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Abstract 29 

Tropical forest conversion to agriculture is a major global change process. Understanding 30 

of the ecological consequences of this conversion are limited by poor knowledge of how 31 

soil microorganisms respond. We analyzed the response of soil bacteria to conversion 32 

from primary rain forest to oil palm plantation and regenerating logged forest in 33 

Malaysia. Bacterial diversity increased by approximately 20% with conversion to oil 34 

palm because of higher pH due to liming by plantation managers. Phylogenetic clustering 35 

indicated that bacterial communities were determined by environmental filtering. 36 

Regenerating logged forests did not have significantly different soil chemistry, which did 37 

not correspond with significant differences in bacterial richness, diversity, or the relative 38 

abundances of particular taxa. However, there were significant differences in the 39 

structure of bacterial community networks between regenerating logged forests and 40 

primary forests, highlighting previously unobserved effects of these two land uses. 41 

Network analysis highlighted taxa that are potentially central to bacterial networks, but 42 

have low relative abundances, suggesting that these rare taxa could play an ecological 43 

role and therefore warrant further research. 44 
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1. Introduction 48 

 Tropical forests have long been under threat of conversion to other land uses—more than 49 

half of the original extent of rain forests has been converted (Asner et al., 2009). Since tropical 50 

forests are home to more than two-thirds of all terrestrial plant and animal species (Brooks et al., 51 

2002; Dirzo and Raven, 2003; Gardner et al., 2009), this loss of tropical forest comes hand-in-52 

hand with a loss in biodiversity. Yet this story of conversion and species loss may or may not 53 

translate to loss of the huge diversity of soil organisms found under foot.  54 

Soil microorganisms, which make up the bulk of soil diversity, are widely recognized to 55 

be essential to the functioning of terrestrial ecosystems. Microbial activity is responsible for 56 

many biogeochemical redox reactions (Falkowski et al., 2008). Both negative and positive 57 

feedbacks between soil organisms and plant communities contribute to ecological structure and 58 

functioning in the tropics (Bagchi et al., 2010; Kiers et al., 2000; Mangan et al., 2010). Given the 59 

importance of soil microorganisms to biogeochemical cycling and plant-soil feedbacks, 60 

understanding if soil microbes are threatened by large-scale tropical land-use change is necessary 61 

to understand and predict broader functional consequences of land-use change.  62 

An growing body of work has documented how soil microbial communities respond to 63 

human-induced environmental change (Thomas W Crowther et al., 2014; da C Jesus et al., 2009; 64 

de Carvalho et al., 2016; Fierer et al., 2012; Lee-Cruz et al., 2013; Leff et al., 2015; McGuire et 65 

al., 2015; Ramirez et al., 2012, 2010; Rodrigues et al., 2013; Tripathi et al., 2016; Wood et al., 66 

2015). Several consistent patterns have emerged from this work. Changes in the bacterial 67 

community are largely governed by changes in soil chemical properties, mainly pH (Lauber et 68 

al., 2009; Rousk et al., 2010). Bacterial diversity decreases sharply with decreases in pH, partly 69 

due to an associated increase in the relative abundance of taxa such as Acidobacteria. By 70 
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contrast, fungi are less sensitive to changes in pH. Instead, the dominant control on fungi tends to 71 

be a combination of factors such as soil carbon, local soil moisture, and plant composition 72 

(Barberán et al., 2015; Fierer et al., 2003; Prescott and Grayston, 2013; Prober et al., 2015; 73 

Toberman et al., 2008). The response of soil microbial communities to land-use change is in part 74 

determined by the properties of the underlying soil, with the greatest difference between forest 75 

communities and grassland communities occurring on sandier soils (Thomas W Crowther et al., 76 

2014). This constraint of soil type may be due to lower moisture and carbon holding capacity in 77 

sandier soils or inability of sandier soil to buffer against changes in pH, which are dominant 78 

controls of fungal and bacterial communities, respectively.   79 

These now robust patterns rely on inference generated from the relative abundance of soil 80 

microbes, whether directly or through abundance-weighted diversity metrics. Most microbial 81 

taxa are, however, rare (Locey and Lennon, 2016)—i.e. low in relative abundance—and these 82 

abundance-weighted metrics may miss possible contributions of rare species. In plant 83 

communities, rare species can make important contributions to ecosystem structure and function 84 

(Jain et al., 2014; Lyons and Schwartz, 2001). Whether the same is true for microbes remains 85 

less well known, but evidence is mounting that loss of rare microbial taxa can play an important 86 

role in community structure (Shade et al., 2014) and ecosystem functioning, especially through 87 

modifying plant-soil feedbacks (Hol et al., 2015, 2010). Rare taxa, by virtue of being rare, may 88 

exhibit different life history strategies than abundant taxa (Murray et al., 2002) and therefore 89 

respond differently to land-use change. If this is the case, then understanding their responses may 90 

highlight different trends in the response of microbial communities to land-use change. Network 91 

analysis, which has been widely used to study the impacts of global change on plant and animal 92 

diversity (Ings et al., 2009), may help inform understanding of the ecological role of rare bacteria 93 
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by highlighting how rare taxa co-occur with well-studied taxa, which could indicate similar 94 

ecological roles between rare and well-studied taxa (Ma et al., 2016).  95 

Based on the literature cited above showing that bacterial communities are strongly 96 

structured by abiotic conditions, we expected that bacterial community composition and diversity 97 

would follow land-use changes that modified soil chemical properties, particularly pH. Because 98 

McGuire et al (2015) found elevated pH under oil palm—but no differences between 99 

regenerating and primary forests—we expected that bacterial diversity and community 100 

composition would differ between oil palm and the native forest types, but not among the native 101 

forest types. For network composition, a chronosequence of abandoned agricultural land showed 102 

that fungal networks became more connected in older sites with a shift towards more fungal-103 

dominated food webs (Morriën et al., 2017). Based on this we developed two competing 104 

hypotheses: (H1) bacterial network structure follows patterns observed in fungi and becomes 105 

more interconnected moving from disturbed to primary vegetation; (H2) because food webs shift 106 

to fungal dominance under primary vegetation, bacterial networks decrease in complexity as 107 

fungal communities increase in complexity.  108 

 To evaluate our expectations and the consequences of forest conversion on soil microbial 109 

composition, we compared bacterial communities from three sites in Malaysia: a primary 110 

lowland mixed dipterocarp forest, a regenerating dipterocarp forest that had been selectively 111 

logged 50 years ago, and a 25-year old oil palm plantation. Over the past few decades, palm oil, 112 

the commercial commodity extracted from the oil palm plant (Elaeis guineensis; Arecaceae) has 113 

been the most rapidly growing crop in the tropics. Indonesia and Malaysia alone account for 114 

more than 80% of all palm oil production and not coincidentally, this region of the world also 115 

experiences the highest proportional rate of deforestation (Carlson et al., 2012; Hansen et al., 116 
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2013). Thus, oil palm plantations are highly relevant for evaluating the consequences of large-117 

scale tropical deforestation on soil microbial communities.  118 

 119 

2. Material and methods 120 

2.1 Site description and field sampling 121 

Soil samples were collected from lowland sites in peninsular Malaysia in the state of 122 

Negeri Sembilan, as previously described (McGuire et al., 2015). Briefly, we sampled from three 123 

land-use types: primary rain forest (primary forest), forest regenerating from logging 50 years 124 

prior (regenerating forest) and an oil palm plantation in active cultivation for 25 years (oil palm). 125 

The regenerating and primary forests area are located in the Pasoh Forest Reserve (2º5’ N, 126 

102º18’ W, 80 m asl), with the Dipterocarpaceae family comprising nearly one-third of the basal 127 

area of canopy trees (Manokaran et al., 2004). The oil palm plantation was located less than 500 128 

m from the Pasoh Forest Reserve. Climate in this region is aseasonal with mean annual 129 

precipitation of 1,788 mm and average minimum and maximum temperatures of 22.7 and 33.2 C, 130 

respectively. The dominant soil type in the lowland forest plots sampled is Ultisols (Adzmi et al., 131 

2010).  132 

Within each land-use type (primary forest, regenerating forest, and oil palm plantation), 133 

three replicate plots (20 x 20 m) were established and five soil samples were collected from each 134 

plot during a single sampling event. All sampling plots were at least 1 km away from each other, 135 

but selected on the same underlying soil type and slope position. The collected samples were 136 

divided into three sampling depths: 0-2 cm, 2-10 cm, and 10-20 cm. All plots were separated by 137 

at least 500 m. Sample replicates were composited by depth to one sample per depth, per plot 138 

and were placed in sterile plastic bags, sealed and frozen at -20 ºC on the day of collection. In the 139 
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laboratory, all soil samples were passed through a 2 mm sieve, homogenized, and stored frozen 140 

at -20ºC until laboratory analyses were performed.  141 

 142 

2.2 Laboratory analyses 143 

We amplified and sequenced a portion of the 16S rRNA gene to assess bacterial 144 

communities in a similar manner as described previously (Caporaso et al., 2012). Amplifications 145 

were performed on DNA isolates from the MoBio PowerSoil extraction kit (MoBio, Carlsbad, 146 

CA), which were the isolates used for prior analysis of soil fungi (McGuire et al., 2015). PCR 147 

amplification was performed with the primers 515f and 806r, which included sequencing 148 

adapters for the Illumina sequencing platform, and the reverse primer contained a 12-bp barcode 149 

unique to each sample. Amplicons combined and sequenced on an Illumina MiSeq instrument 150 

using a paired-end 151-bp sequencing kit. Raw amplicon sequences were demultiplexed and 151 

processed with the UPARSE pipeline (Edgar, 2013) as in Ramirez et al (Ramirez et al., 2014). 152 

Paired end sequence reads were merged prior to additional processing. Sequences were quality 153 

filtered using a “maxee” value of 0.5 and singletons were removed. Sequences were clustered 154 

into operational taxonomic units at a threshold of ≥97% sequence similarity. Merged, 155 

demultiplexed sequences were mapped against our de novo database of clustered OTUs to get 156 

counts of sequences per OUT and sample. Taxonomy was assigned to OTUs using the RDP 157 

classifier (Wang et al., 2007) with a confidence threshold of 0.5 and trained on the Greengenes 158 

database (McDonald et al., 2012). Samples were rarefied to 7,000 sequences per sample prior to 159 

downstream analysis. Previous analyses focused on analysis of fungal community dynamics 160 

contain data on microbial biomass, enzymatic activity, fungal diversity, fungal composition, and 161 

soil physical and chemical properties (D’Angelo et al., 2015; McGuire et al., 2015). 162 
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 163 

2.3 Analytic methods 164 

2.3.1 Diversity 165 

 We calculated several common ecological diversity metrics including species richness, 166 

evenness, Shannon, and Faith’s Phylogenetic Diversity (PD). Shannon is a diversity metric 167 

where the relative abundance of species is weighted by evenness. Faith’s PD sums the branch 168 

lengths of a phylogeny for a given site and uses the resulting branch length sum as a metric of 169 

phylogenetic diversity. Diversity metrics were calculated for each site using the vegan package 170 

(Oksanen et al., 2016) of R (Core, 2016), except for phylogenetic diversity, which was calculated 171 

in the picante package (Kembel et al., 2010).  172 

 173 

2.3.2 Phylogenetic analysis 174 

Assessing the extent of phylogenetic clustering in a community can be used to infer the 175 

degree to which communities are likely structured by environmental filtering or competition 176 

(Cavender-Bares et al., 2009; Webb and Ackerly, 2002). Using this approach, the observed 177 

phylogenetic distribution of a community is compared to a null model or randomization 178 

procedure to determine whether the observed phylogeny is more or less clustered than would be 179 

expected at random. Clustering suggests environmental factors structure community assembly, 180 

whereas overdispersion suggests that biological interactions, such as competition, are the 181 

dominant force in community assembly. To apply this approach, we used a phylogeny generated 182 

from sequence OTUs to create a community dissimilarity matrix in the picante package in R 183 

(Kembel et al., 2010). We then calculated a relative abundance-weighted standardized effect size 184 

for mean pairwise distance (MPD) and mean nearest neighbor distance (MNTD), which are 185 
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metrics of mean pairwise phylogenetic distance within the community (Webb et al., 2008). MPD 186 

calculates mean pairwise distance between all OTUs in each site. MNTD calculates the average 187 

distance separating each OTU in a site from its nearest phylogenetic relative. The standardized 188 

effect size of these metrics compares the observed phylogenetic distribution to an expected 189 

distribution under some null model or randomized scenario. To ensure robustness of our 190 

approach, we calculated MPD and MNTD using two null model scenarios, one that randomizes 191 

the tips of the phylogeny (Tip Randomization) and a second that randomizes that community 192 

abundances within samples, but holds richness constant (Richness Randomization). 193 

 194 

2.3.3. Network analysis 195 

To analyze network structure, we used data on the relative abundances of bacterial taxa 196 

by land-use types to create a taxonomic association network. This procedure suggests an 197 

association network by comparing observed taxonomic co-occurrences with a set of predicted 198 

co-occurrences from null models with the same richness and relative abundances as the observed 199 

community. Standardized effect-size scores are calculated for the observed vs. predicted data, 200 

significant associations are retained, and scores are converted to an association network. We 201 

generated association networks using the netassoc package (Blonder and Morueta-Holme, 2015).  202 

 We calculated a number of statistics to characterize the nature of networks under the 203 

three land-use categories. Modularity measures the compartmentalization of a network into sub-204 

networks, or modules (Newman, 2006). High modularity scores indicate the presence of many 205 

connections among vertices within a module, but few connections to vertices of different 206 

modules. We calculated modularity using the modularity function in the igraph package (Csardi 207 

and Nepusz, 2006). Assortativity measures the tendency for similar vertices to be linked with 208 
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each other (Newman, 2002). We calculated assortativity using the assortativity_degree function 209 

in the igraph package. Transitivity represents the likelihood that neighboring vertices are linked, 210 

and then linked to other adjacent vertices à la transitivity property (Barrat et al., 2004). We 211 

calculated transitivity using the transitivity function in the igraph package. We also determine, 212 

for each land-use category, which taxa (vertices) had the highest number of paths connected to 213 

other vertices. This is also known as betweenness or network centrality (Freeman, 1978). We 214 

calculated this using the vertex_connectivity function in the igraph package. 215 

 To determine whether network statistics were significantly different among the three 216 

land-use categories, we generated 10,000 random networks with similar sizes and calculated the 217 

mean and standard deviation of the same statistics. We then calculated a z-score for each of the 218 

observed networks to determine how many standard deviations it fell away from the expected 219 

value given from the network randomization procedure. The randomly generated network was a 220 

regional network that had the same number of vertices and edges as the observed network that 221 

includes all sites, regardless of land-use category. Comparing to this regional network therefore 222 

highlights how environmental changes would affect the locally observed network.  223 

  224 

2.3.4 Statistical analyses 225 

 We determined bacterial community similarity among land-use types and soil horizons 226 

using ANOSIM; non-metric multi-dimensional scaling (NMDS) was used to visualize clusters. 227 

We used linear models to determine the impact of land-use type on bacterial diversity. We first 228 

tested response variables for normality using the Shapiro-Wilk test. In cases of non-normality, 229 

response variables were transformed using a Box-Cox transformation. All differences were 230 
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considered significant at a 0.05 threshold and marginally significant at a 0.10 threshold (Hurlbert 231 

and Lombardi, 2009). 232 

 233 

3. Results 234 

The soil bacterial community did not differ by sampling depth (ANOSIM R = -0.05, P = 235 

0.77). We therefore pooled samples across depths to increase sample size and statistical power. 236 

Because samples collected from the same site at different depths are not independent, we 237 

controlled for non-independence by clustering standard errors of all samples from the same site. 238 

We observed a significant difference in the soil bacterial community among land-use types 239 

(ANOSIM R = 0.59, P < 0.01). Specifically, oil palm soil bacterial communities clustered 240 

independently of regenerating and primary forest (Figure 1; Stress = 0.06). There was strong 241 

evidence that bacterial communities from all land-use types were phylogenetically clustered (as 242 

opposed to overdispersed) relative to a null model (MPD & MNTD < 0; P = 0.01; Table 1). 243 

There was no evidence for significant differences in the degree of phylogenetic clustering among 244 

land-use types.  245 

 246 

3.1 Diversity 247 

To explore the nature of the difference between bacterial communities, we assessed 248 

potential differences in several ecological diversity metrics. We observed significantly elevated 249 

diversity of soil bacteria in oil palm compared to regenerating and primary forests (Table 2). For 250 

instance, Shannon diversity of soil bacteria increased by approximately 20% under oil palm, 251 

compared to primary and regenerating forests (p < 0.001). This general pattern was robust to all 252 

diversity indices used, including species richness (p < 0.001), evenness (p = 0.001), and Faith’s 253 
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phylogenetic diversity (p < 0.001). Statistical models that included only land-use type as 254 

predictor variables, explained between 50% and 77% of the variation in diversity metrics (Table 255 

2). 256 

 257 

3.2 Community Composition 258 

 We observed significant changes in the relative abundances of several key taxa among 259 

land-use types (Figure 2; p < 0.05 for all groups shown). The most significant changes were 260 

between oil palm and the two forest types, with little difference between regenerating and 261 

primary forests. Most taxa increased in relative abundance under oil palm, compared to 262 

regenerating and primary forest (Figure 2). A notable exception was Acidobacteria, which was 263 

the only taxonomic group to significantly decrease in relative abundance (by approximately 264 

40%) under oil palm compared to regenerating and primary forest. 265 

 266 

3.3 Network Structure 267 

 Networks of soil bacterial communities were more modular under oil palm and logging 268 

than was expected at random, given the taxa present in the regional species pool (Figure 3; Table 269 

3a, b). Regenerating forests were around eight times more modular, and oil palm plantations 270 

approximately five times more modular, than primary forests, but oil palm was only 0.4 times 271 

less modular than regenerating forests. Similar taxa were 2.5 times less likely to be associated 272 

with each other under oil palm compared to primary forests, whereas similar taxa were three 273 

times more likely to be associated in regenerating forest soil compared to primary forest (Figure 274 

3; Table 3a, b). All land-use types had similar values of transitivity—the likelihood that 275 

neighboring vertices are linked—but were all less than expected by random (Table 3a, b).  276 
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 For all taxa, we calculated the number of edges connecting to other vertices, for each 277 

land-use type. We found that several taxa played central roles (high degree of connectivity) in 278 

certain land-use networks, but were not present or were unimportant in others (Figure 3; Table 279 

4). For instance, Acidobacteria had 244 connections under oil palm, but not under regenerating 280 

or primary forest. Actinobacteria had 250 connections under primary forest, but none under 281 

regenerating forest and oil palm. NKB19 was not present under oil palm and regenerating forest, 282 

but had the most connections under primary forest. Planctomycetes and Gemmatimonadetes were 283 

two of the most central taxa under regenerating forest soils, but neither had connections in either 284 

oil palm or primary forest. Some taxa were central across all land-use types, such as GN02 and 285 

Nitrospirae.  286 

 The regenerating forest network had the fewest number of taxa co-occurring, but most 287 

relationships were high in magnitude—whether positive or negative (Figure 4). Oil palm had the 288 

most co-occurrence relationships, but was dominated by a few strong positive interactions 289 

(Figure 4). Primary forest had a mix of positive and negative interactions, both weak and strong 290 

(Figure 4). The correlation between the relative abundances of two taxa was a significant 291 

predictor of the co-occurrence strength between those two taxa (P < 0.00), but explained only 292 

19% of the variance in co-occurrence scores.   293 

 294 

4. Discussion 295 

4.1 Effects of oil palm on the soil bacterial community 296 

We expected that bacterial diversity would be greatest under oil palm because of greater 297 

pH. We found support for this hypothesis, which conforms with other work in tropical forests 298 

that find increases in measures of bacterial diversity after conversion of tropical forest (da C 299 
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Jesus et al., 2009; de Carvalho et al., 2016; Lee-Cruz et al., 2013; Rodrigues et al., 2013; Tripathi 300 

et al., 2016). Increases in bacterial diversity were associated with significant increases in 301 

evenness, suggesting a disrupted microbial community. In our study, conversion of primary 302 

forest to oil palm plantation was associated with an increase in pH—from 4.7±0.1 to 303 

5.1±0.1(Brearley, 2015; McGuire et al., 2015). Higher pH is often associated with greater soil 304 

bacterial diversity, with the slope of this relationship greatest in low pH conditions (Lauber et al., 305 

2009). Because of highly acidic tropical forest soils, oil palm plantation managers lime soils for 306 

improved production (Tripathi et al., 2012). Since pH is the dominant driver of soil bacterial 307 

communities across biomes (Lauber et al., 2009; Rousk et al., 2010; Tripathi et al., 2013, 2012), 308 

an increase in bacterial diversity accompanying liming conforms with expectations from the 309 

literature. Our observed decrease in the relative abundance of Acidobacteria—which tend to have 310 

higher relative abundances with low pH—in oil palm soils also supports our conclusion that 311 

changes in the bacterial community under oil palm cultivation were largely due to changes in pH. 312 

This claim is furthermore supported by our finding that the bacterial community is highly 313 

phylogenetically clustered, which is often used to infer that environmental filtering is the 314 

dominant driver of community assembly (Cavender-Bares et al., 2009). Other work has found 315 

evidence for abiotic stress leading to phylogenetic clustering of soil bacteria (Goberna et al., 316 

2014). 317 

 318 

4.2. Bacterial communities in regenerating vs. primary forest 319 

We found little evidence of differences in bacterial diversity and community composition 320 

between regenerating and primary forest. Similar findings have been made in a similar system in 321 

Borneo (Lee-Cruz et al., 2013; Tripathi et al., 2016, 2012). Network analysis, however, 322 
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illuminated previously unnoticed differences in the structure of bacterial communities between 323 

primary and regenerating forest. We proposed two, competing hypotheses for differences in 324 

network structure: (H1) bacterial network structure would increase in complexity towards 325 

primary vegetation; (H2) bacterial network structure would become less complex as fungal 326 

networks became more complex under primary forest. We found that regenerating forest 327 

networks were eight times more modular than primary forest networks, providing evidence that 328 

the response of bacterial networks and fungal networks could be different, given that fungal 329 

networks have been shown to increase in interaction strength with primary vegetation (Morriën 330 

et al., 2017). Regenerating forest and oil palm networks were also significantly more modular 331 

than random. Modularity measures the compartmentalization of a network into sub-networks, or 332 

modules (Newman, 2006). A lower modularity value indicates that taxa within the network tend 333 

to co-occur more with a wider range of other taxa. Ecologically, modularity has been interpreted 334 

to indicate partitioning into groups of ecologically similar taxa and, thus, resistance of a network 335 

to disturbance and loss of individual species (Burgos et al., 2007; Ding et al., 2015). Based on 336 

this interpretation, high modularity in regenerating forest could indicate that these forests include 337 

more ecological types than in primary forest.  338 

We also found that all land-use types had lower transitivity than random. In some cases, 339 

transitivity has been shown to be an indicator that network structure is dominated by keystone 340 

species—species whose removal can have a disproportionate effect on overall community 341 

structure (Berry and Widder, 2014). Our observed lower-than-random transitivity across all land-342 

use types suggests that bacterial community structure is not highly sensitive to loss of particular 343 

taxonomic groupings. Because lower transitivity can be indicative of weaker interactions and 344 

couplings within the bacterial community, non-transitive network structure has been inferred as 345 
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indicative of co-existence (Narisawa et al., 2008). Our finding of lower-than-random transitivity 346 

suggests fairly stable co-existence of bacterial types across land-use categories. 347 

The taxa that played a key role in bacterial networks were also different between 348 

regenerating and primary forests. In regenerating forests, the taxa with the most connections to 349 

other taxa were Planctomycetes, GN02, Gemmatimonadetes, and Nitrospirae. By contrast, in 350 

primary forest the most important taxa were NKB19, ZB3, Actinobacteria, and Elusimicrobia. 351 

Thus, the network analysis highlights that land use can significantly alter the network structure 352 

of the soil bacterial community, even if diversity indices do not show differences. 353 

There are several important caveats to drawing ecological interpretations from network 354 

topology. Because network structure shows a pattern, it is difficult to infer ecological process 355 

based on assessment of the pattern alone (Bascompte, 2007). There are only a few examples of 356 

systems in which it is well understood how network typology and form connects to function, 357 

many of which tend to be at the cellular rather than ecological level (Ingolia, 2004; Price et al., 358 

2004). As more information becomes available on the ecological strategies of particular 359 

microbial taxa—such as how they respond to abiotic conditions—making inference about 360 

ecological dynamics from network structure will become more fruitful. Another limitation to co-361 

occurrence network analysis is that the nature of the interactions is vague. Much network 362 

analysis in ecology focuses on well defined and quantified biotic interactions, such as food web 363 

and mutualistic interactions (Ings et al., 2009). The nature of co-occurrence interactions could be 364 

due to several factors, some being more ecologically meaningful than others. Methodologically, 365 

network structure can be influenced by the method of network construction and null model 366 

testing used (Connor et al., 2016; Weiss et al., 2016).  367 
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Yet, despite these limitations, network analysis may be a powerful tool to highlight 368 

potential ecological roles of understudied taxa. Because many microbial taxa are hard to culture, 369 

network analysis may highlight the ecological strategies of organisms that are difficult to observe 370 

directly. In our study, we observed that several of the taxa that play important network roles are 371 

underdescribed ecologically. For instance, taxa that strongly positively co-occur with a well-372 

studied taxon may play similar ecological roles. This inference is supported by our finding that 373 

the overall bacterial community is phylogenetically clustered, meaning that environmental 374 

filtering is likely important to bacterial community structure. Co-occurring taxa, therefore, 375 

should be co-occurring because they have similar environmental response strategies. However, 376 

we observed that correlation in relative abundance only explains 19% of the variation in co-377 

occurrence, which suggests that similar response of taxa’s relative abundances to environmental 378 

conditions only explains a part of the nature of complex co-occurrence patterns. 379 

 380 

4.3. Combining diversity, phylogenetic, and network analyses provides more insight  381 

 We found many rare taxa with high network centrality highlighting potentially important, 382 

but understudied, microbial taxa that are overlooked by analyses of diversity or relative 383 

abundance patterns. Specifically, taxa such as GN02, NKB19, ZB3, NC10, AD3, Parvarchaeota, 384 

Armatimonadetes, and Fibrobacteres all played important roles in network centrality, but had 385 

low relative abundances. Identifying understudied taxa has previously focused on identifying 386 

taxa with high relative abundances in novel systems, such as surprisingly high relative 387 

abundances of Verrucomicrobia in remnant patches of native prairie across the U.S. Midwest 388 

(Fierer et al., 2013). Our approach suggests that rare taxa that are low in relative abundance also 389 

warrant further research effort, as they may play an important role in bacterial communities and 390 
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potentially connect to broader ecosystem functioning—this potential importance of rare taxa has 391 

been shown for plant systems (Jain et al., 2014; Lyons and Schwartz, 2001) but not for 392 

microscopic taxa that are far less well known but lend themselves well to network analysis due to 393 

their high diversity. 394 

Further integration of network approaches into microbial analyses requires understanding 395 

how patterns between the two approaches overlap. For instance, it will be particularly important 396 

to understand when and why relative abundances translate to network importance and when they 397 

do not. In our analysis the relative abundance of Acidobacteria was lowest in oil palm soils, but 398 

Acidobacteria had the greatest network centrality. Similarly, Actinobacteria relative abundance 399 

was lowest in primary forest soils, but had the highest network centrality score. These patterns 400 

between relative abundance and network centrality are seemingly idiosyncratic, so further 401 

research into the drivers of network influence in the soil bacterial community is needed. This 402 

work will likely require improved understanding of life history strategies of microbial taxa, 403 

which overlaps with the research needs to develop understanding of microbial functional traits 404 

(Aguilar-Trigueros et al., 2015; Thomas W. Crowther et al., 2014; Krause et al., 2014; Martiny et 405 

al., 2015; Wallenstein and Hall, 2011; Wieder et al., 2014). 406 

 407 

4.4 Conclusion 408 

Though soil fungal communities appear to be highly responsive to changes in vegetation 409 

and carbon loss (McGuire et al., 2015), changes in bacterial communities under deforestation 410 

may be principally driven by changes in environmental conditions associated with land-use 411 

change. This implies that diversity changes in bacterial communities may be more ephemeral 412 
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than changes to fungal communities, given that pH can change over shorter time periods than 413 

soil carbon and dominant vegetation structure. 414 

Understanding the nature of the change in these bacterial communities has largely 415 

focused on shifts in relative abundances and diversity. Our finding that bacterial diversity 416 

increases under oil palm aligns with previous findings, but we also shed new light on the nature 417 

of bacterial community disassembly with land-use change. Network analysis highlights strong 418 

differences in network structure between regenerating and primary forests that do not appear in 419 

analyses of diversity or relative abundance patterns. Our analysis identified bacterial taxa that 420 

play central roles in network structure, but have low relative abundances. These taxa warrant 421 

further research effort to identify their functional roles in the ecosystem.  422 

Our finding that the structure of bacterial networks differed between regenerating and 423 

primary forests also suggests that microbial community analysis needs to go beyond assessment 424 

of diversity and relative abundance patterns to unravel the nature of changes to bacterial 425 

communities under land-use change. Analytic tools that go beyond diversity analyses are widely 426 

applied in community ecology and our data suggests that greater application of these methods 427 

could strongly benefit inference in microbial ecology.  428 
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Figure Headings 713 

Figure 1. NMDS plot of soil bacterial communities under primary rainforest, regenerating 714 

rainforest, and oil palm plantation in peninsular Malaysia. 715 

Figure 2. Bar plot of relative abundances of bacterial taxa among the three land-use categories. 716 

Taxa were included for which there was significant differences in relative abundances among at 717 

least two of the categories. For visualization, plots are broken up by taxa with high relative 718 

abundances (a) and low relative abundances (b). 719 

Figure 3. Association network maps of soil bacterial communities under the three land-use 720 

categories: regenerating forest (a), oil palm (b), and primary forest (c). The size of vertices is 721 

proportional to the number of edges connecting each vertex. 722 

Figure 4. Heat map of significant (p < 0.05) co-occurrence values among individual taxa under 723 

the three land-use categories: regenerating forest (a), oil palm (b), and primary forest (c). Red 724 

indicates negative co-occurrence scores and blue indicates positive co-occurrence scores. 725 

Correlation of species taxonomic relative abundances is a significant explanatory variable of co-726 

occurrence scores, but only explains a small portion of the overall variation (d).727 



 

 35 

 728 


