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Abstract: The morphology and properties of the transparent SnO2:F (FTO) films, deposited by 

RF magnetron sputtering at varying oxygen flows from 0~3sccm, were examined. For FTO films 

deposited with 0~1sccm O2, the polar unsaturated (101) planes were the preferred orientation, 

resulting in resistivity values as low as 10-3
Ω·cm, and the transparency of 86.5% in the visible range. 

The saturated (110) orientation planes associated with {101} facets formed knee twin crystallites for 

the FTO film prepared at 2sccm O2. Further increases of O2 led to severe mis-orientation of the 

crystals. The average transparency in the visible range increased up to 95%, but these FTO films 

were hardly conductive due to the oversupply of O2. The optical band gaps became wide at first and 

then narrow again as the increases of the oxygen flow rates.  
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1. Introduction 

Fluorine doped tin oxide (FTO) can be prepared by several techniques, such as the pyrosol 

process1, laser ablation deposition2,3, evaporation4, magnetron sputtering5 and spray pyrolysis6,7. 

Semi-conductive transparent FTO coatings can be used as window electrodes, and insulating FTO 

coatings can form barrier layers in electronic devices9, 10. Also, by engineering the nanocrystalline 

structure, tin oxide films can effectively emit UV light and used in LED fabrication due to tailing the 

band edge state11. Tin oxide is much cheaper than indium oxide and can be used in place of it as an 

electrode12. It is worth mentioning that chemical vapor deposition (CVD)13 is currently the most 

widely used industrial scale technique to produce FTO glass14, but environmental pollution from this 

process may threaten its continued use. 

Studies of FTO films show that the textures of the films can be controlled by the preparation 

processes, such as the choice of precursors in the spray pyrolysis method6,7. As a semi-conductive 

oxide, the dopant atom, F, takes the place of the O atoms in the SnO2 lattice, and provides a free 

electron. Oxygen content is a critical parameter as an oversupply of oxygen might force the F atoms 

into lattice spaces as an interstitial atom, or in the domain boundaries, where the F atom will lose its 

role as a donor. In magnetron sputtering, the mean free path of ‘light’ O and F atoms is normally 

much larger than that of the ‘heavy’ Sn atoms, and they can be more easily pumped out of the 

vacuum chamber. FTO films deposited in a pure Ar atmosphere are likely to be oxygen deficient and 

form O vacancies. Also, the ratio of fluorine in the films might slightly different with that in the 

target, which would not affect it, as the donor, to take over the oxygen position, especially to occupy 

the oxygen vacancy. Such oxygen vacancies would cause deformation of the lattice, and if the 

deformation was sufficiently severe, this might reduce the mobility of the charge carriers in the FTO 
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films. Therefore oxygen and fluorine contents are the main factors affecting the conductivity of FTO 

films. It was found that the morphology of FTO films deposited by magnetron sputtering is also 

influenced by oxygen content, indicating a strong relationship between structure and the properties. 

 

 

2. Experimental 

FTO films were prepared from powder targets by RF magnetron sputtering in this study, as 

described elsewhere15-17. Briefly, 99.99 % SnF2 powder (Aladdin) was mixed into 99.99 % SnO2 

powder (Aladdin) to give a target content of 2.5 at% fluorine, which kept no change during the 

preparation of the films. It is presumed that the ratio of fluorine in the films should also be kept 

constant. The mixed powders were then spread onto the copper backing plate, and slightly tamped by 

a stainless steel disc to form a uniform and smooth surface, without further processes. This technique 

has been described in more detail by Kelly and Zhou elsewhere18. The glass slides were cleaned 

ultrasonically in alcohol and then deionized water, before drying in pure N2. The coatings were 

deposited at a target power of 300W for 2 hours, at varying oxygen partial flows, with a 180mm 

substrate-target separation; see table 1 for full details. Coating composition was determined by X-ray 

photoelectron spectroscopy (XPS). Depth profiling of the FTO films was undertaken to 200nm 

depths to determinate the Sn/O atomic ratios. The structures of the FTO films were characterized by 

field-emission scanning electron microscopy (FEG-SEM) at 10kV, X-ray diffraction (XRD) in θ~2θ 

mode and high resolution transmission electron microscope (HRTEM). The thicknesses of the films 

were measured by an Alpha Step D100 profilometer, and the optical and electrical properties were 

determined by a spectrophotometer and a Hall Effect measurement system, respectively. 
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3. Results and discussion 

3.1 Composition and Structure 

The O2:Sn atomic ratios for the FTO films increased as the O2 partial flow rates increased from 

0 to 3sccm in the Ar sputtering atmosphere, changing from approximately stoichiometric to O-rich. 

The composition data are included in table 1 and illustrated in figure 1. Increasing the O2 flow rate 

would also be expected to lead to reductions in the sputtering rate at the target and, therefore, 

decreasing deposition rate, which is included in figure 1 in terms of film thickness. As shown in 

figure 2, AFM and SEM analysis indicated distinct changes in surface morphology as a function of 

oxygen flow rate, with the stoichiometric FTO films revealing polygon-type textured surfaces with 

pyramid shape grains, whereas the O-rich films appeared to have twin crystallites, changing to 

rod-like prismatic grains at the highest O2 flow rate. Figure 2 also indicates that the grain size tended 

to decrease with increasing O2 flow rates, which is comparable due to the same magnification times 

of the a~d AFM and SEM images, respectively.  

In order to find the reason that the grain sizes decreased as the increases of the oxygen flow 

rates, STEM method was applied onto the O-rich film deposited at 3sccm O2 flow to analyze the 

distributions of F atoms. The components of the red-cross point in figures 3a and 3b were including 

tin and oxide elements (figure 3c). The distribution of fluorine along the orange line in figure 3a was 

shown by the middle orange line in figure 3d. Three peaks pointed by the blue circles were able to be 

observed, which indicated the fluorine fluctuations in strength. Comparison with the orange line in 

figure 3a and the blue circles in figure 3d, it could be seen these blue circles were corresponded to 

the domain boundaries. That is to say, ‘F’ atoms may participate within the domain boundaries, 

which blocked the grain growth for the O-rich FTO films. 
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Another aspect of the structure of the films influenced by oxygen flow rate was the preferred 

orientation, or crystalline texture, which is shown in figure4. The main preferred orientations were 

(101) and (211) when the films were deposited with 0 to 1sccm of oxygen in the Ar atmosphere. The 

(101) planes contain either tin or oxygen atoms, which indicates that (101) planes are polar and 

unsaturated. A shift in texture was then observed for the higher oxygen flow rate coatings to (110), 

with several other peaks, including the (211) and (301) peaks, also observed. The lattice structure of 

rutile SnO2 shows that there are two possible positions to locate oxygen atoms: one is (0.306a, 

0.306b, 0c), and the other is (0.184a, 0.816b, 0.5c)19. The second position is within the (110) planes, 

which contain both oxygen and tin atoms. Therefore (110) planes are un-polar and saturated ones.  

 

3.2 Optical Property 

The average transmittance of the films increased as the increases of the O2 partial flow rates 

from 0 to 3sccm in the Ar sputtering atmosphere, changing from approximately 86.5% to 95% within 

the visible range (table 1 and figure 5). The absorption edges obviously shifted towards large band 

gaps as the increases of the oxygen flows up to 2sccm, showed in the inner graph in figure 5. Then 

the band gap of the film decreased again when the oxygen flow rate increased to 3sccm. In optical 

theory of thin films, the total incident light to be 1, then 

 T=1-R-A-S              …….(1) 

in which, ‘T ’ presents transmittance, ‘R’, reflectivity, ‘A’, absorptivity, and ‘S’, scattering ratio. 

As mentioned in 3.1 section, the O2:Sn atomic ratios for the FTO films changed from approximately 

stoichiometric to O-rich as the increases of the O2 flow rates, which would lead to the loss of the 

metallic property and the increase of the dielectric property for the semi-conductive oxide films. The 
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reflectance of the films caused by metallic property would be reduced. The scattering ratio is 

decreased in the case of the film surfaces are dense and smooth20. It can be seen in table 1, the 

roughnesses, in term of the root mean square roughnesses, reduced abruptly when the O2 partial flow 

rate in the sputtering atmosphere raised up to 2sccm. Additionally, the absorptivity of the 

semi-conductive films in the visible range mainly depended on the absorption by charge carriers19, 

i.e. the higher the charge carrier concentration is, the more the absorption of the visible light is. The 

carrier concentrations of the FTO films dropped down by three orders as the oxygen flow partial 

increased up to 2sccm, refer to table 1. Therefore, the decreases of the ‘R’, ‘ S’ and ‘A’ as the 

increases of the O2 flow partial rates would lead to the increases of the transmittance of the films.  

 

3.3 Electrical Property 

   The resistivities of the films increased as the O2 partial flow rates increased from 0 to 3sccm 

in the Ar sputtering atmosphere, changing from approximately 10-3ohm-cm to 102ohm-cm (table 1 

and figure 6). The charge carrier concentrations and mobilities decreased as the O2 partial flow rates 

increased from 0 to 3sccm, varying from 1019/cm3 and 14cm2/V-s to 1016/cm3 and 1cm2/V-s, 

respectively.  The sudden changes of the resistivity, charge carrier concentration and mobility 

occurred at the point of 2sccm O2 partial flow rate. Just at this point, the composition of the FTO 

film showed O-rich, the crystalline texture changed from polar unsaturated (101) to un-polar 

saturated (110) plane. It is known that the electrical property of the FTO film depended on the free 

electron concentration provided by fluorine doping and oxygen vacancies, and on the carrier mobility 

which affected by lattice deformations and crystalline sizes. The O2 partial flow in the sputtering 

atmosphere was up to 2sccm, the compositions of the FTO films were O-rich, which resulted in the 
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loss of oxygen vacancies, and the participation of the fluorine atoms within the domain boundaries, 

and the growth of the crystalline domains blocked. The fluorine atoms not only lost their role as a 

dopant, but also hindered the combination of the crystal grains. Therefore, the charge carrier 

concentrations and mobilities dropped, the crystalline texture changed to unpolar saturated (110) 

plane, and the semi-conductive FTO films transformed into insulated films. 

 

3.4 Discussion 

The changes in microstructure and texture can be clearly observed in figures 2 and 4, which 

related to the significant changes of the optical and electrical properties of the FTO films, refer to 

figures 5 and 6 and table 1.  

In figure 7, the TEM images detailed the changes of the crystalline and the nano-domain sizes 

to clearly explain and accurately predict the properties. As shown in figure 7, the domain sizes of all 

the films were less than 20nm, and the mis-orientated domains were only about 5nm for the oxygen 

rich film deposited at 3sccm of oxygen. In Figures 7a and 7b, the selected area electron diffraction 

(SAED) spots showed that the crystals had strong (101) orientations̍ which are in accordance with 

the XRD patterns. The crystalline grain sizes for the film deposited without additional oxygen in the 

sputtering atmosphere were larger than those with 1sccm O2 flow, which may account for the lower 

charge carrier mobility. The fact was the charge carrier mobility decreased from 14cm2/V-s to 

3.4cm2/V-s. 

The typical rutile SnO2 knee twin crystal, which is a naturally existing SnO2 crystal type, can be 

seen in figure 7c, the FTO film deposited with 2sccm O2 flow. The parallel (110) planes were 

perpendicular to the (101) twin planes, indicated in the figure by the red lines with 120º angles on top  
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planes, which is why the resistivity of the film increased dramatically from 10-2 to 102 
Ω·cm. The 

{101} plane group made a (110) orientation, which was consistent with the results in the references 

of 13, 21 and 22. 

The O-rich nature of the FTO film deposited with 3sccm O2 might lead to the participation of 

fluorine atoms within the domain boundaries or forced into interstitial lattice spaces. Further growth 

of the domains was then blocked. Also, the crystallites were tilted and mis-orientated, refer to figure 

7d. A study by F.A. Garces23 showed that the mis-orientation or tilting would reduce the conductivity 

of the film. Correspondingly, the O-rich films (7c and 7d), with un-polar saturated (110) preferred 

orientations and small tilting grains, showed very low conductivity.  

In general, the polygon-type pyramid shape grains with (101) preferred orientation would lead 

to high conductivity and relatively low transmittance of the FTO films because the oxygen vacancies 

existed and fluorine atoms acted as donors. The knee twin crystal shape indicated the O-rich in the 

FTO films and the un-polar saturation (110) orientation and therefore, resulted in the low 

conductivity and high transmittance. The rod-like prismatic grain with very fine domain sizes would 

further decrease the conductivity, increase the transparency and narrow the optical band gap because 

the movements of the charge carriers were limited by the increasing domain boundaries.  

 

4. Conclusions 

The morphological and micro-structures of the FTO films changed as a function of the 

oxygen:tin atomic ratio in the films, which could be controlled by additional oxygen flow in the 

sputtering atmosphere. The polar unsaturated (101) planes were the mainly preferred orientation at 

low additional oxygen flow rates, and polygon grains could be identified. These films were 
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conductive, but relatively low transmittance. Higher oxygen in the sputtering atmosphere led to a 

shift in the main orientation to un-polar saturated (110) planes, and mis-orientation or titling of the 

grains. These FTO films were almost insulating with transmittance up to 95% in the visible range.  
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the University of Science and Technology Liaoning in No. of DC 2014004. 

 

References 
1A. Smith, J.-M.Laurent, D.S. Smith, J.-P.Bonnet, R.-R. Clemente, Thin Solid Films, 266 (1995) 20-30. 
2 H. Yang, D. Fu, M. Jiang, J. Duan, F. Zhang, X. Zeng, U. Bach, Thin Solid Films, 531 (2013) 519-524. 
3 Z. Dai, A. Miyashita, S. Yamamoto, K. Narumi, H. Naramoto, Thin Solid Films, 349 (1999) 51-55. 
4 P. Jalkanen, S. Kulju, K. Arutyunov, L. Antila, P. Myllyperkiö, T. Ihalainen, T. Kääriäinen, M.-L. Kääriäinen, J. 

Korppi-Tommola, Thin Solid Films, 519 (2011) 3835-3839. 
5X.-X. Ding, F. Fang, J.-Q. Jiang, J. Vac. Sci. Technol. Chin., 32(2012) 379-384. 
6S.-Y.Lee, B.-O. Park, Thin Solid Films, 510 (2006) 154-158. 
7 B. Thangaraju, Thin Solid Films, 402 (2002) 71-78. 
8 C. Quintana, P. Atienzar, G. Budroni, L. Mora, L. Hernández, H. García, A. Corma, Thin Solid Films, 519 (2010) 

487-493. 
9 H. Widiyandari, A. Purwanto, K. Diharjo, Suyitno, E. Hidayanto, AIP Conference Proceedings, 1554 (2013) 147-149. 
10 A. Muthukumar, G. Rey, G. Giusti, V. Consonni, E. Appert, H. Roussel, A. Dakshnamoorthy, D. Bellet, AIP Conference 

Proceedings, 1512 (2013) 710-711. 
11 Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei and T. Wu, NPG Asia Materials 

(2014) 4, e30. 
12 W.-H. Baek, M. Choi, T.-S.Yoon, H.H. Lee, Y.-S. Kim, Appl. Phys. Lett., 96 133506 (2010) . 
13 R.Y. Korotkov, P. Ricou, A.J.E. Farran, Thin Solid Films, 502 (2006) 79-87. 
14 Q. Gao, H. Jiang, C. Li, Y. Ma, X. Li, Z. Ren, Y. Liu, C. Song, G. Han, J. Alloys Compd., 574 (2013) 427-431. 
15Y.-W.Zhou, X. Liu, F.-Y.Wu, C.-K.Zhang, X.-Y. Zhang, Surf.Coat.Technol., 228, Supplement 1 (2013) S150-S154. 
16Y.-W.Zhou, F.-Y.Wu, C.-Y.Zheng, Chin. Phys. Lett., 28(2011) 107307-1~3. 
17 Z.Banyamin, P.J. Kelly, G.T. West, J. Boardman, Coatings, 4 (2014) 732-746 
18 P.J. Kelly, Y. Zhou, J. Vac. Sci. Technol. A24(5) 2006, 1782-1789. 
19J. Xu, D.-X.Lu, T.-S.Yuan, ACTA Pysica.Sinica., 56 (2007) 7195-7200. 
20J. Ru, W. Liu, Y. Qiang, Techniques of Optical Films, Publising House of Electronics Industry, 2nd edition, 141-142, in 

Chinese. 
21 A.-V.Moholkar, S.-M.Pawar, K.-Y.Rajpure, C.-H.Bhosale, Mater.Lett., 61 (2007) 3030-3036. 
22C.-Y.Kim, D.-H.Ru, Thin Solid Films, 519 (2011) 3081-3085. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT 

10 

 

23 F.-A.Garcés, N. Budini, R.-R.Koropecki, R.-D. Arce, Thin Solid Films, 531 (2013) 172-178. 

 

 

Figure caption 

Figure1: Variation with oxygen flow rate of coating stoichiometry and thickness for FTO thin films. 

Figure 2: AFM and SEM morphologies of the FTO films via various oxygen flows: a) 0, b) 1, c) 2 

and d) 3sccm.  

Figure 3: The distribution of fluorine across several crystal domains: a) drift corrected spectrum 

profile scanning image; b) STEM HAADF detect image; c) EDX drift corrected spectrum profile and 

d) line scanning profiles of Sn-L (in green), F-K (in orange) and O-K (in red) 

Figure 4: XRD patterns of the FTO films 

Figure 5: Optical spectra of the FTO films 

Figure 6: Electrical properties of the FTO films 

Figure 7: TEM images of the FTO films via various oxygen flows: a) 0, b) 1, c) 2 and d) 3sccm. 

 

Table caption 

Table 1 The Sn/O and properties of the FTO films with the variations of O2 partial flows 
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Table 1  The Sn/O and properties of the FTO films with the variations of O2 partial flows 

No. O2 

sccm 

Sn/O 

 

d 

nm 

ρ  

ohm-cm 

n 

/cm3 

μμμμ 

cm2/V-s 

T 

% 

Sq 

nm 

a 0 33.42 

/66.58 

827 5.4E-3 8.4E+19 1.4E+1 86.5 2.16 

b 1 33.11 

/66.89 

680 8.1E-2 2.3E+19 3.4E+0 88.7 2.73 

c 2 32.53 

/67.47 

430 1.8E+2 3.0E+16 1.1E+0 93 0.65 

d 3 31.61 

/68.93 

310 2.1E+1 2.9E+16 1.0E+0 95 1.27 

 

Note: Sn/O--Sn/O Atomic ratio; d--Thickness; ρ--Resistivity; n--Carrier concentration;  

µ--Carrier mobility; T-- Transmittance; Sq--Root mean square  
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Figure 4 
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Figure 5 
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Figure 6 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

 

Figure 7 
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1. The FTO structures could be controlled by O- flow in the sputtering atmosphere. 

2. The properties of the FTO films could be customerized by combination Sn with F/O. 

3. The slightly O-deficient FTO films were with polar structure and low resistivity. 

4. The O-rich FTO films were with un-polar structure and high transparency. 


