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Abstract:  

To prolong the lifetime of thermal barrier coatings (TBCs) recently a new method of 

microcrack healing has been developed, which relies on damage initiated thermal 

decomposition of embedded molybdenum disilicide (MoSi2) particles within the TBC matrix. 

While these MoSi2 particles have a beneficial effect on the structural stability of the TBC, the 

high thermal conductivity of MoSi2 may have an unfavourable but as yet unquantified impact 

on the thermal conductivity of the TBCs. 

In this work the thermal conductivity of spark plasma sintering (SPS) produced yttria-

stabilised zirconia (YSZ) model thermal barrier coatings containing 10 or 20 volume percent 

of MoSi2 healing particles was investigated using the laser flash method. Measurements were 

performed on free-standing composite material over a temperature range from room 

temperature up to 1000 oC. Microstructural analysis was carried out by SEM combined with 
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image analysis to determine the size, distribution and area fraction of healing particles. The 

measurements were compared with the results from microstructure-based multi-physics finite 

element (FE) models and analytical models (the asymmetric Bruggeman model and the 

Nielsen model) in order to study the effects of the addition of MoSi2 particles as well as the 

presence of micro-pores on the apparent thermal conductivity. The results show a strongly 

non-linear increase in the thermal conductivity of the composite material with the MoSi2 

volume fraction and a dependence on the aspect ratio of MoSi2 particles.  Interparticle 

connectivity is shown to play a big role too.  
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1. Introduction 

Yttria-stabilised zirconia (YSZ) has one of the lowest thermal conductivity values among 

ceramic materials, and therefore is widely used as the base material in thermally protective 

coatings for gas turbines components in aircraft engines and power generators.  These thermal 

barrier coatings (TBCs) are generally deposited onto the metallic components by atmospheric 

plasma spraying (APS) or electron beam physical vapour deposition (EB-PVD) methods. The 

coated systems experience high stresses that develop due to the thermal expansion coefficients 

mismatch between the metal substrate and the ceramic TBC. Upon a sufficient number of cycles 

these stresses may result in the development of microcrack patterns in the TBC that coalesce 

and ultimately lead to failure of the topcoat and its adhesion promoting thermally grown oxide 

(TGO) layer [1-4]. For  TBC systems manufactured by APS failure is known to occur within 

the porous YSZ top coat close to the TGO layer [3]. Therefore, it has been proposed to embed 

‘healing’ particles inside the YSZ top coat, which when intersected by a crack initiate a 

chemical reaction resulting in filling the microcracks with a well-adhering load bearing 

substance [5-7]. The healing action makes that the crack effectively disappears, restores the 

TBC mechanical integrity and extends the life time of the component [5]. It has been 

demonstrated that B-containing molybdenum disilicide (MoSi2) could act as a suitable healing 

agent for YSZ-based TBCs. Upon oxidation initially silica (SiO2) is formed as a reaction 

product, which fills the crack and subsequently turns into  mechanically stable zircon (ZrSiO4) 

due to a secondary solid state chemical reaction with the YSZ matrix [7, 8]. To prevent 

premature oxidation of the MoSi2 in the absence of a crack, the MoSi2 particles need to be 

protected by a very thin yet dense layer of alumina [8], such that the self-heling mechanism 

would only be initiated by a crack intersecting the particle and opening the shell, allowing 

MoSi2 oxidation.  

The presence of such MoSi2 particles could have other (negative) effects on other important 

properties, such as the thermal conductivity value, of the TBC too. It has been shown that 



*Corresponding author: justyna.kulczyk-malecka@manchester.ac.uk 
Tel: +441613063590                                                                                                                                             4 
 

doping of YSZ with sub-tetravalent oxides could further reduce thermal conductivity of YSZ 

as it leads to the formation of oxygen vacancies that strongly scatter phonons [9-11]. However, 

embedding MoSi2 particles in a regular YSZ does not promote the formation of oxygen 

vacancies and MoSi2 itself, being a intermetallic compound, shows a high thermal and electrical 

conductivity instead [12, 13]. Since the thermal conductivity of MoSi2 is much higher than that 

of YSZ [12] and the TBC system as a whole [14, 15] it is important to investigate the unwanted 

decrease in thermal insulation due to the embedment of MoSi2 particles. Therefore, in this paper 

the potentially negative effect of embedded MoSi2 particles on the global thermal conductivity 

of the composite YSZ material has been investigated as a function of the MoSi2 particle fraction 

and morphology, both experimentally and theoretically. It should be pointed out that in the case 

of successful implementation of such healing particles in TBCs they are expected to remain 

intact for a very long time and only to be activated towards the end of the life time of the coating. 

Hence, it is important to study the reduction of the thermal insulation of the underlying turbine 

blade for intact particles.  As the final reaction product, after the occurrence of the healing 

reaction (ZrSiO4), is a non-conducting material, the healing reaction itself will only be 

beneficial for the thermal protection itself. 

Since APS deposition of YSZ thermal barrier coatings containing controlled amounts of MoSi2 

particles of specified shape and integrity is technologically very complex and part of ongoing 

international research, in the present work we focus on free standing YSZ material containing  

different volume percentages of MoSi2 particles manufactured by a spark plasma sintering 

(SPS) method. The homogenous distribution of the MoSi2 particles in the YSZ sample created 

and analysed here provides an upper boundary for the actual loss in thermal protection for the 

envisaged TBC systems, which will only contain MoSi2 particles close to the interface with the 

TGO, as this is the region in which the lateral cracking is found to occur [3].  Certainly there is 

no need to insert MoSi2 particles in regions of the TBC where cracking does not lead to 

spallation of TBC.  Localised deposition of the MoSi2 particles at well-defined positions in the 
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TBC can be achieved by dual particle feed APS processing and taking appropriate measures to 

compensate for the partial decomposition of the MoSi2 particles during spraying. The SPS 

process taking a process cycle of typically one hour is a more benign production process than 

the APS process with its supersonic acceleration of the particles through the plasma and a 

process time well within a second. Therefore SPS is a suitable technique to produce model TBC 

systems for studies as reported here. It should be pointed out that SPS produced YSZ material 

is less porous than a typical APS TBCs. However the effect of porosity, pore shapes and its 

extension on the thermal conductivity of YSZ have been studied previously [15-17] and can be 

compensated for in the present experimental work. The aim of this work is to quantitatively 

investigate the influence of embedding MoSi2 particles on the thermal insulating performances 

of YSZ. In companion work the effect of the concentration and aspect ratio of the healing 

particles on the crack healing action is being studied [18]. Ultimately one can define the optimal 

combination of improvement in thermomechanical stability, resulting extension of the life time 

and reduction in thermal protection of the underlying turbine blades as a function of the MoSi2 

concentration and particle morphology, and work of this nature forms the core target of the EU 

funded SAMBA project [19] and the final results will be reported in due course. 

2. Experimental 

Disc shaped YSZ samples with embedded MoSi2 particles were prepared by SPS. The powder 

mixtures were produced by mixing yttria-stabilized zirconia containing 7 wt. % Y2O3 (YSZ 

Amperit 872, H.C. Starck, average particle size of 7 µm) and molybdenum silicide (MoSi2, 99.5 

% purity, ChemPur GmbH, average particle size of 5 µm) using a CAT RM5W-80V roller 

mixer. The mixing was carried out for 12 h. The volume fraction of MoSi2 particles was varied 

between 10 and 20 vol. %. Prior to sintering, the YSZ powder was downsized from 40 µm to 7 

µm using a Retsch PM 100 planetary ball milling. Zirconia balls of 10 mm diameter were used 

as grinding media. The ball to powder mass ratio was kept to 3:1. The rotor speed was 300 rpm 

and the milling time was 24 h.  
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The particle size distribution of YSZ and MoSi2 particles was determined using a Malvern 

Master Sizer X laser diffraction instrument (Malvern Instruments Ltd., Worcestershire, UK). 

Prior to the measurements, the particles were ultrasonicated in water for 20 min.   

A 20 mm inner diameter graphite die was employed to sinter the composites in the SPS 

installation (FCT SPS system, type KCE-FCT HP D-25-SI, Germany). To prevent any possible 

reaction between the graphite die and the powders, a graphitic paper was placed between the 

punches and the powder as well as between the die and the powder. The graphitic paper was 

sprayed with BN on the both sides for easy removal. The powders were sintered in vacuum at 

1500 °C with a heating rate of 20 °C/min and an isothermal hold of 30 min under a constant 

uni-axial pressure of 50 MPa applied since the beginning of the sintering cycle. The temperature 

was monitored using an axial pyrometer. The electric current was applied by pulse following 

the standard 15/5 (on/off 3 ms) pulse pattern. Natural cooling was applied from the sintering 

temperature to room temperature, after releasing the pressure. The sintering results in disc like 

samples of 20 mm diameter and about 2 mm thickness.   

The microstructure of the samples was investigated by scanning electron microscopy (FEG-

SEM, Quanta 650) using backscatter electron (BSE) detector. Specimens were subjected to X-

ray diffraction (XRD) (Philips X’Pert), from which the phase composition was obtained. The 

bulk densities of the samples were measured by the Archimedes method according to ASTM 

13962 standard test method for density of compacted or sintered powder, whereas the volume 

fraction and the geometrical characteristics of the porosity was evaluated by computerised 

image analysis using Avizo software.  

The thermal diffusivity of the samples was measured from room temperature up to 1000 oC in 

an argon atmosphere using an in-house constructed laser flash system. Prior to analysis samples 

were machined to discs of approximately 10 mm diameter and approximately 2 mm thickness.  

Both surfaces of the specimen were coated with a thin layer of colloidal graphite to enable 

uniform energy absorption of the laser pulse. During the measurements the entire front face of 
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the sample was exposed quasi homogeneously to a short duration heat pulse (0.67 ms), which 

was supplied by a neodymium glass laser. An InSb infrared detector, cooled in liquid nitrogen, 

was used to measure the temperature rise on the reverse side of the samples. Measurements 

were made at various temperatures during the heating up procedure at approximately 100 oC 

intervals. For each temperature at least 7 measurements were taken to obtain mean accurate 

thermal diffusivity values.  

The thermal conductivity values were obtained from the bulk density (ρ), specific heat (Cp) and 

thermal diffusivity (α) using the following relationship: 

                                                     𝑘𝑘 = 𝜌𝜌 ∙ 𝐶𝐶𝑝𝑝 ∙ 𝛼𝛼                                (1) 

The specific heat capacity values were calculated accordingly to the Neumann-Kopp rule [20] 

based on referenced specific heat values reported in Barin [21] and calculated for the 

corresponding molar fractions of MoSi2 particles within the YSZ matrix.  

2.1 The analytical models for thermal conduction in composite materials 

Bruggeman model has been widely applied to estimate thermal conductivity values of two-

phase systems as a function of the volume fraction of the dispersed phase and the properties of 

the constituent phases [22-24]. The model has also been used in this work to predict k values 

for the composite materials synthesized. 

Based on the asymmetric Bruggeman model, the effective thermal conductivity of an inter-

connected two phase composite is related to the composition according to [23, 25]: 

(1 − 𝑓𝑓) = � 𝑘𝑘𝑚𝑚
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

�
𝜁𝜁 𝑘𝑘𝑑𝑑−𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘𝑑𝑑−𝑘𝑘𝑚𝑚

�𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒+𝛾𝛾𝑘𝑘𝑑𝑑
𝑘𝑘𝑚𝑚+𝛾𝛾𝛾𝛾𝑑𝑑

�
𝜂𝜂
     (2) 

where keff is the effective thermal conductivity of a two-phase asymmetric system containing a 

volumetric fraction f of dispersed spheroids; kd is the thermal conductivity of dispersed 

spheroids; km is the thermal conductivity of the continuous matrix and ζ, γ and η are related to 

the relative orientation between thermal flux and the shape of dispersed particles [26]. The 

shapes of the spheroids can vary from a cylinder up to a flat lamella and can be suitably 

described by the axial ratio a:c of the spheroids [27].  
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Another analytical model for the thermal conductivity of two-phase system that has been 

applied in this work is that by Nielsen [28, 29].  The Nielsen model is an empirical model with 

adjustable fitting parameters that has been widely used to predict thermal conductivity of the 

two-phase system consisting of a matrix and a filler having significantly different thermal 

properties [22, 23, 30, 31]. The analytical solution can be found from the following formulae: 

                                                     𝑘𝑘
𝑘𝑘1

= 1+𝐴𝐴𝐴𝐴𝐴𝐴2
1−𝐵𝐵𝐵𝐵𝐵𝐵2

                   (3) 

                𝐴𝐴 = 𝑘𝑘𝐸𝐸 − 1        (4) 

     𝐵𝐵 = 𝑘𝑘2 𝑘𝑘1−1⁄
𝑘𝑘2 𝑘𝑘1+𝐴𝐴⁄         (5) 

   𝜓𝜓 ≅ 1 + �1−𝜙𝜙𝑚𝑚
𝜙𝜙𝑚𝑚2

�𝜑𝜑2       (6) 

where k1 and k2 represent thermal conductivities of the matrix and the filler, respectively; kE is 

generalised Einstein coefficient; constant A depends on the shape of the dispersed particles and 

their orientation in respect to the heat flux; constant B accounts for the relative thermal 

conductivity of the two components; φ2 is the volume fraction of dispersed phase; and ψ is 

determined by the maximum packaging fraction φm. The φm is defined as the true volume of the 

particles divided by the volume they appear to occupy when packed to their maximum extent 

[28]. 

3. An actual microstructure-based 2D FE model for thermal conduction 

To quantitatively correlate the microstructural features to the effective thermal conductivity of 

the samples, we developed an image-based 2D multi-physics finite element (FE) model to 

calculate the effective thermal conductivity for composites having exactly the microstructure 

as derived from SEM images. The SEM images were first filtered to remove any noise that may 

come from image acquisition process. Afterwards, the filtered image (Fig. 1 a) was segmented 

based on both the grey value of each pixel and the topological feature of the particles. A top-

hat method for segmentation from Avizo software was employed to separate pores, MoSi2 

particles and YSZ matrix. Each phase in the SEM image was labelled and assigned a typical 
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value (Fig. 1 b). 2D FE meshes were generated using the segmented images with ScanIP® 

software. Each SEM image comprised of 1024 × 884 pixels. The mesh densities at the 

YSZ/MoSi2 and solids/pores interfaces were refined for computation accuracy. As the thermal 

conductivity of gas (~ 0.024 Wm-1K-1 and decreasing dramatically as temperature increases) is 

much lower than that of the YSZ (~ 2 Wm-1K-1 at room temperature), we assumed that pores 

act as thermal insulators in the model [32]. Therefore, no meshes have been generated within 

the pores. The final FE mesh consisted of 3000000 ~ 4000000 DC2D3 elements (Fig. 1 c) and 

a constant heat flux was applied along the global X-axis. The effective thermal conductivity of 

the ceramic composite was calculated based on the temperature at two edges of the sample (Fig. 

1 d) when a steady state is reached according to: 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑞𝑞×𝐿𝐿
Δ𝑇𝑇

       (7) 

where L is the dimension of the SEM image in the direction of the heat flux, q is the integrated 

heat flux intensity and ΔT is calculated as the average temperature difference at two edges 

perpendicular to the heat flux direction. 

The conductivity of YSZ is assumed to be more or less independent of the temperature as has 

been reported previously [17]. This property of YSZ has been ascribed to the high defect 

density. At 100 oC the thermal conductivity value for YSZ is  2 Wm-1K-1 [15]. On the other 

hand, the thermal conductivity of MoSi2 is highly temperature sensitive in comparison to YSZ. 

Fig. 2 shows this temperature dependence [12]. 

4. Results  

4.1 Microstructure and phase identification  

Fig. 3 shows BSE-SEM images of the composite materials. The pores can be easily 

distinguished as the dark phase. Healing particles are the grey phase, while YSZ is the brightest 

phase. Avizo software was used to segment out such pores based on a global grey value 

threshold and quantify their volume percentage and morphology. Microstructural details for the 

three composite grades are listed in Table 1.  
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As-received samples were also characterised using XRD analysis under Cu Kα radiation. 

Samples were scanned from 20.01 to 84.99 2θ degrees with 0.02 step size. Fig. 4 shows XRD 

data obtained from the samples. It can be seen that besides YSZ and MoSi2 some traces of 

Mo5Si3 are present in the sample with 10 vol. % of healing particles., Mo5Si3 has been reported 

to have a lower thermal and electrical conductivity than MoSi2 [33, 34]. However, as the amount 

of Mo5Si3 in the composite is minimal, we have neglected its effect on the sample’s effective 

thermal conductivity. 

4.2 Thermal conductivity  

Fig. 5 shows the thermal diffusivity of the three composites as a function of the temperature. 

From a temperature of 100 oC for all three compositions the thermal diffusivity decreases 

continuously with increasing temperature. The largest drop in thermal conductivity with 

temperature occurs in the sample containing 20 vol. % of MoSi2. As expected, the impact of 

embedding MoSi2 in YSZ on its thermal diffusivity is manifested in two ways: (1) the thermal 

diffusivity values doubles from the value for pure YSZ sample to the one doped with 20 vol. % 

of MoSi2 and (2) the thermal diffusivity of the composite becomes more temperature dependent 

as the MoSi2 volume fraction increases (see also Fig. 2).  

Fig. 6 shows the calculated thermal conductivity values of the three samples as a function of 

the temperature (Eq. 1). The figure shows that the thermal conductivity value for the un-doped 

YSZ is almost temperature independent. This phenomenon is characteristic for pure YSZ and 

agrees with the literature [15, 17, 35]. However, in composite samples the thermal 

conductivities show significantly higher values and a clear temperature-dependent curvature is 

visible for the sample containing 20 vol. % MoSi2. This is due to the MoSi2 dopant, which is 

known to have a good thermal (and electrical) conductivity, reported to be about 68 Wm-1K-1 

at room temperature [12] dropping to about 30 Wm-1K-1 at 1000 oC (Fig. 2).  

4.3 Effective thermal conductivity from the analytical and numerical models 
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The thermal conductivity values as obtained by the laser flash method and as calculated using 

the Bruggeman model and the image-based FE model are plotted in Fig. 7 a and b as a function 

of temperature for composites containing 10 and 20 vol. % of MoSi2, respectively.  The dashed 

lines represent lower and upper bounds that have been calculated from asymmetric Bruggeman 

model that assumes that the secondary phase is dispersed within a continuous matrix. In the 

lower estimate the model presumes that the less-conductive (i.e. YSZ) phase is the continuous 

phase and the more-conductive (i.e. MoSi2) phase is dispersed.  In the upper estimate the 

assumptions are inversed.  Fig. 7 a shows that in the case of the 10 vol. % MoSi2 composite the 

symmetric Bruggeman estimate, the lower bound  Bruggeman value and the FEM value are 

rather close and a little lower than the experimental value, yet all data sets showing the same 

temperature dependence.  All values are considerable lower than the upper bound estimate, as 

is to be expected given the dispersed nature of the MoSi2 particles observed in SEM.  In the 

case of the 20 vol. % MoSi2 composites again the symmetric Bruggeman estimate, the lower-

bound Bruggeman value and the FEM value are rather close.  In this case the experimental data 

are much higher than predicted, but more interestingly retain their predicted weak temperature 

dependence.  

The Nielsen model (Eq. 3-6) predictions and experimental effective thermal conductivity values 

at room temperature are plotted as a function of the actual volume fraction of MoSi2 in Fig. 8. 

The best fit was obtained for a shape factor A=2.72 and a maximum packaging fraction 

φm,=0.38. Using these room temperature fitting values, the Nielsen model predicts thermal 

conductivity values close to those obtained experimentally for the whole temperature range 

explored (Fig. 9).  

5. Discussion 

Embedding MoSi2, which is a good thermal conductor, in an YSZ matrix which is an excellent 

insulator, can be expected to lead to an increased thermal conductivity of the composite in 

comparison with pure YSZ. Indeed, the experimental results have shown an obvious increase 
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in measured thermal conductivity for the composites (Fig. 5-9). However, the measured values 

are higher than the predictions from asymmetric Bruggeman model for two-phase system and 

the FE model (Fig. 7). This discrepancy is more obvious in composites with higher content of 

the MoSi2. To explain the mechanisms through which the addition of MoSi2 particles has 

boosted the effective thermal conductivity, we investigated factors including conductivity, 

shape, orientation and percolation of the second-phase particle. FE models were used in this 

work as a main tool in parametric study on the effect of material’s microstructure on thermal 

conductivity. We focus on microstructural features that create local delocalised heat channels 

or channel segments through the matrix.  

5.1 Effect of the porosity  

The effect of porosity on the effective thermal conductivity of ceramics has been investigated 

extensively [15, 27, 36] and pores are supposed to be thermally non-conductive. Actually, 

thermal conductivity kenclosed of enclosed gas is described by Knudsen as [37]: 

            𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
1+𝐶𝐶� 𝑇𝑇𝑃𝑃𝑃𝑃�

       (8) 

where C is related to the gas properties. 

A plot was made using the data for Ar [38] as shown in Fig. 10. SEM images in Fig. 3 indicates 

that the diameter of the pores lay more or less within 10-7 ~ 10-6 m. This corresponds to a 

normalised thermal conductivity of 0.2 ~ 0.8 depending on temperature.  As shown in Fig. 3 

the pores in the SPS produced samples seem isolated and there are no indications of longer 

channels in the 20 vol. % material than for the other materials.  This, in combination with the 

20 vol. % sample having a comparable porosity density as the 0 vol. % sample, suggest that 

pore connectivity is a likely explanation for the observed higher conductivity of the 20 vol. % 

sample. 

5.2 Effects related to particle shape and orientation 

Apart from the volume percentage of the second-phase material higher order parameters, such 

as particle size, shape and spatial distribution, can also affect the effective conductivity [15, 
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17]. To investigate the shape and orientation effect, we constructed certain artificial 

microstructures derived from the SEM determined real microstructure for the 20 vol. % sample. 

Artificial microstructures were constructed using an in-house code adapted from a circle-filling 

algorithm changing the a:c ratios by elongating the particles in directions parallel to the heat 

flux (a:c increases) and perpendicular to the heat flux (a:c is reduced). Please note that in all 

simulations the MoSi2 particles remain isolated from each other. Pores and their size 

distributions are identical for all cases. The effective thermal conductivities have been 

calculated for each artificial microstructure and they have been plotted as a function of aspect 

ratio a:c in Fig. 11. 

Fig. 12 shows the calculated heat flux map for four typical microstructures. It is important to 

note that MoSi2 particles elongated along the temperature gradient direction serve as preferred 

pathways for heat flux due to enhanced thermal conductivity. Such pathways account for the 

dramatic increase in effective thermal conductivity when the a:c value is increased (Fig. 7). 

Nevertheless, it is important to stress here that the extreme orientations of the particles 

considered here (for the a:c ratios above 1:8 and 8:1) cannot be achieved by the SPS (or any of 

the other known) manufacturing process. Therefore, the extremes examined here only have a 

purely theoretical relevance and to explore the boundaries of the potential influence of the 

particle shape and orientation on the nett thermal conductivity of the two-phase system. 

As it can be seen, the shape and orientation of MoSi2 particles can have a significant effect on 

the effective thermal conductivity. Nevertheless, this still could not explain the higher values 

from experimental measurements compared with model predictions. In fact, having irregular 

shapes, the MoSi2 particles are not preferentially oriented (see Fig. 1 a, for example). Hence 

MoSi2 particle shape alone cannot explain the non-linear increase in thermal conduction with 

increasing MoSi2 concentration.  

5.3 Percolation effects  
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Percolation is the phenomenon of a rapid rise in electrical or thermal conductivity at certain 

concentration due to the unintentional formation of chains of more-or-less connecting particles 

spanning the complete distance between the two external surfaces at different temperatures of 

voltages. The critical percentage of filler particles at which such a chain statistically forms is 

called the percolation threshold. Therefore, bond percolation is used to explain the formation 

of conductive networks by the dopant in ceramic composite material [39, 40] as well as carbon 

fibre reinforced composites [41-45]. 

As can be seen from Fig. 7 the Bruggeman based on idealised spherical or ellipsoidal particles 

and FE models based on 2D representations of the actual microstructure give similar results 

suggesting that the particle morphology as such has not lead to the discrepancy and the FE 

model has captured the morphological effects of the secondary phase particles. The FE and 

Bruggeman model predictions only fit the data for a composite sample with 10 vol. % of MoSi2. 

In the 20 vol. % sample the experimental values are significantly higher than these predicted 

from the models. This could be related to local (out of plane) interconnection of MoSi2 particles 

in 3D that creates a fast channel for heat to transfer across the sample volume. This way heat 

would be transferred through the highly conductive particles embedded into less-conductive 

YSZ matrix resulting in significant increase of the thermal conductivity of the composite 

material.  

However, experimental values lay within the boundary region predicted from asymmetric 

Bruggeman model plotted in Fig. 7 as dashed lines. It can be seen that in case of sample with 

10 vol. % of MoSi2 experimental values are close to the lower boundary region, whereas in 

sample embedded with higher fraction of MoSi2 experimental values are in the range of the 

higher boundary limit. This could suggest that the sample with 20 vol. % of embedded particles 

has reached the percolation threshold, therefore does not follow Bruggeman’s nor 2D SEM 

image-based FE model.  
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Experimental values fitted to the numerical Nielsen model with the factor A=2.72 and the 

maximum packaging fraction, φm,=0.38 gives a satisfactory fit over the whole temperature range 

investigated in this study (see Fig. 9). It is worth mentioning here that factor A  proposed by 

Nielsen for spheres is 1.5, however it has been observed that for irregular, agglomerated fillers 

the fit factor A generally has a value higher than 2 [28]. Moreover, the maximum packaging 

fraction of 0.38 does not correspond to any type of packaging of spheres proposed by Nielsen. 

However, Pal compared the Nielsen numerical fit to various composite systems and concluded 

that the values of φm are dependent on the system that is being considered and can vary for 0.32-

1.0 without any obvious explanation [46]. Maximum packaging fraction can vary between 

different systems due to variations in the particle size distribution and particle shape, and due 

to possible aggregation of filler particles. Also Weber  et al. [47] explored the rigour of the 

fitting of both parameters A and φm and concluded that the A factor gives the greater opportunity 

for optimisation. It is worth stressing again that Nielsen model is an empirical model with 

adjustable fitting parameters and for unknown systems one cannot predict the volume 

dependence.  

6. Conclusions 

The experimental and computational work on SPS produced YSZ-MoSi2 granulate composites 

have shown that indeed the thermal conductivity increases and becomes more temperature 

dependent, in accordance with the properties of the MoSi2 particle.  At low volume fraction of 

10 vol. % the results are in reasonable agreement with the Bruggeman model and 2D FE model 

calculations. At the higher volume fraction of 20 vol. % the increase in thermal conduction is 

much stronger than predicted by the Bruggeman and FE models, which basically see the 

particles as fully isolated spheres in a continuous matrix.  The volume fraction dependence is 

well described by the Nielsen model when assuming a non-spherical shape (A=2.72) and a low 

potential packing behaviour (φm = 0.38).  



*Corresponding author: justyna.kulczyk-malecka@manchester.ac.uk 
Tel: +441613063590                                                                                                                                             16 
 

The current research suggested that MoSi2 healing particles can be added to YSZ based thermal 

barrier coatings up to a volumetric concentration of 10 % without an unacceptable loss in 

effective thermal insulation behaviour.  In case such coatings were to be produced via APS the 

natural splat morphology would lead to a favourable particle aspect ratio making it possible to 

raise the critical concentration beyond the current estimate of 10 vol. %.  

The work showed that 2D based physical transport models accurately copying actual 

micrographs can give misleading results even for modest filling fractions of the conductive 

phase due to out-of-plane interconnects between particles. 3D modelling in combination with 

3D imaging seems the obvious next step forward.  
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List of Figure Captions: 

Figure 1: The process of converting a SEM image into FE mesh and calculating the effective 

thermal conductivity according to the calculated temperature field. A sample with 20 vol. % 

MoSi2 was used as an example. Notice that no elements have been generated for the pores. 

Figure 2: Thermal conductivity of MoSi2 as a function of temperature [11]. 

Figure 3: SEM images of the specimen surfaces for pure YSZ matrix (a), YSZ and 10 vol. % 

MoSi2 (b) and YSZ with 20 vol. % MoSi2 (c). 

Figure 4: XRD peak positions collected from SPS samples. Peaks have been assigned to 

different phases found from the analysis. 

Figure 5: Thermal diffusivity of the YSZ/MoSi2 as a function of temperature.  

Figure 6: Thermal conductivity of the YSZ/MoSi2 as a function of temperature calculated using 

Eq. 1. 

Figure 7: Comparison of the temperature dependent thermal conductivity based on FE and the 

Bruggeman model solution for composite samples with 10 vol. % (a) and 20 vol. % MoSi2 filler 

(b). Dashed lines show lower and upper boundary regions for asymmetric Bruggeman model.  

Figure 8: Thermal conductivity of composites consisting of MoSi2 spheres in YSZ matrix. Solid 

line is theoretical predictions using Eq. 3-6. Blues dots show experimental values measured at 

room temperature for the actual volume fraction of MoSi2 particles, as stated in Table 1. 

Figure 9: Thermal conductivity of composites consisting of MoSi2 spheres in YSZ matrix. Dots 

show experimental data fitted into Nielsen model (solid line) according to the actual volume 

fraction of MoSi2 particles [26]. 

Figure 10: Conductivity of Ar as a function of pore sizes at various temperatures according to 

Eq. 10.  

Figure 11: Effective thermal conductivity values as a function of the MoSi2 aspect ratio a:c 

calculated for modelled artificial microstructures.  
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Figure 12: Heat fluxes inside the ceramic composites with different MoSi2 shapes: real 

microstructure, keff = 4.18 Wm-1K-1 (a-b); a:c = 1:1, keff = 3.38 Wm-1K-1 (c-d); a:c = 32:1, keff = 

7.77 Wm-1K-1 (e-f) and a:c = 1:32, keff = 2.75 Wm-1K-1 (g-h). The shape of MoSi2 strongly 

affects the heat fluxes as they serve as channels for thermal flow.  
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Table 1: Characteristics of SPS samples used for thermal diffusivity measurements. 

MoSi2 
volume 

% 

Porosity % Measured 
volume % 
of MoSi2 

Density  

(g cm-3) 

0 11.84±1.3 0 5.49 
10 7.96±3.0 13.5±4.4 5.53 
20 10.72±1.4 21.8±1.5 5.84 
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         (a) Filtered SEM image                                    (b) Phase map  

        

                 (c) FE Mesh                                          (e) Temperature Field 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 6 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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                      (a) Flux Vector                                    (b) Magnitude Map 

 
                     (c) Flux Vector                                     (d) Magnitude Map 

 
                     (e) Flux Vector                                    (f) Magnitude Map 
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                     (g) Flux Vector                                     (h) Magnitude Map 

 

Figure 12 
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