABA (and glutamate) levels suggesting 
the possible involvement of GABA in antidepressant action40. The observed alteration of GABA function in major 
depression may be related to altered GABA-A receptor function. Specifically, the 5q33-35 area that encodes sev-
eral GABA-A receptor subunits including GABRA6, GABRA1 and GABRG2 subunit genes and its corresponding 
area in mice was found to be related to depression-like behaviour35. Interestingly, the AA genotype of rs1992647, 
which is located downstream of GABRA6 and tags for other SNPs within the gene, in an interaction with the 

Total population BSI-DEP BSI-ANX DEP SUIC

GABRA6 rs3219151 BETA SE STAT P BETA SE STAT P OR L95 U95 STAT P OR L95 U95 STAT P

Main effect 0.028 0.027 1.051 0.293 0.040 0.026 1.505 0.133 1.029 0.905 1.169 0.434 0.664 0.901 0.750 1.083 −1.107 0.268

Interaction with RLE −0.068 0.020 −3.397 0.001 −0.060 0.020 −2.998 0.003 0.890 0.803 0.988 −2.189 0.029 0.894 0.785 1.019 −1.682 0.093

Sensitivity analysis*
Interaction with RLE −0.064 0.021 −3.131 0.002 −0.054 0.020 −2.678 0.007 0.899 0.804 1.005 −1.872 0.061 NA NA NA NA NA

Table 2. Main effects and interactions with recent negative life events (RLE) of GABRA6 rs3219151 on BSI 
depression (BSI-DEP) and anxiety scores (BSI-ANX), lifetime depression (DEP) and self-reported suicide 
attempt/deliberate self-harm (SUIC) in the total population and sensitivity analysis. We tested additive models. 
BSI, Brief Symptom Inventory; BSI-ANX, BSI anxiety; BSI-DEP, BSI depression; DEP, lifetime depression; RLE, 
recent negative life events; SUIC, self-reported suicide attempt/deliberate self-harm. *Reanalysis of significant 
results after excluding subjects who reported bipolar disorder, schizophrenia or obsessive-compulsive disorder.

Figure 1. Significant interaction between recent negative life events (RLE) and GABRA6 rs3219151 on current 
depression scores in the total population. Significant (p = 0.001) genetic interaction in mean BSI depression 
scores over RLE scores with standard error bars. Subjects carrying the T allele of GABRA6 rs3219151 showed 
higher increase in current depression scores when exposed to severe recent negative life events compared to 
those carrying the CC genotype. (Subject numbers in the RLE categories, respectively: CC genotype: RLE0: 
288, RLE1: 92, RLE2: 69; TC genotype: RLE0: 728, RLE1: 196, RLE2: 154; TT genotype: RLE0: 506, RLE1: 131, 
RLE2: 110; ★ indicates p = 0.03 CC vs TT; ☆ indicates p = 0.08 CC vs TC, and p = 0.009 CC vs TT, pairwise 
comparisons for visualisation of results.) RLE0: 0–1 RLE; RLE1: 2 RLE; RLE2: 3 or more RLE (used only for 
display purposes). BSI: Brief Symptom Inventory; RLE: recent negative life events.
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environment showed association with nonresponse to antidepressant treatment41. Our results concerning the 
association of the GABRA6 T allele in interaction with the environment on current and, to a limited extent, life-
time depression are in line with and in support of these previous findings.

While no main effect of the T allele on self-reported suicide attempts was identified, and we only found a 
trend in interaction with recent negative life events in the combined sample, there was a nominally significant 
rs3219151xRLE interaction effect in the Manchester but not the Budapest subsample probably related to the much 
higher prevalence of suicide in this former subsample. However, we detected strong associations with multiple 
possible predictors, markers and phenotypes related to suicide risk including suicidal and death-related thoughts, 
hopelessness42, restlessness and agitation43, insomnia44 as well as feelings of panic and acute anxiety45. While neu-
roticism showed only a weak nominally significant association in interaction with RLE, and trait-impulsiveness 
showed no association with the T allele either directly or in association with recent stress, a strong association 
was found in interaction with RLE between the T allele and cognitive impulsiveness measured by the STOP task.

Figure 2. Significant interaction between recent negative life events (RLE) and GABRA6 rs3219151 on current 
anxiety scores in the total population. Significant (p = 0.003) genetic interaction in mean BSI anxiety scores 
over RLE scores with standard error bars. Subjects carrying the T allele of GABRA6 rs3219151 showed higher 
increase in current anxiety scores when exposed to severe recent negative life events compared to those carrying 
the CC genotype (Subject numbers in the RLE categories, respectively: CC genotype: RLE0: 288, RLE1: 92, 
RLE2: 69; TC genotype: RLE0: 728, RLE1: 196, RLE2: 154; TT genotype: RLE0: 506, RLE1: 131, RLE2: 110; ★ 
indicates p = 0.016 CC vs TT; pairwise comparisons for visualisation of results.). RLE0: 0–1 RLE; RLE1: 2 RLE; 
RLE2: 3 or more RLE (used only for display purposes). BSI: Brief Symptom Inventory; RLE: recent negative life 
events.

GABRA6 rs3219151 in interaction with RLE

BSI-DEP BETA SE STAT P

Thoughts of ending your life −0.060 0.021 −2.895 0.004

Poor appetite −0.007 0.022 −0.331 0.741

Feeling lonely −0.059 0.031 −1.932 0.054

Feeling blue −0.078 0.029 −2.646 0.008

Feeling no interest in things −0.083 0.027 −3.052 0.002

Trouble falling asleep −0.075 0.030 −2.482 0.013

Feeling hopeless about the future −0.069 0.029 −2.344 0.019

Thoughts of death or dying −0.084 0.027 −3.104 0.002

Feelings of worthlessness −0.080 0.028 −2.883 0.004

Feelings of guilt −0.084 0.027 −3.101 0.002

BSI-ANX

Nervousness or shakiness inside −0.048 0.029 −1.701 0.089

Suddenly scared for no reason −0.033 0.024 −1.348 0.178

Feeling fearful −0.034 0.027 −1.287 0.198

Feeling tense or keyed up −0.072 0.029 −2.521 0.012

Spells of terror or panic −0.095 0.023 −4.219 <0.0001

Feeling so restless you couldn’t sit still −0.081 0.024 −3.364 <0.001

Table 3. Post hoc analysis of association of GABRA6 rs3219151 in interaction with recent negative life events 
on individual BSI items in the total population. BSI, Brief Symptom Inventory; BSI-ANX, BSI anxiety; BSI-DEP, 
BSI depression; RLE, recent negative life events.
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A number of previous studies have investigated the role of GABA transmission and GABA genes in suicide 
but are inconclusive and contradictory4. Differential expression of GABA-A receptor subunits in prefrontal and 
limbic regions were reported in suicide and MDD15,46,47. Lower GABA alpha1, alpha3, alpha4 and delta subu-
nit mRNA expression has been reported in the frontopolar cortex16, and modest but significant differences in 
alpha4 and delta subunit expression were found in the hippocampus and amygdala17 in depressive suicide vic-
tims. Furthermore, dysregulation in GABA-A receptor subunit mRNA integration and coordination, which may 
affect their configuration into a functional receptor, has been demonstrated in the frontopolar and dorsomedial 
prefrontal cortex, hippocampus and amygdala in suicide victims16,17 suggesting a dysregulation between GABA-A 

GABRA6 
rs3219151 Total Population Budapest Manchester

Main effect BETA SE STAT P BETA SE STAT P BETA SE STAT P

BFI 
Neuroticism 
score

0.039 0.026 1.529 0.127 0.052 0.038 1.382 0.168 0.024 0.035 0.695 0.487

IVE 
Impulsivity 
score

0.007 0.007 1.028 0.304 0.001 0.01 0.121 0.904 0.009 0.009 0.953 0.341

Interaction with RLE

BFI 
Neuroticism 
score

−0.043 0.02 −2.156 0.031 −0.061 0.031 −1.944 0.052 −0.033 0.026 −1.294 0.196

IVE 
Impulsivity 
score

−0.009 0.005 −1.645 0.1 −0.018 0.008 −2.197 0.028 −0.003 0.007 −0.493 0.622

Main effect Budapest Interaction with RLE Budapest

BIS 
Nonplanning 
Impulsivity

0.008 0.019 0.419 0.676 BIS Nonplanning Impulsivity −0.024 0.016 −1.565 0.118

BIS Motor 
Impulsivity −0.004 0.014 −0.287 0.774 BIS Motor Impulsivity −0.015 0.012 0.203 0.203

BIS Attentional 
Impulsivity −0.018 0.017 −1.03 0.303 BIS Attentional Impulsivity −0.01 0.014 −0.674 0.501

Hopelessness −0.0003 0.008 −0.043 0.965 Hopelessness −0.02 0.006 −3.028 0.002

Main effect Manchester Level 2 Interaction with RLE Manchester Level 2

STOP task stop 
reaction time −14.41 13.84 −1.041 0.299 STOP task stop reaction time −30.42 9.033 −3.367  < 0.001

Table 4. Main effects and interactions with recent negative life events (RLE) of GABRA6 rs3219151 on 
neuroticism, impulsiveness, hopelessness and STOP task reaction time in the relevant populations. BFI, Big 
Five Inventory; BIS, Barratt Impulsiveness Scale; IVE, Eysenck’s Impulsivity, Venturesomeness and Empathy 
Questionnaire; RLE, recent negative life.

Figure 3. Significant interaction between recent negative life events (RLE) and GABRA6 rs3219151 on current 
stop task reaction time (SSRT) scores in the Manchester Level 2 population. Significant (p = 0.0009) genetic 
interaction in mean SSRT over RLE scores with standard error bars. Subjects carrying the TT genotype of 
GABRA6 rs3219151 showed higher increase in SSRT when exposed to recent negative life events compared to 
those carrying the C allele (subject numbers in the RLE categories, respectively: CC genotype: RLE0: 26, RLE1: 
6, RLE2: 9; TC genotype: RLE0: 51, RLE1: 21, RLE2: 23; TT genotype: RLE0: 39, RLE1: 9, RLE2: 16; ★ indicates 
p = 0.037 TC vs TT; pairwise comparisons for visualisation of results). RLE0: 0–1 RLE; RLE1: 2 RLE; RLE2: 3 or 
more RLE (used only for display purposes). BSI: Brief Symptom Inventory; RLE: recent negative life events.
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subunit genes and disturbed transcriptional-level coordination of the regulation of subunit expression16. Altered 
alpha subunit ratios may influence duration of inhibitory currents affecting inhibitory tone and change network 
timing patterns leading to a dysbalance between tonic and phasic inhibition in the frontal cortex, this could 
have behavioural and psychopathological consequences16,17. In another study significant GABA-A expression 
differences between depressed and non-depressed suicide victims were found in all limbic regions pointing to 
GABA dysfunction in the limbic system in depression and suicide, especially GABRA1 and GABRB148. In a study 
investigating gene expression in 17 brain areas in depressed and nondepressed suicide victims and controls, they 
found that suicidal depressives exhibited an upregulation of a large number of GABA receptor subunit genes15. 
Our results indicating an association between the GABRA6 gene and past suicidal behaviour as well as several 
suicide risk-related phenotypes are in line with the above results suggesting the involvement of GABA-A receptor 
subunit variations in suicide risk.

It should be mentioned that in our study specific elements of suicide risk show a great overlap with symptoms 
of depression. It is well-known that depression is one of the major contributors to suicide risk and there is also 
a partial overlap between the genetics of major depression and suicide49. Several studies investigating suicidal 
behaviour and also those studies focusing on the association between GABA system and suicide point out that 
further studies are needed to differentiate those suicidal risks associated with the investigated genetic variant 
which are specific for suicide but not major depression17. However, the robust association in our present study 
between rs3219151 x RLE and BSI-depression items “thoughts of death or dying”, “feeling no interest”, “feeling 
of guilt”, especially coupled with BSI-anxiety items related to agitation, restlessness, and anxiety attacks, as well 
as with hopelessness yields a constellation that argues for the observed association being specific for suicide risk.

Figure 4. rs3219151 (*) located in the 3′UTR of GABRA6 imputes for 5 additional SNPs in the Caucasian 
HapMap CEU population. The imputed SNPs in order of appearance from left to right are rs1992646, 
rs3811995, rs3811992, rs13184586, rs13172914, with rs3219151 in the far right. Sequence conservation 
across species is shown as is the presence of DNase I hypersensitivity regions that are often associated with 
transcriptional regulation. Imputed SNP rs13172914 (•) is located just adjacent to a conserved region with 
potential transcriptional activity. Analyses were done using UCSC Genome browser on Human Dec. 2013 
(GRCh38/hg38) with standard settings on all selected options.

Figure 5. rs3219151, which is located in the 3′UTR of GABRA6 imputes for a total of 9 SNPs and 2 indels 
(rs151249729 and rs35477281) were in linkage disequilibrium (r2 > 0.8) with rs3219151 in the 1000 genome 
projects British in England and Scotland (GBR) sample. Sequence conservation across species is shown, as are 
DNase I hypersensitivity regions and H3K27Ac histone marks which are often associated with transcriptional 
regulation. Analysis is shown using UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19).
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In order to investigate whether the GABRA6 T allele directly or in GxE interactions is associated with traits 
and cognitive phenotypes influencing suicide risk we tested neuroticism, trait impulsiveness and the STOP task 
reaction time in subsamples. Interestingly, we found only a nominal association for neuroticism in spite of earlier 
studies where GABRA6 was found to be related to neuroticism and harm avoidance14,24,25.

Similarly, no association between rs3219151 and trait impulsiveness which is an important contributor to cer-
tain forms of suicidal behaviour was reported in our study. However, a highly significant association was reported 
in interaction with RLE for cognitive impulsiveness as measured by increased reaction times in T carriers in the 
STOP task reflecting increased latency in the ability to inhibit an already initiated response. Through its crucial 
role in prefrontal-limbic cortex circuitry which plays a role in affective processing and behavioural inhibition, 
GABA appears to have an inhibitory effect on affectively-based impulsive behaviours50. However, cerebrospi-
nal fluid and peripheral GABA concentration showed a controversial association with impulsiveness, either a 
direct or a reverse correlation have been described50,51. Similarly, while several GABA-enhancing treatments such 
as lithium, valproate or carbamazepine have been shown to decrease impulsiveness and impulsiveness-related 
behaviour, benzodiazepines increased impulsiveness in several studies50. Previously association of GABRA6 
variants have not been investigated in association with impulsiveness, so our results concerning an association 
between rs3219151 T allele and increased neurocognitive impulsivity (being slower to inhibit already initiated 
responses) in the context of greater life stress is a novel finding possibly paving the way for further studies delin-
eating the controversial role of GABA in impulsiveness.

Several limitations of our study need to be mentioned. We applied a cross-sectional approach and all pheno-
typic measures were assessed based on self-report without psychiatric screening, although assessment of lifetime 
and current depression and anxiety was later validated in a subsample using SCID, MADRS and the Clinical 
Anxiety Scale52. Assessment of recent negative life events was also based on self-report. Furthermore, suicidal 
behaviour is hard to investigate due to its relatively low prevalence in the general population, and those already 
having committed suicide were naturally missing from our retrospectively evaluated sample. Several of our inves-
tigated trait and state-like phenotypes including impulsiveness and current depression may also influence will-
ingness to participate in such studies and thus bias the sample.

Given previous data implicating the T allele of the GABRA6 gene in association with heightened stress 
response, we interpreted our findings from the aspect of the T allele being a risk allele. However, our data can 
also be interpreted as the CC genotype, which has the lowest frequency, being protective against the increasing 
depression and anxiety observed with increasing life events exposure. Nevertheless, this does not influence our 
finding of the association of the GABRA6 rs3219151 with elements of suicide risk phenotype.

In summary we report in our study that GABRA6 T allele plays an important role in mediating the effects of 
recent stress in the development of suicidal risk-related and possibly suicide-predictor phenotypes. These data 
provide evidence that stress-induced suicide risk may be elevated in T allele carriers, indicated by a constellation 
of elements associated with suicide risk including suicidal and death related thoughts, hopelessness and cognitive 
impulsiveness.

Methods
The study was approved by the local Ethics Committees (Scientific and Research Ethics Committee of the Medical 
Research Council, Budapest, Hungary; and North Manchester Local Research Ethics Committee, Manchester, 
UK) and was carried out in accordance with the Declaration of Helsinki and all relevant rules and regulations 
as part of the NewMood study (New Molecules in Mood Disorders, Sixth Framework Program of the EU, 
LSHM-CT-2004-503474). All participants provided written informed consent.

Study Cohorts. Subjects aged 18–60 years were recruited, as a population sample through general practices 
and a website, in two distinct geographic regions, Greater Manchester, United Kingdom and Budapest, Hungary. 
Full details of the recruitment strategy and criteria have been published previously52–54. For this study the exper-
imental cohort was limited to unrelated individuals of self-reported Caucasian ancestry as this was the largest 
ethnic group, with successful genotyping producing a working European cohort of n = 2283 (Level 1 phase, for 
description see Table 1).

In addition, in Manchester a subset of the cohort and new participants underwent additional assessments to 
validate and extend self-report measures. From this, n = 204 participants were successfully genotyped with useful 
phenotypic data (see below) and included in the present study (Level 2, for description see Table 5).

Investigated phenotypes. Phenotypic measures for Level 1. At Level 1 the participants filled out the study 
questionnaire pack and provided genetic samples. The questionnaire contained a background questionnaire 
(BGR)53,54, which included demographic, health and lifestyle measures, and an inventory of the individuals per-
sonal psychiatric history. For the primary analysis lifetime depression (DEP) was derived from this questionnaire, 
and was validated in the Level 2 phase based on the Structured Clinical Interview for DSM-IV (SCID-I/NP)52,55. 
In addition, self-reported suicide attempt and deliberate self-harm (SUIC) was analysed from the background 
questionnaire. Reported manic or hypomanic episodes, psychotic symptoms, or obsessive-compulsive disorder 
were used for sensitivity analysis (see below).

Psychiatric symptoms were measured using the Brief Symptom Inventory (BSI)56 by the depression subscale 
plus additional items to calculate depressive symptom scores (BSI-DEP), and by the anxiety subscale to derive 
anxiety symptoms (BSI-ANX)57,58. For depression and anxiety continuous weighted dimension scores were cal-
culated (sum of items scored divided by the number of items completed). At a post hoc analysis we used the indi-
vidual items of BSI (10 items for depression and 6 items for anxiety, scores ranging from 0 to 4) to demonstrate 
specific genetic effects.
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To assess neuroticism (NEUR) we used the Big Five Inventory (BFI)59 neuroticism subscale. Impulsivity was 
measured by the Eysenck’s Impulsivity, Venturesomeness and Empathy Questionnaire60 impulsivity subscale 
(IMP), and in the Budapest sample (n = 975) we also used the Barratt Impulsiveness Scale (BIS-11) to specif-
ically asses Motor Impulsiveness (mIMP), Cognitive Impulsiveness (cIMP), and Nonplanning Impulsiveness 
(nIMP)61,62. To specifically test suicide related phenotypes in the Budapest sample we measured Hopelessness 
by the Beck’s Hopelessness Scale (BHS)63. For these parameters continuous weighted dimension scores were 
calculated.

Recent negative life events (RLE), experienced in the last year, were measured by The List of Threatening 
Experiences (LTE)64 and a summary score was used in the analysis.

Post-hoc sensitivity analyses in Level 1. Depression and anxiety can occur concurrently with other mental 
health conditions. As previous studies have reports that GABRA6 may also play a role in other mood disor-
ders and schizophrenia20,35 individuals who reported manic or hypomanic episodes, psychotic symptoms, or 
obsessive-compulsive disorder (based on the Background Questionnaire) were not initially excluded from the 
main study. A sensitivity analysis was then carried out post hoc without these individuals to help determine the 
extent to which these individuals influenced any findings. This resulted in the exclusion of 41 and 116 individuals 
(4.2% and 8.9% of total population cohort) for the Budapest and Manchester cohorts respectively.

Phenotypic measures for Level 2. Based on the SCID-I/NP35,55 interview participants with any other psychiatric 
condition than major depressive disorder or anxiety disorders were excluded from the analyses. Current depres-
sive symptoms were assessed by a trained investigator using the Montgomery-Åsberg Depression Rating Scale65. 
The depression severity ratings produced from these interviews were highly correlated (p < 0.001) with those 
from the self-report questionnaire52.

Prepotent behavioural response inhibition as a neurocognitive measure of impulsivity was assessed by the 
Stop task66. Stop signal reaction times (SSRT) were calculated as an outcome measure67 and analysed.

At this level an extended Life Events Questionnaire (LEQ) was used by adapting validated questionnaires64,68,69 
and a sum score on recent (within the last year) negative life events (RLE-L2) was applied in the analysis. The 
original LTE showed significant and strong correlation with LEQ recent negative life events52.

Genotyping. Genomic DNA was extracted using the Freeman et al.70 protocol from buccal mucosa cells col-
lected by cytology brush (Cytobrush plus C0012; Durbin PLC). Genotyping was carried out using the IplexTM 
assay from Sequenoms MassARRAY technology (Sequenom, San Diego) following the manufacturer’s protocol 
(http://www.sequenom.com). A 15% replication of genotyping was built into the study design, from which an 
overall type I error rate of 0.016% was calculated.

Population size (N) 204

Demographics

Gender (% Male) 31.40%

Age (Mean ± SEM) 
(range)

33.68 ± 0.784 
(18–60)

Recent negative life events

RLE-L2 (Mean ± SEM) 1.53 ± 0.110

Prepotent behavioural response inhibition

SSRT (ms) (Mean ± SEM) 201.37 ± 9.867

Current Depression Score

MADRS (Mean ± SEM) 5.56 ± 0.562

Lifetime depression 
(based on SCID) (%) 59.2%

Remitted depression (%) 40.8%

Partially remitted 
depression (%) 5%

Current Depression (%) 13.5%

Genotype

TT (N) 65

TC (N) 98

CC (N) 41

MAF (%) 44.10%

Table 5. Description of the Level 2 population. Level 2 population: in Manchester a subset of the cohort and 
new participants underwent additional assessments to validate and extend self-report measures. MADRS, 
Montgomery-Asberg Depression Rating Scale; MAF, Minor Allele Frequency; RLE-L2, Recent Negative Life 
Events in Level 2 population; SCID, Structured Clinical Interview for DSM-IV; SEM, Standard Error of Mean; 
SSRT, Stop signal reaction times in milliseconds.

http://www.sequenom.com
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Statistical Analysis. Genetic statistical analysis was carried out using PLINK v1.07 (http://pngu.mgh.har-
vard.edu/purcell/plink/), including calculation of Hardy–Weinberg equilibrium and running regression models 
(logistic and linear, respectively) using additive genetic model for GABRA6 rs3219151. Age at time of assessment, 
gender, and population (Budapest or Manchester) were used as covariates in all primary analyses and main effects 
of variables of the interaction terms were also included in all regression models. Significant skewing of the dis-
tribution of factors known to contribute to mental issues between genotypic groups was checked for gender, age, 
and RLE. In the primary analysis self-reported lifetime depression (DEP), self-reported suicide attempt/deliberate 
self-harm (SUIC), current depression (BSI-DEP) and anxiety (BSI-ANX) scores were used to examine the inter-
action between rs3219151 and stress. Recent negative life events (RLE) score was used as a proxy for stress. FDR Q 
values were calculated to correct for multiple testing during the primary analysis (http://qvalue.princeton.edu/)71 
with q < 0.05 as significant.

As a post hoc test, to identify replications, the Budapest and Manchester subsamples were separately tested 
with the same method as above except that population was not covaried in the models. In-house written 
R-scripts72 were applied in the PLINK analysis of the Level 1 to perform the separate analyses in the Budapest 
and Manchester subsamples. Further variables were explored to identify factors that might increase suicide 
risk; neuroticism (NEUR) and impulsivity (IMP) were investigated in the Level1 combined population, Motor 
Impulsiveness (mIMP), Cognitive Impulsiveness (cIMP), Nonplanning Impulsiveness (nIMP), and Hopelessness 
(BHS) in the Budapest Level1 population, and behavioural inhibition (SSRT) in the Manchester Level2 popula-
tion. For the post hoc tests nominal two-tailed p ≤ 0.05 was the significance threshold.

Descriptive statistics were calculated with IBM SPSS Statistics 23 (http://www.ibm.com/analytics/us/en/tech-
nology/spss/). Based on Quanto (http://biostats.usc.edu/Quanto.html) assuming an explained variance (R2) of 1% 
or odds ratio (OR) of 1.2 we have 99.77% and 99.10% power to detect additive genetic main effects respectively 
(p ≤ 0.05), or 99.80% and 99.99% power to capture gene x stress interactions respectively (p ≤ 0.05), in our com-
bined cohort (n = 2283) for rs3219151. We also have 70.29% and 71.17% power to capture genetic main effects or 
gene x stress interaction respectively, that explains 3% variance (R2) in our Level 2 population (n = 204).

In silico functional analysis. SNPs in linkage disequilibrium (LD) with rs3219151 (r2 > 0.8) were identified 
using the National Cancer Institute, Division of Cancer Epidemiology & Genetics’ LDLink tools (https://analy-
sistools.nci.nih.gov/LDlink/?tab=ldproxy) with phase 3 data from the 1000 genome projects British in England 
and Scotland (GBR) sample. Additional assessment of potential functional impact of rs3219151 and any SNPs 
in LD with rs3219151 (r2 > 0.8) was carried out using SNP Function Prediction (FuncPred; National Institute 
of Environmental Health Sciences, North Carolina, USA; https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html) 
and mutationtaster (Charité, Berlin; http://www.mutationtaster.org/ChrPos.html). Cutoffs for miRanda miRNA 
prediction within FuncPred were score ≥ 140 and Gibbs free energy ≤ −7.0. Potential impact of the SNPs on 
known and predicted regulatory elements in the intergenic regions was investigated using the RegulomeDB data-
base (Center for Genomics and Personalized Medicine, Stanford University; http://www.regulomedb.org/index) 
and ENCODE (Encyclopedia of DNA Elements) project data via the UCSC Genome Browser (University of 
California, Santa Cruz; http://genome.ucsc.edu/ENCODE/), with conservation at the SNP positions across 100 
vertebrate species reported using basewise conservation (phyloP) score. Additional information on predicted 
miRNA regulation was obtained from miRBase (University of Manchester, UK; http://www.mirbase.org/search.
shtml). All analyses were done using UCSC Genome Browser on Human version GRCh38/hg38 released Dec. 
2013 with standard settings on all selected options.

Data availability. The datasets generated during and/or analysed during the current study are avail-
able in the Figshare repository, https://figshare.com/s/fbd4e19a942aae3b2c09 and https://figshare.
com/s/14462b7a1876a8279ca3.
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