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ABSTRACT 
 
Rationale: Downregulation of the pacemaking ion channel, HCN4, and the corresponding ionic current, If, 
underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain 
the increased incidence of bradyarrhythmias in veteran athletes and it will be important to understand the 
underlying processes.  
 
Objective: To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate 
the role of micro-RNAs (miRs) in the repression of HCN4. 
 
Methods and Results: As in rodents, the intrinsic heart rate was significantly lower in human athletes than 
non-athletes and in all subjects the rate-lowering effect of the HCN selective blocker, ivabradine, was 
significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next 
generation sequencing and qPCR showed remodelling of miRs in the sinus node of swim-trained mice. 
Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p 
and HCN4 was confirmed by a dose-dependent reduction in HCN4 3-UTR luciferase reporter activity on 
co-transfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). 
Knockdown of miR-423-5p with antimiR-423-5p reversed training-induced bradycardia via rescue of 
HCN4 and If. Further experiments showed that, in the sinus node of swim-trained mice, upregulation of 
miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription 
factor Nkx2.5. 
 
Conclusions: HCN remodelling likely occurs in human athletes as well as rodent models. miR-423-5p 
contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of 
miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node 
dysfunction in veteran athletes. 
 
Keywords:  
Athletes, sinus bradycardia, ion channel remodelling, micro-RNAs, exercise training, sinoatrial node. 
 

 
 
 
 
 
 
 
 
 
 
 

Nonstandard Abbreviations and Acronyms: 
  
HCN4  hyperpolarization-activated cyclic nucleotide gated channel 4 
If  funny current 
FDR  false discovery rate 
micro-RNA miR – microribonucleic acid 
qPCR  quantitative real-time reverse transcription polymerase chain reaction 
UTR  untranslated region 
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INTRODUCTION 
 

Athletes are prone to cardiac arrhythmias and sinus bradycardia is the most common rhythm 
‘disturbance’.1 In the long term, this physiological adaptation can become pathological as veteran athletes 
are more likely to have sinus node dysfunction and to need an electronic pacemaker implantation than non-
athletes.2-4 In two rodent models of exercise training, we previously demonstrated that the training-induced 
bradycardia is predominantly the result of a downregulation of the key pacemaking ion channel HCN4 and 
the corresponding ionic current (funny current, If) in the sinus node.5 We now report the first evidence that 
HCN4 and If downregulation is also responsible for training-induced sinus bradycardia in human athletes. 
What is responsible for the downregulation of HCN4 in the athlete? Despite its fundamental importance, 
regulation of HCN4 in health and disease is poorly understood. micro-RNAs (miRs) have been shown to 
play pivotal roles in cardiac remodelling in a variety of settings by post-transcriptional silencing of genes.6-

9 Some miRs have been implicated in ion channel remodelling.7-9 We report here that the downregulation 
of HCN4 and If in trained mice is the result of an upregulation of miR-423-5p in the sinus node and the 
training-induced bradycardia can be reversed by targeting the miR-dependent HCN4 remodelling.  
 
 
 
METHODS 
 
A 3-lead ECG was recorded from male volunteers aged 18-30 years: 8 competitive endurance athletes and 
10 sedentary age-matched (control) subjects. The heart rate was measured before and after complete 
autonomic blockade (achieved by intravenous injection of 0.04 mg/kg atropine and 0.2 mg/kg propranolol 
followed by top-up doses). After complete autonomic blockade, 7.5 mg ivabradine was administered orally 
and the change in heart rate recorded and used as a measure of the involvement of If in pacemaking. 10-
week-old C57BL/6J mice were trained by swimming for 60 min twice daily for 28 days.5 miR, mRNA and 
protein expression in sinus node biopsies was measured by next generation sequencing, quantitative PCR 
(qPCR), western blot and high-resolution mass spectrometry. Computational predictions, luciferase 
reporter gene assays and in vitro overexpression studies were used to identify miRs and transcription factors 
capable of regulating expression. The role of a candidate miR in the training-induced bradycardia was tested 
in vivo by administering an appropriate cholesterol-conjugated antimiR.6 ECG recording, in vitro tissue 
electrophysiology, western blot, sinus node cell isolation and whole cell patch clamp were used to 
characterise the mice and study HCN4 and If remodelling. Statistically significant differences were 
determined using an appropriate test; P<0.05 was regarded as significant. In figures, bar charts show 
meansSEM. Further details of methods are available in the Online Data Supplement. 
 
 
 
RESULTS 
 
Evidence of If remodelling in human athletes. 
 

Experiments were conducted on groups of human male non-athletes (n=10) and athletes (n=8). The 
characteristics of the two groups are given in Online Table I. As expected, the maximum O2 uptake 
(VO2max, a measure of fitness) of the athletes was significantly higher than that of the non-athletes (Fig. 
1A). Figure 1B shows the resting heart rate under baseline conditions of the two groups of subjects; as 
expected the heart rate of the athletes was significantly lower. It is still widely thought that the training-
induced bradycardia is the result of an increase in vagal tone based on reported increases in heart rate 
variability in athletes;e.g.10 heart rate variability is considered a measure of autonomic tone. However, we 
have recently shown that heart rate variability is primarily determined by heart rate and not autonomic 
tone.11 In the present study, neither uncorrected SDNN (standard deviation of normal to normal beats, a 
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measure of heart rate variability) or SDNN corrected for changes in heart rate11 was increased in the athletes 
(Online Table I ). Figure 1B also shows the intrinsic heart rate after complete autonomic blockade in the 
two groups of subjects. Autonomic blockade was achieved by intravenous injection of 0.2 mg/kg 
propranolol and 0.04 mg/kg atropine, doses which have previously been demonstrated to cause complete 
autonomic blockade in human subjects.12, 13 The intrinsic heart rate after complete autonomic blockade in 
the non-athletes was 97.9±2.6 beats/min, similar to the value reported by Jose and Collison14 of 105.6±0.6 
beats/min from 139 untrained male subjects 20-30 years of age. This suggests that complete autonomic 
blockade was achieved (see Online Data Supplement for further discussion).15 Furthermore, heart rate 
variability was almost completely eliminated after autonomic blockade: uncorrected SDNN was reduced 
by 94%, corrected SDNN was reduced by 90% and high frequency spectral heart rate variability was 
reduced by >99% (Figure 1C). This is consistent with complete autonomic blockade. Figure 1B shows that 
there was a significant bradycardia in the athletes (as compared to the non-athletes) after complete 
autonomic blockade as well as under baseline conditions (the relative bradycardia was larger after complete 
autonomic blockade). We conclude that the bradycardia cannot be attributed to the autonomic nervous 
system, although we appreciate that others have concluded that it is the result of high vagal tone (see Online 
Data Supplement for further discussion). Figure 1D shows that the intrinsic heart rate of the non-athletes 
and athletes is significantly correlated with the fitness of the subjects as measured by the VO2max). Figure 
1E shows a significant correlation between the heart rate lowering effect of oral ivabradine (blocks HCN4 
and If) and the intrinsic heart rate of the non-athletes and athletes: subjects with a lower intrinsic heart rate 
(generally athletes) had a blunted response to ivabradine. This suggests that in the human athlete there is a 
downregulation of HCN4 and If and this could be the cause (or at least a key contributing cause) of the 
training-induced bradycardia. 
 
Training-induced downregulation of HCN4 and dysregulation of miRs. 
 

Following swim-training for four weeks in the mouse, there was a significant bradycardia both in 
vivo and in the isolated sinus node (Figure 2A). This was confirmed by intracellular action potential 
recording from the isolated sinus node; the bradycardia was accompanied by a small positive shift of the 
maximum diastolic potential and prolongation of the action potential (Online Table II). The two main 
pacemaking mechanisms are the membrane and Ca2+ clocks.16 Whereas the main Ca2+ clock transcripts in 
the sinus node were unaffected by training (Online Figure I), the transcript for HCN4 (the main component 
of the membrane clock16) was significantly downregulated in the sinus node after training (Figure 2B). As 
expected this was accompanied by a reduction of If over a wide potential range in isolated sinus node cells 
from trained mice (Figure 2C). Consistent with this, Figure 2D shows that, in the mouse as in the human 
(Figure 1E), there is a significant correlation between the heart rate lowering effect of ivabradine and the 
intrinsic heart rate: mice with a lower intrinsic heart rate (generally trained) had a blunted response to 
ivabradine. These data are consistent with a downregulation of HCN4 and If being the cause of the training-
induced bradycardia in mice, consistent with our previous study.5 
 

In sinus node biopsies, we measured expression of all miRs using next generation sequencing. 715 
microRNAs were detected in the sinus node. DeSeq analysis showed 25 miRs were significantly increased 
>1.8 fold and 6 significantly decreased (Figure 2E; Online Table III). After applying a 5% Benjamini-
Hochberg false discovery rate correction, miR-5099, miR-486-3p, miR-423-5p, Let-7d-3p, miR-676-3p, 
miR-181b-5p and Let-7e-5p were significantly upregulated and miR-10b-5p downregulated (Figure 2E, 
hatched bars). qPCR analysis confirmed the majority of these changes (including in miR-423-5p; Figure 
2F).  
 
HCN4 is target gene for miR-423-5p. 
 

A computational search was conducted (see Online Data Supplement) to establish a link between 
significantly upregulated miRs and HCN4 downregulation. miRs bind cognate mRNAs by imprecise 
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complementary base pairing to specific sequence motifs primarily in the 3-UTR.17 Using the widely 
employed algorithms RNA22,18 PITA19 and TargetScan Mouse v7.1,20 we identified putative recognition 
sites for miR-423-5p (Online Figure II) and miR-486-3p (data not shown) within the mouse HCN4 3-UTR 
sequence. To verify these predicted binding sites and experimentally establish HCN4 as a genuine target, 
we fused the HCN4 3-UTR to a luciferase reporter gene (pHCN4-3 UTR) and determined luciferase 
activity in H9c2 cells co-transfected with pHCN4-3 UTR and synthetic precursors to miR-423-5p and miR-
486-3p. Additionally, we included miR-1 and miR-27a in this analysis as we have previously found miR-1 
to be upregulated in the sinus node of the trained mouse and rat5 and all computational tools used indicated 
the presence of a highly conserved binding site for miR-27a. All miRs tested significantly supressed 
luciferase activity relative to a control (scrambled) miR, although suppression was modest on transfection 
with miR-1 and miR-486-3p (34%; data not shown) compared to miR-423-5p (Figure 3A). Surprisingly, 
miR-27a only produced a small suppression of luciferase activity (Figure 3A). 
 

We selected miR-423-5p for further study, because it was predicted to target HCN4, it was 
significantly upregulated using both next generation sequencing (2.8-fold increase above baseline) and 
qPCR (8.1-fold increase above baseline) and it produced the largest suppression of luciferase activity 
amongst the miRs tested. We observed a dose-dependent effect of miR-423-5p on luciferase activity of 
pHCN4-3 UTR (Figure 3C). Furthermore, mutation of predicted miR-423-5p binding sequences in the 
HCN4 3- UTR (Figure 3B) abolished the effect of miR-423-5p on reporter expression (Figure 3C). These 
findings demonstrate a specific interaction between miR-423-5p and HCN4 and the predicted recognition 
elements identified in the HCN4 3 -UTR contribute to this. Both HCN4 mRNA and intrinsic heart rate 
showed a significant inverse correlation with expression of miR-423-5p (Figure 3D,E). Linear regression 
analysis showed that the sinus node expression level of miR-423-5p explained 68% of the variation in 
HCN4 (Figure 3D; R2 = 0.68) and 46% of the variation in spontaneous beating rate of the sinus node (Figure 
3E; R2 = 0.46). Upregulation of miR-423-5p appeared to be restricted to the trained sinus node – basal 
expression of miR-423-5p was lower in the atrium and ventricle and was unaltered by training (Figure 3F). 
Following two weeks of detraining (after four weeks of training), there was a partial restoration of miR-
423-5p (Figure 3G).  
 

Although Figure 3A-C shows that miR-423-5p targets HCN4, it is possible that it has other targets. 
Previously, miR-423-5p has been reported to cause apoptosis of cardiomyocytes21-23 and we performed the 
TUNEL assay to assess apoptosis. However, we observed very few apoptotic cells in the sinus node and 
there was no significant difference in the number in sedentary and trained mice (Online Figure III). 
 
Training-induced downregulation of HCN4 and If and resulting sinus bradycardia is result of upregulation 
of miR-423-5p. 
 

We hypothesised that the training-induced upregulation of miR-423-5p results in the 
downregulation of HCN4 and consequently a lower heart rate. To test this, miR-423-5p was knocked down 
in vivo via three daily intraperitoneal injections of cholesterol-conjugated anti-miR-423-5p (antimiR) in 
sedentary mice and in trained mice at day 25-27 of the swimming protocol (Figure 4A). Administered in 
this way, cholesterol-conjugated antimiR has previously been documented to be highly effective in 
knocking down target miR in the heart with long-lasting efficacy under in vivo conditions.6 At day 28, i.e. 
3 days after the first administration, qPCR analysis showed a dramatic reduction in the level of miR-423-
5p (Figure 4B). A separate study demonstrated that the suppressive effect of the antimiR on miR-423-5p 
persisted for up to 3 weeks after administration (Online Figure IV). Remarkably, the antimiR abolished or 
blunted the training-induced bradycardia: it restored the heart rate measured in vivo and in vitro (isolated 
sinus node) to or towards the pre-training level (Figure 4C). Intriguingly, the antimiR did not alter the heart 
rate in vivo in sedentary animals despite successful knockdown of miR-423-5p (Online Figure V); the effect 
of the antimiR was therefore restricted to the trained mouse. Western blot analysis demonstrated that the 
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antimiR completely restored total HCN4 protein in the sinus node (level in antimiR-treated mice was 2.1 
greater than that in vehicle-treated sedentary mice; Figure 4D). The effect of antimiR on If was assessed in 
vitro by pharmacological block of If with 2 mM Cs+ in the isolated sinus node (Figure 4E).24 2 mM Cs+ 
produced a smaller decrease in spontaneous beating rate in trained animals (indicative of reduction in If) 
and this effect was reversed by the antimiR, indicating restoration of If by the antimiR (Figure 4E). Whole 
cell patch clamp recordings from isolated sinus node cells confirmed this: the density of If was reduced in 
trained mice and it was almost fully restored in trained mice treated with the antimiR (Figure 4F). In 
summary, the antimiR restored total HCN4 protein (transmembrane fraction of which is responsible for If) 
beyond the control level, almost fully restored If, fully restored responsiveness to Cs+ (indirect measure of 
If), almost fully restored the intrinsic heart rate (arguably set by If) measured in the isolated sinus node, and 
fully restored the heart rate measured in vivo (again arguably set by If). Total HCN4 protein may have been 
restored beyond the control level, because of an increase in the amount of protein being trafficked to the 
membrane. It is not known why heart rate in vivo was fully restored whereas If was only partially restored 
– it is possible that there is an additional mechanism in operation. A control (non-targeting) antimiR did 
not restore If (Online Figure VI). The heart weight:body weight ratio and various ECG parameters were 
largely unaffected by the antimiR (Online Figure VII). 
 
Control of miR-423-5p in the trained sinus node. 
 

miR-423 is located in the first intron of its host gene, NSRP1, and both are transcribed in the same 
‘sense’ direction (Figure 5A). Therefore, it is possible that they are co-regulated and share regulatory 
(promoter) elements, as has been shown previously for intronic miRs.25, 26 qPCR confirmed that NSRP1 
mRNA was significantly upregulated in the sinus node of trained mice (Figure 5B). A bioinformatics search 
using MatInspector revealed transcription factors that could potentially bind to the promoter region of 
NSRP1. The expression of the 88 top predicted transcription factors in the sinus node was investigated 
using qPCR – 15 were significantly upregulated and two significantly downregulated following training 
(Figure 5C). Of these 17, Nkx2.5 (data for Nkx2.5 shown in more detail in Figure 5D) was the most 
promising on the basis it was upregulated (therefore, potentially explaining the upregulation of NSRP1), it 
is an important cardiac transcription factor, it is known to work in consort with other transcription factors 
(Foxp1, Stat3 and Tbx527-29) that were also upregulated in the sinus node with athletic training (Fig. 5C), it 
represses the working phenotype in the sinus node, and most importantly it has previously been shown that 
upregulation is associated with ‘sick sinus disease’ and sinus bradycardia.30 Although Nkx2.5 is thought 
not to be expressed in the adult sinus node, we observed substantial expression of both Nkx2.5 mRNA and 
protein in the sinus node even in the case of the sedentary mouse (Online Figure X; see Online Data 
Supplement for further discussion). Predicted Nkx2.5 binding sites on NSRP1 are given in Online Figure 
VIII. To verify NSRP1 as a target of Nkx2.5, we fused 2.1 kb of the 5 flanking region of NSRP1 (upstream 
of the transcriptional start site) to  luciferase and determined luciferase activity in H9c2 cells co-transfected 
with an Nkx2.5 overexpression plasmid. Nkx2.5 significantly increased luciferase activity relative to 
vehicle control (Figure 5E). To confirm this finding, Nkx2.5 was then overexpressed in H9c2 cells. 
Surprisingly Nkx2.5 had little effect on expression of NSRP1 (Online Figure IX), but it resulted in a robust 
increase in miR-423-5p (Fig. 5F). It is possible that miR-423-5p is one of 20% of intronic miRs that are 
predicted to inhibit expression of their host gene.31 In this case, whether Nkx2.5 upregulates both NSRP1 
and miR-423-5p may depend on the precise circumstances. We conclude from these data that the 
upregulation of miR-423-5p in the sinus node following training involves an upregulation of the 
transcription factor, Nkx2.5. 
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DISCUSSION 
 

Our previous work on rodents was the first to attribute exercise training-induced bradycardia to the 
downregulation of HCN4 and If.5 We now present evidence suggesting this is also the case in human 
athletes. In addition, we show that HCN4 is a novel target for post-transcriptional repression by miR-423-
5p and the training-induced downregulation of HCN4 and If and consequently the bradycardia is the result 
of an upregulation of Nkx2.5 and consequently miR-423-5p in the sinus node. This is the first report of 
miR-dependent regulation of pacemaking and heart rate. 
 
 

There is widespread belief that the resting bradycardia in athletes is the result of high vagal tone, 
although vagal tone has never been directly measured in athletes.e.g.32 However, critical analysis of the 
literature does not necessarily support this.15, 33, 34 An increase in heart rate variability in human athletes has 
been extensively quoted as evidence for high vagal tone in athletes.e.g.32 However, we have shown from an 
analysis of the underlying biophysics of pacemaking that heart rate variability is primarily determined (in 
an exponential-like manner) by heart rate and the increase in heart rate variability in athletes is attributed 
to the resting bradycardia rather than any increase in vagal tone.11 This study has shown that the relative 
bradycardia in human athletes (as compared to the heart rate of the control subjects) was still present (and 
in fact was larger) after complete autonomic blockade (Figure 1B). The same result (a larger relative 
bradycardia after autonomic blockade) has been reported by three other studies of human athletes.15 This 
suggests that the autonomic nervous system is not responsible for the resting bradycardia. Once again, many 
studies of animal models of exercise training show no evidence of high vagal tone.15 However, some studies 
of human athletes or animal models of exercise training apparently show a reduction of the relative 
bradycardia after autonomic blockade, leaving open the possibility that high vagal tone does play a role.15, 

35, 36 This is considered further in the Supplementary Discussion. Previously, we showed that the reduction 
of heart rate on blocking If by ivabradine or Cs+ is decreased in the trained rodent and this is attributed to 
the training-induced downregulation of HCN4 and If.5 The corollary of this, as shown in Figure 2D, is that 
there is a correlation between the effect of ivabradine and the intrinsic heart rate of sedentary and trained 
mice. As shown in Figure 1E, the same correlation is observed in sedentary and trained human subjects. It 
is, therefore, possible that there is a training-induced downregulation of HCN4 and If in the human athlete 
and this is the cause (or at least a contributing cause) of the bradycardia.  
 

miR profiling by next generation sequencing revealed 35 miRs to be altered by endurance training 
in the sinus node (Figure 2E). Several of these miRs have previously been shown to exert regulatory effects 
in the heart: miR-486-3p, upregulated in the sinus node of the trained mice (Figure 2E,F), has previously 
been shown to be upregulated in the hearts of swim-trained mice and involved in the anti-fibrotic effects of 
exercise;37 Let-7e, upregulated in the sinus node of the trained mice (Figure 2E,F), has previously been 
shown to have an anti-arrhythmic effect mediated via a downregulation of the β1 adrenergic receptor in 
myocardial infarction rats;38 finally, miR-10b-5p, downregulated in the sinus node of the trained mice 
(Figure 2E,F), has previously been shown to regulate the key cardiac transcription factor Tbx5, known to 
be involved with the cardiac conduction system.39 Previously, the plasma level of miR-423-5p has been 
reported to be elevated in heart failure, acute myocardial infarction, stable coronary artery disease and 
patients undergoing cardiac surgery.40-42 In the case of heart failure at least, this is thought to be the result 
of altered myocardial expression.42 In these studies, although the source of miR-423-5p may be the 
myocardium, it is not known from what part of the heart it originates. Figure 3F suggests that miR-423-5p 
is preferentially expressed by the sinus node and this raises the question of whether the sinus node is the 
source of miR-423-5p in heart failure etc. Paradoxically, the sinus node in heart failure is like that in the 
athlete; there is intrinsic sinus bradycardia and a widespread remodelling of the sinus node with a 
downregulation of ion channels.e.g.43-45 miRs are known to function according to a 'combinatorial circuitry 
model', whereby a single miR targets multiple mRNAs and several co-expressed miRs may target a single 
mRNA.46 While our data suggests a prominent role for miR-423-5p in regulating HCN4, we cannot rule 
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out a role for other miRs. Ultimately, regulation of heart rate is a complex and dynamic process involving 
acute regulation by the autonomic nervous system and longer-term regulation involving changes in ion 
channel expression brought about by transcription factors and, as shown for the first time by our study, 
miRs.  
 

In conclusion, our findings provide new insight into the molecular mechanisms underlying the sinus 
bradycardia in athletes and this may have implications for other conditions in which If is dysregulated, e.g. 
heart failure.43 Although the changes in the sinus node and sinus bradycardia are well tolerated by healthy 
young athletes, this is not necessarily the case in some veteran athletes and the changes manifest as 
pathological sinus node dysfunction - the incidence of pacemaker implantation in veteran athletes is higher 
than in non-athletes.2-4 Inhibition of miR-423-5p (especially because upregulation of miR-423-5p could be 
restricted to the sinus node – Figure 3F) could be an alternative therapeutic strategy to electronic pacemaker 
implantation for pathological sinus node dysfunction seen in some veteran athletes. 
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FIGURE LEGENDS 
 
Figure 1. Evidence of a role for HCN4 in the resting bradycardia in human athletes. A, VO2max of 
sedentary human subjects and human athletes (n=7/8). B, Heart rates measured under baseline conditions 
and after complete autonomic blockade of sedentary human subjects and human athletes (n=10/8). C, 
Complete autonomic blockade abolishes heart rate variability. Left, examples traces of RR interval under 
baseline conditions and after complete autonomic blockade. Right, spectral analyses of corresponding RR 
interval plots demonstrating near-abolition of high frequency heart rate variability after autonomic blockade 
(note difference in y-axis scale). PSD, power spectral density. D, Relationship between the intrinsic heart 
rate measured after complete autonomic blockade and VO2max in sedentary human subjects and human 
athletes (n= 7/8). E, Relationship between ivabradine-induced decrease in heart rate and the intrinsic heart 
rate measured after complete autonomic blockade in sedentary human subjects and human athletes 
(n=10/8). In D and E, data fit by linear regression; best fit line, 95% confidence limits, and R2 and P values 
shown. 
 
Figure 2. If remodelling in training-induced bradycardia is accompanied by dysregulation of miRs. 
A, Heart rates of sedentary and trained mice measured in vivo in conscious animals (n=5/9) and in vitro in 
isolated sinus node preparations (n=6/6). B, Expression of HCN4 mRNA in sinus node of sedentary and 
trained mice (n=5/5). C, Current-voltage relationships for If recorded from single sinus node cells from 
sedentary (n=47 cells/5 mice) and trained (n=58 cells/4 mice) mice. D, Relationship between ivabradine-
induced decrease in heart rate and the intrinsic heart rate measured in vivo after complete autonomic 
blockade in sedentary and trained mice (n=8/10). Data fit by linear regression; best fit line, 95% confidence 
limits, and R2 and P values shown. E, Significant (as determined by DeSeq) training-induced changes in 
miR expression (measured by next generation sequencing) in sinus node of mice. Ratio of miR expression 
in trained mice to expression in sedentary mice shown on logarithmic scale. Hatched bars indicate 
significant differences after Benjamini-Hochberg FDR correction (P<0.05). Data obtained from three 
pooled RNA samples per group (n=2/2). F, Verification of training-induced changes in miRs by qPCR. 
Expression shown in sedentary and trained mice (n=6/7-9). *significant difference between sedentary and 
trained data (P<0.05).   
 
Figure 3. HCN4 is a target gene for miR-423-5p. A, Luciferase reporter assay showing post-
transcriptional repression of HCN4 by miRs. H9C2 cells were cotransfected with precursor miR and 3-
UTR of HCN4 cloned into expression vector downstream of luciferase gene. Luciferase activity is shown 
24 h after co-transfection with different miRs including a control (scrambled) miR. n=3 batches of cells 
with 4-5 replicates/batch. B, Predicted miR-423-5p binding sites in HCN4 3-UTR and corresponding 
sequence of mutant HCN4 3-UTR tested. C, Luciferase reporter assay showing dose-dependent repression 
of HCN4 by miR-423-5p and loss of repression by mutation of HCN4 3′-UTR. Luciferase activity is shown 
24 h after co-transfection with different amounts of wild-type or mutant miR-423-5p. n=3 batches of cells 
with 4 replicates/batch. D, Relationship between HCN4 mRNA and log miR-423-5p in sedentary and 
trained mice (n=5/5). E, Relationship between the heart rate measured in vitro in the isolated sinus node 
and log miR-423-5p in sedentary and trained mice (n=6/7). In D and E, data fit by linear regression; best 
fit line, 95% confidence limits, and R2 and P values shown. F, Expression of miR-423-5p (measured by 
qPCR) in atrium and ventricle is low and unaltered by training. Expression shown in sinus node, right atrial 
muscle and left ventricular muscle from sedentary and trained mice (n=5/5/5). Inset, data from left 
ventricular muscle at magnified scale. G, Expression of miR-423-5p (measured by qPCR) in sinus node is 
partially restored on detraining (right). Expression shown in sinus node of sedentary, trained and detrained 
mice (n=5/9/5). *significantly different from control/sedentary data (P<0.05). 
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Figure 4: AntimiR to miR-423-5p reverses training-induced bradycardia and blunts HCN4 channel 
remodelling. A, Time course of exercise training and antimiR administration. B, AntimiR abolishes 
training-induced upregulation of miR-423-5p in sinus node. miR-423-5p (determined by qPCR) in sinus 
node of vehicle- or antimiR-treated sedentary and trained mice shown (n=6/5/5/5). C, AntimiR reverses 
training-induced bradycardia. Representative ECG traces (recorded from conscious animals) from a 
vehicle-treated sedentary mouse, vehicle-treated trained mouse and antimiR-treated trained mouse shown 
on left and mean heart rates (measured in vivo and in isolated sinus node) on right (n=10/12/12 and 9/12/12). 
D, AntimiR reverses training-induced downregulation of HCN4. Western blots using antibodies 
recognising HCN4 and actin (housekeeper) proteins for sinus node from vehicle-treated sedentary, vehicle-
treated trained and antimiR-treated trained mice shown as well as mean expression level of HCN4 protein 
(normalised to actin) in the three groups (n=5/4/5 with three independent replicates per mouse). E, AntimiR 
reverses training-induced downregulation in contribution of If to pacemaking. Percentage decrease in heart 
rate (recorded from isolated sinus node preparations) on blocking If using 2 mM Cs+ invehicle-treated 
sedentary, vehicle-treated trained and antimiR-treated trained mice shown (n=6/7/4). F, AntimiR reverses 
training-induced downregulation in If. Representative If traces (normalised to cell capacitance) from 
vehicle-treated sedentary, vehicle-treated trained and antimiR-treated trained mice shown on left and mean 
current-voltage relationships for If from vehicle-treated sedentary (n=47 cells/5 animals), vehicle-treated 
trained (n=58 cells/4 animals) and antimiR-treated trained (n=89 cells/5 animals) mice shown on right. 
*significantly different (B-E) or significantly different from trained+vehicle data (E; P<0.05). 
 
Figure 5. Nkx2.5 regulation of miR-423-5p. A, map of NSRP1 gene (solid blocks show exons with introns 
in between) showing location of Nkx2.5 binding sites and intronic location of the miR-423 gene. B, 
Expression of NSRP1 mRNA in sinus node of sedentary and trained mice (n=8/8). C, Significant (P<0.05) 
training-induced changes in expression of transcription factor transcripts (measured by qPCR) in sinus node 
of mice. Ratio of mRNA expression in trained mice to expression in sedentary mice shown (n=6/8). D, 
Expression of Nkx2.5 mRNA in sinus node of sedentary and trained mice (n=8/8). E, Luciferase reporter 
assay showing activation of NSRP1 transcription by Nkx2.5. H9c2 cells were transfected with 2.1 kb of the 
5 flanking region of NSRP1 cloned into expression vector downstream of  gene for luciferase. The cells 
were co-transfected with Nkx2.5; control cells were not co-transfected with Nkx2.5. Luciferase activity is 
shown 48 h after transfection. n=3 independent batches of cells with 4 replicates/batch. F, Upregulation of 
miR-423-5p by Nkx2.5. miR-423-5p expression is shown in H9c2 cells not transfected (control) or 
transfected with Nkx2.5.  
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NOVELTY AND SIGNIFICANCE 
 
What Is Known? 
 

 Athletes have a slow resting heart rate, i.e. sinus bradycardia, and in veteran athletes this can 
necessitate electronic pacemaker implantation. 
 

 We have previously shown that a downregulation of the key pacemaking ion channel, HCN4, and 
the corresponding ionic current (funny current or If) in the sinus node underlies the sinus 
bradycardia in rodent models of exercise training. 
 
 

 
What New Information Does This Article Contribute? 
 

 In human athletes, evidence suggests If is also downregulated. 
 

 In the mouse, evidence suggests the downregulation of HCN4 and If is the result of an upregulation 
of Nkx2.5 and, consequently, miR-423-5p. 

 
 In the mouse, the training-induced bradycardia is reversed by blocking the action of miR-423-5p 

 
 

In exercise-trained rodents, we previously attributed the sinus bradycardia to downregulation of If. Now we 
show, in human athletes, the intrinsic heart rate (measured after autonomic blockade) is slower and this is 
correlated with a smaller response to ivabradine. In the exercise-trained mouse, we then identified an 
upregulation of miR-423-5p (regulatory microRNA) and Nkx2.5 (transcription factor) – further 
experiments showed that Nkx2.5 can upregulate miR-423-5p and miR-423-5p can downregulate HCN4. 
Blocking miR-423-5p with an antimiR reversed the training-induced sinus bradycardia. For the first time, 
this suggests that there is a downregulation of If in human athletes and identifies the pathway involved. 
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Supplemental Material 
Targeting miR-423-5p reverses exercise training-induced HCN4 channel remodelling and 

sinus bradycardia 
Alicia D’Souza, Charles Pearman, Yanwen Wang, Shu Nakao, Sunil Jit R.J. Logantha,  

Charlotte Cox, Hayley Bennett, Yu Zhang, Anne Berit Johnsen, Nora Linscheid,  
Pi Camilla Poulsen, Jonathan Elliot, Jessica Coulson, Jamie McPhee, Abigail Robertson,  

Paula Da Costa Martins, Ashraf Kitmitto, Ulrik Wisloff, Elizabeth J. Cartwright, Oliver Monfredi, 
Alicia Lundby, Halina Dobrzynski, Delvac Oceandy, Gwilym M. Morris, Mark R. Boyett 

SUPPLEMENTAL METHODS 
Human study 
Study subjects were male volunteers aged between 18 and 30 years and non-smokers with no 
known illnesses and taking no medications. The study group were competitive endurance athletes 
of a good standard, training or competing for a minimum of eight h per week. Control subjects were 
sedentary age-matched males exercising for less than 2 h per week. Table S1 shows further 
characteristics of the subjects. The study protocol was approved by the regional research ethics 
committee and subjects gave informed consent. A three lead ECG was continuously recorded 
using an AD Instruments Powerlab ECG system. Subjects were studied in a supine position and in 
the post-absorptive fasted state. Complete autonomic blockade for measurement of the intrinsic 
heart rate was achieved by intravenous injection of atropine 0.04 mg/kg and propranolol 0.2 mg/kg. 
Ivabradine 7.5 mg p.o. was given to block the funny current, If. At peak plasma ivabradine (1 h), 
further atropine and propranolol were administered to ensure continued complete autonomic block. 
The additional dose calculations were based on known pharmacokinetics of atropine and 
propranolol:  

𝐶2 = 𝐶1𝑒
−(0.693 𝑡1/2⁄ )𝑡 

where C2 is the plasma concentration, C1 is the original plasma concentration, t1/2 is the half time of 
the drugs (4 h) and t is elapsed time since the original injection (1 h). The effect of block of If on the 
intrinsic heart rate was measured at this time. Heart rate was taken as an average over two 5-min 
periods (baseline) and over a single 5-min period (intrinsic heart rate; intrinsic heart 
rate+ivabradine). Heart rate variability was assessed in the following manner: continuous single 
lead ECGs were recorded digitally at 10 kHz using LabChart v7.0. 256 s ECG segments were 
selected after an appropriate acclimatisation period following each intervention (10 minutes pre-
resting ECG, 5 min following intravenous atropine and propranolol, 60 min following oral 
ivabradine). R wave peaks were identified automatically and RR intervals were exported to Kubios 
v2.0 for analysis of heart rate variability. RR series were interpolated at 4 Hz.  Heart rate variability 
was assessed in the time and frequency domains with the high frequency band defined as 0.15-0.4 
Hz. 
Experimental animals 
Care and use of laboratory animals conformed to the UK Animals (Scientific Procedures) Act 1986. 
Ethical approval for all experimental procedures was granted by the University of Manchester. 
Eight-week-old male C57BL/6J mice (Harlan Laboratories; initial body weight, 20–25 g) were 
randomly assigned to either sedentary or trained groups. Mice were housed five per cage in a 
temperature-controlled room (22°C) with a 12 h:12 h light:dark lighting regime and free access to 
food and water.  
Swim training 
Mice were subjected to a swimming programme described previously.1, 2 The mice were swim-
trained for 60 min twice daily for 28 consecutive days. All mice were able to complete the course of 
training. Age- and weight-matched sedentary littermates served as controls for all experimental 
conditions and were handled daily. Additionally, a cohort of swim-trained mice was submitted to 
detraining for two weeks after the 28-day training period during which physical activity was 
restricted to the space of the cage.  
Conscious ECG recordings 
ECGs were recorded non-invasively in unrestrained, conscious mice using the ECGenie recording 
enclosure (Mouse Specifics, Inc., Boston, MA, USA) as described previously.1 Heart rate was 
measured over 100 consecutive beats. The effect of (6 mg kg−1) ivabradine under complete 
autonomic block with atropine (0.5 mg kg−1) and propranolol (1 mg kg−1) was measured as 
previously described.1 
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Unconscious ECG recordings 
ECGs were recorded under isofluorane anaesthesia as described previously.1 1.5% isoflurane in 
100% O2 with a flow rate of 1 l /min was used. ECG parameters were measured over 100 
consecutive beats.  
AntimiR design and administration  
We employed a previously validated chemistry and administration protocol that has been shown to 
be highly efficient in knocking down target micro-RNAs (miRs) in the heart with long-lasting 
efficacy under in vivo conditions.3 Chemically modified antisense nucleotide (antimiR) against miR-
423-5p was designed and obtained from Integrated DNA Technology (IDT, Belgium). The 
sequence of antimiR-423-5p was the exact antisense of the mature miR sequence (obtained from 

miRbase4): 5-UGAGGGGCAGAGAGCGAGACUUU/3CholTEG with 3 cholesterol conjugation, 

two phosphorothioate bonds at the very first 5 end and four phosphorothioate bonds between the 

last 3 bases. These modifications improve cell uptake and protect against nuclease degradation 
while increasing affinity of the antisense oligonucleotide to the target.5 Chemically modified 

antisense oligonucleotides designed to target C. elegans miR-39-5p (5-

AAGGCAAGCUGACCCUGAAGUU-3/3CholTEG-3) that does not target mammalian sequences3 
was used as a control antimiR. AntimiRs were diluted in sterile saline and administered to mice via 
intraperitoneal injection on three consecutive days (each day, 80 mg/kg). Vehicle-treated mice 
were given an equivalent volume of sterile saline. 
RNA isolation 
Mice were killed by cervical dislocation and a ~1 mm biopsy collected from the sinus node at the 
level of the main branch from the crista terminalis and a separate biopsy was collected from the 
neighbouring right atrial free wall. Biopsies were frozen in liquid N2 and stored at −80°C until use. 
Total RNA was isolated using an RNeasy Micro kit (Qiagen) according to the manufacturer’s 
instructions. Total RNA was isolated from H9c2 cells using Trizol Reagent in conjunction with 
Purelink RNA Mini Kit (Life Technologies) according to the manufacturer’s instructions. RNA purity 
and quantity was determined using a NanoDrop ND-1000 spectrophotometer (NanoDrop 
Technologies, Wilmington, DE, USA).  
Quantitative PCR (qPCR) for miRs 
miR expression levels were measured using miRCURY LNA (Locked Nucleic Acid) Universal RT 
microRNA PCR setup (Exiqon, Denmark) using the manufacturer’s instructions for cDNA synthesis 
and qPCR. Primers were purchased from Exiqon (miR-10b-5p, 205637; miR-486-3p, 204107; miR-
423-5p, 205624; miR-676-3p, 205098; miR-181b-5p, 204530; Let-7e-5p, 205711; Let-7d-5p, 
204124).  Primer set for mmu-miR-5099 was custom designed according to previously published 
sequences. Expression of miR was calculated by the ΔCt method and normalisation to expression 
of RNU1A1, which was determined as the optimal endogenous control (RNU1A1, SNORD65 and 
RNU5G were tested) using the algorithm geNorm (qBaseplus, version 2.0, Biogazelle, Belgium). 
qPCR for mRNAs 
First strand cDNA was synthesised using Superscript II reverse transcriptase (Invitrogen, 
Carlsbad, CA, USA). qPCR was performed using an ABI Prism 7900 HT Sequence Detection 
System (Applied Biosystems/Life Technologies Corporation, Carlsbad, CA, USA). The reaction 
mixture comprised 1 μl of cDNA, 1× Qiagen assay (HCN4, QT00268660; 18S, QT02448075), 1× 
SYBR Green Master Mix (Applied Biosystems) and DNase-free water. All samples were run in 
duplicate. The reaction conditions were: denaturation step of 95°C for 10 min followed by 40 cycles 
of amplification and quantification steps of 95°C for 30 s, 60°C for 30 s and 72°C for 1 min. The 
melt curve conditions were: 95°C for 15 s, 60°C for 15 s and 95°C for 15 s. mRNA expression was 
calculated by the ΔCt method and normalisation to the expression of 18S. 
qPCR for transcription factors 
Expression levels of seven housekeeping genes and 88 selected transcription factors predicted to 

target 2 kb of the NRSP1 5 flanking region were measured using custom-designed TaqMan Low 
density array (TLDA) cards (Life Technologies, cat. no. 4342259; format 96A; transcripts studied 
are listed in Table S4) according to manufacturer’s instructions. 200 ng of total RNA was used as a 
template in 20 μl reactions to generate cDNA using a High Capacity cDNA Reverse Transcription 
Kit (Life Technologies). cDNA was then combined with Universal Master Mix (Life Technologies) 
and applied to each port of a TLDA card organised in eight ports of 48 genes each. Thermal 
cycling was carried out on an ABI Prism 7900HT according to the manufacturer’s recommended 
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protocol. Amplification plots were analysed using RQ manager (Life Technologies). Ct values were 
exported to RealTime Statminer (Integromics) data analysis package that enabled advanced 
filtering of outlier genes, geNorm-based selection of optimal endogenous controls genes Gapdh 
and Tbp and differential expression testing using the non-parametric Limma test.6 Transcript 
expression levels were calculated using the ΔCt method. 
Next generation sequencing 
Four cDNA libraries (two for sedentary and two for trained groups) were constructed from three 
pooled samples each. The cDNA libraries were prepared from 1 μg of total RNA using TruSeq 
Small RNA Sample Prep Kit (Illumina, Inc.) according to the manufacturer’s instructions. Briefly, 

RNA 3′ adapter and RNA 5′ RNA adapter were ligated to each end of small RNA molecules. 

The ligation products were used as a template for cDNA synthesis using SuperScript II Reverse 
Transcriptase (Invitrogen) to create single stranded cDNA. The cDNA was then PCR amplified 
using a common primer and a primer containing index sequences. After RT-PCR amplification, the 
cDNA libraries were purified by polyacrylamide gel electrophoresis to select libraries containing 
mature miR and other regulatory small RNAs. 22 and 30 nt bands were extracted from the gel and 
purified using the MinElute Gel Extraction Kit (Qiagen). The sizes of the selected library were 
validated by an Agilent Technologies 2100 Bioanalyzer using a High Sensitivity DNA chip.  

50 base pair single-end reads were sequenced on the Illumina MiSeq sequencer (Illumina, 
Inc.) yielding up to 30 million raw reads per sample. Fastq files generated by MiSeq platform were 
analysed with FastQC (S. Andrews, 2010; FastQC: a quality control tool for high throughput 
sequence data; available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and 
any low quality reads and contaminated barcodes and primers trimmed with Trimmomactic.7 
Reads without adaptor sequences and with no ambiguous bases and the final trimmed length of at 
least 19 nucleotides were included for the final alignment analysis. Libraries were then aligned to 
mm10 assembly of mouse genome using Tophat 28 which incorporates Bowtie, short-read aligner 
software. Alignments with the best score were reported from each read.  The mapped reads were 
then counted against gff files downloaded from miRbase, mmu.gff3, with HTSeq.9 Reads were 
considered as mature miRs if they fulfilled the ‘Strict’ requirement on HTSeq, i.e. mapped to and 
within the whole miR range as defined by miRbase. Normalisation (to control for the variation in the 
number of read sequences across samples) was done using the DESeq Bioconductor package in 
‘R’ based on the geometric mean. After normalised read counts were obtained, differentially 
expressed miRs were identified by comparing sedentary versus trained samples with DESeq.10 
DESeq is based on the negative binomial distribution and outputs fold change and P values for 
differential expression. P values were then adjusted for multiple testing using a false discovery rate 
of 5% via the Benjamini-Hochberg method. miRs with P<0.05 were considered to be differentially 
expressed. 
Computational prediction of miR targets and cis-acting transcription factors 
We used three established miR target prediction algorithms to investigate whether any differentially 
expressed miRs identified by next generation sequencing (FDR<0.05) were predicted targets in the 

regulation of mouse HCN4 based on 3′-UTR binding sites. miRs predicted by two out of three 

algorithms were considered targets for further analysis by reporter gene assay (miR-423-5p, miR-
486-3p). In addition, we also carried out an unbiased search for all candidate miRs that could 
target HCN4 to find that it was a consistently predicted target for miR-27a-3p and hence this was 
included in the screen along with miR-1 that has been previously linked to HCN4.1 
 

Prediction 
algorithm 

Predicted HCN4-targeting miRs 

Targetscan 

Mouse v7
11

 
miR-423-5p, miR-27a-3p, miR-486-3p 

PITA
12

 miR-27a-3p, miR-486-3p, miR-1a 3p/5p, Let-7e 

RNA22
13

 miR-423-5p, miR-27a-3p, Let-7d 

 
MatInspector (Genomatix, Release 8.4) was used to analyse potential transcription factor binding 

sites within 2 kb of the 5 flanking region upstream of the transcription start site of the host gene of 
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miR-423-5p, NSRP1. On the basis of evolutionary conservation between mice and humans and 
scores for similarity to canonical binding sites, 79 top predicted transcription factors were selected 
for further expression profiling along with nine other cardiac transcription factors either known to be 
involved in function and/or development of the heart (transcripts studied are listed in Table S4). 
Plasmids 

(i) pmiRGLO-HCN4 3-UTR. Primer pairs (forward, 5-GCTAGCCGCTCCAAACTGCCGTCTAAT-

3; reverse, 5-GTCGACCTCCCTCCCTCCCTCCCTCTC-3) were used to PCR amplify 192 nt full 

length mouse HCN4 3-UTR (NCBI Reference Sequence: NM_001081192.1) from mouse genomic 
DNA (wild type C57Bl/6). NheI and SalI sites were incorporated in the primers to facilitate cloning. 
1 μl of cDNA was PCR amplified using the PfuTurbo Hotstart DNA polymerase (Agilent 
Technologies) in a 25 μl reaction with 2.5 μl buffer, 0.5 μl dNTPs, 1 μl of each primer 
(forward/reverse, 100 μM), 0.5 μl polymerase, 20 μl H20. Cycling conditions (for 30 cycles) were 
95°C for 15 min (initial denaturation), 94°C for 15 s (denaturation), 52°C for 30 s (annealing), 72°C 
for 45 s (extension) and 72°C for 7 min (final extension). Purification of PCR products and plasmid 
DNA as well as separation of DNA after restriction digests were performed by cutting bands of 
appropriate size from a 1.5 % agarose gel under UV-light and subsequent purification of DNA from 
agarose gels with Qiaquick gel extraction kit (Qiagen) according to the manufacturer’s instructions. 
In subsequent cloning steps, 2 μg of pmiRGLO dual luciferase miR target expression vector 
(Promega, E1330) DNA was digested with 1 μl NheI and 1ul SalI. 8 μl of purified PCR product 

(amplified HCN4 3-UTR) was also digested with 1 μl NheI and 1 μl SalI. For subsequent cloning, 
linearised vector DNA was dephosphorylated following which linearised plasmid DNA and inserts 
were purified on a 1.5% agarose gel. For ligation, 100 ng of digested vector DNA was incubated 
with inserts in four different molar ratios (vector to insert 1:3, 1:5, 1:7 or 1:9) along with 1 μl of 10x 
ligase buffer and 1 μl T4 DNA ligase overnight at 16°C. Competent E. coli cells (DH5α, Sigma-
Aldrich) were transformed with ligated plasmids. 2 ml LB medium supplemented with ampicillin 
(final concentration of 100 μg/ml) was inoculated with a single bacterial colony and incubated 
overnight at 37°C with shaking (250 rpm). Plasmid DNA was purified using the Purelink Plasmid Kit 
(Thermo Fisher) according to manufacturer’s instructions. For analytical restriction digest, plasmid 
DNA was incubated with the restriction enzymes NheI and SalI for 1.5 h at 37°C to confirm the 
presence of the correct ligation of 3’UTR inserts in the pmirGLO vector. Mutant HCN4 3’UTR with 
nucleotide substitutions for two predicted miR-423-5p binding sites was generated by GenScript 
(USA). 

(ii) pcDNA-NKX2.5. pEntr-Nkx2-5flbio containing mouse Nkx2.5 cDNA was a gift from 
William Pu (Addgene plasmid # 32969). The Nkx2.5 fragment was then transferred to the vector 
pcDNA6.2 cLumio-DEST (Invitrogen) by using the Gateway vector system (Invitrogen) to produce 
pcDNA6.2-Nkx2.5 using a protocol recommended by the manufacturer. 

(iii) pGL3-NSRP1. A 2.1 kb fragment upstream of the NSRP1 transcription start site, 
corresponding to the promoter region and encompassing predicted Nkx2.5 binding sites (given in 
Figure S3) was synthesised by Dundee Cell Products. The fragment was then directionally 
subcloned into a luciferase containing plasmid, pGL3-basic (Promega) reporter using Kpn I and 
Hind III cloning sites, which were incorporated to the NSRP1 promoter construct, to generate a 
NRSP1 promoter luciferase construct. 
Cell culture, transfection and reporter assays  
H9c2 cells were maintained in Dulbecco's modified Eagle's medium (DMEM) (Invitrogen) 
supplemented with 10% foetal bovine serum and 1% penicillin/streptomycin. For Nkx2.5 
overexpression, 5 x105 cells /well were plated in 6-well plates 24 h prior to transfection with 3 μg 
pcDNA3.1-Nkx2.5 or pcDNA3.1 empty vector. For reporter assays investigating miRs, cells were 
seeded at a density of 105cells/well in 24-well plates 24 h prior to transfection and co-transfected 

with 500 ng HCN4 3-UTR plasmid or mutant and 0.5-1.5 μg precursor miR or negative control 
plasmid. For reporter assays testing NRSP1 promoter activity, the same procedures were followed 
to co-transfect H9C2 cells with 1 μg of promoter-luciferase fusion plasmid pGL3 and pcDNA-
Nkx2.5 or negative control. Lipofectamine 2000 (Invitrogen) was used for all transfections 
according to the manufacturer’s instructions. Transfected cells were incubated with DNA- 
Lipofectamine complexes for 24 h before lysing in passive lysis buffer (Promega) for luciferase 
assay or washed with phosphate buffered saline (PBS) and incubated for a further 24 h with 2 ml 
of fresh DMEM before lysis in Trizol (Invitrogen) for RNA extraction. Luciferase activity was 
determined using a Luciferase Assay System (Promega) using 10 μl of cell lysate on a 
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luminometer (Berthold Technologies Lumat LB 9507). For each luminescence reading the injector 
was programmed to dispense 50 µl assay reagent after which there was a 2 s pre-measurement 
delay followed by a 7 s measurement period. Luciferase assays were performed in quadruplicate 
and repeated three times with an independent batch of cells. For miRs Firely luciferase and renilla 
luciferase activity were measured and data were analysed based on ratio of Firely/Renilla activity. 
Western blot 
HCN4 protein levels were determined by western blot using previously described methods.14 
Briefly, protein lysate was obtained by homogenising snap frozen sinus node biopsies using an MP 
FastPrep-24 5G and 2 ml tubes containing FastPrep metal bead lysing matrix (1.4 mm) in RIPA 
buffer (Sigma Aldich). Total protein concentration was estimated using Bradford protein assay 
against standard curve of bovine serum albumin (BSA; 0-0.5 mg/ml) following which samples were 
denatured by adding final volume of 25% SDS-sample buffer - 100 mM Tris-HCl, pH 6.8, 25% (v/v) 
glycerol, 10% (v/v) SDS, 10% (v/v) β-mercaptoethanol, 0.1% (w/v) bromophenol blue - and heating 
to 80˚C for 10 min. Samples were loaded onto a 12% stain-free SDS-polyacrylamide gel (Bio-Rad) 
with PreSciccion Plus (Bio-Rad) protein standards and run at 50 mV for ~50 min in SDS running 
buffer (25 mM Tris, 192 mM glycine, 0.1% SDS). Stain-free gels were imaged using ChemiDoc MP 
and then transferred to PVDF (polyvinyl difluoride) membranes using a Trans-Blot Turbo transfer 
system (Bio-Rad) at 15 V/0.3 mA for 15 min. PVDF membranes (activated in 100% ethanol before 
use) and thick filter paper were pre-wet in transfer buffer - 1x Trans-Blot Turbo transfer buffer (Bio-
Rad) and 20% (v/v) ethanol. Successful transfer was confirmed by using the ChemiDoc MP. PVDF 
membranes were washed in TBS for 5 min and then blocked in milk-TBS-Tween (5% w/v non-fat 
dried Marvel milk, 0.1% v/v TBS and Tween 20) for 1 h at room temperature with gentle rocking. 
The membranes were then probed with the following primary antibodies for 1 h at room 
temperature with gentle rocking: rabbit polyclonal anti-HCN4 (Alomone labs), 1:100; rabbit 
polyclonal anti-actin (Sigma Aldrich), 1:1000.  Following three 10 min washes in TBS-Tween, 
membranes were then probed with horseradish peroxidase (HRP)-linked secondary antibody 
(HRP-linked anti-rabbit IgG, Cell Signalling) for a further 1 h at room temperature with gentle 
rocking. Membranes were then washed three times for 5 min in TBS-Tween to remove unbound 
secondary antibody. Chemiluminescence was achieved by the addition of Clarity Western ECL 
substrate (Bio-Rad) in a 1:1 ratio for 5 min in the dark. Membranes were then imaged with the 
ChemiDoc MP. Sedentary, trained and trained+antimiR samples were run on the same gel to 
ensure identical exposure conditions. The chemiluminescent signal intensity was normalised to the 
relative quantification of the corresponding intensity of actin. Data from each replicate were 
normalised and averaged across replicates.  
Proteomics 
Mass spectrometry based proteomics experiments were performed to evaluate protein expression 
of selected targets in isolated sinus node biopsies from sedentary male C57BL/6J mice (n=30 
pooled into 3 samples with 10 biopsies in each sample). Briefly, sinus node biopsies were 
collected and immediately snap frozen in liquid N2 and stored at -80°C until processing. Cardiac 
proteins were extracted from the biopsies and 1 mg protein from each sample was digested as 
described previously.15, 16 Peptides were desalted and fractionated by micro-flow reverse-phase 
ultra high pressure liquid chromatography into 12 fractions. Fractionated peptide samples were 
analyzed by online reversed-phase liquid chromatography coupled to a Q-Exactive Plus 
quadrupole Orbitrap tandem mass spectrometer. Peptide samples were separated on 15 cm 
fused-silica emitter columns using a 1 h multi-step linear gradient. Raw mass spectrometry data 
was processed using MaxQuant software (version 1.5.3.30) and proteins were identified with the 
built-in Andromeda search engine using a database containing all reviewed mouse SwissProt 
protein entries. Analysis of protein abundance was based on summed mass spectrometry-based 
protein intensities as determined by MaxQuant.   
TUNEL assay 
The right atrial wall including the sinus node of sedentary and trained mice were quickly dissected, 
flash frozen with liquid N2, and stored at -80°C until processing. The tissues were cryosectioned at 
12 µm thick and mounted every five sections on an adhesion glass slide. Terminal 
deoxynucleotidyl transferase biotin-dUTP nick-end labelling (TUNEL; Roche, 11 684 795 910) was 
then performed combined with standard immunohistochemistry to label the sinus node using anti-
HCN4 antibody. Briefly, frozen sections were fixed in 10% neutral buffered formalin, permeabilised 
in 0.1% triton X-100 in PBS, and blocked with 1% BSA, followed by incubation in rabbit polyclonal 
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anti-HCN4 antibody (Alomone, APC-052, 1:200 dilution) at 4°C overnight. TUNEL was then carried 
out at 37°C for 60 min, according to the manufacturer’s instruction. Cy3-conjugated anti-donkey 
and rabbit IgG secondary antibody (Merck Millopore, AP182C, 1:200 dilution) was added in the 
TUNEL reaction mix. As a positive control, sinus node sections were treated with micrococcal 
nuclease (ThermoFisher Scientific, EN0181, 30 U/ml). Images of HCN4-positive areas indicating 
the sinus node region were acquired using a laser scanning microscope (Zeiss LSM 5 PASCAL) 
equipped with a x40/1.0 PL Apo objective. The confocal settings were as follows: confocal 
aperture, 200 µm; scan speed, 1.60 µs pixel time, unidirectional; image size, 512 x 512 pixels. 
Images were acquired using the following conditions: 488 nm excitation and 505-530 nm emission 
for TUNEL, and 543 nm excitation and >560 nm emission for Cy3, respectively. To count the 
number of TUNEL-positive cells, images of HCN4-positive regions were combined and the contrast 
was enhanced using Adobe Photoshop. TUNEL positive cells per section were counted using Cell 
Counter of ImageJ at five different levels of the sinus node in five sedentary and trained mice. 
Tissue electrophysiology 
The beating rate of the isolated sinus node was determined by extracellular potential recording as 
described by Yamamoto et al.17 In brief, animals were weighed and then killed by cervical 
dislocation following which a right atrial preparation encompassing the sinus node was rapidly 
dissected in Tyrode solution containing (in mM): 100 NaCl, 4 KCl, 1.2 MgSO4, 1.2 KH2PO4, 
1.8 CaCl2, 25 NaHCO3 and 10 glucose bubbled with 95% O2 and 5% CO2 to give a pH of 7.4. The 
preparation was superfused with 37°C Tyrode solution at a flow rate of 10 ml/min and extracellular 
potentials recorded using bipolar electrodes 100 μm in diameter. Recording electrodes interfaced 
with a Neurolog system (Digitimer) with low-pass and high-pass filters adjusted to optimise the 
signal-to-noise ratio. Extracellular potentials were continuously recorded for 20 min using a PC 
with a PowerLab and LabChart v7 software (ADInstruments) following which the effect of 
2 mM CsCl (Sigma-Aldrich) on the beating rate was studied. The superfusing solution was 
changed to Tyrode solution containing 2 mM CsCl. After 15 min of treatment, the rate was 
recorded for 5 min. The preparation was then washed of CsCl for 20 min, during which the beating 
rate approached baseline values. The calculated rate was averaged over 500 beats. 
Intracellular action potential recording 
Intracellular action potentials were recorded in right atrial preparations containing the intact sinus 
node. Tissue was pinned to a specially designed chamber that allowed epicardial and endocardial 
contact with superfusing Tyrode solution (containing in mM: NaCl 120.3, KCl 4.0, CaCl2 1.2, 
MgSO4 1.3, NaH2PO4 1.2, NaHCO3 25.2 and glucose 11) bubbled with 95% O2 and 5% CO2 to 
give a pH of 7.4. Tyrode solution was circulated at 20 ml/min and tissues maintained at 37°C. The 
leading pacemaker site in the sinus node was mapped with bipolar extracellular electrodes as 
described in the preceding section. Using 3 M KCl filled sharp microelectrodes of 20-40 MΩ 
electrical resistance, intracellular action potentials were recorded at the leading pacemaker site of 
the sinus node and pectinate muscle (atrial tissue). Data acquired at 20 kHz was passed through a 

10 kHz low‐pass Bessel filter and amplified 10x by Axon Instruments GeneClamp 500 amplifier 

(Molecular Devices Inc), digitized with Axon Instruments Digidata 1440A (Molecular Devices Inc), 
and recorded onto a computer using the WinEDR v3.3.6 program (Dr. J. Dempster, University of 
Strathclyde, Glasgow, UK). Series of five consecutive action potentials were exported to LabChart 
v8 software (ADInstruments) and the following action potential parameters were measured: cycle 
length (interval between consecutive action potential peaks, ms), maximum diastolic potential 
(MDP, mV), maximum upstroke velocity (dV/dtmax, mV/s), action potential height/amplitude (mV), 
action potential width (interval between consecutive maximum diastolic potentials, ms) and action 
potential duration (APD, ms) at 10, 50, 70 and 90% repolarization. Heart rate (beats per minute, 
bpm) was calculated from cycle length measurements for individual observations. GraphPad Prism 
6 (GraphPad Software, Inc.) was used for statistical analysis. 
Sinus node cell isolation and patch-clamp electrophysiology 
Mice were killed by cervical dislocation. After quick removal of the heart, the sinus node tissue was 
dissected out and strips of nodal tissue were dissociated into single cells by a standard enzymatic 
and mechanical procedure.18 The enzyme solution contained collagenase IV (224 U ml−1, 
Worthington), elastase (1.42 U ml−1, Sigma-Aldrich) and protease (0.45 U ml−1, Sigma-Aldrich).18 
Isolated sinus node cells were stored at 4°C for the day of the experiment. If was recorded using a 
patch electrode in whole-cell mode during superfusion of a Tyrode solution containing (in mM): 140 
NaCl, 5.4 KCl, 1.8 CaCl2, 1 MgCl2, 5 HEPES-NaOH, 10 D-glucose, pH 7.4. BaCl2 (1 mM) and 
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MnCl2 (2 mM) were added to avoid contamination from other ionic currents. The bath temperature 
was 35±0.5°C. The pipette solution contained (in mM): 130 K-aspartate, 10 NaCl, 2 CaCl2 
(pCa=7), 2 MgCl2, 10 HEPES, 5 EGTA, 2 ATP(Na2), 0.1 GTP, 5 creatine phosphate, pH 7.2. To 
obtain current densities, currents were measured during steps to the range −35 to −125 mV from a 
holding potential of −35 mV and normalised to cell capacitance. Data were acquired at 1 kHz using 
an Axopatch 200 amplifier and pClamp 8 (Molecular Devices, Sunnyvale, CA, USA). Data were 
analysed off-line using Clampfit 10 (Molecular Devices), Origin 8 (Origin Lab Corp., Northampton, 
MA, USA) and GraphPad Prism 6 (GraphPad Software, Inc.). 
Statistical analysis 
Statistical analysis was carried out using GraphPad Prism 6 or 7 (GraphPad Software, Inc.) or 
SPSS (IBM). Two groups were analysed using an unpaired Student’s t-test (two tailed).  When the 
null hypothesis of equal variance was rejected, an unpaired t-test with Welch’s correction was 
used. If the data were not normally distributed, a non-parametric test (Mann-Whitney test) was 
used instead of the unpaired t-test. To compare multiple groups, an ANOVA (one- or two-way) was 
used in the case of normally distributed data and the Kruskal-Wallis test in the case of data not 
normally distributed. P<0.05 was regarded as significant. 0.12>P<0.05 was regarded of potential 

interest and the precise P value is given. In figures, data are shown as meansSEM; asterisks 
indicate significance. For TLDA cards, a non-parametic Limma test was used to compare 
differences between sedentary and control animals.6 Statistical analysis of the next generation 
sequencing data is described above.  
 

SUPPLEMENTAL DISCUSSION 
Intrinsic heart rate of untrained, young, male, human subjects  
Jose and Collinson19 reported the intrinsic heart rate for 139 male subjects (non-athletes) between 
the ages of 20 and 30. This is the first and largest study of the intrinsic heart rate. We have data for 
10 male subjects (non-athletes) between the ages of 20 and 30. Although the intrinsic heart rate in 

this study (97.92.6 beats/min) is statistically different (Student’s t test; P=0.002) from the intrinsic 

heart rate (105.60.6 beats/min) reported by Jose and Collinson,19 it is within the mean  2 

standard deviations from the study of Jose and Collinson.19 The mean  2 standard deviations 
encompasses 95.4% of the data from the Jose and Collinson19 study. Previously, we have put this 
forwards as a criterion for acceptance of intrinsic heart rate data.20 Whereas the intrinsic heart rate 
of untrained, young, male, human subjects falls within this acceptable range in some studies, lower 
values (the lowest being 83.1 beats/min) have been reported in other studies;20 in all these studies 
the number of human subjects was 10 or less and, in this respect, have to be considered less 
definitive than the study of Jose and Collinson.19 The intrinsic heart rate of young, male subjects 
(non-athletes) should be approximately the same in different studies. The low intrinsic heart rates 
reported in some studies are likely to be the result of a technical issue, because the only factors 
known to decrease the intrinsic heart rate (age,19 heart failure21 and athletic traininge.g.22) are 
unlikely to apply. 
Reported evidence of exercise training-induced increase of vagal tone 
Based on block of autonomic tone using atropine and propranolol, we have found no evidence of 
altered autonomic tone and in particular high vagal tone in human athletes (this study; Figure 1B) 
and exercise trained C57BL/6J mice.1 However, again based on block of autonomic tone using 
atropine and propranolol, Guasch et al.23 (using the Wistar rat) and Aschar-Sobbi et al.24 (using the 
CD1 mouse) have recently reported evidence of high vagal tone following exercise training 
(although, strangely, Guasch et al.23 stated that there was no exercise training-induced 
bradycardia in their study). The cause of the discrepancy is unknown, although it could be the 
result of an unknown technical issue, the doses of atropine and propranolol used, species used, 
strain of mouse used, and differences in the duration, intensity and type of training. 

We have reviewed the role of high vagal tone (assessed by pharmacological block of 
autonomic tone) in exercise training-induced bradycardia in the human and animal models.20 In all 
studies of human athletes in which the measurement of the intrinsic heart rate is deemed to be 
correct (see above) there is no evidence of high vagal tone.20 In nine animal studies, the data 
suggests that high vagal tone accounts for 76% (mouse), 40% (rat), 43.6% (rat), 10% (rat), 0% 
(rat), 0% (rat), 0% (rat), 0% (rat) and 0% (rat) of the exercise training-induced bradycardia.20 
Aschar-Sobbi et al.24 state that high vagal tone accounts for 100% of the exercise training-induced 
bradycardia in the mouse. This is a higher contribution than any of the previous studies. In 
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contrast, in the mouse we have argued that its contribution is 0%,1 consistent with five of the 
previous studies. Also in our case, we have based our conclusion not only on autonomic blockade 
in vivo in the mouse; we have also based it on intrinsic heart rate measurements from the isolated 
sinus node from both the rat and mouse.1 Furthermore, we have shown that there is an exercise 
training-induced downregulation of HCN4 mRNA, HCN4 protein and funny current in the rat and 
mouse and the exercise training-induced bradycardia is abolished on block of funny current in the 
mouse (this study and D’Souza et al.1). 

We conclude that it is likely that downregulation of funny current is playing a role in 
exercise training-induced bradycardia. However, the evidence from Guasch et al.23 and Aschar-
Sobbi et al.24 of exercise training-induced high vagal tone is difficult to refute and perhaps high 
vagal tone could play a role in some circumstances. 
Nkx2.5 expression in the adult sinus node 
While much is known about the regulatory networks at play in the embryonic development of the 
cardiac conduction system, the transcriptional networks maintaining function of the adult sinus 
node are comparatively understudied. The data presented in Online Table IV, as far as we are 
aware, is the first large scale transcriptomic analysis of transcription factors within the adult mouse 
sinus node. In Online Figure XA, data from Online Table IV are plotted to show expression levels 
of 88 transcription factors in the sedentary adult mouse sinus node. Transcriptionally, Nkx2.5 (red 
bar) is the ninth most abundant transcription factor (of the transcription factors measured). 
Expression levels of well-known transcription factors in the sinus node (Tbx3, Tbx18 and Shox2) 
are highlighted in blue for comparison. Online Figure XB shows the protein expression level of 
selected transcription factors (measured by mass spectrometry) in the sedentary adult mouse 
sinus node. This confirms the presence of Nkx2.5 in the adult mouse sinus node. Finally, in recent 
work, Wu et al.25 found that H3K4me3 modifications (a prominent active histone mark associated 
with active genes) were highly enriched in the Nkx2.5 promoter in the mouse sinus node. In 
summary, these observations suggest that there is baseline expression of Nkx2.5 in the sinus 
node (which is then increased in response to exercise training).  
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Online Table I. Characteristics of human subjects. All athletes participated in endurance sports 
(running, n=4; triathalon, n=3; cycling n=1). BMI, body mass index; SDNN, standard deviation of 
normal to normal beats; cSDNN, heart rate corrected SDNN. 
 

 
Control subjects (n = 10) Athletes (n = 8)  P value 

Gender male male   

Age (years) 21.0 ± 0.7 25.9 ± 1.2  0.002 

Weight (kg) 69.5 ± 1.9 69.8 ± 3.8  0.95 

BMI (kg.m-2) 21.5 ± 0.7 22.0 ± 078  0.61 

Systolic blood 
pressure (mmHg) 

126.6 ± 3.8 120.9 ± 5.7 
 

0.40 

Diastolic blood 
pressure (mmHg) 

70.9 ± 3.4 65.4 ± 4 
 

0.30 

Heart rate(beats/min) 62.5 ± 1.9 49.2 ± 2.9  0.002 

SDNN (ms) 64.7 ± 7.3 72.1 ± 9.1  0.43 

cSDNN (ms) 185.6 ± 18.6 173.6 ± 23.7  0.69 

 
 
 
Online Table II. Intracellular action potential parameters from control mice (sinus node from 
4 mice and right atrium from 3 mice) and exercise trained mice (sinus node from 8 mice and 
right atrium from 5 mice). APD10 etc., action potential duration at 10% repolarization etc. 
Significant differences highlighted by P values in bold font. 
 

 Control Trained P value 

Sinus node (control, n=65 impalements; trained, n=43) 

Cycle length (ms) 0.12±0.0006 0.12±0.0011 0.0001 

Spontaneous rate (beats/min) 521±2.9 498±4.9 0.0001 

Maximum diastolic potential (mV) -53.3±1.1 -50.0±1.2        0.046 

Height (mV) 44.8±1.7 39.40±1.1 0.0087 

APD10 (ms) 9.1±0.4 9.4±0.2        0.45 

APD50 (ms) 28.3±0.5 28.6±0.4        0.67 

APD70 (ms) 38.1±0.6 39.3±0.6        0.18 

APD90 (ms) 66.0±1.2 70.2±1.3        0.021 

Action potential width (ms) 95.4±0.9 100.9±1.4 0.0007 

Right atrium (control, n=12 impalements; trained, n=26 impalements) 

Maximum diastolic potential (mV) -80.9±1.2 -79.5±0.8       0.32 

Height (mV) 96.7±1.6 94.3±1.5       0.32 

APD10 (ms) 1.8±0.1 1.7±0.1       0.83 

APD50 (ms) 11.7±0.4 10.7±0.5       0.17 

APD70 (ms) 19.7±0.5 17.3±0.8       0.017 

APD90 (ms) 35.3±0.5 31.2±1.2       0.0029 

Action potential width (ms) 96.8±3.9 98.5±3.6       0.77 
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Online Table III. Differentially expressed miRs in sedentary and trained mice determined by 
next generation sequencing. Significant FDR-corrected P values in bold font. 
 

Mature miR 

Sedentary mice 
(DESeq 

normalised read 
count) 

Trained mice     
(DESeq 

normalised read 
count) 

Fold change 
(trained/ 

sedentary) 
P value 

FDR 
corrected 
P value 

mmu-miR-5099 22.21487273 489.4265862 22.03148279 0.00000 0.00000 

mmu-miR-423-5p 313.9750531 1219.565294 3.884274506 0.00000 0.00001 

mmu-miR-486-3p 156.2892445 607.1240921 3.88461851 0.00000 0.00003 

mmu-let-7d-3p 1235.448761 3484.464362 2.820403786 0.00001 0.00187 

mmu-let-7e-5p 755.0028997 1800.342372 2.384550274 0.00031 0.03533 

mmu-miR-181b-5p 278.6639706 674.6823965 2.421132503 0.00035 0.03533 

mmu-miR-10b-5p 421.1952422 69.86093779 0.165863549 0.00035 0.03533 

mmu-miR-676-3p 350.2394139 879.8612085 2.512170743 0.00040 0.03533 

mmu-miR-92a-1-5p 7.942430494 40.31434913 5.075820199 0.00072 0.05695 

mmu-miR-30c-2-3p 53.09431388 144.7153584 2.725628185 0.00142 0.10178 

mmu-miR-181b-5p 322.0964351 692.1797756 2.148983038 0.00198 0.12856 

mmu-miR-132-3p 18.19780033 55.98987347 3.076738533 0.00237 0.13843 

mmu-miR-125b-1-3p 57.21390926 149.4144141 2.61150507 0.00252 0.13843 

mmu-let-7b-5p 3230.518751 6635.618825 2.054041266 0.00386 0.18699 

mmu-let-7c-5p 4882.488078 9682.89278 1.983188208 0.00392 0.18699 

mmu-let-7c-5p 4830.155427 9473.284502 1.961279434 0.00454 0.20266 

mmu-miR-200b-3p 30.59796659 2.536806286 0.082907676 0.00572 0.23647 

mmu-miR-212-5p 22.91091627 62.99404349 2.749520917 0.00624 0.23647 

mmu-miR-744-5p 291.9365094 947.0853346 3.244148313 0.00628 0.23647 

mmu-let-7d-5p 1811.726444 3458.665196 1.909043834 0.00669 0.23913 

mmu-miR-1249-3p 37.47564173 96.24148751 2.568107791 0.00876 0.29838 

mmu-let-7a-5p 4387.689636 8066.421029 1.838421059 0.01006 0.31336 

mmu-miR-6240 103.1427418 232.1333021 2.250602398 0.01008 0.31336 

mmu-let-7a-5p 4333.114144 7889.456427 1.820735888 0.01079 0.32134 

mmu-miR-5126 2.696936877 15.75565412 5.842055203 0.01285 0.36122 

mmu-let-7f-5p 2713.767599 4856.736179 1.789665475 0.01314 0.36122 

mmu-let-7f-5p 2436.096432 4328.468006 1.776804871 0.01463 0.37916 

mmu-miR-10a-5p 1161.619985 543.2343346 0.467652366 0.01580 0.37916 

mmu-miR-483-3p 1.571038647 11.09386871 7.06148683 0.01621 0.37916 

mmu-miR-1940 9.943323837 34.78604993 3.498432768 0.01630 0.37916 

mmu-miR-155-5p 23.75533994 56.56196019 2.381020871 0.02125 0.47476 

mmu-miR-193b-3p 110.9863584 14.5344591 0.130957167 0.02673 0.56202 

mmu-miR-27a-3p 344.6710656 155.8005298 0.452026716 0.02787 0.56935 

mmu-miR-223-3p 40.18786432 8.282510982 0.206094828 0.03733 0.74143 

mmu-miR-1306-5p 2.978411435 15.05498902 5.054704277 0.04746 0.90606 
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Online Table IV. List of potential NSRP1-targeting transcription factors measured in the 
sinus node using Taqman Low density array cards. Significant differences highlighted by P 
values in bold font. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Sedentary Trained   

mRNA Mean SEM Mean SEM P value 

Predicted by MatInspector 

Zfp354c 1.60E-01 2.89E-02 4.20E-01 8.86E-02 0.008446 

Helt 1.69E-04 6.57E-05 3.53E-03 2.18E-03 0.010665 

Six3 1.69E-04 6.57E-05 6.07E-02 3.91E-02 0.016301 

Patz1 2.51E-01 4.44E-02 4.73E-01 5.95E-02 0.016376 

Mitf 9.03E-01 2.95E-01 1.86E+00 3.39E-01 0.021262 

Cdx2 1.69E-04 6.57E-05 1.28E-03 8.71E-04 0.025429 

Hsf2 2.97E-01 3.66E-02 5.87E-01 1.36E-01 0.031703 

Pdx1 1.69E-04 6.57E-05 4.37E-04 1.57E-04 0.034216 

Spz1 1.69E-04 6.57E-05 4.37E-04 1.57E-04 0.034216 

Foxp1 6.54E-01 6.19E-02 1.11E+00 1.67E-01 0.035768 

Nkx2.5 1.02E+00 3.55E-01 2.15E+00 3.73E-01 0.041394 

Tead4 5.68E-02 9.45E-03 9.60E-02 1.04E-02 0.041491 

Stat3 1.03E+00 1.80E-01 1.80E+00 2.84E-01 0.042595 

Cebpe 3.34E-02 1.19E-02 4.37E-04 1.57E-04 0.057859 

Atf1 2.01E-01 4.19E-02 7.91E-02 1.69E-02 0.058164 

Tcf3 3.67E-03 9.86E-04 3.31E-02 2.50E-02 0.061033 

Sp1 6.67E-01 9.47E-02 1.07E+00 1.43E-01 0.070278 

Hoxa9 6.95E-03 2.10E-03 2.97E-03 7.65E-04 0.074478 

Pitx2 9.98E-02 1.13E-02 1.58E-01 2.51E-02 0.093084 

Arid5a 8.09E-02 7.66E-03 1.27E-01 2.14E-02 0.103987 

Sall2 2.16E-04 7.01E-05 4.37E-04 1.57E-04 0.104569 

Klf15 1.39E+00 2.82E-01 3.36E+00 1.12E+00 0.114708 

Nanog 4.90E-03 2.87E-03 1.70E-03 1.20E-03 0.123074 

Zfp217 7.52E-02 1.53E-02 1.21E-01 2.19E-02 0.142784 

Gabpa 3.06E+00 3.75E-01 5.13E+00 1.27E+00 0.149457 

Hic1 4.06E-03 2.24E-03 1.32E-01 1.28E-01 0.158815 

Tfap2a 2.13E-02 3.54E-03 3.78E-02 1.06E-02 0.162104 

Lef1 4.28E-03 7.25E-04 1.08E-02 3.32E-03 0.162278 

Klf7 4.21E-01 2.78E-01 1.07E-01 2.15E-02 0.166922 

Esrra 5.99E-01 6.75E-02 8.59E-01 1.37E-01 0.185812 

Nfatc2 1.41E-01 3.01E-02 2.49E-01 8.32E-02 0.216844 

Arid1a 8.23E-02 1.68E-02 5.63E-02 5.22E-03 0.233172 

Zfp384 1.29E-01 2.37E-02 1.03E-01 2.55E-02 0.241921 

Yy1 5.11E-01 4.11E-02 7.03E-01 1.18E-01 0.302407 

Atf6 5.64E-01 5.84E-02 5.72E-01 1.53E-01 0.306556 

Gata1 7.68E-03 2.41E-03 6.18E-03 2.94E-03 0.323467 

Csrnp3 1.51E-02 5.26E-03 9.08E-03 1.86E-03 0.331801 

Grhl2 2.61E-02 2.37E-02 6.46E-02 4.41E-02 0.349373 

Pou2f1 8.36E-01 1.77E-01 1.28E+00 3.66E-01 0.362792 

Runx3 2.83E-02 7.21E-03 2.52E-02 1.41E-02 0.407731 

Satb1 4.42E-01 7.15E-02 5.67E-01 1.04E-01 0.421099 
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Online Table IV (continued). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Sedentary Trained  

mRNA Mean SEM Mean SEM P value 

Predicted by MatInspector 

Pou4f3 6.39E-02 6.38E-02 1.52E-02 1.47E-02 0.422668 

Pou1f1 1.23E-02 1.19E-02 4.67E-02 4.63E-02 0.446538 

Zfx 2.05E-02 4.25E-03 2.44E-02 6.31E-03 0.466673 

Irx3 7.73E-02 4.40E-02 3.64E-02 1.79E-02 0.478955 

LIZfp239 7.25E-02 1.13E-02 7.32E-02 1.46E-02 0.503171 

Sox6 2.04E-01 1.34E-02 2.25E-01 6.12E-02 0.511482 

Mef2c 6.16E-01 7.84E-02 7.85E-01 1.73E-01 0.513938 

Isl2 8.31E-02 6.57E-02 7.60E-02 6.64E-02 0.524187 

Gfi1 1.09E-02 7.17E-03 1.34E-02 1.30E-02 0.567992 

E2f1 2.31E-02 3.63E-03 2.46E-02 6.81E-03 0.580365 

Dmtf1 1.30E-01 2.59E-02 1.87E-01 6.50E-02 0.584297 

Hnf4a 1.89E-04 7.24E-05 9.13E-04 4.79E-04 0.613491 

Insm2 8.87E-03 5.69E-03 5.02E-03 1.88E-03 0.614452 

Hmbox1 1.13E-01 2.12E-02 1.22E-01 2.29E-02 0.619181 

Zic3 1.82E-02 1.80E-02 1.54E-03 1.09E-03 0.622457 

Rfx5 1.45E+00 3.21E-01 5.18E+00 1.54E+00 0.645909 

Pax4 4.94E-02 3.88E-02 4.27E-02 3.84E-02 0.666232 

Hltf 3.42E-01 3.49E-02 3.79E-01 5.85E-02 0.717274 

Irf3 2.71E-01 1.00E-01 2.36E-01 3.23E-02 0.728975 

Six2 1.53E-02 5.42E-03 1.46E-02 3.05E-03 0.732889 

Plag1 5.90E-02 9.81E-03 5.97E-02 2.17E-02 0.739622 

Zscan21 1.01E-01 2.23E-02 2.22E-01 5.05E-02 0.747869 

Sall1 9.02E-03 2.60E-03 6.42E-03 1.73E-03 0.760965 

Zbtb14 4.58E-02 8.27E-03 5.04E-02 1.18E-02 0.771122 

Pax6 1.30E-01 1.29E-01 4.37E-04 1.57E-04 0.772495 

Gli3 5.13E-02 1.11E-02 5.93E-02 1.35E-02 0.772616 

Klf4 1.84E+00 4.39E-01 1.40E+00 4.12E-01 0.778102 

Nr5a2 4.22E-03 1.57E-03 4.22E-03 1.96E-03 0.778849 

Mzf1 7.69E-03 2.79E-03 6.75E-03 1.25E-03 0.811114 

Nfkb2 2.56E-01 7.79E-02 2.67E-01 8.14E-02 0.857029 

Foxh1 3.41E-02 2.78E-02 7.94E-03 5.42E-03 0.858473 

Ikzf5 3.30E-01 6.57E-02 3.22E-01 3.27E-02 0.86262 

Prrx2 1.81E-02 2.51E-03 3.21E-02 1.17E-02 0.863999 

Smad3 2.20E-01 7.46E-02 2.23E-01 6.69E-02 0.870408 

Rbpj 3.49E-01 1.26E-01 2.82E-01 4.66E-02 0.950006 

Nfe2l1 8.02E-01 1.40E-01 7.90E-01 2.03E-01 0.950954 

Zfp410 3.67E-01 7.91E-02 3.85E-01 8.60E-02 0.956282 

Myt1l 3.75E-03 1.43E-03 3.97E-03 2.66E-03 0.992775 
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Online Table IV (continued). 
 

 
 
 
 

 Sedentary Trained  

mRNA Mean SEM Mean SEM P value 

Predicted by MatInspector 

Known regulators of cardiac function/development 

Tbx5 4.02E+00 9.96E-01 9.43E+00 1.73E+00 0.013147 

Rest 2.25E-01 4.29E-02 5.24E-01 1.43E-01 0.040982 

Hand2 1.92E+00 6.53E-01 3.61E+00 7.98E-01 0.076046 

Tbx18 4.11E-01 1.06E-01 5.65E-01 1.05E-01 0.204897 

Gata4 1.43E+00 2.54E-01 1.79E+00 2.09E-01 0.299239 

Isl1 1.91E-01 5.82E-02 1.14E-01 2.35E-02 0.304207 

Shox2 7.02E-02 2.42E-02 7.02E-02 1.20E-02 0.451147 

Stat5a 3.04E-01 9.58E-02 3.27E-01 4.78E-02 0.454078 

Tbx3 4.43E-01 1.75E-01 3.00E-01 5.70E-02 0.955335 
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Online Figure I. mRNA expression levels for key proteins involved in the Ca2+ clock 
pacemaker mechanism in sinus node of sedentary (black bars) and trained (red bars) mice 
(n=5/5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Online Figure II. miR-423-5p binding sites on HCN4 exons (CDR, coding regions) and 3-UTR 
predicted by RNA22. 
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Online Figure III. TUNEL-staining of apoptotic cells in the sinus node of sedentary and 
trained mice. A, Sections through the sinus node treated with TUNEL (green signal; marker for 
apoptotic cells) and immunolabelled for HCN4 (red signal; marker for sinus node cells). Sections 
through the sinus node of sedentary and trained mice shown. A section though the sinus node 
treated with micrococcal nuclease (triggers apoptosis) also shown as a positive control. 
Arrowheads indicate TUNEL-positive cells. Scale bars=50 μm. B, Average number of TUNEL-
positive cells in micrococcal nuclease-treated sinus node sections (positive control) and sinus node 
sections from sedentary and trained mice. (n=5/5) There were only a few apoptotic cells in the 
sinus node of sedentary and trained mice (3.48±2.16 versus 6.92±3.48 cells/section; P=0.4297) in 
contrast to the micrococcal nuclease-treated sinus node sections (59.0±15.5; P=0.001). n.s., not 
significant. 
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Online Figure IV. Effect of antimiR in trained animals after three weeks. miR-423-5p mRNA 
(normalised to RNU1A1) determined by qPCR in vehicle-injected sedentary mice, vehicle-injected 
trained mice and antimiR-injected trained mice three weeks after the last injection of the vehicle or 
antimiR (n=6/5/5). During this additional 3-week period, training of the mice continued. 
*significantly different (P<0.05). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Online Figure V. Effect of antimiR on the heart rate in conscious sedentary and conscious 
trained mice (n=5/12). The change in heart rate caused by the antimiR is shown (calculated as 
the difference in heart rate, measured in the conscious mouse, before and 24 h after the third 
antimiR injection (day 28 of swim training). *significantly different from sedentary data (P<0.05).  
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Online Figure VI. A control (non-targeting) antimiR has little effect on If in trained mice. 
Mean current-voltage relationships for If from vehicle-treated trained (n=47 cells/5 animals) and 
control (non-targeting) antimiR-treated trained (n=37 cells/4 animals) mice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Online Figure VII. The antimiR has little or no effect on heart weight:body weight ratio, PR 
interval, QRS duration and QTc interval of sedentary or trained mice. n=5/5/5/6 for heart 
weight:body weight ratio. ECG parameters measured under isofluorane anaesthesia. Continuous 
100 beat recordings were analysed and averaged. n=10/10/5/11 for ECG parameters. *significantly 
different (P<0.05).
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 Mouse NSRP1; Chromosome 11 

Nkx2.5 binding sites 

77080375- ATAAATAATTGTTTAAAAA 

(1/0.88) 
77079441- GTGTCTGAGTGGTTTGTAC 

(1/0.99) 
 
 
Online Figure VIII. Nkx2.5 binding sites in 2 kb 5’ flanking region of the miR-423 host gene 
NSRP1 predicted by MatInspector. Numbers before sequences represent the position of the 
binding sites in the genome. Numbers in brackets indicate similarity scores for predicted Nkx2.5 
binding motifs to canonical core binding sites and overall matrix for Nkx2.5 action respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Online Figure IX. Effect of overexpression of Nkx2.5 on mRNA levels of Nkx2.5 and NSRP1 
in H9c2 cells. Expression is shown in vehicle-transfected cells (control) or cells transfected with 
Nkx2.5. 
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Online Figure X. Expression of Nkx2.5 in the sedentary adult mouse sinus node. A, mRNA 
expression level of 88 transcription factors in the sedentary adult mouse sinus node (n=8) 
measured using Taqman low density array cards and normalised to expression level of 
housekeeping genes GAPDH and TBP. Nkx2.5 is highlighted in red and, for comparison, Tbx3, 
Tbx18 and Shox2 are highlighted in blue. B, Protein expression level (on logarithmic scale) of 
selected transcription factors, including Nkx2.5, in the sedentary adult mouse sinus node (n=3 
cohorts of 10 mice) measured using high-resolution mass spectrometry. Protein expression level of 
HCN4 also shown. Indivdual data points (for the three cohorts of mice) as well as means±SEM 
shown. MS, mass spectrometry. SN, sinus node. 




