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Abstract 
We measured the fully-resolved 3-dimensional velocity distributions of nitric oxide 
photodesorbed from a gold single crystal. These experiments combine time-of-flight 
measurements and the velocity map imaging technique to yield velocity distributions 
resolved in three dimensions for a prototypical surface-adsorbate system. Nitric oxide 
adsorbed on Au(100) was photodesorbed using a 355 nm laser beam. The desorbed NO 
molecules were ionised in the gas-phase by resonance-enhanced multi-photon ionisation 
within a set of velocity map imaging optics. The NO molecules preferentially leave the 
surface along the surface normal with a very narrow angular distribution, indicating a non-
thermal desorption process. 
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1. Introduction 

Studies of the detailed dynamics of chemical reactions frequently aim to record the product 

translational and/or internal energy distributions, both for gas-phase as well as for interfacial 

reactions, to learn about the energy re-distribution during the reaction, and ultimately about 

the reaction mechanism. The photo-induced desorption of fragments from a single crystal 

presents a well-defined reaction system due to the well-known surface structure and photon 

energy. The photon energy may be preserved to some extent in the gas-phase fragments 

whose internal and translational energy can be probed after leaving the surface, and can help 

to provide information about the dynamics of the desorption process.  

A number of different experimental techniques have been employed in the past to study 

charged particle- and photon-induced desorption processes. Traditionally, one would use a 

time-of-flight (TOF) setup employing a mass-spectrometer that can be rotated around the 

fixed surface to acquire angularly-resolved translational energy distributions.1 However, this 

is time-consuming (and lacks the internal energy distribution), hence in order to record all 

fragments simultaneously in a single experiment, imaging methods have risen in popularity. 

Winograd and co-workers have reported the energy- and angular-resolved distributions of 

neutrals (EARN) whose desorption was induced by ions, and they achieved an angular 

resolution of ~8.2,3 Similarly, ESDIAD (electron-stimulated desorption ion angular 

distributions) delivers angular distributions of ions desorbed from surfaces;4 this method has 

successfully been employed for triangulation, i.e. it was in some cases possible to derive the 

orientations of molecular bonds at surfaces.5 

State-resolved detection of neutrals typically involves the laser ionisation of neutral 

fragments, often performed in a resonance-enhanced multi-photon ionisation (REMPI) 

scheme. If a pump/desorption laser is employed to initiate an event at a surface, then laser-

detection of neutrals a few mm above the surface can deliver kinetic energy distributions of 

fragments. However, unless an elaborate optical detection geometry is used, such kinetic 

energy distributions lack any angular information. Menges et al. demonstrated an elegant 

example of sheet-focussing of the ionisation laser (with the sheet perpendicular to the 

surface) to record two-dimensional velocity distributions state-selectively. This was done for 

the model system of NO photodesorbed from NiO, for which they obtained a bimodal 

velocity distribution, with most of the kinetic energy release being directed along the surface 

normal.6 
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A number of groups have recently adopted ion imaging techniques, which are heavily 

employed in gas-phase reaction dynamics,7 to the study of surface dynamics. Briefly, ion 

imaging techniques in the gas-phase may be used to study e.g. photo-dissociation processes 

of small molecules; such molecules – seeded in a molecular beam – may be photo-dissociated 

and subsequently ionised within a set of ion optics which accelerate the ions down a TOF 

tube. Since the mass difference between the initially generated neutrals and the formed ions is 

negligible, the velocity of the neutrals expanding on a Newton sphere is preserved and can be 

re-constructed from the arrival position of the ions on a position-sensitive detector. Velocity-

map imaging (VMI) was a technical improvement of ion imaging that ensured that the ions’ 

arrival position is only a function of their velocity, and not of the position where they were 

formed.8 Velocity resolutions of better than 1 % have been achieved in some VMI 

spectrometers.9,10,11 

It hence seemed a logical step to adopt the VMI technique for surface studies in order to 

derive high-resolution velocity distributions. Wodtke and co-workers were the first to apply 

the VMI technique to surface desorption processes by combining VMI with TOF 

measurements.12 In the laser-induced desorption of neutral Br atoms from a KBr single 

crystal, the surface of the crystal was oriented parallel to the ions optics and the detector, and 

the surface normal of the crystal was aligned along the TOF tube. TOF information – and 

hence velocity distributions along the surface normal – was obtained by varying the delay 

between the desorption and the ionisation laser, while VMI was used to derive the velocity 

distributions in the two dimensions parallel to the KBr surface. White and co-workers 

employed the surface-VMI technique to shed light onto the photodesorption of O2 and 

photofragmentation of butanone adsorbed on TiO2(110).13,14 Nesbitt and co-workers also 

employed surface-VMI to study molecular beam scattering of HCl from Au(100) single 

crystals;15 most recently, they obtained 3D velocity information for HCl scattered from self-

assembled monolayers by elegantly utilising the dc slicing technique to achieve a velocity 

resolution along the surface normal of around 11%.16 In all of the above experiments, the 

surface normal was aligned along the TOF axis of the VMI spectrometer. In contrast, Harding 

et al. have recently demonstrated measurements of speed and angular distributions of N2 

scattered from a Au(111) single crystal whose surface normal lies in a plane parallel to the 

ion optics and detection plates.17 Velocity distributions are in this case measured under spatial 

imaging conditions by varying the delay between ionization laser pulse and extraction pulse 

to follow the movement of the scattered molecules away from the surface, but parallel to the 

imaging detector. 

http://dx.doi.org/10.1063/1.4967248


Abujarada et al.  NO/Au 3D laser desorption  J Chem Phys 2016 

4 
 

The combination of TOF and VMI techniques can potentially produce fully-resolved three-

dimensional velocity distributions of neutral fragments from surfaces; if REMPI spectroscopy 

is applied, internal state distributions can be obtained as well, i.e. fully-resolved internal and 

rotationally-resolved translational energy distributions can be recorded, the “holy grail” of 

reaction dynamics. However, for surface desorption processes, one has to pay attention to the 

exact geometry of the detection system: If the fragments are produced at one small spot on 

the surface and detected within a small volume above the surface, then some fragments may 

be missed, and hence the angular distribution measured is determined by this optical 

geometry, and may not reflect the dynamics of the process. Wodtke and co-workers 

overcame that problem by desorbing fragments from a relatively large spot on the surface, 

and ionising the neutral fragments within a small volume above the surface (referred to as 

sheet-dot), such that a relatively large polar angle of ~60 symmetric around the surface 

normal could be recorded.12,18 We here present the first studies in which the more intuitive 

dot-sheet geometry is used to state-selectively record fully-resolved three-dimensional 

velocity distributions over almost the full 2 steradian; the experimental details, and the 

advantages and disadvantages of this approach are discussed in more detail in the 

experimental section. 

The test system investigated here is the photodesorption of NO from a Au(100) single crystal. 

Nitric oxide is a key intermediate in a range of industrially-relevant processes, such as the 

reduction of higher oxidation state nitrogen compounds (nitrates and nitrites) to ammonium 

or ammonia compounds or laughing gas N2O, as well as in the oxidation of ammonia.19,20 On 

Pt surfaces, the exact pathway for ammonia reduction is still under dispute, not only 

regarding the intermediates, but also the mechanism, with both Langmuir-Hinshelwood as 

well as Eley-Rideal mechanisms being suggested.19,21,22  

As for gold substrates, NO is more strongly adsorbed to Au(100) than to Au(111).23 There is 

agreement that the nitrogen atoms face the gold surface, but there are conflicting report as to 

whether the neutral NO binds to Au(100) on the bridge site, i.e. between two neighboring 

atoms (2f site),24 or the on-top (ot) site;25 it is also disputed whether the NO is in a bent 

geometry,25,26 or along the surface normal.24 Temperature-programmed desorption 

experiments and density functional theory calculation agree that NO covalently binds to gold 

with an adsorption energy of ~57 kJ mol1,24 and adsorption at around ~170 K ensures 

sufficiently high coverages to induce a hex  (1×1) phase transition.27 
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While the photodesorption of nitric oxide from Au(100) has not been studied to date, NO is 

an attractive candidate as it is experimentally straightforwardly detected using REMPI 

spectroscopy. 

Buntin et al. as well as Chuang and co-workers studied the laser-desorption of NO from 

Pt(111). Depending on the excitation wavelength, both found a bimodal velocity distribution,  

the faster component of which was attributed to excitation followed by electron-transfer to 

the NO adsorbate.28,29,30 The desorption of NO from a non-metal Si(111) surface, however, 

has been found to be due to electronic excitations of the covalent substrate bonds.31 So et al. 

investigated the interaction between laser radiation with NO adsorbed on GaAs(110) at 80 K 

over a range of wavelengths, and found that the desorption and dissociation of NO molecules 

are induced by non-thermal processes. The authors concluded that the observed desorption 

and dissociation could be attributed to interactions of the adsorbed NO with photogenerated 

charge carriers.32 Menges et al. reported results on the angular distribution of NO desorbing 

from NiO(111) after excitation with 193 nm laser light using an experimental set-up capable 

of state-selectively obtaining the 2-dimensional velocity distribution of the desorbed neutrals 

in a single experiment.6 Garcia et al. studied the photodissociation of NO adsorbed on 

Cu(110) using reflection-absorption infrared spectroscopy. The NO dimer was found to be 

photoactive in contrast to bridge-bonded NO which showed no photoactivity. NO dimers 

photodissociate by breaking the N-N bond, releasing one NO molecule to the gas phase, 

while the other NO remains adsorbed on the surface in the metastable atop position.33 

We here report the application of 3D surface-velocity map imaging to the 355 nm 

photodesorption of NO from Au(100) surfaces. Section 2 describes in detail how we achieved 

to record the velocity distributions in three dimensions independently through a combination 

of TOF and VMI measurements. The results are presented in section 3, their analysis in 

section 4, followed by a discussion of the non-thermal nature of the NO desorption process.  

 

2. Experimental 

The experimental setup was designed to measure the velocity distribution of NO molecules 

photodesorbed from a Au(100) surface in three dimensions independently using a 

combination of TOF and VMI methods; the gas-phase VMI setup has been described in detail 

previously.34 In brief, the spectrometer consists of two chambers, namely a molecular beam 

chamber which is only in operation when calibration experiments are performed, and a 

chamber that contains the Au(100) single crystal and the VMI optics . This chamber is 

evacuated by a 1000 L s−1 turbomolecular pump to achieve ultra-high vacuum conditions 
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(base pressure 5 × 1010 Torr), backed by a mechanical pump. The VMI optics, described in 

more detail below, consist of twelve parallel plates of 10 cm diameter, the first of which, 

typically referred to as the repeller plate, features a 12 mm diameter central hole. A 10 mm 

diameter Au(100) crystal (1.5 mm thick) equipped with a K-type thermocouple is attached to 

a sample mount connected to a 3-axes/rotational manipulator which allows for heating and 

liquid nitrogen cooling, see Fig. 1.35 While the 12 mm opening in the repeller plate can 

accommodate the Au crystal, physical contact between the liquid nitrogen-cooled crystal and 

the room-temperature repeller plate heats up the crystal too quickly, and the crystal is hence 

set-back by 0.5 mm behind (i.e. further away from the laser) and parallel to the repeller plate. 

The surface normal of the gold crystal is aligned along the TOF tube (z axis) of the 

spectrometer, at the end of which a 40 mm diameter multi-channel plate detector (Burle 

Photonis) is located (time-of-flight path for mass-separation is 45 cm). The manipulator also 

holds a 10 mm diameter stainless-steel disc with a central 2 mm hole; this disc can be placed 

in position instead of the gold crystal and allows us to run gas-phase calibration experiments 

using the molecular beam under otherwise identical conditions without having to break the 

vacuum. Both crystal and repeller plate are connected to separate power supplies held at the 

same voltage such that the field experienced by the fragments in vacuum at the point where 

they are ionised (between the repeller and the second plate) is homogenous, as proven by gas-

phase calibration experiments. 

 

Fig. 1: Schematic of the 3D VMI setup showing the parallel alignment of the gold surface in 

relation to the ion optics. 

 

The gold crystal is heated prior to experiments to 700 K and subsequently cooled to ~170 K. 

Nitric oxide (NO) gas is introduced into the chamber as background gas at a pressure of 
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~5 × 107 Torr for a few minutes, and the NO gas pressure is maintained at ~5 × 108 Torr 

during experiments to re-dose the surface, resulting in sub-monolayer NO coverage.6,27 

With the crystal in place, a frequency-tripled Nd:YAG laser (Quanta Ray DCR-11, 

h = 3.5 eV, pulse duration 7 ns) beam is directed through small holes in the VMI electrodes 

at the NO/Au(100) surface at an angle of 45. The energy of 1.5 mJ and the repetition rate of 

20 Hz result in a transient temperature increase of ~27 K at the surface of the crystal.36 This 

increase does not cause thermal desorption of NO molecules as shown later. The laser pulse 

nonetheless causes desorption of NO molecules which can potentially fly in all directions in 

the hemisphere above the surface. Since we are interested in the 3D velocity distribution, we 

have to ensure the capture of all NO molecules desorbing under all possible angles by paying 

particular attention to the optical detection geometry. If one was to desorb fragments from a 

small spot on the surface, and detect these fragments within a small volume above the 

surface, then the experiment is biased towards detecting only those fragments flying in a 

straight line from desorption spot on the surface to the detection volume. In order to detect all 

fragments, one can either increase the area which the desorption laser illuminates, and detect 

the fragments within a small volume above the surface (sheet-dot);12,37 alternatively, one can 

use a small desorption laser spot on the surface (here ~2 mm diameter), and employ a 

detection laser sheet that ionises the NO fragments in a rather large volume above the surface 

(dot-sheet), see Fig. 2. Here, we report the latter, more-intuitive method for the first time. 

The NO molecules are ionised in a (1+1) REMPI scheme via the (0,0) A  X transition; the 

third harmonic of a Continuum Powerlite 8020 Nd:YAG laser was used to pump a Radiant 

Dyes NarrowScan laser operating on Coumarin 460; the resulting output is frequency-

doubled in a BBO crystal to yield ~200 J pulses at around 226 nm at 20 Hz. Employing the 

8 mm diameter output from this laser system, we use a cylindrical lens with a focal length 

of 28 cm to create such a laser sheet above the surface. This yields an effective Rayleigh 

length zR for 1+1 REMPI detection (keeping in mind that the ionisation step is saturated, and 

that the Rayleigh length for focusing with a cylindrical lens is defined by the beam dimension 

in one direction only doubling from waist to zR) of more than 20 mm, hence effectively 

creating an 8 mm tall “curtain” above the surface through which the NO molecules have to 

fly. We note that we also translated the laser sheet up and down in front of the surface during 

measurements, but this did not affect the images, indicating that all NO radicals fly though 

the laser sheet. At a typical surface-to-laser distance of 3 mm, this allows us to detect all 

those NO molecules leaving the surface within a solid angle of 5.6 sr. As hinted above, the 
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slightly more elaborate design of our ion optics consisting of twelve electrodes (yielding soft 

extraction conditions of around 50 V cm1) was chosen to increase the volume in which VMI 

conditions prevail, which we have previously established experimentally,34 and we are hence 

confident that all NO molecules crossing the laser sheet are ionised and accelerated under 

true VMI conditions. 

By varying the time delay between the desorption and the probe laser, we record time-of-

flight profiles, but crucially, since the probe laser beam is focussed using a cylindrical lens 

and hence forms a sheet above the surface, these TOF profiles can be converted into velocity 

distributions that deliver the velocity component along the surface normal (vz) exclusively, 

i.e. not the overall speed. 

 

 

Fig. 2: Illustration of the dot-sheet conditions employed in this work. The photodesorption 

laser approaching from the right illuminates only a small area on the surface, while the probe 

laser forms a sheet above the surface to intersect as many desorbed molecules as possible. 

 

An NO molecule desorbing from the surface straight along the surface normal (v = vz) is 

detected by the REMPI laser after the same time delay as an NO molecule that leaves the 

surface with a certain angle and whose overall speed may be higher (v > vz) as long as their 

velocity along z is the same; due to the “sheet”-shaped probe laser, converting these TOF 

profiles to velocity distributions hence delivers vz. However, all particles ionised within this 

extended volume nonetheless adhere to velocity map imaging conditions as shown 

previously.34 The ions are then accelerated down the time-of-flight tube (for mass separation) 

onto the position sensitive multi-channel plate (MCP) detector. This MCP detector is gated 

using a DEI PVX-4140 high voltage pulser in order to discriminate against ions other than 

NO+. The ions’ arrival positions are imaged onto a phosphor screen and captured by a 

synchronised CCD camera (FOculus FO124TB) before being transferred to a PC using a 

frame grabber (NI PCI- 8254R). Custom-written LabVIEW software is used to accumulate 
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and save the images, which are subsequently converted to velocity distributions. Since the 

gold surface and the detector are parallel to each other but perpendicular to the TOF axis of 

the spectrometer, the velocity distributions correspond to the remaining two velocity 

components vx and vy (where y is along the propagation direction of the REMPI laser, and x is 

the vertical axis in the laboratory frame, see Fig. 1) for specific values of vz. 

In essence, by varying the time delay between desorption and probe laser in discrete steps, we 

are able to record velocity distributions along z (vz), and for each time delay, we obtain the 

velocity distribution along x and y from the velocity map images. 

 

3. Results 

Distributions of the NO velocity component flying along the z axis after 355 nm 

photodesorption were recorded by varying the delay time between the desorption and probe 

laser; such a TOF profile for a surface-to-REMPI laser distance of 3 mm is shown in Fig. 3a. 

Fig. 3b shows the velocity distribution vz of NO molecules as an average of two runs; the 

time delays were now chosen to yield equally-spaced velocity intervals. However, since 

REMPI detection is sensitive to particle densities, and since each time delay probes a subset 

of NO molecules over a time interval determined by the probe laser pulse width (~7 ns), we 

applied the appropriate density-to-flux conversion and Jacobian.38 These experiments were 

repeated with a surface-to-REMPI laser distance of 2 mm in order to record a larger solid 

angle of desorbing NO molecules (not shown), but this yielded the same result within the 

error of the experiment. The S/N ratio at 2 mm was comparable to that at 3 mm, indicating 

that we detected all NO molecules in both cases, but the velocity resolution along z at 2 mm 

is slightly worse such that all results reported here are for a 3 mm surface-to-REMPI laser 

distance unless otherwise stated. The error in the velocity distribution along the z axis is 

given by l/l, where l is the uncertainty of determining the exact distance between the 

surface and the probe laser; we estimate the error to be around 0.1 mm/3.0 mm = 3%. One 

major advantage of employing the TOF technique to acquire vz with a well-defined laser-

pumplaser-probe setup is the high velocity resolution obtained. 
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Fig. 3: (a) Raw time-of-flight data for NO photodesorbed from Au(100) at 355 nm. (b) 

vz velocity distribution of photodesorbed NO after density-to-flux conversion of the raw data 

(blue circles), errors represent average of two runs. A 1D Maxwell-Boltzmann distribution at 

the surface temperature is provided for comparison (red line). 

 

The remaining two velocity components vx and vy, which are parallel to the Au(100) surface, 

are derived from the velocity map images which are recorded at laser delay times 

corresponding to velocities vz for which data points were recorded. These raw velocity map 

images, two of which are shown in Fig. 4, are recorded in density space and are subsequently 

converted to velocity space. Each raw image is composed of single images from 

approximately 20,000 laser shots. The center of these images corresponds to zero velocity in 

the x and y dimension, even though this center is shifted slightly with respect to the center of 

our CCD camera, an effect that we also observe to the same extent in our gas-phase 

experiments, and is due to the slight misalignment of the ion optics. The slight asymmetry we 
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observe in some images is also likely due to either the misalignment of the ion optics, and/or 

the round desorption laser illuminating an ellipsoidal area on the surface, and/or the probe 

laser, which is focussed using a cylindrical lens and has a Gaussian intensity profile in the 

direction not affected by the focussing; the latter favours fragments desorbing along the 

surface normal over those flying up or down in the laboratory frame, but fragments seem to 

intersect the central part of the laser beam, keeping distortions at a modest level. 

In order to obtain three-dimensional velocity distributions, the results from the TOF profiles 

and the VM images must be appropriately combined as described in the next section. 

 

 

Fig. 4: Velocity map images of NO recorded at desorption-REMPI laser delay times 

corresponding to 420 m s1 (top) and 560 m s1 (bottom). 

 

4. Discussion 
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Since the vz distributions are strictly speaking 1D velocity distributions, they are compared in 

Fig. 3b with a 1D Maxwell-Boltzmann distribution at the temperature of the gold surface; 

however, the experimental vz distribution of NO peaking at non-zero velocities is not well 

described by the 1D Maxwell-Boltzmann distribution, indicating a non-thermal desorption 

process. The experimental vz distribution peaks at velocities just below 500 m s1 and appears 

mono-modal. 

Combining the TOF and VMI measurements results in 3D distributions which are 

cumbersome to visualize. Since the VM images appear roughly circular, i.e. there does not 

seem to be a preference for the NO molecules to fly along the [001] over the [010] direction, 

we azimuthally averaged the two velocity distributions parallel to the Au(100) surface to 

yield vx/y. Fig. 5 shows a smoothed surface plot combining TOF data and VM images. It can 

be seen that while vz is most intense at around 500 m s1 and extends up to around 

1000 m s1, vx/y almost completely vanishes at velocities higher than 200 m s1, illustrating 

that the desorption of NO molecules is confined to a rather narrow cone along the surface 

normal. To highlight this angular preference further, we created a polar contour plot of 

intensity as a function of both, overall speed and polar angle, see Fig. 6. The angular 

distribution is quite narrow throughout, always narrower than 25, and it can be clearly seen 

that the NO molecules preferentially desorb along the surface normal. This is not unexpected, 

of course, as the flux of atoms or molecules leaving a surface typically peaks along the 

surface normal.39,40 The smooth transition of the distributions from their peak along the 

surface normal to polar angles of only around 25 (i.e. without a sudden cut-off) also proves 

that we cover the full angular distribution which would theoretically, purely based on the 

detection geometry, have allowed detection of NO molecules up to polar angles of 53 (or 

even 63 for substrate-probe laser distances of 2 mm as used in some of the experiments 

here). 
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Fig. 5: Smoothed surface plot of NO flux as a function of vz (from TOF measurements) and 

the azimuthally-averaged vx/y (from VM images) recorded at 3 mm surface-to-REMPI laser 

distances. 

 

 

 

Fig. 6: Plot of the NO flux as a function of overall speed and angle after 355 nm 

photodesorption. Color scheme from red (most intense) to faint yellow (zero intensity). Note 

that the geometry of our 3D surface VMI setup allows NO molecules desorbing from the 

surface at angles of up to 53 to be detected. 

 

Fig. 7 shows the angular distribution of the NO molecules for selected overall speeds. Also 

shown are fits of these distributions to cosn   functions, where a fitting parameter of n = 1 is 

typical for thermal desorption processes. The angular distributions for even the slowest NO 
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molecules can only be fitted with n > 1, and it can also be seen that the angular distributions 

become narrower with increasing overall speed. 

 

 

Fig. 7: Experimental angular distributions (circles) for selected speeds of photodesorbed NO 

molecules together with fits to a cosn  distribution (red lines); plots are offset vertically for 

clarity. 

 

Fig. 8 shows the overall speed distribution of NO molecules independent of angle, and 

compares it to a fitted 3D Maxwell-Boltzmann distribution at a temperature of 317 K. The 

lack of intensity below 400 m s1 and the narrower distribution as compared to the Maxwell-

Boltzmann fit are good indications that the overall speed distribution is not thermal. Fig. 9 

shows the integrated (over all flight times) signal intensity of NO molecules desorbed from 

gold at various surface temperatures. It can be seen that a significant fraction of the NO 

molecules are still adsorbed to the surface even at and above the temperature reached during 

the laser pulse (~197 K), such that purely thermal desorption is unlikely to occur. 
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Fig. 8: Overall speed distribution of the desorbed NO molecules (obtained by appropriately 

combining vz with vx and vy) and a Maxwell-Boltzmann best fit at a temperature of 317 K in 

red. 

 

 

Fig. 9: Integrated signal intensity of NO desorbed from Au(100) as a function of temperature. 

 

All the above results point to a non-thermal mechanism due to electronic excitation. This 

could either be a “hot” electron mechanism in which an electron from the conduction band is 

excited above the Fermi level (Ef); this is followed by tunnelling into an unoccupied state of 

the adsorbate forming a negative ionic state, from which desorption of the neutrals 

occurs.41,42 Fukutani et al. consider such a mechanism for the 193 nm photodesorption of NO 

http://dx.doi.org/10.1063/1.4967248


Abujarada et al.  NO/Au 3D laser desorption  J Chem Phys 2016 

16 
 

from Pt(111).30 Alternatively, the photon may cause excitation within the adsorbate molecule 

which – once in an excited state – undergoes desorption. For NO on Ni(111), Yates and co-

workers argue that the interaction between the NO 2π* antibonding orbital and the Ni d bands 

causes the occupied NO 2π*-d state and the unoccupied NO 2π*-d state to be below and 

above the Fermi level with an energy gap of ~3.7 eV, close to the excitation laser wavelength 

of 355 nm used in their experiments.43 Rogozik et al. reported that these levels are expected 

to broaden and extend to near Ef as a result of the strong molecule/metal interaction.44 It 

seems hence plausible that the desorption of NO from Au(100) observed in this work at 

355 nm is also either due to excitation within the adsorbed NO itself, or due to a substrate-

mediated mechanism. 

In order to shed more light onto the excitation mechanism of NO adsorbed on Au(100), we 

performed first principles quantum chemical calculations based on density-functional theory. 

We employed the Cambridge Serial Total Energy Package (CASTEP) which solves the 

Kohn-Sham equations with a plane wave basis set employing three-dimensional periodic 

boundary conditions,45 similar to our previous work.46 We used the Perdew–Burke–Ernzerhof 

(PBE) functional to approximate the exchange and correlation effects in the electronic 

properties.47 For all but 100% coverage, we find that the NO preferentially adsorbs on the 

bridge (2f) site with a weak adsorption energy of between 0.65 eV and 0.8 eV depending on 

coverage. This is roughly in agreement with previous calculations by Olvera-Neria et al. 

(0.53 eV) for NO on a single gold atom,48 and by Niemantsverdriet and co-workers (0.57 eV 

for adsorption on the bridge site)24 Thermal desorption experiments (0.59 eV) also agree with 

the above calculated adsorption energies,27 but are in contrast to Liu and co-workers who 

computationally studied 25% coverage of NO on Au(100) and found an adsorption energy of 

0.26 eV for the on-top (ot) site;25 we note that we calculate an adsorption energy of 0.20 eV 

for the ot site, but – as mentioned above – also find an energetically more favourable 

conformation in the form of the 2f site. On the latter, the single electron in the two NO * 

orbitals (belonging to the nitrogen atom) can efficiently overlap with the orbitals on two 

neighbouring Au atoms at the surface between which the NO is located, resulting in an N-O 

bond aligned along the surface normal. We find this upright arrangement in fact for all sites 

and coverages apart from on-top cases, where overlap of the * orbital with the orbitals on a 

single Au atom causes the NO to tilt.  

We mapped the partial density-of-states of the Au-NO complex around the Fermi energy 

separately for the Au atom and the NO molecule in search for a plausible non-thermal 
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excitation mechanism. It appears that for the 2f site (as well as for the hollow 4f, but not for 

the ot site), some filled Au orbitals (belonging to p orbitals) at ~3 eV below the Fermi energy, 

and some unoccupied orbitals belonging to the nitrogen p orbitals of the NO around 0.5 eV 

above the Fermi energy, exist. Since this gap of ~3.5 eV is roughly equivalent to our 

excitation laser wavelength of 355 nm, excitation from the substrate to the adsorbate is likely 

to be responsible for the non-thermal desorption of NO from Au(100). 

 

5. Conclusions 

In this paper, we have demonstrated the capability of a 3D surface VMI apparatus to study 

photodesorption processes. The combination of TOF and imaging methods negates the need 

for complex instrumentation employing rotatable mass-spectrometers for which data 

acquisition can be time-consuming. 3D surface VMI delivers fully-resolved velocity 

distributions with high resolution if one ensures that all desorbing particles are detected, and 

presents hence a faster method for surface reaction studies. The angularly-resolved velocity 

distributions of NO photodesorbed from Au(100) indicate that a non-thermal mechanism is 

responsible for NO desorption, and this seems likely to be induced by a substrate-mediated 

excitation. 
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