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Quantum Annealing was previously applied to the vehicle routing problem and the results were promis- 

ing. For all benchmark instances in the study, optimal results were obtained. However, 100% success rate 

was not achieved in every case, and tuning the control parameters for larger instances proved cumber- 

some. This work addresses these remaining difficulties. An empirical approach is taken wherein measure- 

ments of run-time behaviour are exploited to transform existing good values of control parameters so 

that they can be used successfully for other problem instances. The course of this work shows a method 

which simplifies hand-tuning so that the heuristic performs successfully when applied to larger instances, 

and also demonstrates a tuning method which establishes control parameter values for instances which 

belong in broadly defined groupings. In addition, new best known solutions for large-scale instances, and 

initial results for the distance-constrained variant of the vehicle routing problem are presented. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

Previous research Crispin and Syrichas (2013) demonstrated the

effectiveness of Quantum Annealing (QA) for solving many in-

stances of the Capacitated Vehicle Routing Problem (CVRP). Opti-

mal results were obtained for all benchmark instances by apply-

ing a single set of values for the algorithm’s control parameters -

values which were methodically determined to achieve the maxi-

mum success rate for a reference instance. The success rate is the

percentage of the number of times the algorithm finds the best

known score for a given instance over a number of runs. 

Table 1 shows an excerpt of the instances for which this param-

eter set was unable to achieve 100% success rate. (An indication of

the complexity of each instance can be inferred from the name.

P-n101-k4 for example, has 101 nodes/customers served by 4 vehi-

cles whereas M-n121-k7 has 121 served by 7.) Notably, the scores

for smaller instances were much lower than for the reference in-

stance. This is contrary to intuition, that one might expect param-

eters giving the best results for a larger instance would perform

easily as well for smaller instances. (One may expect also that pa-

rameters for smaller instances will not work well for larger ones.)

Given that the local search method is effective enough to allow the

metaheuristic to find the optimal solution in at least 11% of the
∗ Corresponding author. 
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xperiments, and that many of the instances appear less complex

han the reference, one can conclude that the values of the control

arameters are incorrect. If the temperature value is set too high

r the magnetic field is too strong, convergence to a minimum is

lowed down or inhibited completely. If set too low, the rate of

onvergence is high and entrapment at poor local minima is likely.

f the population size is too small, the search of solution space cov-

rs only a reduced area which may not contain optimal solutions.

t seems clear that the universal application of a single set of con-

rol parameters will not guarantee consistently good performance

nd the algorithm requires tuning on a case-by-case basis. 

How then does one tune metaheuristic control parameters for

est results? One could apply the tuning methodology for every

nstance, providing a specific set of control parameters for each.

o save time, the processes of the methodology could be captured,

ncoded, and then left to a computer program to automatically

ecide the parameters. These approaches work because feedback

an be derived from information known beforehand about the op-

imal result. Benchmark instances are often supplied with deter-

inistically proven optimal solutions. However, for larger bench-

arks, and in dynamic or industrial applications where problem

nstances are created in real-time, such information is limited or

on-existent. 

Additional tuning difficulties are presented by metaheuristics

ith two or more control parameters, each of which may be tightly

nterdependent. For example, the coupling term used in QA is a
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Table 1 

Computational results excerpt. 

Instance QA Success % SA Success % 

P-n101-k4 (reference) 100 100 

P-n50-k10 63 28 

P-n55-k10 35 31 

P-n60-k15 79 79 

P-n70-k10 78 61 

P-n76-k4 52 44 

P-n76-k5 87 22 

B-n63-k10 26 25 

B-n66-k9 91 44 

B-n67-k10 42 88 

B-n68-k9 69 87 

B-n78-k10 97 99 

M-n121-k7 90 76 

F-n135-k7 11 4 
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Fig. 1. Example of routes encoded as a spin matrix. Customer-customer connec- 

tions are represented using single bits. The matrix is encoded row-wise to form 

hexadecimal (Hex) words which stored in memory as an array. 
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on-linear function of magnetic field strength and effective tem-

erature. This term is extremely sensitive to variations in either

arameter, and tuning is further complicated because the Metropo-

is criteria ( Metropolis et al., 1953 ) is simultaneously dependent

pon temperature. A Design of Experiments (DoE) method ( Ridge

nd Kudenko, 2010 ) can be helpful in uncovering major dependen-

ies between such variables, but a course of factorial experiments

an be time-consuming, and predicting the ranges for numerous

nd sensitive variables is difficult without once again resorting to

uesswork or serially hand-tuning. 

It is for reasons like these that metaheuristics with fewer con-

rol parameters are attractive - they are simpler to tune. Late Ac-

eptance Hill Climbing ( Burke and Bykov, 2017 ) has a single param-

ter controlling the size of a fitness array which acts as a ‘memory’

f good solutions. Cuckoo Search is reported ( Nie et al., 2014 ) to

e superior to Genetic Algorithms in part because of having only

wo parameters - nest abandonment rate and population size. In

A, it has been shown ( Titiloye and Crispin, 2011 ) that the num-

er of parameters can be reduced by one, by setting the mag-

etic field value to be constant. This idea can be greatly extended

y making the whole coupling term a constant, thereby removing

he mutual dependence of the effective tem perature and magnetic

eld parameters. With the key parameters uncoupled from one an-

ther, time is saved when determining their values by hand. Large-

cale problems and instances of the Distance-constrained Capac-

tated Vehicle Routing Problem (DCVRP) may be tackled without

edium. Furthermore, if some means other than hand-tuning can

redict the value of temperature, a single variable remains to be

uned - the replica count (population size). 

. Quantum Annealing 

Quantum Annealing is an energy-based metaheuristic which

ses the Path-Integral Monte Carlo (PIMC) method ( Battaglia et al.,

005 ) to approximate the ground state of the Ising Model. The fit-

ess function is described (1) by the Hamiltonian 

 = H p + H k (1)

here the cost H is the sum of potential energy H p and fluctu-

tions in kinetic energy H k . H k is the term which represents the

uantum mechanical phenomenon of tunnelling, where a particle

rapped in a low energy state, can ‘tunnel’ through high potential

arriers into a lower state. This effect can be simulated in a meta-

euristic by using an Ising Model representation of the optimiza-

ion problem. In simple terms, this is maintaining a population P

f simultaneously evolving solutions called replicas, where H k is

alculated from an interaction between adjoining replicas. 

When QA is applied to an optimization problem, H p takes the

ole of the cost of a solution (for VRP, see (4) ), while H is a
k 
caled sum of the spin interactions between P neighbouring solu-

ions held in a circular list. 

 k = J �
∑ 

P 

∑ 

i 
σ

P−1 ,i 
σ

P,i 
σ

P+1 ,i 
(2) 

Each replica represents the solution as a spin matrix σ contain-

ng i elements which can assume values of {−1 , +1 } . The interac-

ion energy between the spins of adjoining replicas is generated by

he term, σ
P−1 ,i 

σ
P,i 

σ
P+1 ,i 

J � is the coupling term which is normally varied during the an-

ealing process via adjustments to the magnetic field strength Γ ,

mplifying or attenuating the interactions between replicas. 

 � = 

−T 

2 

ln tanh 

(
Γ

P T 

)
(3) 

Consequently, this contributes towards the acceptance of H in

he Metropolis criteria. 

.1. QA for CVRP, and the PT tuning method 

CVRP is a variant of VRP in which all vehicles are subject to

he same capacity constraint Q . CVRP is an undirected graph G =
(V, E) consisting of the vertex set V = { v 0 , v 1 , . . . v n } and edge set

 = { (v i , v j ) | v i , v j ∈ V, i < j} . The restriction i < j ensures the dis-

ance between a pair of vertices is identical in both directions. The

rst vertex is usually considered to be the depot from which a fleet

f trucks m serves n customers, whose locations are represented by

 vertex set, and have varying demands for goods q i . The goal is

o minimize the number of routes and/or total distance travelled

y the trucks d ij . QA for CVRP (QACVRP) uses a two-dimensional

pin matrix in which the elements represent customer-customer

onnections that form routes for each truck. A non-zero cell in
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Fig. 2. Quantum Annealing for Capacitated Vehicle Routing Problems. 
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the matrix indicates a path between two vertices and because

these connections are bi-directional, the spin matrix is symmetric.

Fig. 1 shows this arrangement using an example of 15 customers

serviced by 4 vehicles. The hexadecimal value shows how rows of

connections, each expressed as a single bit, may be encoded into

a single memory word. In any one replica, the classical potential

energy is the total length of all routes and so H p for the whole

ensemble is given by (4) . 

H p = 

∑ 

P 

∑ 

i, j 
d 

P,i, j 
σ

P,i, j 
(4)

The local search scheme used in QACVRP is comprised of a

set of neighbourhood operators N = { Move, Swap, Move-string, Swap-

string, 2-Opt, 2-Opt ∗} from which one is selected at random and ap-

plied repeatedly until a feasible configuration is found. The Move

operator selects a customer and transplants randomly to another

position. The Swap operator selects two customers at random and

exchanges them. Array-based counterparts of these operators are

Move-string and Swap-string which work with randomly sized sets

of contiguous customers instead of individuals. The 2-Opt operator

selects at random two non-adjacent edges of a single route and

then reverses the connection order of the customers between the

outer endpoints. 2-Opt ∗ exchanges randomly-sized end portions of

two routes, preserving the order of the connections between cus-

tomers. 

Fig. 2 shows the QACVRP implementation used previously by

Crispin and Syrichas (2013) . Lines 1 and 2 initialize the replicas

with randomized feasible solutions, setting the current best solu-
ion from the first replica. Lines 3 and 24 define the outer loop

hich terminates when the number of remaining iterations (Monte

arlo steps) reaches zero in line 23. For each iteration of the outer

oop, J � is calculated from the current parameter values (line 4)

nd the replica index is reset (line 5). 

Lines 6 and 21 define the inner loop which terminates when

he replica index reaches the number of replicas in line 20. Line 7

elects an operator at random from the set of neighbourhood oper-

tors. On line 8 the solution belonging to the replica which is cur-

ently indexed is modified by the chosen operator until a feasible

andidate is returned. The difference in potential energy is calcu-

ated on line 9 using the candidate and the replica solutions. On

ine 10 the difference in kinetic energy is calculated by computing

he interaction terms (2) between the candidate and the replica so-

utions. The total change in energy is calculated on line 11. Line 12

hecks if the difference in potential energy or total energy has de-

reased and if so, the candidate solution is assigned to the current

eplica (line 13). If the energy difference has increased (the solu-

ion cost is worse) the candidate solution can still be accepted (line

5) if the probabilistic check on line 14 is passed. The acceptance

f a worse solution is controlled by the change in total energy and

he temperature (Metropolis criteria). On line 17 the cost of the

urrent replica solution is calculated and compared with the best

ecorded solution. If better, it is assigned as the best solution on

ine 18. 

Once all replicas have been updated in this manner, the in-

er loop relinquishes control to the outer whereupon the magnetic
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Table 2 

Variable assignments for factorial experiments. 

T G 0 G 1 P M C 

Nominal 80 30 0 0 1050 10 5,0 0 0,0 0 0 

+ 1 2.5 500 500 4 50 0,0 0 0 

−1 −2.5 −500 −500 −4 −50 0,0 0 0 

Table 3 

Results of factorial experiments using CVRP in- 

stance P-n101-k4. 

T P G 0 G 1 M C Av. Score 

−1 −1 −1 −1 −1 685.608 

−1 −1 −1 −1 + 1 684.863 

−1 −1 −1 + 1 −1 685.585 

−1 −1 −1 + 1 + 1 6 85.4 85 

−1 −1 + 1 −1 −1 6 85.74 8 

−1 −1 + 1 −1 + 1 685.580 

−1 −1 + 1 + 1 −1 685.954 

−1 −1 + 1 + 1 + 1 684.804 

−1 + 1 −1 −1 −1 683.009 

−1 + 1 −1 −1 + 1 682.610 

−1 + 1 −1 + 1 -1 682.012 

−1 + 1 −1 + 1 + 1 681.913 

−1 + 1 + 1 −1 −1 682.312 

−1 + 1 + 1 −1 + 1 681.997 

−1 + 1 + 1 + 1 −1 681.758 

−1 + 1 + 1 + 1 + 1 681.579 

+ 1 −1 −1 −1 −1 685.134 

+ 1 −1 −1 −1 + 1 684.793 

+ 1 −1 −1 + 1 −1 685.542 

+ 1 −1 −1 + 1 + 1 685.055 

+ 1 −1 + 1 −1 −1 685.140 

+ 1 −1 + 1 −1 + 1 684.523 

+ 1 −1 + 1 + 1 −1 684.895 

+ 1 −1 + 1 + 1 + 1 684.945 

+ 1 + 1 −1 −1 −1 684.128 

+ 1 + 1 −1 −1 + 1 683.732 

+ 1 + 1 −1 + 1 −1 683.084 

+ 1 + 1 −1 + 1 + 1 682.725 

+ 1 + 1 + 1 −1 −1 682.924 

+ 1 + 1 + 1 −1 + 1 682.609 

+ 1 + 1 + 1 + 1 −1 682.561 

+ 1 + 1 + 1 + 1 + 1 682.224 
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Fig. 3. PT tuning using instance P-n101-k4. Success improves with P . 
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H

eld value is adjusted (line 22) for use in the next iteration. Once

ll outer loop iterations are complete, the best solution found is

eturned on line 25. 

Previously, QACVRP was employed to solve CVRP instances with

 single set of control parameters determined using a method enti-

led PT Tuning . A factorial DoE study was first undertaken to expose

ny dominance amongst control parameters for the chosen variable

ssignments ( Table 2 ). Since there are five parameters and two ad-

ustments (+1/ −1) allowed to their nominal values, 2 5 experiments

ere performed, each consisting of 100 attempts to solve the same

VRP instance. Table 3 shows the effect of parameter interactions

pon average solution cost. From this, contributions can be calcu-

ated for all possible interaction sets. For any chosen set, an aver-

ge is taken from the scores where the product of the adjustments

s equal to 1, and another is taken where the product is equal to

1. The two averages are used as endpoints to form a line, the

teepness of which indicates the size of the contribution for the

hosen set. The absolute gradient value for each parameter inter-

ction set is presented in Fig. 4 . 

Although this shows that P alone makes the greatest single con-

ribution, it is awkward to adjust P and maintain good success

ithout also making compensatory adjustments to T and Γ . (This

bservation motivated subsequent research efforts to uncouple the

arameters to ease tuning). However, the study supports the idea

f tuning P and T as a single term with the evidence that PT makes

he second greatest contribution to average solution cost. Monte
arlo steps M C , and then magnetic field start and end values ( G 0 ,

 1 ) are the next largest contributors. Naturally, larger values of M C 

mprove results by allowing longer search times. Temperature by

tself has the lowest single contribution, with the effects of T likely

eing swamped by high values assigned to the magnetic field (3) . 

As shown in Titiloye and Crispin (2011) , Γ was held constant

uring PT tuning whilst suitable values for temperature T and P

ere determined by experimentation. The effective quantum tem-

erature PT was plotted ( Fig. 3 ) against the success rate over a se-

ies of experiments using a reference instance. The reference in-

tance was selected because it has the approximate median num-

er of customers within the chosen benchmarks of Crispin and

yrichas (2013) , which range from 50 to 262 customers. This was

eemed to be of average complexity since there are 91 instances

ith fewer than 100 customers and only 10 instances with 100+

ustomers (Ralphs) . While varying T against several fixed values of

 , the value of PT which gave the best success rate was noted. The

alues of Γ , P , and T at this point formed the reference control pa-

ameter set C re f = { Γre f , P re f , T re f } . It was then assumed that apply-

ng C ref to any benchmark instance in the study would yield good

uccess rates. 

.2. Simplifying tuning: parameters uncoupled 

When attempting to tune the algorithm for use with larger or

ore complex instances, the difficulty of adjusting non-linearly

odependent variables is compounded with the need to allow in-

reased run times. 

Effective quantum temperature and magnetic field strength are

he variables used to calculate the coupling term J � which scales

he energy generated by interactions of spins amongst the replica

nsemble. Consequently, the value of H k is highly sensitive to small

hanges in P, T or Γ , and because T is also the variable which gov-

rns probabilistic acceptance in the Metropolis criteria, tuning is

rustrating. This situation is exacerbated when larger instances are

nvolved. The computational workload increases exponentially with

roblem size, and so results which can provide feedback to retune

he parameters are delivered at longer intervals. 

If J � was established beforehand and kept constant whilst an-

ealing, Γ can be ignored while T would have a role limited to

overning thermal effects via the Metropolis criteria. In QACVRP,

he Hamiltonian took the form 

 = 

�H p − J ��H k (5) 

P 
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Fig. 4. Main and interaction effects of parameters P , Γ ( G 0 , G 1 ), T and M C upon 

solution cost. 
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Removing the averaging term P from (5) uncouples another

control parameter and would further simplify tuning - P could be

increased, regardless of temperature, to improve the success rate.

The Hamiltonian for such an arrangement is shown in (6) . 

H = �H p − J ��H k (6)

The isolation of T requires that the annealing process be di-

vided into two phases, each separately taking advantage of H p and

H k . In the first phase, higher temperatures may be chosen so that

H p dominates H k in (6) . This ‘thermal’ phase results in a process

akin to Simulated Annealing (SA) but which includes small, non-

negligible quantum fluctuations. In the second phase, the temper-

ature should be drastically lowered so that H k dominates in H . In

this ‘quantum’ phase, optimization relies almost exclusively upon

the state of the replica ensemble and the interactions therein. In

both phases, P may be adjusted without incurring the need to re-

tune the other parameters. It may be increased to improve the ac-

curacy of PIMC, with the expectation that a better result may be

found at the expense of run time. Conversely, P may be decreased

to speed up annealing at the expense of accuracy. 

This two-phase approach may be employed to ease the tuning

process, by repeating the thermal phase with small values for P
nd M C to establish a good value for T . With T established, a fi-

al run of the first phase can be done with increased P and M C .

he resulting solution from this run may be supplied as a starting

oint for the quantum phase, in a similar fashion to a construc-

ion algorithm which supplies an improvement algorithm with an

nitial solution. 

Fig. 5 shows the revised QA algorithm which uses a fixed value

f J � and on line 10, the altered Hamiltonian (6) . 

.3. Determining temperature: energy-based scaled parameter tuning 

With the parameters uncoupled from one another in FJ-QACVRP

 Fixed J � Quantum Annealing for Capacitated Vehicle Routing Prob-

ems ), a systematic means of establishing T for the first anneal-

ng phase would be of benefit when tackling groups of problem

nstances, such as the benchmarks of Augerat et al. (1995) as at-

empted by QACVRP under the PT Tuning scheme. It would be ideal

o identify and then reproduce for any instance, the runtime be-

aviour of the algorithm while it is successfully (and consistently)

olving a reference instance ( Figs. 6 and 7 ). 

Even though success rates in Table 1 were inconsistent, there

s promise in using C ref since optimal results were found for ev-

ry instance. To improve this, some factor needs to be discov-

red which relates a subject to a reference instance. This factor

ould have to reliably transform C ref into a subject parameter set

 sub j = { Γsub j , P sub j , T sub j } . To find this factor, the fitness landscape

atson (2010) of the problem needs to be considered. 

The fitness landscape for a problem instance is the abstract

opology formed from the combination of all possible solutions, an

bjective function, and neighbourhood operators. For a combina-

orial optimization problem like CVRP, it is impossible to visualize

his landscape. Each point in the landscape represents a possible

olution and is a vector composed of the solution cost and con-

guration, and must be connected to all possible neighbouring so-

utions. As a whole, this multidimensional topology is difficult to

onceive and so must be greatly simplified if to be of any practi-

al help in discovering relationships between instances. To assist

ith this discovery, the fitness landscape is reduced to an energy

andscape. Measurements of potential energy H p can be recorded

nd these are equivalent to the cost component of vertices in the

andscape. Kinetic energy H k can also be recorded, but is of less

mmediate use as a measure of similarity, it gives indirect evidence

f how connections between vertices are grouped in the landscape.

In a single phase of FJ-QACVRP with high T , Hamiltonian energy H

s imagined to form a similar topology to that formed by H p , given

hat H k makes a relatively tiny contribution to the total energy.)

he energy landscape which is explored by a metaheuristic while

t solves a problem can be visualized in the form of a scatterplot or

itness Cloud ( Collard et al., 2004 ). The geometric features of the

lot give a visual indication of the run-time behaviour of the al-

orithm, and therefore may be regarded as a dynamic cost model

 Watson, 2010 ). Fitness Clouds were originally invented to study

ow mutation and crossover operators caused solutions to evolve

n Genetic Programming. They were further analysed to produce

etrics for characterising ( Vanneschi et al., 2006 ) and measuring

he difficulty of optimization problems ( Vanneschi et al., 2006 ). For

his work, they provide visual substance to support the proposal

hat there are commonalities in the energy landscapes of different

roblem instances which may be exploited to assist with tuning.

everal plots were made from the recordings of energy values as

ACVRP solved selected CVRP instances. A cursory analysis of the

lots show that in each case, there is quick convergence to, and

n intensive search of a region around the optimal solution. More

ncouragingly, there is a good similarity in shape and structure,

hich lends support to the idea that one landscape may be ap-

roximately transformed into another through the use of scaling or
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Fig. 5. Fixed J � Quantum Annealing for Capacitated Vehicle Routing Problems. 

Fig. 6. Fitness Clouds of instances sampled from the benchmarks of Augerat et al. They were generated by QACVRP and are similar in structure. 



58 A. Syrichas, A. Crispin / Computers and Operations Research 87 (2017) 52–62 

Fig. 7. Fitness Clouds sampled from the instances in the benchmarks of Taillard. They were generated by QACVRP and are similar in structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Peak changes in accepted po- 

tential energy. 

QACVRP 

Instance �E 

P-n101-k4(reference) 13 

P-n50-k10 15 

P-n55-k10 14 

P-n60-k15 14 

P-n76-k4 17 

P-n63-k10 16 

P-n67-k10 15 

B-n68-k9 17 
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affine transformations. (In CVRP, the Fitness Cloud shows a distri-

bution of the changes to the geometry of the routes, with �E p es-

sentially being a change in distance. Therefore, it should be possi-

ble to remap one instance to another.) With such transformations,

the aim is to adapt a set of parameters for a reference instance for

use in a subject. 

For the first phase of FJ-QACVRP, we propose that a useful factor

which correlates fitness landscapes is some measure or function of

�H p since it has the greatest impact (1) in the Metropolis criteria.

If the ratio of such measures from subject and reference instances

were known, and since the coupling term J � (3) is now constant,

then T for the subject instance can be calculated as the product

of this ratio and the reference effective temperature P ref T ref . This

would then remove the necessity of tuning the temperature pa-

rameter. Peak changes in accepted potential energy �H p have al-

ready been sampled for several CVRP instances using QACVRP. 

The coupling term J � can be thought of as a factor which am-

plifies or attenuates similarities between population members (2) .

A good value for J � was discovered in the course of determining

the parameters of the reference instance, P-n101-k4 in Crispin and

Syrichas (2013) . The value of J � which was successful for solving

one instance may be used as a constant in solving another, if the

temperature is suitably scaled. 

When a subject instance is optimized by FJ-QACVRP, the peak

change in accepted potential energy �E subj is scaled by the nor-

malization constant (7) to provide the value of temperature T subj 

(8) . 

k = 

P re f T re f 

�E re f 

(7)

T sub j = k �E sub j (8)

The following is a brief, stepwise description of the new tuning

method, tentatively entitled Energy-based Scaled Parameter Tuning

(ESPT): 
1. With QACVRP solving the reference instance, use the PT tuning

method (or other) to identify the parameter set C ref which gives

the best possible success rate. 

2. With QACVRP solving the reference instance using C ref , record

the peak change in accepted potential energy �E ref . The con-

stant k (7) can now be calculated. 

3. With QACVRP solving the subject instance using C ref , record the

peak change in accepted potential energy �E subj . 

4. Use FJ-QACVRP to solve the subject instance using a constant

value of J � calculated with C ref , T sub j = k �E sub j , P sub j = P re f + p

where p is a discretionary increase in the number of replicas. 

Simple modifications were made to the acceptance function of

he software in order to sample the changes in accepted poten-

ial energy. QACVRP then solved selected instances 20 times each

ith C re f = { 3 , 40 , 22 . 5 × 10 −3 } determined in Crispin and Syrichas

2013) , and with Monte Carlo steps M C = 10 × 10 6 . Table 4 shows

easurements made using steps 2 and 3 for several instances

isted in Table 1 . 
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Table 5 

Computational results of FJ-QACVRP using CVRP instances of Taillard. 

Phase 1 Phase 2 a Total 

Problem n Best Score Time (s) Score Time (s) Time M C × 10 6 

tai75a 75 1618.36 b 1618.357 7 – – 0:00:07 0.031 

tai75b 75 1344.64 b 1344.619 4 – – 0:00:04 0.019 

tai75c 75 1291.01 b 1291.008 5 – – 0:00:05 0.033 

tai75d 75 1365.42 b 1365.419 6 – – 0:00:06 0.021 

tai100a 100 2041.336 b 2043.405 92 2041.337 3 0:01:35 0.213 

tai100b 100 1939.9( Mester and Bräysy, 2005 ) 1939.904 1144 – – 0:19:04 2.778 

tai100c 100 1406.202 b 1406.965 721 1406.202 2 0:12:03 1.487 

tai100d 100 1581.25 b 1582.112 156 1580.458 269 0:07:05 1.183 

tai150a 150 3055.23 b 3057.395 608 3055.232 366 0:16:14 2.538 

tai150b 150 2727.67( Mester and Bräysy, 2005 ) 2730.304 958 2727.669 24,618 7:06:16 14.478 

tai150c 150 2341.84 b 2361.424 1754 2358.659 1989 1:02:23 12.898 

tai150d 150 2645.39 b 2647.713 28,146 2645.391 1 7:49:07 37.942 

tai385 365 24422.5( De Franceschi et al., 2006 ) 24 4 49.046 235,760 24395.411 84,561 88:58:41 138.535 

a 50% replicas perturbed for 5 iterations before annealing. 
b As reported by Alba and Dorronsoro (2006) . 

Table 6 

Computational results of FJ-QACVRP using various CVRP instances. 

Phase 1 Phase 2 a Total 

Problem n Best Score Time (s) Score Time (s) Time (s) M C × 10 6 

E-n101-k14 100 1067( De Franceschi et al., 2006 ) 1067 216 – – 0:03:36 1.564 

M-n151-k12 150 1015( De Franceschi et al., 2006 ) 1015 456 – – 0:07:36 1.617 

M-n200-k16 199 1274( Poggi and Uchoa, 2014 ) 1274 11,709 – – 3:15:09 14.004 

M-n200-k17 199 1275( Poggi and Uchoa, 2014 ) 1275 29,959 – – 8:19:19 13.893 

G-n262-k25 261 5530( Liu and Li, 2015 ) 5530 78,974 5526 20 21:56:34 46.060 

a 50% replicas perturbed for 5 iterations before annealing. 
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. Experimental results 

Although multicore processor architectures allow for programs

o be written to achieve parallelization of their workload, FJ-

ACVRP was designed to take advantage in a different way. Rather

han breaking the algorithm into parallelizable components, FJ-

ACVRP was coded to place a whole experimental run on a sep-

rate thread so that it would be allocated to a single CPU core.

his design allows many runs to occur simultaneously and so will

utput results much more quickly. FJ-QACVRP was coded in C++

sing the Qt cross-platform application framework. The processor

mployed was the Intel Xeon E5-2683 v3, having 14 cores with a

lock speed of 2 GHz, running the Linux operating system. 

.1. Large and very large scale results 

For each of the moderately sized to very large-scale instances,

 batch of runs equal in size to the number of CPU cores was per-

ormed simultaneously across a range of temperatures. For speed

hilst tuning in this first phase, the number of replicas and Monte

arlo steps were kept low, with P ≤ 20 and M C � 20 × 10 6 . When

he batch was completed, the value of T from the run with the

est score was considered the most useful and, if necessary, reused

ith higher values of P to seek further improvements. 

The best solution from phase 1 was used to initialize each

eplica in phase 2. A percentage of the replica ensemble was per-

urbed by applying a randomized selection of the neighbourhood

perators for a fixed number of iterations. A low temperature T =
 . 14 and higher values of P (40, 60, 80, 160) and M C = 50 × 10 6 

ormed the parameter set for runs in the second phase of FJ-

ACVRP. 

The results of this method are shown in Tables 5–9 and any

mprovements to the best known scores in literature are shown in
old. Combined run times are shown together with the total num-

er of iterations M C taken for each instance. 

Table 5 show the results of FJ-QACVRP on the CVRP instances in

he benchmarks of Taillard (1993) . In all but one instance (tai150c)

he best known score was found or improved upon (tai75b and

ai385), and the majority required both optimisation phases. In

hase 1, temperature ranges were bounded by 1.18 ≤ T ≤ 1.82 with

ntervals of 0.04. Combined run times ranged from 7s to 65 h. 

Table 6 shows the results of FJ-QACVRP on the moderately

ized CVRP instances in the benchmarks of Christofides and Eilon

1969) , Gillett and Johnson (1976) , and Christofides et al. (1981) .

n phase 1, temperature ranges were bounded by 0.6 ≤ T ≤ 1.4

ith intervals of 0.05. For all instances except G-n262-k35, the

est known score is suspected to be optimal. Since no better re-

ults were achieved by significantly increasing the running time or

opulation size of FJ-QACVRP ( M C ≥ 350 × 10 6 , P ≥ 640), and be-

ause no improvements have been published for over two years,

he second phases were omitted. Combined run times ranged from

.6 min to 21.9 h. 

Tables 7 and 8 show the results of FJ-QACVRP on the bench-

ark of Golden et al. (1998) , which include larger sized CVRP and

CVRP instances respectively. For the CVRP instances the tempera-

ure ranges for phase 1 were bounded by 0.26 ≤ T ≤ 1.4 with in-

ervals of 0.02. FJ-QACVRP performed well and delivered improve-

ents over the best known score in all cases. For problems 9, 13,

5 and 16, scores from the second phase yielded no improvements

ver the first and are not shown. Combined run times for problems

sing both phases ranged from 11.2 to 144.8 h. 

For the DCVRP instances, FJ-QACVRP matched the best known

n 4 problems and approached to within a negligible fraction of

 percent in 3 while new best scores were found for problems 1

nd 3. For phase 1 the temperature ranges were within 1.8 ≤ T

3 with intervals of 0.1. Combined run times for problems which

equired both phases ranged from 4.6 to 27.7 h. 
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Table 7 

Computational results of FJ-QACVRP using Golden et al. CVRP instances. 

Phase 1 Phase 2 a Total 

Problem n Best Score Time (s) Score Time (s) Time M C × 10 6 

9 255 583.39 b 579.713 16,738 – – 4:38:58 99.984 

10 323 741.7( De Franceschi et al., 2006 ) 737.512 133,303 737.412 71 37:02:54 42.440 

11 399 918.45 b 914.341 84,969 912.770 141,287 62:50:56 23.084 

12 483 1107.19 b 1102.542 469,021 1102.120 52,312 144:48:53 88.583 

13 252 859.11 b 857.189 19,232 – – 5:20:32 18.273 

14 320 1081.31 b 1080.830 106,996 1080.553 22 29:43:38 33.608 

15 396 1345.23 b 1340.241 140,262 – – 38:57:42 38.508 

16 480 1622.69 b 1611.503 153,502 – – 42:38:22 68.110 

17 240 707.79 b 707.992 39,557 707.756 192 11:02:29 24.406 

18 300 998.73 b 998.354 67,251 995.984 110 18:42:41 18.509 

19 360 1366.8578( De Franceschi et al., 2006 ) 1368.291 61,744 1366.591 1187 17:28:51 189.301 

20 420 1821.15 b 1825.057 75,826 1818.949 23,950 27:42:56 140.475 

a 50% replicas perturbed for 5 iterations before annealing. 
b As reported by Alba and Dorronsoro (2006) . 

Table 8 

Computational results of FJ-QACVRP using Golden et al. DCVRP instances. 

Phase 1 Phase 2 a Total 

Problem n Best Score Time (s) Score Time (s) Time M C × 10 6 

1 240 5627.54 b 5624.119 39,441 5623.469 43 10:58:04 33.042 

2 320 8447.92( Tarantilis and Kiranoudis, 2002 ) 8464.495 12,007 8447.920 4599 4:36:46 11.112 

3 400 11036.23( Tarantilis and Kiranoudis, 2002 ) 11047.007 56,584 11036.223 8085 17:57:49 110.986 

4 480 13624.53( Tarantilis and Kiranoudis, 2002 ) 13632.913 51,109 13624.526 26,960 21:41:09 41.205 

5 200 6460.98( Tarantilis and Kiranoudis, 2002 ) 6460.980 39,913 – – 11:05:13 24.670 

6 280 8412.88( Tarantilis and Kiranoudis, 2002 ) 8412.902 2966 – – 0:49:26 1.143 

7 360 10195.56( Tarantilis and Kiranoudis, 2002 ) 10200.543 5148 10195.587 2845 2:13:13 7.849 

8 440 11663.55 b 11681.035 29,603 11672.111 70,097 27:41:40 50.312 

a 95% replicas perturbed for 30 iterations before annealing. 
b As reported by Alba and Dorronsoro (2006) . 

Table 9 

Computational results of FJ-QACVRP using Li et al. DCVRP instances. 

Phase 1 Phase 2 a Total 

Problem n Best( Li et al., 2005 ) Score Time (s) Score Time (s) Time M C × 10 6 

21 560 16212.83 16232.347 12,550 16212.826 59,302 19:57:32 8.303 

22 600 14641.64 14632.952 230,304 14586.109 363,701 165:00:05 26.302 

23 640 18801.13 18824.837 37,464 18801.131 83,571 33:37:15 17.021 

24 720 21389.43 21411.744 78,209 21389.432 12,344 25:09:13 23.895 

25 760 17053.26 16905.233 57,344 16851.976 10,479 18:50:23 16.214 

26 800 23977.74 23998.635 56,315 23977.733 16,977 20:21:32 43.214 

27 840 17651.6 17621.849 266,076 17508.388 51,211 88:08:07 41.357 

28 880 26566.04 26586.149 16,027 26566.035 69,905 23:52:12 3.474 

29 960 29154.34 29176.634 54,894 29154.337 93,270 41:09:24 7.919 

30 1040 31742.64 31774.909 100,519 31742.640 580,037 189:02:36 17.655 

31 1120 34330.94 34361.727 287,648 34330.941 239,826 146:31:14 29.521 

32 1200 36919.24 37352.460 304,073 37331.111 2139 85:03:32 25.061 

a 95% replicas perturbed for 30 iterations before annealing. 
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Table 9 show the results of FJ-QACVRP on the benchmark of

Li et al. which is comprised of procedurally-generated ( Li et al.,

2005 ) very large-scale DCVRP instances. In all cases but problem

32, FJ-QACVRP equals or improves best known scores. In phase 1

the temperature ranges were within 1.8 ≤ T ≤ 3.2 with intervals

of 0.1. All attempts required both phases to execute and their com-

bined run times ranged from 18.8 to 189 h. 

3.2. ESPT results 

Table 10 shows the outcome of performing step 4 of the ESPT

method, in which the temperature value for each instance was pre-

dicted for use in FJ-QACVRP. For a valid comparison with QACVRP,

the chosen benchmarks were those as used in Crispin and Syrichas

(2013) - sets B and P benchmarks of Augerat et al. (1995) . Both sets

contain instances which cluster the locations of customers and are

likely to have similar geometric structures in their Fitness Clouds. 
Using C ref and �E ref , k (7) and J � (3) were calculated. For

ach subject instance, T subj (8) was calculated using k and �E subj 

 Table 4 ). With the parameter set { J �, P re f + p, T sub j } and p ∈
 −30 , +120] , FJ-QACVRP was used to solve each subject instance

00 times, after which the success rate was recorded. 

In almost all cases, at P ≥ 20, the success rate is increased

eyond that achieved by QACVRP. At P = 40 there are significant

ncreases for P-n76-k4, P-n76-k5, P-n55-k10 and B-n63-k10, in-

tances that proved troublesome for QACVRP. Fig. 8 shows the ef-

ectiveness of FJ-QACVRP upon the latter three and with values of

 determined beforehand, that P may alone be adjusted until a de-

ired rate/time balance is obtained. Also encouraging for the ESPT

ethod is that for P ≤ 20 the results almost entirely improve over

ACVRP, indicating the potential to improve running speed. 

As expected, in all cases increasing P improves the success rate.

he temperature component has been scaled using potential en-

rgy ratios and successfully applied to subject instances. 
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Table 10 

Success rates after application of ESPT. 

Success % 

QACVRP ( Crispin and Syrichas, 2013 ) FJ-QACVRP 

P = 40 (time) P = 10 P = 20 P = 30 P = 40 (time) 

P-n101-k4 100 (07:56:20) 99 100 100 10 0 (0 0:14:24) 

P-n40-k5 10 0 (0 0:0 0:50) 100 100 100 10 0 (0 0:0 0:04) 

P-n45-k5 10 0 (0 0:01:53) 100 100 100 10 0 (0 0:0 0:05) 

P-n50-k7 10 0 (0 0:09:14) 100 100 100 10 0 (0 0:0 0:17) 

P-n50-k10 63 (08:27:14) 62 80 89 99 (00:26:40) 

P-n51-k10 100 (01:12:35) 91 99 100 10 0 (0 0:04:15) 

P-n55-k7 100 (01:11:40) 100 100 100 10 0 (0 0:02:42) 

P-n55-k10 a 35 (10:14:24) 55 87 93 97 (00:39:21) 

P-n60-k10 100 (01:07:38) 100 100 100 10 0 (0 0:02:42) 

P-n60-k15 79 (08:48:46) 86 97 98 10 0 (0 0:10:06) 

P-n65-k10 100 (01:01:47) 100 100 100 10 0 (0 0:01:12) 

P-n70-k10 78 (13:23:50) 90 100 100 10 0 (0 0:13:38) 

P-n76-k4 52 (14:50:56) 91 100 100 10 0 (0 0:37:15) 

P-n76-k5 a 87 (10:16:25) 72 93 98 98 (00:57:48) 

B-n50-k8 100 (01:34:54) 100 100 100 10 0 (0 0:03:34) 

B-n52-k7 10 0 (0 0:09:06) 100 100 100 10 0 (0 0:0 0:18) 

B-n56-k7 10 0 (0 0:20:34) 100 100 100 10 0 (0 0:01:26) 

B-n57-k9 10 0 (0 0:40:50) 100 100 100 10 0 (0 0:01:06) 

B-n63-k10 a 26 (12:49:30) 25 36 68 68 (01:12:18) 

B-n64-k9 100 (01:04:16) 100 100 100 10 0 (0 0:02:12) 

B-n66-k9 91 (08:56:25) 96 100 100 10 0 (0 0:15:54) 

B-n67-k10 42 (15:42:00) 100 100 100 10 0 (0 0:17:46) 

B-n68-k9 69 (11:30:52) 93 99 100 10 0 (0 0:33:44) 

B-n78-k10 97 (07:10:29) 100 100 100 10 0 (0 0:09:42) 

a P value for 100% success shown in Fig. 8 . 

Fig. 8. ESPT - Success rate improves as P increases. 
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. Conclusions 

To our knowledge, this is the first study which reduces the

umber of control paramaters in QA to one (replica count) and

hich systematically establishes a constant value for the temper-

ture through the use of scaling factors determined from the anal-

sis of Fitness Clouds. 

In principle, the methods and techniques presented could be

xtended to other vehicle routing problems such as those which

se a hetergeneous fleet. A heterogeneous fleet can be represented

n a spin matrix by increasing the dimensions by the number of

iffering vehicles. The additional cells would indicate which vehi-

le is assigned to each route. Further, the solution representation

eed not prevent a vehicle going back to the depot to collect more

tems. 

It has been shown that with suitable adjustments to the Hamil-

onian and by treating the term which scales interaction energy as
 constant, QA is able to tackle very large VRP instances without

ncurring the need to fine tune all the control parameters. With the

uning much simplified, QA can be used to deliver results which

re improvements over, or equal to the best-known scores in the

reater majority of large instances of CVRP and DCVRP. The pri-

ary conclusion is that the modified QA heuristic is a good match

or these kinds of vehicle routing problems. 

A reduced number of tunable parameters in FJ-QACVRP pre-

ented the opportunity to focus subsequent tuning efforts upon es-

ablishing the temperature value through use of the ESPT method.

his significantly improves the reliability (in terms of success rate)

f QA when dealing with collections of instances which exhibit

imilar features in their fitness landscapes. For convenience, this

tudy reused existing benchmarks containing instances with sim-

lar distributions of customer locations. Naturally, if this method

as to be generalised, extending to arbitrary collections of in-

tances, then some effort would need to be spent analysing their

itness Clouds in order to group them sensibly prior to the appli-

ation of ESPT. This would perhaps involve the use of more compli-

ated affine transformations (e.g. skews, mirrors, rotations) rather

han scaling factors. 
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