

Service Selection Using Quality Matchmaking

Amna Eleyan , Liping Zhao
Birzeit University, University of Manchester

Palestine, United Kingdom

Abstract— This paper proposes a quality matchmaker which

introduces four algorithms or filters: interface matching, quality criteria

matchmaking, quality value constraints matching, and mathematical

matchmaking. These four algorithms use the quality matchmaker sub-

components to implement their roles. The quality matchmaker has three

sub-components which are: interface matchmaking, quality criteria

matchmaking and mathematical matchmaking.

A quality matchmaking process (QMP) is introduced to demonstrate the

above four algorithms and to select the best Web service. The

mathematical matchmaking algorithm is the most important step that

uses a mathematical model in order to select the best candidates Web

service based on requester’s quality requirements and preferences. Two

techniques are used in a mathematical model: Analytical Hierarchy

Process (AHP) and Euclidean distance.

Index Terms—Web services, quality matchmaker, quality

matchmaking process, mathematical model

I. INTRODUCTION

A. Motivation

The Web services technology enables software applications to communicate

with each other in a platform- and programming language- independent

manner. The Web services technology achieves system interoperability by

exchanging an application development and service interactions using the

XML–based standards, such as Simple Object Access Protocol (SOAP) [1],

Web Service Description Language (WSDL) [2] and Universal Description,

Discovery and Integration (UDDI) [3].

As the popularity of the Web services technology grows, the service requester

is becoming increasingly aware of the importance of the service quality.

Therefore, it is necessary for him/her to have a way of evaluating and

selecting the services that meet his/her quality requirement. However, the

current Web service technology is immature and still under development by

the World Wide Web Consortium (W3C) [4]. and has the following

challenges:

1. The service selection in the current Web service architecture is done by

human clients, which is not desirable if thousands of services are

available for selection.

2. The current selection is only based on the functional information in the

WSDL document. The service requester requires a selection mechanism

that is based on functional and also the non-functional information.

Therefore, an effective automated technique for the service selection

regarding to the service requester’s quality requirement and preferences

is needed.

This paper proposes a quality matchmaker which is the core component of the

quality-based Web service architecture (QWSA) [5]. This implements the

quality matchmaking process (QMP) to select the best service. The QMP is

based on a mathematical model. A simulation programme called the quality

service selection system (QSSS) [5] is developed to implement the QMP. It

allows the service requester to select the best service automatically.

B. Related Work and Our Contribution

Several research efforts have been made in the area of quality-based Web

Services. Zeng et al. [6] present two service selection approaches: local

optimization and global planning. A Simple Additive Weighing technique is

used to select an optimal Web service. The users express their preferences

regarding QoS by providing values for the weights. They propose a simple

QoS model using the examples of price, availability, reliability and reputation.

Liu et al.[7] present an open, fair and dynamic QoS computation model for

Web services selection. They achieve the dynamic and fair computation of

QoS values of Web services through a secure user’s feedback and a monitor.

Their QoS model is extensible, new domain specific criteria can be added,

without changing the underlying computation model. They provide an

implementation of a QoS registry based on their extensible QoS model.

Fedosseev in [8] presents the global planning approach which is used to

optimally select component services during execution of a composite service.

This approach is based on quality-of-service (QoS) characteristics of services,

different types of quality metrics have been introduced such as QoS: system,

QoS: task, quality-of-experience (QoE), and quality-of-business (QoBiz).

This paper proposes a quality matchmaking selection technique that is based

upon a mathematical model. The Analytical Hierarchy Process (AHP) is used

to calculate the quality criteria weight, based on the requester preferences. The

Euclidean distance is used to calculate the distance between the quality

requirements and the quality specifications. The service associated with the

minimum distance is the best service to select.

II. MATHEMATICAL MODEL FOR SERVICE SELECTION

The quality service selection in this paper depends on the quality

matchmaking process (QMP), which is described in Section IV. QMP is based

upon a mathematical model. The proposed mathematical model uses two

methods in order to select the best Web service. Analytical Hierarchy Process

(AHP) method is used to calculate the quality criteria weights based on the

service requester’s quality preferences. Euclidean distance method is used as

in [9], to measure the distance between the quality requirements specified by

the service requester and the quality specifications specified by the service

provider. The Web service with the minimum Euclidean distance is the best

service to select. The mathematical model is described in the following steps

using an example.

Step-1: Construct pair-wise comparison matrix

The pair-wise comparison matrix A, equation (1), is constructed with
respect to the service requester’s quality preferences and compares them in a
pair wise way. The pair-wise comparison matrix A is a reciprocal matrix
representing the service requester judgments of selecting the relative

importance of his preference of quality criterion Ci over C j from Table 1.

 107

The main diagonal of the matrix is always 1. The requester specifies m(m-1)/2

preferences, where m is the number of quality criteria.

 ª1 12 1 º
(1) «

1
 »

 « 21 2 »

 « »
 «

 1
 »

 ¬ 1 2 ¼

Table 1 Relative Importance Measurement Scale [10]

Relative Importance Measurement Scale

Importance Intensity Definition

9 Extremely Preferred
8 Very strongly to extremely
7 Very strongly preferred
6 Strongly to very strongly
5 Strongly preferred
4 Moderately to strongly
3 Moderately preferred
2 Equally to moderately
1 Equally preferred

Example:

The service requester’s quality preferences are:

 Availability (AV) is assigned by the service requester as two times more

important than the Reputation (REP).


 Availability (AV) is assigned by the service requester as four times more

important than the Price (P).

 Reputation is the same as important as Price.

The number of quality criteria, m=3. The requester specifies 3 preferences or

judgments.Thus, a comparison matrix A from the equation [1] is formed:
AV REP P

AV ª1 2 4 º
 « / 2 1 1 »

A REP 1 » «
P «1/ 4 1 1 »

 ¬ ¼

Step-2: Calculate the weight vector of quality criteria

The weights of quality criteria can be calculated from the matrix A by

using equation (2).

(2)

Example:

 1 § 1 2 4 ·
W(AV)

 ¨

 ¸ 0.579

6

 3 1.75 4
 ¹ ©

 1 §0.5 1 1 ·
W(REP)

 ¨

 ¸ 0.234

6 3 1.75 4
 ¹ ©

1 §0.25 1 1 ·
W(P) ¨

 ̧ 0.187

6 3 1.75 4

 ¹

 ©
The weight vector is:

W >0.579 0.234 0.187 @

Step-3: Calculate the Consistency Ratio (CR)

The Consistency Ratio (CR) measures the degree of consistency among the

pair-wise judgements [11]. It can be calculated from equation (3) [12] . The

Consistency Ratio (CR) of value 0.10 or less is considered acceptable and the

requester judgement is consistent [10]. An acceptable consistency property

helps to ensure decision-maker reliability in determining the priorities of a set

of quality criteria.

CR

CI (3)

RI

Where CI is the Consistency Index and RI is the Random Index. The RI value

is selected from Table 2.

Table 2 Average Random Index (RI) [10]

Average random index (RI)

Size of matrix 1 2 3 4 5 6 7 8 9 10

Random index 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

The Consistency Index (CI) is defined as [13], [14]:

CI

 O m (4)

m 1

Where Ois the average of the row totals of the normalized matrix A

divided by the weight vector

Example:

The Consistency Ratio (CR) is calculated from equations (3) and (4) as in

the following.

1. Random Index RI for matrix A of size 3 is equal to 0.58, as given in

Table 3.

2. Calculate Ofrom the following:

 Calculate the weighted sum matrix by the following:

 ª 1 º ª2 º ª4 º ª1.795 º
 « » « » « » « »

0.579 0.5 0.234 1 0.187 1 0.711
 « » « » « » « »

 «0.25 » «1 » «1 » «0.566 »
 ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

 Divide all the elements of the weighted sum matrices by their

respective priority vector element to obtain:

1.795
3.1

, 0.711

3.04

, 0.566

3.02 0.579 0.234 0.187

 Ocan be obtained from the average of the above values:

 O 3.1 3.04 3.02 3.053 3

3. Calculate the Consistency Index CI from equation (4)

 O m 3.053 3
CI

 0.0265

m 1

3 1

108

4. Calculate the Consistency Ratio (CR) from equation (3)

 
0.0265

0.58  0.046

The Consistency Ratio (CR) is equal to 0.046 which is less than 0.1, so the

pair-wise requester’s judgement is consistent and therefore the procedures will

continue in order to select the best Web service.

Step-4: Normalize the proposed performance matrix

It is assumed that the performance matrix P, equation (5) is published by

the service providers. The service providers publish their Web services with

the same functional information but differ with their quality criteria values.

 p11

p
12 ...

p
1n 

(5)  p
22

 

P  
p21 ... p

2n 

 


p
m2 ...

 



p
m1

p
mn 

Since the criteria are measured in different measurement units, the

performance matrix P, equation (5), should be converted into a non-

dimensional one. This could be done as each element of P is normalized by

the following calculation:

qij 

p
ij (6)

 p 2 ik
k1

n

This step produces a normalized performance matrix Q  {qij } .

The equation (6), considers only the increasing quality criteria that is the

more the value the more benefit the service requester such as Availability and

Reputation and it does not consider the decreasing quality criteria that is the

more the value the less benefit the requester such as Price criterion. Further

investigation required to consider the decreasing quality criteria as well the

increasing criteria in the mathematical model.

Example:

Suppose that there are three Web services (n=3) have the same functional

properties and published by different service providers, characterized by three
quality criteria (m=3): C1 =Availability, C2 =Reputation and C3 =Price. The

values of the quality criteria are represented in a performance matrix P from

the equation (5):

AV  95 99 95 

P  REP  4 3.5 3.5 
  

P 38.37 30.27 38.38
  

The normalized performance matrix can be obtained from equation [8] as

shown below:
0.569 0.593 0.569




0.617 0.487 0.618

 

Step-5: Construct a weighted normalized performance matrix

The normalized values are then assigned weights with respect to their

importance to the requester, given by the vector w { w , w ,..., w } .
12 m

When these weights are used in conjunction with the matrix of normalized

values Q  {q
ij

} , this produces the weighted normalized

matrix V  {v } , defined as V  {w q
ij

} , or
 ij i

 w q w q ... w q  (7)
1 11 1 12 1 1n


 w q w q ... w q 

V 
 221 222 2 2 n 

 


w
m

q
m2 ...

 



w
m

q
m1

w
m

q
mn 

Example:

The weighted normalized performance matrix can be obtained from

equation (7); V  {wi qij } , where wi is obtained from step-2, as shown

below:

0.329 0.343 0.329



0.115 0.091 0.116

 

Step-6: Calculate the relative distances

In this step each of the services is measured according to its closeness to

the requester quality requirements. The relative Euclidean distances are

calculated as follows:
m m (8)

E j   (vij  wi ri /  pij
2) 2

i 1 i 1

Where j=1,2,…, n is the number of Web services.

Example:

Suppose that requester’s quality requirements are (98, 3, 40)for

the corresponding Availability, Reputation and Price. The values of the

relative Euclidean distances, measuring the closeness between these

requirements and the available services are obtained from equation (8):

1  0.268
,
 2 0.239

,
 3 0.258

Step-7: Rank services in preference order

This is done by comparison of the values calculated in Step-6. Obviously,

the Web service with smallest value E*  min{E1 , E2 ,..., En } gives the

closest match to the requester quality requirements and should be selected as
the best one.

Example:

It is seen from the result of step-6 that the second Web service is the best

one, since its Euclidean distance is smallest (0.239), compared to the distances

of other services. So, the requester will select the second Web service.

If the requester’s preferences are changed so that the weight vector is:

   () () ()   0.131 0.677 0.192
Then the Euclidean distance will be:

1
 0.399

,

2
 0.398

,
3  0.35

It is seen that the third Web service is the best for having the smallest

Euclidean distance.

This example illustrates that the relative weight given to the quality criteria

affects the final ranking of the service and depends on the requester preferences and

therefore make certain quality criteria weigh more than others.
109

In the proposed quality-based Web service architecture (QWSA), it is

considered to select more than one best service to be a more efficient

approach; if one selected service failed, the others can be used instead.

III. QUALITY MATCHMAKING

Quality matchmaking is defined as a process that requires the quality

matchmaker to match the quality inquiry to all the quality advertisements

stored in the quality server’s database, in order to find appropriate advertised

services, which satisfy the quality requirements specified in the quality

inquiry.

Different requesters may have different requirements and preferences

regarding quality of Web service. For example, a requester may require to

minimize the execution time while satisfying certain constraints in terms of

price and reputation, while another requester may give more importance to the

price than to the execution time [6]. Therefore, a quality matchmaking

approach is needed to match quality requirements of requesters with the

published quality specifications of providers in order to select the best service

based on quality criteria constraints and preferences of the requesters.

The quality matchmaker is the core component in quality server. Every

service request received by quality matchmaker will be matched with the

service specifications that stored in the quality server database. If the match is

successful, the quality matchmaker returns a ranked set of desired Web

services and selects the appropriate service based on relevance quality criteria

using mathematical technique.

Quality Matchmaker

Interface Quality

Matchmaking Database

Quality Criteria
Matchmaking

Mathematical Requester
Matchmaking

Figure 1 Quality Matchmaker

The quality matchmaker component includes the following sub-components

(as shown in Figure 1)

 Interface matchmaking



 Quality criteria matchmaking


 Mathematical matchmaking

The roles of each sub-component are described in the following:

1) Interface Matchmaking

The interface matchmaking discovers the Web services which fitting functionality

with the request requirements. Functionality means an action that either the service

or the service requester can do [15]. This step finds all of the services matching the

interface by using the operation called find_tModel() API on the UDDI registry.

This step serves as an interface matchmaking filter and retrieves a list of all

relevant description tModels for the services which have the same function. Once a

set of tModels that match the specified

requirements have been found, then a requester can find the corresponding

services by using find_service() operation. This returns a list of all services

that implement the description in the chosen tModel [16] then quality manager

stores the result in the quality database.

The interface matchmaking is important but not sufficient to achieve requester

satisfaction, because there are many services implement the same functional

properties but have different non-functional (behaviour) properties and need

to differentiate between them. Therefore, further matchmaking technique is

needed regarding the quality criteria.

2) Quality Criteria Matchmaking

Quality criteria matchmaking compares the quality specifications with the

quality requirements based on the quality descriptions of the services’

behaviours. This step reduces or filters the returned list that is provided by the

above interface matchmaking using the quality criteria matchmaking filter.

The quality criteria matchmaking considers the structure of the quality criteria

XML Schema [5]. The exact match occurs when the group quality criteria

type and the sub-criteria type are same for both the quality requirements and

the quality specifications.

Quality criteria matchmaking then uses the quality value constraint

matchmaking filter in order to reduce the returned last list. The value of the

required or preferred value of a certain quality sub-criteria type has to be

within the range of the offered quality sub-criteria, and also the requested

quality sub-criteria range is a subset of offered quality range. Further filtering

needed to choose the optimum Web service from this list.

3) Mathematical Matchmaking

The mathematical matchmaking reduces the returned last list of services by

using mathematical matchmaking filter in order to choose an optimum Web

service.

The mathematical matchmaking ranks the services by calculating the distance

between the required quality sub-criteria and the offered quality sub-criteria

by using a mathematical model. The smallest distance means the best match

and therefore the requester can select the best Web service. Once the services

are ranked using Euclidean Distance technique, the requester needs to invoke

the service by using find_binding() operation. This stage is explained in the

following section.

IV. QUALITY MATCHMAKING PROCESS

The quality matchmaking process (QMP) determines which Web service from

the published Web services is the best service to be selected based on the

requesters quality requirements and preferences. The matchmaking process is

classified into two types:

 The first is the functional (interface) matchmaking that is used to

search the UDDI for a Web service with the required functionality.



 The second is to use the quality criteria classification and a

mathematical model to match the quality requirements against the

quality specifications in the quality database.

The quality matchmaking process (QMP) has four algorithms or filters:

Interface matchmaking (functional matchmaking), quality criteria type

matchmaking (non-functional matchmaking), quality criteria value constraint

matchmaking and mathematical matchmaking. Each of these algorithms or

filters narrows a set of matchmaking candidates with respect to a given filter

110

criterion. These four algorithms are illustrated below with an example using

Amazon E-Commerce Service (ECS) case study [17] .

Step -1: Interface Matchmaking Algorithm:
This step finds all of the matching services that only consider the published

Web services matching the required interface. Figure 1 shows a flow chart of

an interface matchmaking algorithm that matches the advertised functional

specifications in the Web services database with the functional requirements

and keeps the result in an iList array.

Start

Requester specifies

 functional requirement
“r”

Match “r” with

of Web services „s‟

 The quality matchmaker first searches the ECS database using

ItemSearch operation. The matchmaker matches the keyword Web

Services with the offered books within the Books category.



 The matchmaker returns a large list iList of matched books includes Web

Services keyword.

Step-2: Quality Criteria Type Matchmaking Algorithm:

This step is based on quality criteria classification structure. Figure 2 shows a

flow chart of a quality criteria and sub-criteria matchmaking algorithm. The

service requester selects the quality criteria and sub-criteria. The required

criteria type (such as Performance, failure Probability, Trustworthiness, and/or

Cost) and the sub-criteria type (such as Response Time, Availability,

reputation, etc.) are matched with the advertised criteria and sub-criteria type,

which are saved in the returned list iList in step-1. If both the required and

advertised criteria and sub-criteria type are same, then the result is saved in an

sqList[] array. This paper for simplicity assumes that the criteria and sub-

criteria type of the advertised services are always similar.

Example:

The above result which stored in iList is filtered by using quality criteria type

matchmaking algorithm. The matchmaker returns a list sqList of services

contains the following sub-criteria: Availability, Reputation, and Service

Price.

Figure 1 Interface Matchmaking Flow Chart

Example:

Listing 1 REST Request

The service requester sends his functional requirements to the quality

matchmaker. The quality matchmaker sends REST request to the ECS

database as shown in Listing 1. In ECS there are two types of request REST

(XML over HTTP) and SOAP request.

The interface description as shown in Listing 1 includes the following:

 Operation request ItemSearch. Amazon E-Commerce Service



 (ECS) [17] provides two types of inquiries: search and lookup request.



 SearchIndex Books. ECS provides several search indexes: Books, Music,
Computer, etc.



 Title Web Services. Title is a parameter to the ItemSearch operation.



 ResponseGroup: specifies the type of the retrieved information.

Start

Requester selects
quality requirement

“qr”

of „qr‟ with the quality

services „qs‟

type of „qr‟ with the quality

services „qs‟ in qList

Figure 2 Quality Type Matchmaking Flow Chart

The interface matchmaking steps are:

Step-3: Quality Criteria Value Matchmaking Algorithm:

111

This step is based on the quality sub-criteria level (High, Medium, or Low)

that the requester specifies. Each quality level has a preferred value. The

returned list sqList from step-2 is further filtered by using quality criteria

value matchmaking algorithm as shown in Figure 3. The following rule must

be satisfied in order to save the result in qvList array list: qlr<=qls

That is, the required quality sub-criteria value must be less than or equal the

advertised quality sub-criteria value.

Quality Requirement Description

Operation=ItemSearch
SearchIndex=Books
Title=Web Services
Availability= qlevel: High

Min: 90
Max: 99
Unit: Percentage

Weight: 0.579
Reputation= qlevel: Medium

Min: 2.5
Max: 4
Unit: None
Weight: 0.234

ServicePrice= qlevel: Medium
Min: 30

Start

Requester specifies
quality sub-criteria
levels “qlr” {High,

Medium, Low}

Match „qlr‟ with the quality sub-criteria level of

web
services „qls‟

No Is

 qlr <= qls

Yes

Save the matched

services in qvList []

End

iList []

sqList []

Max: 60
Unit: Pound
Weight: 0.187

Figure 4 Example of Quality Requirement provided by Service Requester

The quality database is the database in the quality server. Figure 5 shows the

result of quality value matchmaking algorithm. It shows different providers

providing services with the same functional specifications but different in its

quality specifications.

Quality Specifications Description

Service Provider1 Service Provider2 Service Provider3

Service1 Specification: Service1 Specification: Service1 Specification:

Title= Understanding Web Service:XML, Title= Understanding Web Service:XML, Title= Understanding Web Service:XML,

WSDL, SOAP, and UDDI WSDL, SOAP, and UDDI WSDL, SOAP, and UDDI
Availability=98 Availability=90 Availability=99

Reputation=4 Reputation=4.8 Reputation=3.5
ServicePrice=29.07 ServicePrice=39.69 ServicePrice=30.27

Figure 3 Quality Value Matchmaking Flow Chart

Example:

The returned result which stored in sqList is further filtered by using quality

sub-criteria value constraints matchmaking. The matchmaker returns a list of

services qvList which their offered quality values are within the range of the

required values. The ranges of the required quality values are related to the

required quality level parameter qlevel (High, Medium, or Low) as shown in

Figure 5. The query is shown in Listing 2.

SELECT Availability, Reputation, ServicePrice

FROM QualityDatabase

WHERE QualityDatabase.Availability= ´ + L J K ´ $ 1 '

QualityDatabase.Reputation= ´ 0 H G L X P ´ $ 1 '

QualityDatabase.ServicePrice= ´ 0 H G L X P ´

Listing 2 SQL Query

Service2 Specification: Service2 Specification: Service2 Specification:

Title=Web Services Security Title=Web Services Security Title=Web Services Security

Availability=90 Availability=95 Availability=90

Reputation=4 Reputation=4.8 Reputation=3.5
ServicePrice=26.44 ServicePrice=42.94 ServicePrice=28.47

Service3 Specification: Service3 Specification: Service3 Specification:
Title=J2EE Web Services Title=J2EE Web Services Title=J2EE Web Services

Availability=95 Availability=99 Availability=95
Reputation=4 Reputation=4.8 Reputation=3.5
ServicePrice=38.37 ServicePrice=45.72 ServicePrice=38.38

Figure 5 Example of Quality Specifications Description provided by Service

Providers

The result is organised in the following matrix:

AV  95 99 95 
  

REP  4 3.5 3.5 
P 38.37 30.27 38.38

  
The first row is related to sub-criterion Availability (AV), the second row is

related to Reputation (REP), the third row is related to Service Price (P).

The first column is related to book with title ―J2EE Web Services‖ which

provided by provider 1 (see Figure 5), the second column is related to book

title ―Understanding Web Service: XML, WSDL, SOAP, and UDDI‖ which

provided by provider 3, the third column is related to book title ―J2EE Web

Services‖ which provided by provider 3.
112

Step-4: Mathematical Matchmaking Algorithm

This step is based upon a mathematical model that explained in Section II.

This step is the most important step in the quality matchmaking process

(QMP) (see section IV). The mathematical matchmaking algorithm selects the

best Web service from the last list qvList from step-3 as shown in Figure 6.

The service requester specifies the selected quality criteria and sub-criteria

preferences. The weight of the quality criteria and sub-criteria is calculated

using Analytical Hierarchy Process. Then the consistency ratio (CR) must be

less than 0.1 to continue the process. Then the Euclidean distance measures

the distance between the requester’s quality requirements and the provider’s

quality specifications of the services that are saved in qvList[] array from step-
3. The service associated with a minimum distance is the best service to

select. The AHP and Euclidean distance are explained in Section II.

Example:

The mathematical technique (Analytical Hierarchy process and Euclidean

Distance) is used to measure the distance between the quality requirements

and the quality specifications. The minimum distance calculated will be the

best service to select. After using the mathematical technique the final result

are:

The distance of the book title ―J2EE Web Services‖ which provided by
provider 1 is: 0.268.

The distance of the book title ―Understanding Web Service: XML, WSDL,
SOAP, and UDDI‖ which provided by provider 3 is: 0.239.

The distance of the book title ―J2EE Web Services‖ which provided by
provider 3 is: 0.258.

From the above result the minimum distance is 0.239 which is related to the

book title ―Understanding Web Service: XML, WSDL, SOAP, and UDDI‖

and provided by provider 3, so this is the best book which the requester can

select to buy. It is noticed from the result that the book with highest

Availability value is selected and it is reasonable because the requester

specifies the quality level qlevel for the Availability sub-criterion to High,

whereas for Reputation and Service Price for Medium, this affect to the

weight priority of the Availability which is the highest priority (0.579) and

therefore affect the book selection.

Start

Requester specifies quality

criteria preferences “qp” and
sub-criteria preferences “qsp”

Calculate weights of “qp”
and “qsp” using Analytical

Hierarchy Process

Calculate Consistency

Ratio “CR”

No

Is
CR < 0.1

Yes

Calculate the

Euclidean distance

Select the Web service
qvList []

with minimum distance

End

Figure 6 Quality Mathematical Matchmaking Flow Chart

V. IMPLEMENTING MATHEMATICAL MATCHMAKING ALGORITHM

The mathematical matchmaking algorithm has been implemented by

developing a Utilities class using Visual Studio .NET 2005.

Utilities class contains the Matrix class and methods such as: FillMatrix(),

CalculateWeights(), ConsistencyRatio() and EuclideanDistance(). The matrix

class and the methods are described below.

Matrix class

Matrix class is used to create matrix instances. The matrix is a

multidimensional array is shown in Figure 8.

public class Matrix
{

double[,] matrix;
int numberOfRows, numberOfColumns; public

Matrix(int rows, int columns) {

numberOfRows = rows;
numberOfColumns = columns;
matrix = new double[rows, columns];

}

// Constructor to initialize the data in the matrix public double this[int i,
int j]
{

set { matrix[i,j] = value; } get { return
matrix[i,j]; }

}

// Return number of rows in the matrix
public int Rows
{

get { return numberOfRows; }
}

// Return number of columns in the matrix public int
Columns
{

get { return numberOfColumns; }
}

}
Figure 8 Matrix Class

FillMatrix() method

FillMatrix() method as shown in Figure 9 is used to construct pair-wise

comparison matrix A that is based on the service requester’s quality

preferences.
The input parameters to FillMatrix() method are the requester’s quality

preferences. The output of the FillMatrix() method is the pair-wise

comparison matrix A.

The number of the columns and the rows of matrix A, is equal to the number

of quality criteria (i.e. Trustworthiness), or sub-criteria (i.e. reputation).

113

//fillMatrix0 method construct pair-wise comparison matrix based on the service //

requester's criteria and sub-criteria preferences

public void fillMatrix0(Matrix A, double[] arrValue)

{
//if the service requester selects only one quality criteria

if(A.Rows==1)
{

for (int i=0;i<A.Rows;i++)
{

for(int j=0;j<A.Rows;j++)
{

A[i,j]=1;
A[j,i]=1;

}
}

}
//if the service requester selects more than one quality criteria else

if(A.Rows>1)
{

for (int i=0;i<A.Rows-1;i++)
{

for(int j=i+1;j<A.Rows;j++)
{

double nextVal = getNextValue(arrValue);
if(nextVal != -1)
{

A[i,j]=nextVal;
A[j,i]=1/nextVal;

A[i,i]=1;
A[j,j]=1;

}
}

}
}

}
Figure 9 FillMatrix() Method

CalculateWeights() method

CalculateWeights() method as shown in Figure 10 is used to calculate the

criteria and the sub-criteria weights from the pair-wise comparison matrix A.

This method is explained in Section II.
The input parameters to CalculateWeights() method are the matrix A and the

number of selected criteria. The output of the CalculateWeights() method is an

array this contains the weights of the selected quality criteria.
// calculateWeights() method calculates the criteria and sub-criteria weights from pair-wise
comparison matrix
public double[] calculateWeights(Matrix MatrixA, int criteriaNumber)

{
//calculate the sum of each column in MatrixA

criteriaNumber= MatrixA.Rows;
double [] Sum = new double[criteriaNumber];
for(int j=0; j<criteriaNumber; j++)
{

for(int i=0; i<criteriaNumber; i++)
{

Sum[j]=Sum[j]+MatrixA[i,j];
}

}

// create the normalized matrix Normalised
//by dividing each entry in the matrix by its column sum

Matrix Normalised = new Matrix(criteriaNumber,criteriaNumber); for(int j=0;

j<criteriaNumber; j++) {

for(int i=0; i<criteriaNumber; i++)
{

Normalised [i,j]=MatrixA[i,j]/Sum[j];
}

}

//Calculate the weight of each criteria
//which is equal to the avarage of its corresponding row double []

WeightCriteria = new double[criteriaNumber]; double sumOfRow = 0;

for(int i=0; i<criteriaNumber; i++)
{

for(int j=0; j<criteriaNumber; j++)
{

sumOfRow=sumOfRow+Normalised[i,j];
WeightCriteria[i]=sumOfRow/criteriaNumber;

}
sumOfRow=0;

}
return WeightCriteria;

}
Figure 10 CalculateWeight() Method

ConsistencyRatio() method

ConsistencyRatio() method as shown in Figure 11, is used to calculate

Consistency Ratio (CR). The CR measures the degree of consistency of the

selected preferences values of the quality criteria that considered as a

condition for allowing the service requester to continue the selection

procedures or to specify new quality preferences values. This method is

explained in Section II.

The input parameters to ConsistencyRatio() method are the matrix A, the

number of selected criteria and the weights array. The output of the

ConsistencyRatio() method is the Consistency Ratio (CR) value.

//ConsistencyRatio() method calculated the Consistenct Ratio (CR)

public double ConsistencyRatio (Matrix A, double [] weight, int criteriaNumber)
{
double consistencyIndex;

double consistencyRatio;
double randomIndex=1;

double sum=0;
double weightSum=0;
double eigenMax;
double [] eigenValue=new double[criteriaNumber];

// the values of Random Index (RI)for differrent number of criteria selected
// 3<=RI<=10

if (criteriaNumber==3)
{

randomIndex=0.58;
}
if (criteriaNumber==4)
{

randomIndex=0.9;
}
if (criteriaNumber==5)
{

randomIndex=1.12;
}
if (criteriaNumber==6)
{

randomIndex=1.24;
}
if (criteriaNumber==7)
{

randomIndex=1.32;
}
if (criteriaNumber==8)
{

randomIndex=1.41;
}
if (criteriaNumber==9)
{

randomIndex=1.45;
}
if (criteriaNumber==10)
{

randomIndex=1.49;
}

//calculate the eigenvalue max
for(int i=0; i<criteriaNumber; i++)
{

for (int j=0; j<criteriaNumber; j++)
{

weightSum=weightSum+weight[j]*A[i,j];
}
eigenValue[i]=weightSum/weight[i];
weightSum=0;

}
for(int k=0; k<criteriaNumber; k++)
{

sum=sum+eigenValue[k];
}
eigenMax=sum/criteriaNumber;

//calculate the Consistency Index (CI)
consistencyIndex=(eigenMax-criteriaNumber)/(criteriaNumber-1);

//calculate the Consistency Ratio (CR)

consistencyRatio=consistencyIndex/randomIndex; return

consistencyRatio;
}

Figure 11 ConsistencyRatio() Method

EuclideanDistance() method

EuclideanDistance() method as shown in Figure 12, is used to calculate the

Euclidean distance of the advertised Web services. The service with the

smallest distance is the best one that the service requester can select it. This

method is explained in Section II.
The input parameters to EuclideanDistance() method are the performance

matrix P; this contains the advertised services, the number of selected criteria,

the weights array and an array of the quality requirement values. The output of

the EuclideanDistance() method is an array of the Euclidean distance values

for all the advertised services in matrix P.

114

// EuclideanDistance() method calculates the Euclidean distance for each service in the performance

matrix
public double[]EuclideanDistance(Matrix P, int subCriteriaNumber, int serviceNumber, double[]

Weight,double []requirement)
{

subCriteriaNumber=P.Rows;
serviceNumber=P.Columns;
double sum=0;
double[] Sqrt=new double[subCriteriaNumber];
for(int i=0; i<subCriteriaNumber;i++)
{for(int j=0; j<serviceNumber; j++)

{
sum=sum+P[i,j]*P[i,j];

}
Sqrt[i]=Math.Sqrt(sum);

sum=0;
}

// calculate the normalized performance matrix
Matrix PNormalised = new Matrix(subCriteriaNumber,serviceNumber);
for(int i=0; i<subCriteriaNumber; i++)
{

for(int j=0; j<serviceNumber; j++)
{

PNormalised [i,j]=P[i,j]/Sqrt[i];
}

}
// create V matrix by multiplying weight vector with the normalized performance matrix

Matrix V =new Matrix(subCriteriaNumber, serviceNumber);
for(int i=0; i<subCriteriaNumber; i++)
{

for(int j=0; j<serviceNumber;j++)
{

V[i,j]=Weight[i]*PNormalised[i,j];
}

}
//multiply the weight vector with requirement value vector

double[] wr=new double[subCriteriaNumber];
for(int i=0; i<subCriteriaNumber;i++)
{

wr[i]=Weight[i]*requirement[i];
}
double[] SqrtC=new double[serviceNumber];
for(int j=0; j<serviceNumber; j++)
{

for(int i=0; i<subCriteriaNumber; i++)
{

sum=sum+P[i,j]*P[i,j];
}

SqrtC[j]=Math.Sqrt(sum);
sum=0;

}
//calculate the Euclidean distance

double[] EucDistance=new double[serviceNumber];
double finalSum=0;
for(int j=0; j<serviceNumber; j++)
{

for(int i=0; i<subCriteriaNumber; i++)
{

finalSum = finalSum +(V[i,j]-(wr[i]/SqrtC[j]))*(V[i,j]-(wr[i]/SqrtC[j]));
}

EucDistance[j]=Math.Sqrt(finalSum);
finalSum=0;

}
return EucDistance;

}

Figure 12 EuclideanDistance() Method

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed the role of the quality matchmaker

component, which is the core component in the proposed quality-based Web

service architecture (QWSA). The quality matchmaker introduces four

algorithms or filters: interface matching, quality criteria matchmaking, quality

value constraints matching, and mathematical matchmaking. These four

algorithms use the quality matchmaker sub-components to implement their

roles. The quality matchmaker has three sub-components which are: interface

matchmaking, quality criteria matchmaking and mathematical matchmaking.

A quality matchmaking process (QMP) is introduced to demonstrate the above

four algorithms and to select the best Web service. The last step in the

matchmaking process is a mathematical matchmaking algorithm. It is the most

important step that uses a mathematical model in order to select the best

candidates Web service based on requester’s quality requirements and

preferences. Two techniques are used in a mathematical model: Analytical

Hierarchy Process (AHP) and Euclidean distance.

QMP is illustrated by an example using Amazon E-Commerce Service (AEC)

case study. This example shows how the service selection is affected by two

factors: the criteria weights and the quality requirements values

The proposed quality matchmaking process (QMP) has been derived with the

assumption that the query, which is sent by the service requester, is volatile

that is no new services will be added to UDDI and no changes to the quality

criteria values for these services. These limitations will be further investigated

by adapting the requesters to any changes in the quality criteria during a long

time query.

VII. REFERENCES

[1] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F.

Nielsen, "SOAP Version 1.2 Part 1: Messaging Framework," 24

June 2003. Available at :http://www.w3c.org/TR/SOAP12-part1.

[2] E. Christensen, F. Curbea, G. Meredith, and S. Weerawarana,

"Web Services Description Language (WSDL) 1.1," March

2001. Available at: http://www.w3.org/TR/wsdl.

[3] A. Manes, "Web Services Standardization: UDDI," 19 September

2003. Available at: http://www.uddi.org/news.html.
[4] W3C Working Group, "Web Services Architecture," Feb. 2004.

[5] A. Eleyan and L. Zhao, "Extendind WSDL and UDDI with Quality

Service Selection Criteria," in The 3nd International Symposium

on Web Services Zayed University, Dubai, U.A.E, 2010.

[6] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J.

Kalagnanam, and H. Chang, "QoS-aware middleware for Web

services composition," IEEE Transactions on Software

Engineering, vol. 30, pp. 311 - 327, 2004.

[7] Y. Liu, A. H. Ngu, and L. Z. Zeng, "QoS computation and

policing in dynamic web service selection," in International World

Wide Web Conference, New York, NY, USA, 2004.

[8] P. Fedosseev, "Composition of Web Services and QoS Aspects,"

Seminar: Data Communication and Distributed Systems in the

WS 2003/2004.

[9] L. Taher, H. El Khatib, and R. Basha, "A Framework and QoS

Matchmaking Algorithm for Dynamic Web Services Selection,"

in Second International Conference on Innovations in Information

Technology (IIT'05) Dubai, UAE, 2005.

[10] T. L. Saaty, "How to make a decision: The Analytic Hierarchy

Process," European Journal of Operational Research, vol. 48, pp.

9-26, 1990.

[11] H. Ye, B. Kerherve, and G. V. Bochmann, "QoS-based

Distributed Query Processing," Ingénierie des Systèmes

d'Information (RSTI série ISI), vol. 9, 2004.

[12] M. Hajeeh and A. Al-Othman, "Application of the

analytical hierarchy process in the selection of desalination

plants," Desalination, vol. 174, pp. 97-108, 2005.

[13] L. Taher, R. Basha, and H. El Khatib, "Establishing Association

between QoS Properties in Service Oriented Architecture," in

Proceedings of the IEEE International Conference on Next

Generation Web Services Practices (NWeSP'05), 2005.

[14] L. Taher, H. Khatib, and R. Basha, "A Framework and QoS

Matchmaking Algorithm for Dynamic Web Services Selection,"

in The Second International Conference on Innovations in

Information Technology (IIT'05), 2005.

[15] S. Andreozzi, D. Montesi, and R. Moretti, "Web Services Quality," in

Conference on Computer, Communication and Control Technologies

(CCCT03), Orlando, 31 July - 2 August 2003.

[16] J. Colgrave, R. Akkiraju, and R. Goodwin, "External matching

in UDDI," in IEEE International Conference on Web Services

(ICWS'04), San Diego, California, June 2004.

[17] "Amazon Web Services," Available at:

http://amazon.com/webservices.

115

