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Abstract

It is widely cited that cyber attacks have become more prevalent on a

global scale. In light of this, the cybercrime industry has been established for

various purposes such as political, economic and socio-cultural aims. Such

attacks can be used as a harmful weapon and cyberspace is often cited as

a battlefield. One of the most serious types of cyber attacks is the Ad-

vanced Persistent Threat (APT), which is a new and more complex version

of multi-step attack. The main aim of the APT attack is espionage and

data exfiltration, which has the potential to cause significant damage and

substantial financial loss.

This research aims to develop a novel system to detect and predict APT

attacks. A Machine-Learning-based APT detection system, called MLAPT,

is proposed. MLAPT runs through three main phases: (1) Threat detection,

in which eight methods are developed to detect different techniques used

during the various APT steps. The implementation and validation of these

methods with real traffic is a significant contribution to the current body of

research; (2) Alert correlation, in which a correlation framework is designed

to link the outputs of the detection methods, aiming to find alerts that could

be related and belong to one APT scenario; and (3) Attack prediction, in

which a machine-learning-based prediction module is proposed based on the

correlation framework output, to be used by the network security team to

determine the probability of the early alerts to develop a complete APT at-

tack. The correlation framework and prediction module are two other major

contributions in this work. MLAPT is experimentally evaluated and the

presented system is able to predict APT in its early steps with a prediction

accuracy of 84.8%.
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Chapter 1

Introduction

The World Wide Web is everywhere with a presently estimated size of

roughly 46.4 billion web pages, as indexed by Google engine [2]. The Inter-

net has developed from a system providing a local connection service dealing

with simple documents to what is currently a robust and adaptable platform

used to spread information and deliver applications. Furthermore, organisa-

tions and corporations have increasingly depended on the Internet sharing

significant information online. However, with this evolution of the Internet,

the number of cyber attacks have rapidly increased. Cybercrime has become

more prevalent because it can be launched from outside the target’s network

and, in many cases, it is difficult to identify the attacker [3]. As a result,

attackers have become organised and a cybercrime industry has been es-

tablished for various purposes such as political, economic and socio-cultural

aims [4]. Moreover, cyber attacks can be used to spy on governments; thus,

they can be used as a strong weapon and the cyberspace is often cited as a

battlefield [5].

1
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1.1 Motivation

The annual cost of cyber attacks was $3 trillion in 2015. Moreover, it is

expected to increase to more than $6 trillion per annum by 2021 [6]. This

expensive cost has brought much interest in the research and investment to-

wards developing new methods and techniques for cyber attacks defence. For

this reason, intrusion detection and prevention systems (IDPSs) [7], explored

later in Section 2.2 on page 16, have been suggested to be used to protect

computer networks and mitigate this threat.

Although virus scanners, firewalls and IDPSs have been able to detect

and prevent many of cyber attacks, cyber-criminals in turn have developed

more advanced methods and techniques to intrude into the target’s network

and exploit its resources. In addition, many of the defence approaches as-

sume that if the organisations’ defences are too hard to breach, the attacker

will try to find an easier victim. Nonetheless, according to a technical report

by Trend Micro [8], this assumption is no longer valid with the rise of tar-

geted attacks, also known as Advanced Persistent Threats (APTs), in which

both cyber-criminals and hackers are targeting selected organizations and

persisting until they achieve their goals.

The APT attack, explained further in Section 2.1 on page 13, is target-

ing a specific organisation and it is performed through several steps. The

main aim of APT is espionage and then data exfiltration. Therefore, APT is

considered as a new and more complex version of multi-step attack [9]. These

APTs form a problem for current detection methods as they use advanced

techniques like social engineering [10] and make use of unknown vulnera-

bilities. Moreover, the economic damages due to a successful APT attack
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can be very expensive. The expected cost of attacks is the major motiva-

tion for the investments in intrusion detection and prevention systems [11].

APTs are currently one of the most serious threats to the companies and

governments [12].

Most of the research in the area of APT detection, as explored later

in Chapter 3 on page 35, has focused on analysing already identified

APTs [13] [14] [15] [16] [17] [18] [19], or detecting a particular APT that

uses a specific piece of malware [20]. Some works have attempted to detect

potential APT attacks. However, they face serious shortcomings in achieving

real time detection [21], detecting all APT attack steps [21], balance between

false positive and false negative rates [20], and correlating of events spanning

over a long period of time [22] [23]. Therefore, it is assumed that there is a

need to research new approaches and techniques regarding the APT attacks

detection.

1.2 Research Questions

This research aims to develop a novel system to detect and predict APT

attacks which can make a significant contribution to intrusion detection sys-

tems. The effectiveness of the proposed approach, which is its ability to

detect APT attacks, should be high. This should be combined with high

accuracy resulting into a low number of false warnings. This motivates the

first research question:

Research question 1: How to develop an efficient system to detect the

APT attack in a systematic way?
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The detection system should support the real time detection because if

an attack (or an attempted attack) is detected quickly, it can be much easier

to trace back to the attacker, minimise the damage and prevent further

break-ins. This motivates the second research question:

Research question 2: How effective is the developed system in terms of

the processing speed?

Detecting the APT attack before completing its life cycle can prevent

the attackers from achieving their goals and stealing the data. This motivates

the third research question:

Research question 3: How good is the developed system in terms of the

prediction of the APT attack in its early steps?

The main objective of this thesis is to answer the research questions.

1.3 Contributions

To answer the first research question, a machine-learning-based APT detec-

tion system, called MLAPT, has been developed. MLAPT runs through

three main phases: threat detection, alert correlation and attack prediction.

In the first phase, the sniffed data traffic is scanned to detect possible tech-

niques used in the APT attack life cycle. To this end, eight detection modules

have been developed and tested; each module implements a method to detect

one technique used in one of the APT attack steps. These detection mod-

ules are as follows: disguised exe file detection (DeFD), malicious file hash

detection (MFHD), malicious domain name detection (MDND), malicious

IP address detection (MIPD), malicious SSL certificate detection (MSSLD),
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domain flux detection (DFD), scan detection (SD), and Tor connection de-

tection (TorCD). The output of this phase is alerts, also known as events,

triggered by the individual modules. In the second phase, the alerts raised

by the individual detection modules are fed to the newly designed (FCI) cor-

relation framework. The aim of the correlation framework is to find alerts

which could be related and belong to one APT attack scenario. The process

in this phase undergoes three main steps: alerts filter (AF), to identify redun-

dant or repeated alerts; clustering of alerts (AC), which most likely belong

to the same APT attack scenario; and correlation indexing (CI), to evaluate

the degree of correlation between alerts of each cluster. The main objec-

tive of using the correlation framework is to reduce the false positive rate of

the MLAPT detection system. In the final phase, a machine-learning-based

prediction module (PM) is designed and implemented based on a historical

record of the monitored network. This module can be used by the network

security team to determine the probability of the early alerts to develop a

complete APT attack.

To answer the second research question, MLAPT has been developed

in such a way that all the modules and algorithms in the first and second

phases do not depend on storing the data and then analysing it, instead,

those modules and algorithms are able to process the network traffic in real

time and generate their outputs (events) accordingly.

To answer the third research question, a prediction module, which uses

a historical record of the monitored network and applies machine learning

techniques, has been developed. This module allows the network security

team to predict the APT attack in its early steps and apply the required

procedure to stop it before the attack completes its life cycle.
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Although the detection modules methodologies exist in the literature,

their implementation and validation in real traffic are significant contribu-

tions to the field. The correlation framework and prediction module are two

other major contributions in this thesis.

The thesis results and contributions have been published in the following

journals and conference proceedings:

∙ Ibrahim Ghafir, Mohammad Hammoudeh, Vaclav Prenosil, Liangxiu

Han and Robert Hegarty. MLAPT: A Correlation-Based System for

Real-Time Advanced Persistent Threat Detection and Prediction. Jour-

nal paper, under review.

∙ Ibrahim Ghafir, Vaclav Prenosil, Mohammad Hammoudeh and Umar

Raza. Malicious SSL Certificate Detection: A Step Towards Ad-

vanced Persistent Threat Defence. In Proceedings of International

Conference on Future Networks and Distributed Systems. Cambridge,

United Kingdom: ACM Digital Library, 2017. ISBN 978-1-4503-4844-

7. doi:10.475/123_4.

∙ Ibrahim Ghafir, Vaclav Prenosil, and Mohammad Hammoudeh. Botnet

Command and Control Traffic Detection Challenges: A Correlation-

based Solution. International Journal of Advances in Computer Net-

works and Its Security (IJCNS), New York, USA: theIRED, 2017, vol.

7, Issue 2, p. 27-31. ISSN 2250-3757.
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∙ Ibrahim Ghafir, Vaclav Prenosil, Ahmad Alhejailan and Mohammad

Hammoudeh. Social Engineering Attack Strategies and Defence Ap-

proaches. In Proceedings of International Conference on Future In-

ternet of Things and Cloud. Vienna, Austria: IEEE Xplore Dig-

ital Library, 2016. p. 145-149, 5 pp. ISBN 978-1-5090-4052-0.

doi:10.1109/FiCloud.2016.28.

∙ Ibrahim Ghafir, Vaclav Prenosil, Jakub Svoboda and Mohammad

Hammoudeh. A Survey on Network Security Monitoring Systems.

In Proceedings of International Conference on Future Internet of

Things and Cloud. Vienna, Austria: IEEE Xplore Digital Library,

2016. p. 77-82, 6 pp. ISBN 978-1-5090-3946-3. doi:10.1109/W-

FiCloud.2016.30.

∙ Ibrahim Ghafir and Vaclav Prenosil. Malicious File Hash Detection

and Drive-by Download Attacks. In Suresh Chandra Satapathy, K.

Srujan Raju, Jyotsna Kumar Mandal, Vikrant Bhateja. Proceedings of

the Second International Conference on Computer and Communication

Technologies, series Advances in Intelligent Systems and Computing.

Hyderabad: Springer, 2016. p. 661-669, 9 pp. Vol. 379. ISBN 978-81-

322-2516-4. doi:10.1007/978-81-322-2517-1_63.

∙ Ibrahim Ghafir and Vaclav Prenosil. Proposed Approach for Tar-

geted Attacks Detection. In Sulaiman, H.A., Othman, M.A., Othman,

M.F.I., Rahim, Y.A., Pee, N.C.. Advanced Computer and Communica-

tion Engineering Technology, Lecture Notes in Electrical Engineering.

Phuket: Springer International Publishing, 2016. p. 73-80, 9 pp. Vol.

362. ISBN 978-3-319-24582-9. doi:10.1007/978-3-319-24584-3.

∙ Ibrahim Ghafir, Jakub Svoboda, Vaclav Prenosil. A Survey on Bot-

net Command and Control Traffic Detection. International Journal of
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Advances in Computer Networks and Its Security (IJCNS), New York,

USA: theIRED, 2015, vol. 5, Issue 2, p. 75-80. ISSN 2250-3757.

∙ Ibrahim Ghafir and Vaclav Prenosil. Advanced Persistent Threat and

Spear Phishing Emails. In Proceedings of International Conference

Distance Learning, Simulation and Communication. Brno, Czech Re-

public: University of Defence, 2015. p. 34-41, 8 pp. ISBN: 978-80-

7231-992-3.

∙ Ibrahim Ghafir and Vaclav Prenosil. Blacklist-based Malicious IP

Traffic Detection. In Proceedings of Global Conference on Commu-

nication Technologies (GCCT). Thuckalay, India: IEEE Xplore Dig-

ital Library, 2015. p. 229-233, 5 pp. ISBN 978-1-4799-8552-4.

doi:10.1109/GCCT.2015.7342657.

∙ Jakub Svoboda, Ibrahim Ghafir, Vaclav Prenosil. Network Monitoring

Approaches: An Overview. International Journal of Advances in Com-

puter Networks and Its Security (IJCNS), New York, USA: theIRED,

2015, vol. 5, Issue 2, p. 88-93. ISSN 2250-3757.

∙ Ibrahim Ghafir and Vaclav Prenosil. DNS traffic analysis for malicious

domains detection. In Proceedings of International Conference on Sig-

nal Processing and Integrated networks. Noida, India: IEEE Xplore

Digital Library, 2015. p. 613 - 618, 6 pp. ISBN 978-1-4799-5990-7.

doi:10.1109/SPIN.2015.7095337.

∙ Ibrahim Ghafir and Vaclav Prenosil. Advanced Persistent Threat At-

tack Detection: An Overview. International Journal of Advances

in Computer Networks and Its Security (IJCNS), New York, USA:

theIRED, 2014, Volume 4, Issue 4, p. 50-54. ISSN: 2250-3757.
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∙ Ibrahim Ghafir and Vaclav Prenosil. DNS query failure and algorithmi-

cally generated domain-flux detection. In Proceedings of International

Conference on Frontiers of Communications, Networks and Applica-

tions. Kuala Lumpur, Malaysia: IEEE Xplore Digital Library, 2014.

p. 1-5, 5 pp. ISBN 978-1-78561-072-1. doi:10.1049/cp.2014.1410.

∙ Ibrahim Ghafir, Jakub Svoboda and Vaclav Prenosil. Tor-based mal-

ware and Tor connection detection. In Proceedings of International

Conference on Frontiers of Communications, Networks and Applica-

tions. Kuala Lumpur, Malaysia: IEEE Xplore Digital Library, 2014.

p. 1-6, 6 pp. ISBN 978-1-78561-072-1. doi:10.1049/cp.2014.1411.

∙ Ibrahim Ghafir, Martin Husak and Vaclav Prenosil. A Survey on In-
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1.4 Restrictions

The detection modules, in the first phase of MLAPT, are able to detect the

most common techniques possibly used in the APT attack life cycle. If a

new technique is used in the future in one of the APT steps, MLAPT will
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not be able to detect the corresponded step. However, MLAPT will still able

to detect part of the APT attack scenario based on the other steps.

1.5 Thesis Structure

The remainder of the thesis is organized as follows:

Chapter 2 provides the reader with an overview of the background

of this research. The advanced persistent threat (APT) attack is defined

and the steps of this attack are explained. Besides, the intrusion detection

and prevention systems (IDPSs) are explored. In addition, machine learning

(ML) categories and some approaches are presented.

Chapter 3 explores the state of the art for the APT attack detection.

This chapter introduces previous research findings on APTs and describes

current attempts for the APT attacks detection.

Chapter 4 presents the proposed Machine-Learning-based APT detec-

tion system (MLAPT). The architecture of MLAPT is introduced first, along

with a brief definition of the three main phases of MLAPT: threat detection,

alert correlation and attack prediction. Following this, more description and

details regarding each MLAPT phase are given.

Chapter 5 explains the implementation of MLAPT and mentions to

all frameworks, tools and programming languages used for this implemen-

tation. As MLAPT consists of three main phases: Detection, Correlation,

and Prediction; the implementation algorithms of each phase are presented

separately.
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Chapter 6 introduces the evaluation of MLAPT and presents the re-

sults achieved. Additionally, a comparison between the developed system

MLAPT and other existing systems is provided.

Chapter 7 concludes the thesis and summarises the achievements. Fur-

thermore, a future work is proposed.





Chapter 2

Background

This chapter provides the reader with an overview of the background of

this research. The advanced persistent threat (APT) attack is defined and

the steps of this attack are explained. Besides, the intrusion detection and

prevention systems (IDPSs) are explored. In addition, machine learning

(ML) categories and some approaches are presented.

2.1 An Overview of the APT Life Cycle

APT refers to Advanced Persistent Threat. APTs are a cybercrime cate-

gory directed at business and political targets. APTs require a high degree

of stealth over a long period of operation in order to be successful. The

attacker usually aims for more than immediate financial gain, and infected

systems continue to be compromised even after the target’s network has been

breached and initial goals reached [24]. Figure 2.1 depicts the steps of the

APT attack [1].

13
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Figure 2.1: Typical steps of the APT attack [1].

1. Intelligence gathering: This initial step aims to get information regard-

ing the target, like its organizational structure, IT environment and

even about people who are working for that target. For this purpose,

the attacker can use public sources (LinkedIn, Facebook, Twitter, etc)

and prepare a customized attack. Through this step the attacker tries

to find and organize accomplices, build or acquire tools, and research

target/infrastructure/employees.

2. Initial compromise (Point of entry): Performed by use of social en-

gineering and spear phishing, over email, using software vulnerabili-

ties [25]. Another popular infection method is planting malware on a

website which the victim employees will be likely to visit.
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3. Command and control (C&C) communication: After an organization’s

perimeter has been breached, continuous communication between the

infected host and the C&C server should be preserved to instruct and

guide the compromised machine. These communications are usually

protected by Secure Sockets Layer (SSL) encryption, making it difficult

to identify if the traffic directed to sites is malicious. Another technique

can be used in this step is domain flux technique [26]; an exploited

host may try to connect to a large number of domain names which are

expected to be C&C servers. The goal of this technique is to make it

difficult or even impossible to shut down all of these domain names.

4. Lateral movement: Once getting access to the target’s network, the

attacker laterally moves throughout the target’s network searching for

new hosts to infect. The attacker can use brute force attack [27], to

obtain information such as a user password or personal identification

number (PIN); an automated software is used to generate a large num-

ber of consecutive guesses as to the value of the desired data. Another

technique is pass the hash attack [28], in which the attacker steals a

hashed user credential and, without cracking it, reuses it to trick an

authentication system into creating a new authenticated session on the

same network.

5. Asset/Data discovery: This step aims to identify and isolate the note-

worthy assets within the target’s network for future data exfiltration.

Port scanning can be used for this step [29].

6. Data exfiltration: Data of interest is transmitted into external servers

which are controlled by the attacker. There are some techniques used

for data exfiltration like built-in file transfer, via FTP or HTTP and

via the Tor anonymity network [30].
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2.2 Intrusion Detection and Prevention Sys-

tems (IDPS)

IDPSs are used to monitor different systems and use various approaches to

detect intrusions to the monitored systems. These intrusions can result from

external/internal attacks or misuse by the system users. Figure 2.2 shows

the general architecture of the intrusion detection and prevention system.

Monitored 
Environment

Event Block

Database
Block

Analysis Block

Response Block

Figure 2.2: The general architecture of the IDPS.

This general architecture consists of four main blocks: event block,

database block, analysis block and response block. First, the events of the

monitored system are collected by the event block, then the events are sent

to the database block to be stored. Following this, the stored events are

processed by the the analysis block and an alert can be sent to the response

block, which aims to respond to the malicious activity and stop it [31].

Different approaches are followed for IDPS, among them, four method-

ologies are widely used. These are the anomaly based, signature based,

stateful protocol analysis based and hybrid based. The last methodology, the

hybrid base, is a combination of the other ones and provides better perfor-

mance capabilities; thus, it is mostly used by the present intrusion detection
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systems. Despite having the same general model, the four methodologies are

different in the way of processing the events collected from the monitored

system. The main purpose of all methodologies is to detect if a breach into

the monitored system has occurred [32].

2.2.1 Anomaly Based Methodology

This methodology is based on a comparison between the monitored activity

and a baseline profile. The baseline profile is built within the training phase,

in this phase the IDPS monitors the normal behaviour of the system and

learns the environment to develop the baseline profile. The baseline profile

can be built for systems, networks, users and so on. This profile can be fixed

or dynamic. When the fixed profile is built, it does not change; While the

dynamic profile changes when the monitored system changes. Building a

dynamic profile requires the IDPS to keep updating the profile which adds

more load to the system, moreover, this makes the system available to the

evasion. To evade an IDPS uses a dynamic profile, the attacker can perform

the attack over a long period of time; when building the profile, the IDPS

combines the malicious activities with the profile and considers them as

normal system changes [33].

In the detection phase, a threshold is set and any deviations for the

monitored activities from the baseline profile are considered as malicious.

Anomaly based methodologies are effective at detecting previously unknown

attacks, known as zero-day attacks, without any updates to the system.

Three main techniques are used by anomaly IDPSs: knowledge/data-mining,

machine learning based and statistical anomaly detection [34].
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Figure 2.3 shows the general architecture of an anomaly based IDPS.

A detector is used to observe the monitored environment, the IDPS then

compares the monitored activity against a baseline profile. If the monitored

activity matches the baseline profile, that means, it is a normal activity and

no action is required to be taken. If a deviation from the baseline is found,

the IDPS checks the predefined threshold: if the deviation is within the

threshold range, the IDPS updates the baseline profile; if the deviation is

out of the threshold range, the monitored activity is reported as a malicious

one and an alert is raised [31].

Update profileThreshold

Monitored 
Environment

No

No

Yes

Detector

Normal

Alert

No action

Baseline

Figure 2.3: The general architecture of an anomaly based IDPS.

2.2.2 Signature Based Methodology

This methodology is based on a comparison between the monitored system

signatures and a signatures database. This database contains a list of known

attack signatures. If a match is found, the monitored system signature is

reported as a malicious one and an alert is raised. The signature based

methodology does not require a deep inspection for each single environment
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activity or every packet in the network traffic, and it only looks for known

signatures in the database. Therefore, signature based IDPS does not add

extra load to the system [35]. As the signature based IDPS does not require

a baseline profile, there is no need for the training phase used the anomaly

based IDPS. Thus, the signature based IDPS is easy to be deployed and put

directly in the detection phase. This methodology is very effective at detect-

ing previously known attacks as their signatures are known and included in

the signatures database. However, zero-day attacks cannot be detected as

their signatures are not known yet [36].

Figure 2.4 shows the general architecture of a signature based IDPS. A

detector is used by the IDPS to monitor the system signatures, the IDPS

then compares the captured signatures with the signatures database: if a

match is found, the monitored signature is reported as an attack and an

alert is raised; if there is no match, no action is required to be taken [31].

Monitored 
Environment

Detector

No action

AlertMatch

Signature
Database

No

Yes

Figure 2.4: The general architecture of a signature based IDPS.

Since the signature based IDPS depends on the signatures database

which contains known attacks and it is not possible to detect the new attacks

before updating the database and adding the new signatures, this makes the

IDPS open to the evasion. The attacker can amend the known attack and

target a system which has an outdated database, in doing so, the attacker
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can avoid the IDPS as the modified attack is considered as a new one. For

this reason, the signature based IDPS requires to be updated continuously

based on significant intelligence feeds which provide the IDPS with the new

attacks [37].

2.2.3 Stateful Protocol Analysis Based Methodology

The stateful protocol analysis methodology is based on a comparison between

the monitored behaviour and a protocol database. The protocol database

contains profiles of how protocols should behave. The protocol profiles are

created and built by the vendors. While the signature based IDPS only

matches the monitored behaviour against a list of signatures, the stateful

protocol analysis based IDPS has a comprehensive understanding of the

protocol behaviour and performs a deep analysis of the interactions between

the protocols and applications. This makes the stateful protocol analysis

methodology add extra overhead to the system [38].

Figure 2.5 shows the general architecture of the stateful protocol anal-

ysis based IDPS. This architecture is similar to that of the signature based

IDPS. A detector is used by the IDPS to monitor the system behaviour, the

IDPS then compares the observed behaviour with the protocols database:

if the observed behaviour does not meet the expected protocol behaviour,

the monitored behaviour is reported as an attack and an alert is raised; if

the observed behaviour meets the expected protocol behaviour, no action is

required to be taken [31].

In spite of the fact that this methodology has a comprehensive under-

standing of how protocols should behave, the stateful protocol analysis based

IDPS is still open to the evasion. The attacker can perform the attack and
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Figure 2.5: The general architecture of a stateful protocol analysis based
IDPS.

stay within the expected behaviour of the protocols, in doing so, the at-

tacker can bypass the IDPS. Over the last decade, stateful protocol analysis

methodology has not been used alone for the IDPS. This methodology has

been integrated and combined with the other IDPS methodologies. Most of

the IDPSs depend on the anomaly, signature, and hybrid techniques. Thus,

the stateful protocol analysis is not used any more as a standalone IDPS

methodology [39].

2.2.4 Hybrid Based Methodology

To get the advantages of more than one methodology, a combination between

two or more methodologies is used, this leads to a better technique, known

as hybrid based methodology. The hybrid based IDPS is able to detect more

malicious activities than each individual methodology alone [40].
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Figure 2.6 shows the general architecture of a hybrid based IDPS. The

monitored environment is processed and analysed by the three methodologies

respectively, and the result is a better IDPS [31].

Monitored 
Environment

Stateful Protocol
Analysis

Signature Anomaly

Sanitized
Environment

Figure 2.6: The general architecture of a hybrid based IDPS.

2.3 Machine Learning

Usually computers are programmed to perform their functions, while in ma-

chine learning systems, computers can learn without being obviously pro-

grammed. Machine learning gives computer programs the ability to develop

themselves when the environment changes or new data comes. For this rea-

son, machine learning is considered as a type of artificial intelligence (AI) [41].

Machine learning analyses the data with the aim of finding patterns and ex-

tracting program functions accordingly. The main task of machine learning

is to find models. The model should represent the data and describe the

main function of the system [42].

Based on the way how the model is built, machine learning is classified

into four main categories: (1) supervised learning [43], when the dataset
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includes the predictor features which are all labelled; (2) unsupervised learn-

ing [44], when the dataset includes the predictor features but does not include

the labels; (3) semi-supervised learning [45], when the dataset includes the

predictor features in which some of them have labels, while some are not

labelled; and (4) reinforcement learning [46], which provides machines and

software agents with the ability to automatically make the best decision

within a given environment.

2.3.1 Machine Learning Approaches

Many approaches are used for machine learning [47]. This section presents

only the ones used in this research, mainly for the purpose of data classifi-

cation.

2.3.1.1 Decision Tree Learning

Decision tree is one of the supervised learning models, in which the final

decision is made through a sequence of internal functions. A decision tree

includes inner nodes and final leaves. The inner node performs a specific

function to decide which branch to follow to the next inner node, and so on

until a leaf node is reached and the final decision is made [48].

Table 2.1 shows an example of a training dataset and its decision tree

is shown in Figure 2.7. The nodes in the decision tree represents the dataset

attributes 𝑎𝑡1, 𝑎𝑡2, 𝑎𝑡3 and 𝑎𝑡4; the decision tree branches are formed based

on the attributes values 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2, 𝑎3, 𝑏3, 𝑎4 and 𝑏4; and the

terminal leaves in the decision tree indicates the dataset classes 𝑌 𝑒𝑠 and

𝑁𝑜 [49].
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Table 2.1: An example of a training dataset.

𝑎𝑡1 𝑎𝑡2 𝑎𝑡3 𝑎𝑡4 𝐶𝑙𝑎𝑠𝑠
𝑎1 𝑎2 𝑎3 𝑎4 Yes
𝑎1 𝑎2 𝑎3 𝑏4 Yes
𝑎1 𝑎2 𝑎3 𝑎4 Yes
𝑎1 𝑎2 𝑏3 𝑏4 No
𝑎1 𝑐2 𝑎3 𝑎4 Yes
𝑎1 𝑐2 𝑎3 𝑏4 No
𝑏1 𝑏2 𝑏3 𝑏4 No
𝑐1 𝑏2 𝑏3 𝑏4 No

Figure 2.7: An example of a decision tree.

The decision tree process consists of two main phases: the first one is

the growth phase. This phase includes a recursive dividing of the dataset

until creating a decision tree in which each node is related to one class or

more dividing to the node results in other nodes, which do not go over a

specific threshold. The second phase is the pruning phase. The purpose of

this phase is to prevent the over-fitting of the training dataset by creating
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a sub-tree, in other word, this phase works on generalizing the decision tree

which was generated in the growth phase. The process in the second phase is

known as post-pruning, while it is called pre-pruning in the first phase [50].

The decision tree algorithm applies a discrete function on the input at-

tributes to decide regarding partitioning the dataset. That function is chosen

based on some partitioning measures such as Gini impurity, Information gain

and Variance reduction.

Gini impurity is a measure of misclassification, which applies in a multi-

class classifier context. Gini coefficient applies to binary classification and

requires a classifier that can in some way rank examples according to the

likelihood of being in a positive class [51]. For a given set of items with

𝐽 classes, 𝑓𝑖 is the fraction of items labelled with class i in the set, where

𝑖 ∈ {1, 2, ..., 𝐽}, the Gini impurity is calculated as follows:

𝐼𝐺(𝑓) =
𝐽∑︁

𝑖=1

𝑓𝑖(1− 𝑓𝑖) =
𝐽∑︁

𝑖=1

(𝑓𝑖 − 𝑓𝑖
2) (2.1)

=
𝐽∑︁

𝑖=1

𝑓𝑖 −
𝐽∑︁

𝑖=1

𝑓𝑖
2 = 1−

𝐽∑︁
𝑖=1

𝑓𝑖
2 (2.2)

Information gain is equal to the total entropy for an attribute if for

each of the attribute values a unique classification can be made for the result

attribute [52]. The Information gain 𝐼𝐺(𝑇, 𝑎) for a given attribute 𝑎 in a

training set 𝑇 , is based on the concept of entropy 𝐻(𝑇 ), given as:

𝐻(𝑇 ) = −
𝐽∑︁

𝑖=1

𝑝𝑖 log2 𝑝𝑖 (2.3)
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Where 𝑝1, 𝑝2, ..., 𝑝𝑛 are fractions represent the percentage of each class

presented in the child node which results from a split in the tree.

𝐼𝐺(𝑇, 𝑎) = 𝐻(𝑇 )−𝐻(𝑇 |𝑎) (2.4)

= 𝐻(𝑇 )−
∑︁

𝑣∈𝑣𝑎𝑙𝑠(𝑎)

|{x ∈ 𝑇 |𝑥𝑎 = 𝑣}|
|𝑇 |

·𝐻({x ∈ 𝑇 |𝑥𝑎 = 𝑣}) (2.5)

Where each of the form (𝑥, 𝑦) = (𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑘, 𝑦), 𝑥𝑎 ∈ 𝑣𝑎𝑙𝑠(𝑎) is the

value of the 𝑎 attribute of example 𝑥, 𝑦 is the corresponding class label.

Variance reduction is the search for alternative and more accurate es-

timators of a given quantity. Simple variance reduction methods often are

remarkably effective and easy to implement [53]. The variance reduction of a

node 𝑁 is defined as the total reduction of the variance of the target variable

𝑥 due to the split at this node:

𝐼𝑉 (𝑁) =
1

|𝑆|2
∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆

1

2
(𝑥𝑖 − 𝑥𝑗)

2−⎛⎝ 1

|𝑆𝑡|2
∑︁
𝑖∈𝑆𝑡

∑︁
𝑗∈𝑆𝑡

1

2
(𝑥𝑖 − 𝑥𝑗)

2 +
1

|𝑆𝑓 |2
∑︁
𝑖∈𝑆𝑓

∑︁
𝑗∈𝑆𝑓

1

2
(𝑥𝑖 − 𝑥𝑗)

2

⎞⎠ (2.6)

Where 𝑆 is the set of pre-split sample indices, 𝑆𝑡 is the set of sample indices

for which the split test is true, and 𝑆𝑓 is the set of sample indices for which

the split test is false.

The algorithm continues splitting the set into subsets until no split meets

the splitting measure or a stopping feature is reached. The main task of the

decision tree algorithm is to determine the best split, this split divides the
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dataset into two or more subsets which includes one, two or more classes.

The best subset is the one which contains only one class and it is known a

pure subset, otherwise it is impure [54].

2.3.1.2 Support Vector Machines

In Support Vector Machine (SVM) algorithm, a hyperplane is created to

represent the feature points in the space. This hyperplane splits the feature

points into different categories. The last hyperplane state is specified by the

support vectors which are the most representative points in the boundaries.

The final hyperplane should represent the best distance between support

vectors and the space categories. Thus the final hyperplane classify the

points and divide the space into different regions [55].

For classification tasks, the kernel trick method [56] is used by SVM

algorithms to allow the use of multidimensional hyperplanes. By using these

hyperplanes, SVM learners can process multivariate data for classification

purposes [57].

For a given data (xi, 𝑦𝑖), for 𝑖 = 1, ...𝑚, where 𝑚 is the total number

of samples, xi ∈ 𝜒 ⊆ R𝑑 is the input of sensor readings and 𝑦𝑖 ∈

{+1,-1} represent each of the labels. This model learns from data to find a

hyperplane function such as:

𝑓(𝑥) = wTx + 𝑏 (2.7)

where 𝑓(𝑥) represents the plane as a function of the training samples x, 𝑏

is the bias term and wT is the weight vector. In order to learn the model
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parameters 𝑏 and w, the following function should be optimised:

1

2
||𝑤||2, 𝑠.𝑡. 𝑦𝑖(𝑤

𝑇xi + 𝑏) ≥ 1 (2.8)

which is solved by means of a Lagrangian multiplier, yielding the optimisa-

tion expression:

min
𝛼

1

2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗x
T
i xj −

𝑚∑︁
𝑖=1

𝛼𝑖 (2.9)

When the last equation is solved using quadratic programming, returns a

matrix of 𝛼 coefficients for each xi. Substituting the values in 𝛼 into one

of the Lagrangian constraints the value for w and for the bias term 𝑏 can

be solved. Besides, 𝛼 matrix includes zero and non-zero coefficients. The

non-zero values indicates the support vectors, mentioned above, which are

the feature points in the space which create the hyperplane [58].

SVM can split the non-linear points using the kernel method resulting

in an output similar to that one of a linear model. This method gives SVM

algorithm the feature of flexibility and the ability to handle more complex

data. However, the kernel method adds more computational cost due to the

increased complexity of the quadratic programming optimisation [59].

2.3.1.3 k-Nearest Neighbours

k-Nearest Neighbours (kNN) is a simple machine learning approach used

for pattern recognition either for classification or regression. The 𝑘 closest

samples to the test object in the feature space are selected as an input,

where 𝑘 is a positive integer. The result is based on the use purpose: For

classification purpose, the algorithm process returns a class. The decision is
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based on a voting among the 𝑘 closest samples to the object, when 𝑘 = 1, the

object is then classified into the same category of that single closest sample.

For regression purpose, the algorithm process returns a property value. The

result is based on the average value of the 𝑘 closest samples values [60].

In kNN algorithms, a weight can be added to the participation of each

neighbour. In doing so, the closer samples participates more to the final

decision than the farther ones. Usually a weight of 1/𝑑 is assigned to each

neighbour, where 𝑑 is the distance between the object and the neighbour [61].

In spite of the fact that no training dataset is clearly needed for kNN algo-

rithms, the 𝑘 nearest neighbours can be considered as a training set. In kNN

classification, the classes of the selected neighbours are known, and so on for

the property values in kNN regression.

Figure 2.8 shows an example of kNN classification. This examples in-

cludes two classes: the first one is represented by the blue squares and the

second class is represented by the red triangles. The kNN task is to classify

the object represented by the green circle either to the first or second class.

The value of 𝑘 plays a significant role in the final decision. When 𝑘 = 3,

based on the voting among the three nearest neighbours (inside the solid

line circle), the object is classified as a red triangle. However, when 𝑘 = 5,

based on the voting among the five nearest neighbours (inside the dashed

line circle), the object is classified as a blue square [62].

Many distance measures are used in kNN algorithms, the most common

one is the Euclidean distance [63]. For given points 𝑥 and 𝑦, where 𝑥 =

(𝑥1, 𝑥2, ..., 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑛), the Euclidean distance is calculated as

follows:
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Figure 2.8: An example of kNN classification.

d(x,y) = d(y,x) =
√︀

(𝑦1 − 𝑥1)2 + (𝑦2 − 𝑥2)2 + · · ·+ (𝑦𝑛 − 𝑥𝑛)2 (2.10)

=

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖)2 (2.11)

Some other distance measures used in kNN algorithms are: Hamming

distance [64], Manhattan distance [65] and Minkowski distance [66].

2.3.1.4 Ensemble Learning

Ensemble learning is to combine more than one machine learning (ML) ap-

proach to learn the model. The final decision of the model is made based

on the outputs of all ML approaches involved in the process. The need for

ensemble learning comes from the fact that, in real-word practice, there is

no optimal approach and each one has its own limitations. Thus, ensemble
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learning makes use of the strengths and manage the weaknesses of each ap-

proach resulting in the best model which is able to make the best decision

overall. The model built by ensemble learning has better accuracy than any

other individual contributed approach [67].

Many methods are used to combine the outputs of ML approaches, the

most commonly used ones are: the linear combiner, the product combiner

and the voting combiner. The three methods are not complex and have pre-

sented good results in handling with different problems. However, a specific

combiner can be used for a particular problem [68].

The linear combiner can be used to get the class probability estimates for

both regression and classification models. However the models output should

be real-valued numbers. For a given model 𝑓𝑡(𝑦|𝑥), for a set of 𝑡 = {1...𝑇},

the estimate of the probability of class 𝑦 given input 𝑥 is:

𝑓𝑡(𝑦|𝑥) =
𝑇∑︁
𝑡=1

𝑤𝑡𝑓𝑡(𝑦|𝑥) (2.12)

Where 𝑤𝑡 is the weight, the simple probability estimate is when 𝑤𝑡 = 1/𝑇 .

The product combiner is given as follows:

𝑓𝑡(𝑦|𝑥) =
1

𝑍

𝑇∏︁
𝑡=1

𝑓𝑡(𝑦|𝑥)𝑤𝑡 (2.13)

Where 𝑍 is a normalization factor to ensure 𝑓 is a valid distribution.

As previously mentioned, the linear and product combiners are used

only when the models outputs are real-valued numbers. Nonetheless, when

the models outputs are class labels, the voting combiner can be used. Each
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individual model votes for a specific class and the ensemble model select the

class of the largest vote, which expressed as:

𝑇∑︁
𝑡=1

𝑤𝑡𝑑𝑡,𝑗(𝑥) = 𝑚𝑎𝑥𝑗=1,...,𝐶

𝑇∑︁
𝑡=1

𝑤𝑡𝑑𝑡,𝑗 (2.14)

Where 𝑡 = {1...𝑇}, 𝑗 = {1...𝐶}; 𝑇 is the number of classifiers and 𝐶 is the

number of classes; 𝑑𝑡,𝑗 ∈ {1, 0} based on the classifier 𝑡 if it selects 𝑗 or not.

2.4 Threat Projection and Impact Assessment

Threat projection and impact assessment have similar, if not the same, in-

terpretation in the fusion community. Two different fusion tasks can be

considered, the first one is threat projection, which focuses on predicting

future attack actions, i.e. where in the network will be attacked and what

exploit(s) will be executed? The second task is impact assessment, which

may be interpreted as estimating damages caused by current and future at-

tack actions. Estimating damages or effects of attack actions on a network

clearly depends on network contexts, some of which may not be automati-

cally gathered, such as the criticality of a machine (due to data stored or its

operational role) in the network. Damages to be caused by future actions

also depend on threat projection [69].

2.5 Summary

This chapter presents an overview of advanced persistent threat (APT),

intrusion detection and prevention systems (IDPSs) and machine learning
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(ML). APT is a new and more complex version of known multi-step attack,

usually directed at business and political targets.

IDPSs are used to detect intrusions to the monitored systems using

different methodologies such as: (1) anomaly based methodology, which is

based on a comparison between the monitored activity and a baseline profile;

(2) signature based methodology, which is based on a comparison between

the monitored system signatures and a signatures database; (3) stateful pro-

tocol analysis based methodology, which is based on a comparison between

the monitored behaviour and a protocol database; and (4) hybrid based

methodology, which is a combination between two or more methodologies.

Machine learning gives the computers the ability to learn without being

explicitly programmed. Some of ML approaches, used in this research, are

described such as: (1) decision tree learning, in which the final decision is

made through a sequence of internal functions; (2) support vector machine,

in which a hyperplane is created to represent the feature points in the space;

(3) k-nearest neighbours, in which the k closest samples are voting for the

final decision; and (4) ensemble learning, in which more than one machine

learning (ML) approach are combined to learn the model.





Chapter 3

Advanced Persistent Threats:

Detection and Defence

This chapter explores the state of the art for the APT detection. The re-

lated work is categorised into three main areas: previous research findings

on APTs, analysing already identified APTs and detecting possible APT

attacks.

3.1 Previous Research Findings on APT At-

tacks

In February 2013, Mandiant, an information security company in the USA,

released their APT1 report [13] revealing one of China’s cyber spying units.

In this report, Mandiant presents significant information regarding the APT1

activities. More than 141 companies were compromised by APT1 and the

size of the exfiltrated data was hundreds of terabytes. APT1 showed and

35



Advanced Persistent Threats: Detection and Defence 36

proved that it had the ability to attack tens of corporations simultane-

ously. The target corporations were working on 20 different industries. Once

APT1 breached the victim’s network and got the point of entry, the attack-

ers maintained periodic visits to the target’s network over several months or

years. The categories of the stolen data were various including technology de-

signs, company bylaws for corporations, manufacturing costs, meeting min-

utes, performance analysis results, operating agreements, business progress,

non-disclosure agreements, memorandums of understanding and employment

agreements. Moreover, APT1 were able to get access to all companies’ emails

and lists of contacts. For example, the stolen data from only one company

"𝑥" was 6.5 terabytes, this data had been stolen over 10 months. APT1

targeted companies which used English as their main language. 87% of the

compromised organizations were located in English-speaking countries.

Regarding the APT1 infrastructure, it is found that the APT1 com-

puter systems are deployed in 13 countries. APT1 controls more than 937

Command and Control (C&C) servers hosted on 849 different IP addresses.

More than 97% of the detected connections between the attackers and the

APT1 infrastructure were established from IP addresses registered in Shang-

hai using machines configured to use Chinese language.

In October 2012, an investigation, known as (Red October) [14], was

performed by Kaspersky Lab’s Global Research and Analysis Team. This

research had been conducted after the computer networks of many interna-

tional diplomatic service agencies had been compromised. As a result of this

investigation, a network of computer systems used for spying was detected

and analysed. Collecting information from the target companies was the ma-

jor aim of the intruders. The attackers were targeting various diplomatic and

governmental corporations around the world. In each case the attacks were
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constructed of multiple stages, with the information gathered in each stage

informing the subsequent stages of the arrack. For instance, the gathered

credentials had been used frequently over a periodic visits to the victim’s

network.

Regarding the attackers’ infrastructure, at least 60 domain names were

established and many C&C servers, used as proxies to hide the main C&C

server, were hosted in several countries (most of them in Germany and Rus-

sia). This infrastructure had been used to control the compromised networks.

A multi-functional kit was developed by the attackers to collect the data from

the infected machines. the attackers used more than one channel for C&C

server communications, therefore, in case one channel was closed the attacker

could still have access to the compromised computer. In addition to the per-

sonal computers, the attackers were able to breach and gather information

from mobile devices, removable disk drives and enterprise network equip-

ment. The research team mentioned that some vulnerabilities in Microsoft

Word and Microsoft Excel had been exploited to breach the target’s network

and get the point of entry.

In January 2010, Google released a report on APTs called Operation

Aurora [15]. The report stated that Operation Aurora had started in July

2009 and was successful to breach 34 companies’ networks. In addition to

Google, Dow Chemical, Northrop Grumman, Morgan Stanley, Symantec and

Yahoo had been targeted by this attack. The first step of those attacks de-

pended on social engineering techniques and used spear phishing, the attacks

had started by sending emails to the employees of the target company, those

emails contained links to malicious websites and were formatted in such a

way to persuade the victim to click on the links. Malicious JavaScript codes
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was inserted into those websites to exploit a vulnerability in the Internet Ex-

plorer browser. According to security vendor McAfee, the techniques used

in the attacks were more advanced in comparison to those used in previous

attacks.

The Google report revealed that Operation Aurora used a variety of

malware to compromise the targets’ networks. After installing the malware,

C&C communications were maintained to control and instruct the infected

machines. All C&C communications were encrypted to avoid the traditional

intrusion detection systems, therefore, those connections were established

via TCP port 443, the default port used by secure http. After getting the

point of entry, the attackers started to used the current infected machines to

compromise other machines in the same network; this technique, known as

pivoting, enabled the attackers to avoid the detection rules set by firewalls.

In doing so, the attackers were able to move in the target network, search for

vulnerabilities, steal date and transmit it into external servers which were

controlled by the attackers.

In March 2009, an investigation study on GhostNet [16] was released

by the SecDev group in Canada. This investigation exposed a cyber spy-

ing network, called GhostNet, operated by attackers located in China. The

attackers targeted the Tibetan organizations in many countries around the

world. The SecDev research group was granted full access to the targeted

Tibetan organizations’ networks including the Private Office of the Dalai

Lama. After analysing the targeted networks and available data, the re-

search team revealed insecure web-based interfaces to four control servers.

The attackers used those interfaces to get the point of entry and breach into

the targeted networks. By tracking those four servers traffic, the SecDev

group detected a large-scale network of exploited machines. More than 1295
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machines in 103 countries were compromised, in which almost 30% of them

are considered as high-value assets located in governmental ministries and

embassies.

The compromised machine was instructed by the attacker to download

a Trojan known as gh0st RAT. The pieces of gh0st RA were hosted on servers

located on the island of Hainan in China. This Trojan gives the attacker a

full and real-time control on the infected machines. Meaning, the attacker

was able to use the compromised machine to upload and download files,

moreover, the attacker had access to the microphones, speakers and cameras

connected to the exploited computers. Social engineering techniques were

used to compromise large number of machines in the target network. Spear

phishing emails were sent to selected individuals, those emails contained

malicious attachments, in which Trojan horse programmes and exploit codes

were packed with the attached documents. The attacker then, exploiting the

infected computer, started to move in the target network and search for the

noteworthy servers which contain the data of interest. The research team

believed that the majority of the high-value targets were infected by receiving

malicious emails appeared as they were contained legitimate documents and

sent from individuals they contacted them before.

3.2 Analysing Already Identified APT Attacks

An investigation framework to find the possible targets of the APT attack is

proposed in [17]. The framework is based on analysing a known APT victim,

extracting the victim attributes and then the developed engine searches for

the possible APT targets. The authors state that the proposed system can

reduce the false positive rate with regards to N-gram based approaches.
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The work in [18] is based on a big data of APT attacks provided by

Symantec over the year 2011. The authors use TRIAGE data analytic to

classify the data into groups of APTs in which each group of attacks most

likely performed by the same attackers. The next step is to process and

analyse the characteristics and dynamics of each group separately, aiming

to determine the modus operandi attributes of the attackers. To investigate

the spread and complexity degree of each attacks group, the authors analyse

the malicious attachments used in the attacks campaigns. The authors claim

that most of the attacks used social engineering techniques to get the point of

entry to the targets’ networks. The attackers used simple malware, however,

they exploited unknown vulnerabilities at that time.

An in-depth analysis of Duqu is presented in [20]. A European organ-

isation was targeted by attackers using the Duqu malware to steal data.

The authors propose the Duqu detector toolkit, which consists of six inves-

tigation tools developed to detect the Duqu malware involved in the APT

attacks. The proposed tools can be classified into three main areas: Find-

PNFnoINF, FindDuquSys and FindDuquTmp tools, to find file existence

anomalies; FindDuquReg and CalcPNFEntropy tools, to find registry entries

and properties of files; and GetProcMem tool, to analyse code injection into

running processes. The outputs of all those tools are then written into a spe-

cific log for a possible correlation of the findings. The authors admit that the

empirical results shows a high rate of false negatives. Moreover, the detec-

tion output needs to be carefully investigated by the network security team.

Besides, the detection tools are developed to detect the APT attacks partic-

ularly performed using the Duqu malware, this means, the attack cannot be

detected when using a different piece of malware.

In [19], the authors use an undirected graph to build a map of the
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APT activities. They mention that they can find related APTs based on

the targets shared between different attacks. They can then determine the

clusters which could led to the attackers or malware developers.

3.3 Approaches to Detecting APT Attacks

In this section, some APT detection systems are analysed in more details

than others as they are used for a comparison with the developed system in

Section 6.3 on page 140.

TerminAPTor, an APT detector, is described in [70]. This detector uses

information flow tracking to find the links between the elementary attacks,

which are triggered within the APT life cycle. TerminAPTor depends on

an agent, which can be a standard intrusion detection system, to detect

those elementary attacks. This agent also records the information flows and

generates alerts in a chronological order. Each alert can be triggered by

several events. Each event is considered as a flow of information and has

four attributes: the event type, the timestamp, a list of references of input

objects, and a list of references of output objects. All events are fed to

TerminAPTor which assumes that the agent can detect all the elementary

attacks. The main objective of TerminAPTor is to decide if two events are

related to each other and find the APT scenarios. To consider two events are

correlated, there must be an information flow from the first event output to

the input of the second event. Therefore, each event should be determined

to which elementary attack belongs and then a tag is created for each new

detected attack. Each tag is attached to an object which is part of an

information flow and all tags are propagated through the monitored system

by information flows. The APT detector processes the information flows in a
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chronological order and checks the flow input, if it is tagged, and the event, if

it is part of an attack. TerminAPTor, based on specific rules, can then ignore

the triggered event, propagate the tags, create a new APT scenario or add

the event into a created APT scenario. The authors evaluated TerminAPTor

by simulating only two APT scenarios and mentioned that the APT detector

needs to be improved by filtering the false positives.

An APT detection system based on C&C domains detection is intro-

duced in [71]. This work analyses the C&C communication and states a new

feature that the access to C&C domains is independent while the access to

legal domains is correlated. Based on this feature, a new concept, which

is concurrent domains in the domain name service records (CODD), is pro-

posed. CODDs are the domains queried by the same host during a specific

time window. The suggested method depends on evaluating the correlation

between the hosts and domains and applies classification algorithms. The

detection of C&C domains relies on three features of C&C communications

which are: (1) C&C communication is HTTP-based, (2) victims connect to

C&C domains lowly and slowly, and (3) access to C&C domains is indepen-

dent. The detection method is based on the fact that C&C domains have

significantly less CODDs than benign ones. This is due to the loading of in-

lined components, such as ads and multimedia from other domains which are

auto accessed when a web page is loaded, and the continuous access of legiti-

mate domains. However, C&C domains do not have inlined components and

independently accessed. Despite the fact that the detection system achieved

significant results when validated on a public dataset, the authors mentioned

that the detection can be easily evaded when the infected hosts connect to

the C&C domains while users are surfing the Internet. This case increases

the number of CODDs for C&C domains causing to be classified as benign

ones. Moreover, missing the detection of C&C domains leads to failure in
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APT detection since this system depends on detecting only one step of the

APT life cycle.

An approach for APT detection based on spear phishing detection is

explored in [72]. This approach depends on mathematical and computational

analysis to filter spam emails. Tokens, which are considered as a group of

words and characters such as (click here, free, Viagra, replica), should be

defined for the detection algorithm to separate legitimate and spam emails.

For each new email, the whole message is processed as a string, then Bayes’

theorem is applied and the conditional probability and multiplicative rule are

calculated. A threshold is given and the email is classified. This approach can

be efficient when spear phishing attack is targeting hosts randomly. However,

this is not the case in APT where the attacker targets selected host and

crafts the malicious email carefully to appear as it is sent to that specific

host. Meaning, the spear phishing email might not include any of the tokens

which are necessary for the algorithm process. Additionally, depending on

one step for APT detection leads the system to fail when missing that step.

A statistical APT detector, similar to TerminAPTor detector [70] previ-

ously mentioned on page 41, is developed in [73]. This system considers that

APT undergoes five states which are delivery, exploit, installation, C&C and

actions; and several activities are taken in each state. The generated events

in each state are correlated in a statistical manner. The correlation, across

multiple data sources, undergoes three levels: (1) Host-level combination, to

identify malicious host-level activities; (2) Host-neighbourhood scoring, to

detect potential movements of the attacker to infect other hosts; (3) Across-

host combination, to find machines targeted by the attack. The events are

extracted from four sources: mail, windows event, web, and domain name

server (DNS) logs. Apart from the mail logs, all the data sources provide



Advanced Persistent Threats: Detection and Defence 44

the IP addresses of the event’s source and destination which are used for the

purpose of correlation. This system requires significant expert knowledge to

set up and maintain.

An active-learning-based framework for malicious PDFs detection is sug-

gested in [74]. These malicious PDFs can be used in the early steps of APT

to get the point of entry. The system collects all PDFs transferred over the

network, then all known benign and malicious files are filtered by the "known

files module" which depends on white lists, reputation systems and antivirus

signature repository. Following this, the remaining files "unknown files" are

checked for their compatibility as viable PDF files. Based on the fact that

most of the malicious files are incompatible, the unknown incompatible files

are blocked giving the system a significant reduction of the computational

cost. The unknown compatible PDFs are then processed by a detection

model using SVM classifier with the radial basis function (RBF) kernel. This

model is trained on a training dataset contains malicious and benign PDF

files. As an output of the detection model, the unknown compatible PDF

files can be classified as benign or malicious, or suspected as informative.

The PDF files are considered as informative when the classifier is not confi-

dent regarding its classification (the files lie inside the SVM margin) or the

files have the maximal distance from the SVM separating hyperplane. These

informative files are sent to a security expert to be analysed manually, then

they are labelled and added to the training dataset to retrain the detection

model. In addition, the malicious labelled PDFs are added to the antivirus

signature repository to maintain its updatability. Although this framework

has not been implemented and validated yet, it highlights and addresses the

updatability issue of the current detection models. However, this suggested

approach detects only one step of the APT life cycle.
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A classification model for APT detection is presented in [75]. This model

is built based on machine learning algorithms. First, the legitimate traffic for

normal users is analysed aiming to extract the CPU usage, memory usage,

open ports and number of files in the system32 folder. A piece of malware,

which is previously used for the APT attack, is injected into the network

and the four features are extracted. The dataset of benign and malicious

features are used to train the detection model using different machine learn-

ing algorithms. The trained models are validated on a test dataset and the

best one, which has the highest accuracy, is chosen. The model can then be

used for detection. It is mentioned that the random forest classifier has a

detection accuracy of 99.8%. However, this model is limited to detect APT

only if the attacker used the same piece of malware used when training the

model.

An approach based on Data Leakage Prevention (DLP) is proposed

in [76]. This approach focuses on detecting the last step of APT which is

the data exfiltration. A DLP algorithm is used to process the data traffic to

detect data leaks and generate “fingerprints” according to the features of the

leak. These fingerprints might have various types of information such as data

destination or file hash. However, they should have a standardized format

such as Extensible Markup Language (XML). The fingerprints are then sent

to a fingerprint database to acquire information regarding the data leak.

The acquired information is provided to external cyber counterintelligence

(CCI) sensors in order to track the location or path of the leaked data. The

CCI sensors can be operated by the government or trusted partners such as

operating system manufacturers, antivirus software companies and Internet

service providers. These sensors have passive access to several nodes on

the Internet and can search for a match with the leaked data fingerprints.

If a match is found, this means either the leaked data location has been
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found or the leaked data has passed through the corresponded sensor node.

This information is passed back to the CCI analysis unit to be used along

with other information provided by other CCI sensors to detect the actual

attacker. This approach is limited to detect only one step of APT which is

the data exfiltration. In addition, it cannot achieve the real time detection

as the CCI analysis unit should wait for the information from the sensors.

Moreover, it is not guaranteed that the CCI sensors can provide the required

information regarding the leaked data fingerprints.

A working prototype, SPuNge, is presented in [21]. The proposed ap-

proach depends on the gathered data on the hosts’ side and aims to detect

possible APT attacks. The authors state that their system can successfully

filter the large number of the threat events on the users’ side into a manage-

able amount can be processed effectively. SPuNge uses a set of clustering

methods to classify the infected machines into groups in which each group

has the same malicious activity such as connecting to C&C servers, drive-by

download attack or exploit kits connection. Then the machines’ location and

organisations’ field of work (e.g., oil & gas or government) are correlated to

detect malicious attack activities. SPuNge undergoes two main phases, in

the first one, the detected malicious URLs are analysed. Those URLs can be

connected by the hosts’ computers over HTTP(S) with an Internet browser

or by malware installed on the infected machines. The computers which

show a similar activity are then determined. For example, all computers

which request the same URLs during the same attack campaign are grouped

together. And so on for the computers which connect to the same URLs

because they are infected with the same malware. To achieve the first phase

aims, SPuNge relies on a set of clustering methods to group the machines

according to the requested malicious URLs. In the second phase, the con-

nections of the machines clustered in the first phase are correlated to find
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servers, companies or networks which are possibly involved in APT activi-

ties. For instance, machines can be correlated if they are located in the same

location or working for the same organisation. To achieve the second phase

aims, SPuNge uses an analysis framework to detect the malicious activities

involved in APTs. Although the authors claim that SPuNge can work effec-

tively on APTs detection, their system basically depends on detecting one

activity of the APT attack, which is malicious URL connection, and does

not consider the other activities of APT. Meaning, if the detection system

misses the malicious URL connection, the whole APT scenario will not be

detected. In addition, the proposed approach is based on a gathered data

provided by an anti-virus vendor, in other words, the system needs to be fed

with the data and cannot achieve real time detection.

A context-based framework for APT detection is explained in [77]. This

framework is based on modelling APT as an attack pyramid in which the

top of the pyramid represents the attack goal, and the lateral planes indi-

cates the environments involved in the APT life cycle. Theses lateral planes

are different from one organisation to another according to the environments

where the events are recorded. This approach considers four main planes:

(1) physical plane, records events that relate potential targets to physical ma-

chines or working locations; (2) user plane, records events that are related

to privileged users who have access to sensitive data; (3) network plane,

this plane includes all the events recorded by firewalls, intrusion detection

and prevention systems, network flow sensors, routers and VPN access; and

(4) application plane, records server and end host application logs, and appli-

cation gateways such as http, SIP, RTP, DNS, SSH, ftp, telnet. The recorded

events are collected and the profile selection is applied. The framework then

links the events into contexts which are fed to the alert system. For each

context, the alert system applies the detection rules which can be classified
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into three major categories: (1) signature based rules, match the observed

events and behaviour against known signatures database; (2) profiling based

rules, compare the observed behaviour or profile with a behaviour baseline;

and (3) policy based rules, which are the static rules set according to the

organization policies. If an APT is detected by the alert system, an alert is

sent to the security analyst to start investigating the alert. This detection

framework is similar to the statistical detector [73], previously mentioned on

page 43, and requires significant expert knowledge to set up and maintain.

With regards to the processing of multiple streams of events, IBM sug-

gests a conceptual model for event processing in [22] and describes the basic

requirements to design an efficient correlation system. The work explained

in [23] is based on finite state machines and uses a query language for event

processing. Both systems can process the events in real time, a key limita-

tion shared by both approaches is that they cannot detect so called low &

slow attacks, which take place over an extended time period.

3.4 Summary

Taking into consideration the great damage and substantial financial loss

caused by the APT attacks, and based on the fact that the current intru-

sion detection methods still have weaknesses in the detection of APT, there

is a need to research new approaches and techniques regarding the APT

detection. Most of the research in the area of APT detection has focused

on analysing already identified APTs or detecting a particular APT attack

which uses a specific piece of malware. Some previous studies have attempted

to detect potential APT attacks. However, they face serious shortcomings

in achieving real time detection [21], detecting all APT attack steps [21],
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balance between false positive and false negative rates [20], and correlating

of events spanning over a long period of time [22] [23].

This thesis presents a Machine-Learning-based APT detection system

(MLAPT) which runs through three main phases: threat detection, alert

correlation and attack prediction. The suggested detection modules take into

consideration most of the APT attack steps and the developed algorithms

are able to process the network traffic in real time. Besides, the proposed

correlation framework can reduce the false positive rate resulting from the

detection system. To the best of our knowledge, the prediction module is

a novel approach in terms of using machine learning to predict APT in its

early steps.





Chapter 4

A Machine-Learning-Based

System for Real-Time APT

Detection and Prediction

In this chapter, the proposed Machine-Learning-based APT detection sys-

tem (MLAPT), developed by the author, is presented. The architecture of

MLAPT is introduced first, along with a brief definition of the three main

phases of MLAPT: Detection; Correlation; and Prediction. Following this,

more description and details regarding each MLAPT phase are given. This

chapter defines and explains the MLAPT phases, while the implementation

of MLAPT is presented in the following chapter.

4.1 Design Rationale

Since the APT attack is a multi-step attack, the detection of this attack

should go through the detection of the techniques used within the APT life

51
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cycle. Therefore, detection modules should be developed to detect the most

common techniques used in the APT attack steps. However, detecting an

APT technique itself does not mean detecting an APT attack.

Even though an individual module alert indicates a technique which can

possibly be used in an APT attack, this technique can be used for other types

of attacks or it can be even a benign one. For example, domain flux, port

scanning and malicious C&C communications, used in the APT attack, can

be also used for botnet attacks [78]. Moreover, Tor network connection, used

for data exfiltration in the APT attack, can also be used legally to protect

the confidentiality of a user traffic [79]. Thus, individually these detection

modules are ineffective and their information should be fused to build a

complete picture regarding an APT attack. For this reason, a correlation

framework should be developed to link the outputs of the detection modules

and reduce the false positive rate of the detection system.

Predicting the APT attack in its early steps would minimise the damage

and prevent the attacker from achieving the goal of data exfiltration. With

a historical record of the correlation framework output, machine learning

algorithms can be used to train a prediction model. As the purpose of the

prediction model is to classify the early alerts of the correlation framework,

classification algorithms should be selected to train the model.

4.2 MLAPT Architecture

MLAPT runs through three main phases: threat detection, alert correlation

and attack prediction. Figure 4.1 shows the architecture of MLAPT.
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Figure 4.1: The Architecture of MLAPT.

Initially, the network traffic is scanned and processed to detect possible

techniques used in the APT life cycle. To this end, eight detection mod-

ules have been developed; each module implements a method to detect one

technique used in one of APT attack steps, and it is independent from the

other modules. MLAPT implemented eight modules, presented later in Sec-

tion 4.2.1 on page 54, to detect the most commonly used techniques in the

APT life cycle. The output of this phase are alerts, also known as events,

triggered by individual modules.

The alerts raised by individual detection modules are then fed to the

correlation framework. The aim of the correlation framework is to find alerts
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could be related and belong to one APT attack scenario. The process in

this phase undergoes three main steps: alerts filter to identify redundant or

repeated alerts; clustering of alerts which most likely belong to the same APT

attack scenario; and correlation indexing to evaluate the degree of correlation

between alerts of each cluster.

In the final phase, a machine-learning-based prediction module is used

by the network security team to determine the probability of the early alerts

to develop a complete APT attack. This allows the network security team to

predict the APT attack in its early steps and apply the required procedure

to stop it before completion and minimize the damage. The detection of

APT is different from the prediction. The detection can be when two or

more steps of APT are correlated. However, the prediction can be achieved

after the first two steps of APT are linked.

Combining all the proposed modules in one system makes it relevant to

APTs, as the detection modules are developed to detect most commonly used

techniques in the APT life cycle. The outputs of those detection modules

are then fed to the correlation framework to link them aiming to find the

APT scenario. The prediction module is based on the correlation framework

output to achieve the system functionality of the APT prediction.

4.2.1 MLAPT Detection Modules

The detection modules play a significant role in MLAPT to achieve its func-

tionality. MLAPT implemented eight modules, these modules are chosen to

detect the most commonly used techniques in APT, according to several re-

ports like Mandiant APT1 report [80] and Trend Micro report [1], and they

are able to form a clear picture on the APT attack scenario. The detection of
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all modules is in real time, as MLAPT can process the sniffed network traffic

immediately and does not need to store it. Some of the detection modules

are blacklist-based, some of these blacklists are publicly published and some

are related to private projects. All used blacklists are automatically updated

within MLAPT, based on different intelligence feeds at once. Taking into

consideration the APT steps, mentioned in Section 2.1 on page 13, Table 4.1

shows the MLAPT detection modules for each APT step.

Table 4.1: The MLAPT detection modules for each APT step.

APT step Detection modules

Step 1
Intelligence gathering

This initial step includes a passive
process which cannot be detected
through network traffic monitoring,
so there are no detection modules.

Step 2
Point of entry

Disguised exe file detection
Malicious file hash detection
Malicious domain name detection

Step 3
C&C communication

Malicious IP address detection
Malicious SSL certificate detection
Domain flux detection

Step 4
Lateral movement

This is internal traffic within the
target’s network. MLAPT monitors
the inbound and outbound traffic,
so there are no detection modules.

Step 5
Asset/Data discovery

Scanning detection

Step 6
Data exfiltration

Tor connection detection

4.2.1.1 Disguised exe File Detection (DeFD)

According to Mandiant APT1 report [80], spear phishing is the most com-

monly used technique to get the point of entry in APT. The spear phishing
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emails contain either a malicious attachment or a hyperlink to a malicious

file. The subject line and the text in the email body are usually relevant to

the recipient. Executable files supposed to end in .exe are made to appear as

simple document files (pdf, doc, ppt, excel) to convince the victim to click

on it.

The DeFD module detects disguised exe files over the connections. In

other words, it detects if the content of the file is exe while the extension is

not exe. The network traffic is processed, all connections are analysed and

all exe files identified when transferring over the connections are filtered.

This filtering is based on the file content. Following this, the file name

extension should be checked to decide about raising an alert on disguised

exe file detection.

4.2.1.2 Malicious File Hash Detection (MFHD)

The MFHD module detects any malicious file downloaded by one of the

network hosts. It is based on a blacklist of malicious file hashes [13]. The

network traffic is processed, all connections are analysed and MD5, SHA1 and

SHA256 hashes are calculated for each new file identified when transferring

over a connection. The calculated hashes are then matched with the blacklist.

4.2.1.3 Malicious Domain Name Detection (MDND)

The MDND module is used to detect any connection to a mali-

cious domain name. It is based on a blacklist of malicious domain

names [81] [82] [83] [84] [85] [86]. DNS traffic is filtered, all DNS requests

are analysed and the queries are matched with the blacklist.
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4.2.1.4 Malicious IP Address Detection (MIPD)

The MIPD module detects any connection between an infected host and a

C&C server. The detection is based on a blacklist of malicious IPs of C&C

servers [87] [88] [89] [90]. MIPD processes the network traffic to search for a

match in the source and destination IP addresses for each connection with

the IP blacklist.

4.2.1.5 Malicious SSL Certificate Detection (MSSLD)

C&C communications are usually protected by Secure Sockets Layer (SSL)

encryption, which makes it difficult to identify malicious traffic. MSSLD

aims at detecting C&C communications based on a blacklist of malicious SSL

certificates [91] [92]. This blacklist consists of two forms of SSL certificates,

the SHA1 fingerprints and the serial & subject, which are associated with

malware and malicious activities. The network traffic is processed and all

secure connections are filtered. The SSL certificate of each secure connection

is then matched with the SSL certificate blacklist.

4.2.1.6 Domain Flux Detection (DFD)

One common technique used for C&C communications is the domain flux

technique, in which each infected machine separately uses a Domain Gener-

ation Algorithm (DGA) to generate a list of domain names [93]. By using

the domain flux technique, the infected host attempts to query and connect

to a large number of generated domain names, which are expected to link

the host to the C&C servers. This technique makes it difficult for law en-

forcement to successfully shut down a large number of domains. To prevent
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infected hosts from connecting to the C&C servers, law enforcement needs to

pre-register all the domains which an infected host queries every day before

the attacker registers them [94].

The DFD module detects algorithmically generated domain flux, where

the infected host queries for the existence of a large number of domains,

whilst the owner has to register only one. This leads to the failure of many

of DNS queries. DFD utilizes DNS query failures to detect domain flux

attacks. The network traffic is processed, particularly DNS traffic. All DNS

query failures are analysed and a threshold for DNS query failures from

the same IP address is imposed to detect domain flux attacks and identify

infected hosts.

4.2.1.7 Scan Detection (SD)

Network scanning provides list of open ports, closed ports and filtered ports.

Network related details such as IP address, MAC address, router, gateway

filtering, firewall rules, etc. can be obtained through such scan [95].

The SD module detects port scanning attacks which aims to identify

the noteworthy servers and services for future data exploitation. SD is based

on tracking all failed connection attempts, and a threshold for those failed

attempts is imposed over a specific time interval to detect scanning attacks

and identify infected hosts.
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4.2.1.8 Tor Connection Detection (TorCD)

Tor [96] [97] is an anonymous communication network used to secure the

privacy of user traffic by encrypting all connections through the overlay net-

work. Tor uses onion routing to direct client’s traffic over a circuit of different

relays to its destination, denying any single relay to know the complete path

of the traffic [98]. Tor is often misused by criminals and hackers to remotely

direct and instruct infected machines [99].

The TorCD module detects any connection to a Tor network. It is based

on a list of Tor servers which is publicly published [100]. The network traffic

is processed and the source and destination IP addresses for each connection

are matched with Tor servers list.

4.2.2 FCI Correlation Framework

This phase of MLAPT takes the output of all detection modules (the gen-

erated alerts) as an input, and aims to find alerts could be correlated and

belong to one APT attack scenario. FCI (Filter, Cluster, and Index) runs

through three main steps: (1) Alerts filter, which filters redundant or re-

peated alerts; (2) Alerts clustering, which clusters alerts which potentially

belong to the same APT attack scenario; and (3) Correlation indexing, which

evaluates the correlations between alerts of each cluster.

In Section 4.2.1, eight attack detection modules are presented, each

module detects one possible technique used in one of the APT steps. The

output of each module is an alert which is generated when an attack is

detected. Each alert has seven attributes (alert_type, timestamp, src_ip,

src_port, dest_ip, dest_port, infected_host). Table 4.2 summarizes the



A Machine-Learning-Based System for APT Detection and Prediction 60

steps of the APT attack that can be detected by MLAPT and the alerts

which can be generated for each step.

Table 4.2: The APT attack detectable steps and alerts.

APT step Alerts

(A) Step 2
Point of entry

(a1) disguised_exe_alert
(a2) hash_alert
(a3) domain_alert

(B) Step 3
C&C communication

(b1) ip_alert
(b2) ssl_alert
(b3) domain_flux_alert

(C) Step 5
Asset/Data discovery

(c1) scan_alert

(D) Step 6
Data exfiltration

(d1) tor_alert

All alerts generated by the detection modules are fed to the correlation

framework. However, those alerts are not the only ones detected by the

the modules. When an APT technique is detected, and before an alert is

generated, the module checks whether the same alert has been generated

during the previous day, if so, the alert is ignored. This alerts suppression

reduces the computational cost of the FCI correlation framework. The FCI

process steps will be explained in this section. As an output of the FCI

correlation framework, two main alerts can be generated:

∙ apt_full_scenario_alert: This alert is generated when FCI detects a

full APT attack scenario during a specific time window, called the

correlation time. This is the period in which APT is expected to com-

plete its life cycle. A full attack scenario is one in which all possible

detectable steps of an APT are detected by FCI. In other words, FCI

detects four correlated steps of an APT, i.e. four different alerts each
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one is from a different step. Based on Table 4.2, and taking into con-

sideration the APT life cycle, FCI is able to detect nine possible full

scenarios of APT (APT-full). These possible full APT scenarios can

be expressed as:

𝐴 = [𝑎1 ∨ 𝑎2 ∨ 𝑎3] (4.1a)

𝐵 = [𝑏1 ∨ 𝑏2 ∨ 𝑏3] (4.1b)

𝐶 = [𝑐1] (4.1c)

𝐷 = [𝑑1] (4.1d)

𝐴𝑃𝑇𝑓𝑢𝑙𝑙 = 𝐴 ∧𝐵 ∧ 𝐶 ∧𝐷 (4.1e)

∙ apt_sub_scenario_alert: This alert is generated when FCI detects

two or three, rather than all, correlated steps of an APT attack dur-

ing a specific time window. In this partial attack detection scenario,

alerts from one or two steps were not generated. Thus, FCI can gener-

ate two types of this alert: apt_sub_scenario_two_steps_alert ; and

apt_sub_scenario_three_steps_alert. FCI is able to detect forty six

possible APT sub-scenarios which can be expressed as:

𝐴𝑃𝑇𝑠𝑢𝑏 = [𝐴 ∧ (𝐵 ∨ 𝐶 ∨𝐷)] ∨ [𝐵 ∧ (𝐶 ∨𝐷)] ∨ [𝐶 ∧𝐷]∨

[(𝐴 ∨𝐵) ∧ (𝐶 ∨𝐷)] ∨ [𝐴 ∧𝐵 ∧ 𝐶] ∨ [𝐴 ∧ 𝐶 ∧𝐷] ∨ [𝐵 ∧ 𝐶 ∧𝐷]
(4.2)

The APT can still compromise the target network for months or years if

it is not detected. However, one week might be enough for APT to complete

one life cycle.
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4.2.2.1 Alerts Filter (AF)

The first module of the FCI correlation framework filters redundant or re-

peated alerts. The AF module takes all alerts generated by the various

detection modules as an input. For each new generated alert, the alerts filter

checks if the alert has been generated during the correlation time window. If

the new alert is the same type and has the same attributes of a recorded one,

then the new alert is ignored. This filtering module reduces computational

cost of the FCI correlation framework.

4.2.2.2 Alerts Clustering (AC)

This module clusters alerts which most likely belong to the same APT attack

scenario. One cluster can represent a possible APT full or sub-scenario, i.e.

it can contain one, two, three or four different alerts; each alert for a different

APT step. The AC module takes the AF output, all alerts generated by the

detection modules after repeated ones are filtered, as an input. All incoming

alerts are stored by AC for a correlation time. For each new alert, the AC

module checks all stored alerts for the clustering possibility. The clustering

algorithm in this module is scenario-based, which utilizes three main rules:

∙ Alert step: Alerts for the same APT attack step cannot be in one

cluster.

∙ Alert type: Alerts of the same type cannot be in one cluster.

∙ Alert time: Cluster’s alerts should be all triggered within the corre-

lation time, and alerts order should be corresponded with the APT

life cycle. Meaning, if t(d), t(c), t(b) and t(a) are the times when the

alerts from the APT steps six, five, three and two, respectively, have
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been triggered, the clustering algorithm can classify those alerts into

one cluster only if they meet the following two conditions:

t(d) > t(c) > t(b) > t(a)

t(d) - t(a) <= Correlation_time

The AC module has four processing engines, explained later in Sec-

tion 5.2.2 on page 94, each engine processes all alerts which belong to one of

the APT detectable steps. Based on the incoming alert step, a corresponded

engine runs. As a result of AC process, the new incoming alert can be classi-

fied into an existing APT cluster, a new APT cluster can be created, or the

new alert is ignored as it does not meet the rules and cannot be clustered at

all. The output of AC is APT clusters. Each cluster contains a maximum of

four alerts, which potentially belong to one APT full or sub-scenario. The

produced cluster alerts are evaluated using the correlation index algorithm,

presented in the following Section 4.2.2.3 on page 63, to decide whether

they are correlated. The prediction module uses a historical record of the

monitored network and takes the correlation dataset, built by FCI over six

months or more, as an input. The correlation dataset contains the correlated

clusters, both full and sub APT scenarios, and the correlation index 𝐶𝑜𝑟𝑟𝑖𝑑

for each cluster.

4.2.2.3 Correlation Indexing (CI)

The third processing module evaluates the correlations between alerts in each

cluster to determine if they belong to a full or sub APT attack scenario. This

module has two major functions. The first function is to evaluate the corre-

lations between alerts when building the cluster. The goal of this correlation

process is to filters clusters having uncorrelated alerts. The second function
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calculates the correlation index of each cluster by the end of the correlation

window. The latter function is essential to build a historical record of the

monitored network to be used in the next module of the FCI correlation

framework, namely the prediction module.

The correlation indexing (CI) algorithm makes use of the attributes of

each alert in the cluster to calculate the cluster’s correlation index 𝐶𝑜𝑟𝑟𝑖𝑑. To

find the 𝐶𝑜𝑟𝑟𝑖𝑑 for each cluster, the CI algorithm calculates the correlation

between each two alerts (steps) in the cluster. Therefore, three values are

calculated within each cluster: 𝐶𝑜𝑟𝑟𝑎𝑏, the correlation between the second

step (𝑎𝑙𝑒𝑟𝑡1) and the third step (𝑎𝑙𝑒𝑟𝑡2) of APT; 𝐶𝑜𝑟𝑟𝑏𝑐, the correlation

between the third step (𝑎𝑙𝑒𝑟𝑡2) and the fifth step (𝑎𝑙𝑒𝑟𝑡3) of APT; and 𝐶𝑜𝑟𝑟𝑐𝑑,

the correlation between the fifth step (𝑎𝑙𝑒𝑟𝑡3) and the sixth step (𝑎𝑙𝑒𝑟𝑡4) of

APT.

The clustering algorithm is based on alert_type and timestamp at-

tributes of each alert. However, the correlation indexing algorithm is based

on infected_host and scanned_host attributes. To calculate 𝐶𝑜𝑟𝑟𝑎𝑏, 𝐶𝑜𝑟𝑟𝑏𝑐

and 𝐶𝑜𝑟𝑟𝑐𝑑, taking into consideration the APT attack life cycle and the at-

tributes of each alert in the cluster, the CI algorithm utilizes the following

rules:

𝐶𝑜𝑟𝑟𝑎𝑏 =

⎧⎪⎨⎪⎩
1, if [𝑎𝑙𝑒𝑟𝑡2, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡2] = [𝑎𝑙𝑒𝑟𝑡1, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡1]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝐶𝑜𝑟𝑟𝑏𝑐 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if [𝑎𝑙𝑒𝑟𝑡3, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡3] = [𝑎𝑙𝑒𝑟𝑡2, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡2]

or [𝑎𝑙𝑒𝑟𝑡3, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡3] = [𝑎𝑙𝑒𝑟𝑡1, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡1]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶𝑜𝑟𝑟𝑐𝑑 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if [𝑎𝑙𝑒𝑟𝑡4, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡4] = [𝑎𝑙𝑒𝑟𝑡3, 𝑠𝑐𝑎𝑛𝑛𝑒𝑑_ℎ𝑜𝑠𝑡]

or [𝑎𝑙𝑒𝑟𝑡4, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡4] = [𝑎𝑙𝑒𝑟𝑡3, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡3]

or [𝑎𝑙𝑒𝑟𝑡4, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡4] = [𝑎𝑙𝑒𝑟𝑡2, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡2]

or [𝑎𝑙𝑒𝑟𝑡4, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡4] = [𝑎𝑙𝑒𝑟𝑡1, 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑_ℎ𝑜𝑠𝑡1]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

When 𝐶𝑜𝑟𝑟𝑎𝑏 equals to 1, this means there is a correlation between the

second step and the third step of APT and the corresponding alerts can be

in one cluster. When 𝐶𝑜𝑟𝑟𝑎𝑏 equals to 0, there is no correlation and the two

alerts cannot be in one cluster. And so on for 𝐶𝑜𝑟𝑟𝑏𝑐 and 𝐶𝑜𝑟𝑟𝑐𝑑.

The CI algorithm calculates the cluster’s correlation index 𝐶𝑜𝑟𝑟𝑖𝑑 using

the following equation:

𝐶𝑜𝑟𝑟𝑖𝑑 = 𝐶𝑜𝑟𝑟𝑎𝑏 + 𝐶𝑜𝑟𝑟𝑏𝑐 + 𝐶𝑜𝑟𝑟𝑐𝑑 (4.3)

Since 𝐶𝑜𝑟𝑟𝑎𝑏, 𝐶𝑜𝑟𝑟𝑏𝑐 and 𝐶𝑜𝑟𝑟𝑐𝑑 values can be only 1 or 0, the cluster’s

correlation index 𝐶𝑜𝑟𝑟𝑖𝑑 is always positive and can take one of the following

values:
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∙ 0; there is no correlation between any of the cluster’s alerts, and the

cluster’s alerts cannot belong to one APT attack scenario.

∙ 1; there is a correlation between two different steps of an APT

attack, and the cluster’s alerts belong to one APT sub-scenario

"apt_sub_scenario_two_steps".

∙ 2; there is a correlation between three different steps of an APT

attack, and the cluster’s alerts belong to one APT sub-scenario

"apt_sub_scenario_three_steps".

∙ 3; there is a correlation between four different steps (all detectable

steps) of an APT attack, and the cluster’s alerts belong to one APT

full scenario "apt_full_scenario".

All the clusters and their correlation index values are recorded into a

specific dataset, the correlation_dataset, to be used in the Prediction mod-

ule.

4.2.3 Prediction Module (PM)

This module is used by the network security team to estimate the probability

of an apt_sub_scenario_two_steps_alert, generated by the FCI correlation

framework, to develop a complete APT attack. In practical terms, it predicts

if FCI will generate an apt_full_scenario_alert in the future based on the

attributes of the current apt_sub_scenario_alert. This prediction gives the

network security team a sign to perform more forensics on the correspond-

ing two suspicious connections and deny the attacker to complete the APT

life cycle. The prediction module uses a historical record of the monitored

network and applies machine learning techniques to achieve its functionality.
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PM takes the correlation dataset, built by FCI over six months or more,

as an input. The required period of time to build the correlation dataset

depends on the number of correlated clusters generated by FCI. This num-

ber affects the number of samples used to train the prediction model, as it

is explained in Section 5.3.1 on page 108. The correlation dataset contains

the correlated clusters, both full and sub APT scenarios, and the correla-

tion index 𝐶𝑜𝑟𝑟𝑖𝑑 for each cluster. The process in this module undergoes

three main steps: (1) Preparing the dataset, to be available to be consumed

by machine learning algorithms; (2) Training the prediction model, differ-

ent machine learning algorithms are applied and the best model which has

the highest accuracy is chosen; and (3) Using the model for prediction, the

security team apply the model on FCI real time alerts. The output of this

module is a prediction model used by the network security team for live

traffic monitor and APT prediction. Section 5.3 provides more details about

the components of PM, the way that probabilistic calculations are made,

and how the network security team can use the output of this module for

prediction.

4.3 Summary

This chapter presents the MLAPT architecture. MLAPT runs through three

main phases: Detection; Correlation; and Prediction. In the first phase, eight

detection modules have been developed, each detection module is to detect

one technique possibly used in one of the APT steps. These detection mod-

ules are as follows: disguised exe file detection (DeFD), malicious file hash

detection (MFHD), malicious domain name detection (MDND), malicious

IP address detection (MIPD), malicious SSL certificate detection (MSSLD),
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domain flux detection (DFD), scan detection (SD), and Tor connection de-

tection (TorCD). In the second phase, the FCI correlation framework aims

to find alerts could be related and belonged to one APT attack scenario. The

process in this phase undergoes three main steps: alerts filter (AF), alerts

clustering (AC), and correlation indexing (CI). In the last phase, the pre-

diction module (PM) aims to build a prediction model used by the network

security team for live traffic monitor and APT prediction.



Chapter 5

MLAPT Implementation

In this chapter, the implementation of MLAPT will be introduced and the

used frameworks, tools and programming languages will be mentioned. As

MLAPT consists of three main phases: threat detection, alert correlation

and attack prediction; the implementation algorithms of each phase will be

presented separately.

5.1 Implementation of the Detection Modules

There are several approaches to network security monitoring. However, there

is no best approach and each approach performs best in a certain environ-

ment and fits different purposes. Wireshark [101] is an effective tool for

manual analysis, predominantly of small capture files. Tcpdump is packet-

oriented approach that works well in scenarios where filtering individual

packets by L3/L4 attributes, like IP address, TCP flags and payload bytes,

is sufficient. It does not work well for stream reassembly or L7 protocol anal-

ysis [102]. Snort [103] and Suricata [104] work well when the objective is to

69
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match patterns in network data. Bro [105] [106] allows development of ad-

vanced detection methods and offers the best software/environment for the

development of novel detection or processing techniques. It can be used for

continuous monitoring of high-throughput networks. Moreover, the scripting

environment is extensible in a memory-safe language specialized in network

data processing.

All detection modules are implemented on top of Bro. Bro is a passive,

open-source network traffic analyser. It is primarily a security monitor which

inspects all traffic on a link in depth for signs of suspicious activity. The

most immediate benefit gained from deploying Bro is an extensive set of

log files which record a network’s activity in high-level terms. These logs

include not only a comprehensive record of every connection seen on the

wire, but also application-layer transcripts such as, e.g., all HTTP sessions

with their requested URIs, key headers, MIME types, and server responses;

DNS requests with replies; and much more. Bro event engine reduces the

incoming packet stream into a series of higher-level events, more than 300

events. These events reflect network activity in policy-neutral terms, i.e.

they describe what has been seen, but not why, or whether it is significant.

The MLAPT detection modules consume and handle some of Bro events;

all connection information (such as timestamp, src_ip, src_port, dest_ip,

dest_port) can be extracted from those events, in addition to more specific

information related to each individual event.

The MFHD, MDND and MSSLD modules make use of Bro Intelligence

Framework [107]; this framework enables the modules to consume data from

different data sources and make it available for matching, as explained later

in the implementation section of each module.
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All blacklists of blacklist-based detection modules are automatically up-

dated based on different intelligence feeds at once. The automatic update

runs parallel with the detection modules process and there is no need to

stop or restart MLAPT. This parallel-running feature allows a continuous

live monitoring of the network traffic and supports real time detection. Fur-

thermore, to keep the integrity of the blacklist files during updates, MLAPT

detection modules keep using the current copy of the blacklists while the

source copy is updated. After blacklist update is complete, the modules

start using the updated copy. Those blacklists files are stored at the server

that monitors the network traffic.

Based on the detection module, two automatic update mechanisms have

been applied. Figure 5.1 shows the automatic update of the blacklists used

by the MFHD, MDND and MSSLD modules. The user crontab file is config-

ured to run blacklist_update.sh each day at 3:00 am, this shell script connects

through Internet to the data source servers and downloads updated blacklists

of malicious file hashes, malicious domain names and malicious SSL certifi-

cate hashes into a new blacklist.intel text file. This text file is connected

to the Intelligence Framework, which consumes it as explained later in the

implementation section of each module.

used by MFHD, MDND
and MSSLD modulesIntelligence

feeds

crontab file

blacklist_update.sh

blacklist.intel Intelligence Framework

Figure 5.1: Automatic update of the blacklists used by the MFHD,
MDND and MSSLD modules.
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Figure 5.2 shows the automatic update of the blacklists used by the

MIPD, MSSLD and TorCD modules. The user crontab file is config-

ured to run blacklist_update.sh each day at 3:00 am, this shell script con-

nects through Internet to the intelligence feeds and downloads updated

blacklist of malicious IPs, malicious SSL certificates and Tor servers into

ip_blacklist.txt, ssl_blacklist.txt and Tor_servers_list.txt files, respectively.

The Input Framework [108], built in Bro, enables the modules to use those

text files as an input to MLAPT. The Input Framework reads ip_blacklist.txt,

ssl_blacklist.txt and Tor_servers_list.txt files into t_ip_blacklist table,

bad_ssl group and t_tor_server table, respectively, which are used by the

corresponding module as explained later in the implementation section of

each module.

t_ip_blacklist used by 
MIPD

Intelligence
feeds

crontab file

blacklist_update.sh

ip_blacklist.txt

Input
Framework

bad_ssl used by 
MSSLD

ssl_blacklist.txt

t_tor_server used by 
TorCD

tor_servers_list.txt

Figure 5.2: Automatic update of the blacklists used by the MIPD,
MSSLD and TorCD modules.

As an output of each detection module, in case of an APT technique

is detected, a corresponding event (alert) is generated. This event is to be

used in the FCI correlation framework as explained later in Section 5.2 on

page 93. Additionally, an alert email is sent to RT (Request tracker) [109]

where the network security team can perform additional forensics and re-

spond to the triggered alert. It is assumed that the network security team
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responds to the generated alert within 24 hours, therefore, the detection

modules suppress all the same alerts (the same alert is the one which has

the same infected host and the same malicious item) into one alert per day,

so no repeated alert emails bother the network security team. Moreover,

this alerts suppression reduces the computational cost of the FCI correla-

tion framework. To this end, after an alert is generated, the module adds

the triggered alert into a specific corresponding table where it stays for one

day to ensure that the module does not generate the same alert within the

next 24 hours. When an APT technique is detected, and before an alert

is generated, the module checks the corresponding table in order to con-

clude if the same alert has been generated during the previous day, if so,

the alert is ignored. Along with generating a new alert, information regard-

ing the alert and the malicious connection (alert_type, timestamp, src_ip,

src_port, dest_ip, dest_port, infected_host, malicious_item) is written into

a specific log (individual log for each APT technique detection) to keep a

historical record of the monitored network.

In case of cryptographically embedded payloads for APTs paradigms,

even the connections are encrypted, the detection modules (except DeFD

and MFHD) are still effective as they depend on investigating the packets’

headers and not the payload.

5.1.1 Implementation of the Disguised exe File Detec-

tion Module (DeFD)

Algorithm 1 shows the implementation pseudo-code of the DeFD

module. The network traffic is processed; this module waits for
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file_over_new_connection event to be generated by Bro. This event in-

dicates that a file has been seen in the process of being transferred over a

connection [110] [111]. Then describe() function is applied on that file; this

function provides a text description regarding metadata of the file, so the

file name can be extracted.

Algorithm 1 Implementation pseudo-code of DeFD
1: Get t_exe_file table
2: Get file_over_new_connection event
3: fname ← file name
4: if the connection is established by a host from the monitored
5: network then
6: if the file MIME type is in t_exe_file table then
7: if file MIME type = fname extension then
8: if the same disguised_exe_alert has been generated over
9: the last day then

10: goto End
11: else
12: Generate an event (disguised_exe_alert)
13: Write disguised_exe_alert into disguised_exe_detection.log
14: Send an alert email to RT
15: Suppress the same disguised_exe_alert over the next day
16: end if
17: else
18: goto End
19: end if
20: else
21: goto End
22: end if
23: else
24: goto End
25: end if
26: End

This method is able to detect disguised exe files in both cases, uploaded

and downloaded, but DeFD aims to detect only downloaded disguised exe

files, as they are the ones used in the second step of APT. Thus, DeFD

checks the current connection, in which a new file has seen being transferred,
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if it is established by a host from the monitored network. This is done by

checking the connection source IP address through is_local_addr function;

this function returns true if an address corresponds to one of the defined

local networks, false if not. For this reason, the subnet of the monitored

network should be defined.

Following this, the mime_type, which can be extracted from

file_over_new_connection event, is checked for its presence in t_exe_file

table. MIME stands for (Multipurpose Internet Mail Extensions). It is a way

of identifying Internet files according to their nature and format. For exam-

ple, using the "Content-type" header value defined in a HTTP response, the

browser can open the file with the proper extension/plugin [112]. t_exe_file

table contains the MIME types of the files which DeFD aims to find and

filter, i.e. MIME types of exe files. Therefore, if the transferred file is an

exe file (based on its mime_type), DeFD checks whether the extension in

the file name is exe; this file name extension is extracted from the output

of the describe() function previously mentioned. If the file name extension

is not exe, this means it is a disguised exe file. Before an alert is raised,

DeFD checks if an alert regarding the same host and for the same disguised

exe file has been generated during the previous day. This check is to en-

sure that DeFD does not generate the same alert about the same set (host,

file) during one day, therefore, DeFD checks if the current set exists in the

t_suppress_disguised_exe_alert table, this table contains all detected sets

during the last day.

If the current set (host, file) had not been detected during the previous

24 hours, DeFD generates disguised_exe_alert event to be used in the FCI

correlation framework. The malicious connection information is written into

a specific log disguised_exe_detection.log, to keep a historical record of the
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monitored network. An alert email regarding disguised exe file detection is

sent to RT, where the network security team can perform additional forensics

and respond to it. The current detected set (host, file) is added into the

t_suppress_disguised_exe_alert table where it stays for one day to ensure

that DeFD does not generate another alert about the same set during the

same day. The written information into disguised_exe_detection.log is:

timestamp = c$start_time ,

alert_type = "disguised_exe_alert"

connection = c$id

infected_host = c$id$orig_h

malicious_file = fname

This module does not account for malware not being attached to exe-

cutables, called fileless malware. This type of malware evades detection by

reducing or eliminating the storage of any binaries on disk and instead hides

its code in the registry of a compromised host. Malware authors have made

detection challenging through techniques such as polymorphism, implanting

watchdogs, revoking permissions, and more [113].

5.1.2 Implementation of the Malicious File Hash De-

tection Module (MFHD)

Algorithm 2 shows the implementation pseudo-code of the MFHD module.

MFHD makes use of Bro Intelligence Framework mentioned in Section 5.1 on

page 69. In this module, the intelligence framework is configured to monitor

all file hashes which are identified when transferring over the network traffic.

This framework is connected to blacklist.intel text file, which contains the

files hashes blacklist.
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Algorithm 2 Implementation pseudo-code of MFHD
1: Get malicious fills hashes blacklist (blacklist.intel)
2: Get file_new event
3: Calculate MD5, SHA1 and SHA256 hashes
4: Send MD5, SHA1 and SHA256 hashes to Bro Intelligence Framework
5: if MD5, SHA1 or SHA256 hashes are in blacklist.intel then
6: if the connection is oriented to a host from the monitored
7: network then
8: if the same hash_alert has been generated over the last
9: day then

10: goto End
11: else
12: Generate an event (hash_alert)
13: Write hash_alert into blacklist_detection_hash.log
14: Send an alert email to RT
15: Suppress the same hash_alert over the next day
16: end if
17: else
18: goto End
19: end if
20: else
21: goto End
22: end if
23: End

The network traffic is processed; MFHD waits for file_new event to be

generated by Bro. This event indicates that the analysis of a new file has

started [114]. MFHD then calculates MD5, SHA1 and SHA256 hashes for

the current file; these calculations are performed by three functions, which

are add_analyzer_md5, add_analyzer_sha1, and add_analyzer_sha256. To

ensure the real time process, the calculation of file hashes is limited to the

files of size up to 500 KB, based on the fact that the average size of a

malware sample is 338 KB [115]. All calculated hashes are sent to the in-

telligence framework where its presence should be checked within the intel-

ligence dataset (blacklist.intel text file). When a piece of intelligence data,

which in this case is the calculated file hash, is detected, the intelligence
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framework generates Intel::match event. This event is generated when any

indicator_type of intelligence data is detected [116], the intelligence dataset

may contain many indicator_types for intelligence data (such as ADDR, DO-

MAIN, CERT_HASH ) and not only FILE_HASH indicator_type. Thus,

the indicator_type in this module is FILE_HASH.

This method is able to detect the malicious file in both cases, uploaded

and downloaded, but MFHD aims to detect only downloaded malicious files.

Therefore, MFHD checks if the connection is oriented to a host from the

monitored network. This is done by checking the connection destination

IP address through is_local_addr function mentioned in Section 5.1.1 on

page 73. Before raising an alert, MFHD checks if an alert regarding the

same host and for the same file hash has been generated during the previous

24 hours to avoid sending several alerts about the same set (host, hash)

during one day. For this reason, MFHD checks if the current set exists in

t_suppress_hash_alert table, this table contains all detected sets during the

previous day.

MFHD then generates hash_alert event, writes the malicious connection

information into a specific log blacklist_detection_hash.log, sends an alert

email regarding the malicious file hash detection to RT and adds the current

detected set (host, hash) into t_suppress_hash_alert table. The written

information into blacklist_detection_hash.log is:

timestamp = s$conn$start_time

alert_type = "hash_alert"

connection = s$conn$id

infected_host = s$conn$id$resp_h

malicious_hash = s$indicator
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5.1.3 Implementation of the Malicious Domain Name

Detection Module (MDND)

Algorithm 3 shows the implementation pseudo-code of the MDND module.

MFHD makes use of Bro Intelligence Framework mentioned in Section 5.1 on

page 69. In this module, the intelligence framework is configured to monitor

all the domain names which are seen in DNS query requests traffic. This

framework is connected to blacklist.intel text file, which contains the domain

names blacklist.

Algorithm 3 Implementation pseudo-code of MDND
1: Get malicious domain names blacklist (blacklist.intel)
2: Filter DNS traffic
3: Extract DNS query requests
4: Extract the query (the requested domain name)
5: Send domain name to Bro Intelligence Framework
6: if domain name is in blacklist.intel then
7: if the connection is established by a host from the monitored
8: network then
9: if the same domain_alert has been generated over the last

10: day then
11: goto End
12: else
13: Generate an event (domain_alert)
14: Write domain_alert into blacklist_detection_domain.log
15: Send an alert email to RT
16: Suppress the same domain_alert over the next day
17: end if
18: else
19: goto End
20: end if
21: else
22: goto End
23: end if
24: End
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The network traffic is processed and filtered into DNS traffic; MDND

then extracts all DNS query requests. All domain names which are discovered

in DNS traffic are sent to the intelligence framework where its presence should

be checked within the intelligence dataset (blacklist.intel text file). When a

piece of intelligence data, which in this instance is the malicious domain

name, is detected, the intelligence framework generates Intel::match event

mentioned in Section 5.1.2 on page 76. The indicator_type in this module

is DOMAIN. Following this, MDND checks if the connection is established

by a host from the monitored network, therefore, the connection source IP

address is checked through the is_local_addr function. Before raising an

alert, MDND checks if an alert regarding the same host and for the same

malicious domain name has been generated during the last day, for this

purpose, t_suppress_domain_alert table is checked.

MDND then generates domain_alert event, writes the malicious con-

nection information into a specific log blacklist_detection_domain.log, sends

an alert email regarding the malicious domain name detection to RT and

adds the current detected set (host, domain) into t_suppress_domain_alert

table. The written information into blacklist_detection_domain.log is:

timestamp = s$conn$start_time

alert_type = "domain_alert"

connection = s$conn$id

infected_host = s$conn$id$orig_h

malicious_domain = s$indicator
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5.1.4 Implementation of the Malicious IP Address De-

tection Module (MIPD)

Algorithm 4 shows the implementation pseudo-code of the MIPD module.

The network traffic is processed; this module waits for new_connection event

to be generated by Bro. This event is generated for every new connection and

it is raised with the first packet of a previously unknown connection [117].

Algorithm 4 Implementation pseudo-code of MIPD
1: Get malicious IP addresses blacklist (t_ip_blacklist table)

2: Get new_connection event

3: Check if the connection is to a malicious IP:

4: if the connection destination IP is in t_ip_blacklist then

5: if the connection source IP belongs to the monitored network

6: then

7: if the same ip_alert has been generated over the last day

8: then

9: goto Check if the connection is from a malicious IP:

10: else

11: Generate an event (ip_alert)

12: Write ip_alert into blacklist_detection_ip.log

13: Send an alert email to RT

14: Suppress the same ip_alert over the next day

15: end if

16: else

17: goto Check if the connection is from a malicious IP:

18: end if

19: else

20: goto Check if the connection is from a malicious IP:
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21: end if

22: Check if the connection is from a malicious IP:

23: if the connection source IP is in t_ip_blacklist then

24: if the connection destination IP belongs to the monitored

25: network then

26: if the same ip_alert has been generated over the last day

27: then

28: goto End

29: else

30: Generate an event (ip_alert)

31: Write ip_alert into blacklist_detection_ip.log

32: Send an alert email to RT

33: Suppress the same ip_alert over the next day

34: end if

35: else

36: goto End

37: end if

38: else

39: goto End

40: end if

41: End

Through new_connection event, MIPD checks both connection sides’

IP addresses to detect if the connection is to or from a malicious IP. If

the connection destination IP exists in t_ip_blacklist table, this means, the

connection is to a malicious IP. MIPD then checks the connection source IP

through the is_local_addr function to determine if the connection is estab-

lished by a host from the monitored network. When a malicious connection is

detected and before raising an alert, MIPD checks the t_suppress_ip_alert
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table to determine if the same ip_alert has been generated within the last

day. MIPD then generates ip_alert event, writes the malicious connection

information into a specific log blacklist_detection_ip.log, sends an alert email

regarding the malicious IP detection to RT and adds the current detected

set (host, ip) into t_suppress_ip_alert table. The written information into

blacklist_detection_ip.log is:

timestamp = c$start_time

alert_type = "ip_alert"

connection = c$id

infected_host = c$id$orig_h

malicious_ip = c$id$resp_h

When the connection is from a malicious IP, the same procedure, when

the connection is to a malicious IP, is followed paying attention to the source

and destination IP addresses as shown in Algorithm 4.

5.1.5 Implementation of the Malicious SSL Certificate

Detection Module (MSSLD)

As the blacklist consists of two forms of malicious SSL certificates (SHA1

fingerprints and serial & subject), two methods are followed for malicious

SSL certificate detection. The first one is intelligence-based MSSLD, shown

in Algorithm 5, and the second method is event-based MSSLD, shown in

Algorithm 6.

In the intelligence-based MSSLD, the Bro Intelligence Framework is

used and configured to monitor all secure connections SSL certificates’

hashes. This framework is connected to blacklist.intel file, which contains

the SSL certificate blacklist. After extracting all secure connections traffic,
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Algorithm 5 Implementation pseudo-code of intelligence-based MSSLD
1: Get malicious SSL certificates hashes blacklist (blacklist.intel)
2: Filter secure connections traffic
3: Extract SSL certificate hash
4: Send SSL certificate hash to Bro Intelligence Framework
5: if SSL certificate hash is in blacklist.intel then
6: if the connection source IP belongs to the monitored network
7: then
8: if the same ssl_alert had not been generated over the last
9: day then

10: Generate an event (ssl_alert)
11: Write ssl_alert into blacklist_detection_ssl.log
12: Send an alert email to RT
13: Suppress the same ssl_alert over the next day
14: end if
15: else if the connection destination IP belongs to the monitored
16: network then
17: if the same ssl_alert had not been generated over the last
18: day then
19: Generate an event (ssl_alert)
20: Write ssl_alert into blacklist_detection_ssl.log
21: Send an alert email to RT
22: Suppress the same ssl_alert over the next day
23: end if
24: else
25: goto End
26: end if
27: else
28: goto End
29: end if
30: End

SSL certificates hashes are passed to the intelligence framework to be checked

against the intelligence data set blacklist.intel. When a match with any in-

dicator_type of the intelligence data is found, the intelligence framework

generates an Intel::match event. Through this event, if the indicator_type

is CERT_HASH, it means this connection has a malicious SSL certificate.

Next, both connection sides, source and destination IP addresses, are checked
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Algorithm 6 Implementation pseudo-code of event-based MSSLD
1: Get malicious SSL certificates [serials and subjects] (bad_ssl group)
2: Filter secure connections traffic
3: Get x509_certificate event
4: Extract SSL certificate [serial and subject]
5: if SSL certificate [serial and subject] is in bad_ssl then
6: if the connection source IP belongs to the monitored network
7: then
8: if the same ssl_alert had not been generated over the last
9: day then

10: Generate an event (ssl_alert)
11: Write ssl_alert into blacklist_detection_ssl.log
12: Send an alert email to RT
13: Suppress the same ssl_alert over the next day
14: end if
15: else if the connection destination IP belongs to the monitored
16: network then
17: if the same ssl_alert had not been generated over the last
18: day then
19: Generate an event (ssl_alert)
20: Write ssl_alert into blacklist_detection_ssl.log
21: Send an alert email to RT
22: Suppress the same ssl_alert over the next day
23: end if
24: else
25: goto End
26: end if
27: else
28: goto End
29: end if
30: End

through the is_local_addr function to check if the connection is established

to or from the monitored network. To avoid raising the same alert within

the same day, the t1_suppress_ssl_alert table is checked to ensure that it

does not contain the same detected [host IP address, SSL certificate hash]

set.
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MSSLD then generates ssl_alert event, writes the malicious con-

nection information into a specific log blacklist_detection_ssl.log, sends

an alert email regarding the malicious SSL certificate detection to RT

and adds the current detected set [host IP address, SSL certificate hash]

into t1_suppress_ssl_alert table. The written information into black-

list_detection_ssl.log is:

timestamp = s$conn$start_time

alert_type = "ssl_alert"

connection = s$conn$id

infected_host = s$conn$id$orig_h

malicious_ssl = s\$indicator

In the event-based MSSLD, the network traffic is processed and filtered

into secure connections traffic, and then x509_certificate event can be gen-

erated for encountered X509 certificates [118]. Through this event, the serial

and subject of the X509 certificate are checked for the certificate presence

in the bad_ssl group. This group contains many of serials and subjects

of malicious X509 certificates. If a match is found, the module should de-

termine if the connection is established to or from one of the monitored

network hosts; accordingly, both the source and destination IP addresses are

checked through is_local_addr function. Before an ssl_alert is raised, the

t2_suppress_ssl_alert table is to be checked to ensure that the same alert

was not raised previously during the same day.

In conforming CA certificates, the value of the subject key identifier

must be the value placed in the key identifier field of the authority key iden-

tifier extension of certificates issued by the subject of this certificate. Appli-

cations are not required to verify that key identifiers match when performing

certification path validation. Therefore, matching the serial and subject of
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the X509 certificate, regardless the certificate version, should be effective to

detect the malicious activities.

As in the previous intelligence-based method, MSSLD generates

ssl_alert event, writes the malicious connection information into a specific

log blacklist_detection_ssl.log, sends an alert email regarding the malicious

SSL certificate detection to RT and adds the current detected set [host IP

address, SSL certificate hash] into t2_suppress_ssl_alert table.

5.1.6 Implementation of the Domain Flux Detection

Module (DFD)

Algorithm 7 shows the implementation pseudo-code of the DFD module.

DNS traffic is extracted and processed; this module waits for dns_message

event to be generated by Bro. This event is generated for any DNS message

and provides information regarding the connection to DNS server [119].

Through dns_massage event, DFD checks for two conditions: (1) If

this connection is established by a host from the monitored network us-

ing the is_local_addr function; (2) If the dns_message is due to DNS er-

ror of NXDOMAIN. A NXDOMAIN code means that the domain name

does not exist, either not registered or invalid. This information can be

extracted from dns_message event (c$dns$rcode_name=="NXDOMAIN").

If the two conditions are met, the source IP address, which queries for un-

registered domain names, is saved in the t_dns_failure table. This table

counts DNS query failures of the same IP address. If the current IP ad-

dress exists in the t_dns_failure table, the counter is increased by one (++

t_dns_failure[c$id$orig_h]).
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Algorithm 7 Implementation pseudo-code of DFD
1: Get dns_failure_threshold
2: Extract DNS traffic
3: Get dns_message event
4: if the connection is established by a host from the monitored
5: network then
6: if dns_message event is due to DNS error of NXDOMAIN then
7: if the host IP is not in t_dns_failure table then
8: write host IP into t_dns_failure
9: host IP counter ← 1

10: else
11: Increase host IP counter by 1
12: if host IP counter > dns_failure_threshold then
13: Delete host IP from t_dns_failure
14: Reset host IP counter to zero
15: if the same domain_flux_alert has been generated
16: over the last day then
17: goto End
18: else
19: Generate an event (domain_flux_alert)
20: Write domain_flux_alert into domain_flux.log
21: Send an alert email to RT
22: Suppress the same domain_flux_alert over the
23: next day
24: end if
25: else
26: goto End
27: end if
28: end if
29: else
30: goto End
31: end if
32: else
33: goto End
34: end if
35: End
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When the number of DNS query failures exceeds the specified thresh-

old, dns_failure_threshold, the current IP address is deleted from the

t_dns_failure table to be removed from the counting, i.e. to reset the counter

of this IP address to zero. The threshold is set to 50 DNS query failures per

5 minutes based on the fact that recent malware can generate 50,000 domain

names every day [120]. Then, if the IP address of the potentially infected

host does not exist in the t_suppress_domain_flux_alert table, to prevent

more than one alert regarding the same IP address per day, DFD writes the

following information into domain_flux.log :

timestamp = c$start_time

alert_type = "domain_flux_alert"

connection = c$id

infected_host = c$id$orig_h

domain_name = c$dns$query

DFD also generates domain_flux_alert event, sends an alert email re-

garding the domain flux detection to RT and adds the current detected host

IP address into t_suppress_domain_flux_alert table.

5.1.7 Implementation of the Scan Detection Module

(SD)

The SD module makes use of bro.scan function, which is shipped by de-

fault with Bro [121]. bro.scan detects if an attacking host appears to be

scanning a single victim host on several ports (port scanning). It also de-

tects if a host appears to be scanning a number of destinations on a single

port (address scanning). The detection is based on tracking all failed con-

nection attempts over a specific time interval [122], and depends on four

events: (1) connection_attempt, generated for an unsuccessful connection
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attempt [123]; (2) connection_rejected, generated for a rejected TCP con-

nection [124]; (3) connection_reset, generated when an endpoint aborted

a TCP connection [125]; and (4) connection_pending, generated for each

still-open TCP connection when Bro terminates [126].

SD uses the same script as bro.scan and only minor modifications are

made on it to generate scan_alert event, write the malicious connection

information into a specific log scan_detection.log and send an alert email to

RT.

5.1.8 Implementation of the Tor Connection Detection

Module (TorCD)

Algorithm 8 shows the implementation pseudo-code of the TorCD mod-

ule. The network traffic is processed; this module waits for connec-

tion_established event to be generated by Bro. This event is generated

when a SYN-ACK packet is seen in response to a SYN packet during a TCP

handshake [127].

Algorithm 8 Implementation pseudo-code of TorCD
1: Get Tor servers list (t_tor_server table)

2: Get connection_established event

3: Check if the connection is to a Tor network:

4: if the connection destination IP is in t_tor_server then

5: if the connection source IP belongs to the monitored network

6: then

7: if the same tor_alert has been generated over the last day

8: then

9: goto Check if the connection is from a Tor network:
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10: else

11: Generate an event (tor_alert)

12: Write tor_alert into tor_detection.log

13: Send an alert email to RT

14: Suppress the same tor_alert over the next day

15: end if

16: else

17: goto Check if the connection is from a Tor network:

18: end if

19: else

20: goto Check if the connection is from a Tor network:

21: end if

22: Check if the connection is from a Tor network:

23: if the connection source IP is in t_tor_server then

24: if the connection destination IP belongs to the monitored

25: network then

26: if the same tor_alert has been generated over the last day

27: then

28: goto End

29: else

30: Generate an event (tor_alert)

31: Write tor_alert into tor_detection.log

32: Send an alert email to RT

33: Suppress the same tor_alert over the next day

34: end if

35: else

36: goto End

37: end if
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38: else

39: goto End

40: end if

41: End

TorCD is able to detect the Tor connections in both cases, to or from

a Tor network. However, this module aims to detect only connections

from the monitored network to a Tor network. Therefore, through con-

nection_established event, TorCD checks if the connection destination IP

exists in t_tor_server table, this means, the connection is to a Tor network.

The module then checks the connection source IP through the is_local_addr

function to determine if the connection is established by a host from the mon-

itored network. Following this, as in previous modules, tor_alert event is

generated; an alert email is sent to RT; the following information is written

into tor_detection.log :

timestamp = c$start_time

alert_type = "tor_alert"

connection = c$id

infected_host = c$id$orig_h

tor_server = c$id$resp_h

This module considers any connection to a Tor entrance node is a suspi-

cious one. Nonetheless, this alert is not considered as an attack till it is cor-

related with another step of APT. Furthermore, there are around 21 anony-

mous networks [128]. However, Tor network is the most commonly used one

by malware. Detecting the connections to other anonymous networks can

be achieved using this module by adding their nodes’ IPs to t_tor_server

table.
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5.2 Implementation of the FCI Correlation

Framework

The FCI framework is implemented in two versions. The first one is imple-

mented on top of Bro to be used on live traffic for real time detection; it can

be also used offline on PCAP (Packet Capture) files. The second version is

implemented in Python [129] to be used offline on saved alerts’ logs. Using

FCI offline-version is useful when having a PCAP file for a network which is

not monitored by Bro.

5.2.1 Implementation of the Alerts Filter (AF) Module

Algorithm 9 shows the implementation pseudo-code of the AF module. When

Algorithm 9 Implementation pseudo-code of AF
1: Get the correlation_time
2: Get t_detection_modules_alerts table
3: Get a new alert from one of the detection modules
4: if the new alert is in t_detection_modules_alerts then
5: Ignore the new alert
6: else
7: write the new alert into t_detection_modules_alerts
8: Send the new alert to AC
9: end if

10: End

generating a new alert by one of the detection modules, the AF module checks

t_detection_modules_alerts table to determine if the same alert has been

generated within the last correlation_time. t_detection_modules_alerts ta-

ble contains all alerts which have been generated by the detection modules

and sent to AC within the last correlation_time. Thus, AF either (1) ig-

nores the new alert, if it is a repeated one; or (1) sends the new alert
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to AC, to be processed and clustered, and (2) writes the new alert into

t_detection_modules_alerts table where it is saved for the next correla-

tion_time.

5.2.2 Implementation of the Alerts Clustering (AC)

Module

All produced APT clusters are recorded into a specific dataset, the clus-

tered_dataset, to be consumed by the next module, namely the correlation

indexing module. The clustering algorithm dataset "clustered_dataset" con-

sists of clusters. Each cluster contains a maximum of four alerts and each

alert represents one of the APT detectable steps:

1. alert_1 ∈ {𝑑𝑖𝑠𝑔𝑢𝑖𝑠𝑒𝑑_𝑒𝑥𝑒_𝑎𝑙𝑒𝑟𝑡, ℎ𝑎𝑠ℎ_𝑎𝑙𝑒𝑟𝑡, 𝑑𝑜𝑚𝑎𝑖𝑛_𝑎𝑙𝑒𝑟𝑡}.

2. alert_2 ∈ {𝑖𝑝_𝑎𝑙𝑒𝑟𝑡, 𝑠𝑠𝑙_𝑎𝑙𝑒𝑟𝑡, 𝑑𝑜𝑚𝑎𝑖𝑛_𝑓𝑙𝑢𝑥_𝑎𝑙𝑒𝑟𝑡}.

3. alert_3 ∈ {𝑠𝑐𝑎𝑛_𝑎𝑙𝑒𝑟𝑡}.

4. alert_4 ∈ {𝑡𝑜𝑟_𝑎𝑙𝑒𝑟𝑡}.

Algorithm 10 shows the implementation pseudo-code of the AC mod-

ule. Alert clustering can affect the performance of the correlation indexing

and the prediction module as well. For this reason, the first function of

CI, evaluating the correlations between the cluster’s alerts, mentioned in

Section 4.2.2.3 on page 63, is also implemented within the AC algorithm.

Implementing the first function of CI within AC reduces the computational

cost of the FCI correlation framework, since AC does not classify any new

alert into a cluster unless it is correlated with the cluster alerts, as explained

later in this section.
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Algorithm 10 Implementation pseudo-code of AC and first function of CI
1: Get the time window TW (the correlation time)

2: Get the new alert from AF

3: if new alert == disguised_exe_alert Or new alert == hash_alert

4: Or new alert == domain_alert then

5: goto alert_1 processing engine:

6: else if new alert == ip_alert Or new alert == ssl_alert

7: Or new alert == domain_flux_alert then

8: goto alert_2 processing engine:

9: else if new alert == scan_alert then

10: goto alert_3 processing engine:

11: else if new alert == tor_alert then

12: goto alert_4 processing engine:

13: end if

14:

15: alert_1 processing engine:

16: Start a new cluster

17: Write the new alert into alert_1

18:

19: alert_2 processing engine:

20: for each cluster in the clustered_dataset do

21: if alert_1 != None And alert_2 == None

22: And alert_3 == None And alert_4 == None then

23: if time > time_1 And time - Time_1 <= TW then

24: if infected == infected_1 then

25: Add the new alert into the current cluster

26: Write the new alert into alert_2
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27: Generate an event apt_sub_scenario_two_steps_alert

28: Write apt_sub_scenario_two_steps_alert into

29: apt_sub_scenario_two_steps_detection.log

30: Send apt_sub_scenario_two_steps_alert to RT

31: End for loop

32: else

33: goto Next cluster:

34: end if

35: else

36: goto Next cluster:

37: end if

38: else

39: goto Next cluster:

40: end if

41: Next cluster:

42: if the current cluster is the last one in the clustered_dataset then

43: Start a new cluster

44: Write the new alert into alert_2

45: else

46: do for statements for the next cluster in the clustered_dataset

47: end if

48: end for

49:

50: alert_3 processing engine:

51: for each cluster in the clustered_dataset do

52: if alert_1 != None And alert_2 != None

53: And alert_3 == None And alert_4 == None then

54: if time > time_2 And time - Time_1 <= TW then
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55: if infected == infected_2 then

56: Add the new alert into the current cluster

57: Write the new alert into alert_3

58: Generate an event apt_sub_scenario_three_steps_alert

59: Write apt_sub_scenario_three_steps_alert into

60: apt_sub_scenario_three_steps_detection.log

61: Send apt_sub_scenario_three_steps_alert to RT

62: End for loop

63: else

64: goto Next cluster:

65: end if

66: else

67: goto Next cluster:

68: end if

69: else if alert_1 != None And alert_2 == None

70: And alert_3 == None And alert_4 == None then

71: if time > time_1 And time - Time_1 <= TW then

72: if infected == infected_1 then

73: Add the new alert into the current cluster

74: Write the new alert into alert_3

75: Generate an event apt_sub_scenario_two_steps_alert

76: Write apt_sub_scenario_two_steps_alert into

77: apt_sub_scenario_two_steps_detection.log

78: Send apt_sub_scenario_two_steps_alert to RT

79: End for loop

80: else

81: goto Next cluster:

82: end if
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83: else

84: goto Next cluster:

85: end if

86: else if alert_1 == None And alert_2 != None

87: And alert_3 == None And alert_4 == None then

88: if time > time_2 And time - Time_2 <= TW then

89: if infected == infected_2 then

90: Add the new alert into the current cluster

91: Write the new alert into alert_3

92: Generate an event apt_sub_scenario_two_steps_alert

93: Write apt_sub_scenario_two_steps_alert into

94: apt_sub_scenario_two_steps_detection.log

95: Send apt_sub_scenario_two_steps_alert to RT

96: End for loop

97: else

98: goto Next cluster:

99: end if

100: else

101: goto Next cluster:

102: end if

103: else

104: goto Next cluster:

105: end if

106: Next cluster:

107: if the current cluster is the last one in the clustered_dataset then

108: Start a new cluster

109: Write the new alert into alert_3

110: else
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111: do for statements for the next cluster in the clustered_dataset

112: end if

113: end for

114:

115: alert_4 processing engine:

116: for each cluster in the clustered_dataset do

117: if alert_1 != None And alert_2 != None

118: And alert_3 != None And alert_4 == None then

119: if time > time_3 And time - Time_1 <= TW then

120: if infected == infected_3 Or infected == scanned then

121: Add the new alert into the current cluster

122: Write the new alert into alert_4

123: Generate an event apt_full_scenario_alert

124: Write apt_full_scenario_alert into

125: apt_full_scenario_detection.log

126: Send apt_full_scenario_alert to RT

127: End for loop

128: else

129: goto Next cluster:

130: end if

131: else

132: goto Next cluster:

133: end if

134: else if alert_1 != None And alert_2 != None

135: And alert_3 == None And alert_4 == None then

136: if time > time_2 And time - Time_1 <= TW then

137: if infected == infected_2 then

138: Add the new alert into the current cluster
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139: Write the new alert into alert_4

140: Generate an event apt_sub_scenario_three_steps_alert

141: Write apt_sub_scenario_three_steps_alert into

142: apt_sub_scenario_three_steps_detection.log

143: Send apt_sub_scenario_three_steps_alert to RT

144: End for loop

145: else

146: goto Next cluster:

147: end if

148: else

149: goto Next cluster:

150: end if

151: else if alert_1 != None And alert_2 == None

152: And alert_3 != None And alert_4 == None then

153: if time > time_3 And time - Time_1 <= TW then

154: if infected == infected_3 Or infected == scanned then

155: Add the new alert into the current cluster

156: Write the new alert into alert_4

157: Generate an event apt_sub_scenario_three_steps_alert

158: Write apt_sub_scenario_three_steps_alert into

159: apt_sub_scenario_three_steps_detection.log

160: Send apt_sub_scenario_three_steps_alert to RT

161: End for loop

162: else

163: goto Next cluster:

164: end if

165: else

166: goto Next cluster:
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167: end if

168: else if alert_1 == None And alert_2 != None

169: And alert_3 != None And alert_4 == None then

170: if time > time_3 And time - Time_2 <= TW then

171: if infected == infected_3 Or infected == scanned then

172: Add the new alert into the current cluster

173: Write the new alert into alert_4

174: Generate an event apt_sub_scenario_three_steps_alert

175: Write apt_sub_scenario_three_steps_alert into

176: apt_sub_scenario_three_steps_detection.log

177: Send apt_sub_scenario_three_steps_alert to RT

178: End for loop

179: else

180: goto Next cluster:

181: end if

182: else

183: goto Next cluster:

184: end if

185: else if alert_1 != None And alert_2 == None

186: And alert_3 == None And alert_4 == None then

187: if time > time_1 And time - Time_1 <= TW then

188: if infected == infected_1 then

189: Add the new alert into the current cluster

190: Write the new alert into alert_4

191: Generate an event apt_sub_scenario_two_steps_alert

192: Write apt_sub_scenario_two_steps_alert into

193: apt_sub_scenario_two_steps_detection.log

194: Send apt_sub_scenario_two_steps_alert to RT
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195: End for loop

196: else

197: goto Next cluster:

198: end if

199: else

200: goto Next cluster:

201: end if

202: else if alert_1 == None And alert_2 != None

203: And alert_3 == None And alert_4 == None then

204: if time > time_2 And time - Time_2 <= TW then

205: if infected == infected_2 then

206: Add the new alert into the current cluster

207: Write the new alert into alert_4

208: Generate an event apt_sub_scenario_two_steps_alert

209: Write apt_sub_scenario_two_steps_alert into

210: apt_sub_scenario_two_steps_detection.log

211: Send apt_sub_scenario_two_steps_alert to RT

212: End for loop

213: else

214: goto Next cluster:

215: end if

216: else

217: goto Next cluster:

218: end if

219: else if alert_1 == None And alert_2 == None

220: And alert_3 != None And alert_4 == None then

221: if time > time_3 And time - Time_3 <= TW then

222: if infected == infected_3 then
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223: Add the new alert into the current cluster

224: Write the new alert into alert_4

225: Generate an event apt_sub_scenario_two_steps_alert

226: Write apt_sub_scenario_two_steps_alert into

227: apt_sub_scenario_two_steps_detection.log

228: Send apt_sub_scenario_two_steps_alert to RT

229: End for loop

230: else

231: goto Next cluster:

232: end if

233: else

234: goto Next cluster:

235: end if

236: else

237: goto Next cluster:

238: end if

239: Next cluster:

240: if the current cluster is the last one in the clustered_dataset then

241: Ignore the new alert

242: else

243: do for statements for the next cluster in the clustered_dataset

244: end if

245: end for

246: End

First, the AC module determines to which one of the APT steps the

new alert, coming from the AF module, belongs. MLAPT can detect four

steps of the APT life cycle, mentioned in Section 4.2.2, Table 4.2 on page 60.
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Based on the new alert step, AC has four processing engines, each engine

processes all alerts which belong to one APT step.

For alert_1 processing engine, the second step of APT is the first de-

tectable step, therefore, as soon as an alert of the second APT step is trig-

gered, AC starts a new cluster and writes the new alert into alert_1.

For alert_2 processing engine, when a new alert for the third step

of APT is triggered, the AC module checks all the clusters in the clus-

tered_dataset. The cluster of interest is the one that has alert_1 and the

other alerts (alert_2, alert_3, alert_4 ) are still missed. For that cluster

of interest, the algorithm checks time attributes: time, the time when the

current processed alert is triggered; and time_1, the time when the alert_1

is triggered. For the new alert to be considered, those time attributes should

meet two conditions: time > time_1 and time - time_1 <= TW ; whereas

TW stands for the time window "correlation time". Following this, the first

function of the CI module checks the infected_host attributes: infected, the

infected host of the current processed alert; and infected_1, the infected

host of alert_1. If both infected host attributes are matched, the current

processed alert is added into the current cluster of interest as alert_2. In

addition, an event apt_sub_scenario_two_steps_alert is generated and an

alert email is sent to RT informing the network security team regarding this

APT sub scenario detection. When one of the previous checks fails, AC

checks if the current cluster is the last one in the clustered_dataset : if true,

a new cluster is started and the current processed alerts is added as alert_2 ;

if false, the process is to be repeated again for the next cluster.

For alert_3 processing engine, when a new alert for the fifth step of APT

is triggered, AC checks all the clusters in the clustered_dataset. There are

three cases for the cluster of interest: (1) when the cluster has alert_1 and
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alert_2 and the other alerts "alert_3 and alert_4" are missed; (2) when

the cluster has alert_1 and the other alerts "alert_2, alert_3, alert_4" are

missed; (3) and when the cluster has alert_2 and the other alerts "alert_1,

alert_3, alert_4" are missed.

For the first case of cluster of interest, AC checks all time attributes

which should meet two conditions: time > time_2 and time - time_1 <=

TW. Following this, CI checks all infected host attributes that should meet

the condition infected == infected_2, as alert_1 and alert_2 are already

in the cluster so it is guaranteed that infected_1 == infected_2 and there

is no need for the first function of CI to check it. The current processed

alert is then added into the current cluster of interest as alert_3, an event

apt_sub_scenario_three_steps_alert is generated, and an alert email is sent

to RT informing the network security team regarding this APT sub-scenario

detection. If one of the previous checks is failed, it is checked if the current

cluster is the last one in clustered_dataset : if true, a new cluster is started

and the current processed alerts is added as alert_3 ; if false, the process is

to be repeated again for the next cluster.

For the second and third case of cluster of interest, the process is similar

to the first case, as shown in Algorithm 10, taking into consideration the

corresponded time and infected host attributes.

For alert_4 processing engine, the first step is to find the cluster of

interest in the clustered_dataset. When a new alert for the sixth step of

APT is triggered, AC checks all the clusters in the clustered_dataset. There

are seven cases for the cluster of interest: (1) when the cluster has alert_1,

alert_2, and alert_3, and the last alert "alert_4" is missed; (2) when the

cluster has alert_1 and alert_2 and the other alerts "alert_3 and alert_4"

are missed; (3) when the cluster has alert_1 and alert_3 and the other
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alerts "alert_2 and alert_4" are missed; (4) when the cluster has alert_2

and alert_3 and the other alerts "alert_1 and alert_4" are missed; (5) when

the cluster has alert_1 and the other alerts "alert_2, alert_3, and alert_4"

are missed; (6) when the cluster has alert_2 and the other alerts "alert_1,

alert_3, and alert_4" are missed; (7) and when the cluster has alert_3 and

the other alerts "alert_1, alert_2, and alert_4" are missed.

The process of all cases of cluster of interest in alert_4 processing engine

is similar to the process in alert_3 processing engine explained above. The

AC algorithm checks all time attributes of the cluster; after that, the CI al-

gorithm checks all infected host and scanned host attributes; if all conditions

"presented in Algorithm 10" are met, the current processed alert is added into

the current cluster of interest as alert_4. Based on the cluster of interest,

three events can be generated as an output of alert_4 processing engine:

apt_full_scenario_alert for case 1; apt_sub_scenario_three_steps_alert

for cases 2, 3, and 4; and apt_sub_scenario_two_steps_alert for cases 5,

6, and 7. In addition, an alert email is sent to RT informing the network

security team regarding this APT full or sub-scenario detection. If one of

the algorithms’ conditions fails, the process moves to the next cluster in

clustered_dataset or it is ended if the current cluster is the last one.

5.2.3 Implementation of the Correlation Indexing (CI)

Module

The first function of CI, evaluating the correlations between the cluster’s

alerts, is implemented within AC algorithm, as explained in the previous

Section 5.2.2 on page 94. The implementation of the second function of CI,
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calculating the correlation index 𝐶𝑜𝑟𝑟𝑖𝑑 for each cluster by the end of the

correlation window, is shown in Algorithm 11.

Algorithm 11 Implementation pseudo-code of the second function of CI
1: Get the clustered_dataset
2: for each cluster in the clustered_dataset do
3: if infected_2 == infected_1 then
4: 𝐶𝑜𝑟𝑟𝑎𝑏 ← 1
5: else
6: 𝐶𝑜𝑟𝑟𝑎𝑏 ← 0
7: end if
8: if infected_3 == infected_2 Or infected_3 == infected_1 then
9: 𝐶𝑜𝑟𝑟𝑏𝑐 ← 1

10: else
11: 𝐶𝑜𝑟𝑟𝑏𝑐 ← 0
12: end if
13: if infected_4 == scanned Or infected_4 == infected_3
14: Or infected_4 == infected_2 Or infected_4 == infected_1 then
15: 𝐶𝑜𝑟𝑟𝑐𝑑 ← 1
16: else
17: 𝐶𝑜𝑟𝑟𝑐𝑑 ← 0
18: end if
19: 𝐶𝑜𝑟𝑟𝑖𝑑 == 𝐶𝑜𝑟𝑟𝑎𝑏 + 𝐶𝑜𝑟𝑟𝑏𝑐 + 𝐶𝑜𝑟𝑟𝑐𝑑
20: Write the current cluster with its 𝐶𝑜𝑟𝑟𝑖𝑑 into the
21: correlation_dataset
22: end for
23: End

To calculate 𝐶𝑜𝑟𝑟𝑖𝑑 for each cluster, the CI module makes use of the

attributes of each alert in the cluster, applies the correlation rules mentioned

in Section 4.2.2.3 on page 63, and calculates the correlation index 𝐶𝑜𝑟𝑟𝑖𝑑

based on the equation 4.3 mentioned also in Section 4.2.2.3 on page 65 .
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5.3 Implementation of the Prediction Module

(PM)

The PM module uses machine learning techniques to achieve its functional-

ity. The process in this module undergoes three main steps: (1) Preparing

the dataset, implemented in Python; (2) Training the prediction model, im-

plemented in MATLAB [130]; and (3) Using the model for prediction, in

Python and MATLAB.

5.3.1 Preparing the Machine Learning Dataset

Building the machine_learning_dataset is based on the correlation_dataset,

which is the output of the FCI correlation framework over a period of six

months or more. The correlation_dataset contains the correlated clusters,

both full and sub APT scenarios, and the correlation index 𝐶𝑜𝑟𝑟𝑖𝑑 for each

cluster. To prepare the machine_learning_dataset, PM makes the following

modifications on the correlation_dataset :

∙ The prediction of apt_sub_scenario_two_steps_alert to complete the

APT life cycle is based on the first two detectable steps of APT, there-

fore, only the clusters containing at least alerts for the first two de-

tectable steps, i.e. alert_1 and alert_2, are kept; the other clusters

are filtered out of the correlation_dataset.

∙ Based on the 𝐶𝑜𝑟𝑟𝑖𝑑 value, the correlation_dataset clusters can be

classified into four classes: Class 3, for APT full scenario and the clus-

ter has four correlated alerts; Class 2, for APT sub-scenario and the

cluster has three correlated alerts; Class 1, for APT sub-scenario and
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the cluster has two correlated alerts; and Class 0, the cluster has only

one alert. The machine_learning_dataset contains only two classes:

Class 1 for APT full scenario; and Class 0, for uncompleted APT

scenario. Thus, the PM module considers: (1) Class 3, in the cor-

relation_dataset, as Class 1, for the machine_learning_dataset ; and

(2) Classes 2, 1, and 0, in the correlation_dataset, as Class 0, for the

machine_learning_dataset.

∙ The class prediction is based on the first two detectable steps of APT,

therefore, all the columns related to the third and fourth detectable

alerts, i.e. alert_3 and alert_4 attributes, are filtered out of the cor-

relation_dataset.

∙ Since the chosen machine learning classifiers work with numeric values,

columns which are not numeric in the correlation_dataset are repre-

sented in a numerical format for the machine_learning_dataset. The

alert_type values are mapped to numbers from 1 to 6, and the columns

which contain IPs values (src_ip_1, dest_ip_1, infected_host_1,

src_ip_2, dest_ip_2, infected_host_2 ) are mapped to numeric values

using socket [131] and struct.unpack [132] functions built in Python.

5.3.2 Training the Prediction Model

As the task is to predict classes, classification methods are chosen and differ-

ent machine learning algorithms are applied on machine_learning_dataset

to train the model. The model is trained using four machine learning ap-

proaches, commonly used for classification problems, which are: decision

tree learning, support vector machine, k-nearest neighbours and ensemble

learning. Those ML approaches are previously explained in Section 2.3.1 on
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page 23. The prediction accuracy of each trained model is calculated and

the best model, which has the highest prediction accuracy, is chosen. The

best model is saved to be used by the network security team.

5.3.3 Using the Model for Prediction

When a new apt_sub_scenario_two_steps_alert is generated by the corre-

lation framework, the new data, i.e. the cluster attributes, is prepared as

explained above in Section 5.3.1 on page 108, then the prediction model,

which has been trained and chosen in the previous step, is applied.

As a result, the network security team can determine the probability

of the current alert to complete the APT life cycle, and apply the required

procedure to stop the attack before completion and achieving the final aim

of data exfiltraition.

5.4 Summary

This chapter presents the MLAPT implementation. The Bro’s scripting

language is used in the implementation of all detection modules. The FCI

correlation framework is implemented in two versions. The first one is im-

plemented on top of Bro to be used on live traffic for real time detection; it

can also be used offline on PCAP files. The second version is built in Python

to be used offline on saved alerts’ logs. The prediction module PM makes

use of Python and Matlab to achieve its functionality.
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All blacklists of blacklist-based detection modules are automatically

updated based on different intelligence feeds at once. The MLAPT de-

tection modules consume and handle some of Bro events, can gener-

ate eight events (alerts), send alert emails to RT and write alerts in-

formation into specific logs. Those detection modules’ alerts are fed

to the FCI correlation framework to be filtered, clustered, and the

𝐶𝑜𝑟𝑟𝑖𝑑 is calculated for each cluster. FCI can generate three types

of alerts: apt_full_scenario_alert, apt_sub_scenario_two_steps_alert

and apt_sub_scenario_three_steps_alert. FCI writes all the corre-

lated clusters along with the 𝐶𝑜𝑟𝑟𝑖𝑑 of each cluster into the correla-

tion_dataset. Based on the correlation_dataset, the PM module prepares

machine_learning_dataset, applies different machine learning algorithms to

find the best model and saves the prediction model to be used by the network

security team.





Chapter 6

Evaluation Results

In this chapter, the evaluation of MLAPT is introduced and the achieved

results are presented. As MLAPT consists of three main phases: threat de-

tection, alert correlation and attack prediction; the evaluation of MLAPT

undergoes the evaluation of the three phases respectively. Additionally, a

comparison between the developed system MLAPT and other existing sys-

tems is provided.

6.1 Evaluation Metrics

Two main measures should be taken into consideration when evaluating

MLAPT, the first one is the detection/prediction accuracy and the second

measure is the processing speed.

113
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6.1.1 Detection/Prediction Accuracy

To determine the detection accuracy of MLAPT, True Positive Rate (TPR)

and False Positive Rate (FPR) are calculated for the detection modules and

the correlation framework. Effective IDS can differentiate between real at-

tacks and normal traffic. In general, four different results can be returned by

an IDS: True Positive (TP), when an attack is predicted as an attack; False

Positive (FP), when normal traffic is predicted as an attack; False Nega-

tive (FN), when an attack is predicted as normal traffic; and True Negative

(TN), when normal traffic is predicted as normal traffic. In the literature,

the efficiency of IDS is commonly measured by the false positive and false

negative alarm rates [133]. The Recall (R) or True Positive Rate (TPR) is

the proportion of correctly predicted attacks to the actual size of the attack,

as calculated using equation 6.1:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6.1)

The Specificity is the proportion of correctly predicted normal traffic to

the actual size of the normal traffic, as calculated using the equation 6.2:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(6.2)

The False Positive Rate (FPR) or false alarm rate, is calculated using

the equation 6.3:

𝐹𝑃𝑅 = 1− 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
(6.3)
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To determine the prediction accuracy of MLAPT, two measures of the

prediction module are calculated: (1) the prediction accuracy which is the

proportion of correct predictions, defined in equation 6.4; and (2) the con-

fusion matrix [134] which gives more detailed analysis than the prediction

accuracy, described in Table 6.1.

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
(6.4)

Table 6.1: Confusion matrix description.

Predicted
0

Predicted
1

Actual
0 TN FP

Actual
1 FN TP

6.1.2 Processing Speed

The processing speed is a significant feature of MLAPT. Even a high-quality

IDS is not effective if its processing cost is too high, since the resulting loss

of packets increases the probability that an attack is not detected. The

processing load exerted by this algorithm depends on the characteristics of

the rules as well as on the network traffic. Rules generally fall into one of

two categories, depending on whether they apply to the packet header or

the payload. Header rules inspect the packet header in an attempt to detect

specific combinations of features, such as the source and destination address,

port numbers, checksums or sequence numbers. Payload rules attempt to

match a specific byte sequence in a packet’s payload. IDS rules may also
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combine header and payload specific match conditions. Since header size is

generally fixed, the processing cost of applying header rules is nearly constant

for each packet regardless of actual packet size, while the cost of payload

rules scales with the packet size [135]. The processing speed of MLAPT can

be calculated by a comparison between the real time of the attack and the

detection time of the attack reported by one of the detection modules and

the correlation framework.

6.2 Experimental Evaluation of MLAPT

6.2.1 Evaluation of the Detection Modules

Two main methods were used to evaluate the detection modules. In the

first one, the detection modules were applied on pcap files which contain

malicious traffic. Each pcap file was provided by a different third party,

pcap file size and data source are mentioned in the evaluation section of

each detection module. In the second evaluation method, Bro was installed

on an experimental server (2x 4-core Intel Xeon CPU E5530 @ 2.40 GHz, 12

GB RAM) with passive access to part of the university campus live traffic

(200 Mbps, 200 users, 550 nodes) via an optical TAP (Test Access Port).

The detection modules were run on the experimental server and the network

was monitored for one month.
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6.2.1.1 Evaluation of the Disguised exe File Detection Module

(DeFD)

To evaluate the effectiveness of the DeFD module, a download of disguised

exe file was simulated via the campus network. An experimental server was

set up, using Bro, to passively monitor the campus live traffic. DeFD was run

on that experimental server for the purpose of disguised exe file detection.

Two exe files were randomly selected, SkypeSetup.exe and ViberSetup.exe,

and their names’ extensions (exe) were changed into pdf and doc extensions,

i.e. SkypeSetup.pdf and ViberSetup.doc respectively. The two disguised exe

files were uploaded to the speedyshare.com public server. Then a host work-

ing on a computer connected to the Internet through the monitored network

was used to connect to that public server and download the modified files.

As shown in Figure 6.1, DeFD was able to detect both malicious downloads

and write the information regarding each connection into a specific log.

#fields timestamp     alert_type                orig_h               orig_p resp_h         resp_p infected_host malicious_file
#types time              string                      addr                 port    addr            port     addr               string
1407424021.202210  disguised_exe_alert 147.251.17.197 56973 207.244.73.42 80 147.251.17.197 SkypeSetup.pdf
1407424040.255414  disguised_exe_alert 147.251.17.197 53105 207.244.73.42 80 147.251.17.197 ViberSetup.doc
#close 2014-08-07-19-15-07

Figure 6.1: The log produced by the DeFD module.

This experiment was repeated a hundred of times using different dis-

guised exe files with different extensions. DeFD was able to detect all the

malicious files, the average detection delay was 270 ms with a standard de-

viation of 54 ms.
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6.2.1.2 Evaluation of the Malicious File Hash Detection Module

(MFHD)

To evaluate the effectiveness of the MFHD module, two experiments were

performed. In the first one, MFHD was applied on a pcap file which contains

traffic infected by the Nuclear EK malware, which has an MD5 file hash value

of dc5c71aef24a5899f63c3f9c15993697 [136]. This pcap file was analysed by

the provider and the ground truth was known. The infection was delivered

by drive-by download attack and five malicious IPs were involved. MFHD

successfully detected the malicious file Nuclear EK malware and identified

the connection over which the malware was downloaded. Note that the

ground truth blacklist was not provided to MFHD. Figure 6.2 shows part of

blacklist_detection_hash.log produced by MFHD. The log file contains more

information regarding the malicious connection than given in the figure, such

as the source IP address, source and destination ports, but the figure shows

only the connection timestamp, alert type, infected host and malicious file

hash.

#fields3333timestamp3333alert_type333infected_host33333333malicious_hash
#types3333time33333333333333string3333333333addr3333333333333333333333string
1411999086.15805933hash_alert33192.168.204.14833dc5c71aef24a5899f63c3f9c159936973
#close32015-01-25-15-56-24

Figure 6.2: Part of the log produced by the MFHD module.

In the second evaluation experiment, the campus live traffic was moni-

tored to detect hosts involved in downloading malicious files. MFHD was set

up to create a log file of detected malicious file hashes. MFHD was run on

the experimental server mentioned before in Section 6.2.1 on page 116. The

monitoring was done for one month. The list of hosts involved in download-

ing malicious files was matched with the results of a malicious IP address
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detection module. As shown in Figure 6.3, 19 hosts were detected by MFHD,

involved in downloading malicious files; and 37 hosts were detected by MIPD,

involved in malicious IP address connections. Within detected hosts, 12 were

detected involved in both malicious IP connection and downloading malicious

file, indicating that there was malware infection.
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hash
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Number of
infected

hosts
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Figure 6.3: Detected hosts by the MFHD and MIPD modules.

MFHD also sent an alert email, in real time, regarding each malicious

file hash detection to RT; where the network security team can perform

additional forensics and respond to it. Figure 6.4 shows an example of a

Malicious_Hash ticket, which was emailed to RT.
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Greetings,

the security team CSIRT-MU detected involvement of the IP address
147.251.17.197 into the following incident:

Incident type: Malicious_Hash
Time of detection: 2014-12-10 14:43:18 +0100
IP address: 147.251.17.197
Domain name: ---

Details of this incident can be found at this address:
https://reports.csirt.muni.cz/A4FE72DC-65A8-1C74-8627-5664BE78D651

Best regards,
CSIRT-MU, the security team

            Date: Wed, 10 Dec 2014 14:43:36 +0100

Figure 6.4: An example of a Malicious_Hash ticket.

6.2.1.3 Evaluation of the Malicious Domain Name Detection

Module (MDND)

Three evaluation experiments were performed to test the MDND module in

terms of effectiveness and real time detection. In the first one, MDND was

applied on a pcap file. This pcap file contains traffic infected by malware

with MD5 hash f73c538c1558b1e02f52743534ca967e [137]. The infection was

delivered by a Neutrino exploit kit (EK) and six domains were involved.

This fact was exploited to set the ground truth. The module consumes the

pcap file and produces a log file. MDND was able to detect five out of six

malicious domains which were involved in that infection while one of those

malicious domains was not included in the module blacklist.intel file. Note

that the ground truth blacklist was not provided to the MDND module.

Figure 6.5 shows part of blacklist_detection_domain.log produced by the

detection module.
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-fields9999timestamp9999alert_type99999999infected_host99malicious_domain
-types9999time99999999999999string99999999999999addr99999999999999999string
1387853424.60246399domain_alert99192.168.1.10799brixton-beds.co.uk
1387853432.37246299domain_alert99192.168.1.10799flirtlivejasmin.com
1387853432.83020299domain_alert99192.168.1.10799www.dana123.com
1387853433.18635199domain_alert99192.168.1.10799restofthebesta.com
1387853433.68502599domain_alert99192.168.1.10799www.rightmedia.com
-close92014-11-06-16-14-30

Figure 6.5: Part of the log produced by the MDND module.

In the second evaluation experiment, the campus live traffic was moni-

tored for malicious domains detection. MDND was run on the experimental

server mentioned before in Section 6.2.1 on page 116. The monitoring was

done for one month. The list of hosts involved in malicious domain con-

nections was matched with the results of a malicious IP address detection

module. As shown in Figure 6.6, 22 hosts involved in malicious domain

connections were detected, by MDND; and 37 hosts involved in malicious

IP address connections were detected, by MIPD. Within detected hosts, 14

were involved in both malicious IP and domain connections, which indicated

that they were infected with malware.
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Figure 6.6: Detected hosts by the MDND and MIPD modules.

MDND also sent a real time alert email to report the malicious domain

activities to RT. Figure 6.7 shows an example of a Malicious_Domain ticket
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which was sent by email to RT.

Greetings,

the security team CSIRT-MU detected involvement of the IP address
147.251.17.197 into the following incident:

Incident type: Malicious_Domain
Time of detection: 2014-11-06 16:21:39 +0100
IP address: 147.251.17.197
Domain name: cqufwm.com

Details of this incident can be found at this address:
https://reports.csirt.muni.cz/A4FE72DC-65A8-1C74-8627-5664BE69D651

Best regards,
CSIRT-MU, the security team

            Date: Wed, 10 Dec 2014 14:43:36 +0100

Figure 6.7: An example of a Malicious_Domain ticket.

The third evaluation experiment is to evaluate the real time detection

capability of MDND. In this experiment, a script connecting to random

malicious domains from the blacklist was installed on a computer in the

monitored network. MDND was set up to send a report to RT as soon as a

malicious connection was detected. The experiment consisted of the following

steps. First, a script initiated connection to a randomly picked address

from the blacklist of malicious domains. It noted the connection time with

millisecond precision. Second, MDND detected a malicious connection after

the first step and automatically created an RT ticket. Third, the RT ticket

was received and the time of arrival, with millisecond precision, is noted .

Finally, the connection start-up time and the time of RT ticket arrival were

compared to calculate the detection delay. The average detection delay was

found to be 310 ms with a standard deviation of 63 ms. Figure 6.8 shows

the detection delay results of MDND.
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Figure 6.8: The real time detection of the MDND module.

6.2.1.4 Evaluation of the Malicious IP Address Detection Module

(MIPD)

Two experiments were performed to evaluate the MIPD module. In the first

evaluation experiment, three datasets each containing traffic carrying differ-

ent malware were used. MIPD was applied on those pcap files which were

analysed by the provider, therefore, the ground truth was known. The first

pcap file contained traffic infected by the malware (PizzaHut_Coupon.exe)

with MD5 hash 191a02952905cc0037753700636c3339 [138]. The infection

was delivered by an email attachment sent by Asprox botnet, which uses

phishing emails and sends fake Pizza Hut emails with the subject line: Free

Pizza. The second pcap file traffic was infected by the malware (Label-CA-

Toronto.exe) with MD5 file hash a6ba2cadc7c6891a5f437b212a18ac52 [139].
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The infection was also delivered by Asprox botnet phishing email, but differ-

ent malicious IP was used. The third pcap file traffic was infected by a piece

of malware with MD5 file hash dc5c71aef24a5899f63c3f9c15993697 [140].

The infection was delivered by drive-by-download attack and five malicious

IPs were involved.

The MIPD module was set up to record the malicious IP connections

into a log file. MIPD was able to detect all malicious IP addresses, which

were involved in the three infections described in the previous paragraph

without the knowledge of the ground truth blacklist. Figures 6.9, 6.10

and 6.11 shows part of blacklist_detection_ip.log produced by MIPD for

each used pcap file. The log file contains other useful information such as

the communication source and destination ports.

#fields9999timestamp99999alert_type99infected_host9999999malicious_ip
#types9999time999999999999999string999999999addr999999999999999999999addr
1414537682.066774999ip_alert999999192.168.56.255999192.168.56.101
1414537713.067728999ip_alert99999985.12.29.1729999999192.168.56.101
#close92014-11-29-20-40-04

Figure 6.9: Part of the log produced by the MIPD module for the first
pcap file.

#fields999timestamp999999alert_type999infected_host99999999malicious_ip
#types999time9999999999999999string999999999addr99999999999999999999999addr
1410463527.855812999ip_alert999999184.107.222.130999172.16.165.133
1410463534.997906999ip_alert999999172.16.165.2999999999172.16.165.133
#close92014-11-29-20-47-41

99

Figure 6.10: Part of the log produced by the MIPD module for the
second pcap file.
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#fields7777timestamp777777alert_type777infected_host7777777777malicious_ip
#types7777time7777777777777777string7777777777addr777777777777777777777777addr
1411999086.1580597777ip_alert7777777192.168.204.1487777148.251.154.3
1411999091.2026587777ip_alert7777777192.168.204.1487777148.251.154.29
1411999091.7137537777ip_alert7777777192.168.204.148777789.40.71.156
1411999102.4622837777ip_alert7777777192.168.204.148777779.133.219.113
1411999178.2855717777ip_alert7777777192.168.204.148777777.87.78.127
#close72014-11-29-20-56-24

Figure 6.11: Part of the log produced by the MIPD module for the third
pcap file.

In the second evaluation experiment, as in the previous two detection

modules, the campus live traffic was monitored for malicious IP connections

detection. The detected hosts by MIPD were matched with the detected

ones of the MFHD and MDND modules. The result of this experiment is

presented before in the previous Section 6.2.1.2, Figure 6.3 on page 119 and

Section 6.2.1.3, Figure 6.6 on page 121. MIPD also sent an alert email, in

real time, regarding each malicious IP detection similar to those RT tickets

sent by the previous modules.

6.2.1.5 Evaluation of the Malicious SSL Certificate Detection

Module (MSSLD)

To evaluate the MSSLD module, a virtual Internet-connected network was

built, malware samples were injected into the virtual network, the network

traffic was recorded into pcap files, and then the MSSLD module was applied

on those pcap files.

As illustrated in Figure 6.12, two Windows XP SP3 virtual machines

were connected to a physical consumer-grade router, which provided connec-

tion to the Internet. The virtual machines behaved as physical computers in

a home network and were able to communicate with each other. The Virtual



Evaluation Results 126

machines traffic was recorded into two separate pcap files using the nictrace

VirtualBox functionality [141]. Because no software besides the operating

system and the malware was installed on the virtual machines and the oper-

ating system updates were disabled, the majority of the captured traffic was

initiated by the installed malware. Moreover, it becomes easy to establish

the ground truth.

Internet

Home router

PCAP

PCAP

Clean PC

Infected PC

Figure 6.12: Topology of the implemented virtual network.

Two malware samples were injected independently into the vir-

tual network for 5 minutes each. The first one is the Tro-

jan.Win32.Inject.sbqz, also known as TorrentLocker, which has MD5 hash

value of aabe2844ee61e1f2969d7a96e1355a99. The second injected malware

sample is the Trojan.Win32.Staser.bazr malware, which has MD5 hash value

of e161a4d2716eb83552d3bd22ce5d603c. The C&C servers for these two mal-

ware uses SSL certificates for communication over https. When the MSSLD

module was applied on the captured pcap files, it successfully detected the

malicious traffic as shown in Figure 6.13.
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#fields44timestamp44alert_type44infected_host44malicious_ssl
#types44time444444444444string444444444addr4444444444444444string
138.85770944ssl_alert44192.168.1.1014445c0c2f1fa15b0ac5ce5fc018992a6ecf7e1e6bc
143.72564744ssl_alert44192.168.1.1014448a79b6bc3b9616f1e62fa4014997087673b358f
207.14715244ssl_alert44192.168.1.10244d8af2f6a1a2ba2b1b6e1a260e791fcab88cc2c8d
#close442015-03-26-18-50-32

Figure 6.13: Part of a log produced by the MSSLD module.

6.2.1.6 Evaluation of the Domain Flux Detection Module (DFD)

This module was evaluated using two experiments. In the first evaluation

experiment, the DFD module was applied on a pcap file provided by the

Malware Capture Facility Project (MCFP) [142]. MCFP is an effort from

the Czech Technical University ATG Group for capturing, analysing and

publishing real and long-lived malware traffic. The captured network traffic

took place between November 2013 and January 2014 in their capture facility.

After analysing the captured data, MCFP found that a piece of malware

used the domain flux technique to connect to its C&C server. There were a

large group of packets going to the IP address 192.35.51.30, destination port

53/TCP. The content of these packets are DNS requests asking for domains

being generated with a Domain Generation Algorithm (DGA). DFD was set

up to consume the MCFP pcap file. It was able to detect the domain flux

communications used by that malware and identify the infected host. All

information related to the domain flux technique detection was written into

a specific log as shown in Figure 6.14.

orig_h        orig_p     resp_h             resp_p  infected_host  domain_name
addr           port        addr                port      addr               string
10.0.2.107  29219    192.35.51.30    53        10.0.2.107      ndyotrc.com
10.0.2.107  29222    192.35.51.30    53        10.0.2.107      kbzmyrj.net 
10.0.2.107  29225    192.35.51.30    53        10.0.2.107      asptecbd.ru
10.0.2.107  29228    192.35.51.30    53        10.0.2.107      yrtuqrbuk.cc

Figure 6.14: Part of a log produced by the DFD module.
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In the second evaluation experiment, the virtual network men-

tioned before in Section 6.2.1.5 Figure 6.12 on page 126, was used to

gather data. The HEUR:Trojan.Win32.Generic malware of MD5 value

fbb354f6773fb81927a59008cd9fd3a6 was executed on one of the virtual ma-

chines for 48 hours and the traffic was recorded into a pcap file. Through

manual traffic analysis, it was found that the infected machine proceeded

to use the domain flux technique to connect to the C&C servers over ports

1778, 3363, 3478 and 3479. The DFD module was applied on the captured

pcap file, and the domain flux was detected and written into a log similar to

that one shown in Figure 6.14.

6.2.1.7 Evaluation of the Tor Connection Detection Module

(TorCD)

Three evaluation experiments were used to evaluate the TorCD module in

terms of effectiveness and real time detection. In the first evaluation ex-

periment, TorCD was applied on six pcap files with total size of 31.6 MB.

Those pcap files contain recorded traffic of Trojan.Tbot (Skynet Tor Botnet)

malware, which uses Tor network to communicate with its C&C centre [143].

All pcap files had been analysed by the third party, so the ground truth was

already known. All Tor connections were detected and Figure 6.15 shows

part of the log produced by the TorCD module.

In the second evaluation experiment, the Trojan-Spy.Win32.Zbot.qvcn

malware of MD5 hash value 52d3b26a03495d02414e621ee4d0c04e) was run

on the virtual network, described in Section 6.2.1.5 Figure 6.12 on page 126,

for ten hours and the traffic was recorded into a pcap file. It was found

that the malware communicated solely through the Tor network and did not

exhibit other activities. In the first two minutes, the malware initiated 67
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#fields88888timestamp88888alert_type88infected_host888888tor_server
#types88888time888888888888888string888888888addr88888888888888888888addr
1349621090.4237218888tor_alert8888172.16.253.130888208.83.223.34
1349621090.9459258888tor_alert8888172.16.253.13088886.59.21.38
1349621102.6348508888tor_alert8888172.16.253.13088874.120.13.132
1349621102.6288028888tor_alert8888172.16.253.13088896.47.226.20
1349621102.6704888888tor_alert8888172.16.253.13088896.44.189.102
#close882015-03-24-18-06-02

Figure 6.15: Part of a log produced by the TorCD module.

connections to 67 addresses belonging to the Tor network and transferred

3698 kB of data. The flow of data dropped for the remaining time, but

new connections were still made. These findings were used to establish the

ground truth. TorCD was applied on the captured pcap file and all Tor

connections were detected and written into a log similar to that one shown

in Figure 6.15.

In the third evaluation experiment, the campus live traffic was moni-

tored for Tor connections detection. TorCD was run on the experimental

server, mentioned before in Section 6.2.1 on page 116, and the monitoring

was done for one month. The list of hosts involved in Tor connections was

matched with the results of domain flux detection module. 14 hosts were

detected by TorCD, involved in Tor connections, and 7 hosts were detected

by DFD, involved in domain flux connections. Within the detected hosts,

5 were involved in both Tor and domain flux connections, which indicated

that they were infected with malware. The TorCD module also sent an alert

email, in real time, regarding each Tor connection detection similar to those

RT tickets sent by the previous modules.

In the end of the detection modules evaluation section, it was found

that: (1) When the detection modules is applied on the pcap files, either
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the files provided by the third parties or the ones captured through the

implemented virtual network mentioned in Section 6.2.1.5 Figure 6.12 on

page 126, all the MLAPT detection modules, apart from MDND, were able

to detect the malicious connections with a true positive rate (TPR) of 100%

and a false positive rate (FPR) of 0%. In the first evaluation experiment of

MDND, the module was able to detect five out of six malicious domains while

missed one malicious domain which was not included in the MDND module

blacklist, i.e. TPR is 83% and FPR is 0%. For this reason, all blacklists of

the blacklist-based detection modules are automatically updated every day

based on different intelligence feeds at once. (2) When the detection modules

were run on the experimental server, mentioned in Section 6.2.1 on page 116,

for the live traffic monitor, all the MLAPT detection modules were able to

detect and report the malicious connections in real time.

6.2.2 Evaluation of the FCI Correlation Framework

In the absence of any publicly available data which contains APT attack

traffic, which can be used in the evaluation of the FCI framework. We had

to build a new dataset which contains APT attack traffic. Using the campus

network to gather attack data does not guarantee capturing any APT attack

traffic against the monitored network.

The aim of the correlation framework is to identify different alerts raised

by the various detection modules, which could be correlated and belong

to one APT attack scenario. To effectively evaluate the FCI correlation

framework, a dataset containing many of the detection modules alerts, in

which some of those alerts belong to APT attack scenarios, has been built.

The data is generated to appear as APT attack scenarios were simulated on

the campus network, the techniques used in the APT life cycle were identified
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by the detection modules, and all generated alerts were written into the

simulation dataset. That dataset also contains many of the generated alerts

which do not belong to APT attack scenarios. All the detection modules have

been evaluated on pcap files and on the real live traffic as well, as previously

explained in Section 6.2.1 on page 116. The aim of this experiment is to test

if the FCI correlation framework is able to detect those APT scenarios in

the simulation dataset.

6.2.2.1 Data Generation

A script is written, using Python. This script generates two types of alerts:

(1) Random alerts which do not relate or belong to one APT attack sce-

nario; and (2) Related alerts which belong to a full or sub-APT attack.

Each alert has seven attributes: alert_type, timestamp, src_ip, src_port,

dest_ip, dest_port and the infected_host ; only the scan_alert has the extra

scanned_host attribute.

To generate a random alert, the alert_type is selected randomly from

the set of all 8 detectable alerts, i.e. disguised_exe_alert, hash_alert,

domain_alert, ip_alert, ssl_alert, domain_flux_alert, scan_alert and

tor_alert. The timestamp is assigned a random value between Fri, 01 Jan

2016 00:00:01 GMT and Thu, 30 Jun 2016 23:59:59 GMT. The src_ip is

randomly assigned an IP address on the campus network. The src_port

is selected randomly from the 49152, 65535 range of ports, which are usu-

ally assigned dynamically to client applications when initiating a connec-

tion. The dest_ip value is assigned based on the selected alert_type: If

the alert_type is disguised_exe_alert, hash_alert or ssl_alert, then the

dest_ip can be any valid IP address which is not on the campus network;

if the alert_type is domain_alert or domain_flux_alert, then the dest_ip
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can use an IP address which is on the campus network; if the alert_type

is assigned ip_alert, then the dest_ip can select a random IP address

from the ip_blacklist described in Section 5.1.4 on page 81; if alert_type

is scan_alert, the dest_ip is selected randomly from campus network IP

addresses; and if the alert_type is tor_alert, the dest_ip is selected ran-

domly from tor_server_list mentioned in Section 4.2.1.8 on page 59. The

dest_port is selected based on the selected alert_type: if the alert_type

is disguise_exe_alert or hash_alert, the dest_port should be 80; if the

alert_type is domain_alert or domain_flux_alert, the dest_port should be

53; if the alert_type is ip_alert, ssl_alert or tor_alert, the dest_port should

be 443; and if the alert_type is scan_alert, the dest_port is selected ran-

domly from the 1, 1024 range of ports. The infected_host should be the same

src_ip of the connection. Finally, the scanned_host (only if alert_type is

scan_alert) should be the same dest_ip of the connection.

To generate an APT full-scenario (consisting of 4 correlated alerts) or

sub-scenario (consisting of 2 or 3 correlated alerts), the APT life cycle should

be taken into consideration. Meaning, the generated alerts’ attributes of each

scenario are selected to appear as an APT attack which is simulated through

the campus network.

6.2.2.2 Experimental Setup

To determine the number of random alerts to be generated for the simula-

tion_dataset, the experimental server, previously mentioned in Section 6.2.1

on page 116, was used to monitor part of the university campus network.

All detection modules were run on the experimental server to analyse the

network traffic; the monitoring period and the number of detected alerts

were determined. According to the actual university network size and the
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actual simulation_dataset monitoring period, the number of the generated

random alerts was calculated. The number of the generated APT full- and

sub-scenarios should be suitable to get enough samples for each class in the

machine_learning_dataset previously explained in Section 5.3.1 on page 108.

The network monitoring was conducted via the experimental server for 2

weeks and 9 different alerts were detected by the detection modules. The size

of the monitored network was 550 nodes, while the whole campus network

is 23500 nodes. Meaning, if the whole campus network is monitored for 6

months, 4900 alerts are expected to be detected by the detection modules.

Therefore, 4900 alerts were generated for the simulation_dataset, of which

100 APT full attack (each scenario is 4 correlated alerts) and 50 APT sub-

attack 3 steps (each scenario is 3 correlated alerts); 50 APT sub-scenarios 2

steps (each scenario is 2 correlated alerts); and 4250 random alerts (which

do not relate or belong to APT attack scenarios). The APT life cycle period

was configured to be for a maximum of one week.

Figure 6.16 shows part of the simulation_dataset with examples of 4

random alerts (alerts 1, 2, 3 and 4), one full APT attack (alerts 5, 6, 7

and 8), sub-APT attack with three steps (alerts 9, 10 and 11) and sub-APT

attack with two steps (alerts 12 and 13).
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id alert_type �mestamp src_ip src_port  dest_ip dest_port infected_host scanned_host

1 domain_alert 1452998107 149.170.102.163 63645 149.170.39.93 53 149.170.102.163

2 ip_alert 1464055590 149.170.109.65 56761 84.92.85.198 443 149.170.109.65

3 ssl_alert 1458212586 149.170.119.6 60822 139.182.102.123 443 149.170.119.6

4 tor_alert 1455639999 149.170.146.107 51376 80.81.17.31 443 149.170.146.107

5 domain_alert 1458564234 149.170.8.178 58562 149.170.39.93 53 149.170.8.178

6 ssl_alert 1459065352 149.170.8.178 61127 53.107.134.191 443 149.170.8.178

7 scan_alert 1459110382 149.170.8.178 59094 149.170.185.189 830 149.170.8.178 149.170.185.189

8 tor_alert 1459142888 149.170.8.178 60178 176.31.107.163 443 149.170.8.178

9 ssl_alert 1459761925 149.170.205.136 58469 155.136.118.250 443 149.170.205.136

10 scan_alert 1460181080 149.170.205.136 61518 149.170.227.158 657 149.170.205.136  149.170.227.158

11 tor_alert 1460243277 149.170.205.136 59239 65.110.100.163 443 149.170.205.136

12 hash_alert 1457714526 149.170.233.171 56560 31.189.78.33 80 149.170.233.171

13 ssl_alert 1458163332 149.170.233.171 50074 159.124.176.26 443 149.170.233.171

Figure 6.16: Part of the simulation_dataset.

6.2.2.3 Results and Discussion

The FCI correlation framework was applied on the simulation_dataset. Ta-

ble 6.2 shows the FCI correlation framework detection results. This table

indicates the TPR and the FPR for each studied APT attack, both full and

partial attacks. Among all studied APT attacks, the best TPR results were

for the APT sub-attack two steps scenario, followed by the APT sub-attack

three steps scenario and APT full attack, respectively. The results show that

the higher the number of related alerts, the lower the TPR and the higher

FPR. This is due to the higher possibility of the random alerts to be incor-

rectly clustered when more alerts are to be correlated for APT. By manual

analysis for the results, the incorrect alerts clustering was the main reason

of the false alarms. Some APT attacks were not detected due to some of

the random alerts which were incorrectly clustered and correlated. This can

happen if those random alerts, by chance, meet the clustered and correlation

rules, so one random alert can interfere with a running APT scenario (if the

random alert is triggered for the missed scenario step, for the same infected

host, and within the correlation time) and cause the false positive detection

of APT and false negative detection of the random alert. Besides, a very rare
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case can cause the wrong detection is when two, three or four random alerts

can meet the correlation rules, by chance, and are correlated incorrectly.

Table 6.2: Correlation framework detection results.

APT attack
scenario

Detection
result

TP FP FN TN P N TPR FPR

APT full scenario
(4 steps)

90*4 78*4 12*4 88 4452 400 4500 78% 1%

APT sub-scenario
(3 steps)

65*3 42*3 23*3 24 4681 150 4750 84% 1.4%

APT sub-scenario
(2 steps)

85*2 47*2 38*2 6 4724 100 4800 94% 1.6%

APT full and
sub-scenario

725 532 193 118 4132 650 4250 81.8% 4.5%

Figure 6.17 indicates part of the correlation_dataset showing examples

of the clustered alerts, clustered by the clustering algorithm, and the corre-

lation index of each cluster, calculated by the correlation index algorithm.

cluster_id alert_type_1 alert_type_2 alert_type_3 alert_type_4 correla�on_index

1 disguised_exe_alert ip_alert scan_alert tor_alert 3

2 ssl_alert scan_alert tor_alert 2

3 hash_alert domain_flux_alert scan_alert 2

4 hash_alert ssl_alert 1

5 domain_alert ssl_alert scan_alert tor_alert 3

6 domain_alert 0

7 hash_alert 0

8 domain_alert ip_alert scan_alert tor_alert 3

9 domain_flux_alert scan_alert 1

10 ssl_alert 0

Figure 6.17: Part of the correlation_dataset.

Due to the space limitation, the attributes columns of each alert in

Figure 6.17 are hidden. For example, for the first cluster in Figure 6.17, the

alerts’ attributes and the APT life cycle are shown in Figure 6.18.
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ip_alert: 1453861046
149.170.246.131 54242 -> 98.131.185.136 443

tor_alert: 1454277454
149.170.246.131 57180 -> 178.32.181.96 443

disguised_exe_alert: 1453673061
149.170.246.131 57131 -> 100.95.176.106 80

scan_alert: 1454268536
149.170.246.131 50445 -> 149.170.247.87 989

Figure 6.18: The APT life cycle and alerts’ attributes of the first cluster.

6.2.3 Evaluation of the APT Prediction Module (PM)

To evaluate the PM module, three main steps were followed: (1) Prepar-

ing the machine_learning_dataset ; (2) Training the prediction model; and

(3) Saving the model for prediction.

Using the correlation_dataset, which is the output of the FCI correlation

framework over a period of six months, the machine_learning_dataset is

prepared as explained in Section 5.3.1 on page 108. Figure 6.19 shows part

of machine_learning_dataset, the total number of samples in the dataset is

125: of which 78 samples of class 1, and 47 samples of class 0.
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As there is no machine learning algorithm which can be regarded as the

best or the optimal one, various experiments should be performed on the

machine_learning_dataset using several machine learning algorithms, and

then a comparison between the trained models is made.

The Matlab’s Classification Learner application [144] is used to train

models to classify the machine_learning_dataset. Automated training is

performed to search for the best classification model type, including deci-

sion trees, support vector machines, nearest neighbours, and ensemble clas-

sification. Those classification algorithms are previously explored in Sec-

tion 2.3.1 on page 23, and the characteristics of each classifier type can be

found in [145]. Cross-validation is used as a validation scheme to examine

the prediction accuracy of each trained model.

Cross-validation is a model assessment technique used to evaluate a

machine learning algorithm’s performance in making predictions on new

datasets which has not been trained on [146]. This is done by partition-

ing a dataset and using a subset to train the algorithm and the remaining

data for testing. Each round of cross-validation involves randomly partition-

ing the original dataset into a training set and a testing set. The training set

is then used to train a supervised learning algorithm and the testing set is

used to evaluate its performance. This process is repeated several times and

the average accuracy is used as a performance indicator. Table 6.3 shows

the prediction accuracy for all investigated classification algorithms used to

train the classification models.

Experimental results show that the best classification algorithm is the

Linear SVM, with a prediction accuracy of 84.8%. This trained model can be

saved by the network security team to be applied on real time traffic when a

new real time apt_sub_scenario_two_steps_alert is triggered, as previously
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Table 6.3: Classification algorithms and the prediction accuracy of the
trained models.

Classification algorithms Prediction
accuracy

Decision trees
Complex tree 83.0%
Medium tree 83.0%
Simple tree 84.4%

Support vector
machines

Linear SVM 84.8%
Quadratic SVM 81.6%
Cubic SVM 76.9%
Fine Gaussian SVM 69.4%
Medium Gaussian SVM 80.3%
Coarse Gaussian SVM 81.0%

Nearest neighbour
classifiers

Fine KNN 76.2%
Medium KNN 80.3%
Coarse KNN 68.0%
Cosine KNN 82.3%
Cubic KNN 78.9%
Weighted KNN 78.2%

Ensemble classifiers

Boosted trees 83.7%
Bagged trees 82.3%
Subspace discriminant 81.6%
Subspace KNN 72.8%
RUSBoosted trees 81.0%

explained in Section 5.3.3 on page 110. Table 6.4 shows the confusion matrix

for the Linear SVM prediction model with a prediction accuracy of 88.4%

for class 1 and 78.7% for class 0.

Table 6.4: Confusion matrix for Linear SVM prediction model.

Predicted
0

Predicted
1

Actual
0 37 10

Actual
1 9 69
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6.3 A Performance Analysis of Existing APT

Detection Systems

This section presents a performance analysis of four existing APT detection

systems, and provides a comparison between the developed system MLAPT

and these current systems, as shown in Table 6.5.

Table 6.5: A comparison between MLAPT and other existing systems.

APT detection
system

Auton-
omy

APT
steps

speed TPR FPR Prediction
accuracy

MLAPT Au-
tonomous

4 Real
time

81.8% 4.5% 84.8%

TerminAPTor Agent-
based

4 Real
time

100% high No

C&C-based Au-
tonomous

1 Off-
line

83.3% 0% No

Spear phishing
based

Au-
tonomous

1 Real
time

97.2% 14.2% No

Context-based Agent-
based

4 Real
time

? 27.88% No

The most effective system in terms of true positive rate is TerminAP-

Tor [70] with a TPR of 100%, previously mentioned in Section 3.3 on page 41.

However, the developers mentioned that TerminAPTor has a high rate of

false positives (although they did not mention the figure of FPR) and needs

to be improved by filtering the false positives. Moreover, this detector re-

quires the alerts to be provided by other systems (agent-based) and cannot

work autonomously. Despite having the lowest false positive rate of 0%, the

C&C-based system [71], presented previously in Section 3.3 on page 42, does

not achieve the real time detection. Furthermore, the authors stated that

the detection can be easily evaded when the infected hosts connect to the

C&C domains while users are surfing the Internet. Additionally, missing

the detection of C&C domains leads to failure in APT detection since this
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system depends on detecting only one step of the APT life cycle. Whilst the

spear phishing based system [72], explored earlier in Section 3.3 on page 43,

has a TPR of 97.2%, the FPR of 14.2% is considerably high. In addition, de-

pending on one step for APT detection leads the system to fail when missing

the spear phishing email detection. This missing can happen when the spear

phishing email does not include any of the tokens which are necessary for

the algorithm process. The context-based system [77], already stated in Sec-

tion 3.3 on page 47, has a significantly high FPR of 27.88% while the TPR

was not provided by the authors. Besides, this framework requires significant

expert knowledge to set up and maintain; and similar to TerminAPTor, it is

an agent-based system and cannot work autonomously.

Having a high rate of true positives is significant. Nevertheless, in-

creasing the amount of true positives means that the false positive rate also

increases. Thus, the balance between TPR and FPR is an essential require-

ment for any detection system. The developed system MLAPT has a suitable

balance between the two values of TPR and FPR with 81.8% and 4.5% re-

spectively. MLAPT can also work autonomously and generate the required

events based on its own detection modules. The generated events covers four

detectable steps of the APT life cycle which reduces the false positives and

gives more possibility of APT detection in case one of the steps is missed.

Furthermore, this system can achieve the real time detection, so it can be

much easier to trace back to the attacker, minimise the damage and prevent

further break-ins. Moreover, to the author’s knowledge, MLAPT is the only

system which can predict APT in its early steps with a prediction accu-

racy of 84.8%, which prevents the attacker from achieving the goal of data

exfiltration.
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6.4 Summary

This chapter presents the evaluation of the MLAPT phases. When evalu-

ating the detection modules, all the MLAPT detection modules, apart from

MDND, were able to detect the malicious connections with a true positive

rate (TPR) of 100% and a false positive rate (FPR) of 0%. The MDND

module was able to detect the malicious domain connections with a TPR

of 83% and FPR of 0%. In addition, all the MLAPT detection modules

were able to detect and report the malicious connections in real time. When

evaluating the FCI correlation framework, among all studied APTs, the best

TPR results were for the APT sub-attack two steps scenario with a value of

94%, followed by the APT sub-attack three steps scenario with a value of

84% and APT full attack with a value of 78%, respectively. FCI was able to

detect APTs, both full and partial scenarios, with a TPR of 81.8% and FPR

of 4.5%. When evaluating the APT prediction module, the best classification

algorithm was the Linear SVM, with a prediction accuracy of 84.8%.



Chapter 7

Conclusions and Future Work

Although virus scanners, firewalls and IDPSs are able to detect and prevent

many types of cyber attacks, cyber-criminals in turn have developed more

advanced methods and techniques to intrude into the target’s network and

exploit its resources. APTs target specific organisations, this class of attack

are composed of various stages. The main aim of the APT attack is espionage

and then data exfiltration. Therefore, the APT attack is considered as a new

and more complex version of multi-step attack. Most of the research in the

area of APT detection has focused on analysing already identified APTs or

detecting a particular APT attack uses a specific malware. Some previous

approaches have attempted to detect potential APT attacks. However, the

current APT detection systems face serious shortcomings in several aspects

such as achieving real time detection, detecting all APT attack steps, hav-

ing a suitable balance between false positive and false negative rates, and

correlating of events spanning over a long period of time.

This research aims to develop a novel system to detect and predict APT

attacks. A Machine-Learning-based APT detection system, called MLAPT,

143
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has been developed. MLAPT runs through three main phases: threat detec-

tion, alert correlation and attack prediction. In the first phase, the sniffed

data traffic is scanned to detect possible techniques used in the APT life

cycle. To this end, eight detection modules have been developed and tested;

each module implements a method to detect one technique used in one of

APT steps. These detection modules are as follows: disguised exe file detec-

tion (DeFD), malicious file hash detection (MFHD), malicious domain name

detection (MDND), malicious IP address detection (MIPD), malicious SSL

certificate detection (MSSLD), domain flux detection (DFD), scan detection

(SD), and Tor connection detection (TorCD). The output of this phase is

alerts, also known as events, triggered by the individual modules. In the sec-

ond phase, the alerts raised by the individual detection modules are fed to

the newly designed (FCI) correlation framework. The aim of the correlation

framework is to find alerts could be related and belong to one APT attack

scenario. The process in this phase undergoes three main steps: alerts fil-

ter (AF), to identify redundant or repeated alerts; clustering of alerts (AC),

which most likely belong to the same APT attack scenario; and correlation

indexing (CI), to evaluate the degree of correlation between alerts of each

cluster. The main objective of using the correlation framework is to reduce

the false positive rate of the MLAPT detection system. In the final phase,

a machine-learning-based prediction module (PM) is designed and imple-

mented based on a historical record of the monitored network. This module

can be used by the network security team to determine the probability of

the early alerts to develop a complete APT attack.

In spite of the fact that the detection modules methodologies exist in the

literature, their implementation and validation in real traffic are significant

contributions to the field. The correlation framework and prediction module

are two other major contributions in this work.
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Bro scripting language is used in the implementation of all detection

modules. The FCI correlation framework is implemented in two versions.

The first one is implemented on top of Bro to be used on live traffic for real

time detection; it can also be used offline on PCAP files. The second version

is built in Python to be used offline on saved alerts’ logs. The prediction

module PM makes use of Python and Matlab to achieve its functionality.

All blacklists of blacklist-based detection modules are automatically up-

dated based on different intelligence feeds at once. The MLAPT detec-

tion modules can generate eight events (alerts), send alert emails to RT

and write alerts information into specific logs. Those detection modules’

alerts are fed to the FCI correlation framework to be filtered, clustered,

and the 𝐶𝑜𝑟𝑟𝑖𝑑 is calculated for each cluster. FCI can generate three types

of alerts: apt_full_scenario_alert, apt_sub_scenario_two_steps_alert

and apt_sub_scenario_three_steps_alert. FCI writes all the corre-

lated clusters along with the 𝐶𝑜𝑟𝑟𝑖𝑑 of each cluster into the correla-

tion_dataset. Based on the correlation_dataset, the PM module prepares

machine_learning_dataset, applies different machine learning algorithms to

find the best model and saves the prediction model to be used by the network

security team.

All the MLAPT detection modules, apart from MDND, were able to

detect the malicious connections with a true positive rate (TPR) of 100%

and a false positive rate (FPR) of 0%. The MDND module was able to

detect the malicious domain connections with a TPR of 83% and FPR of

0%. In addition, all the MLAPT detection modules were able to detect and

report the malicious connections in real time. Regarding the FCI correlation

framework, among all studied APTs, the best TPR results were for the APT
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sub-attack two steps scenario with a value of 94%, followed by the APT sub-

attack three steps scenario with a value of 84% and APT full attack with

a value of 78%, respectively. MLAPT was able to detect the APT attacks

with a TPR of 81.8% and FPR of 4.5%. The APT prediction module, built

based on the Linear SVM algorithm, has a prediction accuracy of 84.8%.

For future work, a number of improvements within the system could be

made. First, it is suggested that more detection modules are added to detect

other techniques used in the APT attack life cycle. Furthermore, if MLAPT

were able to monitor the internal network traffic, other detection modules

could be added to dtect brute force and pass the hash attacks, increasing

the detectable steps of the the system. Second, it is also recommended

that more than one detection module for the same technique are developed.

Third, it is advised that alerts from external IDSs deployed on the network

are received and fed to MLAP, which can reduce the false positive rate of the

system. Fourth, MLAP detection modules were evaluated on real traffic and

pcap files contain real attacks. However, the FCI framework was validated

on synthetic data. Therefore, it would be beneficial to test MLAP on real

APTs. Nevertheless, obtaining such data is not easy, and the lack of relevant

publicly available data sources was the main reason for using the synthetic

data when evaluating the correlation framework.



Appendix A

Author’s Contributions

A.1 Journals

∙ Ibrahim Ghafir, Vaclav Prenosil, and Mohammad Hammoudeh. Botnet

Command and Control Traffic Detection Challenges: A Correlation-

based Solution. International Journal of Advances in Computer Net-

works and Its Security (IJCNS), New York, USA: theIRED, 2017, vol.

7, Issue 2, p. 27-31. ISSN 2250-3757 [147].

[Author’s contribution: 80%]

∙ Ibrahim Ghafir, Jakub Svoboda, Vaclav Prenosil. A Survey on Bot-

net Command and Control Traffic Detection. International Journal of

Advances in Computer Networks and Its Security (IJCNS), New York,

USA: theIRED, 2015, vol. 5, Issue 2, p. 75-80. ISSN 2250-3757 [148].

[Author’s contribution: 80%]

∙ Jakub Svoboda, Ibrahim Ghafir, Vaclav Prenosil. Network Monitoring

Approaches: An Overview. International Journal of Advances in Com-

puter Networks and Its Security (IJCNS), New York, USA: theIRED,

147



Author’s Contributions 148

2015, vol. 5, Issue 2, p. 88-93. ISSN 2250-3757 [149].

[Author’s contribution: 60%]

∙ Ibrahim Ghafir and Vaclav Prenosil. Advanced Persistent Threat At-

tack Detection: An Overview. International Journal of Advances

in Computer Networks and Its Security (IJCNS), New York, USA:

theIRED, 2014, Volume 4, Issue 4, p. 50-54. ISSN: 2250-3757 [24].

[Author’s contribution: 80%]

∙ Ibrahim Ghafir, Mohammad Hammoudeh, Vaclav Prenosil, Liangxiu

Han and Robert Hegarty. MLAPT: A Correlation-Based System for

Real-Time Advanced Persistent Threat Detection and Prediction. Jour-

nal paper, under review.

[Author’s contribution: 80%]

A.2 Book Chapters

∙ Ibrahim Ghafir and Vaclav Prenosil. Malicious File Hash Detection

and Drive-by Download Attacks. In Suresh Chandra Satapathy, K.

Srujan Raju, Jyotsna Kumar Mandal, Vikrant Bhateja. Proceedings of

the Second International Conference on Computer and Communication

Technologies, series Advances in Intelligent Systems and Computing.

Hyderabad: Springer, 2016. p. 661-669, 9 pp. Vol. 379. ISBN 978-81-

322-2516-4. doi:10.1007/978-81-322-2517-1_63 [150].

[Author’s contribution: 80%]

∙ Ibrahim Ghafir and Vaclav Prenosil. Proposed Approach for Tar-

geted Attacks Detection. In Sulaiman, H.A., Othman, M.A., Othman,

M.F.I., Rahim, Y.A., Pee, N.C.. Advanced Computer and Communica-

tion Engineering Technology, Lecture Notes in Electrical Engineering.



Author’s Contributions 149

Phuket: Springer International Publishing, 2016. p. 73-80, 9 pp. Vol.

362. ISBN 978-3-319-24582-9. doi:10.1007/978-3-319-24584-3 [151].

[Author’s contribution: 80%]

A.3 Conferences

∙ Ibrahim Ghafir, Vaclav Prenosil, Mohammad Hammoudeh and Umar

Raza. Malicious SSL Certificate Detection: A Step Towards Ad-

vanced Persistent Threat Defence. In Proceedings of International

Conference on Future Networks and Distributed Systems. Cambridge,

United Kingdom: ACM Digital Library, 2017. ISBN 978-1-4503-4844-

7. doi:10.475/123_4 [152].

[Author’s contribution: 80%]

∙ Ibrahim Ghafir, Vaclav Prenosil, Ahmad Alhejailan and Mohammad

Hammoudeh. Social Engineering Attack Strategies and Defence Ap-

proaches. In Proceedings of International Conference on Future In-

ternet of Things and Cloud. Vienna, Austria: IEEE Xplore Dig-

ital Library, 2016. p. 145-149, 5 pp. ISBN 978-1-5090-4052-0.

doi:10.1109/FiCloud.2016.28 [10].

[Author’s contribution: 80%]

∙ Ibrahim Ghafir, Vaclav Prenosil, Jakub Svoboda and Mohammad

Hammoudeh. A Survey on Network Security Monitoring Systems.

In Proceedings of International Conference on Future Internet of

Things and Cloud. Vienna, Austria: IEEE Xplore Digital Library,

2016. p. 77-82, 6 pp. ISBN 978-1-5090-3946-3. doi:10.1109/W-

FiCloud.2016.30 [153].

[Author’s contribution: 80%]



Author’s Contributions 150

∙ Ibrahim Ghafir and Vaclav Prenosil. Advanced Persistent Threat and

Spear Phishing Emails. In Proceedings of International Conference

Distance Learning, Simulation and Communication. Brno, Czech Re-

public: University of Defence, 2015. p. 34-41, 8 pp. ISBN: 978-80-

7231-992-3 [154].

[Author’s contribution: 80%]

∙ Ibrahim Ghafir and Vaclav Prenosil. Blacklist-based Malicious IP

Traffic Detection. In Proceedings of Global Conference on Commu-

nication Technologies (GCCT). Thuckalay, India: IEEE Xplore Dig-

ital Library, 2015. p. 229-233, 5 pp. ISBN 978-1-4799-8552-4.

doi:10.1109/GCCT.2015.7342657 [155].

[Author’s contribution: 80%]

∙ Ibrahim Ghafir and Vaclav Prenosil. DNS traffic analysis for malicious

domains detection. In Proceedings of International Conference on Sig-

nal Processing and Integrated networks. Noida, India: IEEE Xplore

Digital Library, 2015. p. 613 - 618, 6 pp. ISBN 978-1-4799-5990-7.

doi:10.1109/SPIN.2015.7095337 [156].

[Author’s contribution: 80%]

∙ Ibrahim Ghafir and Vaclav Prenosil. DNS query failure and algorithmi-

cally generated domain-flux detection. In Proceedings of International

Conference on Frontiers of Communications, Networks and Applica-

tions. Kuala Lumpur, Malaysia: IEEE Xplore Digital Library, 2014.

p. 1-5, 5 pp. ISBN 978-1-78561-072-1. doi:10.1049/cp.2014.1410 [157].

[Author’s contribution: 80%]

∙ Ibrahim Ghafir, Jakub Svoboda and Vaclav Prenosil. Tor-based mal-

ware and Tor connection detection. In Proceedings of International



Author’s Contributions 151

Conference on Frontiers of Communications, Networks and Applica-

tions. Kuala Lumpur, Malaysia: IEEE Xplore Digital Library, 2014.

p. 1-6, 6 pp. ISBN 978-1-78561-072-1. doi:10.1049/cp.2014.1411 [158].

[Author’s contribution: 80%]

∙ Ibrahim Ghafir, Martin Husak and Vaclav Prenosil. A Survey on In-

trusion Detection and Prevention Systems. In Proceedings of student

conference Zv̊ule 2014, IEEE/UREL. Zv̊ule, Czech Republic: Faculty

of Electrical Engineering and Communication, Brno University of Tech-

nology, 2014. p. 10-14, 5 pp. ISBN 978-80-214-5005-9 [39].

[Author’s contribution: 80%]

A.4 Posters

∙ Ibrahim Ghafir and Vaclav Prenosil. POSTER: Network-based Ad-

vanced Persistent Threat Attack Detection. In 8th International Con-

ference on Autonomous Infrastructure, Management and Security

(AIMS). 2014.

[Author’s contribution: 80%]

∙ Ibrahim Ghafir and Vaclav Prenosil. POSTER: DNS Traffic Analysis

for Malicious Domains Detection. In International Conference on Sig-

nal Processing and Integrated networks. 2015.

[Author’s contribution: 80%]





Bibliography

[1] Trend Micro white paper. The custom defense against

targeted attacks. http://www.trendmicro.fr/media/wp/

custom-defense-against-targeted-attacks-whitepaper-en.pdf.

Accessed: 10-11-2014.

[2] Maurice de Kunder. The size of the world wide web. http://www.

worldwidewebsize.com/. Accessed: 07-12-2016.

[3] M Uma and G Padmavathi. A survey on various cyber attacks and

their classification. IJ Network Security, 15(5):390–396, 2013.

[4] Robin Gandhi, Anup Sharma, William Mahoney, William Sousan, Qi-

uming Zhu, and Phillip Laplante. Dimensions of cyber-attacks: Cul-

tural, social, economic, and political. IEEE Technology and Society

Magazine, 30(1):28–38, 2011.

[5] Stephen Jackson. Nato article 5 and cyber warfare: Nato’s ambigu-

ous and outdated procedure for determining when cyber aggression

qualifies as an armed attack. The CIP Report, 2016.

[6] Steve Morgan. Hackerpocalypse: A cybercrime revelation. 2016 Cy-

bercrime Report, Cybersecurity Ventures, 2016.

153

http://www.trendmicro.fr/media/wp/custom-defense-against-targeted-attacks-whitepaper-en.pdf
http://www.trendmicro.fr/media/wp/custom-defense-against-targeted-attacks-whitepaper-en.pdf
http://www.worldwidewebsize.com/
http://www.worldwidewebsize.com/


Bibliography 154

[7] Javed Akhtar Khan and Nitesh Jain. A survey on intrusion detection

systems and classification techniques. International Journal of Scien-

tific Research in Science, Engineering and Technology, 2016.

[8] Trend Micro technical report. Targeted attacks and how to de-

fend against them. http://www.trendmicro.co.uk/media/misc/

targeted-attacks-and-how-to-defend-against-them-en.pdf.

Accessed: 05-12-2016.

[9] Zhijie Liu, Chongjun Wang, and Shifu Chen. Correlating multi-step

attack and constructing attack scenarios based on attack pattern mod-

eling. In Information Security and Assurance, 2008. ISA 2008. Inter-

national Conference on, pages 214–219. IEEE, 2008.

[10] Ibrahim Ghafir, Vaclav Prenosil, Ahmad Alhejailan, and Mohammad

Hammoudeh. Social engineering attack strategies and defence ap-

proaches. In Future Internet of Things and Cloud (FiCloud), 2016

IEEE 4th International Conference on, pages 145–149. IEEE, 2016.

[11] Terry R Rakes, Jason K Deane, and Loren Paul Rees. It security

planning under uncertainty for high-impact events. Omega, 40(1):79–

88, 2012.

[12] Paul Wood, Mathew Nisbet, Gerry Egan, Nicholas Johnston, Kevin

Haley, Bhaskar Krishnappa, Tuan-Khanh Tran, Irfan Asrar, Orla Cox,

Sean Hittel, et al. Symantec internet security threat report trends for

2011. Volume XVII, 2012.

[13] Mandiant Intelligence Center. Apt1: Exposing one of china’s cyber

espionage units. Technical report, Mandiant, Tech. Rep, 2013.

[14] Kaspersky Lab ZAO. Red october diplomatic cyber attacks investiga-

tion. http://www.securelist.com/en/analysis/204792262/Red_

http://www.trendmicro.co.uk/media/misc/targeted-attacks-and-how-to-defend-against-them-en.pdf
http://www.trendmicro.co.uk/media/misc/targeted-attacks-and-how-to-defend-against-them-en.pdf
http://www.securelist.com/en/analysis/204792262/Red_October_Diplomatic_Cyber_Attacks_Investigation
http://www.securelist.com/en/analysis/204792262/Red_October_Diplomatic_Cyber_Attacks_Investigation


Bibliography 155

October_Diplomatic_Cyber_Attacks_Investigation. Accessed:

10-11-2014.

[15] Colin Tankard. Advanced persistent threats and how to monitor and

deter them. Network security, 2011(8):16–19, 2011.

[16] Ronald Deibert and Rafal Rohozinski. Tracking ghostnet: Investigat-

ing a cyber espionage network. Information Warfare Monitor, page 6,

2009.

[17] Shun-Te Liu, Yi-Ming Chen, and Shiou-Jing Lin. A novel search engine

to uncover potential victims for apt investigations. In Network and

Parallel Computing, pages 405–416. Springer, 2013.

[18] Olivier Thonnard, Leyla Bilge, Gavin O’Gorman, Seán Kiernan, and

Martin Lee. Industrial espionage and targeted attacks: Understanding

the characteristics of an escalating threat. In Research in Attacks,

Intrusions, and Defenses, pages 64–85. Springer, 2012.

[19] Martin Lee and Darren Lewis. Clustering disparate attacks: Mapping

the activities of the advanced persistent threat. In Proceedings of the

21st Virus Bulletin International Conference.(October 2011) pp, pages

122–127.
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