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ABSTRACT 

Skeletal muscle atrophy due to disuse is a widespread problem arising from many 

situations including clinical immobilisation due to injury or disease. As individuals 

age, the universally observed loss of muscle mass and function known as sarcopenia 

compounds this problem leading to a significant reduction in locomotor ability and 

quality of life for sufferers. Recently there has been much work investigating ways to 

mitigate muscle mass loss in immobilised limbs and to aid in recovery in the post 

immobilisation phase. Much focus has been placed on recovery protocols based upon 

either resistance training, nutritional supplementation, or both. In study 1 we report 

an extensive data set describing in detail skeletal muscle adaptations in structure and 

function in response to both disuse (ULLS) and retraining. The results indicate that, 

1) the loss of muscle force with 3-week unloading in humans is mostly explained by 

muscle atrophy and a decrease in myosin content and, 2) all the neuromuscular 

changes induced by this model of disuse can be fully restored after a resistance 

training intervention of equal duration 

 Study 2 tests the hypothesis that increasing amino acid leucine availability by 

nutritional supplementation will increase muscle protein synthesis in immobilised 

muscle and result in mitigating the loss of lean muscle mass.  In fact, we found that 

leucine supplementation alone was not sufficient to maintain muscle mass during 3 

weeks of unilateral lower limb suspension. Study 3 examined the effect of leucine 

supplementation on muscle mass gains during an active recovery training program of 

muscles previously subjected to ULLS. Despite low participant numbers, the data 
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suggest that leucine supplementation had no effect on the extent to which muscle 

recovered post ULLS.   

Study 4 investigates the role of training and immobilization in sarcopenia and 

discusses the potential of using ultrasound imaging to develop an image based 

biomarker of sarcopenia. Cross sectional data from both young and old individuals 

subjected to different loading conditions are analysed in this study. Life-long training 

appears to slow down the process of sarcopenia whilst periods of disuse due to injury 

or disease worsen the condition. The change in muscle fibre geometry exhibited in 

sarcopenia and disuse atrophy could potentially act as a convenient and inexpensive 

indicator of the onset of sarcopenia. 
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1. Introduction 

 Skeletal muscle atrophy is a widespread problem arising as a result from 

many situations including immobilisation due to clinical unloading following injury, 

disuse due to inactivity and as a consequence of many illnesses. Although muscles of 

the whole body are affected, the weight bearing muscles of the lower limb are 

particularly susceptible. Accompanying the loss in skeletal muscle mass is a reduced 

functional capacity. Following periods of disuse, muscles produce maximum 

voluntary contractions (MVC) of much smaller magnitude than pre-disuse levels. 

Muscle weakness can have a drastic effect on quality of life with limited mobility 

posing a major problem for both young and old displaying characteristics of muscle 

atrophy. The loss of muscle mass and function following disuse can be slow to 

recover even in young healthy subjects.  As older individuals display a normal age 

related loss of skeletal muscle mass and function known as sarcopenia, any period of 

disuse or reduced activity which would exacerbate the condition is especially 

significant. A change in muscle size, involving either hypertrophy or atrophy must 

involve a change in protein turnover (for a review of the literature see (Bajotto & 

Shimomura 2006). In general, reduced rates of protein synthesis and elevated protein 

degradation result in a net catabolic effect and loss of muscle bulk.  Both physical 

activity and essential amino acid supplementation have been shown to effectively 

increase myofibrilar muscle protein synthesis (MPS) and are relatively easily 

manipulated. For this reason, much research into muscle atrophy countermeasures 

has centred around these two factors. The development of a more efficient post-

operative rehabilitation procedure has the potential to improve post-operative muscle 
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function and may lead to significant improvements in the quality of life of 

individuals rehabilitating after disuse caused by injury or illness. While there is 

increasing evidence that both resistance training and nutritional supplementation 

with essential amino acids can initiate muscle hypertrophy and restore muscle 

function, current research exploring the synergistic effect of these interventions and 

their effect muscle atrophy in individuals subjected to severe disuse is limited. 
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2. LITERATURE REVIEW 

2.1 Basic properties of Skeletal muscle structure and function 

The human body is composed of four different types of tissue, connective, nervous, 

epithelial, and muscular, each composed of cells and structures connected by their 

similar shape or function. These four primary tissue groups contain many important 

sub-tissue groups, again with their own distinct form or function. Muscle, for 

example, consists of three types of different muscle tissues, each with their own 

unique structural and functional properties: 

1. Smooth muscle, a non-striated muscle found in the walls of blood vessels and 

internal organs which is not under voluntary control. 

2. Cardiac Muscle, a striated muscle found in the walls and myocardium of the heart 

which is not under voluntary control and, 

3. Skeletal muscle, a striated muscle mostly attached to bones which is under 

voluntary control and responsible for locomotory control of the skeleton and the 

focus of this thesis. 

2.1.1 Structure of skeletal muscle. 

Skeletal muscle is composed of two types of tissue, contractile and supporting. The 

contractile tissue is composed of numerous cylindrical cells or 'fibres' , each with a 

multinucleated sarcoplasm (the cell cytoplasm of the skeletal muscle cell) 

surrounded by the sarcolemma (skeletal muscle cell membrane). The sarcoplasm, as 

well as containing the nuclei houses many longitudinal rod-shaped units known as 
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myofibrils, each composed of numerous contractile units known as sarcomeres 

arranged in-series (Figure 2.1). 

 

Figure 2.1 Diagrammatic representation of structural composition of skeletal muscle tissue, taken 

from (Billeter & Hoppeler 2003.). 

 

It is the repeated arrangement of these banded sarcomeres which gives skeletal 

muscle its characteristic striated appearance, from which it takes its name (fig 2.2). 

The actin and myosin filaments of each sarcomere are bound between two 

neighbouring Z-discs, the boundaries of the sarcomere. Areas of the sarcomere 

where myosin filaments do not overlap the actin filaments are known as I-bands 

(isotropic) so named due to their appearance when viewed through an electron 

microscope. A-bands (anisotropic), which appear darker in microscopic images 



- 13 - 
 

represent the length of the thick myosin filaments. Towards the centre of the A-band 

is a paler region known as the H-zone in which the thin actin filaments do not 

overlap the myosin filaments. 

The thin (actin) and thick (myosin) protein filaments of the myofibrils allow skeletal 

muscle to contract and generate force and motion via a process known as The Sliding 

Filament Theory of Muscle Contraction (HUXLEY & NIEDERGERKE 1954 

)(HUXLEY & HANSON 1954). The cross-bridging of the myosin 'head' and the 

actin filaments create a rowing like action when the skeletal muscle contracts, the 

actin filament pulling the myosin inwards toward the H-zone of the sarcomere 

(contractile unit) to shorten the sarcomere and, therefore the entire muscle.  

 

Figure 2.2 Electron micrographs demonstrating the sliding filament theory of and banding of 

sarcomeres (Alberts 1994). 
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2.1.2 Skeletal muscle fibre architecture. 

There are approximately 640 skeletal muscles in the human body displaying huge 

variation in form and function. These muscles are classified according to the 

arrangement of the fibres, known as muscle architecture (Figure 2.3). Whilst in 

longitudinal parallel muscles like biceps brachii the fibres run parallel to the axis of 

force generation, in pennate muscles like vastus lateralis the architectural 

arrangement of fibres is more complex. 

 

Figure 2.3. Classification of muscle according to fibre architecture 
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Pennate muscles have fibres which are positioned at an angle to the force generating 

axis, the pennation angle, (θ). Whilst in parallel muscles the fibres attach directly to 

the tendon, pennate muscle fibres attach obliquely to a sheath of connective tissue 

called an aponuerosis, an extension of the tendon. As the fibres insert into the 

aponeurosis obliquely, more fibres (and hence sarcomeres) can be packed into the 

muscle in parallel, increasing the force producing capabilities of the muscle than if 

the fibres were to simply run longitudinally to the axis of force generation. The 

greater the pennation angle (up to 45ͦ), the greater the number of sarcomeres in 

parallel and so any change in the pennation angle will represent a change in the force 

producing capabilities of the pennate muscle. As the sarcomeres are not packed 

parallel to the axis of force generation, the anatomical cross section of the muscle is 

not a reliable indicator of the number of contractile elements and thus the force 

producing capability in a pennate muscle. For this reason, the physiological cross 

sectional area is used which is calculated as PCSA = (V/t)·sin θ (Narici 1999) where 

V is muscle volume, t the distance between the two tendon aponeuroses and θ is the 

angle of pennation (figure 2.4). As mentioned above, a second significant 

architectural parameter is the length of the muscle fibres (Lƒ) which represents the 

number of sarcomeres arranged in series. Fibre length is a determinant of the speed 

of contraction of the muscle ie. shorter fibres have less sarcomeres and hence have a 

slower shortening velocity.  
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Figure 2.4 taken from Narici, 1999. Ft = tendon force. Ff = fascicle force. t = thickness. Θ = 

pennation angle. V = muscle volume. 

 

 

2.1.3 Mechanical properties of skeletal muscle. 

Explained above is the process by which individual sarcomeres contract and how 

their architectural arrangement can affect the force and speed of contraction of a 

skeletal muscle. When tendons of skeletal muscles are attached to bones, contraction 

of these muscles controls the movement of bones and body parts around the joint. 

Contracting muscles arranged in opposing groups around joints can either maintain 

the posture of the body or cause the bone to move and alter position, a basic 

principle of human movement. During a contraction, muscles work in synergy or 

antagonistically to the muscle or group of muscles responsible for the net movement 

around the joint. Whilst the contracting muscles produce linear forces, it is the 

resulting net rotational torque around the joint's centre of rotation which causes the 

action of the muscle. Generally, there are three skeletal muscle actions around a 

joint: 

1) Eccentric contraction, when a muscle produces force during lengthening to 

overcome resistance resulting in motion, 

2) Concentric contraction, when a muscle shortens during contraction to produce a 

torque larger than the resistive force to result in motion and 

3) Isometric contraction, when the torque produced by a muscle or group of muscles 

is equal to the opposing resistive force and no movement is produced. 

The net force generated depends on several factors and characteristics of the muscle 

itself notably the length and shortening velocity of contraction. As previously stated, 
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the length of a muscle fibre can affect the force produced during contraction due to 

varying number of sarcomeres in series, but the length of the sarcomeres themselves 

also have a significant effect on the muscle fibre's force producing capability. When 

a muscle is held at varying lengths, the sarcomere's overall lengths change according 

to the extent of overlap of the actin and myosin filaments (fig. 2.5). Maximum force 

will be generated when the number of actin-myosin cross bridges is at the maximum. 

If the sarcomeres are shortened or lengthened to reduce the number of active cross 

bridges the force produced decreases.  

 

  

Fig. 2.5 length tension curve showing corresponding stages of filament overlap in contracting 

sarcomeres, taken from Edman & Reggiani 1987. 
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The resultant force however is not wholly dependent on the sarcomere architectural 

characteristics, but also the speed of velocity with which contraction occurs. Hill 

(1938) 

 studied the relationship between the force produced and velocity of contraction of 

frog sartorius muscles and showed that the relationship produced the characteristic 

hyperbolic curve known today as the force-velocity curve (fig 2.6). As can be seen 

from the figure, Hill demonstrated that the velocity with which a muscle shortens 

changes as the load changes. Maximum velocity (Vmax) occurs when the load is 

zero, inversely, the maximum force (P0) occurs when the muscle is stationary i.e. the 

velocity of shortening is zero. 

 

Figure 2 6. Hill's force velocity curve of whole frog sartorius muscle. Vmax = maximum velocity, P0 

= Maximum force. 
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2.2 The effects of chronic unloading on skeletal muscle structure and function. 

Declines in skeletal muscle function have been shown to be an outcome of chronic 

unloading conditions including spaceflight and earth-based models of simulated 

microgravity such as bed rest and Unilateral Lower Limb Suspension (ULLS) (Pavy-

Le Traon et al. 2007). The main structural and functional adaptations that are 

reported are reductions in muscle mass and force and increased fatigability (DI 

PRAMPERO & NARICI 2003). Significant reductions in muscle strength have been 

reported in human skeletal muscle in response to disuse-induced atrophy due to 

ULLS. Seynnes et al. (2008) reported a reduction in plantar flexor maximum 

voluntary contraction of 10% after 23 days of ULLS, similar to some strength loss 

seen in the quadriceps femoris muscle, 14% in young males after 23 days of ULLS 

(Maarten D de Boer et al. 2007). Many other studies have reported strength losses of 

approximately 20% in human skeletal muscle following periods of disuse  (Berg et 

al. 1991; Schulze et al. 2002; Clark et al. 2006).  As muscle architecture is a primary 

determinant of skeletal muscle function (Cutts 1988), it is evident that changes in 

fascicle length (Lƒ)  and pennation angle  (θ) constitute powerful indicators of 

alterations in muscle functional deficit in disuse (Koryak 2008). The decrease in 

fibre length and pennation angle resulting from disuse represents a reduction in the 

number of sarcomeres in series (fibre length) and parallel (pennation angle). The 

angle of pennation of skeletal muscle fibres significantly affects the transfer of forces 

from the contracting muscle to their tendons (Kawakami et al. 1993), the greater the 

pennation angle, the greater the force producing potential of the muscle and so the 

reduction in pennation angle seen in disuse, 7.6% after 23 days ULLS (de Boer et al. 

2007) and as much as 10% after 90 days of bed rest (Reeves et al. 2002) will 

significantly contribute to the observed loss of muscle strength. Similarly, reduction 
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in fibre length, 7.7% after 23 days ULLS ( de Boer et al. 2007), 13% after 90 days 

bed rest (Reeves et al. 2002) has an effect on the force producing capabilities of 

skeletal muscle. A decrease in muscle fascicle length represents a loss of sarcomeres 

in series which, assuming tendon mechanical properties remain the same will result 

in an increased sarcomere excursion. The removal of sarcomeres causes the 

sarcomeres to operate further away from the optimum length which will result a 

decrease in sarcomere shortening velocity. A loss of sarcomeres in parallel, 

represented by a reduction in pennation angle and muscle CSA, and hence 

physiological cross section (PCSA), will impact upon the force producing 

capabilities of the muscle, with less in-parallel sarcomeres producing less force. 

Reported decreases in the anatomical cross sectional area (ACSA) of the quadriceps 

femoris muscle average between 7% to 10% following 23 to 30 days of ULLS in 

young men (Berg et al. 1991; Maarten D de Boer et al. 2007). The reduction in 

muscle ACSA results from a reduction in muscle fibre cross sectional area and this 

morphological change inevitably affects skeletal muscle function and locomotor 

ability (Hudson & Franklin 2002). The disuse-induced reduction in muscle mass is 

accompanied by a loss in strength which far exceeds the loss in muscle mass, 

suggesting that many other factors including neurological factors and the loss of 

contractile proteins contribute to the observed strength decrease associated with 

disuse-induced skeletal muscle atrophy (Clark et al. 2006).  

Neural drive and muscle activation capacity appear to be affected in a degenerative 

manner by periods of prolonged disuse. In situations of chronic disuse the muscle's 

ability to fully activate during a maximal voluntary contraction is compromised. Bed 

rest studies have shown a decrease in the root mean square (RMS) of EMG of 6.5% 

after 20 days and 19% after 42 days (Kawakami et al. 2001). Similar results have 
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been observed in hind limb suspended rats (Edgerton & Roy 1994). Clark et al. 

(2006) investigated neuromuscular parameters after 4 weeks of ULLS and their 

findings showed a decrease of 30% in compound muscle action potential (CMAP), 

10% decrease in evoked doublet force, 12% increase in twitch to doublet force ratio 

and an increase of 11% in post activation potential doublet ratio. CMAP is affected 

by muscle fibre conduction velocity which is directly proportional to fibre 

circumference and muscle membrane excitability level. Fibre atrophy is therefore 

likely to be a contributing factor to the reduction in neural drive observed during 

disuse (Clark et al. 2006) as well as a reduction in motor unit recruitment (Antonutto 

et al. 1999). Reductions in the activation capacity of muscle can result in a decrease 

in strength independent from decreases in muscle size or changes in architecture that 

may help explain the larger decrease in muscle strength relative to muscle atrophy in 

disuse.  

Tendons play a vital role in the transmission of forces from contracting muscles to 

bones and therefore it is important to consider muscles and tendons as an in-series 

contractile element. By virtue of their mechanical properties, tendons affect 

maximum isometric and dynamic mechanical output. It follows that, at a given 

operating length, muscles which are attached to more compliant tendons will 

produce less force than when attached to stiffer tendons (Narici & Maganaris 2007). 

As well as the transmission of forces tendons have important elastic properties which 

can influence the interaction between muscle and tendon and allow energy storage 

during locomotion (Magnusson et al. 2008). 

Tendons also display significant changes in their mechanical properties following 

periods of prolonged disuse. Various studies have demonstrated a significant 

decrease in tendon stiffness following disuse in both hind-limb suspended rats 
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Achilles tendons (Almeida-Silveira et al. 2000; Heinemeier et al. 2009) and human 

patellar tendons (Reeves et al. 2005; Maarten D de Boer et al. 2007; Kinugasa et al. 

2010). After 23 days disuse (ULLS) in young men the stiffness and Young’s 

modulus of the patellar tendon were reduced by 29.3% and 30.1% respectively 

(Maarten D de Boer et al. 2007). 

Although in disuse both tendon stiffness and YM of the patellar tendon are 

significantly reduced, no change in tendon dimensions has been reported in response 

to unloading in either rat Achilles tendon or human patella tendon (Almeida-Silveira 

et al. 2000; Reeves et al. 2005; Kinugasa et al. 2010). This would suggest that 

changes in the intrinsic material properties of the tendon are responsible for the 

change in mechanical properties as opposed to changes in tendon dimensions. The 

change in mechanical properties is likely due to alterations in the quality or 

arrangement of collagen fibres. Such alterations may be the result of changes in the 

composition of the of the tendon matrix or the cross-linking of collagen fibres 

(Savolainen et al. 1988; Heinemeier et al. 2009). Savolainen et al. (1988) showed a 

decrease in cross-linking enzymes in rat Achilles tendon, although this is not a direct 

measurement of collagen fibre cross-linking. This could have an impact on tendon 

mechanical properties as cross-links are important in allowing tendons to withstand 

the high tensile forces which weight-bearing tissues are subjected to. Collagen fibre 

size and density in rat Achilles tendon have also been shown to decreased after 

periods of hind-limb unloading (Nakagawa et al. 1989). Another factor contributing 

to the change in tendon material properties in disuse recently reported is a decrease 

in the tendon collagen synthesis rate. The collagen synthesis rate in human patellar 

tendon has been shown to decrease by half after 10 days of disuse and to further 

halve after 21 days (Maarten D de Boer et al. 2007). 
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The decrease in tendon stiffness observed after periods of disuse is accompanied by 

an increase in tendon extensibility at a given force and so can affect the rate of 

torque development (RTD). This has been shown to be the case after 23 days of 

ULLS when RTD was decreased by 38% (Maarten D de Boer et al. 2007). 

Functional implications of decreased tendon stiffness include decreases in the rate of 

contractile force transmission which could have implications for fall prevention, 

increased likelihood of tendon strain injury and changes in the force-length 

relationship of the muscle. 

The loss of muscle observed during periods of disuse is a result of an imbalance 

between muscle protein synthesis and breakdown. A net positive balance of protein 

synthesis will result in muscle hypertrophy whilst the opposite leads to muscle 

atrophy. Due to recent advances in methods of measuring MPS rates in humans, the 

mechanism of skeletal muscle atrophy has become clearer. It appears that the 

decrease in muscle protein synthesis makes a more significant contribution to 

decreases in muscle mass rather than an increase in protein breakdown. Many studies 

have shown little or no change to the rate of protein breakdown in immobilized 

muscle while muscle protein synthesis has been greatly reduced (Paddon-Jones et al. 

2006). de Boer et al. (2007) showed myofibrillar protein synthesis in the vastus 

lateralis muscle to fall by 50% after 10 days of ULLS.  

Previous research has shown that in response to atrophic stimulus the 

phosphoinositide-3 kinase (PI3K)/Akt kinase/mammalian target of rapamycin 

(mTOR) signal transduction pathway plays a vital role in the regulation of skeletal 

muscle cell size (Urso 2009). Ubiquitin ligases, FOXO transcription factors and 

various other genes are expressed in response to the disuse of skeletal muscle and 

have been shown to affect the PI3K/Akt/mTOR pathway (Urso et al. 2007; 
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Stevenson et al. 2003). Additionally, in response to chronic unloading the ubiquitin-

proteosome system is responsible for the breakdown of myofibrilar proteins in 

skeletal muscle (Bodine et al. 2001; Lecker et al. 1999). The increasing investigation 

of the various signalling pathways associated with skeletal muscle atrophy in 

response to disuse shows that the conversion of decreased mechanical stimulus into 

molecular stimulus is a complicated process effected by many factors. As well as 

reintroducing mechanical stimuli through exercise, recent studies have shown that it 

is possible to affect these signalling pathways with nutritional factors. As exercise 

and nutrition are easily manipulated, there is much investigation into the application 

of nutrition and exercise training programs to counteract skeletal muscle disuse-

induced atrophy. 

 

2.3 The effect of ageing on skeletal muscle structure and function. 

Sarcopenia is an ageing-related loss of muscle mass that has particularly important 

functional consequences and has come to be regarded as a major cause of frailty and 

reduced locomotor ability amongst the ever increasing elderly population (Narici & 

Maganaris 2006). Beyond the sixth decade, most individuals undergo changes in the 

nervous system, in hormonal status, in immune function and in dietary intake 

(Doherty 2003), all of which may result in atrophy and weakness of the 

musculoskeletal system (Roubenoff & Hughes 2000). As reductions in muscle mass 

and strength are observed even in master athletes who have trained throughout life, 

the process of sarcopenia is therefore universal with ageing (Roubenoff 2000). What 

is interesting is that in spite of its universal effect, there are currently no universally 

accepted criteria for the clinical diagnosis of sarcopenia. Generally, the term 
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sarcopenia is used to describe the progressive loss of muscle mass and function that 

occurs with ageing. But at what point is an individual said to be exhibiting 

sarcopenia? Many different approaches have been suggested as diagnostic criteria 

focusing on either the loss of muscle mass, function or both. However, such varying 

approaches lead to huge discrepancies in reported prevalence's of sarcopenia. In a 

recent review of methods used in the definition of sarcopenia, Bijlsma et al. (2013) 

assessed the variation between seven currently used diagnostic criteria based on 

muscle mass (measured by bioelectrical impedance analysis or DEXA) and handgrip 

strength. Their study highlighted the vast discrepancies that arise when applying 

different criteria for characterising sarcopenia to an identical population differing as 

much from 0% to up to 45% prevalence in elderly populations. In fact, only one 

participant out of 674 (0.2%) was classified as having sarcopenia according to all 

diagnostic criteria. What is ultimately needed clinically is a universally agreed set of 

criteria to objectively identify the onset of sarcopenia to optimise treatment and 

management of the condition. However, the data from Bijlsma et al.'s study suggests 

that cut off points, if they are to be used objectively need to be gender and 

population specific and derived from a large reference population. This relies on the 

quantitative measurement of lean skeletal muscle mass for comparison against 

reference populations in order to establish a cut off point for the loss of mass to be 

attributed to sarcopenia. Today many techniques are available for the assessment of 

lean muscle mass, all varying in availability and effectiveness. Bioelectrical 

impedance analysis (BIA) which determines lean body mass by passing an electrical 

current through the body, is a relatively simple and inexpensive way to measure lean 

muscle mass. The ratio of lean body mass to height squared has been used to define 

sarcopenia with some success using a cut-off point of a SM/height2 ratio two 
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standard deviations below that of the mean of a population of young healthy adults 

(Baumgartner et al. 1998). However due to the nature of BIA this method has its 

limitations as results can be affected by fluid shift, temperature and oedema or 

inflammation, conditions which are prevalent in elderly populations making it a less 

than ideal method of measurement. In addition, BIA studies do not provide 

information on the distribution of lean mass throughout the body. In contrast, dual 

energy X-ray absorptiometry provides a method of quantifying lean mass whilst also 

determining where the lean muscle mass is located. This allows us to produce a ratio 

of appendicular skeletal muscle mass to height squared (skeletal muscle index, SMI) 

which is more relevant in terms of sarcopenia. Again, a cut-off point of two standard 

deviations from the average SMI of young adults is used to denote the onset of 

sarcopenia (Baumgartner et al., 1998). The SMI can also be calculated by measuring 

skeletal muscle volume using MRI and CT scanning. Although expensive and 

cumbersome, MRI scanning is considered the gold standard for measuring muscle 

volume. An additional advantage of these imaging techniques is that they allow us to 

take into account the infiltration of fatty tissue into lean mass which occurs in older 

muscle.  Fat infiltration can introduce errors into lean muscle mass measurements 

from methods such as DEXA and although there are published methods of correcting 

DEXA lean muscle measurements, currently they remain population specific and are 

therefore of limited use in global application (Kim et al. 2002). In a clinical setting a 

compromise must be reached between affordability and availability and accuracy and 

reliability.   

Although the process of sarcopenia is much more complex than that of disuse-

induced atrophy, sarcopenic muscle displays many of the same characteristics. 

Recent work at the Institute for Biomedical Research into Human Movement and 
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Health (IRM) has shown that as well as the decrease in gross muscle size that 

accompanies old age (anatomical cross-sectional area ACSA and volume based on 

MRI scanning, (Morse et al. 2004), muscle architecture is also significantly altered 

in sarcopenia. Findings based on ultrasound scanning of older and younger 

individuals with similar daily energy expenditures have shown fibre fascicle length 

(Lƒ) and pennation angle (θ) of the gastrocnemius medialis (GM) of older men (age 

70+ yr) measured in vivo to be 10% and 13% smaller than those of younger men (20-

30 yr) respectively (Narici et al. 2003). The relatively smaller Lƒ and θ seen in the 

skeletal muscle older individuals suggest that normal biological aging is associated 

with a loss of sarcomeres both in series and in parallel which may account for some 

of the loss of muscle force and power observed in older age. However, in aging, as in 

disuse, the loss of muscle force and power is greater than can be accounted for by the 

observed loss of muscle size and volume, even after considering age associated 

alterations in muscle architecture (Narici & Maganaris 2007). Factors such as 

changes in single-fibre specific tension and tendon mechanical properties also 

contribute to the decrease in muscle force and power that accompanies old age. 

As with younger their younger counterparts, elderly populations display a marked 

reduction in MVC due to disuse resulting from immobilisation. In a population of 

60-79yrs suffering unilateral hip osteoarthritis, it was shown that the MVC of the 

affected limb was 20% less than that of the unaffected side (Suetta et al. 2007). 

However, what makes this loss of function in elderly disused individuals more of a 

concern is the combination of disuse induced atrophy with the normal observed loss 

of with increasing age. This has been shown to be a reduction in strength of as much 

as 40% in the elderly (~70 yrs) compared to younger individuals (~20 yrs) (Roos et 

al. 1999; Lambertz et al. 2001; Macaluso et al. 2002). Compromised skeletal muscle 
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function resulting from disuse is an important environmental factor that worsens the 

effects of sarcopenia in elderly individuals who are likely to be already exhibiting 

decreased muscle strength and function. Elderly populations are also more likely to 

be exposed to the effect of disuse due to high levels of comorbidity and 

hospitalisation (Manton et al. 1993) and a slow recovery can have a dramatic 

functional effect on their quality of life. For reasons stated above, any method of 

quantifying sarcopenia should include a measure of skeletal muscle function as well 

as mass. Common measurements of muscle strength used in defining sarcopenia are 

those which reflect muscle functions performed in everyday life such as quadriceps 

MVC and handgrip strength.  As well as their importance functionally, these groups 

of muscles are relatively easy to access and measure and so are extremely useful in a 

clinical setting.  

The aetiology of sarcopenia seemingly consists of a complex interaction between 

many genetic and environmental factors (Roubenoff and Hughes 2000). A major 

contributor to the loss of muscle function in the elderly is the decrease in the number 

of alpha motor neurons present which can be in the region of 50% in individuals 

aged 70+ yrs (Doherty 2003). Whilst the remaining motor neurons try to compensate 

for the loss by recruiting denerved fibres, the resulting increase in motor unit size 

and decrease in numbers results in significantly reduced coordination of muscle 

function and an overall reduction in force production that is characteristic of elderly 

muscle (Doherty et al, 2003). While neuropathic processes leading to motor neuron 

death are important causes of the muscle atrophy associated with ageing (Roubenoff 

and Hughes 2000), changing hormonal and immunological statuses also play 

significant roles (Narici and Maganaris 2006). In particular, there appears to be an 

insulin resistance in elderly individuals which could be attributed to alterations in the 
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associated signalling pathways in aging cells (Guillet 2004) which may have an 

effect on muscle protein synthesis and hence muscle mass.  Other hormones such as 

testosterone and growth hormone have been suggested to have a role in the decline in 

muscle mass in ageing individuals, namely due to their decreasing levels with 

advancing age. Studies in which growth hormone, insulin like growth factor-1 (IGF-

1) or testosterone have been administered to elderly individuals have resulted in 

increased muscle mass which can be attributed to an increase in number and 

proliferation of satellite cells important in growth and repair of muscle fibres (Chen 

2005). Of course these increases in muscle mass are a result of increases in net 

muscle protein synthesis which can only occur if there is adequate substrate present 

in the form of amino acids. This in itself can be a contributing factor to sarcopenia 

since elderly individuals exhibit decreased protein intake.  

  Unlike the neuronal changes, which are irreversible, environmental changes 

such as altered nutritional intake can be manipulated relatively easily and may 

present a means of minimising the age-related changes. For this reason, many studies 

focus on the availability of proteins, in particular essential amino acids as a method 

of potentially targeting the process of sarcopenia.   

 

 

2.4 Countermeasures 

As previously mentioned most studies into the mechanism of skeletal muscle atrophy 

resulting from periods of immobilization or disuse in humans have concluded that 

muscle wasting is determined by a net catabolism of muscle proteins. This imbalance 

in protein turnover is thought to come about due to a decline in muscle protein 
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synthesis rather than an increase in muscle proteolysis. As a result, investigations 

into countermeasures of disuse atrophy have been focused on methods of increasing 

muscle protein synthesis.  

 2.4.1 Resistance training 

Changes seen in ageing and disuse can be attenuated and even reversed by increasing 

muscle chronic loading. Resistance training is a widely accepted and practised 

method of increasing muscle mass, strength and power. Many studies have 

demonstrated the increase in skeletal muscle mass resulting from resistance training 

programs. Seynnes et al. (2007) reported an increase in whole muscle quadriceps 

CSA measured by MRI scanning of 6.5% distally and 7.4% proximally after only 20 

days of a 5-wk training period in young men and women. These reported increases in 

both whole muscle volume and muscle cross sectional area are largely understood to 

be due to an increase in single fibre hypertrophy i.e. an increase in muscle fibre 

CSA. In particular, type 2 muscle fibres (fast twitch) tend to increase to a greater 

extent than type 1 (slow) fibres (Deschenes et al. 2002). The hypertrophy observed 

in muscle fibres due to resistance training is essentially an increase in contractile 

material and is a result of increased muscle protein synthesis in response to the 

mechanical stimuli of increased muscle loading.  

In addition to the changes observed at whole muscle level muscle architectural 

parameters such as VL fascicle length and pennation angle have been shown to 

increase by 2.4% and 9.9% respectively after 35 days training in young 

recreationally active volunteers (Seynnes et al. 2007). Increases in VL and θ 

demonstrate the addition of sarcomeres in both parallel and series to fibres which are 

subjected to loading stimuli through resistance training. These changes in the 
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morphological characteristics of muscles at both the architectural level and whole 

muscle volume and changes in patellar tendon moment arm will ultimately affect the 

force producing capabilities of a muscle by altering the physiological cross sectional 

area of a muscle (PSCA) and specific force. A nine week resistance training 

programme targeting the quadriceps femoris muscles resulted in an increase in 

PCSA of 5.5% and specific force of 20.1% in young untrained males between the 

ages of 18-39 (Erskine et al. 2010). 

 While the increases in muscle architectural parameters resulting from 

resistance training are considerable, the increases observed in muscle strength are 

generally much larger, 28.9% after 35 days (Seynnes et al. 2007) and 30% after 9 

weeks resistance training (Erskine et al. 2010). This relative greater increase in 

muscle strength is largely attributable to neural adaptations, namely motor unit 

recruitment and firing, parameters which are known to have an important impact on 

muscle functional characteristics such as the rate of torque development and indeed 

maximum resultant force (Aagaard et al. 2002).  These neural factors are thought to 

account for early gains in strength observed in resistance training programs which 

occur prior to observed changes in muscle hypertrophy.  

 The exact cellular and molecular mechanisms of skeletal hypertrophy in 

response to resistance training are still largely uncovered. What is known however is 

the importance of the role of satellite cells in the plasticity of skeletal muscle. 

Satellite cells are essentially muscle stem cells located on the surface of muscle 

fibres which upon activation differentiate into myoblasts and ultimately offer up 

nuclei to their neighbouring muscle cells via cell fusion. Thus, as the muscle fibre 

increases in size, due to satellite cell fusion so does the number of nuclei which helps 

to keep the myonuclear domain relatively constant in hypertrophying cells. Bellamy 
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et al. (2014) showed that in response to resistance training the available pool of 

satellite cells in skeletal muscle increase and reported a relationship between the 

acute temporal response of satellite cells to resistance training and the accretion of 

lean muscle mass. These data serve to highlight the important role of satellite cells in 

hypertrophy due to resistance training.  

Another important aspect of hypertrophy to consider is the role of molecular 

regulators and signalling pathways. Recent studies have shown in the past thirty 

years that the protein kinase B/mammalian target of rapamycin, AKT/mTOR 

signalling pathway plays a major role in the regulation of skeletal muscle growth. 

Both AKT and mTOR are phosphorylated during muscle hypertrophy in response to 

load-induced training (Baar & Esser 1999; S. C. Bodine et al. 2001; Chen & Fang 

2002; Urso 2009). The phosphorylation and activation of the AKT/mTOR pathway 

leads to the activation of P70S6K, which has been shown to be correlated with 

percentage increase in muscle mass after 6 weeks resistance training indicating that  

P70S6K phosphorylation is involved in the adaptation of skeletal muscle to chronic 

resistance training (Baar and Esser 1999). Interestingly, the AKT/mTOR pathway 

has also been shown to be down regulated during muscle atrophy due to both disuse 

and denervation (Pallafacchina et al. 2002), which suggests that activating the 

AKT/mTOR pathway during muscle disuse could provide a means of attenuating 

skeletal muscle disuse-atrophy. 

 Human tendon mechanical properties can also be modified by following 

resistance training protocols. In rabbits that underwent 40 weeks of exercise training, 

the load and energy absorbed at failure was much higher than in rabbits which had 

not underwent any exercise training (Viidik 1967). In vivo studies have shown that 

collagen synthesis in human Achilles’ and patellar tendon to increase acutely after a 
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bout of endurance exercise and to remain at an elevated rate up to 72 hrs after 

exercise  (Langberg et al. 2000, D. Miller et al. 2005). Human tendons also show in 

vivo biochemical changes resulting from exercise training. The fractional synthetic 

rate of tendon collagen synthesis has been shown to increase to a peak increase at 24 

hrs post exercise of 1.7 times greater than that of resting tendon. After this time the 

collagen synthesis rate decreased but was still significantly elevated 72 hrs post–

exercise. Tendons of both young and older individuals have shown increases in 

stiffness and Young’s modulus in response to strength training indicating that 

resistance training as a countermeasure to muscle disuse atrophy and aging is 

important with regard to tendon as well as skeletal muscle.  

 2.4.2 Nutritional Intervention 

Skeletal muscle is in a constant state of flux between anabolism and catabolism, and 

imbalances in this protein muscle turnover results in either the atrophy or 

hypertrophy of skeletal muscle mass (Nicastro et al. 2010) . Several studies have 

highlighted the stimulatory effect of anabolic amino acids on muscle protein 

synthesis. Reducing amino acid blood concentration to 50% of basal level in pigs by 

haemodialysis resulted in a corresponding reduction in muscle protein synthesis, 

with MPS rate returning to basal level when amino acids were replaced (Wolfe 

2002).  As the level of available amino acids was altered, so also was the rate of 

inward transport of amino acids resulting in no change in intracellular levels of 

amino acids suggesting that extracellular levels of amino acids may serve as signals 

to activate MPS. In addition, it has been suggested that atrophied muscle displays a 

reduced sensitivity to nutrients, especially protein, resulting in lower protein 

accretion than basal rates (Rennie et al. 2004). This relationship between availability 



- 34 - 
 

of amino acids and the rate of muscle protein synthesis serves as the basis for much 

research into nutritional countermeasures to disuse induced muscle atrophy. 

The amino acid leucine has been the focus of much research into the attenuation 

skeletal muscle loss as it has been shown to have both anti-catabolic effects (Buse & 

Reid 1975; Zanchi et al. 2008) and be effective in promoting muscle protein 

synthesis (Paddon-Jones et al. 2004; Trappe et al. 2007; Glover et al. 2008). It is not 

completely understood how leucine contributes to skeletal muscle remodelling. It is 

believed to be a regulator of a number of cytoplasmic proteins known to be involved 

in initiating skeletal muscle protein synthesis and the insulin signalling pathway 

(Nicastro et al. 2010). Some investigators have suggested that membrane receptors 

and transporters sensitive to leucine may regulate the proteins involved in 

intracellular signalling pathways such as mTOR and, Akt (Glynn et al. 2010; Bohe et 

al. 2003; Hundal & Taylor 2009). This is an important statement as if this indeed 

does prove to be the case then leucine supplementation may serve as stimulator of 

the AKT/mTOR pathway during muscle disuse to counteract the down regulation 

seen in periods of muscle inactivity. 

The literature that exists on human studies on leucine and skeletal muscle 

remodelling is so far inconsistent. Leucine rich essential amino acid supplemented 

feeding resulted in the amelioration of muscle disuse-induced wasting after 28 days 

bed rest in a study by Paddon-Jones et al. (2004) however this preservation of 

muscle mass was not enough to preserve muscle strength suggesting that some 

mechanical stimulus is required to preserve muscle strength in addition to the 

preservation of muscle mass. One study investigating the effect of leucine enriched 

meals on soleus muscle during bed rest found no structural changes between 

supplemented and controlled groups (Trappe et al. 2008), whilst another found that a 
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leucine supplemented group actually displayed a greater loss of muscle mass (~4%) 

of the thigh and calf muscles  than a control group (Trappe et al. 2007). 

Decreased muscle protein synthesis resulting from disuse is particularly problematic 

in elderly individuals who may already be exhibiting decreased protein synthesis due 

to insufficient protein intake so may display a greater loss of muscle bulk due to a 

net catabolism than their younger counterparts (Cuthbertson et al. 2005). 

Malnutrition is common among the elderly population due to factors such as a 

progressive loss of appetite and dietary shift towards sweeter foods (Tawa & 

Goldberg 1994). Studies have shown that ingestion of high protein meals can 

increase the postprandial muscle protein synthesis in old as well as young 

individuals (Symons et al. 2007; Paddon-Jones et al. 2008; Paddon-Jones & 

Rasmussen 2009; Rieu et al. 2006). A separate study showed that a single dose of 

essential amino acid mixture did not result in increased muscle protein synthesis in 

elderly but did in young individuals (Katsanos et al. 2005) however, this is likely due 

to the low dose of leucine in the amino acid mixture (1.72g). A later study by the 

same group showed that essential amino acid mixtures with different amounts of 

leucine resulted in different levels of postprandial muscle protein synthesis with 

higher doses of leucine resulting in higher protein synthesis (Katsanos et al. 2006). 

These results show that the availability of protein is a bigger problem for elderly 

individuals rather than the accretion of proteins and hence leucine supplementation is 

effective in increasing the rate of muscle protein synthesis in elderly individuals. 

Whilst many studies have investigated the effects of mixtures of essential and non-

essential amino acids on atrophied human skeletal muscle, there are few studies of 

humans which evaluate the isolated effects of a leucine supplement and even fewer 

in which the direct effects of leucine on muscle functional parameters have been 



- 36 - 
 

studied. It would be expected that while leucine supplementation may affect muscle 

mass, additional factors affecting muscle function e.g. neural drive would not be 

directly affected by amino acid supplementation and so the muscle function would 

not be directly affected by leucine per se. 

Whilst skeletal muscle appears to be altered by protein intake, little is known about 

the response of tendon or tendon extracellular matrix to nutritional supplementation. 

The mechanical strength of a tendon depends primarily on the structure and 

intermolecular interactions of its collagen fibrils (Canty & Kadler 2002). However, 

the composition and structure of the ECM (e.g. macromolecules such as 

proteoglycans) also have a significant effect on tendon mechanical properties 

(Magnusson et al. 2003). The predominant proteoglycan in the tendon is Decorin, 

which belongs to a family of small leucine-rich proteoglycans (SLRP) so called due 

the presence of leucine-repeats in their structure. SLRP’s have been shown to have a 

role in the regulation of collagen fibril formation and are thought to affect collagen 

fibril diameter by aligning collagens for successful cross-linking (Kalamajski and 

Oldberg 2010). The ECM including SLRP’s can be altered by nutritional state (K 

Smith & Rennie 2007) indicating that an increase in leucine availability may 

increase the level of SLRP’s in the tendon ECM which could have a positive effect 

on tendon mechanical properties. 

 Many investigators report that tendon collagen synthesis is not sensitive to feeding 

(Babraj et al. n.d.; Wackerhage & Rennie 2006; Ken Smith & Rennie 2007). 

However, a study by Barbosa et al. (2010) has shown that a leucine rich diet  

stimulates tendon collagen synthesis in malnourished rats, especially when in 

combination with  physical activity and actually improved the biomechanical 

characteristics of the tendon (maximal load, displacement, stress and strain). This 
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recent evidence suggests that leucine intake may be an important factor in improving 

tendon mechanical properties or recovery and hence further research is necessary to 

explore this relationship. 
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3. Aims and Objectives 

In this project healthy young males are used as test subjects to investigate the role of 

exercise and diet in disuse-induced skeletal muscle atrophy and subsequent recovery. 

A cross sectional study is also reported examining the effects of physical activity and 

periods of disuse on elderly sarcopenic individuals. Both muscle structural and 

functional parameters are reported upon. The aims of each study are outlined below. 

                                                                                                                                      

1) To examine the structural and functional adaptations of the quadriceps femoris 

muscle and patellar tendon to a period of unloading and subsequent recovery through 

physical activity in young men.                                          

2) To assess the role of physical activity and nutritional supplementation in 

improving the rate and extent to which muscle mass and musculoskeletal function is 

restored following a period of immobilisation. 

3) To evaluate the response of elderly skeletal muscle to both increased physical 

activity and periods of immobilization and examine the role of physical activity in 

mitigating the effects of sarcopenia on elderly skeletal muscle. 

The project has been broken down into 4 studies to achieve the objectives listed 

below:               

Study 1 Objective: Skeletal muscle adaptations to physical inactivity and 

subsequent retraining in young men. Skeletal muscle structure and function are 

markedly affected by chronic disuse. With unloading, muscle mass is lost at rate of 

about 0.4%/day but little is known about the recovery of muscle mass and strength 
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following disuse. Here we report an extensive data set describing in detail skeletal 

muscle adaptations in structure and function in response to both disuse (ULLS) and 

retraining. 

                                                                    

 Study 2 Objective: The effect of amino acid Leucine supplementation on disuse-

induced atrophy in young subjects.  This study consists of an assessment of muscle 

disuse-atrophy in young, healthy volunteers undergoing unilateral lower limb 

suspension (ULLS) (Berg et al. 1991) with a test group of participants undergoing 

the same unloading procedure but receiving nutritional supplementation with the 

essential amino acid leucine to assess the effect of supplementation. A placebo group 

will take nutritional supplements containing the non-essential amino acid alanine. 

                                                                                                                                              

Study 3 Objective: The effect of amino acid Leucine supplementation on the rate 

and extent of recovery following ULLS in young subjects.  This study consists of an 

assessment of the time-course of the post-ULLS recovery of disuse-atrophy resulting 

from 3 weeks ULLS by a programme in which one group receives leucine 

supplementation plus resistance training while the other group receives only 

resistance training (and placebo alanine supplements).       

                                                                                                                                                           

Study 4 Objective: Investigating the role of life-long training in the prevention of 

sarcopenia and the development of an image based biomarker of sarcopenia. This 

study consists of an assessment of the quality and function in aged-matched elderly 

populations, a group of master athletes, sedentary control group and frailty due to 

hip-fracture surgery. Ultrasonic analysis of the changes in skeletal muscle fibre 
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architecture are used to propose an image based biomarker for the indication of the 

onset of sarcopenia. 
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4. Methods 

The study was approved by Manchester Metropolitan University Faculty of Science 

and Engineering Research Ethics Committee (Ref. FAETC/08-09/13) and 

participants were excluded from the ULLS study if they suffered from or have ever 

suffered from previous stroke, uncontrolled cardiovascular disease, motor neurone 

disease, Parkinson's disease, medically diagnosed osteoporosis, type II diabetes, 

hypertension or myocardial infarction within the previous two years, acute febrile or 

systemic disease within the past two years or are currently taking beta blockers. 

ULLS participants were advised on early signs of deep vein thrombosis in the early 

sub-clinical phase and were monitored weekly using Doppler ultrasonography check 

for any signs of the possible occurrence of DVT. 

4.1  Amino Acid Supplementation. Participants undergoing ULLS were randomly 

assigned to either a leucine intervention groups or an alanine placebo group. The 

recommended mean leucine requirement for adults is set at 39mg per kilogram of 

body weight (WHO/FAO/UNU, 2007).  Based on previous literature surrounding 

leucine supplementation for exercise performance (Crowe et al. 2006; Mero et al. 

1997), leucine dosage for the current study was set at was set at 50mg/kg body mass. 

To standardise the supplements the greatest body mass of the participants was used 

to calculate a dosage, which would ensure that all participants received a 

supramaximal dose of leucine. Each supplement contained either 6g of leucine of 6g 

or alanine and 0.5g of orange flavouring (Citric acid, dried glucose syrup, colour 

(E162, E160(a)) and sodium saccharin. For reference, figure 4.1 shows our 

supplement compared with the leucine content of popular high protein foods.  
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Figure 4.1 Leucine content of our nutritional supplement compared to popular high protein foods. 

Information from www.nutritionalvalue.org. 

 

The non-essential amino acid alanine was chosen as a placebo supplement which 

contained the same flavouring as the active leucine supplements. Both supplements 

were visually indistinguishable and packaged in identical containers before 

distribution to participants. In contrast to leucine, non-essential amino acids like 

alanine do not have the capability to stimulate muscle protein synthesis after 

ingestion in humans (Tipton et al. 1999), hence its was selected as an isonitrogenous 

supplement that would not affect muscle protein synthesis in the control group. 

Participants were instructed to take the supplement everyday throughout the ULLS 

period in the morning as soon as they awoke. Water was added to bottles containing 

pre-prepared mixtures of amino acid and flavouring to form a solution. Participants 

were instructed to ensure that all of the amino acid mixture was ingested i.e. no 

residue remained in the bottles. 
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4.2 Unilateral Lower Limb Suspension procedure.  Participants underwent  unilateral 

lower limb suspension (ULLS) (Berg et al.,1991) for three weeks to induce atrophy 

of the right limb. The left limb was fitted with a raised sole (8cm) and the right limb 

was kept in a slightly flexed position with the use of a sling which suspended the 

limb above the ground whilst the participants walked with crutches. The sling 

maintained the ankle joint at 0˚of flexion, with the foot at right angle to the tibia. 

Participants used the shoes, crutches and a sling for the duration of the three-week 

suspension period and were instructed to refrain from loading the right limb in 

anyway including driving vehicles.  

4.3 Ultrasonography. Ultrasound scanning was used to assess muscle thickness, 

architecture at rest and during maximum voluntary contraction (MVC) and to 

measure patellar tendon elongation. With the subject lying in the supine position, 

images of muscle architecture (pennation angle θ and fascicle length Lƒ) at rest of all 

four heads of the quadriceps femoris were recorded. Scans were taken at a level of 

approximately 40% of proximal femur length (rectus femoris scans were taken more 

proximally), (fig 4.2). The final position and orientation of the probe at the site were 

scans taken was recorded on an acetate sheet using moles and angiomas as markers 

to ensure all subsequent scans were taken at the same anatomical location for 

comparison. Scans taken during MVC were also recorded at the same anatomical 

location. 
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Figure 4.2. Ultrasound image of the vastus lateralis taken at rest at 40% proximal femur length.  

 

The same anatomical positions were used for scanning the muscles during MVC and 

video clips were recorded as participants performed slow ramp contractions. 

Participants were instructed to start contracting after a verbal signal and to slowly 

reach maximum torque over a period of approximately four seconds  

4.4 Muscle volume. Quadriceps muscle volume was measured using a 0.2 Tesla MRI 

scanner (E-Scan, Esaote Biomedica, Genova, Italy).  Axial plane scans were 

acquired using a Turbo 3D T1 sequence with a slice thickness of 3.1mm. Oil filled 

capsules were secured to the skin along the length of the thigh as external markers at 

7cm intervals with the distal border of the lateral femoral condyle (located using 

ultrasonography) used as a reference point (figure 4.3). Scans were performed with 

participants lying in the supine position with the knee fully extended. 
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Figure 4.3. Axial MRI scan of the right quadriceps femoris muscle. Scans where taken pre-ULLS, post-ULLS and post RT. Oil 

filled capsules secured the skin along the lateral thigh were used as reference markers (pictured). 

 

4.5  Maximum Voluntary Contraction (MVC). Maximum knee extension and knee 

flexion torque were measured using an isokinetic dynamometer at varying angles of 

knee flexion, 70˚, 80˚ and 90˚, with full knee extension corresponding to 0˚ flexion. 

Participants were seated in the chair and secured into position using straps to secure 

the hip and maintain the hip angle at 85˚ (full hip extension corresponding to 0˚). 

The position of the dynamometer and chair was adjusted to align the centre of knee 

joint rotation of the right limb with the centre of rotation of the dynamometer motor 

using a laser pointer. Participants performed two maximal knee extension 

contractions separated by a knee flexion contraction at each angle of knee flexion in 

a randomised order. Instructed to start contracting when a verbal signal was given 
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and to hold the maximum for 2-3 seconds until given a verbal signal to stop in order 

to produce a plateau at maximum contraction for analysis purposes. 

4.6 Electromyography. Surface EMG of the Vastus Lateralis muscle (VL) and biceps 

femoris (BF) was recorded throughout the functional muscle test performed on the 

dynamometer. Skin was shaved and cleaned with an abrasive gel and alcohol swabs 

to ensure inter-electrode impedance was below 5kΩ. The position of the electrodes 

was recorded on acetate sheets using moles and angiomas as reference markers so as 

the electrodes could be placed in the same position at subsequent testing sessions. 

The reference electrode was placed on the skin covering the lateral femoral condyle. 

The raw EMG signal was acquired with a sampling frequency of 2000 Hz and 

processed with a multi channel analogue-digital converter (Biopac EMG 100B 

Systems, USA), with a 10-500Hz band pass filter. Root mean square (RMS) was 

calculated over 500 ms around the peak isometric torque. The BF co activation was 

estimated from RMS recordings during a maximal isometric knee flexion, assuming 

linearity between EMG activity and torque.. 

4.7  Activation capacity. The maximal M-wave of the VL was determined using 

electrical stimulation on the femoral nerve (model DS7, Digitimer stimulator, 

Welwyn, Garden City, UK). A hand-held monopolar cathode was placed on the skin 

in the femoral triangle. The anode was placed on the skin, under the posterior 

superior iliac spine. Small twitches were administered at various cathode positions to 

determine the optimal position to elicit highest twitch EMG and torque. Once the 

optimal position had been found, twitch intensity was increased until no further 

increase in the VL peak-to-peak M-wave was observed. This intensity was further 

increased by 50 mA to achieve supramaximal stimulation and this intensity was used 

throughout the testing procedure. The intensity of the supramaximal twitches was 
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reassessed and adjusted accordingly at each of the three testing sessions. 

Supramaximal doublets were administered during the plateau phase of MVC and at 

rest following MVC.  

4.8 Patellar Tendon Mechanical Properties. Patellar Tendon (PT) dimensions were 

measured by transverse MRI scanning images of the tendon with the lower limb at 

anatomical position (knee joint at 0° of flexion) (figure 4.4). Tendon CSA was 

measured at 25%, 50% and 75% of the resting length of the PT. Three measurements 

were averaged at each site with the average CSA used for analysis purposes.  

               

Figure 4.4. Axial MRI scan of the right knee showing patellar tendon (highlighted in white), used to measure patellar tendon 
dimensions. 

 

 PT moment arm was estimated form sagittal plane MRI scans of the PT at 

anatomical zero. The moment arm was determined as the perpendicular distance 
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from the PT to the tibio-femoral contact point (TFCP) which was defined as the 

midpoint on the plane connecting the medial and lateral tibio-femoral contact point 

(Tsaopoulos et al. 2006) (figure 4.5). As tendon mechanical properties were assessed 

at 90° flexion, the measured moment arm (at anatomical zero) was multiplied by the 

ratio of the moment arm lengths at 0º and 90° of knee joint flexion, as previously 

reported (Baltzopoulos 1995). PT force was calculated as net knee extensor torque 

(measured knee extensor torque + estimated antagonist knee flexor torque) divided 

by estimated PT moment arm. 

                               
Figure 4.5 Sagittal MRI scan of the right knee showing patellar tendon. PT moment arm was determined as the perpendicular 
distance from the tibio-femoral contact point, TFCP to the anterior border of the patellar tendon, PT. 

  

Patellar tendon elongation was measured using ultrasonography. A 10 cm probe was 

placed on the skin above the tendon with the knee fixed at 90° flexion. Ultrasound 

clips were taken during slow ramp isometric MVC contractions with the tendon 
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elongation measured between the patella apex and the insertion of the tendon on the 

tibial tuberosity (figure 4.6). Ultrasound clips were synchronised with the torque and 

EMG data acquisitions. Tendon stress (MPa) was calculated by dividing tendon 

force by tendon CSA, tendon strain was calculated as the ratio of tendon 

displacement to the initial resting tendon length.  

   

 Figure 4.6 Patellar tendon at rest (A) and during MVC (B). PT elongation was measured as displacement of the patella, P and 

the tibia, T. 

 

 Tendon stiffness was calculated between 90-100% of the maximum force 

level of the weakest participant over all testing sessions to ensure that  stiffness was 

measured at the same absolute force levels in all subjects and testing sessions. 

Tendon stiffness (N-mm2) was calculated as the gradient of the corresponding force-

elongation. Young’s modulus (GPa) over this interval was calculated by multiplying 

the stiffness values by the ratio of resting PT length over tendon CSA. 
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4.9 Resistance training protocol. Participants attended the IRM three days per week 

for a period of three weeks to undergo a resistance training (RT) program. 

Quadriceps extensions were performed at 80% of participants one repetition 

maximum (1RM). To find the 1RM, participants first warmed up with a series of 

contractions of a low resistance, after which the resistance was increased to find the 

maximum. Resistance was set at 80% of each participants 1RM at which three sets 

of ten contractions were performed during each training session. At the beginning of 

weeks two and three 1RM was reassessed and the resistance level was adjusted 

accordingly. 

4.10 Participants.  

Seventeen young men aged 18-53 were recruited into the ULLS study and assigned 

randomly to either a leucine or alanine supplementation group, Lue = 9, Ala = 8. 

Due to drop outs 9 participants (23±2.2 yrs : 76.4 ± 8.0 kg) completed the 3 week 

ULLS period, Leu = 6, Ala = 3. An additional 8 participants (24±0.6 yrs: 72.4 ± 

8.0kg) were recruited separately to act as ambulatory controls and underwent the 

same testing procedures three weeks apart, without ULLS or supplementation. 

Due to a further dropout only 8 of the original recruits to the ULLS study (23 ± 2.5 

yrs ; 76.9 ±10.9 kg) completed the resistance training recovery period, Leu = 6, Ala 

= 2. 

For chapter 7, Data was collected from a total of 92 individuals including 24 young 

untrained (YU) males 18-35 yrs (24 ± 2.6 yrs ; 73.3 ± 8.2 kg) and 27 older 

recreationally active males and females (OA) 65yrs+ (70.9 ± 9.9 yrs) from the local 

population.  The 24 YU males included the original baseline measurements taken 

from the control and ULLS groups for studies 1 and 2 before any intervention. 

Twenty-four male and female master athletes (70.9 ± 9.9 yrs)   competing at the 
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2010 European Veteran Athletic Championships (MA) were also assessed as well as 

17 older frail males and females (OF) awaiting hip arthroplasty surgery 65yrs+. 

All participants signed a written informed consent and the study was approved by the 

Manchester Metropolitan Faculty of Science and Engineering Ethics Committee. The 

same participants were used in chapter 6 to study the effect of amino acid 

supplementation on immobilisation-induced atrophy. Participants were randomly 

assigned to one of two test groups each taking a supplement of essential amino acid 

leucine (Leu) intervention group or  non- essential amino acid alanine (Ala) group. 

While both groups showed adaptations in response to ULLS, amino acid 

supplementation was shown  to have no effect of  the loss of muscle mass and 

strength associated with disuse-induced atrophy (c.f. chapter 6). Subsequently, the 

data was pooled together and analysed with the purpose of examining the skeletal 

muscle adaptations to ULLS and subsequent retraining. 

 

 

Statistics. Normal distribution of the data was confirmed by Shapiro-Wilks test for 

normality. Data were analysed using a Mixed ANOVA as we have both a within-

subject factor (the repeated measure time, Pre and Post ULLS measurements) and a 

between subject factor (supplementation, Leucine or Alanine). Where Mauchley's 

test of sphericity was violated Greenhouse-Geisser corrected F ratios were used for 

significance level. Pre and post test for the control subjects were analysed using 

student’s t test. Significance level was set at p<0.05. 
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5.  Study 1. Skeletal muscle adaptations to physical inactivity and 

subsequent retraining in young men. 

 

5.1 Summary 

Skeletal muscle structure and function are markedly affected by chronic disuse. With 

unloading, muscle mass is lost at rate of about 0.4%/day but little is known about the 

recovery of muscle mass and strength following disuse. Here we report an extensive 

data set describing in detail skeletal muscle adaptations in structure and function in 

response to both disuse and retraining. 

Nine young men (23±2.2 yrs: body mass: 76.4 ± 10.4 kg) underwent 3 weeks of 

unilateral lower limb suspension (ULLS) followed by a 3-week resistance training 

recovery program. Knee extensor (KE) isometric torque, voluntary activation (VA), 

quadriceps femoris (QF) muscle volume (QFvol), fascicle length (Lf) and pennation 

angle (θ), physiological cross-sectional area (PCSA) of all four heads of the QF 

muscle, were measured before, after ULLS, and post-ULLS-resistance training. 

Needle biopsies were taken from the vastus lateralis muscle of a subgroup (n=6) of 

the same subjects and cross sectional area of individual muscle s and myosin content 

of muscle samples were determined.  

Following 3 weeks of ULLS, isometric torque decreased by 26%, PCSA by 3%,  

QFvol by 10%.Lfand θ of all four heads of QF significantly decreased (P≤0.05). 

Following the 3-week retraining period, isometric torque, PCSA, QFvol ,Lf and θ of 

all four heads of QF were all fully restored to pre ULLS values. CSA of individual 

muscle fibres and myosin content of muscle samples decreased by 26% and 35% 
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respectively (post-ULLS) and recovered to almost pre-ULLS values following 

retraining. There were no significant changes in voluntary activation of the 

quadriceps muscles in response to either ULLS or subsequent retraining. These 

results indicate that, 1) the loss of muscle force with 3-week unloading in humans is 

mostly explained by muscle atrophy and by a decrease in myosin content and, 2)  all 

the neuromuscular changes induced by this model of disuse can be fully restored 

after a resistance training intervention of equal duration. 

 

 

5.2 Introduction 

Deficits in skeletal muscle mass and function are primary outcomes of chronic 

unloading, with antigravity muscles such as the knee extensors (KE) being 

particularly affected (Narici & de Boer 2011). An extensive knowledge of these 

adverse conditions is paramount, for they are inevitably linked to clinical situations 

such as prolonged best rest or the use of crutches due to bone fracture or 

musculoskeletal injury. Several models including bed rest, limb cast immobilization 

and unilateral lower limb suspension (ULLS) have been used to investigate the 

effects and recovery from disuse (Adams et al. 2003; M D de Boer et al. 2007). 

ULLS mimics the standard clinical practice of joint unloading commonly practiced 

following musculoskeletal injuries or surgery. In addition, this model offers the 

advantage of confining atrophy to the musculoskeletal system of the unloaded limb. 

Reported reductions in KE torque in response to ULLS range 15% to 21 % for 

durations of 14 to 28 days, 19% for mid-term, 15-28 days, and 21% for long-term, 

28+ days, ULLS (Narici and De Boer, 2011). 
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Reported decreases in muscle size, represented by both anatomical cross 

sectional area (ACSA) and muscle volume of the quadriceps femoris muscle, 

average about 10% following 10 days to 5 weeks of ULLS, or approximately 2.6% 

per week (Narici and De Boer, 2011). The disuse-induced loss of muscle strength far 

exceeds that of muscle mass, indicating the contribution of other factors, such as 

neural drive, changes in muscle architecture (De Boer et al. 2007) and a decrease in 

single fibre specific tension (Danton et al., 2003). 

 Because muscle architecture is a main determinant of muscle function  (Cutts 

1988; Gans & Bock 1956; Lieber & Friden 2001), changes in fascicle length (Lƒ)  

and pennation angle (θ) represent powerful indicators of alterations in functional 

deficit induced by disuse (Narici & Cerretelli 1998). Pennation, a key-parameter of 

muscle architecture, is a natural strategy to pack more contractile elements in to a 

given muscle volume. A decrease in pennation angle (θ), due to muscle atrophy, is 

commonly interpreted as a decrease in the number of fascicles in parallel (Kawakami 

et al. 1993) . Reductions in θ seen after only short durations of ULLS or bed rest (~8-

13% in the vastus lateralis muscle after 23 to 35 days, (de Boer et al. 2007 & 2008) 

indicate that substantial muscle remodelling occurs with few days of muscle 

unloading.  

In line with the decrease in pennation angle, a reduction in muscle fascicle 

length of~8% was also found after 23 days ULLS (de Boer et al., 2007). Such a 

decrease implies a loss of sarcomeres in series and a consequential increase in 

sarcomere excursion during shortening of the whole muscle, shifting the operating 

muscle length towards a less favourable portion of its length-tension curve. 

Moreover, a reduction in the number of sarcomere in series also predicts a decrease 

in maximum shortening velocity. Hence, beyond gross atrophy, disused muscles are 
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affected by subtle, yet substantial, architectural alterations, resulting in losses of 

force, velocity and power. Information regarding the reversibility of these changes 

during active recovery is currently lacking. 

Neural drive and muscle activation capacity appear to be reduced by periods 

of prolonged disuse, as reflected by the decreased ability of muscles to fully activate 

during a maximal voluntary contraction. Bed rest studies have shown a decrease in 

the root mean square (RMS) of EMG of 6.5% after 20 days (Kawakami et al. 2001) 

and 19% after 42 days (Edgerton et al. 2001). Nevertheless, the contribution of 

reduced neural drive to the loss of muscle strength associated with disuse seems still 

an unresolved issue as several studies showed no change in maximal EMG activity 

in both vastus lateralis(de Boer et al., 2007) and plantar flexor muscles (Seynnes et 

al. 2008) after ULLS, whilst others (Clark et al. 2006) showed a 30% decrease in 

compound muscle action potential (CMAP). 

 Despite the importance of effective recovery strategies in clinical settings, 

little is known about the resilience of muscle functional properties following periods 

of disuse (Hanson et al. 2010) . Disuse atrophy resulting from short periods of 

immobilization, ~10 days seems to be reversed rather quickly through passive 

recovery i.e. returning to normal weight bearing. However, without a rehabilitation 

program full recovery from longer periods of disuse seems to require longer 

durations. For instance, (Berg & Tesch 1996) reported a 13% decrease in KE torque 

following 10 days of ULLS, which returned to baseline levels after only 4 days of 

passive recovery. In a longer ULLS study which lasted4 weeks and resulted in a 22% 

decrease in KE strength, muscle torque remained 11% below baseline levels after 4 

days of passive recovery, eventually returning to normal 7 weeks following the 

ULLS period (Berg et al. 1991). Similarly, another study of 2-week immobilization 
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showed that the KE torque could return to pre-ULLS levels within 4 weeks of active 

recovery (Suetta et al. 2009) .The results of this study are noteworthy for they imply 

that early active recovery may not only improve patient functional status but is likely 

to have a greater impact on quality of life, thereby reducing post-treatment 

hospitalisation times.  

 Here we report an extensive data set describing in detail skeletal muscle 

adaptations in structure and function in response to both disuse and active recovery. 

Knee extensor (KE) isometric and dynamic torque, voluntary activation (VA), 

contractile properties (Mwave and twitch response), volume (QFvol), fascicle length 

(Lƒ) and pennation angle (θ) of all 4 heads of the quadriceps femoris were measured 

before and after 3 weeks ULLS and after 3 weeks active recovery. We hypothesised 

that substantial remodelling of skeletal muscle architecture would be induced by the 

3 weeks of unloading and, unlike passive recovery, a rehabilitation program of equal 

duration would effectively restore all the muscle structural and functional parameters 

affected during disuse. 

 

5.3. Methods 

 

Participants.  

Seventeen young men aged 18-53 were recruited into the ULLS study and assigned 

randomly to either a leucine or alanine supplementation group, Lue = 9, Ala = 8. 

Due to drop outs 9 participants (23±2.2 yrs : 76.4 ± 8.0 kg) completed the 3 week 

ULLS period, Leu = 6, Ala = 3. An additional 8 participants (24±0.6 yrs: 72.4 ± 
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8.0kg) were recruited separately to act as ambulatory controls and underwent the 

same testing procedures three weeks apart, without ULLS or supplementation. 

Due to a further dropout only 8 of the original recruits to the ULLS study (23 ± 2.5 

yrs ; 76.9 ±10.9 kg) completed the resistance training recovery period, Leu = 6, Ala 

= 2. 

All participants signed a written informed consent and the study was approved by the 

Manchester Metropolitan Faculty of Science and Engineering Ethics Committee. The 

same participants were used in chapter 6 to study the effect of amino acid 

supplementation on immobilisation-induced atrophy. Participants were randomly 

assigned to one of two test groups each taking a supplement of essential amino acid 

leucine (Leu) intervention group or non- essential amino acid alanine (Ala) group. 

While both groups showed adaptations in response to ULLS, amino acid 

supplementation was shown to have no effect of  the loss of muscle mass and 

strength associated with disuse-induced atrophy (c.f. chapter 6). Subsequently, the 

data was pooled together and analysed with the purpose of examining the skeletal 

muscle adaptations to ULLS and subsequent retraining. 

Participants underwent three weeks of disuse with the unilateral lower limb 

suspension (ULLS) model (see section 4.2). Following the ULLS, participants 

attended the laboratory three days per week for a period of three weeks to undergo a 

resistance training (RT) program (see section 4.9).  Three needle biopsies were taken 

from vastus lateralis muscle of a subset of 6 subjects: one pre-suspension (pre-

ULLS), one post suspension (post ULLS), one post exercise recovery (post RT) 

(section 4.10). Single fibre CSA measurement (section 4.11) and Myosin content 

(section4.12) were measured on the muscle biopsy samples.  
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Ultrasound scanning was used to assess muscle architecture at rest and during 

maximum voluntary contraction (MVC) (section 4.3).  Maximum knee extension 

and knee flexion torque were measured at three angles of knee flexion, 70˚, 80˚ and 

90˚ (section 4.5). Surface EMG of the Vastus Lateralis muscle (VL) and biceps 

femoris (BF) were recorded throughout the functional muscle test performed on the 

dynamometer (section 4.6).  Quadriceps activation was also assessed with the twitch 

interpolation technique using electrical stimulation applied to the femoral nerve 

(section 4.7).  

Statistics. The normal distribution of all data sets was verified with a Shapiro-Wilks 

test. Student’s t tests for independent samples were applied to compare baseline 

values between the suspended and control groups. To determine the effect of the 

suspension period on the investigated variables, a one-way ANOVA for repeated 

measures was conducted with a Bonferroni adjustment for post hoc analysis. 

Statistical significance was set as α =0.05. Unless stated otherwise, results are means 

± standard error of the mean. 

5.4 Results 

Statistical tests performed on baseline measurements showed no difference between 

the ULLS and control groups in any of the variables measured. 

Muscle strength and activation. Maximum voluntary contraction of QF decreased by 

26% following 3 weeks of ULLS (p<0.005), but increased during active recovery to 

give post-RT strength levels just 2.5% below baseline values (n.s. from baseline). 

Voluntary activation decreased by 5.1% during ULLS but this decline did not reach 

significance. However, a mirrored trend was observed after active recovery, when 
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the voluntary activation capacity increased by 6.6% (p<0.05), (table 5.1, Fig. 5.1). 

Control subjects showed no difference in MVC from baseline to post-ULLS testing. 

 

Figure 5.1. Percentage change in MVC torque and voluntary activation (VA) capacity of the 

quadriceps femoris at baseline, following 3 weeks suspension and after 3 weeks subsequent active 

recovery. Data are means ± SEM. No changes in VA were statistically significant. ** Statistically 

significant from baseline P<0.005, †† significantly different from post-ULLS values P<0.005 

 

Table 5.1 Quadriceps MVC (maximum voluntary activation),VA ( voluntary activation 

capacity), PCSA  (physiological cross sectional area) and SF (specific force ) and baseline, post-

ULLS and post-RT. Data are means±SEM *significantly different from baseline p<0.05 

**significantly different from baseline p<0.005 †significantly different from post-ULLS p<0.05 
††significantly different from post-ULLS P<0.005 

 ULLS (n=8) Control (n=8) 

   Baseline 3 wksPost-ULLS 6 wksPost-RT  Pre  Post  

MVC Nm 299±14 221±14** 291±14††  311±21 294±26 

VA % 87±3.5 83±3.5 88±3  -- -- 

EMGRMS/M-wave 0.073±0.02 0.0614±0.02 0.073±0.02  0.070±0.01 0.070±0.01 

PCSA mm2 208±6 203±8 218±14  199.98±18.0 202.66±21.7 

SF Nm 32±2 24±1* 35±3†  38.0±4.4 37.1±6.3 
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Muscle volume. Whole quadriceps muscle volume decreased by 10% during ULLS 

(p<0.05) but muscle mass was restored following 3 weeks of active recovery, with 

post-RT muscle volume being 2% higher than baseline measurements (Figure 5.2). 

At single muscle level, atrophy of the rectus femoris did not reach significance in 

response to suspension, -5% (n.s.). However, RF volume increased by 12% from 

post ULLS to post-RT values(p<0.05) to increase post RT volume by 6% above 

baseline (n.s.). The volume of the 3 remaining heads of the quadriceps femoris all 

decreased during ULLS, VL and VI by 12% (p<0.05) and VM by 9% (p<0.005), and 

all muscles returning to pre ULLS values following active recovery (Figure 5.3). A 

one-way ANOVA of the percentage change in muscle volume of each of the four 

heads of the QF showed no significant differences in the individual responses of 

each heads during both ULLS and RT (Figure 5. 3). Control subjects showed no 

difference in QF muscle volume from baseline to post-ULLS testing. 

 

Figure 5.2. Relative change from baseline of whole QF volume, PCSA and specific force 

following 3 weeks suspension and after 3 weeks subsequent resistance training. Data are means ± 
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SEM. No changes in PCSA were statistically significant. *Statistically significant from baseline 

P<0.05, ** statistically significant from baseline P<0.005, †statistically significant from post-ULLS 

P<0.05, ††statistically significant from post-ULLS P<0.005. 

 

Resting twitch characteristics. Although there was some tendency for a change in the 

twitch characteristics at rest in response to both ULLS and retraining, none of the 

differences in twitch properties were significant (Table 5.2). 

 

 

 

 

 

 

Figure 5.3.Relative change from baseline of muscle volume of the all 4 heads of quadriceps 

following 3 weeks suspension and after 3 weeks subsequent active recovery. Data are means ± 



- 62 - 
 

SEM. *Statistically significant from baseline P<0.05, ** statistically significant from baseline 

P<0.005, † statistically significant from post-ULLS P<0.05, †† statistically significant from post-

ULLS P<0.005. 

 

Muscle architecture. Resting fascicle length decreased in all four heads of the 

quadriceps femoris following suspension, VL by 9% (p<0.005), VM by 6% 

(p<0.05), VI by 11% (p<0.005) and RF by 9 % (P<0.05). This parameter was fully 

restored to baseline values in all four muscles, following active recovery (Figure 

4.4). Similarly, pennation angle at rest decreased in all four heads, in VL by 10% 

(p<0.005),in VI and RF by 7% (P<0.05) and by 8.6% for VM (n.s.) (Figure 5.4). 

There was no inter-muscle difference in the magnitude of changes in Lƒ or θ after 

ULLS or subsequent resistance training. Control subjects showed no difference in Lƒ 

or θ from baseline to post-ULLS testing. 

 

Figure 5.4. Relative change from baseline of fascicle length and pennation angle of the all 4 heads of 

quadriceps following 3 weeks suspension and after 3 weeks subsequent active recovery. Data are means ± 

SEM. *Statistically significant from baseline P<0.05, ** statistically significant from baseline P<0.005, † 

statistically significant from post-ULLS P<0.05, †† statistically significant from post-ULLS P<0.005 
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Table 5. 2 Resting twitch characteristics at baseline, post-ULLS and post-RT. Data are means±SEM all data 

are not statistically significant. Time to peak tension (TPT) and 1/2 relaxation time shown in milliseconds, peak 

twitch in Nm. dT/dt is rate of torque development, Tw/MVC is peak tension normalised to MVC. 

   Baseline 3 wksPost-ULLS 6 wksPost-RT 

PTw 66±4 58±6 63±4 

TPT 58±2 62±2 60±1 

1/2RT 71±6 78±9 72±4 

dT/dt 1.15±0.1 0.96±0.1 1.06±0.1 

Tw/MVC 0.23±0.02 0.27±0.03 0.22±0.02 

 

Physiological cross sectional area and specific force. Quadriceps PSCA did not 

change significantly across the study, despite a 3% reduction after ULLS, and a 5% 

increase above baseline values after re-training. Specific force did decrease 

significantly in response to suspension by 24% (p<0.05) and increased 10% above 

baseline values (n.s.). Control subjects showed no difference in PCSA or specific 

force from baseline to post-ULLS testing (Table 5.1, Figure 5.2). 

Single fibre cross sectional area. Figure 5.5 shows the mean values of single muscle 

fibre cross sectional area. Single muscle fibres went through significant atrophy (-

26%) following ULLS and recovered almost pre-ULLS size following retraining. 
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Figure 5.5. Single fibre CSA of vastus lateralis fibres following 3 weeks suspension (Post ULLS) and after 3 

weeks subsequent resistance training (Post-RT).

ULLS P<0.05, statistically significant from Post ULLS P<0.05 

 

Myosin content. Fig 5.6 shows the percentage values of myosin content. Myosin 

content was significantly lower in post-ULLS than in pre-ULLS(-35%). After active 

recovery, myosin content was significantly higher than post-ULLS, although it did 

not reach the levels observed before suspension. 
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Figure 5.6. Percentage values of myosin content following 3 weeks suspension and after 3 weeks 

subsequent resistance training. Data are means ± SEM. ·Statistically significant from Pre ULLS P<0.05, 

statistically significant from Post ULLS P<0.05. 

 

 

 

5.5 Discussion 

Data from the current study show that significant changes in skeletal muscle 

structure and function occur in response to unloading, but these changes can be 

reversed with active recovery with muscle function fully restored 3 weeks post 

disuse. A previous study showed that young men displaying muscle atrophy 

following 2 weeks of immobilisation regained both quadriceps MVC and muscle 

volume to reach baseline levels after 4 weeks of resistance training (Suetta et al., 

2009). Our study shows that with resistive training performed in the early post-

disuse phase recovery from a longer immobilisation period is possible in a shorter 

recovery timescale. 

Muscle structure and function. Following 3 weeks of ULLS, MVC of the knee 

extensors decreased by 26%, corresponding to a daily rate of loss of 1.24%. With 

such a dramatic decrease in force one would expect a corresponding reduction in 

PCSA of the quadriceps femoris muscle, however PCSA in the present study only 

slightly decreased by 3%. This surprisingly small reduction in PCSA is simply due 

to the fact that PCSA is the ratio of muscle volume to fascicle length and since in 

this study QFvol decreased by 10% and Lf by 9%, this produced virtually no change 

in PCSA. For this reason, PCSA calculated in this way seems an unreliable indicator 
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of muscle atrophy and a poor predictor of force loss with unloading. Instead, muscle 

volume seems to be a more reliable indicator of muscle atrophy, and our study 

suggests that the significant decrease in maximum isometric torque was largely 

accounted for by quadriceps atrophy. This contention is also supported by the results 

of the analysis of the CSA of individual muscle fibres which clearly indicates fibre 

atrophy (-26%) resulting from the 3 week ULLS. 

Because of the paradoxically small reduction in PCSA, a large decrease in 

quadriceps specific force, -24% was found. Although, in principle a decrease in force 

per cross sectional area is consistent with previous observations on unloading (Berg 

et al. 1997; D’antona et al. 2003), we believe that a 24% reduction is an 

overestimation due to the non-significant change in PCSA. Using a more 

conservative approach by which specific force is calculated using anatomical rather 

than physiological CSA, the resulting decrease in F/CSA is 19%. The muscular 

origin of this loss of specific force seems confirmed by the fact that in this 

experiment voluntary activation did not change during the ULLS period suggesting 

that single fibre changes are responsible for this phenomenon. Previous studies have 

shown that myosin content is a main determinant of single fibre specific tension 

(D'Antona et al., 2003). Hence the large decrease in myosin content (-35%) observed 

as a result of the ULLS points to a decrease in single fibre specific tension, a likely 

contributing factor to the loss of specific force observed at whole quadriceps level.  

Other candidates that could have contributed to the decrease in whole muscle F/CSA 

are changes in the structural integrity of the extracellular matrix as this is thought to 

largely contribute to the force transmitted by the contracting fibres to the tendon   

and, a decrease in fascicle length. No study has yet specifically investigated the role 

of changes in the extracellular matrix in the loss of muscle force/CSA. However 
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studies examining the ECM components in immobilised human skeletal muscles 

have shown that within 48hrs of immobilisation mRNA for matrix 

metalloproteinase's and ECM structural components such as collagen are down-

regulated (Urso et al., 2006). As the ECM is important in regulating cell behaviour 

via membrane permeability and interaction with growth factors and signal 

transduction pathways, any alterations in ECM composition is likely to affect normal 

cell function.   

As for the contribution of a decrease in fascicle length to the loss of force/CSA, our 

study showed an average 9% decrease in Lf for all four heads of the QF. This 

reduced muscle fascicle length represents a loss of sarcomeres in series which 

predicts an increase in the sarcomere excursion required to achieve a given whole 

muscle shortening. Therefore, assuming tendon mechanical properties remain the 

same, just a small decrease in Lƒ may cause the fibres to operate at a less optimum 

portion of the length-tension curve. However, a previous similar study by our group 

observed a decrease in patellar tendon stiffness of -29%following 23 days ULLS (de 

Boer, et. al., 2007). A more compliant tendon should theoretically cause a leftward 

shift of the length-tension curve and may to some extent compensate for the shift due 

to decreased fibre length (Narici and Maganaris 2007). Therefore, decreased fibre 

length seems an unlikely cause of the decrease in F/CSA. 

 

Preferential atrophy. Vastus lateralis is often used as a representative muscle of how 

the quadriceps muscles as a whole react to various alterations in loading conditions. 

In the present study changes in muscle volume, Lƒ and θ in response to unloading 

and active recovery were assessed individually in all four heads of the quadriceps. 
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Whole quadriceps muscle volume as measured in vivo by MRI scanning showed a 

decrease of 10% following 3 weeks ULLS, equating to a daily rate of loss of 0.48%. 

This finding is of considerable clinical value since it highlights that disuse-atrophy is 

an extremely fast process requiring countermeasures from the very first few days of 

unloading. VL, VI and VM showed similar extents of atrophy. However RF muscle 

volume decreased by only 5% and failed to reach significance, in line with previous 

observations of Capodaglio & Narici (1998). This is likely explained by the fact that 

the RF is a bi-articular muscle crossing both the knee and hip joints. In our model of 

immobilisation, the knee joint was kept as fixed as possible (within limits of the 

model). However, the hip joint was free to extend and flex during normal activity. 

Rectus femoris’ role in stabilising the hip joint and aiding in hip flexion appears to 

be enough to preserve muscle mass and prevent atrophy to the extent displayed by 

the other QF muscles which act solely on the knee joint. 

Effects of active recovery. The effect of active recovery on skeletal muscle after 

periods of immobilisation is not widely reported upon, however data exists to 

support our findings that full recovery from prolonged unloading is possible after 4 

weeks retraining in young men (Suetta et al. 2009; Hortobagyi et al. 2000). Our 

results show that resistance training in the very early stages of recovery following 

periods of disuse can reverse both the structural and functional changes resulting 

from skeletal muscle atrophy in as little as three weeks post-immobilization. Our 

data on muscle volume, architecture and strength following resistance training show 

that muscle recovery was complete after 3 weeks of active recovery immediately 

following ULLS. While PCSA and specific force resulted in post RT levels which 

were also not significantly different from baseline, PCSA and specific force attained 

values slightly higher than baseline. These data show that both increased PCSA and 
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specific force contribute to this increase of MVC in disused muscle as it does in 

healthy individuals undergoing resistance training programs (Erskine et al. 2010). 

 

Preferential hypertrophy. Post RT muscle volume changes with respect to baseline a 

show RF to appear to be more responsive to resistance training. However, on closer 

inspection it can be seen that all 4 heads have a similar response to active recovery 

following disuse, however due to the fact that RF displayed less atrophy during 

disuse, the similar increases in muscle mass result in a higher than baseline muscle 

mass for RF after 3 weeks active recovery. It could be hypothesised that if training 

were to continue the remaining 3 muscles, VL, VI and VM would eventually 

approach similar post-RT to baseline increases in muscle mass as RF. The 3 week 

suspension period also resulted in changes in Lƒ and θ in line with whole QF muscle 

volume decrease. The difference in RF muscle atrophy was not accompanied by 

similar preservation on RF individual architectural parameters. In fact, all four heads 

of the QF displayed similar adaptations in Lƒ and θ with no statistical differences 

between responses. 

Voluntary activation and neural drive. The observed changes in net KE torque could 

not be accounted for by changes in maximum voluntary activation or neural drive 

since neither VA or VL activation (EMGrms/M-wave) changed with ULLS or 

subsequent retraining. These findings are in line with previous findings (de Boer et. 

al. 2007&Seynnes at.al., 2010) but at odds with others (Berg et al. 1997; Koryak 

2008). As EMG data was only recorded for VL as a representative of quadriceps 

femoris activation, comment cannot currently be made on the individual responses in 

VM, VI and RF neural activation. Similar results would have been expected for the 
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VM and VI too, perhaps with the exception of RF which, being a bi-articular muscle, 

is likely to have been more activated that the other three heads of the quadriceps 

during the ULLS period. This hypothesis seems supported by the lesser atrophy 

displayed by this muscle in response to ULLS. 

Muscle twitch characteristics. Previous studies have shown a decrease in human 

triceps surae muscle TPT (7%) and 1/2RT (2%, n.s.), in response to plaster cast 

immobilisation (Davies. et.al,. 2008). However, these authors found an increase in 

PT with immobilisation, contrary to our finding of a decrease in PT in the quadriceps 

muscle. An increase in PT has been attributed to a decreased reuptake of calcium by 

the sarcoplasmic reticulum during immobilisation leading to increased levels of 

Ca2+ and therefore to twitch potentiation (Thom et al. 2001). However, significant 

decreases, -22% in PT of quadriceps of young individuals in response to disuse have 

been observed (Suetta, 2009) whilst in the same study TPT was not affected by 

immobilisation or retraining. The results of Suetta’s study appear to be more in 

accordance with the results of the present study than with those of the previous two 

group of authors (Davies. et.al,. 2008). Whilst in our study no significant changes 

were observed in resting twitch characteristics, there was a trend in the decrease of 

the PT in response to ULLS, -12%, with PT subsequently increasing at 6 weeks post 

ULLS to 4.5% below baseline following resistance training protocol. Also, no 

significant changes in TPT were found in the present study. 

The above conflicting results seem to indicate that different muscle groups respond 

differently to immobilisation. The lack of change in quadriceps twitch characteristics 

may also be due to the fact that ULLS is a less drastic method of disuse than 

immobilisation. For instance, this difference is reflected by more pronounced spinal 

and supra-spinal neural adaptation induced by immobilisation when compared to 
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ULLS (Clark, 2009). The lack of significant changes in muscle twitch characteristics 

found in the present study seems consistent with the absence of changes in VL 

myosin heavy chain composition in the participants of this ULLS study (Bottinelli, 

personal communication 2012). 

Implications of the findings for the recovery of muscle in young and older 

individuals following period of disuse. The results of this work strongly suggest that 

early rehabilitation is an effective strategy for recovering skeletal muscle mass and 

function following a period of immobilisation in young individuals. The fast 

recuperation of muscle mass observed with RT suggests that overloading of skeletal 

muscle of young individuals during the recovery period, quickly overcomes the 

anabolic blunting of protein synthesis caused by inactivity (Glover et al. 2008) . This 

fast recovery of muscle mass seems also due to the ‘muscle memory’ phenomenon, 

described by (Liu & Jorgensen 2011), which shows that myonuclei of muscle fibres 

are preserved during a period of inactivity and are thus readily available for 

supporting fibre hypertrophy when muscle is reloaded again(Liu & Jorgensen 2011). 

However, the same does not appear to hold true for older individuals. A previous 

study has shown that after 2 weeks ULLS young individuals restored MVC, muscle 

volume and architecture to baseline levels by following a resistance training protocol 

for 4 weeks. Older individuals following the same unloading procedures and training 

protocol did regain pre-immobilization MVC levels however muscle volume and 

architecture did not fully recover (Suetta et. al., 2009). The reduced capacity for 

skeletal muscle recovery from disuse atrophy observed in older individuals may be 

attributed to a combination of age related changes in skeletal muscle physiology. In 

particular, a decrease in the anabolic response of aged skeletal muscle to both 

resistance exercise and protein availability (Drummond et al. 2008) could explain the 
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slower recovery of older individuals from disuse atrophy. In addition, it is thought 

that older individuals not only have a decrease number of satellite cells, but that the 

remaining pools of satellite cells exhibit reduced activation capacity (Gallegly et al. 

2004). With periods of immobilisation more common in the elderly population due 

to illness and injury, further research is necessary to fully understand the observed 

reduced plasticity of aged skeletal muscle and the exploration of potential 

countermeasures. 

 

 

 

6. STUDY 2. THE EFFECT OF AMINO ACID 

SUPPLEMENTATION ON IMMOBILISATION-INDUCED 

ATROPHY IN YOUNG MEN. 

 

6.1 Summary 

It is well known that chronic unloading conditions result in declines in skeletal 

muscle structure and function. The loss of muscle mass and strength can be very 

slow to recover from, even in young healthy subjects. While resistance training 

during immobilization has been shown to somewhat mitigate skeletal disuse atrophy, 

this is not always possible in clinical situations due to pain resulting from injuries or 

the need to immobilise joints for recovery purposes. This study examines the 

efficacy of supplementation with the amino acid leucine during immobilization to 
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nutritionally counteract the net negative balance in protein synthesis and breakdown 

in response to decreased mechanical stimulus. Nine young men (23±2.2 yrs: 

76.4±10.4kg) underwent 3 weeks of unilateral lower limb suspension (ULLS) and 

were randomly assigned to a leucine intervention group (Leu) or an alanine placebo 

group (Ala). Muscle structure and functional parameters were recorded at baseline 

and following 3 weeks ULLS. While both groups showed adaptations in response to 

ULLS, Leu supplementation did not appear to alleviate the loss of muscle mass and 

strength associated with disuse-induced atrophy. 

 

6.2 Introduction 

Declines in skeletal muscle function have been shown to be an outcome of chronic 

unloading conditions including spaceflight and Earth-based models of simulated 

microgravity such as bed rest and unilateral lower limb suspension (ULLS) (Pavy-Le 

Traon et al. 2007). Reported reductions in KE torque in response to ULLS range 

from 15% to 21 % for durations of 14 to 28 days, (Ploutz-Snyder et al. 1996; Berg & 

Tesch 1996; Clark et al. 2006; Maarten D de Boer et al. 2007; Cook et al. 2007). 

Anatomical cross sectional area (ACSA) of the quadriceps femoris muscle decreased 

by 7% to 10% following 23 to 30 days of ULLS in young men (Berg et al.,1991, de 

Boer et al.,2007), much less than the  accompanied loss in strength suggesting that 

many other factors including neurological and the loss of contractile proteins 

contribute to the observed strength decrease associated with disuse-induced skeletal 

muscle atrophy (Clark et al.,2006). Additionally, as tendons play a key-role in the 

transmission of forces from contracting muscles to bones it is important to consider 

muscle and tendons as an in-series contractile element. Human tendon tissues are 
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susceptible to disuse displaying a decline in their mechanical and material properties 

when subject to conditions of chronic unloading. Patella tendon stiffness and 

Young’s modulus decreased by -29.3% and -30.1% respectively after 23 days of 

ULLS  (de Boer et al.,2007), a finding consistent with stiffness reduction of +58% 

and -65% reported in bed rest studies of 20 and 90 days  (Kubo et al.,2000, Reeves et 

al.,2005). 

Loss of muscle mass and strength following disuse in clinical situations can be very 

slow to recover, even in young healthy and active subjects (Rutherford et al. 1990) 

therefore much research has been directed towards the development of an effective 

protocol to mitigate disuse-induced atrophy and improve recovery. As muscle 

atrophy is determined by a net catabolism of muscle proteins brought about by 

reduced rates of protein synthesis and in the early stages of disuse increased protein 

degradation (Paddon-Jones 2006; Phillips et al. 2009) much research into limiting 

disuse-induced muscle atrophy have focused on methods to increase muscle protein 

synthesis in unloaded muscle. The essential amino acid (EAA) leucine has been has 

received a lot of attention in the literature due to both its anti-catabolic effects (Buse 

& Reid 1975; Zanchi et al. 2008) and effectiveness in promoting muscle protein 

synthesis (Paddon-Jones et al. 2004; Glover et al. 2008; Trappe et al. 2007). It is not 

completely understood how leucine contributes to skeletal muscle remodelling but it 

is believed to be a regulator of a number of cytoplasmic proteins known to be 

involved in initiating skeletal muscle protein synthesis and the insulin signalling 

pathway (Nicastro et al. 2010). Some investigators have suggested that membrane 

receptors and transporters sensitive to leucine may regulate the proteins involved in 

intracellular signalling pathways such as mTOR and, Akt (Glynn et al. 2010; Bohe et 

al. 2003; Hundal & Taylor 2009). This is an important statement as if this indeed 
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does prove to be the case then leucine supplementation may serve as stimulator of 

the AKT/mTOR pathway during muscle disuse to counteract the down regulation 

seen in periods of muscle inactivity. Indeed, Leucine rich EEA supplementation 

during 28 days bed rest did preserve skeletal muscle mass and myofibrillar protein 

synthesis, however this was not enough to preserve muscle strength suggesting that 

some mechanical stimulus is required to preserve muscle strength in addition to the 

preservation of muscle mass (Paddon-Jones et al.,2004). Incongruously,  in a study 

of 60 days of bed rest no effect of leucine enriched meals was observed in structural 

changes of soleus muscle between supplemented and controlled groups in a study by 

Trappe et al. (2008). A similar study found that a leucine supplemented group 

actually displayed a greater loss of muscle mass (~4%) of the thigh and calf muscles  

than a control group (Trappe et al. 2007). In addition to the conflicting results of the 

effects of mixtures of essential and non-essential amino acids on atrophied human 

skeletal muscle, there are few studies of humans which evaluate the isolated effects 

of a leucine supplement and even fewer in which the direct effects of leucine on 

muscle functional parameters have been studied.  

Whilst skeletal muscle appears to be altered by protein intake, little is known about 

the response of tendon or tendon extracellular matrix to nutritional supplementation. 

Functional implication of decreases in tendon stiffness include reductions in the rate 

of contractile force transmission which could have implications for fall prevention, 

increased likelihood of tendon strain injury and changes in the force-length 

relationship of the muscle. The mechanical strength of a tendon depends primarily 

on the structure and intermolecular interactions of its collagen fibrils (Ganty and 

Kadler, 2002). However, the composition and structure of the ECM (e.g. 

macromolecules such as proteoglycans) also have an effect (Magnusson et al. 2003). 
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The predominant proteoglycan in the tendon, Decorin, belongs to the family of small 

leucine-rich proteoglycans (SLRP) so called due the presence of leucine-repeats in 

their structure. SLRP’s have been shown to have a role in regulating of collagen 

fibril formation and are thought to affect fibril diameter by aligning collagens for 

successful cross-linking (Kalamajski and Oldberg 2010). Many investigators report 

that tendon collagen synthesis is not sensitive to feeding (Babraj et al. n.d.; 

Wackerhage & Rennie 2006; Ken Smith & Rennie 2007). However, a recent study 

by (Barbosa et al. 2010) has shown that a leucine rich diet  stimulates tendon 

collagen synthesis in malnourished rats, especially when in combination with  

physical activity and actually improved the biomechanical characteristics of the 

tendon (maximal load, displacement, stress and strain). This recent evidence 

suggests that leucine intake may be an important factor in improving tendon 

mechanical properties or recovery and hence further research is necessary to explore 

this relationship. 

In the light of the considerations above, the aim of this study was to investigate the 

hypothesis that atrophy associated with situations of chronic unloading could be 

mitigated to an extent by the administration of a daily Leucine essential amino acid 

supplement (Leu) compared to a non-essential amino acid Alanine placebo 

supplemented group (Ala) in young men undergoing 21 days of unilateral lower limb 

suspension (ULLS). 

6.3 Methods 

The study was approved by Manchester Metropolitan University Faculty of Science 

and Engineering Research Ethics Committee (Ref. FAETC/08-09/13) and 

participants were excluded from the study if they suffered from or have ever suffered 
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from previous stroke, uncontrolled cardiovascular disease, motor neurone disease, 

Parkinson's disease, medically diagnosed osteoporosis, type II diabetes, hypertension 

or myocardial infarction within the previous two years, acute febrile or systemic 

disease within the past two years or are currently taking beta blockers. Participants 

were advised on early signs of deep vein thrombosis in the early sub-clinical phase 

and were monitored weekly using Doppler ultrasonography in order to detect any 

signs of the possible occurrence of DVT. 

The ULLS test group consisted of 17 participants who were randomly assigned to an 

essential amino acid leucine (Leu) intervention group (n=9) and non- essential amino 

acid alanine (Ala) group (n=8), however due to participant withdrawal from the 

project for various reasons (see appendix 1), nine participants completed the three 

week suspension period and subsequent testing (Leu n=6; Ala n=3). Eight subjects 

were recruited separately to act as control subjects and underwent the same testing 

procedures three weeks apart but did not undergo ULLS and did not take any 

nutritional supplements. Control participants (n=8) were recruited separately 

specifically for control data collections primarily due to the difficulties associated 

with recruitment of people willing to undergo ULLS. 

Prior to the testing and suspension period participants visited the IRM to be 

familiarised with the procedures involved in the testing protocol. Participants were 

shown how to perform maximum voluntary contractions (MVC) and slow ramp 

contractions (SRC) and were introduced to electrical stimulation used in M-wave 

and interpolated twitch procedures. All baseline data was collected prior to the 

ULLS period. Blood samples were taken in a fasted state before 11am and prior to 

any testing involving exercise. During the testing sessions ultrasound and MRI scans 

were taken before dynamometer testing to rule out any slight changes in muscle 
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structure or size due to swelling after exercise. Once the scans were complete 

participants were transferred to dynamometer to perform the strength and 

neurophysiological tests. 

Amino Acid Supplementation. Participants undergoing ULLS were randomly 

assigned to either a leucine intervention group or an alanine placebo group.  

Unilateral Lower Limb Suspension procedure.  Participants underwent  unilateral 

lower limb suspension (ULLS) (Berg et al.,1991) for three weeks to induce atrophy 

of the right limb.  

Ultrasound scanning and MRI were used to assess muscle architecture and volume 

respectively.  Maximum knee extension and knee flexion torque were measured 

using an isokinetic dynamometer at varying angles of knee flexion.  Surface EMG of 

the Vastus Lateralis muscle (VL) and biceps femoris (BF) was recorded throughout 

the functional muscle test performed on the dynamometer.  

Patellar Tendon Mechanical Properties using both ultrasound scanning and MRI 

techniques. 

Statistics. Nine participants completed the ULLS period, six participants remaining 

in the Leucine supplement group and three in the Alanine placebo group.  Due to the 

particularly small number of participants in the control group, it was deemed 

inappropriate to perform statistical analysis as any calculations would not be 

sufficiently robust to confirm statistical significance between the supplementation 

groups. Consequently, we report on experimental trends and observations between 

the leucine and alanine groups. 
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6.4 Results 

Quadriceps muscle volume and architecture. After 3 weeks of ULLS quadriceps 

muscle volume decreased considerably in both groups. However there appeared to be 

no difference in response to ULLS between supplementation groups with 11% 

decrease in Leu and 9% in Ala after 3 weeks. Similar changes were observed in 

Vastus lateralis (VL) architecture with a clear decrease in Lʄ and θ due to disuse.  

However the responses between supplementation groups did not differ, Lʄ decreased 

by 9.6% and 8.3% in Leu and Ala respectively and θ by 10.0% in Leu and 11.3% in 

Ala groups. No changes were seen in the quadriceps muscle volume or VL 

architecture of the control groups (Figure 6.1). 

 

Figure 6.1 Percentage decreases from baseline values to 3 weeks post-ULLS of QFvol Lʄ and θ. Data 

are means±SEM  

 

Muscle Function. Maximal isometric knee extension strength (MVC) decreased by 

29% and 14% in Leu and Ala groups respectively following the ULLS period. 

Although both groups showed a clear decrease in strength. The alanine 
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supplementation group appeared to have lost more strength during ULLS but this is 

most likely an artefact due to both a low sample size and a lower baseline MVC 

value in the Ala group. Voluntary activation ratio did not reach statistical 

significance and again there was no observed effect of supplementation. VL 

activation based on Root Mean Square EMG normalised to M-wave decreased by 

13% in Leu 17% in Ala groups but supplementation  appeared to have had  no effect 

(Figure 6.2). 

 

 

 

Figure 6.2. Percentage decreases from baseline values to 3 weeks post-ULLS of KE MVC, 

quadriceps voluntary activation (VA) and Vastus Lateralis EMG root mean square normalised to 

maximal M-wave. Data are means±SEM  

PSCA did not change significantly in either Leu or Ala groups in response to ULLS. 

Specific force decreased 28% on Leu and 7% in Ala. While it appears that the Leu 

group had greater losses in SF, no statistical significance was found between groups. 
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Patellar tendon dimensions and mechanical properties.  No changes were observed 

in patellar tendon dimensions, CSA or resting length in either supplementation group 

in response to ULLS nor was there a change in patellar tendon elongation. Stiffness 

also decreased similarly between Leu and Ala, by 26% and 24% respectively with no 

difference in response between supplementation groups (Table 6.2). 

 

 

 

 

 

Table 6. 3. Tendon properties before and after ULLS 

 ULLS (n=9) Control (n=8) 

 Leu (n=6) Al (n=3)   

 Baseline Post ULLS Baseline Post ULLS Baseline Post 3 wk 

CSA mm2                  106.5±2.0 106.6±2.2 118.8±2.8 118.3±2.0 1835.2±186.4 1870.5±192.3 

Resting length mm 47.3±1.6 47.2±1.9 51.7±1.8 52.1±1.1 1835.2±186.4 1870.5±192.3 

Elongation mm 4.56±0.2 4.97±0.4 3.4±0.2 3.89±0.02 1835.2±186.4 1870.5±192.3 

Maxm force N 5033.5±244.0 3616.4±377.9 4935.2±309.8 3488.4±479.9 7.2±0.5 7.8±0.4 

Stiffness Nmm- 1601.5±93.9 1188.0±0.6 1751.5±175.2 1345.1±224.5 17.1±0.5 16.5±1.0 

YM GPa 0.71±0.05 0.52±0.04 0.76±0.08 0.59±0.10 1835.2±186.4 1870.5±192.3 

Stress MPa 47.4±2.7 34.2±4.0 41.4±1.6 29.4±3.5 1835.2±186.4 1870.5±192.3 

Strain % 9.75±0.6 10.53±0.7 6.59±0.2 7.75±0.1 1835.2±186.4 1870.5±192.3 

 



- 82 - 
 

Young’s modulus decreased by -26% and -23% in Leu and Ala groups 

respectively with no difference in response between the two groups. Tendon stress 

also decreased but with no difference in the decreases of the supplementation groups, 

-29% in Leu and -30% in Ala. There was no observed change in patellar tendon 

strain in response to ULLS (Table 6.3, Figure 6.3). 

 

 

Figure 6.3. Patellar tendon force-elongation relationships of Leu and Ala groups at baseline and post 

3 weeks ULLS 

 

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5

Te
n

d
o

n
 f

o
rc

e
 N

Tendon Elongation mm

LEU Baseline

LEU Post-ULLS

ALA Baseline

ALA Post-ULLS



- 83 - 
 

 

Figure 6.4. Patellar tendon stress-strain relationships of Leu and Ala groups at baseline and 

post 3 weeks ULLS 

6.5 Discussion 

The primary objective of this study was to determine whether leucine 

supplementation had a mitigating effect on skeletal muscle atrophy and decline in 

function associated with periods of immobilisation. The data shows that both groups 

exhibited reduced muscle function and a decline in muscle quality, however there 

appeared to be no significant differences in response to ULLS between LEU and 

ALA groups. A secondary objective was to investigate whether leucine 

supplementation would mitigate the decline in tendon stiffness and Young’s 

modulus associated with disuse, by attenuating the decline tendon collagen synthesis 

observed during ULLS. 

Effect of Leucine supplementation on skeletal muscle disuse-induced 

atrophy. 
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Both groups showed a change in quadriceps structure in response to the 

three-week ULLS period. Both groups displayed reductions in fascicle length and 

angle of the vastus lateralis, demonstrating a loss in sarcomeres in series and in 

parallel. This loss is also seen in the change in whole quadriceps muscle volume with 

both groups losing muscle mass after three weeks of ULLS. These results are 

consistent with the losses in muscle Lƒ, θ and mass seen in previous limb 

immobilisation and disuse studies (de Boer et al.,2007, Reeves et al.,2002, Berg et 

al.,1991). As with muscle mass and architecture, there appeared to be no differences 

in muscle functional parameters between Leu and Ala groups. Although there 

appears to be a trend for a greater reduction in MVC torque in the Leu than Ala 

groups, this is likely to be due to the small number of participants in the Ala group 

(n=3) than to any actual effect of the supplementation, particularly given that no 

difference was observed in the structural parameters of the muscles between the 

groups after ULLS.  Additionally, as shown in table 6.4  the change in characteristics 

of our Leu intervention group do not appear to differ from the results of other ULLS 

studies in which no nutritional intervention was involved.  It is also important to note 

that biopsies were taken for biochemical analysis at testing sessions, and while every 

effort was taken to reduce their effect on the functional testing of the muscles, some 

residual pain or nervous damage may have persisted in individual cases and may 

have contributed to a discrepancy in extent of loss of muscle strength between 

supplementation groups that cannot be explained by similar changes in structural 

properties and neural activation. 

Table 6.3. Changes in quadriceps femoris characteristics following ULLS of 21-35 days. CSA is included as an 
indicator of loss of muscle mass where QF vol was not measured. 

Study Present deBoer 2007 Haus 2007 Shulze 2002 
Days ULLS 21 23 35 21 
Δ MVC 29% 21% 24% 17% 
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Δ Vol 11% - 9% - 
Δ CSA - 10% - 7% 

 

The current study indicates that the daily dose of leucine ingested by 

participants in the Leu group may have had little or no effect on muscle protein 

turnover and was insufficient to preserve muscle mass, structure and function during 

the ULLS period. A possible explanation for the lack of observed effect of Leu 

supplementation is that the disused muscle may become resistant to essential amino 

acid (EAA) supplementation. It has been shown that focal adhesion kinase, FAK 

phosphorylation decreases in immobilised human quadriceps muscle associated with 

reduced mechanotransduction (de Boer et al.,2007b). This decrease in FAK 

phosphorylation in immobilised muscle appears to be unaffected by feeding with 

EAA and may contribute to the relationship between reduced mechanical loading 

and decreased MPS rates (Glover et al.,2008). Also disused skeletal muscles of 

young subjects displayed similar AKT-mTOR pathway responses due to EAA 

feeding in that little increase in mTOR phosphorylation is observed with increases in 

EAA availability. In this state of anabolic resistance, fed-state gains in MPS rate 

which would normally balance the fasted state deficits are reduced resulting in a net 

decline in MPS rate. As a result, muscle protein breakdown becomes dominant and 

muscle disuse atrophy is not mitigated by enhanced amino acid availability (Phillips 

et al.,2009). Our findings support those of  Brooks et al. (2010) in which amino acid 

supplementation alone was not sufficient to mitigate muscle loss during bed rest. 

However AA supplementation coupled with resistance training was much more 

effective suggesting that some mechanical stimulus is needed for disused muscle to 

use the ingested AA. Their work showed that patients receiving both AA 

supplementation and RT myostatin transcription was reduced with transcript levels 
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of the AA only group twice that of the AA plus RT group (Brooks et al.,2010). 

Essential amino acid may only work with a minimal level of mechanical stimulus 

suggesting that rehabilitation programs involving combined EAA supplementation 

and resistance training may be effective in reversing muscle disuse atrophy. 

Effect of Leucine supplementation on changes in Patellar tendon 

dimensions and properties in response to disuse-induced atrophy. 

Various studies have demonstrated significant alterations in tendon 

mechanical and material properties following disuse in both hind-limb suspended rat 

Achilles tendons (Almeida-Silveira et al. 2000; Heinemeier et al. 2009)  and human 

patellar tendons ( de Boer et al. 2007; Kinugasa et al. 2010; Reeves et al. 2005). The 

results of our study supports these findings with marked reductions in patellar tendon 

stiffness and Young’s modulus observed following three weeks of ULLS. These 

alterations are possibly due to changes in the structure and arrangement of collagen 

fibrils within the tendon tissues. Our group has previously shown that 3 weeks of 

ULLS induces a marked decrease in patellar tendon collagen synthesis, with a 

halving by day 10 and a further halving by day 21 (deBoer, 2007b). The subjects in 

the previous study continued with their normal diet and hence any reduced collagen 

synthesis experienced was a result of immobilisation rather than amino acid 

availability. Decorin, an SLRP abundant in the extracellular matrix related to water 

content and flexibility in tendon plays an important role in the formation of collagen 

fibrils and the regulation of fibre diameter and hence is likely to influence tendon 

properties. The theory behind Leucine supplementation as a means to preserve 

tendon mechanical properties in disuse relies upon the assumption that dietary 

Leucine acts as a raw material for the production of SLRP’s such as decorin. It has 

been previously shown that a Leucine rich diet can improve tendon mechanical 
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properties in malnourished rats, especially in combination with exercise (Barbosa et 

al. 2010), however in the current study supplementation with dietary Leucine did not 

maintain tendon properties throughout the period of disuse. The supplementation of 

further Leucine in addition to normal dietary intake does not appear to increase 

collagen synthesis rates to a level capable of maintaining the homeostatic balance of 

tissue remodelling necessary for tendon functional stability, particularly in the 

absence of physical activity. Despite the previously shown decrease in tendon 

collagen synthesis in response to ULLS (de Boer et al. 2007) the present study 

showed no change in patellar tendon dimensions. 

 

On consideration of the above results it appears that the daily dose of leucine 

had no substantial effect on muscle or tendon protein turnover and was not sufficient 

to preserve structure or function during the ULLS period. However, given the low 

number of participants in the Ala supplementation, further investigations with larger 

sample sizes are required to estimate the placebo effect of supplementation with 

more accuracy. 
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7. STUDY 3. THE EFFECT OF AMINO ACID 

SUPPLEMENTATION ON RESISTANCE TRAINING BASED 

RECOVERY OF IMMOBILISATION-INDUCED ATROPHY IN 

YOUNG SUBJECTS. 

 

7.1 Summary 

The previous study showed that Leu supplementation alone was not enough to 

increase MPS in disused skeletal muscle. In this study, we investigated the 

hypothesis that leucine supplementation coupled with resistance training improves 

the rate and extent of recovery following ULLS in young subjects. Eight participants 

that had undergone three weeks of ULLS participated in the study that was included 

in the ethical approval for study 1 (Ref. FAETC/08-09/13). Participants underwent 

three weeks of resistance training targeting the quadriceps of the limb suspended in 

study one. Participants were assigned to either a Leu supplementation group or an 

Ala placebo group. Due to dropouts, the Ala had a small sample size of 2 and 

therefore the utilisation of robust statistical testing was not possible. However, here 

we report the results and comment on observed trends. 

7.2 Introduction 

Most studies into the mechanism of skeletal muscle atrophy resulting from periods 

of immobilization or disuse in humans have concluded that muscle wasting is caused 

by a net catabolism of muscle proteins. This imbalance in protein turnover is thought 

to come about due to a decline in muscle protein synthesis rather than an increase in 

muscle proteolysis. As a result, investigations into countermeasures of disuse 



- 89 - 
 

atrophy have been focused on methods of increasing muscle protein synthesis with 

particular focus on resistance exercise and/or nutritional supplementation. The 

present study assesses the efficacy of a combined resistance training protocol and 

amino acid (Leucine) supplementation on the active recovery of atrophied skeletal 

muscle and tendon following disuse. 

 

 

Resistance Training 

Changes seen in ageing and disuse can be attenuated and even reversed by increasing 

muscle chronic loading. Resistance training is a widely accepted and practised 

method of increasing muscle mass, strength and power. Muscle architectural 

parameters such as VL fascicle length and pennation angle have been shown to 

increase by 2.4% and 9.9% respectively after 35 days training in young 

recreationally active volunteers (Seynnes et al. 2007). Increases in the morphological 

characteristics of muscles at both the architectural level and whole muscle volume 

and changes in patellar tendon moment arm will ultimately affect the force 

producing capabilities of a muscle by altering the physiological cross sectional area 

of a muscle (PSCA) and specific force. Following a nine week resistance training 

programme targeting the quadriceps femoris muscles resulted in an increase in 

PCSA of 5.5% and specific force of 20.1% in young untrained males between the 

ages of 18-39 (Erskine et al. 2010). 

 While the increases in muscle architectural parameters as a result of 

resistance training are considerable, the increase seen in muscle strength are 

generally much larger, 28.9% after 35 days (Seynnes et al. 2007) and 30% after 9 
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weeks resistance training (Erskine et al. 2010). This relative greater increase in 

muscle strength is largely attributable to neural adaptations. Mirroring the direction 

of changes in muscle EMG activity seen in disuse, an increase is observed following 

resistance training programs, by as much as 30% in young subject undergoing 30 

days of resistance training (Seynnes et al. 2007). 

 The exact cellular and molecular mechanisms of skeletal hypertrophy in 

response to resistance training are still largely uncovered. However, recent studies 

have shown in the past thirty years that the protein kinase B/mammalian target of 

rapamycin, AKT/mTOR signalling pathway plays a major role in the regulation of 

skeletal muscle growth. Both AKT and mTOR are phosphorylated during muscle 

hypertrophy in response to load-induced training (Baar & Esser 1999; Bodine et al. 

2001; Urso 2009). The phosphorylation and activation of the AKT/mTOR pathway 

leads to the activation of P70S6K, which has been shown to be correlated with 

percentage increase in muscle mass after 6 weeks resistance training indicating that  

P70S6K phosphorylation is involved in the adaptation of skeletal muscle to chronic 

resistance training (Baar and Esser 1999). Interestingly, the AKT/mTOR pathway 

has also been shown to be down regulated during muscle atrophy due to both disuse 

and denervation (Pallafacchina et al. 2002), which suggests that activating the 

AKT/mTOR pathway during muscle disuse could provide a means of attenuating 

skeletal muscle disuse-atrophy. 

 It is through its interaction with the AKT/mTOR pathway that Leucine has 

become the subject of many studies examining means of increasing muscle protein 

synthesis (MPS). Many studies have reported increased in MPS due to increased 

Leucine availability in both humans and animal models (Koopman et al. 2005; 

Wolfe 2002; Paddon-Jones et al. 2004; Trappe et al. 2007). Human tendon 
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mechanical properties can also be modified by following resistance training 

protocols. In rabbits that underwent 4 weeks of exercise training, the load and energy 

absorbed at failure was much higher than in rabbits which had not underwent any 

exercise training (Viidik 1967). In vivo studies have shown that collagen synthesis in 

human Achilles’ and patellar tendon increase acutely after a bout of endurance 

exercise and to remain at an elevated rate up to 72 hrs after exercise (B. F. Miller et 

al. 2005). Human tendons also show in vivo biochemical changes as a result of 

exercise training. The fractional synthetic rate of tendon collagen synthesis has been 

shown to increase to a peak increase at 24 hrs post exercise of 1.7 times greater than 

that of resting tendon. After this time, the collagen synthesis rate decreased but was 

still significantly elevated 72 hrs post–exercise (Miller et al 2005). Tendons of both 

young and older individuals have shown increases in stiffness and Young’s modulus 

in response to strength training indicating that resistance training as a 

countermeasure to muscle disuse atrophy and aging is important with regard to 

tendon as well as skeletal muscle.  

Whilst many studies have investigated the effects of mixtures of essential and 

non-essential amino acids on atrophied human skeletal muscle, there are few studies 

on human subjects which evaluate the isolated effects of a leucine supplement and 

even fewer in which the direct effects of leucine on muscle and tendon functional 

parameters have been studied. It would be expected that while leucine 

supplementation may affect muscle mass, additional factors affecting muscle 

function e.g. neural drive would not be directly affected by amino acid 

supplementation and so the muscle function would not be directly affected by 

leucine per se. 
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7.3 Methods 

Eight participants that had undergone three weeks of ULLS participated in the study 

that was included in the ethical approval for study 1 (Ref. FAETC/08-09/13). 

Participants underwent three weeks of resistance training targeting the quadriceps of 

the limb suspended in study one. 

The study was approved by Manchester Metropolitan University Faculty of Science 

and Engineering Research Ethics Committee (Ref. FAETC/08-09/13) and 

participants were excluded from the study if they suffered from or have ever suffered 

from previous stroke, uncontrolled cardiovascular disease, motor neurone disease, 

Parkinson's disease, medically diagnosed osteoporosis, type II diabetes, hypertension 

or myocardial infarction within the previous two years, acute febrile or systemic 

disease within the past two years or are currently taking beta blockers. Participants 

were advised on early signs of deep vein thrombosis in the early sub-clinical phase 

and were monitored weekly using Doppler ultrasonography in order to detect any 

signs of the possible occurrence of DVT. 

The ULLS test group consisted of 17 participants who were randomly assigned to an 

essential amino acid leucine (Leu) intervention group (n=9) and non- essential amino 

acid alanine (Ala) group (n=8), however due to participant withdrawal from the 

project for various reasons (see appendix 1), nine participants completed the three 

week suspension period and subsequent testing (Leu n=6; Ala n=3). A further drop 

out prior to training protocol resulted in a test group of 8 participants (23±2.5 yrs: 

76.9±10.9 kg), 6 in the leucine group and 2 in the alanine group. 

Prior to the testing and suspension period participants visited the IRM to be 

familiarised with the procedures involved in the testing protocol. Participants were 
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shown how to perform maximum voluntary contractions (MVC) and slow ramp 

contractions (SRC) and were introduced to electrical stimulation used in M-wave 

and interpolated twitch procedures. All baseline data was collected prior to the 

ULLS period. Blood samples were taken in a fasted state before 11am and prior to 

any testing involving exercise. During the testing sessions ultrasound and MRI scans 

were taken before dynamometer testing to rule out any slight changes in muscle 

structure or size due to swelling after exercise. Once the scans were complete 

participants were transferred to dynamometer to perform the strength and 

neurophysiological tests. 

Amino Acid Supplementation. Participants undergoing ULLS were randomly 

assigned to either a leucine intervention groups or an alanine placebo group.  

Unilateral Lower Limb Suspension procedure.  Participants underwent  unilateral 

lower limb suspension (ULLS) (Berg et al.,1991) for three weeks to induce atrophy 

of the right limb.  

Ultrasound scanning and MRI were used to assess muscle architecture and volume 

respectively.  Maximum knee extension and knee flexion torque were measured 

using an isokinetic dynamometer at varying angles of knee flexion. Surface EMG of 

the Vastus Lateralis muscle (VL) and biceps femoris (BF) was recorded throughout 

the functional muscle test performed on the dynamometer.  

Patellar Tendon Mechanical Properties using both ultrasound scanning and MRI 

techniques.  

Participants underwent a three week resistance training protocol. 

Statistics 
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Normal distribution of the days was confirmed by Shapiro-Wilks test for normality. 

Data were analysed using a Mixed ANOVA as we have both a within-subject factor 

(the repeated measure time, Pre and Post RT measurements) and a between subject 

factor (supplementation, Leucine or Alanine). Where Mauchley's test of sphericity 

was violated Greenhouse-Geisser corrected F ratios were used for significance level. 

Due to drop outs, the remaining small sample size of the alanine group prevented 

robust statistical analysis between supplementation groups. However, below we 

report the data and comment on the observed trends. 

7.4 Results 

Quadriceps muscle volume and architecture. Following 3 weeks of RT active 

recovery quadriceps muscle volume increased significantly in both supplementation 

groups. However, there did not appear to be a difference in the extent of response to 

RT between supplementation groups with 13% increase in Leu and 10% in Ala after 

3 weeks active recovery. Vastus lateralis muscle fibre architecture displayed a 

similar pattern with an observed significant increase in Lʄ and θ of both groups 

following active recovery. However the responses again were not observed to differ, 

Lʄ increasing by 8.5% and 5.2 in Leu and Ala respectively and θ increasing by 5.5% 

and 12.4% in Leu and Ala (Figure 7.1). 

Table 7.1Quadriceps muscle volume and VL architecture at Post ULLS and Post-RTin both Leu and 

Ala groups. Data are means±SEM *significantly different between Leu and Ala groups p<0.05 ** 

significantly different between Leu and Ala P<0.005 

 Leu (n=6) Al (n=2) 

 Post-ULLS Post-RT Post-ULLS Post-RT 
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Whole QF vol 

(cm2) 

1754.8±103 2024.2±163 1818.9±121 2011.8±137 

VL Lʄ (cm) 7.7±0.4 8.4±0.2 7.7±0.6 8.1±0.9 

VL θ (degrees) 11.3±0.6 11.9±0.6 12.2±0.002 14.0±0.7 

 

 

 

Figure 7.1. Percentage increases of post-ULLS and post-RT values of QF vol Lʄ and θ. Data are 

means±SEM *significantly different between Leu and Ala groups p<0.05  

Muscle Function. Maximal isometric knee extension strength (MVC) increased by 

24% and 22% in Leu and Ala groups respectively following in response to the 

resistance training protocol. Although both groups showed a significant increase in 

strength there was no significant difference in the strength gains of Leu and Ala 

supplementation groups). Changes in voluntary activation ratio did not reach 

statistical significance in either supplementation group). VL activation based on 

Root Mean Square EMG normalised to M-wave increased by 13% in Leu17% in 

Ala groups but supplementation appeared to have no effect (Table 7.2, Figure 7.2). 
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Figure 7.2. Percentage increases of post-ULLS and post-RT values of MVC, VA and EMG. Data 

are means±SEM *significantly different between Leu and Ala groups p<0.05  

 

Table 7.2 Muscle Strength and activation Post ULLS and Post RT in both Le and Al groups. Data are 

means±SEM *significantly different between Leu and Ala groups p<0.05  

 Leu (n=6) Al (n=2) 

 Post-ULLS Post-RT Post-ULLS Post-RT 

MVC (Nm) 225±19 297±18 212±14 271±22 

Voluntary activation 

(%) 

82±5 86±4 84±3 94±0.3 

RMS/M-Wave 0.05±0.02 0.07±0.02 0.09±0.04 0.09±0.02 

 

Patellar tendon dimensions and mechanical properties. No changes were observed 

in patellar tendon dimensions, CSA or resting length in either supplementation group 

in response to the RT protocol. The same was observed for elongation of the patellar 

tendon. Patellar tendon stiffness increased significantly in Leu and Ala, by 20% and 

0

5

10

15

20

25

30

35

40

MVC Nm VA % EMG RMS/Mwave

%
 in

cr
e

as
e

 f
o

llo
w

in
g 

3
 w

e
e

ks
 R

T

Leu

Ala



- 97 - 
 

21% respectively with no difference in response between supplementation groups 

(Table 7.3,Figure 7.3). 

 

Figure 7.3. Percentage increases from baseline values to 3 weeks post-RTS of patellar tendon 

stiffness and Young’s modulus. Data are means±SEM  

 

 

 

 

 

 

 

 

 

 

 

Table 7.3 Tendon properties in both Leu and Ala groups after ULLS and after RT 
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 Leu (n=6) Al (n=2) 

 Post-ULLS Post-RT Post-ULLS Post-RT 

CSA mm2 106.9±2.2 107.3±2.2 118.3±2.5 119±2.5 

Resting length  47.2±1.9 47.5±2.0 52.1±1.4 52.1±1.8 

Elongation mm 4.8±0.4 4.1±0.4 3.9±0.02 3.7±0.04 

Stiffness Nmm-1 1188±91 1488±103 1345±275 1683±250 

Young’s modulus 

GPa 

0.52±0.04 0.66±0.05 0.63±0.12 0.74±0.11 

Stress (MPa) 34.2±4.0 44.0±3.4 29.4±4.3 36.6±2.6 

Strain (%) 10.5±0.7 8.7±0.9 7.5±0.2 7.1±0.3 

  

Figure 7.4. Patellar tendon force-elongation relationships of Leu and Ala groups at baseline 

and post 3 weeks RT 

 

Young’s modulus increased by 20% in both Leu and Ala groups. Patellar tendon 

stress also increased by 19% and 16% in Leu and Ala groups respectively but with no 

difference in the decreases of the supplementations groups, -29% in Leu and -30% in Ala. 
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While there was an observed decrease in patellar tendon strain in both supplementation 

groups it did not reach statistical significance (Table 7.3, Figure 7.5). 

  

Figure 7.5. Patellar tendon stress-strain relationships of Leu and Ala groups at baseline and 

post 3 weeks RT 

 

7.5 Discussion 

We have previously reported that all the neuromuscular parameters affected during 

the ULLS model of disuse can be fully restored after a resistance training 

intervention of equal duration (Campbell et al. 2013). The present study was 

designed to determine if active recovery through resistance training coupled with 

leucine supplementation had a greater effect on post-immobilisation recovery than 

resistance training alone. The data shows that while both Leu and Ala 

supplementation groups regained muscle mass and function similar to pre-
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immobilisation levels, there did not appear to be any difference in the response 

observed between supplementation groups. 

Effect of combined Leucine supplementation and resistance training on skeletal 

muscle structure and function. 

The data clearly show that 3 week resistance training protocol resulted in significant 

increases in whole quadriceps muscle volume and Lƒ and θ of vastus lateralis. 

Muscle strength was also recovered to pre-immobilisation levels in both Ala and Leu 

supplementation groups. What is also evident however, is that there is no significant 

difference in the responses of the different supplementation groups to recovery 

through resistance training for any of the variables measured. The previous study 

shows that supplementation with Leu during a 3 week period of disuse was not 

sufficient to counteract the atrophic effect of lower limb immobilisation. It is well 

known that physical activity during recovery increases muscle protein synthesis and 

improves sensitivity to anabolic stimulus (Tipton 2013). This study examined the 

hypothesis that with this increase in anabolic sensitivity, Leu supplementation could 

further increase the recovery of skeletal muscle structure and function seen in active 

recovery programs utilising resistance training alone. 

 As previously demonstrated, full recovery of skeletal muscle structure 

and function following short-term unloading via resistance training is possible in 

young men (Campbell et al. 2013; Suetta et al. 2009). To accomplished this, net 

MPS rates must be increased from the reduced rates seen in atrophic muscle. 

Resistance exercise is a well-documented method of increasing MPS in healthy 

individuals (Biolo et al. 1995) although increasing MPS does not solely rely upon 

anabolic stimulus but is also dependent upon adequate substrate availability as 



- 101 - 
 

protein deficient meals do not stimulate MPS in the manner observed following the 

ingestion of balanced meals (Yoshizawa et al. 1998; Phillips et al. 1997). As the 

removal of Leu can prevent stimulation of MPS by amino acid ingestion, is not 

merely through availability that amino acids stimulate MPS. Essential amino acids 

and Leucine in particular, act as both substrates and signals for muscle protein 

synthesis. Leucine has been shown to enhance the exercise-induced phosphorylation 

of enzyme P70-S6 kinase, a ribosomal protein important in muscle hypertrophy 

(Blomstrand et al. 2006). Leucine has been shown to effect MPS through the 

activation of mTOR and through insulin-dependent mechanisms (Stipanuk 2007). 

This would suggest that Leu supplementation would increase the recovery response 

of skeletal muscle to RT following the immobilisation period however in the present 

study this was not the case. The combination of RT and EAA supplementation 

appears to have a greater effect on individuals with a decreased energy intake then 

just EAA alone (Brooks et al. 2008). However, in our study participants did not alter 

their normal dietary habits and subsequently any Leu ingested was likely to have 

been in excess to the protein requirements of skeletal muscle. 

 There is no doubt nutrition, particularly protein intake is important in 

recovery, but the literature surrounding the relationship between protein intake and 

resulting effects on skeletal muscle protein synthesis is inconsistent. It would 

succeed that there exists a limit as to how much protein the body can synthesise in 

response to increase amino acid availability and our study appears to show that 

amino acid supplementation does not further increase skeletal muscle hypertrophy 

due to RT when protein requirements are met via normal dietary protein intake. This 

hypothesis is in concordance with the results of a previous study examining the 

effect on MPS after the ingestion of whey protein. Forty-five to 90 minutes 
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following the ingestion of a whey protein bolus, myofibrilar MPS increased 

threefold before rapidly returning to basal levels despite continuing increased 

intramuscular and plasma leucine levels (Atherton et al. 2010). It would appear that 

skeletal muscles are not able to exponentially increase the MPS rate and that a 

maximum threshold does exist. Any amino acids ingested above this threshold are 

counterproductive in terms of increasing muscle mass and improving function. 

  

Effect of Leucine supplementation on changes in Patellar tendon dimensions and 

properties in response to resistance training based recovery of immobilisation-

induced atrophy in young subjects. 

Unlike the quadriceps muscle the patellar tendon did not display any change in 

dimensions in response to the 3 weeks resistance training protocol. Previous studies 

have shown region specific increases in patellar tendon CSA however these results 

were in response to much longer training programs, 9 – 12 weeks. It is not surprising 

that the patellar tendon displayed much less adaptation in terms of dimensions and 

volume than the quadriceps muscle given their lower metabolic rate and reduced 

vascularity. However, plasticity of human tendons means that the mechanical 

properties can be modified by following resistance training protocols. This has been 

demonstrated in recent studies in young individuals in which observed increases in 

PT stiffness range from 15% - 24% following prolonged resistance training protocols 

of at least 9 weeks (Kongsgaard, 2007).  Our results show that disused tendons can 

recover mechanically relatively  

quickly when subject to active recovery through resistance training. Although 

stiffness and Young's modulus of the patellar tendon did not fully recover to baseline 
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levels after 3 weeks resistance training, significant increases of 20% and 21% of 

stiffness were found in Leu and Ala supplementation groups respectively. Young's 

modulus also increased by 20% in both supplementation groups. However, none of 

the tendon functional parameters measured showed any difference in response 

between the supplementation groups. Despite the knowledge that healthy tendons 

respond well to resistance training, little is known about the effect of resistance 

training on deconditioned tendons in the early post-immobilization phase. Following 

consideration of our results it would appear that there is benefit in commencing 

active recovery sooner rather than later as significant improvements are evident in 

just 3 weeks post-immobilisation. This would however be limited to injuries or 

surgery not directly involving the tendon itself where there is no need to limit 

movement to prevent stretching of the repaired tendon or allow scar tissue to form. 

Nevertheless, additional research is needed to investigate further the potential of 

early post-operative resistance training on tendon recovery post immobilisation. 

The literature surrounding the response of tendon and other connective tissues is 

very conflicting, however most investigators report that human tendons are not 

sensitive to feeding (Babraj et al.; Wackerhage and Rennie 2006; Smith and Rennie 

2007). Although the results of the present study show no difference in response of 

human patellar tendon to resistance training in either Leu or Ala supplementation 

groups, it would be presumptuous to state that essential amino acid availability has 

no absolute effect on tendon responses to training given the relatively short active 

recovery period of 3 weeks. It is also feasible that like skeletal muscle, tendon tissues 

also have a maximum threshold for increased collagen synthesis. It has been shown 

that in malnourished states leucine, in combination with increased insulin plasma 

levels inhibits proteolysis and stimulates muscle protein synthesis in rats (Ventrucci 
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et al. 2004). Additionally, it is thought that leucine might act as a substrate for the 

production of decorin which is important in the cross-linking of tendon collagen 

fibrils. Subsequently a leucine rich diet can improve tendon biomechanical 

properties in the tendons of malnourished rats (Barbosa, 2010) and it would be 

reasonable to assume that the same would hold true for human tendons in 

malnourished or protein deficient individuals. Given that our participants were not 

subject to malnourishment or reduced protein intake, it is possible that if indeed there 

is a maximum threshold for increasing tendon collagen synthesis via increased 

amino acid availability it may have already been reached by normal dietary intake of 

essential amino acids.  To that end, any increase in tendon collagen synthesis and 

subsequent improvements in mechanical properties are likely due to the increased 

physical activity rather than amino acid supplementation which is reflected in the 

results above. 
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8. Investigating the role of training and immobilization in 

sarcopenia and the development of an image based 

biomarker. 

8.1 Summary 

Sarcopenia is an ageing-related loss of muscle mass that has particularly important 

functional consequences and has come to be regarded as a major cause of frailty and 

reduced loco motor ability amongst the ever increasing elderly population (Narici 

and Maganaris 2006). Beyond the sixth decade, most individuals undergo changes in 

the nervous system, in hormonal status, in immune function and in dietary intake 

(Doherty 2003), all of which may result in atrophy and weakness of the 

musculoskeletal system (Roubenoff and Hughes 2000). As reductions in muscle 

mass and strength are observed even in master athletes who have trained throughout 

life, the process of sarcopenia is therefore universal with ageing (Roubenoff 2000).  

In this study, we look at cross sectional data from both young and old individuals 

subjected to different loading conditions. Life-long training appears to slow down 

the process of sarcopenia whilst periods of disuse due to injury or disease worsen the 

condition. The change in muscle fibre architecture in sarcopenia is affected by 

altered loading conditions. The resulting change in muscle fibre geometry could 

potentially act as a convenient and inexpensive indicator of the onset of sarcopenia. 

 

8.2 Introduction 

Sarcopenia is a difficult condition to diagnose as no broadly accepted clinical 

definition exists (Cruz-Jentoft et al. 2010). Current guidelines by the European 
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Working Group on Sarcopenia in Old People, EWGSOP recommends that 

assessment of the condition to reference both low muscle mass and impaired muscle 

function. Appendicular skeletal muscle mass corrected for body height, the Skeletal 

Muscle Index, is a generally accepted diagnostic marker for sarcopenia. An SMI two 

standard deviations below the mean SMI of young healthy reference groups is used 

as a cut-off point for the diagnosis of sarcopenia (Baumgartner et al. 1998). To 

include impaired muscle function in the diagnosis of sarcopenia is difficult as most 

individuals will not have been previously tested by means of determining muscle 

function clinically e.g. dynamometry or EMG, which means they have no baseline 

measurements for comparison. Comparing to an age group mean is slightly 

misleading as no account is made for previous training or circumstances earlier in 

life which my skew the comparison, for example a life-long training athlete may 

have a marked reduction in muscle function yet still be capable of MVC's much 

higher than the average MVC of an age matched population. However, as strength 

does not soley depend on muscle mass, a diagnosis based on just one factor alone is 

too narrow for clinical use and hence muscle mass and function must both be 

considered.  As declined physical function is usually the more prominent and 

obvious effect of sarcopenia, a more practical method of determining declined 

skeletal muscle function is the use of everyday tasks incorporated into a short 

physical performance battery (SPPB). Developed by the National Institute of Health, 

the SPPB assesses gait speed, balance, and the chair stand, three manoeuvres which 

are important components of everyday activities and have a great impact upon 

quality of life and the ability to live independently. A major benefit of the SPPB over 

more technical methods of muscle assessment such as dynamometry is that it can be 
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performed without the need for expensive, highly specialised equipment in both the 

clinic and the patients home.  

 In contrast, most current methods of estimating skeletal muscle mass rely on 

cumbersome techniques requiring specialised equipment. Body imaging techniques 

such as magnetic resonance imaging (MRI), computed tomography (CT) and dual 

energy X-ray absorptiometry (DXA) are considered 'gold standards' when estimating 

skeletal muscle mass due their ability to precisely differentiate between different 

tissues. However, high costs and limited availability of equipment make them 

unsuitable for routine clinical assessment, particularly with the elderly who are less 

able to travel to specialised centres and unable to get in and out of the cumbersome 

scanners. Portable methods of estimating skeletal muscle mass that can be performed 

without specialist machinery in GP practices or even patients home would allow 

clinicians or health care professionals to assess both muscle function via SPPB and 

skeletal muscle mass together in a short period of time with minimum disruption to 

patients. Currently bioelectrical impedance and anthropometry can be performed 

quickly however, both are not without error. For instance, bioelectrical impedance 

tests can be affected by altered hydration statuses of individuals which can influence 

estimation of the ASM and may also overestimate fat free mass in heavier 

individuals (Roubenoff et al. 1997). Anthropometric estimation is vulnerable to 

changes in fat deposition which are known to occur with age as well as changes in 

hormonal status and are therefore not considered accurate enough for a clinical 

diagnosis. 

 As well as the decrease in muscle mass that accompanies old age (anatomical 

cross-sectional area ACSA and volume based on MRI scanning), (Janssen et al, 

2000, Morse et al., 2004, Narici and Maganaris ), muscle architecture is also 
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significantly altered in sarcopenia. Findings based on ultrasound scanning of older 

and younger individuals with similar daily energy expenditures have shown fibre 

fascicle length (Lƒ) and pennation angle (θ) of the gastrocnemius medialis (GM) of 

older men (age 70+ yr) measured in vivo to be 10% and 13% smaller than those of 

younger men (20-30 yr) respectively (Narici et al., 2003). The relatively smaller Lƒ 

and θ seen in the skeletal muscle older individuals suggest that normal biological 

aging is associated with a loss of sarcomeres both in series and in parallel which may 

account for some of the loss of muscle force and power observed in older age. 

Skeletal muscle architecture is assessed using ultrasonography, a process which is 

much quicker and less expensive than other body imaging techniques e.g. MRI. 

Additionally, the availability of small portable ultrasound machine enable skeletal 

muscle architecture to be assessed anywhere and allows the patient to remain in 

comfortable surroundings e.g. in bed at hospital or at home.  

In this study VL muscle architecture assessed by ultrasonography (VLLƒ, VLθ and 

VLt) is analysed to determine if changes in VL architecture can be used as a quick 

and inexpensive diagnostic marker of sarcopenia. Data from different age groups and 

athletic training capabilities were analysed to compare architectural parameters of 

individuals displaying reduced functional capacity due to sarcopenia of normal 

ageing and sarcopenia exacerbated by injury or disuse. Master athletes were also 

assessed to examine differences in elderly recreationally active individuals to those 

who engage in regular physical training.  
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8.3 Methods 

Data was collected from a total of 92 individuals including 24 young untrained (YU) 

males 18-35 yrs and 27 older recreationally active males and females (OA) 65yrs+ 

from the local population. Twenty-four male and female master athletes competing 

at the 2010 European Veteran Athletic Championships (MA) 65yrs+ were also 

assessed as well as 17 older frail males and females (OF) awaiting hip arthroplasty 

surgery 65yrs+. 

Ultrasound scanning was used to assess muscle architecture at rest with the subject 

lying in the supine position. Images of muscle architecture (pennation angle θ and 

fascicle length Lƒ) at rest of all four heads of the quadriceps femoris were taken 

distally, at distance corresponding to 40% of femur length (rectus femoris scans were 

taken more proximally, at 50% of femur length). Images were analysed offline to 

assess muscle architecture. Muscle thickness was defined as the shortest distance 

between the superficial and deep aponeurosis. Pennation angle was measured as the 

angle between fascicles and the deep aponeurosis and fascicle length was measured 

by outlining the course fascicles between aponeuroses (figure 4.2, chapter 4). For the 

latter, any fascicles which were not fully visible within the width of the ultrasound 

probe were extrapolated as a straight line (Seynnes, 2008). An average of three 

measurements was calculated for each architectural parameter and retained as the 

final value. 

 

Statistics. Data are reported as means ± standard deviation and were analysed by a 

one-way ANOVA followed by Tukey’s post hoc test where homogeneity of 
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variances was met and Games-Howell where it was not, for further analysis. 

Statistical significance level was set at p<0.05. 

 

8.4 Results 

Changes in muscle structure and function between young and older groups.  

Table 8.1 Vastus lateralis thickness, fascicle length and pennation angle and quadriceps MVC in YU, 

MA, OA and OF groups 

 Young Untrained Master Athletes Older Active Older Frail 

VLt cm 2.12±0.1 1.75±0.1 1.61±0.1 1.09±0.1 

VL Lƒ cm 8.12±0.2 7.57±0.2 7.24±0.2 5.89±0.2 

VL θ 14.56±0.6 13.15±0.5 11.3±0.5 9.68±0.4 

MVC Nm 276.52±11.5 177.15±9.0 161.4±8.7 -- 

 

Muscle Thickness. VLt was 17.5% lower in MA than in YU (p=0.01) compared with 

24.1% lower in OA (p<0.001). VLt in OA was 8% lower than MA (p=0.417). The 

OF group VLt was significantly lower than all other groups (p<0.001), OA by 

32.3%, MA by 37.7% and YU by 48.6% (Figure 8.1). 
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Figure 8.1 VL muscle thickness in YU, MA, OA and OF. Data are means±SEM. 

Fascicle Length. VLLƒ was 6.8% lower in MA than in YU (p=0.295) compared with 

10.5% lower in OA (p<0.021). VLt in OA was 4.4% lower than MA (p=0.675). The 

OF group VLt was significantly lower than all other groups, OA by 8.9% (p=0.005), 

MA by 22.2% (p=0.001) and YU by 27.5% (p<0.001) (Figure 8.2). 

Figure 8.2 VL fascicle length in YU, MA, OA and OF. Data are means±SEM 
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Pennation Angle. VLθ was 9.7% lower in MA than in YU (p=0.299) compared with 

22.3% lower in OA (p=0.001). VLθ in OA was 14% lower than MA (p=0.063). The 

OF group VLθ was significantly lower than MA by 26.4% (p<0.001) and YU by 

33.5% (p<0.001). The difference in VLθ between OF and OA failed to reach 

statistical significance, a difference of 14.3% (p=0.057) (Figure 8.3). 

Figure 8.3 VL pennation angle in YU, MA, OA and OF. Data are means±SEM 

Maximum Voluntary Contraction strength. MVC was 35.9% lower in MA than in 

YU (p=<0.001) compared with 41.6% lower in OA (p<0.001). VLθ in OA was 8.9% 

lower than MA (p=0.01) (Figure 8.4).  
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Figure 8.4 MVC in YU, MA, OA and OF. Data are means±SEM 

 

Changes in muscle architecture in old age as a biomarker of sarcopenia. 

Differences between the VLt and VLLƒ of the YU, MA, OA and OF groups are 

reported above and are summarised in the table below. Also reported in the table is 

the ratio of VL fascicle length to muscle thickness Lƒ/t (Table 8.2). 

Table 8.2 VLt, VLLƒ and Lƒ/t ratio in YU, MA, OA and OF groups. Data are means ±SEM 

 Young Untrained Master Athletes Older Active Older Frail 

VLt cm 2.12±0.1 1.75±0.1 1.61±0.1 1.09±0.1 

VL Lƒ cm 8.12±0.2 7.57±0.2 7.24±0.2 5.89±0.2 

Lƒ/t 3.93±0.1 4.38±0.1 4.58±0.1 5.68±0.3 
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As can be seen from figure 7.5 the ratio of fascicle length to muscle thickness Lƒ/t 

increases with normal ageing. Lƒ/t was 16.5% higher in the OA group than in the 

YU group, p=0.009. Lƒ/t is exaggerated by a decline in physical activity as is seen in 

the OF group. Lƒ/t was 16.5% higher in the OA group than in the YA group, 

p=0.009, whilst the MA group was only 10% higher than YU and did not reach 

statistical significance, p=0.142. The OF group had a Lƒ/t ratio 44.5% higher than 

the YA group, p<0.001, and was also significantly higher from both the MA, 

p=0.004, and OA, p=0.014 (figure 8.5). 

 

 

Figure 8.5 

value represented by complete line, OA mean represented by broken line. 
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8.5 Discussion 

It is a well-known and observed fact that the muscles of older individuals are 

intrinsically weaker than those of their younger counterparts, as represented in the 

results from the present study. What is also evident is that periods of inactivity due 

to injury or disuse drastically exacerbates the age-related deterioration in muscle 

quality and function. The above results show that the characteristic changes in 

muscle architecture seen in sarcopenia, a reduction in number or sarcomeres in 

parallel represented by pennation angle and muscle thickness and a reduction in 

number of sarcomeres in series represented by fascicle length can be somewhat 

mitigated by lifelong training. Muscle function in this case represented by strength 

also appears to be preserved in elderly individuals who lead an active lifestyle. This 

is not particularly surprising as individuals engaging in lifelong training generally 

maintain a much higher level of physical activity than their aged matched 

counterparts and are less likely to succumb to periods of prolonged activity 

effectively counteracting some very important factors contributing to sarcopenia.  

An important factor contributing to age-related declines in muscle structure and 

function in the sharp decrease in the number of functioning motor neurons in 

individuals 70 years and over (Brown et al. 1988). Tibialis anterior muscles of 

recreationally active older men ~66yrs have been shown to contain 40% less motor 

units than those of young active young men ~25 yrs. A second group of older men 

~82 yrs were shown to have an even greater loss of 60% less motor units than the 

young active groups (McNeil et al. 2005). This reported pattern of age-related motor 

unit loss suggests that motor unit number is dependent upon both age and physical 

activity level and mirrors the observed patterns in age-related losses of skeletal 

muscle structure and function. Hence the maintaining of motor unit numbers through 
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physical activity is likely a contributing factor to the preservation of structure and 

function in older individuals leading an active life.  

 

 Although lifelong training does not fully mitigate the progressive loss of 

muscle function with age, our results combined with those of previous studies show 

that the effects of sarcopenia can be slowed to an extent by physical activity. This is 

an important finding given that functional parameters of skeletal muscle including 

rate of force development and maximal power are important in the prevention of 

falls and reduction of frailty in older individuals. Improved muscle function in 

elderly individuals due to increased physical activity will help reduce the likelihood 

of falls and injury which are highly prevalent in today’s ageing population leading to 

a general improved quality of life and reduced morbidity (Narici et al., 2003). 

However, as individuals age, a variety of factors make physical exercise increasingly 

difficult. Stiffness, aches and pains and a loss of balance result in the perception that 

individuals are less capable of physical exercise and tends to result in elderly 

individuals being encouraged to 'take it easy'. Early assessment of the characteristics 

of sarcopenia could help to assess to what extent limited mobility is resultant from 

normal aging and how much is a symptom of compounding factors such as 

underlying injury or disease. This information would be valuable in tailoring 

exercise programs focusing on improving skeletal muscle function and, in particular, 

everyday activities linked to mobility and independent living. The relatively smaller 

Lƒ and θ seen in the skeletal muscle older individuals suggest that normal biological 

aging is associated with a loss of sarcomeres both in series and in parallel which may 

account for some of the loss of muscle force and power observed in older age. 

However, in aging, as in disuse, the loss of muscle force and power is greater than 
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can be accounted for by the observed loss of muscle size and volume, even after 

considering age associated alterations in muscle architecture (Narici and Maganaris, 

2007). Factors such as changes in single-fibre specific tension and tendon 

mechanical properties also contribute to the decrease in muscle force and power that 

accompanies old age. However, as skeletal muscle retains its capacity for adaptation 

into old age, there is increasing evidence that older individuals can limit and even 

reverse to a certain degree age-associated muscle weakness by inducing 

neuromuscular and tendinous adaptations with resistance training (Narici and 

Maganaris, 2006). Studies have shown it possible to increase muscle ACSA (13%) 

and maximal isometric muscle strength (24%) (Suetta et al., 2004) as well as 

increasing Lƒ(9%) and θ (30%) (Reeves et al., 2004) in elderly individuals by 

following RT programs. 

The results show that the loss of sarcomeres in series and in parallel do not occur at 

the same rate. The greater reduction in fascicle pennation angle with advancing age 

suggests that sarcomeres in parallel are lost at a faster rate than sarcomeres in series. 

This imbalance between the changes of muscle architectural parameters results in a 

change in the geometric arrangement of muscle fibres, as seen in the change of ratio 

of fascicle length to muscle thickness (Lƒ/t ) of the vastus lateralis muscle. The Lƒ/t 

ratio increases with advancing age and is exaggerated by periods of disuse as seen in 

the much higher Lƒ/t of the OF group compared to the OA group. While Lƒ/t of MA 

is larger than that of the YU, the difference is not significant unlike that of the YU 

and the OA group.  

This data suggests that the Lƒ/t ratio as determined from ultrasound scanning may be 

useful as an indication of sarcopenia and could be used to aid in the detection and 

diagnoses of the onset of the condition when more robust methods such as MRI for 
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skeletal muscle mass are unavailable or impractical. As mentioned earlier an SMI of 

two standard deviations below the mean SMI of young healthy reference groups is 

used as a cut-off point for the diagnosis of sarcopenia (Baumgartner et al. 1998). 

Figure 8.7 shows percentage of each test group which could be considered as 

displaying characteristics of onset of sarcopenia according to their Lƒ/t ratios. Of the 

OA group 17% had Lƒ/t ratios of 2 standard deviations or more above the YU mean 

whilst the OF group had considerably more individuals with Lƒ/t ratios above the 

2SD cut off point, 61%. The MA group had only 4% individuals displaying Lƒ/t 

ratios higher than the 2SD cut off point (Figure 8.7) 

  

Figure 8.7 Percentage of test groups with Lƒ/t ratios higher than the 2SD cut off point 

8.6 Conclusion. The above data supports the hypothesis that sarcopenia, although a 

universal process can be mitigated to some extent by sustained physical exercise. As 

physical activity becomes increasingly difficult as individuals age early evaluation of 

skeletal muscle quality and function could aid in the development of tailored 

exercise programs for the elderly focusing on everyday tasks important for 

independent living and falls prevention. Ultrasound assessment of the geometric 

0%

10%

20%

30%

40%

50%

60%

70%

YU OA MA OF



- 119 - 
 

arrangement of muscle fibres appears to be a reliable and inexpensive indicator of 

the sarcopenic status of an individual. While body imaging techniques like MRI and 

CT scanning remain the gold standard for skeletal muscle assessment, ultrasound 

imaging is better suited to elderly patients as portable devices can be used to assess 

muscle architecture with minimal disruption to patients. 
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9. Conclusions 

This thesis centred around skeletal muscle atrophy in response to both aging and 

disuse. We reported the effects of ULLS on young healthy males and conducted a 

resistance training program on the afore mentioned volunteers to assess the extent 

and rate of recovery of disused muscle when subject to different nutritional 

conditions. A cross sectional study was carried out to explore the role of physical 

exercise on aging human skeletal muscle. The geometric changes in muscle fibre 

architecture were examined to establish its potential as an image based biomarker of 

the onset of sarcopenia. 

 9.1 Skeletal muscle adaptations to physical inactivity and subsequent 

retraining in young men 

When subject to 3 weeks of unilateral lower limb suspension, the suspended leg 

underwent dramatic adaptations in response to unloading. Both structural and 

functional parameters of skeletal muscle measured before and after ULLS showed 

significant changes due to disuse atrophy. Through 3 weeks of subsequent active 

recovery via resistance training, the quadriceps muscle of the previously suspended 

limb regained muscle mass, architecture and function to pre ULLS levels. This is a 

relatively short period of recovery compared to previous studies. The results show 

that in cases where it is possible, post immobilization recovery programs that begin 

in the early post -disuse phase can be a very effective strategy for skeletal muscle 

recovery. The increased loading experienced during resistance training appears to 

overcome the anabolic blunting experienced in the skeletal muscle as a result if 

decreases mechanical stimulus. Re-introducing mechanical stimulus elevates protein 

synthesis level seen to decrease in atrophic situations restoring muscle mass, 
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architecture and function. This study also concluded that the four heads of the 

quadriceps femoris muscle responded differently to unloading, a finding that is 

significant given that in a majority of the literature concerning muscle atrophy and 

hypertrophy vastus lateralis is used as a representative of the quadriceps femoris as a 

whole. 

 

 

9.2 THE EFFECT OF AMINO ACID SUPPLEMENTATION ON 

IMMOBILISATION-INDUCED ATROPHY IN YOUNG MEN. 

In this study, young healthy men undergoing unilateral lower limb suspension were 

randomly assigned to either a nutritional intervention group (leu) or an alanine 

placebo group (Ala). The purpose of this investigation was to assess if Leu 

supplementation during periods of disuse was enough to stimulate MPS levels and 

prevent the loss of skeletal muscle mass as a result from negative protein 

synthesis/breakdown balance. While the quadriceps femoris muscle of both 

supplementation groups underwent significant detrimental alterations in response to 

disuse, there was no difference in the response between the Leu and Ala groups. 

Leucine has been shown to stimulate muscle protein synthesis in various unloading 

conditions, however it does not seem to have any anabolic effect on disused muscle.  

It is likely that disused skeletal muscle develops an anabolic resistance to protein 

synthesis substrate meaning any additional protein given may be counterproductive 

in preserving skeletal muscle structure and function during immobilization periods. 

As expected, the patellar tendon did not display sensitivity to amino acid feeding 

with no difference observed in the response of either supplementation group to 
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unloading of human skeletal muscle. However, given the low number of participants 

in the Ala supplementation, further investigations with larger sample sizes are 

required to estimate the placebo effect of supplementation with more accuracy. 

9.3 THE EFFECT OF AMINO ACID SUPPLEMENTATION ON 

RESISTANCE TRAINING BASED RECOVERY OF IMMOBILISATION-

INDUCED ATROPHY IN YOUNG SUBJECTS.   

In this study, eight men who underwent ULLS in study 2 were subjected to a 3 

weeks active recovery program consisting of either resistance training and Leu 

supplementation or resistance training only (Ala placebo). While both groups 

regained muscle structure and function, the supplementation with Leu did not appear 

to have any effect on the extent of the recovery. However, with such small number in 

for the Ala sample size it is impossible to establish of the Leucine supplementation 

had no absolute effect upon the recovery of disused skeletal muscle. In our study the 

participants did not alter their normal dietary intake. The results would show that, at 

least during rehabilitation normal dietary protein intake appears to be sufficient for 

the growth and repair of skeletal muscle. Any superfluous Leu supplied is likely to 

be in excess and cannot be utilised by the disused muscle as either protein synthesis 

signal it substrate. In order to obtain more accurate and clinically relevant data, the 

experiment should be repeated an allow a much bigger sample size in order to 

elucidate if there is indeed some meahcnostransduction pathways that exists which 

can be stimulated by amino acid ingestion in disused muscle. 

This dissertation has also investigated the effect of Leucine supplementation on 

changes in Patellar tendon dimensions and properties in response to disuse-induced 

atrophy. The study showed that daily supplementation with  leucine during the 
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immobilisation period may have had little or no effect on the maintence of patellar 

tendon properties. Itis probable that due to the fact that our participants were not 

malnourished, but rather maintaining a normal dietary intake throughout the trial, 

that levels of dietary leucine present as raw materials for SLRP production were 

already sufficient for the reduced level of collagen synthesis resulting from 

immobilisation. Any additional Leucine ingested in supplement form was surplus to 

the requirements of the tendon in the absence of physical activity. The same was true 

for the active recovery period (chapter 6). Leucine supplementation did not improve 

the rate at which tendon mechanical properties improved. The observed increases in 

stiffness and Young's modulus are therefore due to the increased physical activity 

itself rather than the incerase in Leucine availability. As above, normal dietary 

Leucine intake levels appear to be sufficient to facilitate the increased collagen 

synthesis of tendon subject to resistance training.  

A positive finding of the study in relation to tendon is that the reduction in 

mechanical properties, reduced stiffness and Young’s modulus observed following 

three weeks of ULLS can be reversed in a relatively short time frame through a 

program of resistance training. Our participants acheived significant increases of 

20% and 21% of stiffness were found in Leu and Ala supplementation groups 

respectively, with Young's modulus also increasing by 20% in both supplementation 

groups after just 3 weeks of active recovery.  

Although the current study is based on a small sample of participants, the findings 

suggest that that with such significant increases in mechanical properties in this short 

recovery time period, where possible, it would be beneficial to begin rehabilitation 

early in the post-operative period. 
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9.4 INVESTIGATING THE ROLE OF PROLONGED PHYSICAL ACTIVITY  

AND IMMOBILIZATION PERIODS IN THE  PROCESSES OF 

SARCOPENIA. 

This consisted of a cross sectional study of 92 individuals including 24 young 

untrained (YU) males 18-35 yrs and 27 older recreationally active males and females 

(OA) 65yrs+ from the local population. Twenty-four male and female master 

athletes competing at the 2010 European Veteran Athletic Championships (MA) 

65yrs+ were also assessed as well as 17 older frail males and females (OF) awaiting 

hip arthroplasty surgery 65yrs+. Life-long training appeared to mitigate the loss of 

skeletal muscle from the weight bearing quadriceps of master athletes. The 

characteristics of sarcopenia are also exacerbated by periods of disuse which are very 

common within the elderly population. As skeletal muscle architectural parameters 

do not decrease at equal and uniform rates in response to aging, there occurs a 

change in the skeletal muscle fibre geometry as an individual ages. This geometry 

also appears to be affected by disuse. As ultrasound imaging is cheap and relatively 

easily accessed, the use of ultrasound assess ratio of fascicle length to muscle 

thickness could be used as a potential biomarker for the indication of the onset of 

sarcopenia. Further work on larger sample groups should be carried out to examine 

the robustness of the proposed marker. 
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9.5 LIMITATIONS AND FUTURE DIRECTIONS 

There are limitations to the body of work which warrant discussion. In chapter 4, the 

initial phases of study design included a three day food diary which participants were 

required to keep for three days (to include both weekdays and weekends). The 

purpose of this was to analyse participants’ dietary intake including entire calorie 

and protein intake. Ideally, participants would complete the diary three days prior to 

ULLS and the same diary three days during ULLS. This information would have 

allowed us to determine in the first instance if subjects' dietary intake was altered 

due to ULLS as a change in energy expenditure would be expected due to 

participants walking with the aid of crutches. In reality, the food diaries were poorly 

completed by participants presumably due to the complexity of the ULLS procedure 

and the huge adjustment to daily life that participants had to undergo. It was decided 

that it was more important for participants to concentrate on properly fulfilling the 

ULLS protocol and adhering to the supplementation requirements and the diaries 

were withdrawn from future trails. The supplement and placebo were designed to be 

iso-caloric in attempt to limit any difference change in dietary intake within the 

supplementation groups but without solid data it is impossible to say if this was the 

case.  

With respect to the ULLS procedure itself, whilst we were satisfied that all 

completing participants complied with the unloading protocol, we did not have in 

place an objective way of monitoring ULLS compliance. Compliance was monitored 

through daily phone contact to talk to participants and weekly visits to the IRM to 

ensure correct unloading procedure was still adhered to. However, these methods 

required complete honesty on the participants' part and are not quantifiable. As there 

is no heel strike in the suspended limb during ULLS, the dynamics of the suspended 
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limb are drastically different to typical walking dynamics. It is therefore theoretically 

possible to apply techniques used in biomechanical investigation to monitor 

compliance objectively.  One such method would be to use pressure sensitive insoles 

to measure foot pressure. Assuming that the insole was worn throughout the entire 

ambulatory period of ULLS any weight bearing activity of the suspended limb 

would be recorded. To date this method of compliance does not appear to have been 

investigated. A method that has been trialled is the use of two-dimensional 

accelerometery of the suspended limb (Cook et al. 2005). Accelerometers were 

attached to participants left ankles and reading were taken during both walking and 

during suspensions due to ULLS for comparison. Subjects were also asked to 

perform tasks designed to simulate normal daily activity including sitting, lying and 

standing up. Participants were asked to walk both with and without crutches for 30 

steps at self-selected slow, medium and fast paces. The investigators recorded both 

numbers of steps and the mean peak axial acceleration (MPAA), the speed at which 

the ankle swings immediately prior to heel strike. Although during the ULLS no 

actual steps were taken, the software algorithms did detect some quantified 'steps' 

however the MPAA of these 'steps' were significantly lower than those of normal 

walking at all speeds and can hence be differentiated from actual steps. The authors 

concluded that this method could be used to monitor ULLS compliance with 97% 

compared with visual confirmation.  Further studies should be carried out to assess 

the effect of variables such as the tension on the sling suspending the limb, angle of 

suspension and subject characteristics such as height and weight. In conclusion, 

possibly the best method of compliance monitoring may include aspects of both 

accelerometer and pressure monitoring to provide the most accurate quantifiable 

measurement of compliance. Trips and stumbles as participants become accustomed 
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to walking with crutches would of course need to be considered when applying a 

threshold level of compliance. 

 Sample size was a problem for the ULLS studies particularly for regarding 

supplementation. There was a high dropout rate for the ULLS procedure and 

unfortunately most dropouts had been previously randomly assigned to the alanine 

placebo group leaving an Ala supplementation group of just three on completion of 

the study. With such a low sample size, it was impossible to perform robust 

statistical analysis to confirm the lack of effect of amino acid supplementation on 

disuse and retraining. Ideally the study would be repeated using participants from the 

same demographic group to increased completed sample sizes to confirm our 

hypotheses.  

 In chapter 8 we used master athletes were used to examine the effect of 

lifelong training on the age-related loss in muscle mass and function known as 

sarcopenia. Measurements of quadriceps femoris were used to as an indicator of 

muscle volume and architecture. It should be noted however, that the group of 

master athletes consisted of athletes from all disciplines and there may be variations 

in the quality of thigh muscles between the disciplines. A more in depth study should 

be conducted to examine and quantify any potential effect individual disciplines may 

have upon thigh muscle structural and functional parameters and the subsequent 

effect this could have the progression of sarcopenia. 
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10. Appendices 

Appendix 1. ULLS Participant Completions. 
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