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LOCAL VARIANCE IN THE CRIME DROP: A LONGITUDINAL 
STUDY OF NEIGHBOURHOODS IN GREATER GLASGOW, 

SCOTLAND

Jon Bannister*, Ellie Bates and Ade Kearns 

This paper reports on a novel longitudinal study of local variation in the decline of recorded 
crime in Greater Glasgow, United Kingdom. We deploy group trajectory analysis (exploring spatial 
autocorrelation with Local Moran’s I) and comparison of means to explore the underlying charac-
teristics and trajectories of neighbourhoods over time. The research finds marked distinction in the 
level of crime and trajectories of different neighbourhood crime groups. Neighbourhood crime trajec-
tories with high or low levels of crime exhibit spatial clustering and significant distinction in their 
characteristics. There is more limited spatial patterning, though still clear distinction between the 
characteristics of neighbourhood crime groups that exhibit different crime trajectories. We consider 
the research and policy implications of these findings.

Keywords: crime drop, neighbourhoods, the ecology of crime, group trajectory analysis

The 1990s heralded a dramatic decline in recorded crime across many developed poli-
ties (Aebi and Linde 2010; Tseloni et al. 2010). In Scotland, total recorded crime has 
fallen to its lowest level since 1974 (Scottish Government 2013). That the crime drop 
has manifest internationally has prompted the search for explanations that transcend 
national boundaries. A  variety of hypotheses have been explored, spanning mecha-
nisms of formal social control, economic and demographic change, social dynamics 
and opportunity reduction. Yet, outwith the growth of evidence supporting the impact 
of changes in the quantity and quality of security, limited consensus has been reached 
and few clear policy recommendations have emerged (Blumstein and Wallman 2006; 
Farrell et al. 2011; Rosenfeld and Messner 2009).

Set against this focus, there has been relatively scant attention paid to the crime 
drop at the sub-national level. Examining the crime drop at smaller spatial scales 
holds merit on two key grounds. First, the possibility that crime has fallen unevenly 
across space raises a question of territorial equity and consequently of the legiti-
macy of those agencies charged with maintaining law and order. Recent reform of 
the organizational structure and spatial scale of service delivery in Scotland serve 
to highlight the importance of these issues. The Police and Fire Reform (Scotland) Act 
(2013) created a single police force for Scotland. The organizational structure of 
Police Scotland drills down to the same wards used in local authority elections, each 
with its own policing plan. These reforms to the political and geographical architec-
ture of Police Scotland increase the likelihood of debate about territorial equity.
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Second, while a lack of suitable data has inhibited comparative interrogation of the 
crime drop at the scale of the nation state, there is far greater availability of data to 
enable investigation of changing patterns of crime as they manifest at smaller spatial 
scales. Though research engaging with narrower geographies might fail to capture the 
‘bigger picture’, they do afford the potential to identify the local drivers of crime and in 
so doing inform the design of effective interventions. The international financial crisis 
of 2007 and the austerity agenda that has ensued has led to increased pressure being 
placed on public service expenditure. In these terms, it is important to identify the 
spatial scale at which interventions might most efficiently be deployed. Here, numer-
ous ‘hot spot’ policing experiments (Braga et al. 2014) suggest the potential efficacy of 
interventions deployed at a micro-geographical scale. On the other hand, if the crime 
drop is not spatially uniform within a polity, communities may raise questions about 
the legitimacy of targeting police budgets.

It is against this context that our paper sets out to explore local variation in the crime 
drop via a longitudinal study of neighbourhoods in Greater Glasgow, Scotland, which 
cumulatively achieved a crime drop of 39.7 per cent over the period 1998/99 to 2012/13. 
We make several substantive contributions to the international literature exploring the 
crime drop. First, and uniquely, we assess whether ‘neighbourhoods’ have exhibited dis-
tinct trajectories over the crime drop. Second, and relatedly, we explore whether neigh-
bourhoods with distinct crime levels and trajectories exhibit spatial clustering. The 
policy relevance of evaluating the crime drop at the neighbourhood level rests in its 
close relation to the territorial scale at which Police Scotland deploy policing plans. If 
neighbourhood crime levels and trajectories are evidenced to cluster, this would serve 
to support the development of policing plans. Further, examining whether neighbour-
hood crime levels and trajectories exhibit spatial clustering, affords the opportunity 
to engage in debate of the territorial equity of both the spatial distribution of crime 
and of the crime drop. Third, we assess the characteristics of neighbourhoods exhibit-
ing distinct crime levels and the relative change in these characteristics of neighbour-
hoods exhibiting distinct trajectories. This analysis holds the potential to inform future 
research that seeks to interrogate the factors driving the crime drop at the neighbour-
hood level and to inform the development of crime reduction strategies.

Our paper proceeds as follows. We begin with an overview of the literatures that 
have sought to advance the spatial interrogation of crime, paying particular attention 
to issues of scale, theoretical explanation and to the various structural and situational 
characteristics associated with the spatial distribution of crime. We then detail our 
research questions, prior to describing the data and methods deployed in this paper. 
This is followed by a presentation of the results. To close, we discuss our results in light 
of existing evidence, highlighting their policy relevance, and set a brief agenda for 
future research. 

Space and Crime

There is longstanding recognition of the non-random spatial spread of crime at the intra-
urban level. Distinct patterns of crime manifest at differing spatial scales, across neigh-
bourhoods (Skogan 1986; Wikström 1991), streets or blocks (Taylor and Gottfredson 
1986) and micro crime places or street segments (Weisburd et al. 2004; Groff et al. 2010).  
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Multiple insights emerge from this analysis. Wikström (1991), e.g., examining the spa-
tial distribution of crime in Stockholm (Sweden), found that offences tended to clus-
ter around the city centre and in certain outer city and poorer public housing areas, 
while the spatial distribution of crime varied by offence type. Perhaps the most strik-
ing though not unexpected finding of this body of research, given the over disper-
sion of crime across urban space, has been that the smaller the spatial unit of analysis 
interrogated the greater the contrast in the distribution of crime between these units. 
Sherman et al. (1989), e.g., examining Minneapolis (United States) police data, found 
that 3.3 per cent of local ‘places’ (defined as street addresses and intersections) gen-
erated 50 per cent of crime related calls to the authorities. Similarly, Weisburd et al. 
(2004), examining Seattle (United States) police data between 1989 and 2002, found 
that 4–5 per cent of streets accounted for 50 per cent of all recorded crime and that 
between 47 and 52 per cent of street segments had no recorded crime at all. Moreover, 
not only does crime cluster at a small number of locations, this clustering tends to 
exhibit significant temporal stability (Weisburd et al. 2004; Groff et al. 2010). By con-
trast, less recent attention has focused on crime concentrations and trends at the level 
of the neighbourhood or census tract, an exception being Griffiths and Chavez (2004) 
who examined homicide patterns across census tracts in the United States. In overview, 
given international recognition of the non-random spatial distribution of crime, there 
is a clear basis to expect neighbourhood variance in the crime drop. Yet, is this an 
appropriate spatial scale to examine crime concentrations and trends?

Examining the spatial and temporal distribution of crime at the neighbourhood level 
can be misleading as these areas may consist of multiple micro locations with distinct 
crime profiles. The selection of an appropriate level of spatial aggregation is centred 
on a number of considerations. Bursik and Grasmick (1993) caution against the use 
of administrative geographies where these hold limited resemblance to lived realities, 
in terms of people’s understanding and use of urban space. Consequently, relying on 
administrative geographies can lead to the distortion or misrepresentation of crime 
concentrations, impacting on our capacity to determine their cause and to intervene in 
their remedy. Thus, Sherman et al. (1989) advise in allowing concentrations of crime 
to emerge from the data, rather than as artefacts of existing administrative bounda-
ries. Weisburd et al. (2009) recognize the importance of deploying multiple scales of 
analysis, as this approach can enable identification of the scale at which explanatory 
variables hold the most potent effect. Finally, there are pragmatic issues to consider. 
Brantingham et al. (2009: 90) recommend that ‘data should be collected at the most 
detailed level possible and aggregated upward to fit the requisites of theory’, but that 
this exercise also requires taking account of the spatial scale at which explanatory vari-
ables are captured.

Theoretical examination of the differential spatial patterning of crime is informed 
by a set of opportunity theories, these being: routine activity theory; rational choice 
theory and crime pattern theory. Routine activity theory holds that there is ‘interde-
pendence between the structure of illegal activities and the organization of everyday 
sustenance activities’, with the likelihood of crime at any specific time and place being 
a ‘function of the convergence of likely offenders and suitable targets in the absence 
of capable guardians’ (Cohen and Felson 1979: 589–90). Rational choice theory, devel-
oped by Cornish and Clarke (1986), assumes that the decision to offend is based on a 
calculation of risk (the likelihood of being caught) and reward (target attractiveness 
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and accessibility), though this decision-making is bounded by local knowledge, time 
and resource. It follows that if the risks of offending can be increased, and the poten-
tial rewards decreased, then the offender will be deterred from committing an offence. 
Finally, crime pattern theory (Brantingham 1981; 2008) explores the ways in which 
offenders and targets are brought together, and therefore crimes distributed, across 
urban space. Through activity nodes and travel paths, people develop their own activ-
ity spaces (Golledge and Stimson 1987) and awareness spaces, which offenders utilize 
to select their targets (Bernasco and Nieuwbeerta 2005). Activity spaces demonstrate 
a directional bias or preference (Frank et al. 2012), in that offenders commit most of 
their crimes within a certain direction of their homes, towards major crime attractor 
locations (such as shopping centres). It has recently been shown that a distance-decay 
function operates not only from activity nodes within an offender’s awareness space but 
also around the travel paths between those nodes (Reid et al. 2014).

The strength of opportunity theories resides in the specification of the situational 
characteristics of localities (and their institutional drivers) that shape the spatial distri-
bution of crime. For example, the availability of alcohol, measured in terms of neigh-
bourhood outlet density, has been shown to be predictive of violent crime (Livingston 
et  al. 2014) and neighbourhoods that have many young adults and drinking estab-
lishments are said to encourage criminal acts because of the risk-taking life styles of 
this social group and, through alcohol-induced vulnerability, because they also yield 
a ready supply of potential victims (Raleigh and Galster 2012). Positive associations 
have been found between the incidence of vacant properties, the direct and indirect 
mechanisms of the housing market, lax formal (police) supervision and the incidence 
of crime (Bottoms and Wiles 1986; Spelman 1993; Raleigh and Galster 2012). Knowing 
which neighbourhood characteristics are associated with local crime rates can inform 
both policing and non-policing interventions.

Where opportunity theories offer less is in the consideration of the forces that shape 
the motivations (to offend) and vulnerabilities (the absence of capable guardians) of 
the people who reside in these localities. Here, both economic theory and social disor-
ganization theory afford valuable insight. Economic theory suggests that the motivation 
for offending holds a relation to the economic returns to criminal activity relative to 
earnings from legitimate employment (Becker 1968). In these terms, deprivation may 
act as a significant motivation for offending. Indeed, the relationship between crime 
and poverty rates has been described as ‘robust’ and a ‘bedrock conclusion’ (Hipp and 
Yates 2011), having been observed at city and local levels (Hipp 2007a; Sampson et al. 
2002). Nevertheless, the precise functional form of the relationship between poverty 
and crime remains uncertain (Hipp and Yates 2011).

Social disorganization theory, developed by Shaw and McKay (1942), posits that a lack 
of effective (informal) social control inhibits direct intervention and lobbying for for-
mal (policing) interventions by neighbourhood residents. Building on this foundation, 
Sampson et al. (1997) have advanced the theory of collective efficacy, which offers that 
the capacity of a community to exercise effective social control is a function of the level 
of social cohesion and the extent of shared expectations for control. Collective efficacy 
depends on a level of working trust and social interaction within the community, but 
it does not assume the existence of strong social bonds. Residents of neighbourhoods 
with a high level of collective efficacy are able to act as capable guardians, moderating 
the crime rate. Collective efficacy appears strongly correlated with: community social 
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cohesion (Bellair and Browning 2010); residential stability (Sampson and Groves 1989; 
Hipp 2007b) and home ownership rates (Dietz and Haurin 2003; Lindblad et al. 2013). 
In contrast, a lack of collective efficacy appears strongly correlated with: high levels of 
neighbourhood heterogeneity; low economic status; family disruption and high resi-
dential mobility (Sampson and Groves 1989; Harcourt and Ludwig 2006).

In overview, empirical evidence and theoretical explanation suggest that crime will 
be unevenly spread across space at the intra-urban level and that this patterning may 
well exhibit temporal stability. However, does this hold true in an era of falling crime? 
Addressing this challenge, our research set out to interrogate the following questions:

• Have all neighbourhoods derived equal benefit from the crime drop? Or do groups 
of neighbourhoods exhibit distinct trajectories over time?

• Is there both a geographical pattern of crime concentration and of neighbourhood 
crime trajectories?

• What characteristics of neighbourhoods are associated with neighbourhood crime 
levels? Further, are neighbourhood crime trajectories associated with a relative 
change in the characteristics of neighbourhoods?

Data and Analytical Strategy

Study area

The study was conducted in Greater Glasgow (Scotland), which comprises the 
local authorities East Dunbartonshire, East Renfrewshire and City of Glasgow (as 
defined in April 2013). It is mostly urban, but also includes small towns and semi-
rural areas. At the 2011 Census, it had a resident population of 788,845 with Glasgow 
City making up three quarters of this total (NRS 2015). Glasgow City is one of the 
most deprived urban areas in the United Kingdom, containing 30 per cent of the 
most deprived neighbourhoods (worst 15 per cent) in Scotland; East Dunbartonshire 
and East Renfrewshire are less deprived, containing 1 per cent of the most deprived 
neighbourhoods (Scottish Government 2012, Table 2.1c). Glasgow City has an unu-
sually large social rented housing sector by UK standards, occupied by 37 per cent 
of the city’s households in 2011 (NRS 2015); the social rented sector is smaller in 
East Dunbartonshire and East Renfrewshire (12 per cent in both areas). The popula-
tion of Greater Glasgow is predominantly White (British, Irish or Scottish), though 
the ethnic minority population has risen to 13.2 per cent (NRS 2015), mainly due 
to its doubling in Glasgow City over the past decade to 15 per cent (Freeke 2013). 
Glasgow City has a higher crime rate than the national average with 889 crimes per 
10,000 population in 2012/13 compared with 520 for Scotland. Crime rates in the 
other two local authorities were much lower (283 in East Renfrewshire, 331 in East 
Dunbartonshire) (Scottish Government 2013: 28).

Spatial unit of analysis

The geographical unit used in this research is the data zone, which is part of the offi-
cial reporting geography for Census results in Scotland; they are also the unit used 
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for assembling much official government data, and the lowest spatial level at which 
deprivation indicators are released by government. The official definition of data zones 
stipulates the following (Scottish Executive 2004a: 1):

Data zones meet tight constraints on population thresholds (500–1,000 household residents), they 
all nest into local authorities and are built up from 2001 Census output areas. The aim was also to 
build data zones by grouping together output areas with similar social characteristics, for data zones 
to have a fairly compact shape, and to take account of physical boundaries.

The Greater Glasgow area has 941 data zones (934 of which were included in the 
analysis after the removal of outliers) within its boundary, thus giving a mean popula-
tion of 824 persons in each data zone at the 2001 Census (839 at the 2011 Census). Data 
zones are a quarter of the size of census tracts used in much US spatial (neighbour-
hood) crime analysis. Data zones hold the potential, therefore, to map closely to the 
lived realities of people’s neighbourhoods, with households grouped together on the 
basis of spatial proximity, homogeneity of socio-economic status, dwelling type and 
tenure.

Crime data

Police Scotland provided geo-coded crime data for the period 1998/99–2012/13, 
including all crimes committed in Greater Glasgow other than crimes of a sexual 
nature. The date and exact location (comprising a six figure grid reference) of the 
crime are given, though in a minority of cases where the precise location is unknown 
the police beat location is given; as police beats are smaller than data zones, the 
allocation of those crimes to the data zones at the centre of the beat will be correct 
in the majority of cases. Recorded crimes are those reported incidents assessed by a 
police officer to constitute a crime, after an initial investigation. Crimes are recorded 
and categorized according to a national recording standard, which has been in place 
since 2004. Prior to this, local police authority standards were deployed (Scottish 
Government 2014). The crime groups included in this analysis were: non-sexual 
crimes of violence (Group 1); crimes of dishonesty (Group 3); vandalism, fire raising 
and malicious mischief (Group 4) and other crimes (Group 5), which include drugs 
crimes, handling an offensive weapon and crimes against public justice (Scottish 
Government 2013: 17). These recorded crime data were plotted using ArcGIS and 
assigned to each data zone using point in polygon assignment. Recorded crime was 
aggregated by financial year (1 April–31 March) for each data zone, creating a data 
set that contained a total count of crimes per annum.

Neighbourhood characteristics

A range of structural and situational variables were selected according to their demon-
strated utility in supporting explanation of the presence or absence of crime in urban 
areas and their availability at the spatial unit of the data zone. Data were drawn from 
the national censuses of 2001 and 2011, two points as close as possible to the start and 
end of the study period. Where data were not available for these census years, data for 
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the closest available year were used.1 As a proxy for Deprivation, two variables were used: 
a median household income estimate, calculated by commercial analysts Experian 
Limited (2007) and the proportion of the population who were employment deprived, 
a measure created for the Scottish Index of Multiple Deprivation, and based on receipt 
of out of work benefits (Scottish Executive 2004b; Scottish Government 2012). Tenure 
structure was calculated according to the proportion of households who were owner 
occupiers; renting from an agent or private landlord or renting from a social landlord. 
Household composition was calculated according to the proportion of households who 
were one-person households; lone parents with dependent children and families (two 
adults with one or more children). Age Structure was calculated according to the propor-
tion of: young people (aged 16–24) and older people (aged 55+). Finally, as a proxy for 
the presence of Situational Crime ‘Attractors’ (Brantingham and Brantingham 2008), the 
proportion of small business addresses from a total count of all postal addresses, cre-
ated from the National statistics postcode directories for November 2004 and November 
2010, was used.2

Analysis

The research deployed three phases of analysis to address the research questions.
To address the first question, phase one deployed Latent Class Growth Analysis 

(LCGA) to enable the identification of groups of data zones that share similar levels 
and trajectories of crime over time (Nagin 1999; 2009). The decision to utilize LCGA 
was founded on its claimed successful application in previous research exploring the 
levels and trajectories of crime at varied geographical scales (Griffiths and Chavez 2004; 
Weisburd et  al. 2004; 2009). Using LCGA enables our paper to directly engage with 
these literatures, strengthening its international contribution. It is important to note, 
however, that latent class models have been criticized on the basis of their potential to 
identify spurious groups (Skardhamar 2010). However, in situations where it is expected 
that the subject under investigation is likely to be composed of a mixture of distinct 
groups, Nagin and Odgers (2010) find latent class models useful in distilling plausible 
groupings. We considered the existence of distinct crime level and trajectory groupings 
likely in our case study setting on the basis of a preliminary review of the data. Moreover, 
that international literatures have also found variation in micro-spatial crime trajecto-
ries offered further support to deploy LCGA.

The LCGA model estimates the mean for each group based on the assumption 
that all trajectories in the group are the same. The analysis was conducted using 
Mplus 7.3 (Muthén and Muthén 1998–2012) and utilized a negative binomial count 
model (Hilbe 2011) on the assumption that this best represents the underlying dis-
tribution of crime across data zones in each year. A population offset was included 
to account for the potential impact of population change in each data zone. The 
models were run assuming that both linear and quadratic trajectories were possible. 

1Accessed from Scottish Government: Scottish Neighbouhood Statistics, www.sns.gov.uk 13 January 2015 and 15 January 2015 
(2001 census data) and National Records Scotland: www.scotlandscensus.gov.uk 8 January 2015—Census.

2Postcode directory data are ©Crown Copyright 2004; 2010 Source: National Statistics/Ordnance Survey; extracts and data 
derived from them are Crown Copyright and may only be reproduced by permission accessed from UK Data Archive via EDINA, 
11 December 2014 and 29 July 2015.
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Each observation (data zone) was assigned a probability of belonging to one or more 
groups.

A good fitting model aims to group together data zones with similar trajectories, with 
an optimal number of groups. The modelling commenced from the assumption that 
there was only one group within the data. Then, the number of groups being tested 
for was incrementally increased until the best fitting model was found. The model with 
the lowest adjusted Bayesian information criterion was selected. It was then checked to 
ensure that it also met the additional model fit criteria suggested by Nagin (2005) of an 
average posterior probability of above 0.7, and an odds correct classification ratio, the 
odds of a data zone being correctly assigned to a group, of over 5. During the model-
ling, 2 very high crime data zones and 5 data zones in which the population declined to 
less than 100 were excluded, as the model failed to converge while these outliers were 
included.

For the second question, Phase 2 of the analysis deployed Local Indicators of Spatial 
Association (LISA). GeoDa 1.6.7 software3 (Anselin et al. 2006) was used to calculate 
Local Moran’s I. LISA enables the disaggregation of global measures of spatial autocor-
relation such as Moran’s I that examine the presence of similarity or difference across 
the data set as a whole (Anselin 1995). Positive spatial autocorrelation occurs when 
data zones possess similar characteristics (in our case crime levels) to their neighbours. 
Negative spatial autocorrelation occurs when data zones possess dissimilar character-
istics to their neighbours. LISA also has the potential to detect pockets of negative 
spatial autocorrelation where there is overall positive autocorrelation and vice versa 
(Andresen 2011).

Recorded crime count data aggregated to the data zone were standardized by mid-
year estimate of the resident population using an Empirical Bayes (EB) rate procedure 
developed by Assunção and Reis (1999)(Moran’s I with EB rate in GeoDa software), 
which corrects for potential large variances caused by a small population denominator. 
In addition, results from the LCGA analysis specifying the probability each data zone 
held of being a member of each identified trajectory group were saved as an output from 
Mplus. These probabilities were then summed together to give the probability of a data 
zone being in one of four broad categories (detailed in Results section). Analysis was 
then undertaken of whether neighbouring data zones had similar probabilities (or not) 
of being in same broad group using the standard Univariate Local Moran’s I option in 
GeoDa software. In order to calculate the LISA statistic a weights file was generated so 
that data zones that were contiguous (i.e. touching) were treated as neighbours (Queen 
contiguity—Order 1). A Moran Scatterplot (Anselin et al. 2008) was then used to clas-
sify data zones exhibiting positive spatial autocorrelation (high crime neighbouring 
high crime and low crime neighbouring low crime areas) and negative spatial autocor-
relation (low crime neighbouring high crime). The statistical significance (P ≤ 0.05) 
of these results was assessed using a permutation method in which actual results are 
compared with data randomly swapped across the study area in order to counter for the 
multiple testing problem. The results were mapped using cartograms, which converts 

3GeoDa 1.8 can be downloaded from http://spatial.uchicago.edu/software (accessed 6 March 2017). This analysis also used 
GeoDa 1.6.7 downloaded from https://geodacentre.asu.edu/software (accessed 15 March 2016).

BANNISTER ET AL.

184

Downloaded from https://academic.oup.com/bjc/article-abstract/58/1/177/3102956
by Manchester Metropolitan University user
on 08 August 2018

http://spatial.uchicago.edu/software
https://geodacentre.asu.edu/software


areas to the same size while retaining the underlying spatial structure, enabling a more 
accurate visual identification of spatial patterning.

For the third set of questions, Phase 3 of the analysis comprised two components. 
To assess the association between neighbourhood characteristics and neighbourhood 
crime levels towards the beginning of the study period (T1), the mean and a 95 per 
cent confidence interval for each neighbourhood variable in every crime trajectory 
group identified in Phase 1 at T1 was calculated based on the probability of group 
membership.4 The mean and confidence interval for Group 1 was then compared to the 
mean and confidence interval for Group 2 to see if there was any overlap between con-
fidence intervals and so on until all groups were compared and differences identified. 
To assess the association between the relative change in neighbourhood characteristics 
and neighbourhood crime trajectories, the relative change for each variable within 
each crime group between T1 and T2 was calculated ((T2 − T1/T1) × 100%). The mean 
relative change for each group and 95 per cent confidence interval, again based on 
the probability of group membership, were compared with those of all other groups as 
before to identify statistically significant differences.

Results

Neighbourhood crime trajectories

The LCGA identified 16 groups of neighbourhoods. The distinctions and similarities 
between the groups are dominated by a number of key factors. The groups were num-
bered from 01 to 16 according to their relative change in crime level (or performance) 
between 1998–99 and 2012–13, where 16 is the group with the largest relative crime 
drop and 01 is the group with the smallest relative crime drop. The diverse trajectories 
of these groups are presented in Figure 1a and 1b. The 16 groups exhibit trajectories 
that are indicative of differing performance at different moments of the study period. 
In D14, e.g., crime fell at a faster rate at the beginning of the study period. In contrast, 
crime fell at a faster rate towards the end of the study period in H05. Other groups, 
such as L10, exhibit linear trajectories.

The 16 groups were allocated into four neighbourhood crime trajectory categories, 
labelled High (H), Low (L), Drop (D) and Mixed (M), which serve to delineate the major 
research findings. H contains groups (H11, H05) with a modelled mean crime rate five 
times higher than the study area mean. L contains groups (L07, L10) with a modelled mean 
crime rate at least 1/3 lower than the study area mean. D contains groups (D12, D13, D14, 
D15, D16) that achieved a relative crime drop in excess of 55 per cent, well above the mean 
drop of 39.7 per cent for the study area as a whole. Further, 95 per cent of all neighbour-
hoods in these groups experienced a crime drop. Finally, M contains groups (M01, M02, 
M03, M04, M06, M08, M09,) with diverse mean crime rates and diverse relative change in 
crime level. Key data pertaining to the four categories of groups are presented in Table 1.

4The probability each data zone has of being a member of each trajectory group is calculated by Mplus and saved. These prob-
abilities are used to weight the mean and confidence intervals accordingly; thus, if a data zone has a 0.95 chance of being in 
group, only a 0.95 proportion of the variable is included in the calculation of the mean for this data zone. The method used for 
broad groups is reported here, a more complex MPlus software ‘built-in’ pseudo draw method (Muthén and Muthén 1998–2012) 
was used to compare individual trajectory groups, results available on request.
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The categorization of the M groups merits further explanation. Previous research 
that has deployed LCGA (see, inter alia, Weisburd et al. 2004; 2009), despite the critique 
that latent class models hold the potential to identify spurious groups (Skardhamar 
2010), has tended not to expressly consider the actual trajectories of individual neigh-
bourhoods that belong to a particular group. In contrast, we examined the trajectories 
of individual neighbourhoods within groups (not shown) and found that neighbour-
hoods ascribed to the M groups exhibited mixed performance, some experienced ris-
ing crime while others experienced declining crime. Moreover, at various junctures, 
the crime levels of M groups were indistinct, leading to an overlap in the probability of 
an individual neighbourhood being ascribed to one M group or another. It is for these 
reasons that these groups were placed into the M category. In contrast, the groups in 

Fig. 1 (a) Trajectories for High (H) and Low (L) neighbourhood crime groups. (b) Trajectories 
for Drop (D) and Mixed (M) neighbourhood crime groups. N = number in group (expressed as 

percent of cases in brackets, rounded); Change %: ((Group Mean 2012 − Group Mean 1998)/Group 
Mean 1998) × 100, rounded; DC %: drop contribution (Sum Total Group Count 2012 − Sum Group 

Count 1998)/(Sum Count All Areas 2012 − Sum Count All Cases 1998) × 100, rounded.
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the H, L and D categories exhibited markedly different crime levels to each other, and 
their constituent neighbourhoods exhibited greater consistency in performance. Not 
only does this afford significant insight into the methodological foundation of inter-
national research examining local variance in crime trends, it serves to frame the key 
insights generated by the research reported here.

Over the study period, recorded total crime fell in Greater Glasgow by −39.7 per cent, 
whereas the percentage change across the four categories ranged from −25.9 to −61.3 
per cent, pointing to stark differences in their relative performance. Further, when 
the scale or percent of all neighbourhoods comprising the H, L, D and M categories 
is taken into account, marked differences in their contribution to the crime drop can 
be discerned. The H category, comprising 1.6 per cent of all neighbourhoods, experi-
enced a crime drop of 25.9 per cent and contributed 7.1 per cent of the overall crime 
drop (in terms of total number of crimes) in the study area. The L category, compris-
ing 16.4 per cent of all neighbourhoods, experienced a crime drop of 44.8 per cent and 
contributed 4.2 per cent of the overall crime drop. The D category, comprising 25.3 per 
cent of all neighbourhoods, experienced a crime drop of 61.3 per cent and contributed 
49.7 per cent of the overall crime drop. Finally, the M category, comprising 56.7 per 
cent of all neighbourhoods, experienced a crime drop of 29.1 per cent and contributed 
39 per cent of the overall crime drop.

Geographical distribution of neighbourhoods with different levels and trajectories of crime

At this stage, it is pertinent to consider the spatial patterning of neighbourhoods 
according to their level of crime over the study period. Figure 2 presents a series of 
cartograms showing Local Moran’s I  analysis of actual crime rates across the study 
area. The cartograms, which capture the H and L neighbourhoods, provide clear visual 
evidence of positive spatial autocorrelation. Thus, the H neighbourhoods cluster in 
the centre of the conurbation, while the L neighbourhoods cluster at the periphery of 
the conurbation. Over the duration of the study period, the clustering of the L neigh-
bourhoods remains stable; however, the clustering of the H neighbourhoods exhibits 
decline and volatility. This may, in part, be a consequence of the crime drop as particu-
lar neighbourhoods fall out of the H category. Alternatively, it may be indicative of the 
H neighbourhoods becoming more dispersed.

To support the interpretation of the spatial patterning of the performance of neigh-
bourhoods, we present one further cartogram. Figure 3 portrays the spatial patterning 
of neighbourhoods comprising the D category (only) over the study period. Here, there 
is some evidence of the D neighbourhoods clustering to the East of the city centre and 
towards the SouthWest of the study area.

The characteristics of neighbourhood crime trajectory categories

Examining the mean level of the Tenure, Age Structure, Household Composition, Deprivation 
and Situational characteristics of neighbourhoods comprising the H, L, D and M cat-
egories at T1 (Table 2A), significant distinctions can be discerned. The L neighbour-
hoods exhibit the highest level of owner occupation, the lowest level of people aged 
16–24, the highest level of households with dependent children, the lowest level of 
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employment deprivation, the highest median household income and the lowest level of 
small business addresses. In contrast, the H neighbourhoods exhibit the lowest level of 
owner occupation, the highest level of people aged 16–24, the lowest level of households 
with dependent children, the highest level of employment deprivation and the highest 
level of business addresses. Of particular interest are the similarities and distinctions 
between the characteristics of the neighbourhoods comprising the D and M categories. 
Essentially, the characteristics of the D and M neighbourhoods predominantly rest, as 
would be expected, between those of the H and L neighbourhoods. Although many 

Fig. 3 Clustering of Drop category neighbourhoods.

Fig. 2 Cartograms of Local Moran’s I analysis showing significant high crime next to high crime 
areas, low next to low, low–high and high–low areas.
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of their characteristics are similar, certain key distinctions exist despite a degree of 
overlap in their confidence intervals. The D category neighbourhoods hold a higher 
mean level of owner occupation and a higher median household income than do the 
M category neighbourhoods. In sum, these findings are suggestive of particular Tenure, 
Age Structure, Household Composition, Deprivation and Situational characteristics holding 
influence on the crime level of trajectory categories.

The relative change in the characteristics of neighbourhood crime trajectory categories

Table  2B presents the relative change in the mean levels of the Tenure, Household 
Composition, Deprivation and Situational characteristics of the H, L, D and M categories. 
In interpreting these data, some caution should be taken given the wide confidence 
intervals observed and the degree of overlap in change between the groups. That said, 
a number of key findings emerge. All the categories experienced a significant increase 
in private rented accommodation, but the lowest increases are found in the L and D 
categories. Similarly, all the categories experienced an increase in median income, but 
the highest rises are found in the L category. Of particular interest, once more, are 
the similarities and distinctions between the change in characteristics of the neigh-
bourhoods comprising the D and M categories. The D neighbourhoods experienced a 
greater fall in social rented housing, employment deprivation and business addresses 
in comparison to the M neighbourhoods. Thereafter, more subtle distinctions can be 
discerned. In overview, however, the D neighbourhoods appear to have made greater 
movement towards the characteristics associated with the profile of the L neighbour-
hoods. While these findings are suggestive of the relative change of Tenure, Deprivation 
and Situational characteristics holding influence on the performance of groups, our 
analysis does not enable assessment of the causality of these associations.

Discussion

So, how then does this research inform an understanding of local variance in the 
crime drop? What does the research imply to the question of territorial equity? And, 
what conclusions can be drawn to guide the search for effective and efficient policy 
interventions?

Examination of local variance in the crime drop has identified distinct groupings 
of neighbourhoods and provided clear evidence of both change and stability. Both 
H and L neighbourhoods achieved benefit from the crime drop, though they remain 
bound to their initial classification. However, the L neighbourhoods achieved a rela-
tively higher fall in crime indicative of the persistence, if not widening, of territorial 
inequalities. This reasonably ‘stable’ pattern of neighbourhood or ‘meso’ level of ine-
qualities at the extremes of the crime distribution is similar to that discerned by studies 
of street segments at the ‘micro’ level (Weisburd et al. 2012). Between these extremes, 
the research identified a distinct D category and a larger and less (internally) distinct M 
category. The lack of distinction in the performance of the majority of neighbourhood 
groupings in the mid-range of the crime distribution is in marked contrast to interna-
tional research that has deployed LCGA. It could be countered that the spatial unit of 
analysis deployed masked greater clarity in performance that might be observed at a 
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‘micro’ level, but the spatial unit of analysis deployed was relatively fine-grained and 
constructed upon homogenous socio-economic population characteristics and distinct 
physical boundaries. It is plausible, therefore, that our findings simply reflect the fluc-
tuation of crime in the mid-range of the crime distribution (Hope 2015).

The research also found clear stability and change in the spatial patterning of neigh-
bourhoods possessing similar levels of crime; neighbourhoods with a particular level of 
crime typically nesting within broader areas of a similar crime level. This finding res-
onates with previous research exploring the spatial variation in crime (see, inter alia, 
Wikström 1991). However, the spatial patterning of H neighbourhoods exhibited disper-
sion over the study period and D neighbourhoods exhibited limited spatial clustering. 
These insights might serve to shape policy, given that policing wards are comprised of 
a set of neighbourhoods (data zones). First, that the H and D categories comprised 12.4 
per cent of all neighbourhoods yet contributed 33.1 per cent of the overall crime drop 
would seem to imply that policing and partner agencies seeking to deliver efficient inter-
ventions are justified in paying particular attention to neighbourhoods exhibiting high 
levels of, and distinct drops in, crime. However, the dispersion of H neighbourhoods and 
the limited clustering of D neighbourhoods represent a challenge to developing such 
interventions in a spatially efficient manner. Policing (and partner) agencies seeking to 
deliver effective interventions should interrogate the causal drivers of long-term crime tra-
jectories, and spatial patterning, of these types of neighbourhood (see Future research 
section). Thus, understanding the differences between the neighbourhoods comprising 
the D and M categories, e.g., holds the potential to inform the design and targeting of 
interventions which might serve to ‘tip’ neighbourhoods into one group or another.

To this end, we now turn to consider whether the level of crime, and performance 
over the crime drop, of the neighbourhoods in the crime trajectory categories can be 
understood with reference to the stability of, and change in, their underlying charac-
teristics. Here, we interrogate our findings in relation to research exploring the inter-
national crime drop in general and the spatial patterning of crime in particular. These 
literatures are, of course, related. Examination of the international crime drop has 
probed the plausibility of explanations centred on the mechanisms of formal social 
control, economic and demographic change, social dynamics and opportunity reduc-
tion (Blumstein and Wallman 2006; Rosenfeld and Messner 2009; Farrell et al. 2011). 
These explanations have been built, in the main, upon opportunity, economic and 
social disorganization theories vital to the appreciation of the level and spatial pattern-
ing of crime.

In undertaking this task, we require to proceed with caution. It is certain that the 
neighbourhood characteristics included in our analysis fail to capture the influence 
of a number of factors operating beyond the ecological frame of this investigation. 
Similarly, it is likely that the research failed to capture some factors responsible for driv-
ing the crime drop operating within the ecological frame of this investigation, includ-
ing both formal social control measures and fine-grained situational factors or ‘crime 
attractors’. Moreover, the research captured the change in neighbourhood character-
istics between the beginning and the end of the study period and not through time. 
Nevertheless, our analysis does afford a number of key insights to literatures probing 
the crime drop and the spatial patterning of crime.

The characteristics of the neighbourhoods comprising the H and L categories reso-
nate with a theoretical explanations of crime centred on opportunity, economic and 
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social disorganization theories. The H groups possess the highest level of ‘crime attrac-
tors’ such as business premises, increasing opportunities to commit various crime types 
(Cohen and Felson 1979; Brantingham and Brantingham 1981; Cornish and Clarke 
1986; Brantingham and Brantingham 2008); are the most economically deprived, 
exerting influence on the motivation to offend (Becker 1968) and possess the highest 
levels of private renting and people aged 16–24, all factors associated with increased 
social disorganization (see, inter alia, Sampson and Groves 1989; Dietz and Haurin 
2003; Hipp 2007b; Bellair and Browning 2010). The L groups, as might be expected, 
possess the opposite characteristics. It is interesting to note that the D neighbourhoods 
exhibited characteristics with a closer relation (though marginally so) to the L neigh-
bourhoods (aspects of Tenure, Age Structure, Household Composition and Deprivation) than 
did the M neighbourhoods at the commencement of the study period.

Turning to consider the potential impact of changes in neighbourhood character-
istics upon the crime drop, several key insights can be distilled. First, that median 
incomes grew across all neighbourhood groups, with the highest rises found in the L 
and D neighbourhoods, offers support to explanations centred on economic change/
deprivation, and crime as a function of poverty or low incomes. Second, that the L and 
D neighbourhoods experienced the smallest rises in private rented accommodation, 
offers support to explanations centred on residential instability and decreased social 
cohesion (Dietz and Haurin 2003; Lindblad et al. 2013). Third, it is worth noting that 
the H neighbourhoods had the highest presence of, while the L and D neighbour-
hoods had the largest reductions in, business premises over time. This finding serves 
to highlight the importance of situational crime attractors to the spatial patterning of 
crime. Without further modelling and access to the data upon which this would rest, it 
is not possible to make an assessment of the causality of the associations identified by 
our research, nor of the magnitude or direction of their effect. However, that greater 
relative falls in crime were experienced by the neighbourhoods comprising the L and 
D categories is suggestive of the characteristics associated with these neighbourhoods 
serving to accelerate the crime drop.

Future research

The discussion of the findings serves to guide a future research agenda. That H and L 
neighbourhoods exhibit distinct characteristics and tend to remain stable, bears closer 
examination, as does the performance of D neighbourhoods. Thus, given that D neigh-
bourhoods possess characteristics in closer alignment to L neighbourhoods, there 
is merit in focussing attention on the causal mechanisms driving their trajectories. 
A second, and related route to advance research in this field, would be to collate and 
deploy additional sets of spatio-temporal sensitive social, economic and environmental 
variables necessary to enable a causal interrogation of the factors driving the crime 
drop. Third, recognizing that our findings were derived from an investigation of the 
overall level of crime and that the volume of crime differs significantly between crime 
types, it is possible that this approach served to mask factors driving specific crime 
types. A focus on specific crime types may deliver alternative neighbourhood trajectory 
groupings. Finally, the shifting spatial clustering of high crime neighbourhoods also 
merits further investigation.
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Conclusion

This paper has addressed an important shortfall in international research investigat-
ing the crime drop, by focusing on its local variance. In contrast to existing litera-
tures that have sought to interrogate temporal variation in crime at both macro and 
micro scales, our research provides substantive advance through analysis of the meso 
or neighbourhood scale. These data were interrogated through the use of group tra-
jectory analysis (exploring spatial autocorrelation), in an endeavour to engage with 
existing international literatures exploring crime trajectories at the micro level, and 
a comparison of means to explore the underlying characteristics of neighbourhood 
crime trajectory groups and their association with crime drop performance. The 
group trajectory analysis found marked distinction between H and L crime neigh-
bourhood groups, and a clear set of drop neighbourhood groups. However, this tech-
nique proved less successful in distinguishing the performance of the majority of 
neighbourhoods found in the middle of the crime distribution, raising at least a ques-
tion of the methodological foundation of research that has claimed to do so at the 
micro level. Whether judged by crime level or performance, local variance in crime 
evidences marked temporal and territorial inequality. The H and L neighbourhoods 
exhibited stability in crime level and spatial clustering, though the former exhibited 
some volatility in the patterning of its spatial clustering. There was clear distinction 
in the underlying characteristics of the neighbourhoods comprising the H, L and D 
categories. While it might be argued that the crime drop benefited all neighbour-
hood crime trajectory categories and was associated with rising median incomes, 
the neighbourhoods in the H category retained characteristics long articulated by 
international ecology of crime literatures as being associated with higher levels of 
crime. Cumulatively, these findings imply that agencies seeking to deliver efficient and 
equitable interventions should pay particular attention to areas exhibiting higher 
levels of crime. Moreover, agencies seeking to develop effective interventions should 
interrogate the causal drivers of the long-term crime trajectories of the neighbour-
hoods comprising the D category.
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