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Abstract  

 

A combined geomorphological – physical model approach is used to generate three-

dimensional reconstructions of glaciers in Pacific Far NE Russia during the global Last 

glacial Maximum (gLGM). The horizontal dimensions of these ice masses are delineated by 

moraines, their surface elevations are estimated using an iterative flowline model, and 

temporal constraints upon their margins are derived from published age-estimates. The 

Equilibrium-line altitudes (ELAs) of these ice masses are estimated, and gLGM climate is 

reconstructed using a simple degree–day melt model. 

 

The results indicate that, during the gLGM, ice masses occupying the Pekulney, Kankaren 

and Sredinny mountains of Pacific Far NE Russia were of valley-glacier and ice-field type. 

These glaciers were between 7 and 80 km in length, and were considerably less extensive 

than during pre-LGM phases of advance. gLGM ice masses in these regions had ELAs of 

between 575 ± 22 m and 1035 ± 41 m (a.s.l.)—corresponding to an ELA depression of 350-

740 m, relative to present. Data indicate that, in the Pekulney Mountains, this ELA 

depression occurred because of a 6.4°C reduction in mean July temperature, and 200 mm yr
-1

 

reduction in precipitation, relative to present.  

 

Thus, reconstructions support a restricted view of gLGM glaciation in Pacific Far NE Russia, 

and indicate that the region’s aridity precluded the development of large continental ice 

sheets.  
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1. Introduction 

Over recent decades, the glacial history of Far NE Russia has been a matter of considerable 

contention, with debate focussing upon the style and extent of ice masses during the global 

Last Glacial Maximum (gLGM; approximately 21 ka; referred to in Russian literature as the 

Sartan). During this period, some consider the region to have been occupied by a series of 

vast and coalescing ice sheets, forming the SE component of a larger pan-Arctic ice mass 

(Grosswald, 1988, 1998; Grosswald and Hughes, 1999, 2002, 2004), while others regard 

glaciers to have been of limited extent, and restricted to only the highest mountains (Velichko 

et al., 1984; Arkhipov et al., 1986; Glushkova, 1992, 2001; Laukhin, 1997, 2006; Gualtieri et 

al., 2000; Heiser and Roush, 2001; Velichko and Spasskaya, 2002; Brigham-Grette et al., 

2003; Stauch et al, 2007; Stauch and Gualtieri, 2008; Barr and Clark, 2009). Part of the 

uncertainty regarding the dimensions of former ice masses in Far NE Russia results from the 

difficulties of conducting fieldwork in such an isolated region, and chronological control 

upon former phases of ice advance is therefore limited, as age-estimates have been derived 

from few glacial deposits (Gualtieri et al. 2000; Glushkova, 2001; Anderson and Lozhkin, 

2002; Brigham-Grette et al., 2003; Laukhin et al., 2006; Stauch et al., 2007). Various authors 

have presented depictions of the region’s ice masses during the gLGM (Velichko et al., 1984; 

Arkhipov et al., 1986; Grosswald, 1988; Grosswald and Hughes, 2002; Zamoruyev, 2004), 

but it is apparent that robust, chronologically-constrained reconstructions, underpinned by 

detailed geomorphological maps are all but absent. As a result, our understanding of the 

regions climate during the gLGM is limited: as factors such as atmospheric circulation are 

difficult to constrain without knowledge of ice-surface topography. Felzer (2001), for 

example, found that simulations of the region’s climate during the gLGM differ considerably 

when models are run with and without an ice sheet in Far NE Russia. Thus, generating robust 

reconstructions of gLGM ice masses in Far NE Russia is important, first because they are of 

use to the climate modelling community, but also because they may be used as independent 

proxies for palaeoclimate, through calculation of their equilibrium-line altitudes (ELAs)—

where net annual accumulation and ablation are exactly equal (see Porter, 1975, 2001; 

Sissons, 1979; Benn and Ballantyne, 2005). 

 

This paper presents three-dimensional (3-D) reconstructions of ice masses in the Pekulney, 

Kankaren and Sredinny mountains of Pacific Far NE Russia during the gLGM. These 

reconstructions are generated through a combined geomorphological – physical model 
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approach, and restricted to areas where regional chronologies allow ice-mass margins to be 

constrained to the gLGM (see Stauch and Gualtieri, 2008). Palaeo-ELA estimates are derived 

from these reconstructions, and inferences made regarding climatic conditions during the 

gLGM. The paper is the first to present chronologically- and geomorphologically-constrained 

reconstructions of gLGM ice masses in Far NE Russia, and advances our understanding of 

the glacial- and climatic-history of this vast and little-investigated region.   

 

2. Regional Setting 

Far NE Russia extends east from the Lena River to the coast of the North Pacific, covers an 

area of almost 4 million km
2
 (Fig 1), and is dominated by a series of mountain chains, which 

rarely exceed 2500 m above sea level (a.s.l.). The region’s climate is strongly continental, 

typically characterised by extreme aridity, cold winters and warm summers (Ivanov, 2002). 

During winter months the Siberian High pressure system develops over the continental 

interior, driving cold winds, and dry air-masses south and east towards the Aleutian Low—

branches of which occupy the Bering and Okhotsk Seas (Yanase and Abe-Ouchi, 2007). 

During summer months, a high pressure system develops over the North Pacific, driving 

moisture-bearing winds inland from the south and SE (Shahgedanova, 2002; Yanase and 

Abe-Ouchi, 2007). These conditions result in a severely cryo-arid interior, with amelioration 

towards the Pacific Coast. This paper focuses specifically upon the Pekulney, Kankaren and 

Sredinny Mountain Ranges (Fig 1), each of which lies within this Pacific sector, where 

conditions are often less extreme.   

 

2.1. The Pekulney Mountains 

The Pekulney Mountains (Fig 1) (centred upon 66.09°N, 175.05°E) are located in the 

Chukchi region and extend, from north to south, for 130 km, reaching altitudes of 1359 m 

(a.s.l.). Average winter temperatures range between -21 and -29°C, and average summer 

temperatures between +11 and +14°C (Glushkova, 2001). The Pekulney Mountains are the 

first significant topographic barrier to the inland transport of moisture-laden air-masses from 

the Gulf of Anadyr, and precipitation, therefore, decreases from a maximum, of 475 mm yr
-1

, 

on eastern slopes (Glushkova, 2001). At present, the mountains are occupied by very small 

cirque-type glaciers, but robust estimates of modern snowline altitudes are not recorded.  

 

2.2. The Kankaren Mountains 
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The Kankaren Mountains (Fig 1) (centred upon 63.36°N, 177.04°E) are situated at the NE 

fringe of the Koryak Highlands, 250 km SE of the Pekulney Mountains, and 60 km from the 

North Pacific coast. They extend from NW to SE for 60 km and are comparatively subdued, 

nowhere attaining altitudes in excess of 1000 m (a.s.l.). Direct estimates of modern climatic 

conditions within the mountains are lacking, as the closest World Meteorological Station is in 

Anadyr (~64.72°N, 177.49°E), 150 km to the north. As in the Pekulney Mountains, modern 

snowline altitudes are poorly-constrained.   

 

2.3. The Sredinny Mountains  

The Sredinny Mountains (Fig 1) (centred upon 56.55°N, 159.56°E) form the central 

topographic divide of the Kamchatka Peninsula. They extend from north to south for 800 km, 

and reach a maximum altitude of 3621 m (a.s.l.). Modern climatic conditions are difficult to 

classify, as the mountains encompass a range of topographic- and climatic-zones. Over the 

entire peninsula, mean temperatures range from +10 to +15°C in July, and, in January, range 

from approximately -8°C in SE regions to -26°C in the NW (Ivanov, 2002). Mean annual 

precipitation also decreases from SE to NW, with values of 1500-2000 mm in the former, and 

300-400 mm in the latter (Ivanov, 2002). Modern ELAs are highly variable, and Kamchatka 

currently constitutes the largest glacierised area in NE Asia, with 448 small, cirque-type, 

glaciers covering approximately 906 km
2 

(Solomina and Calkin, 2003, Ananicheva et al., 

2008).  

 

3. Methods 

 

3.1. Geomorphological mapping  

The glacial geomorphology of the whole of Far NE Russia, from the Lena River to the 

Pacific coast, including the Pekulney, Kankaren and Sredinny Mountains was mapped from 

satellite images and digital elevation model (DEM) data (for detailed maps and a description 

of the mapping procedure see Barr 2009; Barr and Clark, 2009). Many features indicative of 

former glaciation, including drumlins, trimlines and meltwater channels, were conspicuous 

by their scarcity, with only end moraines identifiable within many regions. In the present 

study, the morphology and orientation of these moraines was used in conjunction with land 

surface topography (particularly direction of slope), to infer palaeo ice-flow directions (as 

reported in Barr and Clark, 2009). Moraines were ascribed to the gLGM on the basis of 
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published age estimates. In the Pekulney Mountains this was based upon a combined 

radiocarbon-cosmogenic chronology derived from a single moraine (Brigham-Grette et al., 

2003). In the Kankaren Mountains, age-estimates were based on cosmogenic dating within 

the adjacent Koryak Mountains (see Gualtieri et al., 2000); whilst in the Sredinny Mountains, 

dating was based on a long-standing radiocarbon chronology (Olyunin, 1965; Braitseva et al., 

1968; Vtyurin and Svitoch, 1978; Kraevaya et al., 1983; Melekestsev and Braitseva, 1984). 

In each mountain range, the spatial distribution of moraines was used to extrapolate age-

estimates to a wide population, i.e. moraines were grouped according to their altitude and 

distance from regional mountain divides (considered to approximate palaeo-glacier length).   

  

3.2. Ice-mass reconstructions 

Ice masses were reconstructed in a GIS environment, with their horizontal dimensions 

defined by spatially-grouped moraines, and an iterative flowline model (Eq. 1) used to 

calculate their surface elevations along inferred ice-flowlines (see Schilling and Hollin, 

1981).  

 

H

x

g
hh av

ii






1    (1) 

where h is ice surface height above the glacier terminus; i refers to the iteration number; τav is 

average basal shear stress; ρ is the density of ice; g is gravitational acceleration; Δx is step 

length (measured in metres); and H is ice thickness. 

 

 Ideally, the model is constrained by mapped indicators of ice-mass surface elevations (e.g. 

trimlines and/or lateral moraines), and basal shear stress is varied until the reconstructed ice 

surface matches these ‘targets’ (Murray and Locke, 1989). Where such indicators are lacking 

(as in the Pekulney, Kankaren and Sredinny Mountains) a constant basal shear stress may be 

applied to the entire profile, often based on estimates from modern glaciers (Nye, 1952; 

Kanasewitch, 1963; Schilling and Hollin, 1981; Locke, 1995; Rea and Evans, 2007). Here, 

however, as an alternative to arbitrarily selecting a basal shear stress, the elevations of 

reconstructed ice-mass surfaces were constrained through comparison with a dataset of 

modern ice-mass surface profiles (see Barr, 2009; Ng et al., 2010). Glacier surfaces were 

generated, using the iterative model, by extracting bed elevations at 1 km intervals along 

inferred flowlines, and defining the maximum elevation at the upper-end of each profile by 
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equation (2), which corresponds to a ‘typical’ modern ice-mass surface (see Barr, 2009; Ng et 

al., 2010) (Fig 2).  

 

343.0098.29 Lh     (2) 

where L is flowline length  

 

This resulted in a series of point elevations, from which 3-D surfaces were generated in 

ArcGIS (Kriging interpolation with a fixed search radius of 10 km). Raster subtraction of 

land-surface topography allowed ice thickness and ice-mass margins to be determined, and 

surfaces were then smoothed (maximum offset of 100 m) and contoured using an automated 

GIS-process. 

 

3.3. Equilibrium-line altitude estimates 

A number of methods have been developed for estimating the palaeo-ELAs of reconstructed 

ice masses, and these vary in terms of their accuracy and simplicity of application (see 

Osmaston, 1975, 2005; Porter, 1977, 2001; Meierding, 1982; Kaser and Osmaston, 2002; 

Benn et al., 2005). Two of the most robust, and widely implemented, are the accumulation 

area ratio (AAR) (Porter, 1977; Kuhn, 1989; Benn and Lehmkuhl, 2000; Nesje and Dahl, 

2000) and balance ratio (BR) methods (Furbish and Andrews, 1984; Benn and Gemmell, 

1997; Benn and Lehmkuhl, 2000; Osmaston, 2005; Rea, 2009). The AAR method assumes 

that the ratio of the accumulation area of a glacier to its total area is roughly fixed between 

0.5 and 0.8 (Meier and Post, 1962; Grosswald and Kotlyakov, 1969). In utilising the AAR 

method within the present study, values of 0.5 and 0.6 were used, as these are considered 

representative of mid- to high-latitude ice-masses (Grosswald and Kotlyakov, 1969; 

Sutherland, 1984), and the region of interest, in Pacific NE Russia, extends from ~53 to 

67°N. The AAR method has been shown to produce consistent results (Porter, 2001), but its 

major weakness is that it fails to take account of glacier hypsometry (i.e. the altitudinal 

distribution of glacier surface-area), which can vary significantly from glacier-to-glacier and 

have a considerable impact upon ELA (Mercer, 1961; Furbish and Andrews, 1984; Nesje and 

Dahl, 2000). The BR method, by contrast, takes explicit account of both glacier hypsometry 

and altitudinal variation in mass-balance (Furbish and Andrews, 1984), and is, therefore, in 

principle, a better means of estimating ELA (Rea, 2009), and is widely becoming the ‘method 

of choice’ (e.g. Benn and Lehmkuhl, 2000; Kaser and Osmaston, 2002; Benn and Ballantyne, 
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2005; Kovanen and Slaymaker, 2005; Rea and Evans, 2007; Vieira, 2008; Cowton et al., 

2009). The key variable in applying this method defines the ratio of the mass-balance 

gradient in the ablation zone of a glacier to the mass-balance gradient in the accumulation 

zone, and is termed the balance ratio (BR). BRs of modern glaciers are typically found to 

range from 1.67 to 2.2 (though values can lie well outside this range) ( Furbish and Andrews, 

1984; Rea, 2009), with low-latitude, dynamic glaciers exhibiting values towards the higher 

end of this range, as the vertical change in mass-balance within the ablation zones of such 

glaciers is significantly greater than within their accumulation zones. A BR of around 2.0 is 

considered characteristic of maritime, mid-latitude glaciers, and values below this are 

considered representative of high-latitude glaciers (Furbish and Andrews, 1984; Rea, 2009). 

The BR method was used within the present study, using the spreadsheet provided by Benn 

and Gemmell (1997), with BRs of 1.67, 1.8 and 2.0 selected in order to encompass Arctic 

high-latitude to maritime mid-latitude glaciers. This study focuses upon these estimates 

derived using the BR method, as these are considered most robust, with AAR-ELA estimates 

simply shown for comparison.   

 

Palaeo-ELA estimates were calculated for individual glaciers and ice-catchments, allowing 

both regional and inter-regional trends to be evaluated. Where appropriate, and in order to 

illustrate the climatically-driven component of ELA-variability, third-order polynomial trend 

surfaces were also generated from these estimates (see Balascio et al., 2005). 

 

3.4. Palaeo-climatic inferences 

Based upon palaeo-ELA estimates, a degree-day model was used to yield climatic 

information from the reconstructed ice mass in the Pekulney Mountains (see Braithwaite et 

al. 2006; Brugger, 2006; Hughes and Braithwaite, 2008; Hughes, 2009). Simpler, empirical 

methods (e.g. Ohmura, 1992) of deriving climatic information from glacier ELAs have been 

used elsewhere (e.g. Benn and Ballantyne, 2005; Ballantyne 2007a,b; Golledge, 2007; Rea 

and Evans, 2007; Smith et al., 2009), but are found to overestimate palaeo-precipitation 

under strongly continental conditions, where the annual range in temperatures is large (see 

Hughes and Braithwaite, 2008; Hughes, 2009), as in Far NE Russia.The degree-day model 

was used to calculate the annual accumulation necessary to balance annual ablation (melt less 

any superimposed ice) at the palaeo-ELA of the reconstructed ice mass (Braithwaite et al., 

2006). Daily melt was calculated for each day of the year as a function of daily mean 
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temperature (Td), using a degree-day factor of 4 mm day
-1

 °C
-1

 (Braithwaite et al. 2006; 

Brugger, 2006; Hughes, 2009), and annual accumulation was assumed to equal the annual 

sum of these daily melt values (See Brugger, 2006; Hughes and Braithwaite, 2008; Hughes, 

2009). Daily mean temperatures during the gLGM were calculated from estimates of mean 

annual temperature during this period using equation (3) (from Brugger 2006), by assuming 

that a sine curve, defined by annual temperature range, approximates the annual distribution 

of temperatures (see Hughes and Braithwaite, 2008; Hughes, 2009).    

 

ayd T
d

AT 











2
sin   (3) 

 

where Ay is the amplitude of annual temperature variations (½ the annual temperature range), 

d is the ordinal day, λ is the period (365 days), Ф is the phase angle of the sine curve (taken 

as 1.93 radians to reflect the fact that January is the coolest month, and July the warmest), 

and Ta is the is the mean annual air temperature.  

 

Thus, the inputs required to estimate mean annual accumulation at the palaeo-ELA of the 

reconstructed ice mass were annual temperature range and mean annual temperature during 

the gLGM. The former was estimated from modern climate data which indicates that, at 

present, the annual range in air temperatures in the Pekulney Mountains is between 32 and 

43°C (Glushkova, 2001). The higher of these values was considered an estimate for gLGM 

conditions, in recognition that sea level reduction and extensive sea ice, amongst other 

factors, are likely to have increased the region’s continentality (and, therefore, annual 

temperature range) during this period. Mean annual temperature during the gLGM was 

calculated from published estimates of mean July temperature during this period, obtained, 

through pollen analysis, from El’gygytgyn Lake (~67°N, 172°E; 495 m a.s.l.) (Lozhkin et al., 

2007)—150 km NW of the Pekulney Mountains. These data indicate that, at the El’gygytgyn 

site, mean July air temperatures during the gLGM were 2-3°C. However, modern data 

indicate that summer temperatures at El’gygytgyn Lake are typically below those at a 

corresponding altitude in the Pekulney Mountains (World Meteorological Organisation, 

1998), and estimates at the higher end of the 2-3°C range might, therefore, better reflect mean 

July air temperatures in the Pekulney Mountains during the gLGM. Given a value of 3°C (the 

maximum at El’gygytgyn), and assuming an environmental lapse rate of 0.63°C 100m
-1
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(Osipov, 2004), yields a gLGM July temperature at present sea level of 6.1°C. This value was 

distributed over an annual temperature range of 43°C (with the annual distribution of mean 

monthly temperatures assumed to approximate a sine curve), in order to obtain an estimate of 

mean annual temperature. Using the lapse rate of 0.63°C 100m
-1

, this estimate was then 

extrapolated to the palaeo-ELAs of the reconstructed ice mass in the Pekulney Mountains, 

and the degree-day model (Eq. 3) was then used to estimate mean annual ablation, and 

therefore, mean annual accumulation, at these altitudes. The use of the above model in 

reconstructing gLGM accumulation was restricted to the Pekulney Mountains, as (to the 

authors’ knowledge) no independent estimates of gLGM air temperatures have been obtained 

in the vicinity of the Kankaren or Sredinny Mountains, and such estimates are vital to the 

model’s implementation. 

 

 

4. Results 

 

4.1. The Pekulney Mountains  

The Pekulney Mountains are currently occupied by a small number of cirque-type glaciers, 

and numerous glacial valleys, cirques and end moraines are testament to the former presence 

of extensive valley glaciers (see Baranova, 1960; Kartashov, 1962; Gasanov, 1969; 

Glushkova and Sedov, 1984; Glushkova, 1992, 1996, 2001; Brigham-Grette et al., 2003; Barr 

and Clark, 2009). These end moraines appear, on the basis of their spatial distribution, to fall 

into two distinct populations. The outer population (Fig 3) is deemed to reflect ice extent 

during some, unspecified, pre-gLGM phase of advance, while the inner population is 

constrained to the gLGM by a combined radiocarbon-cosmogenic chronology (Brigham-

Grette et al., 2003) from moraines and river-terraces within the Kuveveem valley (Fig 3). 

Generating an ice-mass reconstruction from this inner population indicates that, during the 

gLGM, the Pekulney Mountains were occupied by a mountain-centred ice field, with outlet 

glaciers extending up to 21 km within surrounding valleys (Fig 3). This ‘Pekulney Ice Field’ 

reached an altitude of 1211 m (a.s.l.) and occupied 970 km
2
. The total ice volume was 241 

km
3
, with a maximum thickness of 806 m, and an average flowline basal shear stress of 117 

kPa. The ice field yields a mean palaeo-ELA of 743 ± 27m (a.s.l.) (Table 1), given a 95% 

confidence interval and a BR range of 1.67-2.0, while values for individual catchments 

(outlets) (Fig 4) show a clear gradient, from a mean of 652 ± 27 m (a.s.l.) to the east of the 
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range, to 842 ± 25 m (a.s.l.) to the west (Fig 3). These values compare to gLGM ELA 

estimates of 600–830 m (a.s.l.) as derived by Glushkova (1992), based on cirque floor 

altitudes and the arithmetic mean between the elevation of the lowest point of a glacier and 

the mean elevation of mountain summits surrounding its accumulation zone—two 

comparatively crude (but useful) estimators of palaeo-ELA. This latter approach is known in 

Russian literature as Gefer’s method (see Osipov, 2004), and was originally developed by 

Höfer (1879). 

 

The palaeo-temperature estimate derived from the El’gygytgyn Lake pollen data (Lozhkin et 

al., 2007) indicate that, during the gLGM, at the palaeo-ELA of the western and eastern 

sectors of the Pekulney Ice Field, mean July temperatures were 0.8 ± 0.2°C and 2.0 ± 0.2°C, 

respectively. Using these values as inputs to the degree-day model yields mean annual 

accumulation estimates of 69 ± 19 mm (w.e.) at the ELA of the western sector, and 269 ± 33 

mm (w.e.) at the ELA of the eastern.   

 

4.2. The Kankaren Mountains 

The Kankaren Mountains are currently devoid large of glaciers, but are dissected by large 

north-south trending valleys, which, in conjunction with numerous end moraines and drift 

sheets, indicate the former presence of extensive ice masses (Gualtieri et al., 2000; Barr, 

2009; Barr and Clark, 2009). A total of 28 end moraines are identifiable within close 

proximity to the mountains (within 10 km), and these appear to represent a single, 

synchronously-deposited, population. Upon the basis of a regional cosmogenic chronology 

(Gualtieri et al., 2000), these moraines are deemed to reflect ice extent during the gLGM, 

with evidence upon the Lower Anadyr Depression of earlier, more extensive, phases of ice-

advance (Gualtieri et al., 2000; Barr and Clark, 2009). A reconstruction (Fig 5) was generated 

on the basis of the inner population, and suggests that, during the gLGM, the western sector 

of the Kankaren Mountains was occupied by a single mountain-centred ice field, while the 

eastern sector was occupied by a group of five, partially-coalesced, valley glaciers. These ice-

masses extended up to 7 km in length, occupied a total area of 215 km
2
, and constituted an 

ice volume of 31 km
3
. The maximum ice surface altitude (attained by the ice field sector) was 

937 m (a.s.l.) (the mountains reach a maximum altitude of roughly 1180 m a.s.l.), the 

maximum ice thickness was 452 m, and average flowline basal shear stress was 119 kPa. 

These ice masses yield a mean palaeo-ELA of 575 ± 22 m (a.s.l.) (Table 1), given a 95% 
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confidence interval and a BR range of 1.67-2.0, while estimates for individual glaciers and 

catchments vary considerably (from 441 to 726 m a.s.l.)(Fig 4). These values compare to 

gLGM ELA estimates of 400–550 m (a.s.l.), as derived by Glushkova (1992), based on 

cirque floor altitudes and using Gefer’s method (see section 4.1). There appear not to be any 

clear ELA gradients within this region, but there is a strong contrast between glaciers to the 

north of the range, which extend below 200 m (a.s.l.), and those to the south, which rarely 

extend below 400 m (a.s.l.)—a contrast which, along with the absence of south-facing 

glaciers in the eastern massif, would appear to suggest a variation in palaeo-ELA between 

north- and south-facing slopes. Though the reconstruction in fig 5 focuses upon gLGM ice 

extent in the Kankaren Mountains specifically, the Mejngypilgynskij Mountains, 

approximately 50 km to the south, are also believed to have been occupied by extensive 

valley glaciers which extended to the southern foothills of the Kankaren Range during this 

period (see Gualtieri et al., 2000).   

 

4.3. The Sredinny Mountains  

At present, glaciers occupy only the highest peaks of the Sredinny Mountains, and are mainly 

of small cirque-type. However, various lines of evidence, including end moraines and 

glacially eroded valleys, testify to the former presence of extensive ice masses (Lapshin, 

1963; Vlasov, 1964; Olyunin, 1965, 1966; Braitseva et al., 1968; Kuprina, 1970; Vtyurin and 

Svitoch, 1978; Kraevaya et al., 1983; Zech et al., 1997; Savoskul and Zech, 1997; 

Zamoruyev, 2004; Bäumler and Zech, 2000; Leonov and Kobrenkov, 2003; Solomina and 

Calkin, 2003; Bigg et al., 2008; Barr and Clark, 2009). A total of 204 end moraines have 

been identified and mapped in, and around, the Sredinny Mountains (Fig 6) (78 of which 

were mapped by Bigg et al., 2008, and the remainder by Barr and Clark, 2009), and there 

appear to be at least two distinct groups: one immediately adjacent to the mountains, and 

another closer to the coast. Radiocarbon dating indicates that the inner population was 

deposited during the gLGM (Olyunin, 1965; Braitseva et al., 1968; Vtyurin and Svitoch, 

1978; Kraevaya et al., 1983; Melekestsev and Braitseva, 1984; Zech et al., 1997; Savoskul 

and Zech, 1997; Bäumler and Zech, 2000; Solomina and Calkin, 2003), whilst comparison 

with marine records indicates that the outer population was deposited sometime prior to 40 ka 

(Bigg et al., 2008). An ice-mass reconstruction is here generated from the inner population, 

and appears to indicate that, during the gLGM, the Sredinny Mountains were occupied by a 

single mountain-centred ice field with outlet glaciers extending up to 80 km into surrounding 
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valleys (Fig 6). This ‘Sredinny Ice Field’ occupied an area of 57,363 km
2
, and comprised an 

ice volume of 22,147 km
3
. Ice extended from 65 m below modern sea level (approximately 

60 m above the inferred gLGM sea level; see Yokoyama et al., 2001), to a maximum of 1731 

m (a.s.l.). Ice thickness peaked at 1114 m, and the average flowline basal shear stress was 76 

kPa. The ice field yields a mean palaeo-ELA of 897 ± 21 m (a.s.l.) (Table 1), given a 95% 

confidence interval and a BR range of 1.67-2.0, yet values for the 112 separate catchments 

vary considerably, from 470 to 1238 m (a.s.l.) (Fig 4). There is no clear west-east gradient, 

but values increase from a mean of 808 ± 34 m (a.s.l.) in the northern sector (>58°N), through 

876 ± 31 m (a.s.l.) in the north-central sector (56-58°N), to 1035 ± 41 m (a.s.l.) in the 

southern-central sector (54-56°N), before descending again to 860 ± 38 m (a.s.l.) in the 

southern sector (<54°N) (Fig 6). These values may be compared to gLGM ELA estimates of 

550 – 600 m (a.s.l.) (based on AARs of 0.58 and 0.55) derived by Savoskul and Zech (1997) 

from the Topolovaya Valley (~53.18°N, 158.03°E), some 40 km east of the southernmost ice 

in the Sredinny Range. 

In discussing former glaciation and palaeo-ELA within the Sredinny Mountains, it is 

necessary to consider the influence of postglacial tectonic processes, as the Kamchatka 

Peninsula lies close to the subducting Pacific Plate, and is occupied by numerous active and 

extinct volcanoes (Ivanov, 2002). During the Late Quaternary, volcanoes within the Sredinny 

Mountains were active, but the structural elements of these volcanoes were in place prior to 

this (Braitseva et al., 1995; Koronovsky, 2002). Robust estimates of postglacial uplift or 

subsidence within the Sredinny Mountains are lacking, but in general, much of the 

Kamchatka Peninsula has undergone uplift since the gLGM (Pinegina and Bourgeois, 2001). 

However, this uplift is not ubiquitous, and varies depending on location—with subsidence 

dominating in some parts (Fedotov et al., 1988). On the Kamchatskiy Peninsula (centred 

upon 56.42°N, 163.20°E), roughly 180 km east of the central Sredinny Mountains, the 

mapping of marine terraces reveals that average Late Quaternary uplift rates range from 0.1 

to 1.0 mm yr
-1

 (Pedoja et al., 2004). However, on the NE part of the Ozernoi Peninsula 

(centred upon 57.68°N, 162.91°E), roughly 140 km east of the north-central Sredinny 

Mountains, terraces indicate Late Quaternary uplift rates of 0.1 to 0.3 mm yr
-1

 (Pedoja et al., 

2006).  As a result of the proximity of these regions to the continental margin, these estimates 

are comparable to rates in tectonically active regions (Pedoja et al., 2006), and postglacial 

uplift here is likely to have been more intense than, inland, within the Sredinny Mountains. If, 

as an example, a maximum rate of 1.0 mm yr
-1

 is considered representative of the Sredinny 
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Mountains, then a net post-gLGM uplift of roughly 20 m might be inferred. As this is 

considered a maximum estimate, and remains a comparatively small value, postglacial 

tectonic activity within the Sredinny Mountains is not regarded to have had a significant 

impact upon palaeo-ELA estimates derived within this study, and no correction for tectonic 

processes is made here.     

  

5. Discussion  

 

5.1. Ice extent 

The methodology adopted within this study has allowed the first geomorphologically- and 

chronologically-constrained 3-D palaeo ice-mass reconstructions to be generated for Pacific 

Far NE Russia. These reconstructions are of gLGM ice-masses within the Pekulney, 

Kankaren and Sredinny Mountains, and, given the prevalence of end moraines elsewhere (see 

Barr and Clark, 2009), it might be inferred that, during this period, many adjacent mountain 

ranges, particularly in the Koryak sector, were also occupied by extensive ice masses, some 

of which may have extended to the gLGM coastline (conservatively, we have restricted our 

analysis to only those regions with dating control). The reconstructions indicate that, during 

the gLGM, ice masses in the Pekulney, Kankaren and Sredinny Mountains were of ice-field 

and valley-glacier type, mountain-centred, and extended between 7 and 80 km into 

surrounding valleys. Numerous moraines are identifiable beyond these margins, indicating 

that ice masses were considerably more extensive during some pre-gLGM phase(s) of 

advance, perhaps during the Zyryan (~110-50 ka), and/or some, unspecified, pre-Zyryan 

phase (Gualtieri et al., 2000; Brigham-Grette et al., 2003; Laukhin et al., 2006; Bigg et al., 

2008). During the most extensive of these advances, some of the largest ice cap systems may 

have extended up to 200 km beyond regional mountain centres (Barr and Clark,2009) but our 

investigation and mapping revealed no evidence to suggest the former presence of extensive 

ice sheets within the region (cf. Grosswald, 1988, 1998; Grosswald and Hughes, 1999, 2002, 

2004).  

   

5.2. Glacier-climate reconstructions 

The palaeo-ELA estimates derived in this study inform us about climate during the gLGM. 

They take both glacier hypsometry and assumed mass-balance gradients into consideration, 

and are, therefore, considered the most robust yet obtained for Pacific Far NE Russia (cf. 
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Glushkova, 1992; Savoskul and Zech, 1997). Some of the spatial variability in these 

estimates is likely due to local (non-climatic) controls, but may also result from errors 

intrinsic to the reconstruction methodology (i.e. the lack of absolute dating in most areas, 

requiring the synchronicity of ice-margins to be assumed). However, in regions where we 

find discernable trends in palaeo-ELA estimates, broad-scale variations likely reflect true 

palaeo-climatic gradients.     

 

Outlets of the Pekulney Ice Field show a clear trend of increasing palaeo-ELAs from a mean 

of 652 ± 27 m (a.s.l.) to the east of the range, to a mean of 842 ± 25 m (a.s.l.) to the west (Fig 

3). This is consistent with an inland precipitation gradient, with moisture-baring winds from 

the North Pacific providing precipitation to eastern slopes, depressing palaeo-ELA; and a 

precipitation-shadow to the west forcing higher values. Outlets of the Sredinny Ice Field also 

exhibit distinct palaeo-ELA gradients, with values descending below 700 m (a.s.l.) to the 

north, and below 800 m (a.s.l.) to the south, from a maximum of over 1100 m (a.s.l.) at 

roughly 55°N (Fig 6). The considerable altitude of the equilibrium-line in the south-central 

sector coincides with less-extensive glacier outlets, and likely reflects a regional rain-shadow, 

as the Vostočny Mountains (see Fig 6)—considered to have formed roughly 80–40,000 years 

ago (Braitseva and Melekestsev, 1966; Erlich et al., 1972)—created an orographic barrier to 

moisture-bearing, easterly, winds from the North Pacific. The lowering of palaeo-ELA 

towards the SW and, particularly, NE of the mountains, also appears to reflect a precipitation 

gradient, as these regions are in proximity to the Okhotsk and Bering Seas, respectively, 

where moisture availability, during the gLGM, is likely to have been maximised. Regional 

palaeo-ELA trends are not discernable within the Kankaren Mountains, though it is here that 

mean values are lowest at 575 ± 22 m (a.s.l.), potentially reflecting the region’s comparative 

proximity to the gLGM coastline (i.e. within 100 km)(see Fig 1).      

 

 

In the Pekulney and Kankaren Mountains, ELA depression during the gLGM (ΔELA 

gLGM), relative to present, is difficult to quantify, as modern ELAs are poorly constrained. 

Shahgedanova et al. (2002), for example, depict the modern ELA as lying at roughly 900 m 

(a.s.l.) to the west of the Pekulney Mountains and 600 m (a.s.l.) to the east. These estimates 

appear very low, and bear little relation to the current distribution of glaciers within the 

mountains. Published estimates of modern ELA within the Kankaren Mountains are not 
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available, but in the Mejngypilgynskij Mountain Range, approximately 50 km to the south, 

modern ELA estimates range from 450 to 700 m (a.s.l.) (Gualtieri et al., 2000). Though these 

values are potentially representative of the Kankaren Mountains, this assumption is difficult 

to fully justify as modern snowline elevations (a surrogate for ELAs) across the Koryak 

region, in general, are highly variable: ranging from 280 m (a.s.l.) in coastal regions to 2080 

m (a.s.l.) in-land (NSIDC, 2009). In the Sredinny Mountains of Kamchatka modern snowline 

altitudes are also known (NSIDC, 2009), and  illustrate that ELA depression during the 

gLGM (ΔELA gLGM), relative to present, varied from ~358 m in the northern sector, to 

~739 m in more central regions (Fig 6). These values compare to ΔELA (gLGM) estimates of 

1105-1250 in the Hidaka Range, Japan (Ono et al., 2005), and 200-700 m in the Brooks 

Range, Alaska (Balascio et al., 2005), respectively 1600 km and 2400 km, SW and NE of the 

Sredinny Range.  

 

As ELA is largely governed by summer temperature and winter precipitation, a depression 

relative to present might be inferred as reflecting a decrease in the former and/or increase in 

the latter. At the palaeo-ELA of the western and eastern sectors of the Pekulney Ice Field, 

average mean July temperatures over the period 1961–1990 (World Meteorological 

Organisation, 1998) were 7.2 and 8.4°C, respectively (based on values from Markovo and 

Anadyr weather stations, corrected to altitudes of  842 and 652 m a.s.l., respectively). The 

independent palaeo-temperature estimate from El’gygytgyn Lake indicates that during the 

gLGM mean July temperatures at these altitudes were 0.8 ± 0.2°C and 2.0 ± 0.2°C  Thus, the 

data indicate a reduction in mean July temperature of 6.4°C, relative to present. Mean annual 

precipitation to the east of the range is currently 475 mm (Glushkova, 2001), and the degree–

day model predicts gLGM accumulation of between 69 ± 19 and 269 ± 33 mm w.e. yr
-1

, to 

the west and east of the range, respectively. These modern precipitation and palaeo 

accumulation estimates cannot be compared directly, as they measure different things, with 

mean annual accumulation excluding precipitation during the ablation season, and including 

indirect sources of accumulation, such as windblown snow. However, as the Pekulney Ice 

Field occupies much of the land surface of the Pekulney Mountains, and is an independent 

(i.e. non-coalesced) ice mass, windblown snow is unlikely to have been a significant 

contributor to accumulation. Also, the degree-day model calculates that, during the gLGM, 

the ablation season lasted only 29–35 days (number of positive degree days) at the ELA of 

the western sector of the Pekulney Ice Field, and 48–53 days at the ELA of the eastern sector. 
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Thus annual accumulation in the Pekulney Mountains during the gLGM might be considered 

a rough approximation of annual precipitation, and the data, therefore, indicate a reduction of 

roughly 200 mm yr
-1

 (42%), relative to present.  

 

Such a decrease in precipitation is consistent with the generalised view of conditions in 

Pacific Far NE Russia during the gLGM, as (i) a lowering of global sea levels resulted in the 

exposure of vast areas of continental shelf, particularly along the Arctic and Bering Sea 

coasts, and restricted the transport of warm waters from the north-central Pacific (Laukhin et 

al., 2006; Yanase and Abe-Ouchi, 2007); (ii) the extent of sea ice was increased (see Caissie 

et al., 2010); (iii) the development of vast ice sheets in North America and Europe altered 

atmospheric circulatory patterns (Stauch and Gualtieri, 2008); and (iv) much of the region’s 

available moisture was trapped in glacier and ground ice (Sergin and Scheglova, 1976). 

Climate model simulations appear to support the view that annual precipitation was reduced, 

but indicate that this reduction was most extreme during summer months with the volume of 

winter precipitation potentially differing little from present (see Yanase and Abe-Ouchi, 

2007). It is, therefore, possible to envisage glacial advance during this period despite a 

reduction in mean annual precipitation, as a decrease in summer temperatures resulted in a 

shortened ablation season, a lengthened accumulation season, and an increase in the volume 

of ‘solid’ precipitation. However, the estimates obtained from the Pekulney Ice field indicate 

that, during the gLGM, mean annual accumulation remained very low, i.e. between 69 ± 19 

and 269 ± 33 mm w.e. These values may be put into context by considering mass balance 

records from modern glaciers. Of the 63 modern ice masses for which the WGMS (2008) 

provide data, only 6 experience mean winter mass-balance values below 269 ± 33 mm w.e, 

and only two have values at, or below, 69 ± 18 mm w.e. The estimates derived here, 

therefore, suggest that, during the gLGM, annual accumulation and ablation in the Pekulney 

Mountains were low, and the region was occupied by a comparatively inactive and, therefore 

minimally-erosive, ice field—similar in character to modern Arctic-type glaciers such as 

those on Axel Heiberg Island, where the melt season at the ELA is as short as 27 days 

(Braithwaite and Raper, 2007).  

 

Some (e.g. Alfimov and Berman, 2001) have suggested that mean July temperatures in 

Pacific Far NE Russia during the gLGM were, in fact, considerably higher than indicated by 

the El’gygytgyn data, and such estimates would have implications for the palaeo-precipitation 
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estimates derived here. For example, if gLGM mean July temperatures are assumed to have 

been 9-10°C (3.1-4.1°C  blow present) at Markovo (as proposed by Alfimov and Berman, 

2001), maintaining equilibrium conditions for the Pekulney Ice Field (250 km NE) would 

require mean annual accumulation (as calculated using the degree-day model) of at least 719 

± 44 mm (w.e.) to the west of the range, and 1081 ± 46 mm (w.e.) to the east: an increase in 

precipitation of at least 606 mm yr
-1

 (126%), relative to present. Though these conditions 

would result in dynamic and potentially erosive glaciers, there is very little published 

evidence in support of such an increase in precipitation, and it appears counter to our 

understanding of environmental conditions in the region during this period. It is, therefore, 

difficult to envisage gLGM July temperatures as high as those proposed by Alfimov and 

Berman (2001), and a decrease in mean July temperature of roughly 6.4°C, relative to 

present, is supported here. This disparity between the data derived from El’gygytgyn Lake 

and that from Markovo highlights the need for additional independent estimates of air 

temperature in Pacific Far NE Russia during the gLGM. 

 

6. Conclusions  

 

A combined geomorphological – physical model approach to the reconstruction of former 

ice-masses in Pacific Far NE Russia indicates that, during the gLGM, the Pekulney, 

Kankaren and Sredinny Mountains were occupied by ice fields and valley glaciers, extending 

no more than 80 km beyond mountain-centres. These reconstructions  support a minimalist 

view of glaciation, and are inconsistent with the belief that extensive ice sheets occupied the 

region during this period. Palaeo-ELA estimates derived from these reconstructions yield 

mean values of 652 ± 27 m (a.s.l.) to the east of the Pekulney Mountains,  842 ± 25 m (a.s.l.) 

to the west; 575 ± 22 m (a.s.l.) in the Kankaren Mountains; and, upon the Kamchatka 

Peninsula, 808 ± 34,  876 ± 31, 1035 ± 41 , and 860 ± 38 m (a.s.l.), in the north, north-central, 

south-central, and southern sectors of the Sredinny Range—indicating an ELA depression of 

~350-740 m, relative to present (though modern values are poorly constrained). Regional 

variations in palaeo-ELA appear to correspond to moisture availability and palaeo-

precipitation gradients. Pollen data from El’gygytgyn Lake (Lozhkin et al., 2007) indicate 

that, during the gLGM, mean July temperatures at the palaeo-ELA of the Pekulney Ice Field 

were between 8 ± 0.2°C and 2.0 ± 0.2°C  (6.4°C below modern values). Utilising these 

estimates as inputs to a degree-day model (e.g. Brugger, 2006), and assuming an annual 
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temperature range of 43°C, indicates mean annual accumulation of between 69 ± 19 and 269 

± 33 mm (w.e.)—suggesting that mean precipitation during the gLGM was, perhaps, 200 mm 

yr
-1

 below modern values. Based upon these data it is envisaged that, during the gLGM, the 

development of large ice sheets in Pacific Far NE Russia was precluded by the region’s 

aridity, and that glaciers were only more extensive than present because of a reduction in 

summer air temperatures, and a resulting decrease in ablation.   
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Figure 1  

Key topographic regions of Far NE Russia. The dashed black line represents a rough division 

between Pacific (to the east) and non-Pacific (to the west) sectors (based upon Grosswald and 

Kotlyakov, 1969). Boxed regions (A), (B) and (C) are the Pekulney, Kankaren and Sredinny 

Mountains, respectively, and are the focus of this study. Also shown is the gLGM shoreline, 

given a 125 m lowering of sea level relative to present.   
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Figure 2  

Schematic illustration of a reconstructed ice-mass surface profile, viewed in cross-section. 

The surface is generated using an iterative flowline model (equation 1), where bed elevations 

are extracted at 1 km intervals (Δx = 1 km), along an inferred flowline (flowline length = L). 

The maximum ice surface elevation at the upper-end of the profile is determined by equation 

2, which corresponds to a ‘typical’ surface for modern ice-masses of this span (L) (see Barr, 

2009; Ng et al., 2010).  
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Figure 3 

(A) Reconstruction of the Pekulney Ice Field during the gLGM. The ice surface contour 

interval is 100 m. Also shown is a third-order polynomial trend surface, contoured at 100 m 

intervals, depicting ELA (BR = 1.8) across the Mountains during the gLGM. End moraines 

are mapped as black polygons, and black arrows indicate inferred ice flow directions during 

some pre-gLGM phase of advance. The outlet marked ‘Kv’ occupies the Kuveveem valley, 

where moraines have been chronologically constrained to the gLGM (see Brigham-Grette et 

al., 2003). Land surface topography is shaded ASTER GDEM data. Ice surface-area and 

volume are 970 km
2
 and 241 km

3
, respectively. (B) Topographic profile, from ‘i’ to ‘ii’,  

across the Pekulney Mountains, showing the land surface, the gLGM ELA trend surface, and 

the reconstructed ice surface (7.5x vertical exaggeration). The trend surface clearly indicates 

an increase in ELA from east to west, potentially reflecting a palaeo-precipitation gradient. 

Modern ELA (or snowline) in this region is virtually unknown, and estimates cannot be 

included here. 
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Figure 4 

Histogram of gLGM ELA estimates (based on a BR of 1.8) for individual outlets of (A) the 

Pekulney Ice Field, (B) in the Kankaren Mountains, and (C) the Sredinny Ice Field    
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Figure 5 

Reconstruction of gLGM glaciers in the Kankaren Mountains. The ice surface contour 

interval is 100 m, and the dashed line indicates the division between northern and southern 

sectors. Also shown are end moraines (black), and indicators of inferred ice flow directions 

during some pre-gLGM phase of advance (black arrows). Land surface topography is shaded 

ASTER GDEM data. Ice surface-area and volume are 215 km
2
 and 31 km

3
, respectively.   
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Figure 6  

(A) Reconstruction of the Sredinny Ice Field during the gLGM. The ice surface contour 

interval is 100 m. Also shown is a third-order polynomial trend surface, contoured at 100 m 

intervals, depicting ELA (BR = 1.8) across the Mountains during the gLGM. End moraines 

are mapped as black polygons. Land surface topography is shaded SRTM DEM data. Ice 

surface-area and volume are 57,363 km
2
 and 22,147 km

3
, respectively. The dashed line, to 

the east of the Sredinny Mountains, delimits the area where ice was reconstructed. Also 

shown is the gLGM shoreline, given a 125 m lowering of sea level relative to present. (B) 

Topographic profile, from ‘i’ to ‘ii’, along the Sredinny Mountains (following the dashed 

line), showing the land surface topography, the gLGM ELA trend surface, individual gLGM 

ELA estimates for individual outlets to the west (filled dots) and east (hollow dots) of the 

Sredinny Ice field, and a trend surface depicting modern snowline altitudes from NSIDC 

(2009) (150x vertical exaggeration).  
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Table 1. Equilibrium-line altitudes (ELAs) of reconstructed gLGM ice masses in the 

Pekulney, Kankaren and Sredinny Mountains.    

 

Ice mass ELA 1 (m) 

AAR = 0.5 

ELA 2 (m) 

AAR = 0.6 

ELA 3 (m) 

BR = 1.67 

ELA 4 (m) 

BR = 1.8 

ELA 5 (m) 

BR = 2.0 

Pekulney Ice Field 784 738 747 744 739 

Kankaren ice masses 599 558 579 575 571 

Sredinny Ice Field 966 888 905 898 887 

All ELA estimates are measured in metres above modern sea level.  

 

 

 

 

 

 

 

 

 


