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Abstract

Wrinkles can be embedded in several image-based applications as a descriptor

for human skin. However, wrinkle-based age estimation research has not been

widely addressed. In this paper, we introduce a Multi-scale Wrinkle Patterns

(MWP) representation, investigate the effect of wrinkles on face age estima-

tion and propose Hybrid Ageing Patterns (HAP) for face age estimation. To

define the wrinkle regions more precisely, a template consisting of 10 regions

constructed relatively to a set of automatically located facial landmarks is used.

We extract the multi-scale wrinkles in each region and encode them into MWP.

We use Support Vector Regression to estimate age from the combination of

such patterns. The performance of the algorithms is assessed by using Mean

Absolute Error (MAE) on three state-of-the-art datasets - FG-NET, FERET

and MORPH. We observe that MWP produces a comparable MAE of 4.16 on

FERET to the state of the art. Finally we propose HAP, which combines the

features from MWP and the Facial Appearance Model (FAM), and demonstrate

improved performance on FERET and MORPH with MAE of 3.02 (±2.92) and

3.68 (±2.98), respectively. Therefore, we conclude that MWP is an important

complementary feature for face age estimation.

Keywords: Age estimation, wrinkle detection, facial appearance model, line

tracking, support vector regression.
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1. INTRODUCTION

Automatic face age estimation is an important, yet largely unsolved, chal-

lenging problem. This challenge can be attributed to (i) large intra-subject

variations and (ii) large inter-subject similarity. The large intra-subject varia-

tions include craniofacial growth and changes on skin texture, meanwhile, the5

inter-subject similarities are gender and race.

Conventionally, age estimation methods are based on appearance features.

Appearance features are computed or modelled for an entire face that comprises

shape and texture [1]. For facial ageing research, many algorithms [2, 3, 4, 5]

use the appearance parameters produced by the facial appearance model (FAM)10

[1] and age manifold [6, 7]. FAM is a generative model that constructs the

target subject’s face by a set of hidden parameters [8] while manifold learning

is a non-linear dimensionality reduction approach. Faces at different ages can

be generated under a similar subspace with varying parameters for controlling

the shape and texture. However, age progression modelling is highly complex15

due to large intra-subject variation and inter-subject similarity [9]. In addition,

dimensional reduction of principal components analysis (PCA) in FAM is a form

of averaging which smooths out wrinkles as there is no correspondence from one

individual to another [10].

To investigate the effect of wrinkles on face age estimation algorithms, ac-20

curate wrinkle detection is an important task in face analysis [11, 12]. Judge-

ments are typically made on neutral and frontal face images because it is the

most commonly found in the datasets. The majority of the latest works on

wrinkle assessment are based on clinical perspective (subjective assessment).

Clinician perspective focuses on the level of wrinkle severity which is assessed25

using either descriptive or photographically-calibrated scales [13]. The subjec-

tive assessment limits the scientific study of detailed wrinkles information in

terms of location, density and depth. On the other hand, computer vision al-

gorithms are capable of extracting these information and formed an objective

assessment [14]. Choi et. al. [10] studied the local feature extraction for age30
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estimation. They claimed that the facial wrinkles and skin texture are very

important information for age estimation. With age increasing, facial wrinkles

are increased and spots or blotches are appeared on skin texture. These aging

features are generally shown as high frequency components on images. However,

there was no validation on the extracted wrinkles. This implies that age esti-35

mation using wrinkle features still a challenging problem. Therefore, a reliable

and accurate computerised wrinkle detection method is crucial for this study.

The following observations outline the limitations of existing wrinkle-based age

estimation studies:

1. Conventionally, a significant user interaction is required for identifying40

the facial wrinkles. It is time consuming and subjective, depending on the

user expertise.

2. Existing wrinkle-based features [15, 10] are not robust for face age esti-

mation. They are either weakly represented or not validated against the

ground truth.45

3. Conventional features such as local binary patterns (LBP) require high

dimension representation and computational expensive.

The main contributions of this paper are:

1. Multi-scale Wrinkle Patterns (MWP) is proposed as a feature represen-

tation for facial wrinkles. This representation includes wrinkle location,50

intensity and density, which is a better descriptor than conventional local

features.

2. Hybrid Ageing Patterns (HAP) is proposed as a new feature representation

for face age estimation. It is a fusion of FAM and MWP to form a new

complementary feature representation.55

This paper is organised into the following sections: Section 2 discusses the

related work on face age estimation; Section 3, 4, and 5 outlines MWP, HAP and

Support Vector Regression (SVR), respectively; Section 6 presents the results

and discussion; finally, the conclusion is summarized in Section 7.
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2. RELATED WORK60

The process of age estimation attempts to label a facial image automatically

with the exact age (year) or the age group (year range) of the individual face. By

deriving significant features from faces of known ages, the age of an individual

face can be estimated by solving the inverse problem using the same feature-

extraction technique. Although many algorithms have been proposed since 199465

[16, 17, 18], age estimation is still a challenging problem due to three reasons

[2]. First, face age progression is uncontrolled and personalized. Such special

characteristics of ageing variation cannot be captured easily due to the large

variations conveyed by human faces. Second, there is no complete facial ageing

dataset with chronological ages. It is hard to collect a large facial image set70

of people throughout their life which are sufficient to present detailed aging

progression. Third, it is difficult to define an absolute ageing pattern that can

be used to quantify one particular age. For example, these are invalid arguments:

two wrinkles at the eye corner is classified as age 20; three wrinkles as 30 years

old. Such arguments fail to predict the age between 20-30 and misleading. Thus,75

a robust ageing representation is needed to cope with the identified problem.

2.1. Face Age Estimation

Age estimation methods can be broadly classified as global and local ap-

proaches. In the former, a common way is to capture the variability in the

facial appearance by using FAM and then apply the regression method for pre-80

dicting the age. For the local approach, this refers to representing local features

such as wrinkles, spots and pores in an ageing pattern and then the correspond-

ing age is estimated by regression. One might think that local features can only

be used for age group classification, Ng et al. [19] has proven that a specific age

can be learned and estimated from the wrinkle-based features. They present85

wrinkle by the pixel intensity values at different wrinkle locations.

Lanitis et al. [20] proposed an age estimation method using a quadratic

ageing function to identify the relationship between age and appearance param-

eters. Using weighted appearance specific (WAS), the ageing function for the
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Figure 1: A comparison between original and reconstructed face images of FAM. The top row

is a male subject of 60 years old and the bottom row is a female subject of 30 years old taken

from FERET dataset. The reconstructed images removed the noise as well as the wrinkles

(dotted green line).

unseen face is predicted by the weighted sum of the known ageing functions,90

where the weights are determined by the Mahalanobis distance from the test

image to the training images. Later, they proposed three hierarchical architec-

tures to further improve their ageing function. Among them, the function of

appearance age-specific (AAS) achieved the best performance because it handles

the face image clusters separately according to both the appearance and the age95

group. They managed to achieve the mean absolute errors (MAE) of 8.06 and

14.83 using WAS and AAS, respectively [21]. However, the ageing function does

not take into consideration the uniqueness of ageing variation such as temporal,

communal, personalized characteristics of human ageing.

Geng et al. [2] proposed an idea known as ageing pattern subspace (AGES)100

which makes use of FAM parameters. The main idea of AGES is to find the miss-

ing pattern in the ageing subspace by using PCA and Expectation Maximization

(EM) method. They argued that the concepts of identity and time are naturally

integrated into the facial ageing subspace. However, the AGES method is less

representative due to the appearance model only encoding the image intensities105

without considering other ageing characteristics such as wrinkles. Moreover,

the use of PCA on appearance parameters might lose significant features be-
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Figure 2: Sample images from the benchmark datasets with the age labelled. The first row

shows the face images from FG-NET [22]. The second row shows the images from FERET

[23]. The third row shows the images from MORPH [24].

cause the least important variance could be either noise or ageing information.

Among recent approaches, the best MAE for FG-NET, using a leave one person

out (LOPO) approach was 4.25 by Chao et al. [5]. They applied label-sensitive110

learning and age-oriented learning to capture the complicated appearance pa-

rameters for age estimation. They claimed that the intrinsic ordinal relationship

among human ages is considered but the fundamental problem is the FAM pa-

rameters. Although the FAM-based features provide sufficient information for

detailed age estimation, they do not include a comprehensive characterization115

of wrinkles or quantifiable wrinkles due to the dimensionality reduction in PCA

[10]. Fig. 1 illustrates the wrinkles appeared on the original images but not on

the reconstructed images.

2.2. Face Datasets

The popular datasets for age estimation include FG-NET [22] (with an av-120

erage resolution of approximately 500x400), FERET [23] (with resolution of

512x768) and MORPH [24] (with resolution of 200x240 or 400x480). FG-NET
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comprises 1002 images of 82 subjects in the age range of 0-69 years. Since the

images were retrieved from real-life albums of different subjects, the face im-

ages have a lot of variations in terms of illuminations and pose. FERET is a125

comprehensive dataset with 2366 images of 994 subjects that presents multi-

ple problems related to face recognition such as illumination variations, pose

variations, and facial expressions. Moreover, it consists of a few hundred age-

separated face images of subjects with the age difference of 18 months or more

and the age range is between 10 and 70. MORPH is the most recent dataset and130

it was collected by the Face Ageing Group at the University of North Carolina

at Wilmington for the purpose of face biometrics applications. For this exper-

iment, 2000 images are randomly selected to validate the performance. Fig. 2

illustrates some sample images from FG-NET, FERET and MORPH datasets

with different age, gender and ethnicity.135

2.3. Wrinkles Pattern

The skin changes associated with ageing are the focus of many surgical and

non-surgical procedures aimed to improve the appearance of skin [25]. Knowl-140

edge of skin histology will deepen the understanding of cutaneous changes as-

sociated with ageing and will promote optimal cosmetic and functional patient

outcomes. Due to these reasons, research into age estimation by using local

features has gained increasing attention, e.g., bio-inspired features (BIF) [26],

kernel-based local binary patterns (KLBP) [27] and wrinkles [19].145

As mentioned in [9, 28], wrinkle-based features such as skin texture are more

effective for face representation because they inherently contains spatial locality

and orientation selectivity. These properties allow for simplicity of feature ex-

traction and avoid the extensive modelling of FAM. Aznar-Casanova et al. [15]

investigated the influence of wrinkles on face age judgements. Their experiments150

were based on the types of wrinkles and quantitative contribution of wrinkles.

They found that the amount of wrinkles on the perceived face age had more in-
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fluence than the types of wrinkles. Although their works sounds interesting, the

whole experiment is based on human judgement. [29] proposed a combination

rule of the facial ratios and wrinkle index for age group classification. These155

criteria were suggested by craniofacial research and the observation that aging

skin develops wrinkles. A snakelet is a small snake segment designed to find a

small individual curve segment in an image. A wrinkle geography map drops

multiple snakelets in polygonal regions, where wrinkles may typically be found.

Their focus is concentrated on the wrinkles on forehead, next to the eyes and160

near the cheek bones. If several curves are found in a particular region, they

claimed that wrinkles exist in that region. However, there are at least two prob-

lems need to be addressed. First, there was no objective validation against the

extracted wrinkles. Lines found by the snakelet could be wrinkles or noises. Sec-

ond, facial alignment was not done automatically. Wrinkle geography map was165

placed manually for dropping the snakelets. [30] investigated the appearance-

age features for age estimation. The features are wrinkle, freckle, shape, hair

and colour where these features are distributed at different parts of face such as

forehead, eye corners, eye bags, nasalobial. Published computerised approaches

on age estimation based on wrinkle features are limited [31, 32, 33, 34, 35].170

Most of them were focused on age group classification instead of specific age

estimation.

Yang and Ai [36] applied local binary pattern histograms (LBPH) as aging

descriptors. Given a restricted local patch, the Chi square distance between the

extracted LBPH and a reference histogram is used as a measure of confidence175

belonging to the reference class. They claimed that the error rate of age classifi-

cation is as low as 7.88% on the FERET dataset. However, LBPH is weakened

by the sparse nature of local binary pattern (LBP) representation [27]. The

current state-of-the-art method, kernel-based local binary patterns (KLBP), is

proposed by Ylioinas et al. [27]. It generates sign and magnitude features180

through face patches. They claimed that the sparse nature of LBP representa-

tion is improved by the proposed kernel estimator. However, this method is not

yet tested on FERET dataset. Günay and Nabiyev [37] proposed age estimation
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based on local Radon features. The idea is to transform an image pixel into an

equivalent geometric Radon vector. The authors reported the performance of185

the local Radon features is better on FG-NET (6.18) than FERET (6.98). It

is a norm that local method requires image with higher resolution, but local

Radon features seems to work better on images with lower resolution. Existing

methods on wrinkles patterns for age estimation are limited, with low accuracy

and not tested across different datasets.190

In this work, we introduce a new complementary feature pattern, MWP,

to overcome the problem of poor representation of wrinkles information in the

state of the art. We explores the performance of MWP on face age estimation

and subsequently proposed a new feature pattern, HAP, by combining MWP

and FAM [2] to form a stronger feature representation. To date, no studies have195

investigated the use of wrinkles patterns as complementary feature of FAM in

face age estimation.

3. MULTI-SCALE WRINKLE PATTERNS

Fig. 3 is an overview of our proposed multi-scale wrinkle patterns. It consists

of four steps: seeding, wrinkles detection using line tracking, Region of Interests200

(ROI) masking and wrinkle pattern representation.

3.1. Seeding

Given a warped image I, it is scaled with different ratios s and denoted

as I (s) where s ∈ {s1, s2, . . . , sα} with α indicates the total number of scales.

Since wrinkles present in different sizes, a multi-scale image preserve different205

types of wrinkles. In this case, we set α = 4 and s ∈ {1.00, 0.75, 0.50, 0.25}

where s = 1.00 represents the original image scale and s = 0.50 represents half

of the original image scale. For each scale, the directional gradient
(
∂I
∂x ,

∂I
∂y

)
of I is computed from the greyscale image. Let ∂I

∂y denoted as I, therefore I

emphasizes a horizontal variation and is used as the input for calculating the210

Hessian filter H. In order to determine the local likelihood that a wrinkle is
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Figure 3: Multi-scale Wrinkle Patterns. It consists of four steps: seeding, line tracking, ROI

masking and pattern representation. Note that 1.00x means the original size of FERET image

and ten regions of masking are forehead, glabella, upper eyelids, crows feet, lower eyelids,

cheeks, nasolabial grooves, upper lips, marionette and lower lips.

present, eigenvalue analysis of the Hessian filter is assessed. Wrinkles can be

considered as edges with special curvatures on a face and the major orientations

of such edges are in the horizontal direction. We propose the following Hessian

filter imposed on the horizontal gradient I at location (x, y),215

Hσ (x, y) =

 Ha,σ (x, y) Hb,σ (x, y)

Hb,σ (x, y) Hc,σ (x, y)

 (1)

where σ is the filter scale; Ha,σ, Hb,σ and Hc,σ are the second derivatives of I

along horizontal, diagonal and vertical directions, respectively. The parameter

σ is set to four where σ ∈ {1, 3, 5, 7} to extract the wrinkles from four different

filter scales. The computation of Ha,σ, Hb,σ and Hc,σ are approximated by the

following convolutions with Gaussian kernels:220

Ha,σ (x, y) = I (x, y) ∗ G1,σ (i, j) (2)

Hb,σ (x, y) = I (x, y) ∗ G2,σ (i, j) (3)
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Hc,σ (x, y) = I (x, y) ∗ GT1,σ (i, j) (4)

The second derivative of a Gaussian kernel at filter scale σ generates a probe

kernel that measures the contrast at the selective scale in the direction of the

derivative. They are given by

G1,σ (i, j) =
1

2πσ4

[
M2

i,j

σ2
− 1

]
e
−M2

i,j+N
2
i,j

2σ2 (5)

G2,σ (i, j) =
1

2πσ6
[Mi,jNi,j ] e

−M2
i,j+N

2
i,j

2σ2 (6)

where M and N are the matrices with vertical and horizontal directions as

Mi,j = −3σ + i− 1 (7)

Ni,j = −3σ + j − 1 (8)

where the range of i and j is [−3σ, 3σ]. Since wrinkles are similar to the pat-225

terns of ridge and valley, the Gaussian kernels are designed in the same way.

To determine the texture orientation, eigenvalues λ1 and λ2 of the Hessian at

specific scale are given by

λ1,σ =
1

2

[
Ha,σ +Hc,σ +

(√
(Ha,σ −Hc,σ)

2
+ 4H2

b,σ

)]
(9)

λ2,σ =
1

2

[
Ha,σ +Hc,σ −

(√
(Ha,σ −Hc,σ)

2
+ 4H2

b,σ

)]
(10)

λ1,σ and λ2,σ are used to compute the curvilinear likeness measure E [38], where

it is a value corresponding to how much a pixel looks like part of a curve, which230

is defined as the following:

Eσ =


0 if λ2,σ ≤ 0

e
−Rσ

2β21

(
1− e

− Sσ
2β22

)
, otherwise

(11)
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where β1 controls the sensitivity of the filter to the measurement of R and the

default value is 0.5; β2 depends on the greyscale range of the curvilinear pattern

of interest and controls the sensitivity of the filter to the measurement of S and

the default value is 15 [38]; R and S are defined as:235

Rσ =

(
λ1,σ
λ2,σ

)2

, λ2,σ 6= 0 (12)

Sσ = λ21,σ + λ22,σ (13)

In this work, we are interested in ridge patterns which represent seeds. λ1 and

λ2 highlight the data of interest and discard noisy patterns [38]. In all scales,

if λ2 is positive, then seeds are detected as shown in (11). Moreover, if the

maximum of E is greater than zero at any scales, then seeds are detected as

well. Due to the curvilinear pattern being analyzed at different values of σ, the240

response Emax of the Hessian filter will be the maximum at a scale σ as

Emax (x, y) = max
σ

[Eσ (x, y)] (14)

An initial seed mask of MWP (as D, respectively) is generated and it is

defined as

D (x, y) =

0 if Emax (x, y) ≤ 0

I (x, y) otherwise

(15)

3.2. Wrinkles Detection using Line Tracking

To date the best wrinkles detector is Hessian Line Tracking (HLT) [39]. This245

section summarises HLT algorithm and further validation of its performance on

ten face regions will be presented in the results section (Section 4).

Hessian Line Tracking. Let Cp,r be denoted as a set of candidates pixels

to a particular center pixel or seed D (x, y) where p represents the number of
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sampling points and r is the radius of the neighbourhood. These sampling250

points around D (x, y) lie at Cartesian coordinates as,

(xθ, yθ) = (x+ r cos θ, y + r sin θ) (16)

where θ ∈ {0◦, 180◦, 45◦, 225◦, 135◦, 315◦} and (xθ, yθ) ∈ Cp,r. In this work,

we set (p, r) = (6, 1) where tracking of vertical directions are excluded because

we assume that the majority of wrinkles is horizontal. Let ~g1 denote the first

background pixel located ŝ pixel(s) away from the candidate pixel and let ~g2 a255

background pixel located ŝ pixel(s) away from the candidate pixel but in the

opposite direction. The cross-sectional profile parameter V is estimated as

Vŝ (xθ, yθ) = Iŝ (~g1) + Iŝ (~g2)−D (x, y)− I (xθ, yθ) (17)

where ŝ ∈ {1, 2, . . . , 10}. If the current pixel belongs to the set of wrinkles,

the cross-sectional parameter V has a large positive value. If the current pixel

belongs to the background, the contrast between background pixels, current260

pixels and candidate pixels have similar values, thus V has a negative value

or is near to zero. The winner pixel ~w with maximum positive cross-sectional

profile, exceeding a predefined positive threshold ς, is defined as

~w = arg max
C

{Vŝ (xθ, yθ) > ς} (18)

where ~w could be one of the elements of C or null if none is larger than ς.

ς is an important threshold in identifying the intensity difference between the265

current pixel and the candidate pixel relative to the background pixels. The

default value of ς is 9, which is the best threshold we have explored for FERET

dataset. If ~w is not null, then the confidence array F (~w) is increased by one

and the next pixel to be tracked is I (~w). If ~w is null, the next candidate pixel

is drawn from the seeds. Note that the tracked pixel is unique from candidate270

pixels, otherwise the tracking will be redundant. Once multi-scale line tracking

is completed for all scales ŝ, the initial wrinkle map B is generated by consulting

13



Figure 4: Line tracking. Each column shows different degrees of tracking and each row presents

how the multi-scale tracking works. Red is the current seed D (x, y), green is the candidate

pixel with certain degree I (xθ, yθ) and blue is the background pixel with a particular scale

Iŝ ( ~g1) , Iŝ ( ~g2).

the confidence array as

B (x, y) =

1 if F (x, y) ≥ ξ

0 otherwise

(19)

where ξ is the amount of scale ŝ and in this work, ξ = 10. Note that ~w, ~g1, ~g2

refer to a particular position (x, y).275

Fig. 4 illustrates the line tracking processes on different degrees and scales.

Red is the current seed D (x, y), green is the candidate pixel with certain degree

I (xθ, yθ) and blue is the background pixel with a particular scale Iŝ (~g1) , Iŝ (~g2).

First, a seed is drawn from D. Then, candidate pixels C and background pix-

els ~g1, ~g2 are derived from it with ŝ = 1 and θ = 0◦. Cross-sectional profile280

Vŝ (xθ, yθ) is computed as (17). After that, the computation is repeated for dif-

ferent degrees in order to determine the winner pixel ~w. The confidence array

14



F is incremented by one if a winner pixel is found. Next, the tracking continues

with either winner pixel or a seed drawn from D. Once the tracking is com-

pleted for the whole image, ŝ is increased to the next scale and the calculation285

continues until the last scale. Finally, the initial wrinkle map B is generated by

validating the confidence array F as (19).

3.3. ROI Masking

In order to extract the wrinkle from a specific region, a standard template

first introduced in Ng et. al. [19] is utilised to normalise the face. A mean290

face from each dataset is used to register and standardise the template. To

identify the facial landmarks, the center of eyes and mouth of each face image

are derived from the Face++ detector[40]. Once the landmarks are identified, a

linear transformation is determined between face image and template through

the Procrustes analysis [41]. Then, a warped image is generated by an affine295

geometric transformation. Due to the limitations of the Face++ detector, we

observed a small number of detection errors which were identified and corrected

manually. Fig. 3 illustrates the warped image and ten predefined regions of

interest. The regions are forehead, glabella, upper eyelids, crows feet (or eye

corners), lower eyelids (or eyebag), cheeks, nasolabial grooves (or nasolabial300

folds), upper lips, marionette and lower lips. The ten face regions are binary

images represented by Zi where i = 1, 2, 3, ..., γ and γ = 10. Note that the

template size is 512 x 768 pixels. With consistent area size for the ten face

regions, all regions are used to construct the wrinkle patterns, which produce

a standard feature vector subsequently used for training and testing. From the305

wrinkle map B and region of interest Zi, the wrinkle image Ji is defined as

Ji (x, y) =

I (x, y) if B (x, y) ∩ Zi (x, y) = 1

0 otherwise

(20)
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Figure 5: An illustration of MWP patterns. (a) Original image, (b) MWP patterns after

wrinkle detection using HLT (pink lines) where the green values of each region are the log of

wrinkle intensity followed by wrinkle density.

3.4. Pattern Representation

Let MWP = {f1, f2, . . . , fψ, g1, g2, . . . , gψ}, where ψ = α × γ. Note that, in

this work, we set total image scale α = 4 and total wrinkle regions γ = 10. The

wrinkle intensity fi of one particular region is defined as310

fi = log

wt∑
x=1

ht∑
y=1

Ji (x, y) (21)

where wt and ht are the width and height of J . The wrinkle density gi of one

particular region, Zi, is defined as

gi =
area1 (i)

area2 (i)
(22)

where area1 is the wrinkle area found in a particular region i and area2 is the

area of region i. Fig. 5 shows a full face example on how wrinkle intensity and
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Figure 6: An illustration of HAP patterns. The graph of HAP demonstrates the normalised

feature values and the colour bar shows the actual age of each instance. There are approxi-

mately 500 instances and 435 features used for this illustration. 1.00x means the original size

of input and 0.50x shows the half size of input, and so on. Note that the original input image

is taken from FERET dataset.

density are generated after wrinkle detection.315

4. HYBRID AGEING PATTERNS

Chen et al. [42] explored the facial feature fusion and model selection for age

estimation. They found that the feature fusion with model selection can achieve

significant improvement for age estimation over single feature representation.

However, their results were only tested on FAM and LBP. LBP is a texture320

descriptor but not designed for facial wrinkle. Therefore, an expansion to the

similar idea but a better feature representation is proposed to overcome the

limitation. Here we propose a new hybrid feature representation, HAP, a fusion

of FAM and MWP for face age estimation. FAM is capable of representing

the face appearance in a set of hidden parameters while MWP produces facial325

wrinkles pattern as complementary feature to FAM.

FAM is a generative parametric model that consists of shape, texture and

combined appearance of a human face. It is a model where PCA is used to

project high dimension of face shapes and textures into a low dimension of

principal component parameters. Automatic detected landmarks by FACE++330

detector [40] were used to produce a FAM model. The pertinent equations of
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FAM [1] are repeated here for convenience. Let s and t denote a synthesized

shape and texture of a face image in the reference frame, and let s̄ and t̄ denote

the corresponding sample means. New instances are now generated by adjusting

the principal component scores, bs and bt in335

s = s̄ + Φsbs (23)

t = t̄ + Φtbt (24)

where Φs and Φt are matrices of column eigenvectors of the shape and texture

dispersions estimated from the training set. To obtain a combined shape and

texture parameterisation, c, the values of bs and bt over the training set are

combined into

b =

 Wsbs

bt

 =

 WsΦ
T
s (s− s̄)

ΦTt (t− t̄)

 (25)

A suitable weighting between pixel distances and pixel intensities is carried340

out through the diagonal matrix Ws. To make the normalised measures of

pixel distance and pixel intensities commensurate, the shape model scores are

typically weighted by the square root of the ratio between the sums of the

texture and shape eigenvalues.

To recover any correlation between shape and texture, the two eigen-spaces345

are usually coupled through a third principal component transform as

b = Φcc =

 Φc,s

Φc,t

 c (26)

and b is the FAM features of each image as FAM = {b1, b2, · · · , bn} where bi ∈ b

and n is the total number of FAM features of each image.

Fig. 6 shows an illustration of HAP patterns. First, the features of a warped

image (input) are extracted by FAM and MWP. Then, a hybrid pattern is350

constructed from FAM and MWP as HAP. HAP of each image is defined as
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HAP = {b1, b2, · · · , bn, d1, d2, · · · , dm} where bi ∈ FAM, di ∈ MWP and m+ n

is the total number of HAP features of each image.

5. SUPPORT VECTOR REGRESSION

According to Guo et al. [7], the linear regression cannot model the complex355

aging process. Therefore, a non-linear regression function may be required in

practice to adequately model the data. It can be obtained using kernels such

as polynomial, Gaussian radial basis function (RBF) and universal Pearson VII

function based kernels (PUK). A kernel method is an algorithm that depends on

the data only through dot-products [43]. It is replaced by the kernel functions360

which calculate the variations in a high dimensional space. Therefore, it extends

the ability of a linear classifier to generate non-linear decision boundaries and

apply a classifier to data that have no obvious fixed-dimensional vector space

representation, for example, data in bio-informatics and signal processing.

SMO is an iterative algorithm for solving the optimization problem by op-365

erating on a fixed size subset of the training set at a time. SMO breaks this

problem into a series of smallest possible sub-problems, which are then solved

analytically [44]. SMO algorithm puts chunking to the extreme by iteratively

selecting working sets of size two and optimizing the target function with re-

spect to them. One advantage of using working sets of size two is that the370

optimization sub-problem can be solved analytically.

In this work, we implemented age estimation experiments by using the

WEKA toolbox [45]. The regression algorithm is support vector regression

(SVR) with SMO and PUK kernel [46] and parameters are detected through

grid search. Let ~x, ~y ∈ <N denote input vectors of SVR, the PUK kernel κ is375

defined by,

κ (~xi, ~yi) =
1[

1 +

(
2

√
|~xi − ~yi|2

√
2(1/ω) − 1/σ̃

)2
]ω (27)
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Figure 7: Wrinkle detection accuracy on 100 FERET forehead images. Overall, HLT achieved

accuracy of 76% while CLM, BLT and HHF only hit 41%, 54% and 48%, respectively.

where the parameters ω and σ̃ control the half-width and the tailing factor of

the peak of the Pearson VII function. In this way, the PUK kernel will lead

to a symmetric matrix with ones on the diagonal and all other entries ranging

between the values 0 and 1 for any arbitrary pair of (~xi, ~yi). The PUK kernel380

is robust and has an equal or even stronger mapping power as compared to

the standard kernel functions, which leads to an equal or better generalization

performance of SMO [47].

6. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental results are organised into two parts: First part justifies385

the choice of wrinkle detection algorithm; Second part assesses the performance

of MWP and HAP for face age estimation.

6.1. Automatic Wrinkle Detection

To validate the wrinkle detection algorithm, we follow the protocol of re-

cently published papers [14, 39]. The wrinkle detection method was validated390

on Bosphorus forehead dataset [39]. To test the reliability of HLT, we first eval-
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uate its performance on FERET forehead dataset and then on the other nine

face regions.

6.1.1. Evaluation on FERET Forehead Dataset

A subset of 100 images of FERET is randomly selected and the wrinkles395

are manually annotated. We compare the performance of four most recent

wrinkle detection algorithms - Cula Method (CLM) [48], Hybrid Hessian Fil-

ter (HHF) [14], Batool line tracking (BLT) [49] and HLT [39] to the man-

ual annotation using Jaccard Similarity Index (JSI) [50]. The Jaccard index,

J(A,B) = |A ∩B|/|A ∪B|, where A and B denote the set of pixels in two dif-400

ferent coders’ annotations. In order to validate the correctness of the wrinkle

detection method, accuracy is defined as accuracy =
∑N
i=1 wi, where N is the

total number of images in the experiment and w is the logical output of J ;

wi = 1 if Ji > 40%, otherwise wi = 0. Any overlap between A and B larger

or equal to 40% is considered as correct detection [51]. For detailed protocol405

of wrinkle detector evaluation, please refer Ng et al. [14]. Fig. 7 shows the

accuracy of wrinkle detection. In 100 images, results showed that HLT achieves

better than others with an accuracy of 76%, where CLM is 41%, BLT is 54%

and HHF is 48%, with an STD of 15.20%, 12.28%, 5.98 and 0.46%.

6.1.2. Evaluation on Other Face Regions410

From the 90 images randomly selected from FERET dataset, we cropped

each image using the predefined region of interest with 10 images for each region.

The ground truths are annotated by a dermatologist, as illustrated in Fig. 8.

Fig. 9 shows the average JSI of wrinkle detection for each face region. The

experimental results showed that BLT hits the best result on Nasalobial and415

HLT outperforms others in all the remaining regions. The average JSI of all

regions for CLM, BLT, HHF and HLT is 35.10%, 42.69%, 38.01% and 52.10%.

This experiment further validate Ng et al. method [39] and proved that HLT

performed better than the state-of-the-art wrinkle detector. Hence, it is used

to extract the wrinkles in MWP.420
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Figure 8: Manual annotation on ten face regions: (a) forehead, (b) lower eyelids, (c) upper

eyelids, (d) lower lips, (e) upper lips, (f) nasalobial, (g) crows feet, (h) glabella, (i) mari-

onette and (j) cheeks. Ground truths are green lines and these images are resized for better

illustration.

6.2. Face Age Estimation

The most commonly used performance metric for age estimation is Mean Ab-

solute Error (MAE) [2]. The MAE is defined as the average of the absolute er-

rors between estimated age and the ground truth, MAE =
∑N
k=1

(∣∣∣l̂k − lk∣∣∣ /N),

where lk is the ground truth age for the k-th test image, l̂k is the estimated age,425

and N is the total number of test images.

Table 1 shows a comparison of the performance of the proposed method

and the state of the art on three datasets. Although the MAE of MWP is the

highest among the descriptors (FAM, BIF, KLBP and MWP), it required less

computation times (training and prediction) than others under the same envi-430

ronment. When running the algorithms on FERET dataset, the computation

times (feature dimension) of FAM, BIF, KLBP and MWP are 83.99 seconds

(300 units), 1892.69 seconds (7464 units), 6352.59 seconds (32769 units) and

36.74 seconds (160 units), respectively.

We noticed that HAP has the lowest MAE for FERET and MORPH, but435

22



Figure 9: Average accuracy (JSI) of wrinkle detection for the other nine face regions.

not for FG-NET. The results showed that the fusion of MWP as complementary

features for FAM outperformed on FERET and MORPH, but not FG-NET.

This is due to the images in FG-NET were retrieved from real-life albums,

which included variation in illumination, pose, expression, beards, moustaches

and spectacles. In addition, some of the scanned images are not clear and do440

not have sufficient texture information.

In Appendix A, Table 2 shows a comprehensive age group analysis of face age

estimation from Table 1. For FGNET and FERET, ages are divided into five

groups where age1 = 15, age2 = 35, age3 = 45 and age4 = 55; for MORPH, age1

= 18, age2 = 28, age3 = 38 and age4 = 48. These parameters were determined445

based on the age range of dataset. From these results, we noticed that the errors

of each method are very similar from one group to another group. It could be

the same noise extracted from the same group images. However, we observed

that HAP performed better than MWP in all age groups. This implies that

FAM features combined with MWP greatly improve the performance of face450

age estimation.

With the advancements of technology and camera resolution, we believe that

MWP can be used as a complementary features for FAM in face age estimation.
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Table 1: Comparison of MAE results on three popular datasets. Bold indicates the best MAE

of age estimation for each dataset.

Dataset FG-NET[22] FERET[23] MORPH[24]

Total images 1002 2366 2000

FAM [1] 5.39 (±5.63) 3.34 (±3.26) 3.99 (±3.28)

BIF [26] 5.59 (±5.59) 3.57 (±3.26) 3.98 (±3.20)

KLBP [27] 6.09 (±6.09) 3.91 (±3.25) 4.02 (±3.22)

MWP 7.34 (±7.54) 4.16 (±3.83) 5.16 (±4.35)

HAP 5.66 (±5.88) 3.02 (±2.92) 3.68 (±2.98)

With better representation of wrinkles descriptor using MWP, the fusion of FAM

and MWP has formed a new feature pattern, HAP, for face age estimation.455

6.3. Discussion

The idea of this work is based on the intensity distribution of facial wrinkles

on the predefined wrinkle regions. It is useful to identify a simple yet powerful

pattern from wrinkles. However, we noted three issues that affect the perfor-

mance of our proposed method MWP. First is the mask of wrinkle regions.460

Although this has been set to the size of mask using a mean face, we noticed

that some of the face cannot fit the mask very well due to large variations of

cranial ratio and occlusions such as forehead hair and moustaches. Second,

there are false detections of landmarks in a few images detected by the Face++

detector. Although majority were identified and corrected manually, there are465

some cases with minor errors in alignment. Finally, a robust wrinkle-based

features is highly dependent on the performance of wrinkle detection method.

With further improvement of the line tracking algorithm, the wrinkle patterns

are better represented.

Moreover, the appearance of wrinkle is affected by other factors such as470

facial expressions and cosmetic treatment. Wrinkles are highly associated with

facial expression. It is worth investigating the expression effect on wrinkle and

how it would affect the performance of age estimation. Even though wrinkles
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are highly associated with aging, we observed individual differences that some

individuals have less wrinkles than others. Therefore, an extensive analysis with475

additional aging features are necessary to address such limitation in the context

of age estimation.

While achieving good performance on face age estimation, wrinkle-based

patterns would also be useful for broader applications. Generally speaking,

there are at least three scenarios where wrinkle-based patterns could be helpful:480

1. The potential use of wrinkles in the soft biometric applications, e.g. face

verification in the presence of age progression [52, 9, 5, 53]. Aging variation

poses a serious problem to automatic face recognition systems. As the

demand for automatic recognition and surveillance systems is increasing

in the last few decades, it would be interesting to explore how wrinkle-485

based features could contribute to this field.

2. In cosmetology, dermatologists are interested in locating and removing

face wrinkles in order to achieve skin rejuvenation [48, 11]. Currently,

most systems require expert intervention to manually locate and iden-

tify wrinkles. Such process is time-consuming and prone to human error.490

Therefore, an automatic wrinkle quantification system will aid to human

decision in cosmetology.

3. For any facial applications such as face recognition [9, 54], facial expression

recognition [55, 56], age estimation or synthesis [17, 18, 57], it is interesting

to render or interpret face images in terms of facial attributes. FAM is well495

known in capturing distinct patterns emerging from the facial appearance.

However, the validity of FAM projection in age progression is in fact highly

doubtful due to the dimensionality reduction by PCA. Therefore, this

problem can be alleviated by the use of local-based wrinkle patterns.

In this paper, an investigation of wrinkle-based feature representation for500

face age estimation is a typical example of scenario 3. Further analysis of

wrinkle-based patterns in the aforementioned three scenarios will open the door

for promising future research.
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7. CONCLUSION

This paper investigated the use of wrinkles pattern as complementary fea-505

tures for FAM. First, we proposed a novel method (MWP) based on multi-scale

wrinkle patterns to improve the wrinkles representation. By deriving wrin-

kles with the multi-scale filters across ten face regions, wrinkle patterns are

extracted. Then, HAP is proposed for face age estimation. HAP is a fusion

of MWP and FAM, which is used to train the classifier and then predict the510

age of faces. The performance of HAP are assessed and validated using three

popular datasets - FG-NET, FERET and MORPH. The results showed HAP

(FAM+MWP) outperforms the state of the art with a MAE of 3.02 (±2.92) on

FERET and 3.68 (±2.98) on MORPH. The MAE of HAP on FG-NET is slightly

higher but comparable to FAM. We conclude that using wrinkle as complemen-515

tary features could improve the performance of FAM in face age estimation.

The methods proposed and experiments presented in this paper have signif-

icant impact on wrinkle representation and the design of face age estimation.

The results in this study will motivate the research in using automated wrinkle

representation for soft biometric studies and face age estimation. Future work520

will focus on improving the accuracy of wrinkles detection, the impact of vertical

wrinkle lines on face age estimation and the implication of automated wrinkles

detector in soft biometric.
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Appendix A

Table 2: An extended results of Table 1. Bold - the lowest MAE

within one particular dataset and the underlined values present the

highest and lowest of MAE of age group of each dataset.

Dataset (number of

images)

MAE (STD)

FAM BIF KLBP MWP HAP

FGNET (1002) 5.39 (5.63) 5.59 (5.97) 6.09 (6.43) 7.34 (7.54) 5.66 (5.88)

yi < age1 (545) 3.79 (3.42) 3.80 (3.29) 4.17 (3.36) 4.84 (4.09) 3.88 (3.48)

age1 ≤ yi < age2 (355) 4.94 (3.84) 5.05 (3.93) 5.18 (4.25) 6.62 (5.02) 5.41 (4.13)

age2 ≤ yi < age3 (61) 10.76 (5.52) 11.92 (6.10) 14.34 (4.90) 17.76 (5.48) 10.89 (5.52)

age3 ≤ yi < age4 (30) 19.73 (7.39) 21.90 (7.01) 25.27 (6.90) 28.52 (7.40) 21.29 (8.67)

age4 ≤ yi (11) 30.15 (7.75) 32.22 (7.93) 32.74 (8.88) 38.77 (10.00) 30.03 (8.08)

FERET (2366) 3.34 (3.26) 3.57 (3.26) 3.91 (3.24) 4.16 (3.83) 3.02 (2.92)

yi < age1 (38 ) 8.98 (4.09) 9.82 (3.44) 8.64 (4.20) 9.30 (5.18) 7.69 (4.07)

age1 ≤ yi < age2 (1579) 2.86 (2.67) 3.04 (2.72) 3.44 (2.76) 3.76 (3.40) 2.68 (2.55)

age2 ≤ yi < age3 (474) 2.99 (2.54) 3.58 (2.98) 3.92 (3.18) 4.01 (3.59) 2.77 (2.30)

age3 ≤ yi < age4 (209) 4.72 (3.61) 4.82 (3.81) 4.94 (3.65) 5.00 (4.17) 3.94 (3.40)

age4 ≤ yi (66) 9.54 (6.74) 8.37 (5.52) 9.14 (4.70) 9.33 (6.34) 7.37 (5.48)

MORPH (2000) 3.99 (3.28) 3.98 (3.20) 4.02 (3.22) 5.16 (4.35) 3.68 (2.98)

yi < age1 (100) 6.74 (5.21) 5.80 (4.58) 6.67 (4.04) 10.93 (6.59) 6.25 (5.18)

age1 ≤ yi < age2 (500) 3.91 (3.03) 3.99 (2.96) 3.93 (2.92) 4.93 (4.19) 3.46 (2.68)

age2 ≤ yi < age3 (500) 3.44 (2.87) 3.47 (2.72) 3.19 (2.50) 4.53 (3.42) 3.30 (2.62)

age3 ≤ yi < age4 (500) 3.65 (2.91) 3.88 (3.07) 3.96 (2.93) 4.94 (3.72) 3.45 (2.51)

age4 ≤ yi (400) 4.48 (3.48) 4.25 (3.56) 4.57 (3.97) 5.07 (4.61) 4.09 (3.24)
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