
Please cite the Published Version

Amos, M and Lloyd, H (2017) Analysis of Independent Roulette Selection in Parallel Ant Colony
Optimization. In: The Genetic and Evolutionary Computation Conference 2017 (GECCO 2017),
15 July 2017 - 19 July 2017, Berlin, Germany. (Unpublished)

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/618526/

Usage rights: In Copyright

Additional Information: This is an Author Accepted Manuscript of a paper to be presented at
GECCO 2017, copyright The Authors.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://e-space.mmu.ac.uk/618526/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Analysis of Independent Roule�e Selection in Parallel Ant
Colony Optimization

Huw Lloyd
Informatics Research Centre,

Manchester Metropolitan University,
Chester Street,

Manchester, United Kingdom M1 5GD.
Huw.Lloyd@mmu.ac.uk

Martyn Amos
Informatics Research Centre,

Manchester Metropolitan University,
Chester Street,

Manchester, United Kingdom M1 5GD.
M.Amos@mmu.ac.uk

ABSTRACT
�e increased availability of high-performance parallel architec-
tures such as the Graphics Processing Unit (GPU) has led to sig-
ni�cant interest in modi�ed versions of metaheuristics that take
advantage of their capabilities. Parallel Ant Colony Optimization
(ACO) algorithms are now widely-used, but these o�en present a
challenge in terms of maximizing the potential for parallelism. One
common bo�leneck for parallelization of ACO occurs during the
tour construction phase, when edges are probabilistically selected.
Independent Roule�e (I-Roule�e) is an alternative to the standard
Roule�e Selection method used during this phase, and this achieves
signi�cant performance improvements on the GPU. In this paper
we provide the �rst in-depth study of how I-Roule�e works. We
establish that, even though I-Roule�e works in a qualitatively dif-
ferent way to Roule�e Wheel selection, its use in two popular ACO
variants does not a�ect the quality of the solutions obtained. How-
ever, I-Roule�e signi�cantly accelerates convergence to a solution.
Our theoretical analysis shows that I-Roule�e possesses several
interesting and non-obvious features, and is capable of a form of
dynamical adaptation during the tour construction process.
ACM Reference format:
Huw Lloyd and Martyn Amos. 2017. Analysis of Independent Roule�e
Selection in Parallel Ant Colony Optimization. In Proceedings of the Genetic
and Evolutionary Computation Conference 2017, Berlin, Germany, July 15–19,
2017 (GECCO ’17), 8 pages.
DOI: 10.475/123 4

1 INTRODUCTION
Ant Colony Optimization (ACO) is a meta-heuristic method for
combinatorial optimization which is based on the foraging behavior
of ants. �e scheme was �rst proposed by Dorigo [8] and has
subsequently appeared in several variants [10]. �e algorithm
is commonly applied to discrete optimization problems such as
the Traveling Salesman Problem (TSP), in which the edges of a
complete graph are assigned cost values, and the problem is to �nd
the Hamiltonian circuit with minimum total cost.

Applied to the TSP, the ACO algorithm proceeds as follows: at
each iteration, a number of simulated ants are placed on random

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’17, Berlin, Germany
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . .$15.00
DOI: 10.475/123 4

vertices of the graph. Each ant then constructs a Hamiltonian circuit
of the graph, selecting the next vertex from the set of unvisited ver-
tices according to a weighted random process in which the weights
are determined by heuristic values assigned to the edges. �e heuris-
tic value assigned to an edge combines the cost of the edge with
the amount of pheromone deposited by ants in previous iterations.
A�er the tour construction is complete, ants deposit pheromone
on the edges visited in their tours, the amount of pheromone being
inversely proportional to the cost of the tour. At each iteration, the
pheromone on each edge is evaporated by a constant fraction. �e
iterations are repeated until some convergence criterion, or time
limit, is met.

�e increasing availability of high performance computing plat-
forms such as Graphics Processing Units (GPUs) has led to growing
interest in their potential as a platform for parallel ACO [1], [4]
[11], [20]. GPUs typically o�er high computational throughput
(albeit with high latency) at relatively low �nancial cost and with
low energy consumption (see, for example, [12]). However, appli-
cations require a high degree of parallelism in order to exploit the
full performance of the hardware, and ACO is a challenging case.
Both the main phases of the algorithm – tour construction and
pheromone deposition – present challenges for a parallel imple-
mentation. Pheromone deposition requires concurrent access to the
pheromone data, represented as a two-dimensional square (N × N)
matrix, with each entry representing an edge of the complete graph
of order N . Although the tour construction phase can be trivially
parallelized by assigning one ant to each thread, this task-parallel
approach is not su�ciently �ne-grained to take full advantage of
massively parallel hardware such as GPUs.

As an alternative, Cecilia et al. [1] describe an implementation
of ACO which instead uses a data parallel approach, and which
is capable of high parallel e�ciency on GPUs. A key component
of this algorithm is the Independent Roule�e (I-Roule�e) method,
which is used during the tour construction phase to select edges.
�e development of I-Roule�e is motivated by the fact that the
standard sequential Roule�e Wheel selection method (i.e., where
the chance of an edge being selected is directly proportional to its
“quality”) is extremely di�cult to parallelize. I-Roule�e is able to
achieve signi�cant performance improvements on the GPU, and
has provided the foundation for recent work on parallel ACO for
image processing [3, 6] and (in an adapted form) data mining [7].

Analyses of I-Roule�e [3, 4] focus almost exclusively on its per-
formance in terms of run-time, motivating the development of
methods that are superior in terms of this metric. Although the
I-Roule�e method was originally intended to simply replace the

GECCO ’17, July 15–19, 2017, Berlin, Germany &

sequential version of Roule�e Wheel selection, the two methods
produce very di�erent selection probabilities, which may a�ect the
performance of the algorithm in terms of solution quality and con-
vergence speed. In this paper we address two research questions:

(1) How are the probabilities of selecting edges modi�ed by
using I-Roule�e?

(2) What e�ect, if any, does I-Roule�e have on the speed of
convergence and �nal solution quality?

We establish that, even though I-Roule�e works in a qualitatively
di�erent way to Roule�e Wheel selection, its use in two popular
ACO variants does not a�ect the quality of the solutions obtained,
and, moreover, signi�cantly accelerates the convergence to a so-
lution. Our theoretical analysis shows that I-Roule�e possesses
several interesting and non-obvious features, and is capable of a
form of dynamical adaptation during the tour construction process.

�e remainder of the paper is organized as follows. In section 2
we provide a brief motivation for the current work, placing it in
the context of existing studies. In section 3 we describe the ant
colony algorithms used for the experiments in this paper, and the
Roule�e Wheel and I-Roule�e selection methods. Section 4 presents
an analysis of I-Roule�e, in which we derive expressions for the
probability of selecting an edge using I-Roule�e as a function of the
distribution of heuristic weights. Section 5 presents the results of
experiments conducted to compare the quality of solutions obtained
using the two selection methods on a range of standard problem
instances using two di�erent ACO variants (and the convergence
speed of the algorithms using each method). Finally, in section 6, we
summarize our �ndings and discuss possible directions for future
research.

2 MOTIVATION AND RELATEDWORK
In order to parallelize the tour construction phase, Cecilia et al. [1]
introduced the I-Roule�e (independent roule�e) method. In this
scheme, the heuristic weights (Wi , i ∈ [1,N]) for the N edges under
consideration are independently multiplied by uniform random
deviates Ri ∈ [0, 1]; the edge with the highest product WiRi is
then chosen as the next edge in the tour. �e generation of the
deviates and the multiplication by the weights is carried out in
parallel, and the maximum is then obtained by a parallel reduction.
�e algorithm is used to replace the usual Roule�e Wheel Selection,
in which the probablility of selecting an edge is proportional to
the edge’s weight. Importantly, in the I-Roule�e algorithm, that
proportionality is lost.

Dawson and Stewart [4] and Dawson [3] also present a GPU
implementation of ACO, and introduce double spin roule�e as a
method for selecting edges. In this work, the authors highlight
the superiority of their method in terms of runtime. However,
unlike I-Roule�e, double spin roule�e produces a probability of
selecting a given edge which is proportional to its weight (as with
“traditional” Roule�e Wheel selection); Dawson and Stewart [4]
argue that this should result in be�er quality solutions. However,
the results presented in [1] show no evidence for a degradation
in solution quality using I-Roule�e, and, if anything, show some
evidence for improvement. �is provides the motivation for the
current study, in which we conduct experiments to determine the

e�ects of I-Roule�e on the quality of solutions found by ant colony
algorithms.

Uchida et al. [20] use four di�erent selection algorithms. �ree
of these are essentially the same as Roule�e Wheel selection, with
di�erent GPU implementations, while the fourth is Stochastic Ac-
ceptance [13], which is also equivalent in that it retains the propor-
tionality between the edge weights and the probability of selection.
Finally, Fu et al. [11] use the ‘all-in roule�e’ scheme in their GPU
ACO implementation, which is e�ectively the same as I-Roule�e.

�e study presented in this paper has two aims: �rstly, to gain
an understanding of how the selection probabilities are changed
by using the I-Roule�e process, and, secondly, to empirically deter-
mine the e�ects of I-Roule�e selection on ant colony optimization
implementation.

3 ANT COLONY OPTIMIZATION
Since it was �rst described by [8], many variants of ACO have been
proposed. In this study, we limit our a�ention to Max-Min Ant
System (MMAS)[18] and Ant Colony System (ACS) [9], two of the
best-performing variants.

We now expand on our earlier informal description of ACO algo-
rithms for the TSP, in order to establish basic notation and terms.
�ese algorithms proceed iteratively; each iteration comprises two
stages: tour construction and pheromone update. �e ant system
contains m ants. At the beginning of the tour construction stage,
each ant is placed randomly on one of the n vertices of the graph.
At each subsequent step in the construction of a tour, ants select the
next vertex to visit (and consequently the next edge to traverse) by
a random process in which the probabilities of selecting edges are
determined by a heuristic weight calculated from the pheromone
value associated with the edge and the edge length. �e probability
of ant k , currently placed on vertex i , of choosing vertex j is given
by

pki, j =

[τi, j]α [ηi, j]β∑

j∈Nk
i
[τi, j]α [ηi, j]β

i ∈ N k
i

0 otherwise
(1)

where ηi, j = 1/di, j and di, j is the length of the edge connecting
vertices i and j. τi, j is the amount of pheromone associated with
edge i, j. N k

i is the feasible region for ant k on vertex i – this
is simply the set of vertices not yet visited on the current tour,
and is maintained in practice by using the tabu list, a list of the
vertices already visited. �e two parameters α and β are �xed at
the beginning of a run, and control the relative importance of edge
cost and pheromone in determining the probabilities. In the ACS
algorithm, an additional parameter, q0 ∈ [0, 1], is introduced. In
this algorithm, with probability q0, the random selection process
is replaced by ‘greedy’ selection – i. e. the edge with the highest
weight is chosen without making a random selection.

When all ants have completed their tours, the pheromone values
associated with each edge of the graph are updated. Firstly, the
pheromone values are evaporated according to the rule

τi, j ← (1 − ρ)τi, j∀(i, j) ∈ L (2)
where ρ ∈ [0, 1] is a parameter which controls the rate of evapora-
tion and L is the set of edges in the complete graph. Finally, some

Analysis of Independent Roule�e Selection in Parallel Ant Colony Optimization GECCO ’17, July 15–19, 2017, Berlin, Germany

subset of ants deposit pheromone on all edges visited in their tours.
�e pheromone is updated using

τi, j ← τi, j +
m∑
k=1

∆τki,k ,∀(i, j) ∈ L (3)

where ∆τki,k is the amount of pheromone deposited on edge (i, j)
by ant k , which is given by

∆τki,k =

{
1/Ck if edge(i, j) ∈ T k

0 otherwise
(4)

where T k is the set of edges in ant k’s tour, and Ck is the total
cost of tour T k , which is equal to the sum of the edge lengths,∑
i, j ∈T k di, j . MMAS and ACS di�er in how the pheromone is de-

posited: in MMAS, the iteration-best or best-so-far ant deposits
pheronome. In ACS, only the best-so-far (global best) ant deposits
pheromone. Finally, in the MMAS algorithm, a clamping procedure
limits the pheromone values between some global minimum and
maximum value.

�e use of nearest-neighbor lists or candidate sets is an important
optimization in the tour construction process [10]. When selecting
the next vertex in a tour, only a �xed number of nearest neighbour
vertices are considered: if all of these have already been visited (i. e.
are in the tabu list), a random vertex is chosen. Two of the GPU im-
plementations described in the literature include this optimization
([2], [5]).

4 ANALYSIS OF I-ROULETTE
In this section we analyze I-Roule�e in terms of the e�ect the
method has in modifying the probabilities from a given set of
weighted edges during the tour construction phase, by deriving
exact expressions for the probabilities of selecting edges in terms
of the edge weights.

We consider the case where I-Roule�e is used to select from a
set of N edges with non-zero weights W1, W2, . . . , WN . Without
loss of generality, let the weights be ordered such thatW1 ≤W2 ≤
. . . ≤WN . We �rst calculate the probability of selecting the high-
est weighted edge, N . �e probability of choosing edge N using
Roule�e Wheel Selection is

PN =
WN∑N
i=1Wi

(5)

We seek the modi�ed probability, which we denote P ′N , of selecting
the highest weighted edge using the I-Roule�e scheme. In the I-
Roule�e process, each of the weightsWi , i ∈ [1,N] is multiplied by
an independent uniform random deviate Ri ∈ [0, 1], and the chosen
edge is

iselected = arg max
i ∈[1,N]

WiRi (6)

We seek the probability P ′N that WN RN > WiRi∀i ∈ [1,N − 1].
Let the cumulative probability distribution (the probability that
WiRi ≤ x) ofWiRi be qi (x) , given by

qi (x) =
{
x/Wi x ≤Wi

1 otherwise
(7)

�e probability distribution function ofWN RN , pN (x) is given by

pN (x) =
{

1/WN x ≤WN

0 otherwise
(8)

�e probability that WN RN > WiRi∀i ∈ [1,N − 1] can then be
wri�en as

P ′N =
∫ WN

0
q1(x)q2(x) . . .qN−1(x)pN (x)dx

=
1

WN

∫ WN

0
qi (x)q2(x) . . .qN−1(x)dx (9)

Since theW ’s are ordered, and qi (x) = 1 for x >Wi , we can split
the integral as follows

P ′N =
1

WN

{∫ W1

0
q1(x) . . .qN−1(x)dx+∫ W2

W1
q2(x) . . .qN−1(x)dx + . . . +

∫ WN−1

WN−2
qN−1(x)dx

+

∫ WN

WN−1
dx

}
(10)

Substituting for the qi ’s and integrating, we �nd

P ′N =
1

WN

{
1
N

W N
1

W1 . . .WN−1
+

1
N − 1

W N−1
2 −W N−1

1
W2 . . .WN−1

+

. . . +
1
2
W 2
N−1 −W

2
N−2

WN−1
+WN −WN−1

}
(11)

Gathering terms inWi and rearranging, we obtain

P ′N = 1 −
N−1∑
i=1

1
(N − i)(N + 1 − i)

W N−i
i∏N

j=i+1Wj
(12)

For a given unmodi�ed probability PN , the modi�ed probability
will depend on the detailed distribution of the weightsW1 . . .WN−1.
We now �nd the conditions under which P ′N takes minimum and
maximum values.

For given PN ,WN , the sum of the weights fromW1 toWN−1 is a
constant – di�erent values of P ′N are thus obtained by sharing out
this total weight in di�erent ways betweenW1 . . .WN−1. Consider
the case where a small amount of weight ϵ is exchanged between
two adjacent weights Wk and Wk−1, (k > 1) such that ϵ is small
compared to the weights, and su�ciently small so as not to disturb
the ordering of the weights. We now show that this always leads
to an increase in the modi�ed probability P ′N . We note that ϵ will
appear in all terms of the sum in equation 12 with i ≤ k (these are
the terms that include Wk−1 and Wk). Let Tk be the term i = k ,
Tk−1 be the term i = k − 1, and S be the sum of all the terms with
i < k − 1 (if k = 2, S = 0). Se�ing

W ′k =Wk − ϵ (13)

and
W ′k−1 =Wk−1 + ϵ (14)

we can write
S ′ = S

WkWk−1
(Wk − ϵ)(Wk−1 + ϵ)

(15)

GECCO ’17, July 15–19, 2017, Berlin, Germany &

T ′k = Tk

(
Wk − ϵ
Wk

)N−k
(16)

and

T ′k−1 = Tk−1

(
Wk

Wk − ϵ

) (
Wk − 1 + ϵ

Wk−1

)N+1−k
. (17)

We now treat each of these terms in turn.
Rearranging equation 15 we obtain

S ′ = S

(
1 − ϵ

Wk

)−1 (
1 + ϵ

Wk−1

)−1
(18)

Expanding in terms of ϵ/Wk and ϵ/Wk−1, and retaining termsO(ϵ),

S ′ = S

[
1 + ϵ

(
1

Wk
− 1
Wk−1

)]
+O(ϵ2). (19)

SinceWk−1 ≤Wk , then S ′ < S for small values of ϵ > 0, indepen-
dent of the distribution of weights within the terms of S .

Rearranging equation 16, and expanding in terms of ϵ/Wk , we
obtain

T ′k = Tk

(
1 − ϵ

Wk

)
+O(ϵ2). (20)

Hence, T ′k < Tk for small values of ϵ > 0.
For Tk−1, we again expand in terms of ϵ/Wk and ϵ/Wk−1 and

retain terms O(ϵ) to obtain

T ′k−1 = Tk−1

[
1 + ϵ

(
N + 1 − k
Wk−1

+
1

Wk

)]
+O(ϵ2). (21)

�us, T ′k−1 > Tk for small positive values of ϵ .
In order to show that P ′ always increases under the transforma-

tionWk ←W ′k ,Wk−1 ←W ′k−1, it su�ces to show thatT ′k +T
′
k−1 ≤

Tk +Tk−1, since S ′ < S , and in any case there are no terms in S for
k = 2. �is is equivalent to the condition

T ′k−1 −Tk−1
Tk −T ′k

≤ 1 (22)

From equations 20 and 21, and ignoring the terms O(ϵ2), we write
T ′k−1 −Tk−1
Tk −T ′k

=
Tk−1
Tk

[
Wk
Wk−1

N + 2 − k
N − k

]
(23)

Substituting for Tk−1 and Tk , this takes the simple form
T ′k−1 −Tk−1
Tk −T ′k

=

(
Wk−1
Wk

)N−k
. (24)

SinceWk−1 ≤Wk by construction, condition 22 is satis�ed and P ′N
increases under the transformationWK ←W ′k ,Wk−1 ←W ′k−1, for
su�ciently small values of ϵ .

We can now determine the conditions under which P ′N is a
minimum and maximum. �e maximum value of P ′N , for a given PN ,
will occur when all the weightsW1,W2, . . .WN−1 are equal toWN ×
(1 − PN)/(N − 1); for any other arrangement of the weights,WN−1
can be reduced by exchanging ϵ withWN−2 leading to an increase
in P ′N – hence the maximum of PN coincides with the minimum
ofWN−1. We apply similar arguments to �nd the minimum. Since
we can always reduce P ′N by exchanging small amounts ϵ in the
directionWi toWi+1, then the minimum value of PN will be when
WN−1,WN−2 etc. are maximized in turn. �is is achieved forWj
by se�ingWj to the minimum of the remaining weight (WN × (1 −∑N
i=j+1 Pi)/PN) andWj+1.

When PN = 1/M,M < N , the minimum is constructed by se�ing
WN , WN−1 . . .WN−M to the same value, and all other weights to
zero. �is reduces to the case where N = M and the probabilities
are equal, hence P ′N ,min = PN . Between PN = 1/M and PN =

1/(M + 1), there is an additional term in the series. We now use this
behavior to show that P ′N ,min ≥ PN . If 1/(M + 1) ≤ PN ≤ 1/M ,
M an integer less than N , then we construct P ′N ,min as follows.
For convenience, and without loss of generality, let the weights be
normalized such that we can identify weights with probabilities
andWN = PN . �en the weightsWN−M+1 . . .WN are equal to PN ,
andWN−M = 1 −MPN . All other weights are zero. We can now
use these weights with equation 12, a�er some manipulation, to
write P ′N ,min, the minimum value of P ′N as

P ′N ,min =
1
M
− 1
M(M + 1)

(
1 −MPN

PN

)M
(25)

We wish to show that P ′N ,min ≥ PN for 1/(M + 1) ≤ PN ≤ 1/M .
�is will be the case if P ′N ,min − PN ≥ 0. Using equation 25, we
write the condition for P ′N ,min ≥ PM as(

1
M
− PN

)
− 1
M(M + 1)

(
1 −MPN

PN

)M
≥ 0 (26)

Writing PN as
PN =

1
M + ∆

(27)

with 0 ≤ ∆ ≤ 1, condition 26 becomes
∆

M(M + ∆) −
∆M

M(M + 1) ≥ 0 (28)

For 0 ≤ ∆ ≤ 1 this is always true since the second term is always
less than or equal to the �rst term, and both terms are positive. Since
this is true for anyM < N , we conclude that P ′N ,min is always ≥ PN ,
and hence P ′N is always ≥ PN .

To summarize the results on P ′N ,
(1) �e modi�ed probability is given by

P ′N = 1 −
N−1∑
i=1

1
(N − i)(N + 1 − i)

W N−i
i∏N

j=i+1Wj
(29)

(2) P ′N is a maximum for a given PN when all the weights
W1 . . .WN−1 are equal.

(3) P ′N is a minimum for a given PN when the weightsWN−1,
WN−2 . . . are maximized in turn (i.e. by se�ing each weight
Wi to the minimum of the remaining total weight and
Wi+1).

(4) P ′N ≥ PN .
�e modi�ed probability of edge N − 1, P ′N−1 can then be found
using the reduced set of edges 1 . . .N − 1, and scaling by 1 − P ′N .
�is process can then be applied recursively to obtain the complete
set of modi�ed probabilities. �e general expression for P ′N−k ,
k ∈ [1,N − 1] is

P ′N−k =

(
1 −

N∑
i=N−k

P ′i

)
×[

1 −
N−k−1∑
i=1

1
(N − k − i)(N + 1 − k − i)

W N−k−i
i∏N−k
j=i+1Wj

] (30)

Analysis of Independent Roule�e Selection in Parallel Ant Colony Optimization GECCO ’17, July 15–19, 2017, Berlin, Germany

a b

Figure 1: Plots of the minimum and maximum values of P ′N
as functions of PN for (a) N = 20 and (b) N = 5

Figure 1 shows plots of the allowed values of P ′N (the shaded
area) for N = 3 and N = 20. Note that only the region PN ≥ 1/N is
plo�ed – sinceWN is the largest weight, PN < 1/N is impossible.
Clearly, when N is relatively large, it is possible for P ′N to approach
unity even when PN is small. �e e�ect of I-Roule�e appears to be
that when selecting from a large number of edges (as is the case
early in the construction of a tour), the highest weighted edge is
chosen with disproportionately high probability with respect to the
weights.

It is instructive to look at real instances of I-Roule�e extracted
from runs of an ACO code. Figure 2 shows data extracted from
runs of the MMAS algorithm on the d198 TSP test problem. �e
plots show probabilites derived from weights extracted from cases
when ants were choosing between 20 and 3 non-zero weighted
edges respectively. �e maximum and minimum values of P ′N as a
function of PN , and the line P ′N = PN are shown for guidance.

For the case N = 3, I-Roule�e selects using probabilities that
do not deviate greatly from Roule�e Wheel. For N = 20, however,
we see that in many cases the algorithm considerably ampli�es
the probability of the most likely edge. �ese are cases where the
selection method is presented with a set of edges in which one edge
carries a signi�cantly larger weight than the others. In these cases,
the algorithm tends towards greedy selection (in which the highest
weighted edge is always selected). �is situation is more likely to
occur at relatively early stages of tour construction , when most of
the edges in the nearest-neighbor list are available.

Clearly, I-Roule�e is behaving in a qualitatively di�erent way
to roule�e selection, o�en amplifying the probability of an edge
by a large factor in cases where there are a large number of edges
to be chosen from and when one edge carries the majority of the
weighting. When there are relatively few edges to choose from,
as will occur in the later stages of tour construction, the behavior
more closely approximates the proportional probabilities obtained
from Roule�e Wheel selection.

�e e�ect of I-Roule�e in amplifying certain probabilities by
large factors may seem counter-intuitive, but the underlying mech-
anism is easily demonstrated by example. Consider the case which
is schematically represented in Figure 3, in which there are 20
weights, the largest weight is 1, and the other weights are all ap-
proximately equal but < 0.8. Using Roule�e Wheel selection, all the

a b

Figure 2: Values of P ′N vs. PN extracted runs of the MMAS
algorithmwith I-Roulette on the test problem d198 when se-
lecting between (a) 20 edges and (b) 3 edges. Data is extracted
at the tenth iteration of the algorithm.

Figure 3: Schematic representation of an illustrative prob-
lem with 20 weights. See text for details.

choices would carry a probability ∼ 0.05, with slightly higher prob-
ability for the highest weighted choice. However, using I-Roule�e,
we see that there is a probability of 0.2 thatW20 is multiplied by a
random number (R20) which is greater than 0.8. In this case, it is
impossible for any of the other choices to ‘win’ the process, so the
probability of selecting the highest weighted choice is at least 0.2.
�ere will be a small additional contribution from the possibility
of W20R20 winning the process when R20 < 0.8, but this will be
again ∼ 0.05. �us, the probability is ampli�ed by a factor of at
least four. �e I-Roule�e probability is dominated in this case by
the relative amount by whichW20 is greater than its nearest rival,
W19. �is e�ect is greater when N is large, since the roule�e wheel
probability varies as 1/N , whereas the I-Roule�e probability P ′N
is dominated by the relative di�erence between WN and WN−1,
which is independent of N .

GECCO ’17, July 15–19, 2017, Berlin, Germany &

Table 1: TSPLIB Instances used for the experimental runs.

Group A

kroA100, kroB100, kroC100, kroD100,
kroE100, rd100, eil101, lin105, pr107,
pr124, bier127, ch130, pr136, gr137,
pr144, ch150, kroA150, kroB150, pr152,
u159, rat195, d198, kroA200, kroB200,
gr202, ts225, tsp225, pr226, gr229,
gil262, pr264, a280, pr299, lin318,
rd400, fl417, gr431, pr439, pcb442,
d493

Group B att532, ali535, u574, rat575, p654,
d657, gr666, u724, rat783

Group C

dsj1000, pr1002, u1060, vm1084,
pcb1173, d1291, rl1304, rl1323,
nrw1379, fl1400, u1432, fl1577, d1655,
vm1748, u1817, rl1889

5 EXPERIMENTAL RESULTS
In this section we describe a series of experiments conducted to
investigate the e�ect of I-Roule�e on solution quality and conver-
gence speed with two ACO variants, using a set of standard test
problems.

5.1 Experimental Setup
Runs were carried out using the standard ACOTSP code [17], with a
modi�cation to allow the roule�e selection procedure to be replaced
by I-Roule�e. Other than this change, the code is unmodi�ed.

5.1.1 Problem Instance Set. Problem instances were selected
from the TSPLIB [16] library of TSP instances. All instances with
100–2000 vertices and edge weight types supported by ACOTSP
were used in the experiments: this gives a total of 65 instances,
which are listed in Table 1. For the selection of ACO parameters,
these were divided into three groups: those with 100–499, 500–999
and 1000–2000 vertices respectively. For each instance, we ran 50
trials each of ACS and MMAS, both with and without I-Roule�e.

5.1.2 Algorithms and Parameters. Runs were carried out using
two ACO variants: Ant Colony System (ACS) and Max-Min Ant
System (MMAS). �ese two variants are among the best perform-
ing ACO algorithms for the symmetric TSP. �e parameters were
chosen based on recommendations in [19], and are listed in Table 2.
Note that [19] recommends a small number of ants (m = 10) for
ACS, and, although their default se�ing for MMAS is m = n ants
(where n is the number of vertices), they obtain be�er results with
fewer ants. Here, we use m = 50 for the smaller problems, and
m = 100 in the larger problems. �e runs are limited to a �xed
number of tour evaluations: this parameter is set to a di�erent value
for each of the three size groups in order to ensure well-converged
solutions in all cases. �e tour evaluation limit is the same for both
MMAS and ACS; since the ACS runs use fewer ants, they run for
more iterations, but the total runtime is comparable.

Table 2: ACOTSP parameters for the experimental runs

m MMAS: 50 (A) 100 (B,C), ACS: 10
Nearest-neighbors 20

α 1
β 2
ρ MMAS: 0.2, ACS: 0.1
q0 MMAS: 0, ACS: 0.9

Tour evaluations 50000 (A), 200000 (B), 400000 (C)

a b

Figure 4: Plots of solution quality ratio (I-Roulette/Roulette)
vs. number of vertices for (a) MMAS and (b) ACS. Circles
represent mean solutions, crosses best solutions.

5.2 Solution�ality
We de�ne the solution quality, Q , as the ratio of the length of the
shortest tour found in a run to the known optimum for the problem
instance. �e results are summarized in Figure 4, in which we plot
the mean values of the solution quality obtained using I-Roule�e
(QI R) versus those obtained using Roule�e Wheel selection (QR)
for ACS and MMAS. Both algorithms obtain very similar solution
quality, and the data is clustered closely around the line QI R = QR .
With MMAS, the solution quality appears to be slightly degraded
by using I-Roule�e, whereas there is no noticeable e�ect in the
ACS runs. In order to investigate any dependency on the number
of vertices, we plot the ratio QI R/QR as a function of number of
vertices in �gure 5. Table 3 gives the mean and standard deviation
of the ratio QI R/QR for each group in instances for MMAS and
ACS. Values are given for ratios calculated using both the mean
and best values of Q .

Figure 5 (a) shows that MMAS has marginally worse performance
with I-Roule�e for instances with > 1000 vertices, apart from one
outlier (instance �1400), in which I-Roule�e appears to perform
much be�er. If this point is discounted, the mean ratio QI R/QR for
MMAS in Group C is 1.0058± 0.0022 for mean values, and 1.0048±
0.0060 for best values, which is less than a 0.5% degradation. We
conclude, therefore, that I-Roule�e does not lead to any signi�cant
degradation of the quality of solutions obtained using ACS and
MMAS. �is conclusion is supported by the data in Table 4, which
shows the results of applying the Wilcoxon signed rank test to the
paired values of mean and best solution quality. �e null hypothesis
that the median di�erence in quality is zero can be rejected for the
mean solution quality (〈Q〉) using MMAS, and in this case the size
of the e�ect (from the median di�erence) is small (0.015).

Analysis of Independent Roule�e Selection in Parallel Ant Colony Optimization GECCO ’17, July 15–19, 2017, Berlin, Germany

a b

Figure 5: Plots of solution quality, IRoulette vs. Roulette
for (a) MMAS and (b) ACS. Circles represent mean solutions,
crosses best solutions.

Table 3: Mean and standard deviation of QI R/QR from the
experimental runs.

Mean Q Best Q
〈QI R/QR 〉 σ (QI R/QR) 〈QI R/QR 〉 σ (QI R/QR)

A 1.0001 0.0028 1.0003 0.0028
MMAS B 1.0013 0.0033 0.9993 0.0028

C 1.0025 0.0129 1.0010 0.0159
A 0.9996 0.0047 0.9997 0.0031

ACS B 0.9997 0.0043 0.9984 0.0036
C 0.9995 0.0095 0.9980 0.0051

Table 4: Results of statistical tests. ∆ is the median di�er-
ence (I-Roulette minus Roulette) for the quantity x , and p is
the two-sided p-value from the Wilcoxon signed rank test.
Statistically signi�cant p values are in bold face.

x ∆ p

〈Q〉 0.015 0.004
MMAS Qbest 0.0003 0.094

T0.05 −3700 0.000
T0.1 −2400 0.000
〈Q〉 −0.005 0.094

ACS Qbest 0.0 0.113
T0.05 −1800 0.000
T0.1 −480 0.000

5.3 Convergence Speed
We de�ne the quantity Tf as the number of tour evaluations in
a run before the solution quality is within a factor 1 + f of the
best solution found in the run. For example, T0.05 is the number
of tours constructed in the run when the solution is within 5%
of the best value found at the end of the run. For each problem
instance and algorithm, we compute the median over 50 trials of
T0.05 and T0.1. �ese quantities are plo�ed for the 65 instances in
Figure 6. In all cases, bar one outlier in the MMAS runs, I-Roule�e
shows considerably quicker convergence to the region of the best
solution. �e values for all runs are considerably lower than the
maximum number of tour evaluations for the experiments, which

a b

Figure 6: Scatter plots of median values for (a) T0.05 and (b)
T0.1 for IRoulette (y-axis) vs. Roulette (x-axis).

con�rms that the solutions obtained are all well converged. As
may be expected from the plots, the statistical tests (Table 4) give
very strong support to the conclusion that I-Roule�e accelerates
the convergence to a solution.

6 CONCLUSION AND FURTHERWORK
�is paper presents a detailed analysis of I-Roule�e, a replacement
for Roule�e Wheel selection in parallel Ant Colony Optimization.
�e theoretical analysis shows that the probabilities are modi�ed
in a way that tends towards greedy selection in cases where there
are a large number of non-zero weights, but reverts to proportional
probabilities when faced with fewer choices. �e algorithm will
therefore tend to greedy selection early in the construction of a
tour, but will become more conservative in the later stages. Our
experimental results with the MMAS and ACS variants of ACO
show that there is no signi�cant e�ect on solution quality, and that
convergence to a solution is greatly accelerated by using I-Roule�e.
As well as allowing e�cient parallel implementations of ACO on
hardware such as GPUs, I-Roule�e may also confer considerable
bene�ts, by reducing the number of trials required to reach a given
quality of solution, accelerating the computation even further.

�e results pose a number of questions, which we hope to ad-
dress in future work. Firstly, although the behavior of I-Roule�e in
modifying the probabilities has been determined analytically, and
the e�ects on the solutions obtained have been observed empiri-
cally, there is no clear mechanism which links the two: why the
modi�ed probabilities lead to faster convergence remains an open
question. An understanding of this mechanism may lead to new
variants of the ACO algorithm which use the behavior to improve
performance.

Secondly, we have conducted experiments which have shown
that there is, on average, li�le e�ect on solution quality and, in
general, an improvement in convergence speed, but there is con-
siderable variation among the problem instances studied here. It
may be possible to predict, for a given problem instance, whether
I-Roule�e may be preferred over Roule�e wheel selection or vice
versa. Recent work on analyzing the performance of TSP algorithms
in terms of problem instance features ([14], [15]) has determined a
range of metrics which can predict the performance of some algo-
rithms on a given TSP instance. �is has enabled the development
of techniques for generating instances which are ‘hard’ and ‘easy’.

GECCO ’17, July 15–19, 2017, Berlin, Germany &

A similar analysis could be used to investigate the performance of
I-Roule�e in ACO.

Finally, this study used �xed values of the algorithm parame-
ters. It is possible that a parameter tuning approach could lead to
I-Roule�e being even more e�ective in ACO, and the optimum pa-
rameters when using I-Roule�e may di�er from those for Roule�e
Wheel selection. �is is an area for future study.

REFERENCES
[1] José M. Cecilia, José M. Garcı́a, Andy Nisbet, Martyn Amos, and Manuel Ujaldón.

2013. Enhancing Data Parallelism for Ant Colony Optimization on GPUs. J.
Parallel Distrib. Comput. 73, 1 (2013), 42–51.

[2] J. M. Cecilia, J. M. Garcia, M. Ujaldon, A. Nisbet, and M. Amos. 2011. Paralleliza-
tion strategies for ant colony optimisation on GPUs. In Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Sympo-
sium on. 339–346. DOI:h�p://dx.doi.org/10.1109/IPDPS.2011.170

[3] Laurence Dawson. 2015. Generic Techniques in General Purpose GPU Program-
ming with Applications to Ant Colony and Image Processing Algorithms. Ph.D.
Dissertation. Durham University, UK.

[4] Laurence Dawson and Iain Stewart. 2013. Improving Ant Colony Optimization
performance on the GPU using CUDA. In 2013 IEEE Conference on Evolutionary
Computation, Luis Gerardo de la Fraga (Ed.), Vol. 1. Cancun, Mexico, 1901–1908.

[5] Laurence Dawson and Iain A. Stewart. 2013. Candidate Set Parallelization Strate-
gies for Ant Colony Optimization on the GPU. In Algorithms and Architectures
for Parallel Processing: 13th International Conference, ICA3PP 2013, Vietri sul Mare,
Italy, December 18-20, 2013, Proceedings, Part I, Joanna Ko lodziej, Beniamino
Di Martino, Domenico Talia, and Kaiqi Xiong (Eds.). Springer International
Publishing, 216–225. DOI:h�p://dx.doi.org/10.1007/978-3-319-03859-9 18

[6] Laurence Dawson and Iain A Stewart. 2014. Accelerating ant colony optimization-
based edge detection on the GPU using CUDA. In 2014 IEEE Congress on Evolu-
tionary Computation (CEC). IEEE, 1736–1743.

[7] Youcef Djenouri, Ahcene Bendjoudi, Malika Mehdi, Nadia Nouali-Taboudjemat,
and Zineb Habbas. 2015. GPU-based bees swarm optimization for association
rules mining. �e Journal of Supercomputing 71, 4 (2015), 1318–1344.

[8] Marco Dorigo. 1992. Optimization, Learning and Natural Algorithms. Ph.D.
Dissertation. Politecnico di Milano, Italy.

[9] M. Dorigo and L. M. Gambardella. 1997. Ant colony system: a cooperative
learning approach to the Traveling Salesman Problem. IEEE Transactions on
Evolutionary Computation 1, 1 (Apr 1997), 53–66. DOI:h�p://dx.doi.org/10.1109/
4235.585892

[10] Marco Dorigo and �omas Stützle. 2004. Ant Colony Optimization. Bradford
Company, Scituate, MA, USA.

[11] Jie Fu, Lin Lei, and Guohua Zhou. 2010. A parallel Ant Colony Optimization
algorithm with GPU-acceleration based on All-In-Roule�e selection. In Advanced
Computational Intelligence (IWACI), 2010 �ird International Workshop on. 260–
264.

[12] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E.
Phillips, Yao Zhang, and V. Volkov. 2008. Parallel Computing Experiences with
CUDA. Micro, IEEE (2008).

[13] Adam Lipowski and Dorota Lipowska. 2012. Roule�e-wheel selection via sto-
chastic acceptance. Physica A: Statistical Mechanics and its Applications 391, 6
(2012), 2193 – 2196.

[14] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wagner, Jakob Bossek,
and Frank Neumann. 2013. A novel feature-based approach to characterize
algorithm performance for the Traveling Salesperson Problem. Annals of Mathe-
matics and Arti�cial Intelligence 69, 2 (2013), 151–182. DOI:h�p://dx.doi.org/10.
1007/s10472-013-9341-2

[15] Samadhi Nallaperuma, Markus Wagner, and Frank Neumann. 2015. Analyzing
the E�ects of Instance Features and Algorithm Parameters for Max-Min Ant
System and the Traveling Salesperson Problem. Frontiers in Robotics and AI 2
(2015), 18. DOI:h�p://dx.doi.org/10.3389/frobt.2015.00018

[16] Gerhard Reinelt. 1991. TSPLIB – A Traveling Salesman Problem Library. ORSA
Journal on Computing 3, 4 (1991), 376–384.

[17] �omas Stützle. 2004. ACOTSP, Version 1.03. h�p://www.aco-
metaheuristic.org/aco-code. (2004). Accessed: 2017-01-31.

[18] T. Stutzle and H. Hoos. 1997. MAX-MIN Ant System and local search for the Trav-
eling Salesman Problem. In Evolutionary Computation, 1997., IEEE International
Conference on. 309–314. DOI:h�p://dx.doi.org/10.1109/ICEC.1997.592327

[19] �omas Stützle, Manuel López-Ibáñez, Paola Pellegrini, Michael Maur, Marco
Montes de Oca, Mauro Bira�ari, and Marco Dorigo. 2012. Parameter Adaptation
in Ant Colony Optimization. Springer Berlin Heidelberg, Berlin, Heidelberg,
191–215. DOI:h�p://dx.doi.org/10.1007/978-3-642-21434-9 8

[20] A. Uchida, Y. Ito, and K. Nakano. 2012. An E�cient GPU Implementation of Ant
Colony Optimization for the Traveling Salesman Problem. In Networking and

Computing (ICNC), 2012 �ird International Conference on. 94–102.

http://dx.doi.org/10.1109/IPDPS.2011.170
http://dx.doi.org/10.1007/978-3-319-03859-9_18
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1007/s10472-013-9341-2
http://dx.doi.org/10.1007/s10472-013-9341-2
http://dx.doi.org/10.3389/frobt.2015.00018
http://dx.doi.org/10.1109/ICEC.1997.592327
http://dx.doi.org/10.1007/978-3-642-21434-9_8

	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 Ant Colony Optimization
	4 Analysis of I-Roulette
	5 Experimental Results
	5.1 Experimental Setup
	5.2 Solution Quality
	5.3 Convergence Speed

	6 Conclusion and Further Work
	References

