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Abstract 

Bacterial contamination of blood products poses a major risk in transfusion medicine, including 

transfusions involving platelet products. Although testing systems are in place for routine 

screening of platelet units, the formation of bacterial biofilms in such units may decrease the 

likelihood that bacteria will be detected. This work determined the surface properties of p-PVC 

platelet concentrate bags and investigated how these characteristics influenced biofilm 

formation. Serratia marcescens and Staphylococcus epidermidis, two species commonly 

implicated in platelet contamination, were used to study biofilm growth. The platelet 

concentrate bags were physically flattened to determine if reducing the surface roughness 

altered biofilm formation. The results demonstrated that the flattening process of the platelet 

bags affected the chemistry of the surface and reduced the surface hydrophobicity. Flattening 

of the surfaces resulted in a reduction in biofilm formation for both species after 5 days, with 

S. marcescens demonstrating a greater reduction. However, there was no significant difference 

between the smooth and flat surfaces following 7 days’ incubation for S. marcescens and no 

significant differences between any of the surfaces following 7 days’ incubation for S. 

epidermidis. The results suggest that flattening the p-PVC surfaces may limit potential biofilm 
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formation for the current duration of platelet storage time of 5 days. It is hoped that this work 

will enhance the understanding of how surface properties influence the development of 

microbial biofilms in platelet concentrate bags in order to devise a solution to discourage 

biofilm formation. 

Keywords: Biofilms; MATH; Physicochemistry; Chemistry; Topography; Surface. 

Introduction 

Bacterial contamination of blood products poses one of the biggest risks of transfusion 

medicine.1 This contamination is most commonly associated with transfusion of platelet 

concentrates (PC). This occurs in part due to the storage conditions within the blood bank used 

to maintain the platelets, which inadvertently provide ideal conditions for bacterial growth and 

proliferation. It is reported that approximately 1 in 2000-5000 PCs are contaminated.2-4 Whilst 

the reported incidence of culture confirmed sepsis is relatively low, at around 1 in 100,000, a 

higher incidence rate of 1 in 25,000 has been estimated, with higher rates likely due to under 

reporting of transfusion-related sepsis.1,2 Given that PC’s are frequently administered to 

immunocompromised patients such as those with major medical issues in oncology, 

haematology, paediatric and bone marrow transplant patients, bacterial contamination and 

resultant sepsis can prove fatal.5 The mandatory use of bacterial detection systems within the 

national blood banks, such as the BacT/Alert microbial detection system minimise the 

likelihood of transfusing a contaminated unit. Yet, whilst these systems are extremely valuable, 

occasionally false negatives can occur due to low initial bacterial concentration in the PCs or 

due to the formation of bacterial biofilms within the PCs during storage.6,7 Even with these 

systems in places, storage time is not always extended from the 5-day safer period to the longer 

7-day storage period.1,6 
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Whilst aseptic techniques are used during the processing of blood products, three main sources 

of contamination exist: the venepuncture site during phlebotomy, transient donor bacteraemia 

and contamination during PC processing.1,8 Of these, the most common contaminants are 

typically skin flora surrounding the venepuncture site, contaminating the blood during 

collection.8 Most isolated contaminants are Gram-positive commensal skin flora species, with 

the two most commonly identified bacteria being Staphylococcus epidermidis (often only 

identified as a coagulase-negative staphylococci) or Propionibacterium acnes.8-10 Whilst it is 

more common for contaminants to be Gram-positive, Gram-negative bacteria are responsible 

for 60 % - 80 % of transfusion septic fatalities.5,11 Gram-negative species such Serratia spp, 

Escherichia coli, Salmonella spp and Enterobacter spp have all been implicated in severe 

adverse transfusion reactions.11 Of these, Serratia spp has been shown as being able to remain 

culture negative even after 9 days of storage, leading to several severe or fatal septic reactions.12 

Biofilms form when individual bacterial cells adhere to a surface and to other bacterial cells, 

becoming embedded in a matrix of extracellular polymeric substance (EPS) in a complex and 

multifactorial process.13-15 The EPS is usually comprised of mostly polysaccharides with some 

DNA and proteins.16 Biofilm formation enables the bacteria to alter their gene expression 

whilst also altering cell growth, making the bacteria much harder for screening systems to 

detect.13,17 Further, if the bacteria are adhered to the surface of the platelet bag in the form of 

biofilms then less cells may be in planktonic form within the unit and therefore are not collected 

into the aliquot for testing, leading to false negatives.18  

Initially bacteria are weakly adhered to a surface via Lifshitz Van der Waals forces, after which 

stronger adhesion is formed due to bacterial cell adhesion structures.15 Lifshitz Van der Waals 

forces are properties of both the bacteria and the surfaces, and understanding their interactions 

can elucidate how the bacteria interact at the cell:surface interface. By altering the surface to 
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produce changes in the surface properties, it is possible to alter how bacteria interact with a 

surface and potentially reduce bacterial adherence. As such, whilst it may be possible to 

develop more sensitive detection systems, modifying the platelet bag surfaces in a way so that 

bacterial cells are either unable or take longer to adhere to the platelet bag surface could play a 

role in reducing false negatives in already established systems. 

An approach to reduce initial surface contamination, which may lead to a subsequent reduction 

in biofilm formation, is to modify the substratum surface topography.19 Although a number of 

studies have been carried out on the effect of surface topography on microbial retention, 

findings are often conflicting especially when macro topography (> 10 µm), micro topography 

(< 10 µm – 0.5 µm) and nano topographies (< 0.5 µm) may be present, all of which may affect 

initial conditioning film and bacterial attachment.20 

It is proposed that surface modification of the p-PVC platelet bags could reduce bacterial 

attachment, which would have two major advantages; (1) bacteria would be planktonic and 

therefore more likely to be collected in the testing aliquot for BacT/Alert screening, (2) bacteria 

would be unable to increase their virulence properties and slow their growth rate as occurs 

upon biofilm formation, hence increasing the likelihood of bacterial detection. 

The aim of this work was to determine if a reduction in surface roughness of p-PVC platelet 

transfusion bag surfaces reduced the formation of S. marcescens or S. epidermidis biofilms. 

Methods 

Coupon Preparation 

Unmodified Coupons 

Plasticized poly(vinyl chloride) (p-PVC) platelet storage bags were obtained from Terumo 

BCT (USA). Coupons of 11 mm in diameter were punched from p-PVC platelet bags using an 

11 mm disc punch (Agar scientific, UK) and the coupons were then sterilised.  
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Flattened Coupons 

Strips of p-PVC were cut from whole platelet bags, 150 mm x 25 mm, and were placed between 

two sheets of kapton. A template made of polyethylene terephthalate (PET) was used to ensure 

the p-PVC was not flattened beyond the depth of the PET for consistency. This was placed in 

between stainless steel sheets, which was subsequently placed between two plates of steel 

which had been pre-heated to 150 oC in the hot press. The p-PVC / PET / Kapton and stainless 

steel sheets were placed into the hot press and 10 tonnes pressure was applied at 150 °C for 10 

min. The plates were transferred to a cold press and cooled with 10 tonnes of pressure for 10 

min. Circular coupons (11 mm diameter) were punched out of the flattened strips; these were 

sterilised immediately.  

Sterilisation of Coupons 

Coupons were placed into a 30 mL sterile universal containing 70 % (v/v) ethanol and vortexed 

for one min. The coupons were then soaked for 15 min in the ethanol. The ethanol was removed 

and the coupons were aseptically transferred to a sterile Petri dish containing sterile distilled 

water (dH2O) to remove the ethanol before being aseptically moved across to another sterile 

Petri dish containing sterile dH2O. The washing sequence was performed in triplicate to ensure 

all the excess ethanol was removed before the coupons were air dried in a class II 

microbiological cabinet. 

Scanning Electron Microscopy 

An overnight culture was prepared and the washed bacterial inoculum was diluted to an optical 

density (OD) of 1.0 at 540 nm. Ten microliters of bacterial inoculum was pipetted onto a 

coupon and dried in a class II cabinet for 1 h before being processed by placing into 4 % 

glutaraldehyde (made up in phosphate buffered saline) overnight. The coupons were removed 

from the glutaraldehyde using tweezers and rinsed with sterile dH2O to remove the remaining 
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solvent. The coupons were dried in a fume hood for 1 h before an ethanol gradient of 10 %, 30 

%, 50 %, 70 %, 90 % and 100 % made up from absolute ethanol diluted with sterile dH2O was 

performed. Each coupon was left in each ethanol concentration for 10 min moving from the 

lowest ethanol concentration to the greatest. Once removed from the 100 % ethanol solution, 

the coupons were placed into a desiccator and were later attached to SEM stubs with carbon 

tabs prior to being sputter coated with a gold and palladium coating (Model: SC7640, Polaron, 

Au/Pd target, deposition time: 1.5 min) before being stored in a desiccator until imaged. 

Surface Roughness and Optical Surface Profiles 

Surface roughness (Sa) values were calculated from surface profiles measured using a ZeGage 

3D Optical Surface Profiler (Zygo, USA) for all p-PVC coupons. Measurements were taken 

using 50 x magnification with a scanning distance of 50 µm from the centre position (n = 3). 

Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) 

ATR-FTIR was used to determine the molecular structures and chemical bonds of the untreated 

and modified p-PVC (Nicolet 380 FTIR with a Smart iTR attachment, Thermo Scientific, UK). 

Background spectra was captured prior to each measurement and spectra were acquired at room 

temperature using Omnic 5.2 software with each run made up of 16 scans and a resolution of 

4 cm-1. Analysis of each sample was performed in triplicate and the average spectra were 

reported (n = 3).  

Physicochemistry of surfaces 

Contact angles (𝜃) using HPLC grade water (BDH, UK), ethylene glycol or dioodomethane 

(Alfa Aesar, USA) were measured with a MobileDrop goniometer (Krüss GMBH, Germany). 

Both advancing and receding angles were determined, with five measurements of each 

chemical on each sample taken (n = 10). Fresh coupons were used for each solvent to ensure 

there was no cross contamination of solvents on the surfaces. The method of Van Oss et al.21 
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was used for calculating the surface energy (𝛾𝑠
𝑆𝐸) of the films from these measurements, 

according to the following equation: 

(1 +  𝛾𝑙) 𝑐𝑜𝑠𝜃 = 2 (√𝛾𝑠
𝐿𝑊𝛾𝑙

𝐿𝑊 +  √𝛾𝑠
𝐴𝛾𝑙

𝐵 +  √𝛾𝑠
𝐵𝛾𝑙

𝐴)   

(1) 

where the subscripts s and l denote the surface energy of the solid and liquid respectively. The 

superscript LW denotes the Lifshitz-van der Waals components of the surface energy, and the 

superscripts A and B denote the Lewis acid and Lewis base parameters of the surface energy. 

The acid and base terms can be combined into the Lewis acid base (superscript AB) component 

of the surface energy: 

𝛾𝑖
𝐴𝐵 =  2√𝛾𝑖

𝐴𝛾𝑖
𝐵 

 (2) 

Subsequently the overall surface energy was calculated as the sum of the Lifshitz-van der 

Waals and Lewis acid base components: 

𝛾𝑖 = 𝛾𝑖
𝐿𝑊 + 𝛾𝑖

𝐴𝐵 

 (3) 

The components of the surface energy were then used to assess the hydrophobicity, or Gibbs 

free energy of attraction between the surface and liquid (surface energies are denoted by 

subscript w), and were calculated using the following22: 

Δ𝐺𝑠𝑤 = −2 ((√𝛾𝑠
𝐿𝑊 − √𝛾𝑙

𝐿𝑊)

2

+ 2 (√𝛾𝑠
𝑎𝛾𝑠

𝑏 + √𝛾𝑙
𝑎𝛾𝑙

𝑏 − √𝛾𝑠
𝑎𝛾𝑙

𝑏 − √𝛾𝑙
𝑎𝛾𝑠

𝑏)) 

 (4) 

Tensile Strength Determination 
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Tensile strength of the PVC was determined using a Hounsfield H10KS tensometer running 

Qmat 5.53. Samples were run with a 4 mm width and a 200 mm/min speed (n = 5). 

Bacterial Growth Conditions 

Strains of Serratia marcescens (NCTC 9741) and Staphylococcus epidermidis (DSM 28319) 

were obtained from frozen pure culture stock, plated onto tryptone soya agar (TSA) (Oxoid, 

UK) and incubated at 37 oC overnight. New plates were streaked from freezer stock every four 

weeks to ensure the continuity of the bacteria was maintained for all experiments, with streaked 

plates stored at 4 °C.  A single colony was removed from the agar plate and inoculated into a 

volume (10 mL) of sterile tryptone soya broth (TSB) (Oxoid, UK) which was incubated 

overnight at 37 °C with shaking (150 rpm). The bacterial culture was centrifuged at 2210 g for 

12 min, the supernatant removed and the cells washed with 10 mL of sterile dH2O before 

repeating. The cells were re-suspended in sterile dH2O and diluted to an OD of 1.0 (± 5 %) at 

540 nm using a spectrophotometer (Jenway 6305, UK). A serial dilution with spread plates was 

performed in duplicate with three separate bacterial broth cultures to obtain 1.25 x 109 colony 

forming units per mL (CFU mL-1) for S. marcescens and 1.44 x 108 CFU mL-1 for S. 

epidermidis at an OD of 1.0 at 540 nm. 

Biofilm formation 

A 1.8 mL volume of sterile broth was added to each well of a sterile 12-well plate (Nunc Non-

Treated Multidishes, Thermo Fisher Scientific, UK) along with a sterilised p-PVC coupon, 11 

mm in diameter, test side of the surface face up. The reverse end of a sterile swab was used to 

push the coupon to the bottom of the well. The 12 well plates were left at room temperature 

overnight to check for any contaminant growth and to check that all coupons were fully 

sterilised. An overnight culture was prepared and diluted to obtain 1.0 x 108 CFU mL-1. Two 

hundred microliters of the bacterial suspension was added to the appropriate wells to give a 
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working concentration of 1.0 x 107 CFU mL-1. The 12 well plates were parafilmed to prevent 

the media from evaporating from the plates. The plates were incubated at 22 °C for either 5 or 

7 days with gentle shaking (68 rpm). Following incubation, all the media in each well was 

removed by pipetting, leaving just the coupon behind and the wells containing the coupons 

were washed by adding 2 mL of sterile dH2O to each well; carefully against the side of the well 

so as not to disturb the biofilm formed on each coupon. The liquid was gently swirled around 

the wells manually for 5 s before pipetting out the liquid to remove any unbound planktonic 

cells. The 12 well plates and coupons were air dried in a class II cabinet for 1 h. 

Crystal Violet Assay 

One millilitre of 0.03 % w/v crystal violet solution was added to each well following drying, 

ensuring full coupon coverage, and left for 30 min. After the allotted time, the stain was 

pipetted out of each well and 2 mL of sterile dH2O was added and manually gently swirled 

around for 10 s to remove the excess stain. This was repeated once and the coupons were 

removed after the second time and transferred to a fresh 12 well plate. To each well in the new 

plate, 2 mL of 33 % (v/v) glacial acetic acid solution was added and left for 15 min with manual 

agitation every 5 min to elute the bound crystal violet from the biofilm. The absorbance of the 

eluted stain in the glacial acetic acid was measured at 590 nm to determine the optical density, 

thus quantifying biofilm growth. The absorbance value obtained was doubled to convert it to 

OD per mL. When the absorbance was too high to be read, the remaining 1 mL in the well was 

diluted down with another 1 mL of 33 % (v/v) glacial acetic acid solution and measured, with 

values obtained multiplied by four to account for the dilution. (n = 6) 

Microbial Adhesion to Hydrocarbons (MATH) Assay 

Cultures were grown at 37 °C overnight in TSB. Bacterial cells were harvested via 

centrifugation at 2210 g for 12 min and then washed 3 times using PUM buffer pH 7.1 (PUM 
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buffer; K2HPO4.3H2O 22.2; KH2PO4 7.26; urea 1.8; MgSO4.7H2O 0.2 g/L) and re-suspended 

to an OD 1.0 at 400 nm. A 1.5 mL volume of washed cells suspended in PUM buffer was added 

to a round bottomed test tube 15 mm in diameter. A 250 µL volume of one of the test liquids 

(Chloroform; Hexadecane; Ethyl Acetate or Decane (BDH, UK)) was added to the suspension. 

Suspensions were incubated at 37 °C for 10 min to equilibrate. The test suspension was vortexed 

for 2 min before re-incubation for 30 min at 37 °C to allow separation of the lower aqueous 

phase. The lower aqueous phase was removed from the test tube and the OD determined at 400 

nm. This was used with a calculation developed by Rosenberg et al.23 to determine cell surface 

hydrophobicity; 

𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 =  (
1−𝐴

𝐴ø
)  𝑥 100                                                [5] 

Where Aø was the optical density of the microbial suspension when measured at 400 nm before 

adding test chemical and A was the optical density measured at 400 nm of the extracted lower 

aqueous phase after mixing with the hydrocarbon. (n = 3) 

Statistics 

All results were presented as mean ± standard deviation (SD) for tables or ± standard error (SE) 

for the figures. Mean values were compared using analysis of variance (ANOVA) to determine 

significant differences between mean values at the 95 % confidence level (p < 0.05). 

Results 

Surface analysis 

Upon initial analysis of the bags, it was determined that they were made of two sheets of p-

PVC melded together. The analysis of the PC bags was carried out on the inside faces of the 

bags against which the PCs come into contact. SEM images demonstrated that one inside face 

of the p-PVC had a diamond patterned surface, which showed roughened features (rough 

surface) (Fig. 1a.). The rough surface showed pits along the edges of the diamond imprints of 
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varying sizes. In comparison to this, the other inward facing side of the p-PVC polymer 

demonstrated a smoother, more featureless surface (smooth surface) (Fig. 1c.). Due to the 

unexpected surface features, flattening of the surfaces was performed to remove any surface 

features and determine whether this was enough to reduce biofilm growth. Post flattening of 

the p-PVC, the surface was demonstrated to be smoother still and without any discernible 

surface features (flat surface) (Fig. 1e).  

Following quantification of the surface roughness, optical surface profiling demonstrated that 

the rough surface inside of the platelet bag had the greatest levels of differing surface 

topography (Fig. 2a). The mean surface roughness (Sa) of the rough surface varied between the 

diamond bottom, ridges and the sides of the diamonds which were demonstrated as having pits. 

A statistically significant reduction in Sa value was observed from the rough surface (3549.8 

nm) to the smooth surface (1021.2 nm) and a further reduction was observed on the flattened 

surface (108.1 nm). 

The ATR-FTIR spectra of the surfaces were dominated by the major absorptions expected in 

p-PVC (Fig. 2b). The most dominant were C-H stretching (centred at ca 2900 cm-1), ester 

carbonyl stretching from the plasticiser (1740 cm-1) and C-O bending of the plasticiser ester 

(1170 cm-1). The C-Cl stretching vibration from the PVC itself at ca. 690 cm-1 was also present. 

Two very small absorptions appeared between the phthalate ester carbonyl stretch and the C-

H bending vibration of the PVC / plasticiser at 1458 cm-1 (see Fig. 2 inset). The smooth 

unmodified surface showed two small absorption peaks at 1576 cm-1 and 1541 cm-1, however, 

on the rough unmodified surface only one peak at 1539 cm-1 was evident. Interestingly, both 

peaks were absent on the flattened surface. The peak positions match the antisymmetric 

νasCOO- stretching vibration of carboxylate groups in unidendate (1577-1575 cm-1) and 

bidendate (1544-1540 cm-1) coordination with calcium.25 The carboxylate carbonyl absorptions 



12 
 
 

for the zinc stearate were simpler, just a single peak at ca 1540 cm-1.26 A schematic 

representation of the possible adsorbed structure of calcium stearate on the unmodified p-PVC 

surfaces is demonstrated indicating the presence of calcium/zinc stearates on the surface were 

present for the smooth, and to a degree the rough surfaces (Fig. 3a). However, after the 

flattening process the two carboxylate carbonyl absorptions were no longer present, suggesting 

that during the flattening process the calcium stearate either diffused more deeply into the p-

PVC or preferentially adsorbed onto the kapton separating sheets (Fig. 3b). 

Physicochemistry measurements between the smooth and rough surfaces demonstrated that 

there were no significant differences in the results (Table. 1). An increase in the Gibbs Free 

(ΔG) energy demonstrated that flattening of the surfaces resulted in the surface becoming less 

hydrophobic, and an increase in the overall surface energy (γs). However, the flat modified 

surface maintained similar Lifschitz van der Waals force (γsLW) values as the unmodified 

(smooth and rough) surfaces. The higher base energy (γs-) on all the surfaces demonstrated that 

the surfaces were electron donating rather than electron accepting. Flattening the p-PVC 

resulted in an increase in both the acid (γs+) and base (γs-) energies demonstrating the surfaces’ 

ability to donate and accept electrons had both increased. 

Tensile strength measurements of both surfaces determined that there was no significant 

difference between the average tensile strength of the unmodified surface (15.679 Mpa) and 

the flattened surface (15.145 Mpa) apart from the higher variability apparent for the modified 

surface. Further, there was also no significant difference between the elongation percentage for 

the unmodified surface (329.760 %) and the flattened surface (358.720 %) (Table 2). 

Microbiology 

SEM of the surfaces with the bacteria demonstrated that the density of S. marcescens and S. 

epidermidis was similar on all the surfaces (Fig. 1). The bacteria were observed to be clumped 
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in and around the pits of the rough surface with fewer cells spread around the other surface 

features (Fig. 1a and b). The number of cells present on the smooth surface was significantly 

reduced, and most cells formed small groups (Fig. 1c and d). On the flat surface, both species 

demonstrated very low coverage with only a few cells visible (Fig. 1e and 1f).  

The MATH assay for S. marcescens (Fig. 4a) demonstrated a low affinity for the apolar n-

alkanes decane (6.33 %) and hexadecane (5.24 %), whilst having a moderate affinity for the 

acidic (Lewis-acid) solvent chloroform (43.97 %) and the basic (Lewis-base) solvent ethyl 

acetate (50.12 %). Pairs were chosen as having one polar and one non-polar liquid, both with 

similar Lifschitz van der Waals forces.31 The extremely low affinity (< 10 %) towards both 

non-polar hydrocarbons decane and hexadecane determined that S. marcescens was highly 

hydrophilic, which was supported by the bacteria having a greater affinity to the polar solvents 

chloroform and ethyl acetate.28-30 The stronger affinity for both of the polar solvents 

(chloroform and ethyl acetate) when compared with their non-polar counterpart (hexadecane 

with chloroform and decane with ethyl acetate) further indicated that S. marcescens was both 

a moderate electron donor and a moderate electron acceptor.29 However, when compared in 

their pairs (chloroform and hexadecane against ethyl acetate and decane), the value for ethyl 

acetate and decane was higher, which demonstrated that the bacteria were better electron 

donors than acceptors.29 This was further supported by the higher affinity to chloroform than 

to hexadecane.31  

In contrast, S. epidermidis’ MATH assay results (Fig. 4b) were significantly different to that 

of S. marcescens, demonstrating a high affinity to the apolar n-alkanes decane (98.21 %) and 

hexadecane (97.76 %) whilst also having a high affinity to the acidic solvent chloroform (98.44 

%). The high affinity (> 55.00 %) to both non-polar hydrocarbons decane and hexadecane 

determined that S. epidermidis was highly hydrophobic. This was supported by the higher 
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combined affinity to the non-polar hydrocarbons (decane and hexadecane) when compared 

against the polar hydrocarbons (chloroform and ethyl acetate). The significantly higher affinity 

of S. epidermidis to the acidic solvent chloroform compared to the basic solvent ethyl acetate 

(30.67 %) indicated that the bacteria were strong electron donors. S. epidermidis as an electron 

donor was further supported by a higher combined value of chloroform and hexadecane 

compared to ethyl acetate and decane. S. epidermidis also had a moderate affinity to the basic 

solvent ethyl acetate indicating that whilst it was a strong electron donor it also had moderate 

electron accepting properties. This determined that S. epidermidis was highly hydrophobic and 

was a strong electron donor, with lesser electron accepting properties. 

Biofilm growth of both S. marcescens and S. epidermidis following incubation in platelet 

storage conditions (22 °C) on the p-PVC for 5 or 7 days was assessed using a crystal violet 

assay (Fig. 5). Following 5 days’ incubation, S. marcescens demonstrated a significant 

decrease in the amount of biofilm formed on the flattened (1.75) surface when compared to the 

rough (3.26) or smooth (2.94) surfaces (Fig. 5a). Whilst a decrease in the amount of growth on 

the flattened (2.60) surface compared to with that on the rough (3.66) surface was observed at 

day 7, it was less apparent than after 5 days, and no significant decrease was observed between 

the smooth and flat surfaces after 7 days (Fig. 5a). Similarly, S. epidermidis demonstrated a 

reduced growth on the flat (1.06) surface compared to the rough (1.96) and smooth (1.42) 

surfaces after 5 days of incubation, despite demonstrating significantly less growth overall 

(Fig. 5b). However, after 7 days’ incubation there was no significant difference between the 

rough (2.13), smooth (1.94) or flat (2.04) surfaces (Fig. 5b).  

Discussion 

Surface Analysis 
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The surface properties of PC bags were characterised in order to determine the effect on biofilm 

formation. The microbial pathogens S. marcescens and S. epidermidis were used in the study 

as both species are regularly identified in contaminated PCs. The platelet bag surfaces were 

also flattened to determine whether alterations to the surface could potentially reduce biofilm 

growth. Observations of the topography of the surfaces via SEM and of biofilm growth, as 

quantified via crystal violet assay, demonstrated that the rougher surface features of the p-PVC 

platelet bag typically accumulated the most biofilm mass. This demonstrated a bacterial 

preference for a rougher surface to grow on, which may be due to an increase in surface contact 

area between the surface and the bacteria, increasing the strength of the initial adherence. The 

preference of bacteria for surfaces with defined features has previously been shown, where 

differing surface features altered bacterial retention.19,32 The surface roughness did not appear 

to affect the surface energies, as the surface energy properties of both the rough and smooth 

surfaces were similar. However, the flattened surface, which demonstrated no surface features 

did present differences in its surface energies, indicating that the flattening procedure changed 

the surface energy. The changes observed in the surface energy of the flattened surface led to 

the surface becoming less hydrophobic as well as increasing its overall ability to accept and 

donate electrons, whilst maintaining a preference for accepting electrons. These changes may 

reduce or increase bacterial adherence to the flattened surface, depending on the surface energy 

components of the bacteria themselves.  

Analysis of the surface chemistry via ATR-FTIR demonstrated that most of the spectra for all 

the surfaces were similar. Whilst the C-CL stretching vibration of PVC would be a strong band 

in non-plasticised PVC, the high level of plasticiser in the samples caused absorptions from the 

latter to dominate the spectrum. Aromatic C-H stretching and deformation absorptions (3060 - 

3100 cm-1 and 1600 - 1580 cm-1, respectively) were absent from the spectrum confirming that 
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a phthalate plasticiser had not been used in this particular platelet bag formulation. Absence of 

phthalates was further supported by the specific wavenumber of the ester carbonyl stretching 

absorption; phthalate carbonyl groups absorb at ca. 1730 cm-1, whereas adipate and sebecate 

carbonyl groups absorb at ca 1740 cm-1.24  

The two carboxylate carbonyl peaks (1576 and 1541 cm-1), indicating presence of calcium / 

zinc stearates on the surface and / or within ca. 1.8 m of the surface, were present for the 

smooth, and to a degree the rough surfaces. However, after the flattening process the two 

carboxylate carbonyl absorptions were no longer present, suggesting that during the flattening 

process the calcium stearate either diffused more deeply (i.e., deeper than ca 1.8 m) into the 

p-PVC or was preferentially adsorbed on to the polyester separating sheets, either way, calcium 

/ zinc stearate could no longer be resolved by ATR-FTIR. An identical observation has been 

made by Bodecchi et al.33 in ATR-FTIR studies on plasticised PVC that had been sterilised by 

-irradiation, where it was argued that the stearate diffused further into the p-PVC. 

Combinations of calcium and zinc stearates have been reported to form complexes during the 

stabilisation of PVC,34 with the combined carboxylate carbonyl stretching vibrations of the 

complex resulting in an absorption at 1600 cm-1, but no such absorption was evident. This 

indicated that the stearates had been removed or diffused deeper into the substrate, rather than 

becoming complexed / combined as a result of elevated temperatures experienced by the p-

PVC during the flattening operation.  The spectrum of the rough surface was noisier than the 

smooth and flat surface due to the rough surface having an impaired contact with the internal 

reflection element of the ATR accessory.  

The contact angle measurements demonstrated that the unmodified surfaces had lower surface 

energies than the flattened surface, and this observation indicated that a fraction of the stearates 

had bloomed to the surface of the unmodified substrates; the increase in surface energy of the 



17 
 
 

flattened substrate is corroborated by the absence of stearates on this sample. As the p-PVC 

had a relatively polar surface it may be that the bloomed calcium / zinc stearates were adsorbed 

with the carboxylate groups facing the surface, leaving the stearyl (C17H35) tails pointing away 

from the surface. The latter may account for the unidentate form of calcium stearate, absorbing 

at ca. 1576 cm-1. If the local surface concentration of calcium stearate was high enough, the 

stearyl tails of the bidentate form (absorbing at ca. 1541 cm-1) in the form of a bi-layer with 

Ca2+ ions in between, could incorporate the unidentate forms in wax-like self-assembled 

surface structures.35 Such structures could have contributed to the reduced surface energy of 

the unmodified surfaces. The marginally higher values of -, +and s
AB obtained for the smooth 

unmodified surface, relative to the rough unmodified surface, may have been due to 

incorporation of some unidentate carboxylate, with the carboxylate group pointing away from 

the p-PVC, within the self-assembled structures. The rough unmodified surface showed only 

one carboxylate absorption at 1539 cm-1, indicating the presence of bidentate calcium stearate, 

possibly with a small amount of zinc stearate. However, a uniform monolayer of stearate 

composed of stearyl chains, pointing away from the substrate in a self-assembled array, will 

have a very low surface energy of 22-24 mJ/m2 36, and the latter here is clearly not the case and 

the implication is that the surface coverage with calcium / zinc stearate was not uniform. It may 

be that the stearates exist as micron-scale patches on the surface of the p-PVC. 

Microbiology 

When observing biofilm growth of both bacterial species on the smooth and flattened surfaces, 

and comparing this with growth observed on the rough surface, it was demonstrated that there 

was significantly more growth on the rough surface. The only exception to this was after 7 

day’s incubation with S. epidermidis when there was no significant difference between the 

surfaces. Since the chemistry and physicochemistry of the rough and smooth surfaces were the 
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same, this can only be due to a topographical effect with respect to the smooth surface. The 

similar growth on all the surfaces after 7 day’s incubation with S. epidermidis may have been 

caused by a build-up of conditioning film and cells after the 5 days which meant that any 

surface topography, chemistry or physicochemistry effects on biofilm growth were negated. 

The effect of flattening the surface resulted in the most pronounced biofilm reduction with S. 

marcescens after 5 days. It is suggested that for S. marcescens, which demonstrated moderate 

electron donor and accepting properties, as well as highly hydrophilic properties, the reduction 

in hydrophobicity of the flattened surface reduced initial adherence of the bacteria to the 

surface.28-31 However, the reduced biofilm growth could also be due to the lack of features 

present on the flattened surface which reduced surface area contact between the bacteria and 

the surface. A combination of both factors is most likely to be the cause of the lowered retention 

of S. marcescens to the flattened surface. However, it is difficult to determine which surface 

parameter had the most influence.  

With respect to S. epidermidis, this organism was found to be highly hydrophobic and have 

strong electron donor properties. Therefore, it would not be unreasonable to assume that on the 

flattened surface which has reduced hydrophobicity and electron accepting properties, there 

would be an increase in total biofilm mass.28-30,37 However, our results demonstrated initial 

decreased biofilm growth on the flattened surface when compared to the rough after 5 days, 

which may be attributed to the lack of surface features.   

Although data exists to support the theory that bacteria, which are generally negatively charged, 

will preferentially adhere to negatively charged surfaces, there are conflicting results in this 

area due to assays being carried out in a number of different ways and under different 

environmental conditions.28,38,39 However, it is clear from the present study that each reduction 

in surface topography resulted in a reduction in biofilm formation on each surface for both 
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bacterial species after 5 days incubation. However there was no significant differences between 

any of the surfaces following 7 days’ incubation for S. epidermidis or between the smooth and 

flat surfaces following 7 days’ incubation for S. marcescens. Over time, it appeared that the 

reduction of biofilm formation between the unmodified surfaces and the flattened surface was 

lessened as the reduction in growth was much greater at the 5-day point than what was observed 

after 7 days. This may be due to a build-up of adhered cells to the surfaces, which would 

gradually mask the underlying surface properties and allow adherence of further cells.  

There is conflicting evidence regarding how significant the surface properties such as the 

roughness and physicochemistry are in determining bacterial retention, and hence biofilm 

formation. It has previously been determined by Katsikogianni et al. that under the conditions 

of flow on p-PVC surfaces, bacterial adhesion was influenced by the surface roughness.40 

However, it has also been demonstrated that p-PVC surface colonisation by Pseudomonas 

aeruginosa and S. epidermidis was independent of surface roughness and wettability.41 

Furthermore, previous work completed by our group has demonstrated that whilst hydrophobic 

bacteria tend to adhere more to a hydrophilic surface and vice versa, some bacterial species can 

adhere better to a surface that has the same wettability.39 

Conclusion 

The results demonstrated that by reducing the surface topography of PC bag surfaces, a 

reduction in biofilm formation by both bacterial strains was observed after 5 days particularly 

for  S. marcescens. The, polar energies of the cells and the surfaces appeared to have little 

influence on bacterial adhesion as both organisms adhered to the rough surface in greater 

numbers than the other surfaces, which was the least polar. Therefore, it is suggested that 

reducing the surface topographies of the PC bags may be an effective strategy to reduce biofilm 

formation during PC storage.  
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Table. 1. Physicochemistry results of the rough, smooth and flattened surfaces. Gibbs free 

energy (ΔG), surface energy (γs), Lifschitz van der Waals forces (γsLW), acid base components 

(γsAB), acid component (γs+) and base component (γs-). 

 ΔG 

mJ/m2 

 

γs 

mJ/m2 

 

γsLW 

mJ/m2 

 

γsAB 

mJ/m2 

 

γs+ 

mJ/m2 

 

γs- 

mJ/m2 

 

Rough -52.98 52.37 48.87 3.50 0.44 7.33 

Smooth -50.15 49.61 45.65 3.96 0.54 7.54 

Flat -40.21 53.30 45.16 8.14 1.79 9.67 
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Table. 2. Tensile strength and elongation measurements for the unmodified and flattened 

surfaces with standard errors. 

 
Tensile Strength  

(Mpa) 

Elongation  

(%) 

Unmodified 

PVC 

15.679 ± 0.257 329.76 ± 19.373 

Flattened PVC 15.145 ± 1.531 358.72 ± 25.019 
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Fig. 1. SEM images of the inoculated p-PVC platelet bags a/b) rough (inside facing), c/d) 

smooth (inside facing) and e/f) flattened surfaces. Black arrows indicate bacterial cells with a, 

c and e representing S. epidermidis and b, d and f representing S. marcescens. 

a) b) 

c) d) 

e) f) 
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a)  

b)  

Fig. 2a. Surface roughness (Sa value) of rough, smooth and flat surfaces and b) ATR-FTIR 

spectra (average of n=3) of transfusion bag surfaces; unmodified rough side (dark grey), 

unmodified smooth side (black) and flattened surfaces (light grey). The carboxylate carbonyl 

antisymmetric stretching vibrations (at 1577 and 1544 cm-1) are shown in the inset. 

0

500

1000

1500

2000

2500

3000

3500

4000

Rough Smooth Flat

Sₐ
 R

o
u

gh
n

es
s 

(n
m

)

Rough Smooth Flat 

0 

5 

10 

15 

1520 1560 1600 

0 

5 

10 

15 

20 

25 

1000 1500 2000 2500 3000 3500 4000 

Absorbance (x100) 

Wavenumber (cm
-1

) 



30 
 
 

 

Fig. 3. Schematic representation of possible adsorbed structure of calcium stearate on the 

unmodified p-PVC surfaces. a) the  presence of calcium/zinc stearates on the surface b) the 

carboxylate carbonyl absorptions are no longer present. The straight lines represent the C17H35 

chains, the open circles represent the carboxylate group (COO-) and the closed (black) circles 

represent the calcium (Ca2+) ions (adapted from).35 

 

 

 

(b) 

(a) 
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Fig. 4. MATH assays of a) S. marcescens and b) S. epidermidis demonstrating affinity to the 

apolar n-alkanes decane and hexadecane and to the solvents chloroform (acidic) and ethyl 

acetate (basic).  
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  b)    

Fig. 5. Five and seven-day biofilm growth of a) S. marcescens and b) S. epidermidis on the 

unmodified (rough and smooth) and flattened p-PVC surfaces. The control surfaces followed 

the same procedure but were inoculated with sterile distilled water. 
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