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Abstract

Background: The clinical investigation of human brain tumors often starts with a non-invasive imaging study, providing
information about the tumor extent and location, but little insight into the biochemistry of the analyzed tissue. Magnetic
Resonance Spectroscopy can complement imaging by supplying a metabolic fingerprint of the tissue. This study analyzes
single-voxel magnetic resonance spectra, which represent signal information in the frequency domain. Given that a single
voxel may contain a heterogeneous mix of tissues, signal source identification is a relevant challenge for the problem of
tumor type classification from the spectroscopic signal.

Methodology/Principal Findings: Non-negative matrix factorization techniques have recently shown their potential for the
identification of meaningful sources from brain tissue spectroscopy data. In this study, we use a convex variant of these
methods that is capable of handling negatively-valued data and generating sources that can be interpreted as tumor class
prototypes. A novel approach to convex non-negative matrix factorization is proposed, in which prior knowledge about
class information is utilized in model optimization. Class-specific information is integrated into this semi-supervised process
by setting the metric of a latent variable space where the matrix factorization is carried out. The reported experimental
study comprises 196 cases from different tumor types drawn from two international, multi-center databases. The results
indicate that the proposed approach outperforms a purely unsupervised process by achieving near perfect correlation of
the extracted sources with the mean spectra of the tumor types. It also improves tissue type classification.

Conclusions/Significance: We show that source extraction by unsupervised matrix factorization benefits from the
integration of the available class information, so operating in a semi-supervised learning manner, for discriminative source
identification and brain tumor labeling from single-voxel spectroscopy data. We are confident that the proposed
methodology has wider applicability for biomedical signal processing.
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Introduction

Brain tumors have a relatively low incidence amongst humans

as compared to other more widespread cancer pathologies. The

clinical investigation of an abnormal mass in the brain frequently

starts with its non-invasive characterization, typically with a

Magnetic Resonance Imaging (MRI) study. This is widely used for

determining the tumor extent for surgical and radiotherapy

planning and for the post-therapy monitoring of tumor recurrence

or progression to higher grade. MRI can provide an initial

diagnosis of an intracranial mass lesion with variable sensitivity

and specificity depending on tumor type [1,2]. Magnetic

Resonance Spectroscopy (MRS) is a complementary MR mea-

surement modality that is increasingly used as a non-invasive

method of classifying brain lesions [3–5]. Unlike anatomical

imaging, spectroscopy provides insight into the biochemistry of

tissue through a discrete signal in the frequency domain that

reflects the relative abundance of several low molecular weight

metabolites, lipids and macromolecules in the millimolar range of

concentration.

MRS has already been used in computer-based systems for

diagnostic decision support [6–9], building on the increasing

availability of data in electronic format [10–14]. However, for
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brain tumors and, more specifically, glial tumors, the computer-

based discrimination of the grade or the specific subtype of tumor

still leaves a ‘‘grey zone’’ of uncertainty between class labels [15–

17], even after taking into account the spectral resonances

characteristic of known metabolites.

The MRS data analyzed in the current work are single-voxel (SV)

comprising, for each patient, two spectra at slightly different

acquisition conditions corresponding to a cubic volume defined by

1.5–2 cm sides, located within the tumor mass. The aim of this

study is to separate the constituent source signals (so that they can

be separately identified and quantified), guided by the prior labels

of tissue class membership assigned to individual spectra, on the

assumption that the sources are mixed linearly in each SV spectral

measurement. This will provide a quantification of relative class

membership that would account for the heterogeneous mix of

tissue types within the voxel, thus improving on the more simplistic

homogeneous class assignment of the spectrum as a whole. The

role of source identification is important because, even within a

single voxel, a heterogeneous mix of tissue types may be present.

The distribution in the strength of the individual sources is a useful

way to resolve ambiguities that arise from tumor heterogeneity.

Previous research has attempted to separate the MRS

constituent source signals by applying Independent Component

Analysis (ICA) [18,19] in a fully unsupervised manner, that is

without using prior information regarding tumor type and grade.

More recently Non-negative Matrix Factorization (NMF) tech-

niques [20,21] have demonstrated potential benefits from

constraining tissue constituents to non-negative mixtures of the

source signals, so aiding interpretation [22–24]. In [22], a variant

called constrained-NMF was used for the analysis of source spectra

from MR chemical shift imaging (CSI) data from human brain. In

[23], an alternating non-negativity constrained least squares

implementation was applied to the analysis of spectra acquired

from brain tumors with High Resolution Magic Angle Spinning

(HR-MAS). The use of class information in a discriminant version

of NMF [25] for brain tumor categorization was also recently

studied in [26].

In [24], different variants of NMF, with different initialization

conditions, were investigated for the analysis of an international,

multi-center database that incorporates MRS data associated with

a range of human brain tumor types [10]. This study concluded

that the unsupervised analysis of SV MRS data from human brain

tumors using a more recent method, Convex-NMF [27], identifies

a smaller number of sources that can be confidently recognized as

representing brain tumor types or healthy tissue in a way that

other source extraction methods, including other NMF variants,

cannot detect with the same degree of specificity. Furthermore, the

accuracies of the labels inferred for each patient were comparable

to traditional supervised classifiers developed for the same datasets.

In a subsequent study [28] we proposed the use of prior

knowledge about the analyzed sample to identify sources that best

correlate with class prototypes of brain tumors. This is particularly

important because the extracted sources are more trusted by

clinicians if they are closer to class prototypes. The preliminary

results obtained in [28] with synthetic data models of real SV

MRS data encouraged us to carry out a more detailed analysis,

which has led to this work. In the current study, we have tuned up

the methodology to deal even with challenging problems, while

retaining interpretability, which is a key requirement in the

context of the problem [29]. The prior knowledge used is obtained

from the accuracies provided by MRS-based classifiers. We also

extend the preliminary work carried out in [28] by using real-

world SV MRS data rather than artificially-generated spectra

modeled on MRS data and, by testing the methodology against

independent test sets, to evaluate the generalizability of the

proposed method.

The proposed methodology to guide the separation of the

constituent source signals with the use of prior knowledge involves

a three-stage approach.

First, a reliable estimation of a probabilistic classifier, from

which the probability density function (i.e. probability of class

membership) generates a Fisher Information (FI) metric [30]. This

is the natural statistical measure of dissimilarity for small

perturbations around a given spectrum. This metric enables

pairwise distances to be calculated using geodesic paths between

distant spectral points, resulting in matrix of spectral dissimilarities

obtained in a statistically principled manner. The nature of the FI

metric is to amplify distances along important directions, that is to

say spectral frequencies that are discriminating between different

tissue types, compressing the frequencies that are least informative

about class separation [31].

The second step is to map the original data onto a Euclidean

projective space so that NMF techniques can be applied. This is

done with Multidimensional Scaling methods, by which the

spectral points are projected onto a new coordinate space in such a

way that the pairwise distances are accurately replicated, so that

new data distribution has the same distance structure as the

original spectral data, when measured with FI metric. Typical

methods are Sammon mapping [32], metric multidimensional

scaling [33], or the iterative majorization algorithm [34,35]. The

results are generally insensitive to the particular choice of

multidimensional scaling method.

The final step is the application of Convex-NMF for source

identification. This implementation is standard but applies to the

data in the Euclidean projective space, whose structure captures

class discrimination as defined by the probabilistic classifier.

Therefore, unlabeled data can be also projected onto the

projective space, so positioning themselves in the neighborhood

of spectra with similar properties with respect to the probabilistic

classification. As this methodology benefits from both supervised

and unsupervised modeling stages, we term it semi-supervised.

The remainder of the paper is organized as follows: Materials and

Methods section, in which the data analyzed are described, along

with a brief explanation of the methods that are involved in this

study. The basis of the semi-supervised approach for extracting

sources is also detailed in this section, as well as the experimental

setting. The Results section compiles and presents all the

experimental results, which are analyzed in detail later on in the

Discussion section. The most significant findings that emerge from

this study are summarized in the Conclusions section.

Materials and Methods

Ethics Statement
The use of the multicenter data in this study is covered by the

original ethical approval obtained by the IRB in each center

participating in data collection. In particular, every patient or an

authorized relative signed an informed consent form specifically

allowing use of his or her data for future scientific research, not just

for the original study [10,36].

Materials: description of the data
The data analyzed in this study are single-voxel proton MR

spectra (SV 1H-MRS) acquired in vivo from human patients with

brain tumors. These data were extracted from INTERPRET, an

international multi-center database [10] resulting from the

INTERPRET European research project (http://gabrmn.uab.

es/interpret) [36]. The data were acquired at 1.5T and at two

Semi-Supervised Methodology for Source Extraction
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different echo times, namely short (STE, 20–32 ms) and long

(LTE, 135–144 ms), with both modalities available for almost

every individual.

This signal acquisition parameter, the time of echo, is used to

alter the relative contrast of spectral peaks according to their decay

times, so resulting in spectra with different acuity for the detection

of specific metabolic peaks. In particular, STE is more sensitive to

metabolite signals with short T2 (a MR relaxation time parameter)

values, for example, signals from mobile lipids, in addition to

which peaks are mostly positive in in vivo spectra. On the other

hand, LTE spectra are subject to a rotation in the Fourier complex

plane which results in some negative peaks, for instance due to the

inverted Alanine or Lactate doublets. The experimental bench-

marking study reported in the following sections assesses also the

differences between the sources extracted in these two different

parameter settings, both of which are used in clinical practice.

Class labeling was performed according to the World Health

Organization (WHO) system for diagnosing brain tumors by

histopathological analysis of a biopsy sample. The modeled data

set included measurements at LTE from 20 astrocytomas grade II

(A2), 78 glioblastomas (GL) and 31 brain metastases (ME) and at

STE from 22 A2, 86 GL and 38 ME. Data were pre-processed as

described in [6]. A total of 195 clinically-relevant frequency

intensity values measured in parts per million (ppm) were sampled

from each spectrum in the [4.24, 0.50] ppm interval and

normalized to unit length (UL2) [6].

A further test data set for validation purposes was acquired in

three medical centers: Centre Diagnòstic Pedralbes (CDP), Institut

d’Alta Tecnologia (IAT) and Institut de Diagnòstic per la Imatge

(IDI)-Badalona in Barcelona, Spain. This independent data set

was acquired as part of the EU-funded eTUMOUR research

project [12]. Pre-processing was the same as for the modeling data.

The validation data set comprises STE and LTE spectra from 50

patients and includes 10 A2 and 40 high-grade aggressive tumors

(30 GL and 10 ME).

The A2 cases are low-grade, grade II on a scale I–IV of the

WHO classification [37], corresponding to glial tumors that grow

by infiltrating normal brain tissue. They evolve to GL directly or

through an intermediate anaplastic glioma stage (WHO grade III),

resulting in highly malignant, WHO grade IV tumors. Those who

develop through progression of lower grade astrocytomas are

called secondary glioblastomas. Primary glioblastomas constitute

the vast majority of the glioblastomas, manifesting de novo after a

short clinical history, without evidence of a less-malignant

precursor tumor [38,39]. ME are also grade IV tumors, but they

are metastases originating from outside of the brain. Grade IV

tumors usually have a necrotic pattern, with strong lipid signals

that are most evident when obtaining MRS data at short echo

times [1]. However, not all GL have this necrotic pattern and

some retain a spectral pattern which is overall similar to that of

low-grade glial A2 tumors and so might be considered as atypical

within their type, or class outliers [40,41] (see the examples in

figure 1).

Fisher information metric
In this work, the FI measures the change in information about a

conditional probability p(x hj ) that results from a small perturba-

tion of a particular covariate value x [31,42]. It is obtained by

differentiating the logarithm of thep(x hj ) with respect to x and

summing over all possible classifications:

FI(x)~Ep(c xj )f(+x log p(c xj ))(+x log p(c xj ))Tg~

{Ep(c xj )f+2
x log p(c xj )g

ð1Þ

where Ep(c xj ) denotes the expectation over the density function

p(c xj ) and +x is the gradient with respect to x.

This definition is the data space equivalent of the more

commonly used FI which is about the information carried by the

model parameters. In both cases, the FI is derived from a Taylor

expansion of the information log p(x hj )ð Þunder normality and

other constraints discussed in [31]. In the current form, the FI is a

function of x and takes the form of a square matrix of the same

dimensionality as x, that is, the dimensionality of the data space.

The motivation behind the choice to calculate the FI with

respect to the covariates is to directly obtain a dissimilarity

measure for comparing spectra using information about their

predicted classification. This provides a principled definition of a

metric in data space. However this is a local differential metric

d(x,xzDx)2~DxT FI(x)Dx ð2Þ

measuring the distance between two neighboring points x and

xzDx. An important property of this metric is that it

automatically scales each dimension of the data space according

to its degree of relevance with respect to class membership,

expanding directions along which p(c xj ) changes rapidly and

compressing those where the variation is little. The result is a

Riemannian space where the posterior class membership proba-

bility changes evenly in all directions.

Our choice of estimator of p(c xj )is a Multi-Layer Perceptron

(MLP), sometimes called a feed-forward artificial neural network.

This is a semi-parametric non-linear probabilistic model of class

membership, for which a FI can be derived [31].

Dataset projection
After estimating the class membership probability, the distance

between two points xA and xB representing different spectra is

calculated by minimizing the following path integral

d(xA,xB)~

ðxB

xA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xx(t)T FI(x(t)) _xx(t)

q
dt

�����
����� : ð3Þ

The path x(t) which minimizes this integral defines the geodesic

distance between the two locations xA and xB. Variable t, in the

interval ½0,1�, is used to describe the path from xA~x(t~0) to

xB~x(t~1); and _xx(t) is the derivative of the path with respect to

t. Computational efficient methods to use data sampling to obtain

close estimates of geodesic distances are described in [31].

However, this metric space is not flat, in the sense that its metric

differs from point to point, therefore many commonly used

methods from signal processing cannot be applied unless the data

are mapped onto a Euclidean space. To do this while retaining the

distance structure generated by the FI matrix requires the

application of Multidimensional Scaling methods, which includes

the following algorithms:
A) Sammon mapping. This algorithm is used to analyze

multivariate data by projecting the data points from an original

high-dimensional observed space to a space of lower dimension-

ality [32] such as to preserve the original pairwise distances

Semi-Supervised Methodology for Source Extraction
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between observed data points after projection onto the low-

dimensional data space. ForN points in a space of dimensionality

D to be projected onto a set of new coordinates in a space of

dimensionality L, with the distance between points xi and xj in the

original space given by dij � and the distance between their

corresponding maps in the L-space denoted by dij , the algorithm

minimizes a cost function known as Sammon’s stress:

E~
1P

ivj dij

XN

ivj

(dij �{dij)
2

dij�
: ð4Þ

A random initialization is usually followed by optimization by

gradient descent.

B) Metric multidimensional scaling. The same funda-

mental concept of preserving the values of pairwise distances after

projection of the original pairwise distances can apply an

alternative cost function [43]:

E~
1

N2

XN

ivj

(dij �{dij)
2 : ð5Þ

This is the standard multidimensional scaling algorithm, which

is the reason why it is abbreviated here as MDS. This algorithm is

applied in this paper since it is the simplest multidimensional

scaling method.

C) Iterative majorization algorithm. This algorithm,

abbreviated in this paper as IMA, expresses the mapping from an

original D-space to a L-space as a function f (x; W )~W T :W(x),
where W is a P-by-L matrix containing the free parameters, and

W(x)~(W1(x), . . . ,WP(x))T contains the values of P basis functions

Wi(x). The mapping defined by f (x; W ) is a linear combination of

these basis functions, which can in turn be linear or non-linear. In

this work, we have used P~N with W(xi)~(di1 � , . . . ,diN � )T ,

where dij � is the Fisher distance between points xi and xj . The

method tries to minimize the error function

E~
XN

i~1

XN

j~1

(dij �{qij(W ))2, ð6Þ

where qij(W )~ W T (W(xi){W(xj))
�� ��, with respect to the

weights Wusing the iterative majorization algorithm. More detail

on this procedure can be found in [44].

Convex Non-negative Matrix Factorization
In NMF methods, the data matrix Xhas dimensions d|n,

where d is the number of covariates, in our case the number of

selected frequencies to represent each voxel, and n is the number

of observations. The aim is to factorize the data matrix into two

non-negative matrices, one comprising component sources or

basic spectra F , parameterized with dimensions d|k, where kvd

is the number of sources, and the other containing the

corresponding scores for each vector x, stored in the so-called

the mixing matrix H with dimensions k|n, such that the product

of these two matrices provides a good approximation to the

original data matrix, in the form: X&FH. However, in our case

LTE spectra include negative components, therefore it is not

appropriate to constrain the spectral sources to be non-negative.

Convex-NMF is the algorithmic variant considered in this

study, where the source matrix is also factorized into a non-

negative mixture of the original data points, F~XAwhere A is the

unmixing matrix, an auxiliary adaptive weight matrix that fully

determines F , so that X&XAH. Now the property of non-

negativity, which in mathematical terms constrains the optimiza-

tion process to a convex search space, applies both to the

identification of sources from the data and to the representation of

the data using scores corresponding to each source.

The constraints of non-negativity are implemented through the

use of multiplicative updating algorithms for the key matrices H

and A as follows [27]:

HT/HT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(X T X )zAzHT AT (X T X ){A

(X T X ){AzHT AT (X T X )zA

s
, ð7Þ

A/A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(X T X )zHTz(X T X ){AHHT

(X T X ){HTz(X T X )zAHHT

s
ð8Þ

where (:)z is the positive part of the matrix, where all negative

values become zeros; and (:){ is the negative part of the matrix,

where all positive values become zeros.

Figure 1. Selected cases from the INTERPRET dataset. Four STE cases selected from the INTERPRET dataset that illustrate the heterogeneity of
the GL group, with I0145 showing a necrotic pattern, and I1098 showing an actively proliferating behavior, similar to that of I1041, its low-grade
counterpart. These selected cases also illustrate the similarities of I0145 and I0211, which are highly correlated to each other, but are tumor types
with different histopathological origins.
doi:10.1371/journal.pone.0083773.g001

Semi-Supervised Methodology for Source Extraction
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As proposed in [27], H can be fixed to update F as follows:

F/XHT (HHT ){1 ð9Þ

NMF methods unavoidably converge to local minima. The

extracted NMF bases will be slightly different for different

initializations. In this study, K-means clustering was applied as

proposed in [27], having proved to be the best choice in a previous

study [24]. Therefore, His initialized as H(0)~Cz0:2E, where E
is a matrix with all its elements equal to one, and C~(c1, . . . ,c2) is

filled with the cluster indicators, which are based on the cluster

indices of each point, such that Cik~f0,1g and the ones indicate

cluster membership. A is initialized as A(0)~(Cz0:2E)D{1,

where D is a diagonal matrix with each element being the number

of points in each cluster. The algorithm was considered to have

converged when the reconstruction error between successive

iterations changed by less than 1025.

In our view Convex-NMF is especially well suited to the analysis

of MRS data for the following two reasons:

i. The factorization of the source matrix means that Convex-

NMF does not require any ad hoc distortion of the observed

signal in order to enforce non-negativity constraints, in

contrast to other implementations of NMF.

ii. Restricting F to convex combinations of the columns of X is a

unique feature of Convex-NMF that brings about an

interesting result: sources can be considered as cluster

centroids or, more abstractly, as representatives or prototypes of

the groupings in which the observed data are naturally

structured.

As shown in [27], the results of Convex-NMF, if seen as an

unsupervised clustering procedure, often agree with those provid-

ed by the well-known K-means algorithm [45]. In fact, it is proven

in [27] that Convex-NMF is a relaxation of the K-means

algorithm. Interestingly, Convex-NMF is bound to generate sparse

mixing matrices H i.e. with many elements taking values close to

zero, which is a desirable property for cluster indicators. As a

result, the sources obtained by Convex-NMF are likely to be

interpretable and similar to data group centroids.

Semi-supervised approach for extracting source signals
As outlined in the introduction, the purpose of this study is to

investigate the potential of using prior knowledge derived from

class membership of the spectra to assist the extraction of tissue

type-specific MRS signal sources. The methodology proposed

involves three main stages and, in a nutshell, can be described as

follows:

(i) Definition of a FI metric to model pairwise similarities and

dissimilarities between data points, using a MLP classifier to

estimate the conditional probabilities of class membership.

(ii) Approximation of the empirical data distribution in a

Euclidean projective space in which NMF-based techniques can

be applied.

(iii) Application of Convex-NMF for the source decomposition of

the data.

Experimental settings
The experiments of this study involve four approaches: 1) Fully

unsupervised extraction of the MRS sources, using Convex-NMF;

and 2-4) Semi-supervised extraction of the MRS sources, using, in

turn, Sammon mapping, MDS, and IMA, prior to the use of

Convex-NMF. With this we aimed to, first, compare the

performance of the unsupervised and semi-supervised approaches

and, second, compare different alternative semi-supervised

approaches. Different problems of brain tumor type classification

were considered for experimentation, paying special attention to

the quality of the sources obtained and the accuracy of the results.

For the unsupervised approach (see figure 2, left column), the

data matrix was built with the cases of the tumor types involved in

each experiment, queried from the INTERPRET dataset.

Convex-NMF with K-means initialization was the used for the

decomposition of the dataset of spectra into the mixing matrix and

the sources. The interpretation of each source was made by

reference to the average spectra of the corresponding tumor types,

as in [24]. The method was set up to calculate source signals that

would represent the constituent tissue types, such as actively

proliferating tissue (mainly characterized by high levels of choline,

and low levels of creatine and mobile lipids) and necrotic tissue (high

levels of mobile lipids/lactate), as in [24]. This was intended to

capture the separation between the constituent tissue types

involved. Actively proliferating tissue can be found in A2 and

some GL, while necrotic tissue can be found mainly in some GL

and ME. After calculating the source signals and the mixing

matrix, labels for each case were then generated in a fully

unsupervised mode. For this, the values of the mixing matrix were

used, after correcting any scaling artifact of the sources and

compensating the mixing matrix accordingly. Each class label was

subsequently assigned according to the source that had the highest

value in the mixing matrix.

For the semi-supervised approaches (see also figure 2, right

column), two thirds of the INTERPRET cases (randomly selected)

were used to create the MLP model, which was assessed with the

remaining third of these cases. This model was used to estimate the

conditional probabilities of class membership for each case, which

were then used to define the FI metric. From this, three variants of

data projection methods were investigated (Sammon mapping,

MDS, and IMA), and Convex-NMF with K-means initialization

was used for the decomposition of the projected dataset onto the

Euclidean space. The interpretation of the sources and the labeling

procedure were implemented as for the unsupervised approach.

For this set of experiments, source signals were calculated under

the hypothesis that they will represent classes or tumor types, not

necessarily constituent tissue types. That is, the assistance provided

by the prior knowledge to decompose the data is expected to

produce sources that resemble class prototypes or tumor types.

An independent test set (the eTUMOUR cases) was used to

further validate the generalization capabilities of the obtained

sources to label new cases, that is, the capability of correctly

labeling unseen, out-of-sample, data cases. Equation (9) provided

us with a mechanism to determine the extent to which a fixed set

of sources are encoded in a new data set, facilitating the

calculation of the corresponding new mixing matrix, and with it,

the chance to provide labels for the new cases. Thus, we fixed the

sources calculated in the previously described four approaches,

and calculated the new mixing matrices for the independent test

set.

The experiments involved three tumor types from MRS

acquired both at STE and LTE. Firstly, we attempted binary

classification for three different brain tumor diagnostic problems,

namely A2 vs. GL; A2 vs. ME; and GL vs. ME. The choice of these

specific problems at both time of echo acquisition conditions

ultimately aimed to find answers to the following questions

(figure 1): 1) (A2 vs. ME): Are grades (II vs. IV) well differentiated?

Semi-Supervised Methodology for Source Extraction
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2) (A2 vs. GL): Are grades still well recognized when one of them

(GL) is heterogeneous and seemingly overlapping with the other?

3) (GL vs. ME): To what extent two high grade tumors (grade IV)

can be differentiated? Subsequently, we attempted to discriminate

A2 from a superclass containing GL and ME that we call aggressive

(AG), to evaluate the ability of the methods to differentiate grades

(II vs. IV) when the grade IV superclass comprises two different

tumor types (GL and ME), one of them diverse and visually

overlapping with the other grade (A2 vs. AG).

Firstly, two source signals were calculated for each classification

problem, using the different approaches under study, i.e. fully

unsupervised using Convex-NMF, and semi-supervised using the

three dataset-projection methods mentioned before (Sammon,

MDS, and IMA) prior to Convex-NMF. The fully unsupervised

method aimed to extract the constituent tissue types involved in

each classification problem, while the semi-supervised ones aimed

to extract the class prototypes of these classification problems. Given

that previous research [24] concluded that two sources were

needed to represent the constituent tissue types of heterogeneous

classes such as glioblastomas, three source signals were also

calculated in the fully unsupervised approach for the discrimina-

tion problems A2 vs. ME and A2 vs. GL. Therefore, in these

discrimination problems, one of the sources would represent the

A2 class, while the other two would represent, in turn, the GL and

ME classes. In the case of the discrimination between GL and ME,

it is not clear whether more than two sources would be needed,

and what would they represent. Subsequently, three sources were

also calculated for the classification problem A2 vs. AG in both the

fully unsupervised and semi-supervised approaches.

The quality of the sources was determined in terms of how

similar they are compared to the mean spectrum of the

corresponding class. Similarity was assessed using the correlation

between the resulting sources and mean spectra of the classes

(tumor types) involved. Calculating the correlation provided us

with an indicator of the extent to which each source is tumor-type

specific.

The accuracy of the labeling process (for all the methods and

diagnostic problems used to assess source extraction) was

measured as the ratio of correctly classified cases out of the total

number of instances. The balanced error rate (BER) [19] was also

calculated. It should provide a more reliable figure of merit in

problems with strong class unbalance.

Results

In this section, we compile and present all the experimental

results. The objective of the experiments carried out for this study

was twofold: first, the assessment of the ability of the proposed

methodology to extract tissue type-specific MRS sources more

accurately than previous fully unsupervised approaches and;

second, the evaluation of the former as a basis to produce more

robust classifiers.

Source signals
Table 1 compiles the results of the correlations between the

extracted sources and the mean spectra of the classes involved for

the different approaches. Figures 3 and 4 are graphical illustrative

examples of the obtained sources in the experiment with all the

Figure 2. General representation of the analytical approaches investigated in this study. General representation of the unsupervised and
semi-supervised approaches analyzed in this study for extracting specific MRS sources in human brain tumors.
doi:10.1371/journal.pone.0083773.g002
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classification problems at short and long time of echo (TE),

respectively, for two of the approaches: Convex-NMF (unsuper-

vised), and IMA + Convex-NMF (semi-supervised). The blue

spectra indicate the mean of the classes involved in each

experiment, to be used as reference. IMA + Convex-NMF was

the pair selected to present the sources calculated in a semi-

supervised way, given that it generally yielded the highest

correlations between the mean spectrum of the tumor types and

the corresponding extracted sources (see table 1).

Classification results
We next report the results of the unsupervised labeling process:

That is, the assignment of class labels (tumor types) to each of the

cases using the extracted sources. Bear in mind that in the

proposed semi-supervised approaches of this study, class labels are

used only to aid the source extraction, but the final labeling

process remains unsupervised.

Tables 2 and 3 show the accuracies of the labeling process for all

the methods and the diagnostic problems A2 vs. GL, A2 vs. ME, and

GL vs. ME, at STE and LTE, respectively, when two source signals

were calculated. The extracted sources from the training dataset for

the different classification problems (see tables 1–3 and figures 3 and

4), were also used to provide labels for the independent test set, as

detailed in the Methods section. The accuracies of the labeling

process obtained for this independent test set are shown in tables 4

and 5, for STE and LTE, respectively.

Table 6 shows the accuracies of the labeling process obtained

when 3 sources were calculated in a fully unsupervised way, for the

classification problems A2 vs. GL, and A2 vs. ME, at STE and

LTE, respectively. In these two discrimination problems, one of

the sources represents the actively proliferating tissue in A2, while

the other two mainly represent the grade IV tumor types. Table 7

shows the results of the labeling process obtained for A2 vs. AG

(GL+ME), in both unsupervised and semi-supervised ways, when

calculating 3 sources, also at STE and LTE, respectively. For these

latter results only one of the semi-supervised variants studied was

used (IMA + Convex-NMF), for illustration purposes. Also for

illustration purposes, table 8 shows how three sources extracted in

an unsupervised way for the problem GL vs. ME represent these

two tumor types, at both STE and LTE.

Discussion

Source signals
In a previous study [46], the abilities of two variants of ICA

[47,48] ( JADE [49] and FastICA [50]) were assessed from SV

MRS data in the identification of the constituent tissue types of

brain tumors. ICA showed no advantages over NMF methods. A

subsequent study [24] investigated different variants of NMF and

concluded that Convex-NMF, in fully unsupervised mode, is able

to produce sources that can be confidently recognized as

representing brain tumor tissue types in a way that other source

extraction methods, including other NMF variants, cannot.

The results reported in table 1 indicate that, in terms of

correlation, all four approaches yield very good sources in general,

but semi-supervised variants consistently outperformed the unsu-

pervised one in extracting tissue type-specific (tumor type) sources,

yielding better results in all the diagnostic problems studied. The

higher correlations provided by IMA + Convex-NMF are very

noticeable for all cases, at both times of echo.

Figures 3 and 4 show that the agreement between the sources

extracted (in black) in a semi-supervised way, and the mean

spectra (in blue) of the two classes (in each experiment and echo

time) is almost perfect. The source signals calculated unsupervi-

sedly describe better the constituent tissue types, such as the

proliferating and viable behavior of the A2, and the predominantly

necrotic pattern of the grade IV tumors; whereas the sources

calculated in a semi-supervised mode represent the class average

prototypes of the tumor types involved far better. The most

interesting case is GL vs. ME, both at STE and LTE, where the

unsupervised method did not perform as well as the semi-

supervised ones. This is because GL and ME have a very similar

spectral pattern (their mean spectra have correlations of 0.989 at

STE and 0.921 at LTE between each other), which also explains

why the classification accuracies were lower for these pairs. Both

tumor types are mainly characterized by the necrotic tissue. The

semi-supervised alternatives managed to obtain very high source

correlations even for the GL vs. ME problem, due to the additional

information that they bring into Convex-NMF in the form of prior

knowledge introduced through the Fisher metric. Thus, the use of

class information dramatically improves source-class correlation

(from 0.776 to 1 in the case of GL).

With respect to the acquisition conditions, the extracted sources

seemed to perform similarly in average at both TE, according to

the correlations between the average spectra of the tumor types

involved and the sources (table 1). Most of them exhibit values

above 0.970. The only discrimination problem for which the result

is rather different is GL vs. ME at LTE, unsupervised, with

correlations below 0.850. Low correlations at LTE might be due to

the fact that LTE yields fewer metabolites even if with more clearly

resolved peaks.

Table 1. Correlations between the sources and the average spectra.

STE Convex
STE Sammon
Convex

STE MDS
Convex

STE IMA
Convex LTE Convex

LTE Sammon
Convex

LTE MDS
Convex

LTE IMA
Convex

A2 vs. GL A2 0.988 0.741 0.935 0.994 0.977 0.947 0.997 0.995

GL 0.979 0.999 1.000 0.999 0.607 0.999 1.000 0.999

A2 vs. ME A2 0.988 0.931 0.915 0.981 0.990 0.981 0.995 0.986

ME 0.994 0.999 0.998 1.000 0.872 0.994 0.999 0.993

GL vs. ME GL 0.972 0.999 1.000 0.999 0.776 0.997 0.998 1.000

ME 0.994 0.994 0.998 0.999 0.831 0.995 0.996 0.998

Table cells should be read as the correlations between the sources and the average spectra (see figures 3 and 4) of the different tumor types. The results of the best
performing method for each classification problem are underlined. The latter is measured as the highest average value between the two correlations. When this highest
average value is obtained by more than one method, all their corresponding results are underlined.
doi:10.1371/journal.pone.0083773.t001
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Figure 4. Sources extracted through unsupervised and semi-supervised methods, at LTE. Sources extracted for all the classification
problems using the training data at LTE, for two of the approaches: Convex-NMF (unsupervised), and IMA + Convex-NMF (semi-supervised). The blue
spectra indicate the mean of the classes involved. Axes labels and representation as in figure 3.
doi:10.1371/journal.pone.0083773.g004

Figure 3. Sources extracted through unsupervised and semi-supervised methods, at STE. Sources extracted for all the classification
problems using the training data at STE, for two of the approaches: Convex-NMF (unsupervised), and IMA + Convex-NMF (semi-supervised). The blue
spectra indicate the mean of the classes involved. Horizontal axis, for all plots: frequency in ppm scale. Vertical axis, for all plots: UL2 normalized
intensity. The range of the vertical scales is fixed for each experiment and is the same for comparative purposes.
doi:10.1371/journal.pone.0083773.g003
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Regarding the use of different data projection approaches

(Sammon, MDS, IMA): in at least one case, the source-class

correlation is low for one of the methods that include class

information in the source extraction process, namely A2 in the A2

vs. GL problem with Sammon’s mapping. Given that MDS and

IMA (and even the unsupervised model) do not yield such a low

correlation, the bad result must be put down to the inability of

Sammon’s mapping to yield an adequate data projection in this

particular case.

Classification results
The classification results obtained using training data (tables 2

and 3) show that the use of the Fisher metric pre-processing before

applying Convex-NMF improves the classification performance

with respect to the unsupervised approach, independently of

whether Sammon mapping, MDS or IMA was used. The total

accuracies were always better for the semi-supervised methods,

and only in few cases (A2 vs. GL at both TE, and GL vs. ME at

STE) there were disagreements between the different methods on

which class was best classified. That is the reason why the BER

was calculated, as it allows us to corroborate that semi-supervised

methods yielded the smallest balanced errors. IMA + Convex-

NMF was the combination that provided the best accuracies in

almost all cases except one, GL vs. ME at LTE, in which MDS +
Convex-NMF was able to correctly label two more cases than the

former. Yet, the result yielded by IMA + Convex-NMF for this

problem is very good, accounting for 95.4%, and much better than

the unsupervised variant with only a 60.6%. Given that the model

has no embedded regularization scheme, there is no guarantee

against overfitting. For this reason, results for test are provided in

tables 4 and 5 and these should be the ones to take into

consideration in order to gauge the generalization capabilities of

the proposed approach, not the training ones.

Table 2. Labeling accuracy results obtained for the training set at STE.

Convex-NMF Sammon + Convex-NMF MDS + Convex-NMF IMA + Convex-NMF

A2 vs. GL Total 88.0% (95/108) 97.2% (105/108) 97.2% (105/108) 98.1% (106/108)

A2 100.0% (22/22) 100.0% (22/22) 100.0% (22/22) 95.5% (21/22)

GL 84.9% (73/86) 96.5% (83/86) 96.5% (83/86) 98.8% (85/86)

BER 0.076 0.017 0.017 0.029

A2 vs. ME Total 96.7% (58/60) 96.7% (58/60) 98.3% (59/60) 100.0% (60/60)

A2 100.0% (22/22) 100.0% (22/22) 100.0% (22/22) 100.0% (22/22)

ME 94.7% (36/38) 94.7% (36/38) 97.4% (37/38) 100.0% (38/38)

BER 0.026 0.026 0.013 0.000

GL vs. ME Total 75.8% (94/124) 81.5% (101/124) 83.1% (103/124) 90.3% (112/124)

GL 70.9% (61/86) 77.9% (67/86) 77.9% (67/86) 94.2% (81/86)

ME 86.8% (33/38) 89.5% (34/38) 94.7% (36/38) 81.6% (31/38)

BER 0.211 0.163 0.137 0.121

Summary of the labeling accuracy obtained for the training set, for all the discrimination problems at STE. They include the accuracy (total and by tumor type); the
number of correctly labeled samples from the total, in parentheses; and BER of the classification. The highest total accuracy and the lowest BER for each classification
problem are underlined.
doi:10.1371/journal.pone.0083773.t002

Table 3. Labeling accuracy results obtained for the training set at LTE.

Convex-NMF Sammon + Convex-NMF MDS + Convex-NMF IMA + Convex-NMF

Total 55.1% (54/98) 98.0% (96/98) 98.0% (96/98) 98.0% (96/98)

A2 100.0% (20/20) 95.0% (19/20) 95.0% (19/20) 95.0% (19/20)

GL 43.6% (34/78) 98.7% (77/78) 98.7% (77/78) 98.7% (77/78)

BER 0.282 0.031 0.031 0.031

A2 vs. ME Total 80.4% (41/51) 100.0% (51/51) 100.0% (51/51) 100.0% (51/51)

A2 100.0% (20/20) 100.0% (20/20) 100.0% (20/20) 100.0% (20/20)

ME 67.7% (21/31) 100.0% (31/31) 100.0% (31/31) 100.0% (31/31)

BER 0.161 0.000 0.000 0.000

GL vs. ME Total 60.6% (66/109) 76.1% (83/109) 97.2% (106/109) 95.4% (104/109)

GL 60.3% (47/78) 69.2% (54/78) 100.0% (78/78) 97.4% (76/78)

ME 61.3% (19/31) 93.5% (29/31) 90.3% (28/31) 90.3% (28/31)

BER 0.392 0.186 0.048 0.061

Summary of the labeling accuracy obtained for the training set, for all the discrimination problems at LTE. They include the accuracy (total and by tumor type); the
number of correctly labeled samples from the total, in parentheses; and BER of the classification. Highest total accuracy and lowest BER underlined as in table 2.
doi:10.1371/journal.pone.0083773.t003

Semi-Supervised Methodology for Source Extraction

PLOS ONE | www.plosone.org 9 December 2013 | Volume 8 | Issue 12 | e83773



The increase on the accuracy of classification of the test dataset

(tables 4 and 5) is smaller than in the training set, but still the fully

unsupervised variant does not outperform the semi-supervised

ones in any of the discrimination problems. In general terms, the

results remain stable for the independent test set, in either the

unsupervised or the semi-supervised modalities, since they

consistently reflect the same performance as the training set at

both TE. The semi-supervised variants managed to classify up to

three more cases than the unsupervised one at STE and as much

as 11 more cases in a particular discrimination problem at LTE,

namely A2 vs. GL.

The labeling accuracy results for the training data of the A2

class, as reported in table 2 and 3, are in most cases close or equal

to 100%. The only exceptions are the result of a single

misclassification from a set of 22 spectra at STE or 20 spectra at

LTE.

Given that the A2 test set is smaller (10 spectra both at STE and

LTE), we consider that the results reported in tables 4 and 5 just

reflect a consistently near perfect classification for this class of

tumor and that the similarity between training and test results

would increase as the number of available cases increased. Beyond

that, the near perfect results for this tumor type reflect that the

extracted source is extremely class specific. This class, unlike those

of aggressive tumors, is very homogeneous according to its MRS

(given that it reflects mostly its proliferating pattern, instead of the

characteristic mix of proliferating and necrotic of the aggressive

tumors).

Other studies have addressed similar problems in the existing

literature, for similar data. We report next some of these results for

comparative purposes, although the techniques and the evaluation

criteria involved are not always the same and, therefore, not

straightforwardly comparable.

In [51], aggressive tumors (GL+ME) were discriminated in a

supervised way from A2, as first step of a multiclass classifier for

data acquired at LTE, with an accuracy of 84.7% in the training

set. In the results of the experiments shown in tables 2 and 3, we

Table 4. Labeling accuracy results obtained for the test set at STE.

Convex-NMF Sammon + Convex-NMF MDS + Convex-NMF IMA + Convex-NMF

Total 80.0% (32/40) 77.5% (31/40) 80.0% (32/40) 85.0% (34/40)

A2 100.0% (10/10) 100.0% (10/10) 100.0% (10/10) 100.0% (10/10)

GL 73.3% (22/30) 70.0% (21/30) 73.3% (22/30) 80.0% (24/30)

BER 0.133 0.150 0.133 0.100

A2 vs. ME Total 90.0% (18/20) 85.0% (17/20) 85.0% (17/20) 90.0% (18/20)

A2 100.0% (10/10) 100.0% (10/10) 100.0% (10/10) 100.0% (10/10)

ME 80.0% (8/10) 70.0% (7/10) 70.0% (7/10) 80.0% (8/10)

BER 0.100 0.150 0.150 0.100

GL vs. ME Total 62.5% (25/40) 55.0% (22/40) 62.5% (25/40) 70.0% (28/40)

GL 63.3% (19/30) 56.7% (17/30) 63.3% (19/30) 73.3% (22/30)

ME 60.0% (6/10) 50.0% (5/10) 60.0% (6/10) 60.0% (6/10)

BER 0.383 0.467 0.383 0.333

Summary of the labeling accuracy obtained for the test set, for all the discrimination problems at STE. They include the accuracy (total and by tumor type); the number
of correctly labeled samples from the total, in parentheses; and BER of the classification. Highest total accuracy and lowest BER underlined as in table 2.
doi:10.1371/journal.pone.0083773.t004

Table 5. Labeling accuracy results obtained for the test set at LTE.

Convex-NMF Sammon + Convex-NMF MDS + Convex-NMF IMA + Convex-NMF

Total 40.0% (16/40) 65.0% (26/40) 67.5% (27/40) 65.0% (26/40)

A2 100.0% (10/10) 100.0% (10/10) 100.0% (10/10) 100.0% (10/10)

GL 20.0% (6/30) 53.3% (16/30) 56.7% (17/30) 53.3% (16/30)

BER 0.400 0.233 0.217 0.233

A2 vs. ME Total 70.0% (14/20) 75.0% (15/20) 75.0% (15/20) 75.0% (15/20)

A2 100.0% (10/10) 100.0% (10/10) 100.0% (10/10) 100.0% (10/10)

ME 40.0% (4/10) 50.0% (5/10) 50.0% (5/10) 50.0% (5/10)

BER 0.300 0.250 0.250 0.250

GL vs. ME Total 80.0% (32/40) 80.0% (32/40) 82.5% (33/40) 82.5% (33/40)

GL 86.7% (26/30) 86.7% (26/30) 90.0% (27/30) 90.0% (27/30)

ME 60.0% (6/10) 60.0% (6/10) 60.0% (6/10) 60.0% (6/10)

BER 0.267 0.267 0.250 0.250

Summary of the labeling accuracy obtained for the test set, for all the discrimination problems at LTE. They include the accuracy (total and by tumor type); the number
of correctly labeled samples from the total, in parentheses; and BER of the classification. Highest total accuracy and lowest BER underlined as in table 2.
doi:10.1371/journal.pone.0083773.t005
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have studied the discrimination of A2 from GL and from ME

separately, and the accuracies obtained in a semi-supervised way

achieved 98% and 100%, respectively, also for the same training

set. For the same problem, with data acquired at STE, an

accuracy of 90.9% was reported in [52], also in a supervised way

and for the training set, to be compared with a 98.1% and 100%,

respectively, obtained in our study in a semi-supervised way.

GL vs. ME has traditionally been considered as a very difficult

differentiation problem by SV 1H-MRS data, because of their

radiological similarity [19,53–56]. As stated by Opstad et al. [56],

the radiological appearance of intracranial metastases and high-

grade gliomas is often similar and dominated, in both cases, by

large peak intensities corresponding to neutral lipids, a byproduct

of necrosis [53]. This problem has often been circumvented by

considering both pathologies as part of a more general class of

high-grade malignant tumors [36,51,52]. In the literature, some of

the best classification results obtained in a supervised way for this

pair of classes were published in [53], where accuracies of 75% at

STE and 77.5% at LTE for the independent test set were

reported. As the validation dataset of the latter and the current

studies is the same with exactly the same processing, the results are

comparable. In our study, the semi-supervised methods yielded

accuracies of 70% with the test set (table 4) at STE, which means

that two less cases were accurately labeled. At LTE, the semi-

supervised methods yielded accuracies with the test set of 82.5%

(table 5), meaning that, in this case, two more cases were correctly

labeled.

Up to this point, only the results corresponding to two extracted

sources have been discussed. In [24], it was shown that, to

discriminate GL and ME from other tumor types such as A2 in a

fully unsupervised way, at least two sources are required. This is

because Convex-NMF is not always successful in extracting tumor

type-specific sources. Accordingly, a minimum of three sources

would be needed, one to represent A2, and two others to represent

either GL or ME: one for the necrotic core (high mobile lipids)

[1,56], and the other for the cellular part of the tumor (high total

choline, indicating high proliferation rate [57]), according to the

signal profile and its metabolic interpretation. This would be valid

for both echo times, and both sources are needed to accurately

recognize SV patterns of GL or ME [24].

This is the reason why three signal sources were calculated in

the discrimination problems A2 vs. GL and A2 vs. ME, at both TE

(table 6), in the unsupervised setting. As expected, most results

were improved (training and test sets) with respect to the

unsupervised results with two sources shown in tables 2–5, except

for the test set results of A2 vs. ME at STE.

However, when comparing the unsupervised results obtained

with three sources (table 6) with those obtained in a semi-

Table 6. Labeling accuracy results obtained with 3 sources, unsupervised (Convex-NMF).

STE, Training set STE, Test set LTE, Training set LTE, Test set

A2 vs. GL Total 90.7% (98/108) 90.0% (36/40) 79.6% (78/98) 60.0% (24/40)

A2 95.5% (21/22) 100.0% (10/10) 100% (20/20) 100.0% (10/10)

GL 89.5% (77/86) 86.7% (26/30) 74.4% (58/78) 46.7% (14/30)

BER 0.075 0.067 0.128 0.267

A2 vs. ME Total 96.7% (58/60) 85.0% (17/20) 88.2% (45/51) 85.0% (17/20)

A2 100.0% (22/22) 100.0% (10/10) 100.0% (20/20) 100.0% (10/10)

ME 94.7% (36/38) 70.0% (7/10) 80.6% (25/31) 70.0% (7/10)

BER 0.026 0.150 0.097 0.150

Summary of the labeling accuracy obtained for the training and test set when three sources were calculated in a fully unsupervised way (Convex-NMF), for two
discrimination problems at STE and LTE. They include the accuracy (total and by tumor type); the number of correctly labeled samples from the total, in parentheses;
and BER of the classification.
doi:10.1371/journal.pone.0083773.t006

Figure 5. Three sources extracted through unsupervised methods for the AG group. Three sources extracted in unsupervised mode, using
Convex-NMF, for the aggressive tumors group (GL + ME), using the training data at both STE and LTE. Axes labels as in figure 3.
doi:10.1371/journal.pone.0083773.g005

Semi-Supervised Methodology for Source Extraction

PLOS ONE | www.plosone.org 11 December 2013 | Volume 8 | Issue 12 | e83773



supervised way (tables 2–5), we can see that the semi-supervised

approaches, with only two sources, still outperform the unsuper-

vised training results at both TE, but not always the test results. A

detailed look at the training results for A2 vs. GL obtained with

IMA+Convex with two sources (tables 2 and 3) reveals an

increased accurate classification of up to 8 (7%) and 18 (18%) cases

at STE and LTE, respectively, when compared to the unsuper-

vised results with three sources (table 6, training set columns).

Similarly, A2 vs. ME shows an increased accurate classification of

up to 2 (3%) and 5 (10%) cases at STE and LTE, respectively.

However, and as previously mentioned, the semi-supervised

approaches with two sources did not always improve on the

unsupervised results with three sources for the test dataset, where

IMA+Convex failed to recognize two more cases for A2 vs. GL at

STE (5%) and A2 vs. ME at LTE (10%). The exceptions were A2

vs. GL at LTE, in which IMA+Convex (with two sources)

recognized two more cases (5%) than the unsupervised model

(with three); and A2 vs. ME with one more case (5%). It is worth

noting that this comparison should be considered with caution,

given the different number of sources involved.

In the problem of discrimination between GL and ME, as

mentioned in the methods section, it is unclear whether more than

two sources would be required, and what they would represent. To

illustrate this, three sources were calculated in an unsupervised

mode for the aggressive group (GL+ME), as seen in figure 5. The

first source (figure 5, column 1) would correspond to non-necrotic

GL (see figure 1, case I1098), a minor subtype of the cases at STE

(15.1%, see table 8). In this respect, the pattern change shown

between STE and LTE sources for the mI/Gly region at ca.

3.55 ppm would suggest high mI content [58,59] and, accordingly,

it would point to secondary glioblastomas as major contributors to

this GL subgroup [60]. The mI signal presents J-modulation and

its signal decreases the apparent mI peak intensity at ca. 3.55 ppm,

whereas the glycine signal, which resonates at the same frequency,

does not [58,59]. Indeed, literature [61–63] provides a range of

secondary GL percentage (5–8%) close to the percentage given by

source 1 (15.1%). Furthermore, second and third sources would

represent the ME and the major GL subgroup, containing tissue

types from both classes. Source 2 (highly necrotic pattern)

represents a higher proportion of ME than source 3 (less necrotic

pattern) at both echo times (73.7% ME for source 2 vs. 21.1% ME

for source 3 at STE; and 45.2% ME for source 2 and 22.6% ME

for source 3 at LTE, see table 8). From the previous analysis, we

can conclude that even when we can provide an interpretation for

the sources extracted, their ability to discriminate one tumor type

from the other is reduced due to the degree of mixing of the

constituent tissue types. Therefore, semi-supervised approaches

play a key role in solving discrimination problems like this one, in

which two sources satisfactorily discriminate between the two

classes because of their ability to represent class prototypes.

Another classification problem of interest in the literature that

involves the tumor types under study is the discrimination between

A2 from the superclass AG. When using three sources for this

discrimination problem, a semi-supervised approach is able to

provide much better results for the training set than the

unsupervised approach, with 97.9 vs. 89.7% at STE, and 97.7

vs. 77.5% at LTE (table 7). The results obtained for the test set

show no clear evidence of this advantage, with the unsupervised

method being able to classify one more case than the semi-

supervised one at STE, and the semi-supervised method being

able to represent three more cases than the unsupervised one at

LTE. Additionally, the results obtained in a semi-supervised way

are better than those presented in [51] and [52], where the

reported accuracy was 84.7% at LTE, and 90.9% at STE, to be

Table 8. Representation of the three sources extracted in unsupervised mode for GL+ME.

STE, Source 1 STE, Source 2 STE, Source 3 LTE, Source 1 LTE, Source 2 LTE, Source 3

GL 15.1% (13/86) 51.2% (44/86) 33.7% (29/86) 50.0% (39/78) 29.5% (23/78) 20.5% (16/78)

ME 5.3% (2/38) 73.7% (28/38) 21.1% (8/38) 32.35 (10/31) 45.2% (14/31) 22.6% (7/31)

Representation of the three sources to the two tumor types (GL and ME) involved. They include the percentage of cases mainly represented by each source (by tumor
type), and the number of cases from the total, in parentheses. Sources were extracted in an unsupervised mode using Convex-NMF for the aggressive tumors group (GL
+ ME), using the training data at both STE and LTE.
doi:10.1371/journal.pone.0083773.t008

Table 7. Labeling accuracy results obtained with 3 sources, semi-supervised and unsupervised, for A2 vs. AG (GL+ME).

STE, Training set STE, Test set LTE, Training set LTE, Test set

A2 vs. AG Total 89.7% (131/146) 86.0% (43/50) 77.5% (100/129) 60.0% (30/50)

Unsupervised A2 95.5% (21/22) 100.0% (10/10) 100.0% (20/20) 100.0% (10/10)

AG 88.7% (110/124) 82.5% (33/40) 73.4% (80/109) 50.0% (20/40)

BER 0.079 0.088 0.133 0.250

A2 vs. AG Total 97.9% (143/146) 84.0% (42/50) 97.7% (126/129) 66.0% (33/50)

Semi-supervised A2 100.0% (22/22) 100.0% (10/10) 100.0% (20/20) 100.0% (10/10)

AG 97.6% (121/124) 80.0% (32/40) 97.2% (106/109) 57.5% (23/40)

BER 0.012 0.100 0.014 0.213

Summary of the labeling accuracy obtained for the training and test set when three sources were calculated in a fully unsupervised way, and a semi-supervised way
(IMA+Convex-NMF), for the discrimination problem A2 vs. AG (GL+ME) at STE and LTE. They include the accuracy (total and by tumor type); the number of correctly
labeled samples from the total, in parentheses; and BER of the classification.
doi:10.1371/journal.pone.0083773.t007
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compared with 97.7% and 97.9%, respectively, obtained in our

study.

Conclusions

The experimental results reported in this study confirm the

hypothesis that an unsupervised method ideally suited for source

extraction from MRS, namely Convex-NMF, can benefit from the

use of the available data class labels to obtain tumor type-specific

sources that result in accurate classifiers without any loss in the

interpretability of the results.

A novel mechanism to perform non-negative matrix factoriza-

tion in a semi-supervised manner is provided, by first finding a

natural metric to describe the class assignments, and then mapping

the data using standard projective methods into an approximate

distribution in a Euclidean space where standard projective

methods of the source extraction can be applied.

For the data analyzed in this work, the proposed semi-

supervised approach yielded the better classification accuracies,

both in the training and test datasets, if two sources were

employed. Moreover, when interpreted as class prototypes, the

extracted sources were of higher quality than those calculated

using the unsupervised method. The results were more similar

between unsupervised and semi-supervised source extraction-

based classification when three sources were employed. However,

the semi-supervised approaches were key in problems where the

unsupervised extraction of three sources is not being helpful, such

as the discrimination of GL from ME. For this problem, the

accuracy results obtained using the semi-supervised approach were

comparable to the best reported in the literature, with the added

value of the interpretability provided by the sources.

In conclusion, the improvements in classification accuracy and

accuracy of sources identification, especially in complex tumor

type classification problems, are the main advantages of using the

additional pre-processing steps when the focus is that of finding

tumor-type specific MRS signal sources.

The differences between unsupervised and semi-supervised

methods are less apparent when three sources are identified.

Theoretical approaches to defining the optimal number of sources

should be the subject of further work.
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2. Julià-Sapé M, Acosta D, Majós C, Moreno-Torres A, Wesseling P, et al. (2006)

Comparison between neuroimaging classifications and histopathological diag-

noses using an international multicenter brain tumor magnetic resonance
imaging database. Journal of Neurosurgery 105: 6–14.

3. Law M, Yang S, Wang H, Babb JS, Johnson G, et al. (2003) Glioma Grading:

Sensitivity, Specificity, and Predictive Values of Perfusion MR Imaging and

Proton MR Spectroscopic Imaging Compared with Conventional MR Imaging.

American Journal of Neuroradiology 24: 1989–1998.
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negative Matrix Factorisation methods for the spectral decomposition of MRS

data from human brain tumours. BMC Bioinformatics 13.

25. Zafeiriou S, Tefas A, Buciu I, Pitas I (2006) Exploiting discriminant information

in nonnegative matrix factorization with application to frontal face verification.

IEEE Transactions on Neural Networks 17: 683–695.

Semi-Supervised Methodology for Source Extraction

PLOS ONE | www.plosone.org 13 December 2013 | Volume 8 | Issue 12 | e83773



26. Vilamala A, Lisboa PJG, Ortega-Martorell S, Vellido A (2013) Discriminant

Convex Non-negative Matrix Factorization for the classification of human brain
tumours. Pattern Recognition Letters 34: 1734–1747.

27. Ding C, Li T, Jordan MI (2010) Convex and semi-nonnegative matrix

factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence
32: 45–55.

28. Ruiz H, Ortega-Martorell S, Jarman IH, Vellido A, Romero E, et al. (2012)
Towards interpretable classifiers with blind signal separation. In Proceedings of

the IEEE World Congress on Computational Intelligence (WCCI 2012)

International Joint Conference on Artificial Neural Networks (IJCNN 2012).
Brisbane, Australia. pp. 3008–3016.

29. Vellido A, Martı́n-Guerrero JD, Lisboa PJG (2012) Making machine learning
models interpretable. In Proceedings of the 20th European Symposium on

Artificial Neural Networks, Computational Intelligence and Machine Learning
(ESANN). Bruges, Belgium. pp. 163–172.

30. Amari S (2001) Information geometry on hierarchy of probability distributions.

IEEE Transactions on Information Theory 47: 1701–1711.
31. Ruiz H, Jarman IH, Martı́n JD, Lisboa PJG (2011) The role of Fisher

information in primary data space for neighbourhood mapping. In Proceedings
of the 19th European Symposium on Artificial Neural Networks, Computational

Intelligence and Machine Learning (ESANN). Bruges, Belgium. pp. 381–386.

32. Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE
Transactions on Computers 18: 401–409.

33. Borg I, Groenen PJF (1997) Modern multidimensional scaling. New York:
Springer Verlag.

34. Heiser WJ (1995) Convergent computation by iterative majorization: Theory
and applications in multidimensional data analysis. In: Krzanowski WJ, editor.

Recent Advances in descriptive Multivariate Analysis. Oxford: Oxford

University Press. pp. 157–189.
35. Kiers HAL (2002) Setting up alternating least squares and iterative majorization

algorithms for solving various matrix optimization problems. Computational
Statistics & Data Analysis 41: 157–170.

36. Tate AR, Underwood J, Acosta DM, Julià-Sapé M, Majós C, et al. (2006)
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