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In vivo mechanical behaviour of the anterior cruciate 
ligament: A study of six daily and high impact 

activities 

 

ABSTRACT 

 

The anterior cruciate ligament (ACL) plays a key role in the stability of the knee joint 

restricting the rotation and anterior tibial translation. However, there is a lack of 

knowledge of the in vivo ACL mechanical behaviour during high impact manoeuvres.  

The motion of 12 young participants with healthy knees was captured while they 

performed the following activities: walking, running, cross-over cutting, sidestep 

cutting, jumping and jumping with one leg. The in vivo ACL length and strain were 

estimated using experimental kinematic data and three degree of freedom (DOF) knee 

model. The in vivo ACL tensile forces were determined with a well-established 

force/strain relationship obtained through ACL tensile tests. Statistical regression 

models between ACL length with respect to angles for each activity have been 

performed in order to better understand the ACL failure mechanisms. The maximum 

ACL tensile force was observed during jumping vertically at maximum effort with two 

legs (1.076±0.113 N/BW). Surprisingly, the peak tensile ACL force for all subjects 

during crossover cutting (0.715±0.2647 N/BW) was lower than during walking 

(0.774±0.064 N/BW). Regression coefficients for crossover cutting indicated that 

excessive knee rotation and abduction angles contribute more significantly to the ACL 

elongation than in activities such as walking or running. These findings suggested that 

the ACL is subjected to multidirectional loading; further studies will be performed to 

investigate torsion, tensile and shear force on the ligament.  
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Key Terms: Anterior cruciate ligament (ACL); daily and high impact activities; in vivo 

kinematics; knee model; ACL tensile forces; ACL strain. 

 

INTRODUCTION 

The ACL is a key component in the stabilization of the knee joint, restricting the 

rotation and the anterior tibial motion and has one of the higher rates of injury of the 

human knee ligaments [1]. It is estimated that 78% of ACL injuries occur during 

noncontact manner, where sudden decelerations, landing from a jump, cross-over 

cutting or pivoting are present [2]. The majority of these injuries were recorded in 

young athletes [3]. Anatomical (femoral notch distance or laxity), hormonal and 

biomechanical factors have been researched to understand the important factors 

contributing to these higher rates of injury [4,5]; however the key factors contributing to 

ACL mechanical behaviour during high-risk activities and ACL rupture remain unclear.  

Experiments using cadaveric knees [6] determining anthropometrical parameters 

(ACL insertion points locations or femoral notch distance) or understanding the 

behaviour under mechanical loading exhibited limitations reproducing the in vivo 

mechanical behaviour of the ACL. Video and motion capture techniques [7,8] were also 

used to understand ACL injury mechanisms through the study of joint kinematics but 

disregarded the ACL length, strain or force. Strain gauges have also been employed to 

assess the in vitro ACL strain [9] and in vivo ACL strain in cycling and squatting 

[10,11], but in the last case is invasive, requires surgery and the gauge is attached to 

only a small location of the ACL, not recording the strain across the whole ligament. 

Experiments with motion capture and biplanar fluoroscopy [12,13] and studies with 

motion capture and musculoskeletal simulations [14–16] determined ACL length and 
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strain during walking and jumping with both legs but activities with a high injury rates 

such as jumping with one leg or cutting have not been evaluated.  

Due to the wide range of techniques used to determine in vivo ACL strain and 

force and the limitations associated to each technique, there are differences in the results 

obtained, and comparison between activities is complicated. During walking for 

example, there is large disparity with some studies reporting peak ACL forces of 0.2 

N/BW [17] and others of more than 1 N/BW [18,19]. Therefore it is necessary to 

develop and implement a reliable and easy methodology to investigate different 

activities in one study to allow valid comparison. In this study, a musculoskeletal model 

with motion capture was used to determine the ACL length, strain and tensile force at 

all ranges of motion for six different activities: walking, running, sidestep cutting, 

crossover cutting, jumping with one leg and drop landing and jumping with maximum 

effort with two legs.   

The aim of this study was to estimate in vivo ACL strain and tensile force 

through a motion capture in combination with a 3 DOF knee model while daily and high 

impact activities are performed, to better understand high-risk manoeuvres and compare 

the ACL behaviour between activities.  

 

METHODS 

Participants 

Twelve young adults with no previous ACL injuries (7 men and 5 women; 

mean±SD age: 27.3±3.3years, height: 1.7±0.09 m and mass: 71.6±15.5 kg) were 
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recruited. Test subjects gave informed consent and the study was approved by the 

university ethics committee.  

Protocol 

A 10-camera motion capture system (Vicon 612 system, Oxford Metrics, UK) 

was used to collect kinematic data sampled at 100 Hz. A modification of the Cleveland 

Clinic marker set [20], consisted of 33 reflective markers placed on specific anatomical 

landmarks of the lower and upper body of the subjects, was utilized to collect the 

kinematic measurements.  

All activities were performed over level ground and the participants were asked 

to perform them at their self-selected speed in order to not modify the correct execution 

of the task. Activities were: walking, running in a straight line, crossover cutting turning 

suddenly, sidestep cutting running straight then stepping at the right side with the right 

leg and keeping running straight, dropping from a 30cm height jumping box and 

perform a vertical maximum effort jump with both legs, and jumping horizontally three 

times with one leg. Tape was placed on the floor with the purpose of all subjects 

undertaking the activity in the same manner, moreover three force plates were used just 

for references to perform the tasks. The tape was used to indicate the starting and ending 

point of all the activities and the trajectories of the cutting tasks. Once the subjects were 

familiarised with the activities (performing them until their execution were correct) the 

kinematic data was collected for each participant over three successful repeated trials. 

The data were processed in Vicon Nexus 1.8.5. software (Vicon Motion Systems 

Ltd, UK) and exported to OpenSim 3.3 (Sim TK, Stanford, CA) for the kinematics 

analysis. 
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ACL elongation and force estimation 

The in vivo ACL length at each timepoint was determined by tracking the 

coordinates of the ACL insertion points from the processed kinematic data derived from 

motion capture and a musculoskeletal model scaled for each participant according to 

their anatomy. The developed model was based on the Gait 2392 model [21] 

implemented in OpenSim software. Our model consisted of 27 DOF of which 6 

corresponded to the knee joints (3 DOF for each knee), 12 segments represented the 

bones and 92 musculotendon actuators. The anterior cruciate ligaments were modelled 

as an elastic passive soft tissue as previously described in Roldán et al. [22]. 

The strain at each instant was calculated from the ligament length change at each 

timepoint and the unloaded length. The in vivo unloaded length of the ACL for each 

participant was determined from a reference length (ACL length at knee full extension 

calculated for each subject) and reference strain (taken from literature [23]) following 

previous studies [22,23]. 

ACL tensile forces were calculated from a force/strain relationship reported in 

Blankevoort and Huiskes et al. [23] where the ligament was simulated by a non-linear 

spring, and  its viscoelastic behaviour was mimicked with a damping element in parallel 

to the spring following the method implemented in previous studies [22]. Subsequently 

these estimated forces were normalized for Body Weight (BW) allowing comparison 

between subjects. 

Notice that although the behaviour of both ACLs were collected, for the sake of 

simplicity only the results for the right knees are presented.  

Similar approaches to determine the ACL elongation and tensile force were used 

in Debski, Darcy and Woo et al. [24] when testing cadaveric knees.  
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Statistical analysis 

Multiple linear regressions were performed to estimate the relationship between 

right ACL length and right knee angles for each activity (considering positive sign knee 

flexion, external rotation and abduction angles). The coefficient of determination (R2) 

decreases considerably when the sample size increases. In our case, the sample size for 

each activity was very large, reaching 3410 degrees of freedom for the two-legged 

jumping activity. Therefore, in order to verify the goodness of fit it was necessary not 

only consider the R2 value, but also to have low standard error of the estimation, a 

highly significant F test with value of F above unity, highly significant regression 

coefficients (P value < 0.001) with short confidence intervals, non-collinearity between 

independent variables with a condition index below 15, and the normal distribution of 

the residuals. The Pearson coefficient signs indicated to us the behaviour of the ACL 

length when one of the knee angles varies. The sign of regression coefficients and 

Pearson coefficients could be different, since Pearson coefficients measure how an 

independent variable is related with the dependent variable and the regression 

coefficients indicates how all independent variables are related with the dependent 

variable.   

RESULTS 

All activities 

The peak ACL force and strain, position of the maximum ACL length and 

elongation of the ACL for each activity are presented in table 1. The maximum ACL 

tensile force and elongation were seen during jumping with two legs.  

Every subject exhibited a similar pattern of knee angles and ACL length 

performing the same activity, therefore changes in ACL length for both sexes 
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(considering sex as a categorical variable with 0 for men and 1 for women) can be 

predicted by changes in the three knee angles (quantitative variables) through multi-

lineal regression models. The models performed in this study were highly significant 

with a high Fisher’s F, highly significant regression coefficients (P value < 0.001) with 

short confidence intervals demonstrating the precision of the estimation, a low standard 

error of the estimation, non-collinearity of the independent variables and normal 

distribution of the residuals. The signs of Pearson correlation coefficients (table 2) 

indicated that the ACL length is longer in males, when the knee is extended, knee 

internal rotation increases and with more valgus angle. 

Walking 

Analysing the walking motion, the maximum ACL length was recorded at full 

knee extension (stage C in figure 1) at heel off. The ACL length minimum was at 50º of 

knee flexion (during the swing phase). A maximum was observed at maximum knee 

flexion (around 65º) due to a decrease of knee rotation angle. 

The following function (1) predicts the ACL length for walking. 

ACL length (m) = 0.03317 – 0.002415*Sex - 0.00009*Knee flexion angle (º) - 

0.000144*Knee external rotation angle (º) + 0.00006*Knee abduction angle (º)     (1) 

Jumping with two legs 

Five ACL length peaks were found in all participants. Figure 2 a) shows the 

stages for this activity, where A corresponds to the moment just before reaching the 

force plates where the knees are extended or almost extended, B is the maximum 

flexion of the knee after the drop where valgus and internal rotation angles increase, C 

is when the participant extended completely the knees during the jump (flight phase of 
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the jump), D is the moment where the subject reached the highest height jumping and E 

is the maximum flexion of the knee after the jump.   

Regression coefficients were used to determine the relationship between gender, 

knee angles and ACL length at each stage for this activity:  

ACL length (m) = 0.02932 – 0.000675*Sex - 0.000036*Knee flexion angle (º) - 

0.000168*Knee external rotation angle (º) - 0.000054*Knee abduction angle (º)     (2) 

Jumping with one leg 

A total of six ACL length peaks were found in all participants; the first (stage 

C), third (stage G) and fifth (stage J) peaks corresponded to the moment at toe off, the 

second (stage E), fourth (stage H) and sixth (stage K) were when the participants were 

jumping with their leg extended. Stages F and I corresponded with the moment when 

the participants were landing flexing their knee. Stage B was the moment when the 

participant flexed the knee to gain momentum for the jump and D was the moment 

when the participants were jumping with the knee slightly flexed.  Figure 2 b) shows all 

these stages for the ACL length versus the knee angles. 

The relationship between gender, knee angles and ACL length is shown in the 

equation (3):  

ACL length (m) = 0.03149 – 0.00224*Sex - 0.000087*Knee flexion angle (º) - 

0.000159*Knee external rotation angle (º) - 0.00005*Knee abduction angle (º)    (3) 

Running 

Three ACL length peaks were found in all participants, the first peak 

corresponded to heel strike being the highest of the three peaks (stage A), the second 

peak is at toe off (stage B) and the third is at maximum knee flexion (stage C). This 

situation can be observed in figure 3 a). 
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In the regression model for running, the constant, sex and rotation angle were 

highly significant; contributing to the prediction of the dependent variable. However, 

the coefficients of knee flexion and abduction angles were not significant (P value 0.55 

and 0.18 respectively), which means that these angles do not contribute significantly to 

the model. The predicted function for running was:  

ACL length (m) = 0.02999 – 0.00306*Sex - 0.0000019*Knee flexion angle (º) - 

0.000084*Knee external rotation angle (º) - 0.000022*Knee abduction angle (º)     (4) 

Sidestep cutting 

Similar to the previous activity (running) three ACL length peaks were found in 

all our participants, the first peak corresponded to heel strike (stage A), the second peak 

was at toe off (stage B) and the third at maximum knee flexion (stage C). See figure 3 

b). 

As it was observed running, the constant, sex and rotation angle provided high 

information in predicting the dependent variable in the regression model, however the 

coefficients of knee flexion and abduction angles were not significant (P value 0.55 and 

0.62 respectively), which means that these angles do not contribute significantly to the 

model. The function model obtained was:  

ACL length (m) = 0.0282 – 0.001997*Sex + 0.000002*Knee flexion angle (º) - 

0.000086*Knee external rotation angle (º) - 0.0000096*Knee abduction angle (º)     (5) 

Crossover cutting 

As observed in the activities of “running” and “sidestep cutting” the pattern of 

the ACL length show three peaks for all participants in the same stages. The first peak 

corresponds to heel strike (stage A), the second peak is at toe off (stage B) and the third 

is at maximum knee flexion (stage C), as it can be observed in figure 3 c).  
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The function that predicted the ACL length for crossover was:  

ACL length (m) = 0.02775 -0.00239*Sex + 0.000019*Knee flexion angle (º) - 

0.000666*Knee external rotation angle (º) + 0.000058*Knee abduction angle (º)     (6) 

 

DISCUSSION 

The novelty of this study was the estimation of in vivo ACL length and tensile 

forces during different dynamic activities, which could provide an insight into high-risk 

activities for ACL injuries and rehabilitation protocols or provide mechanical 

specifications for ACL implants. 

 The peak ACL forces were previously reported to range between 0.2 N/BW and 

1 N/BW during walking [16]. We observed a peak ACL tensile force of 0.774±0.064 

N/BW during walking corresponding to 28.5% of the reported failure strength of the 

ACL [25,26]. Therefore the value we report is in the same range as the ACL loads 

previously reported. We observed a peak strain during walking of 13%, which agrees 

with a previous study based on motion capture and biplanar fluoroscopic images the 

same activity [12]. 

The highest peak of ACL tensile force was recorded jumping with both legs 

(1.076±0.113 N/BW) and their values were around 4 times higher than jumping with 

one leg (0.774±0.064 N/BW); the knees were more flexed during the execution of one-

legged jumping in all participants, decreasing the ACL elongation and consequently the 

estimated ACL tensile force.  

From our study we observed that non-contact activities with high ACL injuries 

rate such as crossover cutting or sidestep cutting are surprisingly associated with lower 

tensile forces in the ACL than daily activities such as walking. This evidence indicates 

that the failure mechanisms for these activities are likely due to a combination of loads, 
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not just tensile loading. If we analyse the Pearson correlation coefficients for cutting, we 

observed more significant linear relationship between rotation and abduction angles 

with the ACL length than with the flexion angle, therefore knee rotation and abduction 

angles contribute greatly to the elongation of the ACL for these activities as it was 

predicted by Mc Lean et al. [27]. It is known that small knee flexion angles generate 

higher ACL tensile forces, the greater the valgus (abduction) angle the higher ACL 

loading is observed [14,28,29] and the greater rotation angle the ACL could be 

subjected to a higher torsional load. Therefore, this study demonstrates for the first time 

that to understand the mechanical behaviour of the ACL a study of its tensile, shear and 

torsional loading is needed. Future work should estimate shear and torsion loads for 

each activity studied in this paper. 

There are two main limitations of this study. The first limitation is the 

assumption of having 3 DOF per knee instead of 6 DOF, in future studies a model 

including 6 DOF for each knee will be performed. The second limitation is that the 

ACL tensile forces were estimated from the ACL strain and this estimated by tracking 

the coordinates of the ACL insertion points and considering the ACL as a single straight 

bundle; however, it is known that the fibre bundles of the ACL are twisted and wrapped 

around the bones.  

In conclusion, this study determined and compared in vivo ACL length and 

tensile forces during dynamic activities using a viscoelastic ligament model for a wide 

range of activities. The results of the study could inform research into ACL injury 

mechanisms or provide mechanical specifications for manufacturing improved ACL 

implants. It established highly significant regression models between ACL length with 

respect to knee angles for the different activities enabling prediction of the behaviour of 

the ligament according to given angles for each activity. Finally, the peak tensile ACL 
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force during cutting or running was lower than walking, suggesting that the failure 

mechanisms are due to multidirectional (including shear and torsion) loading instead of 

simply tensile loading in isolation. 
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Activity                              Max. Force (N)        Max. Force (N)/BW     Max. Elongation (mm)     Max. Strain      Max. ACL Length Position 

Walking                            513.068±8.337               0.774±0.064                   6.15±0.28                  0.132±0.00248                  Heel off 

Jumping with two legs     726.003±64.222             1.076±0.113                   7.32±1.21                  0.175±0.01284      Flight phase of the jump 

Running                            368.243±113.627           0.624±0.216                    5.28±0.05                  0.097±0.00249                 Heel strike 

Sidestep cutting                472.703±168.209           0.836±0.323                    5.33±0.01                  0.107±0.04027                 Heel strike 

Crossover cutting             425.869±147.602            0.715±0.265                    5.36±0.15                  0.107±0.03237                Heel strike 

Jumping with one leg       149.352±55.474             0.243±0.092                     3.86±0.17                 0.047±0.01616     Flight phase of the jump 

                      

 

 

 

Activity                                  Fisher’s F                                     Pearson Coefficients                                 Standard error              R2 

                                                                              Sex         Flexion     Ext. Rotation      Abduction             of estimation     

Walking                                   615.27*             -0.446*       -0.526*        -0.483*               0.206*                    0.002                    0.614   

Jumping with two legs            359.44*             -0.313*        -0.209*       -0.435*               0.06*                      0.0028                  0.297 

Running                                   136.02*             -0.542*       -0.6*            -0.391*               0.137*                    0.0025                  0.355 

Sidestep cutting                       60.63*               -0.398*       -0.07*          -0.414*               0.083*                    0.0029                  0.243      

Crossover cutting                     91.43*              -0.469*        0.098*         -0.424*               0.221*                    0.0027                  0.307 

Jumping with one leg              891.81*             -0.574*       -0.414*        -0.646*               0.146*                    0.002                    0.662 

* Highly significant P value < 0.001 

 

Table 1. Peak right ACL tensile forces, elongation, strain and position of the 

maximum right ACL length for each activity (mean±SD). 

Table 2. Multiple linear regression parameters. 
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 Figure 1. Example right knee angles (º) and right ACL length (m) from one 

participant during walking (Stages A and G correspond to heel strike, B to foot flat, C heel 

off, D toe off, and E and F midswing.) 
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a) b) 

Figure 2. Example right knee angles (º) and right ACL length (m) from one participant a) jumping with two 

legs b) jumping three times with one leg. 
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a) b) c) 

Figure 3. Right knee angles (º) and right ACL length (m) from one of our participants a) running, b) sidestep 

cutting, c) crossover cutting.  

 


