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ABSTRACT 

Vibration generated by a gearbox carries a great deal of information regarding its health 

condition. This research aims primarily on the detection and diagnosis of tooth defects in a 

multistage gearbox based on advanced vibration analysis. Time synchronised averaging 

(TSA) analysis is effective at removing noise but it is inefficient in implementation and in 

diagnosing different types of faults such as bearing defects other than gears. Conventional 

bispectrum (CB) can eliminate Gaussian noise while it preserves the signal’s phase 

information, however its overpopulated contents can still provide inaccurate information 

regarding to different types of gear faults. Recently developed modulation signal bispectrum 

(MSB) has the high potential to lead to the high accuracy of diagnostics of gearboxes as it 

more effectively characterises modulation signals such as gearbox vibrations. Therefore, the 

research takes MSB as the fundamental tool for analysing gearbox vibration signals and 

developing accurate diagnostic techniques.  

Firstly, it has realised that conventional techniques often ignore the effect of phase 

information in gearbox diagnostics. This thesis then focuses on developing CB and MSB 

based techniques for detecting and diagnosing of gearbox faults. 

Secondly, it has found that vibration responses from a multiple stage gearbox have high 

interferences between amplitude modulation (AM) and phase modulation (PM) which can be 

formalised from both gear faults and inherent manufacturing errors. However, the faults can 

induce wider bandwidth vibrations. Correspondingly, optimal component based schemes are 

also developed based on the use of MSB coherence results. 

Then the proposed MSB method allows an effective gearbox diagnosis using the signals in a 

narrower frequency band that is below twice the rotational frequency plus the highest 

meshing frequency amongst different gear transmission stages, being more suitable for 

wireless network condition monitoring systems. 

It has also found that the signals at resonance frequencies has a higher signal-to-noise ratio 

and more effective for obtaining accurate diagnosis. Also software encoder based TSA was 

found to be not robust and accurate due to the influences of noise and referencing 

components on obtaining a reliable phase signal for implementing TSA. 
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Finally, the diagnostics carried out upon different fault cases using both CB and MSB have 

verified the proposed approaches can provide accurate diagnostic results, and with the new 

MSB based detector and estimator being more effective in differentiating between diffident 

fault locations for two local and one non-uniformly distributed tooth damages in a two stage 

helical gearbox. 

. 
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NOMENCLATURE 

A Signal magnitude for amplitude modulation 
B Bispectrum 
E Gear error 
P Power spectrum 
T Torque 
X Signal in the frequency domain  
Z Tooth number 
Z2 Modulation power index 

 

Moment of inertia of driven gear in the first stage 

 

Moment of inertia of driving gear one (pinion) at the first 
stage 

N Total number of samples 
a, b Time shift 
b2 Bispectrum coherence 

 

First stage meshing damping  

 

Gear errors including different gear fault modes 

f Frequency 
fc Carrier frequency 
fm,, fx Modulating frequencies 
fme Meshing frequency 
i i=1,2, subscription for gear 1 and 2 respectively 
m, n Time index 
x, y, s Time domain signal 
t Time 

 

Base radius of the driving gear in the first stage 

 

Base radius of the driven gear in the first stage 
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Vertical displacement of the driving gear the first stage 

 

Vertical displacement of the driven gear the first stage 

 

Mass of the driving gear in the first stage 

 

Mass of the driven gear in the first stage 

 

First stage time varying meshing stiffness  

 

Driving gear bearing stiffness  

 

Driven gear bearing two stiffness  

β Magnitude of phase modulation 

δ Signal phase 

ϕ Angular displacement 

 

Angular displacement of driving gear; 

 

Angular displacement of driven gear  

γ Gear error amplitude 

ρ Eccentric error amplitude 

σ2 Variance 

µ Mean value 

τ Time delay 

ω Angular frequency 
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CHAPTER 1.  

INTRODUCTION 

1.1 Background 

All machines with rotating parts give rise to both vibration and signal. Every mechanical 

rotating system has its own unique specific vibration characteristics, which is related to both 

the condition and the manufacture of the system. If the current condition of the machine 

changes, the vibration signals produced by the machine will also be affected. The change in 

the vibration signature can be analysed to detect incipient defects before they the occurrence 

of any serious failure. This is the principle in which the majority condition monitoring (CM) 

techniques are based upon.  

CM saves resources and operating costs through increased maintenance efficiency [1], which 

will decrease the machinery downtime. It will also reduce the chance of machined 

breakdowns, total failures and any potential accidents. 

The fundamentals of condition monitoring has already been applied and used in industry for 

an extensive amount of time. An experienced operator can monitor the state of rotating 

machinery by simply listening to the vibrations from its casing. However, it often takes up to 

many years for an operator to develop the necessary skills and experience, with some defects 

appearing very seldom. Therefore, it would be more advantageous for the monitoring process 

to be more automated.  

Gearboxes are a critical component of many industrial machineries such as power generators, 

wind turbines, and mechanical vehicles [2]. Failures of the gearbox can result in deficient, 

dangerous and unstable operating environments which can lead to injury of the operator and 
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system shutdown leading to financial losses. As such, early diagnosis of the gearboxes’ 

condition has been a focus leading to the development many different diagnostic approaches 

developed in the condition monitoring community, primarily to avoid any negative influences 

and potentially damaging accidents [3].  

Common faults of gearboxes including manufacturing defects, mounting defects and defects 

appearing during transmission [4] generate their own unique fault features, different types of 

signals, such as vibration, motor current output, sound, lubricant analysis, temperature, and 

instantaneous angular speed can be used for detection and diagnosis of faulty gearboxes 

[1][3][4].  

Vibration signals are most commonly used in maintenance strategies for gearbox CM, the 

vibration signal is easily acquired using accelerometers, attaining information that can reveal 

the primary excitations of gearbox dynamics. Airborne acoustics or noises are also closely 

correlated to vibration, as such, acoustic emissions have also been investigated vigorously for 

fault detection and diagnosis of gearbox in the past few decades. Regardless, both vibration 

and acoustic signals which is collected also contain noises and undesirable information. 

Therefore, detailed analysis using advanced signal analysis techniques are required in order to 

extract the required useful information for an accurate fault diagnosis. 

Most current techniques investigated for gearbox faults detection and diagnosis have mostly 

focused around time-domain and frequency-domain based analysis, which include applies 

techniques based on statistical parameters of waveforms, spectra, amplitude and phase 

demodulation. Most conventional techniques are able to reliably detect and provide an 

indication of the presence of faults. However, they are unable to provide any detailed 

information regarding location or severity of the fault, since they are not suitable for 

application to non-stationary components [5]. Gearbox vibration signals commonly contain 
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significant noise and possess properties, which are of a non-stationary nature. As a result, it 

can be difficult to detect the early symptoms of a potential failure without an appropriate 

analysis tools. 

To capture better the non-stationarity, the joint time-frequency analysis is developed for a 

more reliable and effective method for rotating machinery condition monitoring. Wavelet 

transform (WT) is also a standard and powerful time-frequency signals processing tool, WT 

is already commonly utilised in industry for machinery fault diagnosis and CM. WT has the 

capability to reveal the time-frequency characteristics of signals, thus it is more efficient at 

locating any small transients and further enhance any existing peaks [6]. 

The development of more complex and reliable CM techniques has also lead to a more 

automated embedded CM system have been developed recently. The system will firstly 

measure the real physical acceleration and extract key features using advanced signal 

processing techniques, which will then be compared to a set of know predetermined values in 

order to detect faults. The benefit of an embedded CM solution is that it allows the possibility 

of fully automated fault detection eliminating human error. Another advantage is that the real 

time status of machinery can be provided by deploy a low cost effective automated sensing 

CM strategy. 

Real time fault detection at the source will reduce the amount of data that needs to be 

transmitted to the central processing computer; this will allow the system to send the data 

using a low power and low cost on board wireless communication system. Albarbar et al [7] 

performed a study which proved that MEMS accelerometers are of sufficient quality to be 

utilised for rotating machinery health and condition monitoring purposes. This has led to a 

new area of research within the field, allowing cheap sensor devices to be created which will 

enable industry to move toward condition-based maintenance (Jardine et al [8]) rather than 
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periodic or breakdown based maintenance. This will reduce maintenance costs, and avoid 

accidental shutdowns in the critical areas of the plant.  

1.2 Research Motivation 

Most previous researches focus on the utilisation of signal magnitude at specific frequency 

components for fault detection and diagnosis. It means that signal phase information, as an 

essential factor of a signal, has been largely ignored, which is due to that it is difficult to 

obtain phase values accurately in signal processing. However, as the one of fundamental 

parameters, the signal phase plays an indispensable role in characterising complicated 

vibration responses and hence it is necessary to examine phase responses in conjunction with 

amplitude and frequency values in order to achieve accurate characterisation of measured 

vibration signals for fault diagnosis.  

A technique developed by Yang et al [9] concluded that using a combination of power 

spectrum, bispectral and bicoherence vibration analyses provides promising results for 

detecting the condition of bearings. A similar method was also used by Arthur et al [10] for 

CM of induction machines. Especially, these analyses have demonstrated the usefulness of 

phase information embedded in the bispectrum estimation for fault diagnosis. However, there 

have so far been little research regarding its application for gearbox CM. In particular, 

conventional bispectrum (CB) and an enhanced modulated signal bispectrum (MSB) have 

not been evaluated systematically onto vibration data collected from a multistage gearbox. 

1.3 Research Aim and Objectives 

To fill the gap that limited works on using signal phases for diagnosis, this research aims at 

on developing detection and diagnosis approaches based on not only signal amplitude and 

frequency information, but also utilizing phase characteristics as much as possible. To 

achieve it, the research is carried out to prioritise according to following main objectives: 
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1. To review previous researches on vibration based condition monitoring techniques 

with highlights on signal processing techniques. 

2. To examine typical signal processing methods in analysing vibration signals from a 

multistage gearbox with combination of information regarding amplitude, frequency 

and phase.  

3. To develop signal models for characterizing gearbox vibration responses under 

different fault cases. 

4. To evaluate the performance of synchronous average (TSA) based diagnosis. 

5. To evaluate the performances of conventional bispectrum (CB) analysis based 

diagnosis.  

6. To evaluate the performances of modulation signal bispectrum (MSB) analysis based 

diagnosis.  

7. To investigate effective features based on MSB analysis for gearbox diagnosis. 

8. Comparing the effectiveness of the TSA, CB and MSB analysis methods for diagnosis 

of a gearbox’s condition. 

1.4 Organisation of Thesis 

Chapter 1 briefly explains the rationale of the thesis. It follows the research motivation and 

the establishment of this research’s aim and overall objectives. Besides, it also outlines other 

chapters in the rest of the thesis for the ease of following up the presentation of the research 

contents. 

Chapter 2 is a general literature review regarding the need for condition monitoring for all 

critical components of a machine and different measurement based technologies. It begins 

with a brief background of condition monitoring followed by its developments and growth. 
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After that there is a review of where a lot of condition monitoring is currently used, with 

more information on the rise of analysing the vibration signals generated by machinery. 

There is a view regarding the modernisation of condition monitoring techniques by utilising 

emerging microelectromechanical systems (MEMS) sensors and wireless networks. 

Chapter 3 focuses on overviewing current data processing techniques which are applied 

vibrations signals for the purpose of condition monitoring. Techniques that are potentially 

able to include phase information are focused more. 

Chapter 4 starts with a brief description of the operations of a multi-stage gearbox along with 

the common faults. A mathematical model of a two-stage gearbox is then developed and 

evaluated in Matlab platform numerically and with measured data experimentally. 

Furthermore, by taking into the phase information it suggests a new diagnostic framework 

that highlights the utilisation of both amplitude and phase modulations along with efficient 

noise suppression. 

Chapter 5 develops MSB based techniques for gearbox CM under the guidance of the 

framework. These techniques are then evaluated by applying them to signals generated based 

the gearbox model and benchmarked with corresponding techniques based on TSA and CB 

analysis. 

Chapter 6 provides information regarding the experimental rig and the dataset. That which 

consists of three key components, an AC generator, a two stage helical gearbox and a DC 

generator to dissipate the load in a resistor bank. Three sets of data were collected, firstly 

when the gearbox was healthy, the second set of data was seeded with local tooth faults on 

the meshing gears, and finally in the last set of data contained, the gear possessed non-

uniform distributed faults as a result of long operational fatigue. 
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Chapter 7 presents implementation of TSA and the results obtained by applying TSA 

analysis to the data collected in chapter 6. 

Chapter 8 uses the conventional bispectrum analysis for detecting and diagnosing faults in a 

gearbox. This method combines the features from both the lower and higher sidebands to 

minimise the effects of Gaussian noise and highlight the faults. 

Chapter 9 applies the MSB to signals from a gearboxes operating with 30%, 60% and 100% 

tooth breakage faults. Results showing that MSB is more reliable for fault detection and 

diagnosis compared to other techniques based on the same datasets. 

Finally, main conclusions drawn and future works identified by this research are presented in 

chapter 10. 

Equation Chapter (Next) Section 1
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CHAPTER 2.  

CONDITION MONITORING 

2.1 Introduction 

Decades ago, the majority of rotating machinery were maintained by reactive maintenance, 

for example compressors and turbines will keep operating until a fault develops [11]. 

However, the unexpected downtimes associated with this type of maintenance (reactive or 

run to failure based maintenances strategy) is undesirable and costly. Run to failure also 

possess safety issues and may lead to a catastrophic failure of the entire system [12]. Periodic 

maintenance minimises the risk of failure, but scheduling regular inspections is wasteful if it 

is not required [13].With the help of proper condition monitoring (CM) and fault diagnostic 

techniques, predictive maintenance (PDM) and condition-based maintenance (CBM) have 

become increasingly adopted in industries [14][15][16]. 

CM can be defined as continuous online inspection regarding the health of the machinery 

throughout its operational life [17]. It is important to be able to detect faults while they are 

still developing, this is known as incipient failure detection [18]. The incipient detection of 

the critical component failures also prevents catastrophic failures and allows for a safe 

operating environment. It is becoming ever more important to deploy comprehensive CM 

schemes for continuous assessment of the rotating components in machines [19].  

CM can provide advanced warning of imminent failures, detailed information regarding the 

health of a machine makes it possible to better schedule future preventive maintenance and 

repair work as well as allowing the machine to operate at optimal working condition. This 

can result in minimum down time and optimum maintenance schedules. CM and fault 

diagnosis scheme allows the machine operator have key knowledge regarding to the type of 
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fault which needs fixing, thus the repair engineer can have the necessary spare parts before 

the machine is stripped down, thereby reducing outage times and cost induced.  

2.2 Condition Monitoring Techniques 

Recent advances in electronic processing capabilities which are compatible with advanced 

signal processing and data acquisition systems has reduced the overall equipment cost 

associated with CM, as a result online monitoring and diagnostic systems becoming available 

to all industrial production. These techniques have been proven to be capable of detecting 

and localising a faulty component at an early stage to prevent the system from full failure 

[20]. 

The choice of CM technique depends on several factors, such as the resources available, the 

component being examined and the desired outcome of the maintenance service. Human 

sense such as an eye inspection or smell could be satisfactory evaluation for the condition of 

an electrical or mechanical machine when it is near to be failure; on the other hand an 

advanced CM method may be demanded for more advanced action courses. Selecting the 

correct strategy is a task in itself, optimising between cost of implementing the maintenance 

strategy and cost of breakdowns [21]. The most commonly used CM techniques in modern 

industry are provided in the following sections. 

2.3 Torque  

Torque measurement has also been utilised for drive train fault detection. The rotor faults 

may cause either a torsional oscillation or a shift in the torque-speed ratio. Such information 

can be used to detect rotor faults, e.g. mass imbalance. Also, shaft torque has a potential to be 

used as indicator for decoupling the fault-like perturbations due to higher load [22]. 

However, inline torque sensors are usually highly expensive and difficult to install. 



30 

 

Therefore, using torque measurement for drive train fault diagnosis and condition monitoring 

is still not practically feasible.  

Air gap eccentricity is a common fault that exist in many electric motors, they produce 

sidebands at special frequencies in the air gap torque [22]. However, it is not feasible for the 

air gap to be measured directly. The difference between the estimated torques from an ideal 

model allows for the early diagnosis of broken bars. From the input terminals, the 

instantaneous power includes the charging and discharging energy in the windings. Therefore, 

the instantaneous power cannot quite represent the instantaneous torque. From the output 

terminals, the rotor, shaft, and mechanical load of a rotating machine constitute a torsional 

spring system with its own natural frequency. As such, the harmonic attenuations of the 

components from the air gap torque transmitted through the torsional spring system will 

differ to that of the torque components.  

2.4 Temperature Monitoring 

Thermal monitoring (thermography) is already a well-established CM technique. The emitted 

heat energy is used for CM in this technique. The temperatures and machine thermal patterns 

can be monitored during its operation, the information can be readily compared to previous 

known parameters for fault diagnosis.  

However, thermography is more suitable for mechanical machines, as it can quickly indicate 

a problem area. Typically, the heat must transfer from machine part (gear) to the surface of 

the machine and appears as a pattern to be detected by infrared camera [23]. Any deviation 

from the normal machine thermal signature (increase or decrease) is considered to be an 

indication of a possible error [24]. 

Thermal imaging increases the ability to expect machine component failure, before personal 

injury, equipment damage, or a costly shutdown occurs. One of the advantages of 
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thermography is that it can be applied to a wide range of machines such as motors, pumps, 

pulleys, bearings, conveyors, fans, drives etc. One of the drawbacks of this method is that 

care must be taken be aware of the atmosphere where the machine is working, because any 

change in atmospheric temperature factors can have a direct influence on the accuracy of the 

measurements [25]. Also, because there are numerous components that are heat sources in a 

real mechanical system, thermal CM is unable to specify from which source the heat is 

radiating from. In addition, additional heat usually means that the faults already prevalent, 

thereby temperature based monitoring cannot give sufficient advanced indication of faults for 

undertaking maintenance actions.  

2.5 Oil Analysis and Wear Debris Monitoring 

Oil analysis and wear debris technique for rotating machinery is one of CM techniques that is 

currently very popular. The oil is essential for smooth operation of all rotating machinery, oil 

analysis can diagnose the machine condition by investigating wear elements in the oil [26]. 

In particular, it monitors the three key components that make up the base structure of the oil 

(the base oil, lubricant additives and contaminants). Continuous gear wear influences the 

machine performance and changes the characteristics of the oil. 

Oil analysis based CM provides an early notice about machine health. In addition, it can 

sense risk earlier than vibration methods[27]. A sample of lubricants from rotating machine 

equipment is taken and then analysed it for relevant information regarding the machine under 

inspection. One weakness of this method is that the oil test is not sensitive to the element 

sizes related to abnormal wear in rotating machinery, and only provides an indication of 

when the oil should be changed [27]. In addition, the instrumentation cost is too high to be 

affordable for many industries and operational stability is poor to give consistent indication 

for machine conditions. 
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2.6 Acoustic Emission Monitoring 

Acoustic emission (AE) based method for detection and diagnosis of machines faults in CM 

has been widely regarded as a powerful non-destructive CM technique. When rotating 

components are in operation, its discontinuities create mechanical stress, as a result energy is 

released in the form of both vibration and noise. AE investigates the generated signals of 

acoustics and noise by using appropriate signal processing techniques, which are picked up 

by microphones, the operating range of AE usually vary between 100KHz and 2MHz[29]. 

The lower frequency limit is due to numerous background acoustical interference such as 

friction or noise generated from the operating process. At the upper limit, the acoustic signal 

is likely to be attenuated and will require a sophisticated detection unit. 

Acoustic analysis offers non-intrusive data collection which is easy to mount, inexpensive, 

and with sensitive microphones is a good choice for online CM, including bearings, 

gearboxes, and engines. Acoustic monitoring has significant advantages particularly when 

the noise problem is under investigation; as it delivers direct clarification of noise sources. 

Newer AE signal techniques such as those developed by Albarbar et al [30] have been 

successful in isolating low acoustic areas interest in a high acoustic emitting environment. 

However, the effect of the acoustic atmosphere certainly plays a vital part in machines 

condition monitoring, one of the main problems being potential contamination by 

background noise, such as various contributions from close AE sources in its close vicinity, 

for example the loading, cooling fan, and driving motor [31]. The other problem is that AE 

data storage and processing is still a issues as it is acquired at a very high sampling rate, 

typically over 10MHz.  

2.7 Motor Current Signature Analysis 

Motor current signature analysis (MCSA) is considered to be amongst the most popular CM 

technique in detecting and diagnosing the existence of electrical and mechanical faults in 
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electrical machines such as those in induction motors. In addition, it has been revealed to be a 

powerful technique for monitoring the condition of downstream driven mechanical 

components such as gears, bearings and shafts. 

MCSA is based on the idea that an alternating current (AC) or direct current (DC) electric 

motor driving a mechanical load also operates as a permanent transducer in itself, sensing 

load and speed variations of the mechanical system then converting them to a variable 

induced current in the motor windings.  

These alterations in the motor current are carried to a hall effect current sensor via the motor 

power cables, and can be detected by this current transducer and then processed by 

appropriate equipment to obtain information regarding the condition of the machine [32]. 

This process is also non-intrusive and can be accomplished without disturbing either the 

motor drive or the driven system. 

From these indicators taken at suitable time intervals, early information can be extracted 

about the health of the equipment being monitored in both the time and frequency domains. It 

is this process of sampling the motor current and performing signal analysis on it that is 

recognised as MCSA. Equipment for collecting and performing signal analysis relatively 

obtainable and affordable [33]. Modern CM systems easily allows the motor current can be 

analysed remotely in real time from a control panel, providing an easy way to monitor 

inaccessible equipment. 

Although MCSA allows the implementation of a CM system to be affordable, remote and 

system level monitoring, its sensitivity is questionable for rotating machines with large initial 

moments. Particularly, it may not be able to give fault indications to individual components 

or sub-systems located distant to the driving motor.  
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2.8 Vibration Monitoring 

Vibration analysis technique is widely used for early faults detection in rotating machineries, 

such as gearbox, motor, pump diagnosis. The vibration signals of a gearbox are composed of 

signatures based on its gears, the detection of the fault is achieved by analysing the signal of 

each individual faulty component. Many different possible signal processing methods can be 

applied to the gearbox vibration signal to provide a more accurate and detailed diagnosis. 

The response of the machine or equipment is monitored by vibration analysis at different 

forces applied on it. Then this response (measured signal) is analysed to obtain clear 

information about the machine health conditions [34]. Vibration technique has been known 

as one of the most comprehensive condition monitoring techniques, and it is an essential 

practice of various predictive maintenance programs. While all machines generate vibration 

in varying forms and sizes, vibration analysis is most commonly deployed for fault severity 

diagnosis in rotating machinery [35]. 

In practice, accelerometers and other displacement based sensors that are used to collect 

vibration data with a wide band of frequency, the raw vibration signal will contain 

information from each rotating component of the machine. The collected data are 

investigated by using numerous signal processing methods such as frequency content, root 

mean square (RMS), peak values, crest factor, cepstrum and higher order spectral (HOS) 

analyses [36]. 

Many types of machine faults may not create enough significant changes in the signature of 

vibration compared with its baseline, so vibration monitoring technique is not adequate for 

all CM [37]. In general, the vibration signal produced from a machine is the sum of many 

components and structures of vibration signals to which they may are coupled. However, 

rotating machines faults produce different vibration signals (components) at different 

frequencies and locations that may often be linked to exact machine fault conditions [38]. 
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Despite that fact, it still remains that vibration based CM techniques often provide the best 

reporting of all failure prevention techniques, it has since been commonly used for online 

rotating machines monitoring such as bearings, shafts, pumps, gearboxes, motors, etc. [39], 

[40]. However, careful consideration must be taken into account for the position of where the 

accelerometer is attached, since the collected vibration signals could be a combination of 

various sources of signals. As the consequence of multiple sources together with coupling 

effects, the signal can have high information contents but might be a function of non-linear 

and non-stationary sources, and may be affected by transmission. Such weakness could make 

vibration monitoring technique not the best technique to be selected [38] unless effective 

decoupling and separation methods can be available. 

Therefore, it utilises the full information included in measured vibration signals for accurate 

diagnosis, vibration based technique needs to concentrate its efforts on improving signal 

processing methods in order to make significant advancements for solving problems with 

multiple source coupling and noise contamination.  
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2.9 Chapter Summary 

Based on this review, typical techniques for mechanical condition monitoring are 

summarised in Table 2.1, with the target components, advantages and disadvantages listed 

for each, which may provide references for technique selection in applications and research 

efforts. In addition, their feasibilities are also evaluated based on a multistage gearbox 

system. 

Table 2.1 shows the common parameters to analyse for condition monitoring, in comparison 

with other methods, analysing the vibration data for the gearbox, bearing and shaft is seen as 

reliable, however its main disadvantage is that it is a relative expensive system to set up 

requiring complex transducers and expensive signal processing systems based on 

conventional measurement systems. However recent advances in signal processing units and 

cheap MEMs accelerometers means that even complex diagnostic systems are more viable.  

There are also studies where a combination of techniques has been proven useful for 

detection and diagnosis of faults in machines. For example, Loutas et al [41] utilises a 

combination of vibration, AE and oil debris analysis for condition monitoring of rotating 

machinery. Based on the findings from [42][43], it was suggested that vibration signal 

analysis proved to be superior to AE for detection of faults in gearboxes. However current 

methods for vibration based CM systems such as wavelet filtering requires high sampling 

rates [44], 

Therefore, a new novel MSB based signal analysis technique is developed in this thesis to 

provide reliable fault detection and diagnosis. This novelty requires lower bandwidth than 

existing techniques (at below twice the rotational frequency plus the meshing frequency). 
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Table 2.1 Summary common techniques used in condition monitoring 

 

 Equation Chapter (Next) Section 1

Measured 
Parameters 

Monitored 
Components Advantages Disadvantages 

Vibration 
Gearbox, 
Bearing, 
Shaft 

Reliability. 
Standardisation. 

Expensive 
More subject to sensor 
failures 
Limited performance at 
low speeds 

Torque Gearbox, 
Rotor 

Direct measurement of rotor 
load 

Expensive 
Intrusive 

Oil/Debris 
Analysis 

Gearbox, 
Bearing 

Direct characterization of 
bearing condition 

Limited to bearing with 
a closed-loop oil supply 
system 
Expensive for online 
operation 

Temperature Gearbox, 
Bearing 

Standardisation. 
Can be compared to previous 
known values. 
Straightforward technique. 

Embedded temperature 
gauge required 
Many other factors can 
cause temperature 
variations 

Acoustic 
Emission 

Gearbox, 
Bearing 

Able to detect faults at an 
early stage 
Good for low-speed operation 
High signal-to-noise ratio 
Frequency range far from load 
perturbation 

Expensive 
Requires very high 
sampling rate 

Motor stator 
currents and 
voltages 

Gearbox, 
Bearing 

Only applicable to systems 
with electric motors or 
generators 
No additional sensors required 
Inexpensive 
Non-intrusive 
Easy to implement 

Angular displacement 
rather than force based 
Difficult to detect 
incipient faults 
Low signal to noise 
ratio. 
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CHAPTER 3.  

OVERVIEW OF SIGNAL PROCESSING TECHNIQUES 

3.1 Introduction 

Signal analysis is used for extracting key information hidden in the vibration to determine the 

condition of the machine as well as diagnosing any faults that may exist at different locations 

and severities. For example, in a healthy the vibration signal generated by the gearbox is 

dominated by its meshing frequency and its harmonics [45]. A fault such as local tooth 

breakage or a distributed tooth wear will exhibit a change in the vibration energy signatures 

at these frequencies, in particular at the sidebands which are spaced at different frequencies 

of interest.  

In this chapter, the vibration waveforms are examined under the most common signal 

processing techniques. Firstly, the peak value and root mean square (RMS) are evaluated, 

they are commonly used to show the amplitude and strength of a signal, the peak value 

represents the maximum value of the waveform, whereas the RMS provides the effective 

value of the varying waveform. Additionally, the Kurtosis of a signal provides an indication 

of the “tailedness” of the waveform. Another commonly used analysis tool is the crest factor 

(CF), CF is ratio of a signals peak value to its RMS value, this shows the amount of 

impacting or the extremeness of a waveform. Both kurtosis and peak value are calculated to 

reflect signal structures with dimensionless parameters to avoid the influence of operating 

parameters. These common waveform parameters are used overwhelmingly in the field of 

CM. 
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This overview of time domain based analysis methods is then followed by a general outline 

of different frequency domain based signal processing techniques. They are the most 

commonly used signal processing method, although they ignore important phase information. 

Furthermore, this review covers advanced techniques including typical time-frequency 

analysis methods such as short time Fourier transform (STFT), Wigner-Ville distribution 

(WVD) and wavelet transforms (WT) which are suitable for non-stationary signals and take 

into account phase information to a certain degree. TSA include explicitly phase information 

and is critically effective for noise separation. Bispectrum is particularly interesting as it 

takes into account phase information implicitly and highlights non-linear effects. 

On the other hand, there are also many other methods which have been actively investigated 

for processing gearbox vibration signals. This class of methods include cyclic spectrum 

analysis [46][47], empirical mode decomposition [48][49] etc. They are deemed to be 

implemented with either little consideration of signal phases, or with limited noise reduction 

capability, or the needs of considerable pre- or post-processing, or with less meaningful to 

physical systems. Therefore, they will be not discussed further.   

 

3.2 Time Domain Based Amplitude Analysis  

Figure 3.1 shows a simulation of typical vibration signals that can be collected from a 

transducer mounted on the gearbox casing, the simulated signals were generated using 

Matlab. The first case shows a healthy signal with a meshing frequency of 120Hz, the second 

signal contains a local tooth fault and the final signal contains a fault with some Gaussian 

noise. The figure below is used to provide a brief overview of the typical signal that requires 

analysing. Further information on the construction of the simulated signals and their 

explanations can be found in Chapter 4. 
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Figure 3.1- Matlab simulated gearbox vibration signals of three different cases, healthy, damaged, and the 
damaged case with background Gaussian noise. 

 

Analysing the vibration signal of a system is often one of the quickest and simplest methods 

used for fault detection [50]. Time-domain based analysis techniques uses the information 

provided by the time-based variation of the amplitude contained within a typical gearbox 

vibration signal to detect the presence of faulty gears. Fluctuation of the amplitude can 

provide early indication that a fault is likely present, the frequency of the impulses of interest 

can then provide information relating to the likely faulty meshing gear pairs [51].  

Time domain based parameters are often applied if the periodicity of the vibration signal  is 

predictable, the fault type that in existence also need to be detectable impulses. Analysing the 
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signal in its time domain enables changes in the vibration signature easily recognised, but it 

is incapable of locating the source of a fault nor can it distinguish the severity of a fault.  

Most rotating mechanical systems will generate sufficiently high vibration when operating to 

provide a clear waveform in the time domain which can be picked up by transducers. 

However, when a fault begins to develop, the change in vibration is usually be very small and 

therefore may not be detectable with simple processing methods. As the severity of the fault 

progresses, the size of the change in its vibration signal becomes greater and more notable, 

but still may prove insufficient for reliable fault diagnosis [52].  

Healthy mechanical systems are generally considered to be deterministic, its vibration signal 

can be predicted based on its past operational properties. However, systems such as a 

gearbox with a tooth breakage fault possesses characteristics which are difficult to predict, 

and are characterised as non-deterministic signals. The values can be estimated by 

recognising some of its statistical parameters which can be used to predict fault progression 

[53]. 

Time-domain based parameters are already commonly used for various rotationary related 

mechanical fault detection include: Peak Values, RMS, Kurtosis and CF [54][55][56]. These 

parametric indicators are collectively known as “condition indices”, [57]. Given prior 

investigation into the values of healthy operational parameters, these condition indices can 

provide a rudimentary fault detection system. The values for the condition indices is 

generally related to the severity of the fault; this allows the condition index to provide an 

indication of the status of a fault and whether or not it is growing.  

Because of the simplicity of time domain based parameters, a maintenance engineering using 

simple visual inspection of the vibration waveform over time can quickly apply most of the 
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time domain based techniques. However, processing the signal will provide a more accurate 

statistical value that can give an earlier indication regarding the severity of the fault and a 

more accurate diagnosis. 

3.3 Signal Strength Based Diagnosis (Peak Value and Root Mean Square)  

The peak value and RMS are both simple analytical values, both are commonly used to 

measure the overall size of the vibration signal. The peak value is calculated for a time 

domain signal ( ) 1, 2,x n n N=  , by: 

max( )PV x=    (3.1) 

The RMS value is a measure of the power within the vibration signal. It is calculated from: 

2

1= 
n

N

n
x

N
RMS =

∑
   (3.2) 

This feature provides a more accurate value with noise presence compared to the peak value. An 

increase in either peak value or RMS can be as a result of a fault which causes more energy 

release. However, any peaks of a short time duration will be averaged out if analysed by using 

the RMS value, therefore it is unable to detect any local faults. Also, neither indices can provide 

an indication relating to the source of a fault. 

3.4 Crest Factor  

Crest Factor is the ratio between peak value of the input signal and its RMS value. It is defined 

simplyas: 

PVCF
RMS

=    (3.3) 

Given a localised fault, an impulsive peak is generated at the rotational frequency of the fault, 

increasing its PV depending on the severity of the fault, whilst its RMS value will increase by 
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only a small amount. Subsequently, this will also increase its Crest Factor. Most values for the 

Crest Factor lie between 2 and 6 [55]. Crest Factor values that are greater than 6 is a good 

indicator of some local fault.  

3.5 Kurtosis  

Kurtosis is the fourth order of a distribution and measures its “tailedness”, which is also 

known as the peakedness or flatness of the distribution in comparison to a normal 

distribution. Kurtosis is used as an indicator of major peaks in the data set.  

The formula for calculating kurtosis is :  

4

1
2 2 = 

[ ]

[ ( ) ]N

nKur
x n

σ

µ
=
∑ −

   (3.4) 

Where N is the number of data points, x(n) is the time series of the data, µ is the mean value 

of the data and 2 2

1
[ ( ) ]N

n
x nσ µ

=
∑= −  is the variance of the data. 

A high kurtosis value is an indication of the presence of a sharper peak with long tails, 

whereas a lower value represents a rounded peak. If the signal consists of just random noise 

made up of a Gaussian (Normal) distribution, it has a kurtosis value of 3, whilst a pure sine wave 

has a kurtosis value of Kur = 1.5. Kurtosis values of greater than 3 indicates that the distribution 

approach zero slowly and is relatively flat. 

Vibration signals produced from a healthy gearbox will show a mostly consistent pattern, which 

has a kurtosis value of close 3.0, or lower. As a gear fault develops and becomes more severe, the 

impulses caused by local faults will also increase, this causes the kurtosis value to also increase, 

indicating that the distribution of the vibration is no longer a Gaussian distribution [54]. Given its 

robustness against noise, kurtosis is commonly used as a parameter for the detection of gear 

faults [57]. 
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3.6 Frequency Domain (Spectrum) Analysis  

Frequency-domain based signal processing is a well-adopted conventional technique used for 

vibration analysis, analysis of the signal in its frequency spectrum is extremely useful in the 

detection and diagnosis of faults in rotating machinery [58][59]. The waveform is 

transformed into can be broken down into several frequency components and the source of 

each component can usually be accounted for. It is therefore easy for analysts to focus on the 

frequency components which provide invaluable information for fault detection and 

diagnosis. Frequency domain based fault detection is most commonly used for many types of 

signals including vibration [60] and acoustic emissions [61]. 

Because the overall vibration signal is actually a combination of vibration produced over a 

broadband of frequencies; breaking the signal down in the frequency domain and displays the 

size the components in discrete neighbouring narrow frequency bands. Therefore, a common 

approach for detecting faults in most rotating machinery is to use the Fourier transform (FT) 

to present the vibration signal in its frequency domain.  

As an efficient computation method, Fast Fourier transform (FFT) is commonly used to 

obtain FT if the machine rotates at a constant speed so that the measured signal’s frequency 

components are not changing over time. The magnitudes at each frequency is as a direct 

result of the vibrations produced by each component by the machine. Knowing information 

regarding the details of rotating parts can allow each frequency component to be traced back 

to its source. Therefore, changes in vibration levels within a particular frequency band can be 

traced back to a particular component. Analysis of the component energy levels at different 

frequency bands can provide some fault diagnosis information and the fault location 

information.  
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The vibration signal’s sidebands are generated by either amplitude modulation or frequency 

modulation, and they can often provide useful information relating to the type and severity of 

a fault. For example, an amplitude modulation can be used to diagnose tooth breakage in a 

particular gear, the frequency shift with the AM is also used to calculate the gear’s rotational 

speed. This gives an indication of the location of the damaged gear within the gearbox. 

Errors which are as a result of manufacturing error, system set up error and non-uniform 

distributed fatigue related faults will cause a frequency modulation. As mentioned earlier, 

Randall has shown that the first three gear meshing harmonics and their sidebands provide 

sufficient information to accurately diagnose and identify faulty gears [62].  

Since a signal’s fluctuations in the amplitude of particular frequency peaks, or its sidebands 

gives an early detection of potential gear failure, it is potentially a very robust diagnostics 

tool. The spacing of the sidebands is dependent on the rotational properties of each 

component within the system and of the loading and on the transmission path. In real 

vibration signals, due to the number and complexity of such components, it can be difficult to 

distinguish between the multitudes of sources, therefore it is unreliable when trying to extract 

useful features purely from the vibration signal’s frequency spectra if using only on a 

standard FFT. A low signal-to-noise ratio (SNR) will further exasperate such problems and it 

becomes near impossible to provide an accurate fault diagnosis. 

3.7 Time-Frequency Based Analysis  

Real signals are generally non-stationary in nature. Such machines typically generate a 

distinct frequency characteristic at a particular given instant of time. Therefore, in such cases, 

it is more preferable to use a technique that offers joint time-frequency analysis, therefore 

providing an indication of the way that the frequency varies against time.  
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Sinusoidal components which make up the signal will differ over the entire time domain and 

are not concentrated in time. Conventional FFT does not provide any signatures of the 

change in frequency components over time. Therefore, it would be useful to examine a signal 

simultaneously in both the time and frequency domains, allowing the inspection of their areas 

of interest that are concentrated in both its time and frequency domains, such as the 

frequency modulated Gaussian functions [63]. Thus, in order to overcome the loss of 

information using classical Fourier analysis, the easiest way is simply to compare the signal 

with its elementary functions that are localised in both the time and frequency domain 

simultaneously. Three such representative signal processing techniques which are explained 

in this chapter are:  

• Short-Time Fourier transform (STFT); 

• Wigner-Ville Distribution (WVD) 

• Wavelet transform (WT). 

 

3.7.1 Short Time Fourier Transform  

The STFT is one of the most widely used method for examining non-stationary signals. The 

basic principle of STFT is to break up the initial signal into small time segments and apply 

the Fourier transform to each time segment to ascertain the frequencies that existed in that 

segment. The totality of such spectra indicates how the spectrum is varying in time.  

The representation of the STFT using localised elementary functions is:  

2( , ) ( ) ( ) j ftSTFT f g t x t e dtπτ τ
∞

−

−∞
= ∫ −   (3.5) 

where the sliding window function g(t) is a Gaussian window defined by 
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2( / )( ) t ag t e−=    (3.6) 

where a represents the length of the window. 

The formula (3.5), will provide the Fourier transform based on the function F(t), which is 

windowed by g(t) centred at time, τ. By repeating the same procedure at multiple translated 

time locations of τ, a portrayal of how the frequency components of the signal evolves with 

time can then be obtained [63], allowing both time and frequency features to be investigated 

concurrently.  

The early application of time-frequency methods to gear faults began with the work of 

Forrester, STFT method was applied to the detection of gear failures [50]. The disadvantage 

of the STFT application is that the window width remains constant during the entire duration of 

the analysis. This is a limitation a high resolution is required to identify impulses which give a 

sudden change over time. Also the window’s width is fixed after it is chosen, and therefore it 

cannot be changed during the rest of the transform. 

The limitation of the STFT lies in the inability to achieve more detailed time localisation by 

using a smaller window functions. This is because the information from the resulting 

spectrum decreases as the time window shortens. 

Eventually, by continuously decreasing the duration of the time window’s interval, the 

answer that is obtained for that particular spectrum becomes meaningless. Moreover, similar 

to spectrum analysis, STFT does not have any noise suppression capabilities, as its averaging 

representation of the spectrogram is only the magnitude information of the signal under 

analysis. 
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3.7.2 Wigner-Ville Distribution 

The Wigner-Ville distribution (WVD) is a more accurate joint time-frequency signal analysis 

method. WVD is a commonly used time-frequency analysis techniques, as it provides a very 

high resolution that allows for an accurate portrayal in both time and frequencies domains. 

However, WVD is particularly prone to aliasing related errors arising during the computation 

of WVD and to its nonlinear behaviour. In order to prevent aliasing occurring, the original 

real signal has to be transformed into a more complex analytical signal.  

The Wigner distribution was originally developed by Eugene Wigner in 1932 [60], its main 

purpose was to study statistical equilibrium in quantum mechanics, the Wigner distribution 

was first used in signals processing Ville in 1947. It later became known as the Wigner-Ville 

distribution (WVD) amongst the signals processing community. 

* 2( , ) ( ) ( )
2 2

j fW t f s t s t e dπ ττ τ τ−
∫= + −   (3.7) 

where s* represents the complex conjugate of the analytic signal s which is calculated by 

Hilbert transform of the time domain signal s . 

The behaviour of the frequency of a signal can be classified into two types: linear representation 

such as the Fourier transform (Short time Fourier transform) and quadratic representation such as 

the Wigner-Ville distribution. 

The WVD provides a major advantage over STFT in that it can provide a better resolution in both 

time and frequency [61]. However, the downside with the WVD is that it natural possesses non-

linear behaviour that usually creates significant interference (the cross-terms) between different 

signal components. In addition, it does not possess any noise suppression capabilities. 
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3.7.3 Wavelet Transform 

The wavelet transform (WT) is a joint time-frequency analysis method similar to WVD but even 

more powerful. WT is independent of time so therefore it can also provide analysis regarding the 

local behaviour of the signal. STFT uses complex sine and cosine functions in order to map the 

time signal into its frequency domain. WT instead uses wavelets, which is a set of elementary 

functions which are independently widened and shifted as a function of time. 

More recently, several WT analysis based techniques has been widely accepted as suitable signal 

processing methods for rotating machine fault detection and diagnosis. Decomposing a time 

domain series into time-frequency spectrum reveals the magnitude of the signal’s frequencies as 

well as the time duration of each individual frequency [62]. This is especially useful for 

processing vibration signals from faulty rotating machinery, where the vibration changes due to a 

fault can vary significantly depending on whether it is either a distributed or local fault [63]. In 

particular, when examining the condition of a gearbox, WT is commonly used for the 

identification of all the possible transients in vibration signals that are generated by different 

faults. WT possesses multiple resolutions for localisation of the short time components, allowing 

many different types of gear faults to be highlighted with a single time-scaled distribution 

analysis from the transform [64][65]. 

1( ) ( ) t bW a,b x t dt
aa

ψ∫
− = ∗ 

 
   (3.8) 

where ψ ∗  is also called the mother function. a represents the scale index and b represents the 

time shifting. The quantity W(a,b) reflects the signal’s behaviour in around the region of (b, 

ω0/a). 

The most important characteristic of WT is its flexibility of the time window which can be 

narrowed or widened the time window accordingly, depending on a higher or lower signal 
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frequency[66]. There also exists a strong correlation between wavelet’s scale and frequency, 

which is revealed by analysing the wavelets. This allows for the detection of extremely short 

transient signals in the time dimension, therefore it is able detect the non-stationary vibration 

signals[67]. As such, the WT is a processing method that is very well suited to the detection 

and diagnosis of early failures in gearboxes. 

However, WT requires prior knowledge regarding the noise characteristics during the initial 

denoising process. In practice, this knowledge is usually unknown. 

3.8 Time Synchronous Averaging 

Time synchronous averaging (TSA) or time domain averaging, is a well utilised signal 

processing technique, TSA is often used to extract the periodic waveforms from signals 

which contain heavy noise [68][69]. It has regarded as an essential algorithmic tool for 

processing vibration signals in examining the condition of rotating equipment [70]. 

To compute a synchronous average signal y(t) from a time based signal x(t), it needs to have 

an additional trigger signal such as pulse trains from a shaft encoder. 

Where the frequency tf  is equivalent to its convolution [71]: 

( ) ( ) ( )y t c t x t= ∗    (3.9) 

c(t) is a train of N impulses each of amplitude 1/N, the impulses are spaced at intervals 

1 /t tT f=  , and is given by: 

1

0

1( ) ( )
N

t
i

c t t +iT
N

δ
−

∑
=

=    (3.10) 

At the frequency domain, this is equivalent to the multiplying (f)X  and C(f)  together, which 

are the FTs of the signal and pulse train 
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Y(f)= C(f)X(f)    (3.11) 

With C(f)  defined as 

sin( )1
sin( )

t

t

NT fC(f)
N T f

π
π

=    (3.12) 

which is essentially a comb filter. For very large number of averages N, the only frequencies 

that are passed are exact multiples of the trigger frequency f (t). Therefore, if the trigger is set 

to be frequency f = ft − f , only frequency lines at integer multiples of  ft – f will be kept and 

other components can be removed effectively.  

Conversely, processing signals using TSA can often be too difficult and complex for 

obtaining reliable analysis in real applications. This is due primarily to the difficulties to have 

a reliable trigger signals, either from hardware such as shaft encoders or demodulating 

meshing component for a phase signal. 

In addition, although the TSA is a powerful tool for isolating gear and shaft components 

synchronous with a particular shaft, it fails to isolate random vibration components because 

the subtraction of a single TSA signal from the original signal results in a combination of 

random signals and other shaft-synchronous components. To solve this problem, a frequency 

domain method was proposed by computing the FFT of the entirety of a signal, and simply 

removing spectral peaks at the discrete harmonics of the known periodic signals [72]. It also 

tried in the time domain method by consisting of multiple resampling and subtraction of time 

synchronous averages from a signal [73]. However, both of these issues have shortcomings. 

The frequency-domain approach must deal with the fact that the frequency of the harmonics 

leaks into adjacent windows, except for the very special case in which the numbers of sample 

per period and the number of periods are powers of two. In the case where there is leakage, 

removal of discrete peaks at shaft harmonics will not completely remove the periodic signal. 
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The time-domain approach described in has the issue that there are certain time-domain 

features that are common to the time synchronous average of two or more shafts, the signal 

corresponding to the gear mesh frequency being a universal example. Thus, repeated 

subtraction of individual TSAs will “over-subtract” certain features of the periodic signals 

[74]. 

In general, TSA can effectively suppress noise but it is not able to characterize nonlinearity. 

In addition, it still has many problems to implement an encoder-free TSA even though a great 

deal studies have careered out in different cases.  

3.9 Bispectrum based Analysis 

Detection and diagnosis information in gear vibration signals are always influenced by the 

presence of various noises including random noise, uninteresting vibration associated 

components, as investigated in [75] and [76] and even interferences. In addition, vibration of 

gearbox often exhibits nonlinear coupling mechanisms such as modulations. To overcome 

these problems, bispectrum analysis techniques have been investigated to analyse gear 

acoustic signals in [77] for more reliable features for gear fault detection [78]. Recently, a 

more in-depth study [79] has given theoretical framework on applying bispectrum to gear 

vibrations signals. These interesting studies have demonstrated that bispectrum analysis is 

potentially useful for characterising nonlinear fault features in line with noise suppression, 

and thereby for more accurate diagnostic features.   

However, the authors in [79] have not shown a general diagnostic features that can be used 

for different operating conditions. This may be due to the fact that conventional bispectrum 

can results in massive spurious components for multiple stage gearbox. 
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3.10 Chapter Summary 

The peak value, RMS, CF and kurtosis can be investigated easily from a time domain based 

vibration signal for fault detection and diagnosis. These signal processing techniques have 

already been adopted to be used under various rotational speed and load scenarios. The 

investigation shows that most statistical based parameters are highly affected by operating 

conditions and gear condition. By simply only measuring the peak value and RMS of a 

vibration signal, and comparing these values to a predetermined set of values measured from 

the vibrations from a normal healthy gear, the diagnosis of any defects and the severity 

cannot be performed. Even if the peak value and RMS are combined and using statistical 

analysis based on CF and kurtosis, it still lacked the ability to accurately detect gear defects 

in its earlier stages. The restrictions of such techniques often leads to an inaccurate diagnosis.  

Amongst different techniques, bispectrum analysis combines both magnitude, frequency and 

phase information to achieve noise reduction and nonlinear characterisation. Therefore, this 

approach is potentially enabling to provide more reliable foundations for achieving accurate 

diagnosis, especially compared with techniques such as time-frequency analysis methods and 

wavelet transforms that have little effect on noise reduction, rather they only enhance the 

desired components through reassigning signal energy on time-frequency planes. 

Equation Chapter (Next) Section 1 
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CHAPTER 4.  

MODELLING GEARBOX VIBRATION RESPONSES 

4.1 Introduction 

Ever increasing demand to minimise the cost of maintenance whilst improving its quality has 

meant that CM of gearbox systems is a commonly investigate subject area. Gears operate 

under much more extreme conditions in comparison to most other components of the 

machine, this means that they are often the most common cause of failure. Their high 

operational requirements, especially at their teeth, where there is the most stress applied, 

means that gears require regular servicing or replacing [80][81].  

There are three typical categories of gear failure that cause transmission error and gearbox 

failure: manufacturing faults (i.e. error in the tooth profile), installation faults (i.e. the 

alignment of the gears) and fatigue faults which occur during the work process (i.e. cracking 

of teeth) [82]. Sudden changes in the load of the gear teeth during operation is the primary 

reason for creating gear fatigue cracks appearing at the roots of the teeth, which weakens the 

overall structural durability of the gear. 

Tooth breakage is often considered to be one of the most serious problem for gears because it 

ultimately leads to complete failure of the gearbox. A small initial fatigue crack at the base of 

a tooth will is not usually considered to be a major concern, however as the crack develops 

and propagates, the damage increases exponentially and so can often lead to complete failure 

of the tooth [83]. If the crack can be detected early and its development analysed, the gear 

can be replaced before severe breakage occurs. 
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As the pair of gears’ teeth mesh and rotate there will be continuous periodic variations in 

torque and force, the primary vibration signal that is generated will be at the tooth meshing 

frequency [84]. There are also various friction forces and other noise throughout the gearbox 

that will be picked up by the vibration sensors at the gearbox case, this again creates more 

random components that distort the vibration data that is collected. 

Martin et al have shown that the amplitude of the vibration signal will be primarily 

dependent on both the size of the forces and the physical properties and as well as the 

geometries of the gears themselves. The amplitude is also affected by other factors such as 

the tooth stiffness, shaft misalignments, errors in the manufacturing profile and pitch, gear 

eccentricity and load that is distributed onto each tooth as an overall function of the angle of 

rotation [85]  

When the teeth mesh together, the vibrations will oscillate from the gear onto its mounting 

shaft, then onto the shaft bearing and finally to the casing of the gearbox where the signal is 

picked up by an accelerometer. As the vibration travels from the point of origin to the 

location where it is picked up by the accelerometer on the gear casing, it will be affected by 

vibrations from a multitude of other sources, which can either attenuate or resonate the 

signal. Therefore the detected signal will initially require processing by using a filter to 

remove any high frequency noise picked up [86]. 

Analysis of vibration signals is particularly useful for CM of gearboxes since any change in 

the vibration signal of a gearbox is due to a change in the condition of the gearbox itself. Any 

defects on a gear will alter its meshing behaviour and therefore cause a change in both its 

amplitude and phase modulations in its vibration signal. Therefore the changes in a 

gearboxes’ vibration signal can be analysed to diagnose its current condition. 
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Generally, using spectral analysis of the vibration signal in its frequency-domain is the most 

commonly used method used for CM of gearboxes. This is because the most important CM 

elements in the vibration signal of gears are the tooth meshing frequency, its harmonics and 

the sidebands which are located on either side of the gear tooth meshing frequency. The 

sidebands are separated by integer multiples of the gear rotation frequency. The behaviour of 

these sidebands can be strongly indicative of the presence of a fault, for example, through an 

increase in the number of sidebands and their relative amplitudes is often due to the meshing 

of damaged tooth. The information contained in the first three meshing frequencies of the 

gear and its sidebands can give indicate the condition of the gear [87].  

Although theoretically, analysing the changes in the amplitude of particular sidebands in the 

frequency domain can be used to diagnose the condition of a gearbox. In practice, if only 

using a simple Fourier transform (FT) to transform the signal from time domain to 

frequency-domain, it will still be difficult to extract meaningful information from the 

vibration signal. In the early stages of fault development, important frequency components 

are of relatively low amplitude and which are masked by other vibrational sources or affected 

by background noise [88]. This is especially relevant since the individual vibration impulses 

generated by gear defects typically have short durations and causes the matching frequency 

response to be spread over a wide frequency band with a small amplitude. It is also complex 

in identifying the specific component that indicates a fault amongst a multitude of various 

other frequency components. 

The combination of time-frequency analysis is becoming more and more popular for 

diagnosing gearbox faults, it is gradually replacing conventional time-domain based and 

frequency-domain based analysis. With the signal analysed in both its time and frequency 

domains concurrently is a useful tool for examining the non-stationary vibration elements in 
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the signal, and their source is relatively simple to conclude. Overall it is not very difficult to 

characterise the local features of the signal, and all of the distinct components around the 

meshing frequency and its harmonics, also their causality and the phase change can modelled 

[89]. 

4.2 Vibration Model of a Gear Pair 

Commonly, the vibration system of a gear set can be represented as shown in Figure 4.1 [90]. 

It consists of both rotational motions and translational motions of the pinion (drive) and the 

gear. According to Newton’s law, the vibration governing equations can be developed based 

on the symbols defined in Table 4.1. 
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Figure 4.1 Vibration model for a gear pair 

 

The equation that governs the translational motion of the drive gear  in the first gear pair is 

given by: 

( ) ( )( ) 0( ) pp p gpb p pg p p g g p g pg p g p gm k y k r r y y e c r ry yt t yϕ ϕϕ ϕ+ − − − + + − − − + =     

      (4.1) 

The translational motion of the driven gear  in the first stage is given by: 

( ) ( )( ) 0( )g g g pgb pg p p g g p g pg p g p ggm k y k r r y y e c r ry t yt yϕϕ ϕ ϕ+ − − − + − − − =− +     

  (4.2) 

The rotational motion of the drive gear or pinion  in first stage is as: 

( ) ( )( ) ( ) 0p p pg p g g g p g p pg p g pp p g gI r k r r y y e r c r rt yt yϕ ϕϕ ϕϕ+ − − + + + − − + =        

  (4.3) 

The rotational motion of the driven gear  in the first stage is given by: 

( ) ( )( ( 0) )p pg p g g g p g p pg p gg g p gp gI r k r r y y e r c r rt yt yϕ ϕϕ ϕϕ − − + − −− − − + =        

  (4.4) 

As the tooth stiffness  and  is of time-varying function, these are nonlinear 

parametrically excited differential equations and difficult to find closed form solutions. 

Nevertheless, it shows that translational motions py  and gy , which can easily transfer to the 

gearbox case due to high stiffness of bearings and then are measurable by accelerometers 
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mounted on the case for condition motoring, are coupled with the rotational motions. It 

means that the measured vibrations are a combined effect of the translational and rotational 

motions. The translational motion can be the amplitude modulator while the rotational 

motion can be the angular modulator. Therefore, the vibration signal exhibit combined 

modulation characteristics.  

Furthermore, combination with multiple stage vibrations, inherent manufacturing errors and 

fault excitations will result in much more complicated modulation. This makes it difficult to 

have effective and stable vibration features for obtaining a reliable diagnostic result.  

 

Table 4.1 Nomenclature of gear vibration model 

 

moment of inertia of driving gear one (pinion) at the 
first stage 

 

moment of inertia of driven gear in the first stage 

 

angular displacement of driving gear; 

 

angular displacement of driven gear  

 

base radius of the driving gear in the first stage 
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base radius of the driven gear in the first stage 

 

vertical displacement of the driving gear the first 
stage 

 

vertical displacement of the driven gear the first stage 

 

mass of the driving gear in the first stage 

 

mass of the driven gear in the first stage 

 

first stage meshing damping  

 

first stage time varying meshing stiffness  

 

driving gear bearing stiffness  

 

driven gear bearing two stiffness  

 

gear errors including different gear fault modes 
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4.3 Vibration Model of a Multiple Stage Gear Transmission 

To model the vibration responses of a multiple stage gearbox, multiple models shown Figure 

4.1 can be linked through a shaft with a torsional stiffness 12k  as shown in Figure 4.2. In this 

way, the rotational motions are coupled between two stages by revising Equation (4.4) to 

include a relative torsional motions. For example for a two stage gearbox the rotational 

motion of the gear at the 1st stage will be revised as: 

( ) ( )1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 11 1 12 2 0( ) ( ) ( )p pg p g g g p g p pg p gg gg pg pI r k r r y y e r c r r yt t y kϕ ϕ ϕϕ ϕ ϕϕ − −− + − − − =−− + −    

            (4.5) 
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Figure 4.2 Vibration model for two gear pairs in motion 

 

As shown in Equation (4.5), the vibrations between the two stages are coupled together. As a 

result, the translational vibration at the 1st stage which are measurable on the case will have 

additional components such as the mesh frequencies of the 2nd stage. Internally, these 

vibrations will modulate the stiffness functions to results in multiple modulations and 
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consequently more complicated components and spectrum patterns. This will cause further 

difficult to make differences between each components for the purpose of fault detection 

diagnosis.  

 

Figure 4.3 Vibration response to sinusoidal stiffness at the 1st and 2nd stages of a two stage gearbox 

 

Figure 4.3 shows the vibration waveforms of translational responses for three cases of 

excitations in a form of a sinusoidal mesh stiffness pgk . They were obtained numerically 

based on a two stage gearbox whose parameters are detailed in Table 6.1. The response of 
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translation vibration to the stuffiness excitation at the 1st stage alone exhibits stationary 

waveforms corresponding to the faster variation at the first stage, whereas the response of the 

2nd stage also exhibit stationary but with a slower variation, which are show in Figure 4.3 (a) 

and (b) respectively. However, even though the excitation is of a pure sinusoidal input the 

waveform have multiple harmonics, showing typical nonlinear effect of the vibration system 

due to multiple couplings between the translational and rotational motions.  

This nonlinear effect become more obvious and significant when both stages have the 

sinusoidal excitations applied simultaneously. As shown in Figure 4.3 (c), the waveforms to 

such multiple excitations exhibit clear modulation characteristics in that the slower 

oscillations modulates the faster oscillations or visa verse, making the responses more 

complicated to be separated appreciably.  

To further shows the mutual coupling effect between the vibrations of the two stages, the 

spectra corresponding to the waveforms are presented in Figure 4.4. As shown in Figure 4.4 

(a) and (b), the sinusoidal excitation induces only mesh components and their higher 

harmonics when the excitation applies to the system individually. However, when the 

excitations coexist in both stages, the spectrum in Figure 4.4 (c) become much more 

completed than just a simple summation of the two spectra in Figure 4.4 (a) and (b). Instead, 

it shows clear modulation characteristics due to the effect that the two sets of harmonic 

components are modulated each other.  
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Figure 4.4 Vibration spectra for sinusoidal stiffness at the 1st and 2nd stages of a two stage gearbox 

Obviously, because the complexity of multiple components modulation, it is not very easy to 

separate these components based on this spectrum analysis which contains only amplitude 

and frequency information. It is expected to have more chance to separate them when also 

include phase information. 
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4.4 Common Imperfectness of Gears 

Gears always have various manufacturing and installing errors. They can cause significant 

contribution to overall vibration responses of a perfect gear pair. For brevity, three common 

errors are modelled and their vibration characteristics are examined. 

4.4.1 Transmission Error 

One of the most common errors is the run-out transmission error. For simplicity and 

effectiveness, only one component of the first types of error  , which is often more 

significant due to the effect of gear cutting process, is modelled as: 

0( )pi i i iE cosγ ϕ ϕ= +    (4.6) 

where  is the maximum error amplitude, the =1,2 denoting engaging gears 1 and 2 

respectively,  is the angular displacement and  is the initial phase displacement for the 

error which will be included to reflect installation angular positions. Thus the overall 

stiffness of an engaging gear pair will be: 

( ) )1 1 1 1 10 2 2 01 2   ( ( ]z zk cos cosk ϕ γ ϕ ϕ γ ϕ ϕ= + + + +   (4.7) 

4.4.2 Eccentricity Error 

The influence of any eccentricities can also be investigated by incorporating it into the error 

function (4.7). The eccentricities can be modelled with its first order as in [90]:  

0( )i i i iE cosρ ϕ ϕ= +    (4.8) 

where  is the maximum error amplitude of the eccentricity for the ith gear. Therefore, the 

stiffness combined with eccentricity error becomes  



67 

 

( ) )1 1 1 1 1 10 2 2 20 1 1 01 2 2 02cos( cos( cos( ) cos( )]z zk k ϕ γ ϕ ϕ γ ϕ ϕ ρ ϕ ϕ ρ ϕ ϕ= + + + + + + + +  

  (4.9) 

4.4.3 Unbalanced Mass Error 

Unbalanced mass  is modelled as a dynamic torque: 

2
0( )i i i i iT m e cos ϕω ϕ= +    (4.10) 

where  is displacement of the mass centre  

 

Figure 4.5 Eccentric gear. (a) Eccentricity in a gear caused by manufacturing errors, (b) Resulting errors 
in gear geometry [90] 

 

In addition, the motor shaft and gearbox input shaft are often connected by a key-sleeve 

mechanism or coupling. Considering the clearance of the sleeve or coupling, the 

misalignment between these two shafts can happen, which is modelled by refereeing Figure 

4.6 as: 

( )2 2 2
2 1 1r r e recos θ= + −    (4.11) 
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( )
1 1 1 1

2 2 2
1 1cos ω t2 1

r r
r r e r e

ω ωω = =
+ −

   (4.12) 

For simplification the modelling of this effect is represented by a small speed variation added 

onto  

2 1 0( )ecosω ϕ ϕ∆ = +    (4.13) 

where  is the speed variation with respect to speed of operation. 

 

Figure 4.6 Misalignment between 2 shafts connected by key-sleeve 

 

4.5 Model for Gear Tooth Breakage 

In a gear pair the system vibration response is due to the deformation and elasticity of the 

contacting components and not due to the force or the response time history. So a piece-wise 

linear function was used rather than a rectangular or a half-sine function. This linear function 

can be easily modified to include different effects including tooth breakage and tooth profile 

wear. 
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To simplify the model, just the major factors, the mesh stiffness, ( )k t   has been 

considered in this study The mesh stiffness is defined to be the ratio between the force acting 

along the line of action, and the tooth displacement along the same line. In order to obtain a 

mathematical model, the stiffness for a single pair of meshing teeth was first investigated. 

The stiffness for the meshing of a gear pair is affected by several characteristics [91], firstly 

the stiffness due to the Hertzian contact, the axial stiffness between both teeth and the 

bending stiffness of the two teeth from the drive  and the driven gear . All these factors 

can lead to an increase in the stiffness amplitude in the middle phase of the meshing time. 

Due to the complexity in precisely predicting the actual pattern of the variation in stiffness in 

real cases, approximations are usually used. Therefore, this research study presumes that the 

tooth mesh stiffness has the combined profile shown in Figure 4.5 (a). 

As mentioned above, a piece-wise linear function is used to represent the transient value of 

the stiffness during the gear mesh-in and gear mesh-out of a gear pair. The stiffness is 

assumed to have a constant amplitude variation in the middle part of the engagement of the 

tooth pair. Maximum stiffness value of a single gear pair is usually in the order of 107 N/m 

[92]. 

In a single pair of teeth contact, the meshing stiffness stays mostly unchanged, since the 

reduction of stiffness in one of tooth in the pair is then compensated by an increase in 

stiffness of the other mating tooth. When the gears rotate the point of contact between a tooth 

pair will be higher in one tooth and lower in the other tooth of the matching pair.  

While the gears are rotating, the number of teeth in contact also varies, as a consequence the 

effective length of the contact line alters creating variations in overall mesh stiffness. For 
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spur gears, where the contact ratio is lower, such variations are mainly because of a load 

transfer occurring over a single tooth in one double tooth pairing. However, in the case of a 

helical gear pairs, the meshing change of the overall length in the line of contact line is 

relatively much smaller since there is a higher contact ratio which is distributed between 

three or four teeth at a time. Therefore, the mesh overall meshing stiffness variations in 

helical gears are considerably smaller compared against that of spur gears. Thus models of 

helical gear dynamics consider meshing stiffness as a constant value that uses its time 

averaged result [93]. 

In order to simplify this research model, the meshing stiffness is assumed as a function of 

angular displacement to depend upon two factors: overlap  and contact ratio . The first 

parameter measures the overlap of adjacent teeth in the axial or face-width direction and the 

other parameter measures the contact between adjacent teeth in a diagonal section. 

The overall profile of a single pair stiffness can be interpreted as linear piecewise, which is 

shown in Figure 4.5 (a). 

Figure 4.5(b) shows the x-axis denoting the number of base pitches, which needs be 

multiplied by ( ) to provide the angular variation. The total meshing stiffness can then 

be calculated by summing the overall stiffness of a single tooth pair, and incrementing by one 

tooth at a time for the total number of  teeth. 

Further, in Figure 4.7 (b) illustrates the resulting meshing stiffness waveform for the 

underlying gear pair of this research study. The minimum number of teeth in contact is three 

and the maximum number is four. This variation between the minimum and maximum 

number of teeth in contact is the main source of the gear vibration. The period of the 
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fluctuation shows that even in a healthy condition (given that there are manufacturing faults 

or faults) a gear pair will still produce vibrations. With the existence of manufacturing faults, 

the variations in the stiffness will be non-uniform. The minimum and maximum number of 

contacting teeth pairs will vary depending on the shaft angular position, as does the resulting 

error’s amplitude, typically causing greater variations in the stiffness amplitude and resulting 

in vibrations with higher amplitudes. 

 

Figure 4.7 Schematic of tooth stiffness variation under different fault cases  
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It is well known and mentioned in chapter three that tooth breakage (failure) is a common 

fault in helical gears. This kind of fault begins with small damages to the structure of the 

tooth, which then leads to a change in its meshing stiffness. The colours in Figure 4.7 (b), 

blue, pink, red and black, represents the influence of a single tooth breakage on the overall 

meshing stiffness. The tooth breakage are missing 25%, 50%, 75% and 100% of a complete 

single tooth. The figure shows that even local faults can result in a sudden drop in the 

stiffness amplitude. Additionally, at lower stiffness values, the width of the interval increases 

along with the severity of the fault, however the low amplitude value remains the unchanged. 

The sudden drops in the meshing stiffness value should then create an equivalent rise in the 

overall amplitude of the system vibration. 

4.6 Model for Tooth Wear 

4.6.1 Tooth Surface Material Loss 

Due to poor lubrication and high stresses, gear tooth profiles are subject to slow wear during 

their lifetime in which asperities of contacting tooth surfaces are gradually worn out until 

very fine, smooth, conforming surfaces develop. This light wear can occur by either abrasive 

or adhesive mechanisms when thin oil films or what is known as boundary lubrication 

conditions prevail usually on low speed operations. This means the loss of material from the 

contact surface of a gear and reduction of gear tooth thickness which subsequently alter 

stiffness, and damping and friction characteristics, leading to higher levels of vibration.  

The tooth wear of gears, combined with the manufacturing errors, are amongst the cause of a 

change in the profile outline of the teeth, and is the main factor in gear failure, leading to the 

change in the instant gear ratio during the range of the angular motion [94]. In particular, the 

change in the gear ratio caused by the changing stiffness and the eventual damage of the 
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tooth causes an increase in the dynamic loading, even if the teeth is undamaged. Moreover, 

dynamic loading is at its maximum at the start and at the end of the engagement in the 

pairing. 

Surface wear of the teeth is one of the major causes of failure in gearbox transmission 

systems [95]. Slow wearing of tooth profiles can result in a unique surface material loss [96], 

which consequently alters the gear mesh excitations errors in its kinematic motion, further 

enhancing the undesirable dynamic effects. 
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Figure 4.8 (a) Stiffness of a single pair of teeth and (b) The meshing stiffness function k1 and k2 for the 
pinion and the gear of the first pair of gears (within one shaft period) shown in different colours as a 
function of angular displacement θ, with severity of faults due to a broken tooth blue (healthy gear) 

brown (25%) pink (50%), red (75%), and black (100%) 

In order to understand the effect of tooth wear on the vibration response, the meshing 

stiffness function is combined with a reduced width of the stiffness function for a single tooth 

pair. As shown in the Figure 4.8(a), the stiffness function is modified to be sharper at the 

meshing-in and meshing-out stages, to simulate the observation that the maximum dynamic 
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loading takes place in the beginning and at the end of the engagement. In addition the overall 

duration of the tooth stiffness function is also reduced by reducing the contact ratio to take 

into account the reduction of tooth thickness, as shown by the magnified tooth excitation 

profile in Figure 4.8(b).  

In the simulation, two different degrees of tooth wear are simulated at the first stage. 

Assuming that the wear occurs on both the drive gear and the driven gear and that the effect 

of wear on tooth bending deformation is negligible, the tooth stiffness thus is affected only if 

the tooth dimension changes due to wear, which leads to a change of stiffness profile. To 

model this effect and obtain the corresponding dynamic responses, the simulation is 

implemented by increasing the sharpness and decreasing the contact ratio simultaneously. 

The amplitude for the sharpness increase is 8% and 17% and the reduction of contact ratio is 

7% and 14% for the smaller wear and larger wear respectively. 

4.6.2 Error Enlargement 

Moreover, the effect of manufacturing errors influences the characteristics of the progression 

of tooth wear. Also, the errors of the instantaneous contact forces are uniform over a 

revolution of the gear. Obviously teeth under a greater contact force due to misalignment or 

gear eccentricity will produce more severe wear. To include this characteristic into the 

model, a small increment is added to the error amplitude as  

( ) ( ) ( )11 1 2 2 2( )w w wE sin sinρ ρ ϕ ρ ρ ϕ= + + +       (4.14) 

where  is the wear depth of driving gear and  is the wear depth of driven gear 

. 
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4.7 Signal Model for the Vibration of Perfect Gearboxes 

In a perfect operating scenario, the vibration signals created by a gearbox can be 

mathematically represented by simply by summing the vibration that is generated by its each 

individual component. Generally, if the gear is in a good working condition, the vibration 

signal will be dominated when the teeth of the gears come in to contact with one another, the 

vibration excitation forces are a direct result of the meshing forces between the teeth of the 

gears. Since the gears behave in a rotatory manner, the vibration signal’s components are 

periodic. Therefore, the overall vibration signal can be simulated by using a mathematical 

equation which sums together each of the individual components. 

Firstly the fundamental meshing frequency, mef  for a particular gear is calculated by using 

the following equation: 

.me rf N f=    (4.15) 

Where N represents the number of teeth on the gear and rf  represents rotational frequency of 

the gear. Since the overall vibration signal consists of a meshing frequency for each set of 

gears, the source of the meshing frequency is easily distinguishable.  

The meshing vibration signal, ( )x t  is comprised of M harmonic components, it can be 

expressed as:  

0
( ) cos(2 )

M

m me m
m

x t I f tπ φ
=

= +∑    (4.16) 

where mI represents the amplitude of the mth harmonic, mef is the meshing frequency and mφ  

is the phase angle. 
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4.8 Signal Model for the Vibration of Faulty Gearboxes  

Broken teeth is a very common cause failure in helical gears. The gear fault starts off 

appearing as there is relatively little damage to the particular tooth, however this creates a 

difference in the meshing stiffness that will further magnify the damage if unresolved. A 

local fault will cause a sudden drop in its stiffness amplitude 

If there is a fault or error in the gear, there will be amplitude and phase as a consequence of 

the damaged tooth meshing. 

0
( ) [1 ( ]cos[2 ( )]

M

m m me m m
m

y t I a t) f t b tπ φ
=

= + + +∑   (4.17) 

where ( )ma t  is the amplitude modulation and ( )mb t  is the phase modulation both of which is 

due to the local tooth fault. This is a very generic signal model proposed in [84] and has been 

referred widely by many researchers such as the latest study of exploring conventional 

bispectrum for the analysis of gear fault vibrations [99]. The model shows that vibration 

signals have the content of both amplitude modulation (AM) and phase modulation (PM) as a 

consequence of the combined outcomes of both tooth defects such as tooth breakage, tooth 

wear and manufacturing errors. Specifically, the rotational effect may be represented more by 

the PM terms and the translational effect is represented more by the AM terms. 

In order to understand the mechanism for sideband interactions, the linear solutions of either 

Equation (4.1) or (4.2) is investigated by considering only the 1st order term in each of three 

components AM, PM and the carrier. This simplification avoids the complicity of 

mathematic operations but allow gaining an in-depth understanding of the interactions 

between AM and PM without the loss of generality represented in Equation (4.17).  

With simplification Equation (4.17) is approximated as  
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( ) [1 a ( )]cos[2 ( )]m m c mx t I t f t b tπ= + +   (4.18) 

with a time increment phase that consists of a linear term and a oscillatory term to the 

angular changes of the mesh process as: 

( ) 2 ( ) 2 ( (m me me mt f t t f b t))tθ π π= = +   (4.19) 

in which assuming zeros phase relative to the carrier waves, AM signals a (t)m is : 

( ) cos[2 ]m Fa t A f tπ=    (4.20) 

where Ff  is the frequency of the fault. By introducing a phase modulation index or shaft 

fluctuation rate β : 

1F

F

f
f

β ∆
= <<    (4.21) 

to express small frequency deviation Ff∆  in a pseudo steady operation of a gearbox 

associated rotation system that always has speed fluctuations. Thus the phase modulation 

signal ( )mb t  is defined for the 1st order as: 

b ( ) cos[2 ]m Ft f tβ π ϕ= −    (4.22) 

which includes an angle ϕ  to represent the phase difference relative to the meshing 

components or the carrier, allowing the expression of possible delays or shifts between the 

translational and rotational excitations as a consequence of various effects including gear 

errors, fault cases and nonlinear vibration transfer paths. These expresses yields  

( ) (1 a (t)) cos[2 (t)]m m c mx t I f t bπ= + +   (4.23) 
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y( ) (1 a (t)) cos[2 (t)]
(1 a (t))[cos(2 ) (t)sin(2 )]
{cos(2 ) a (t) cos(2 ) (t)sin(2 ) (t) (t)sin(2 )}

m m c m

m m c m c

m c m c m c m m c

t I f t b
I f t b f t
I f t f t b f t a b f t

π
π π

π π π π

= + +

≈ + −

≈ + − −
 (4.24) 

In which the approximation is made as / 1F Ff fβ = ∆ << ,  | ( ) | 1mb t << , Therefore, 

cos( ( )) 1mb t ≈ and sin( ( )) ( )m mb t b t≈ . This expansion of Equation (4.17) allows the 

examination not only magnitude characteristics of modulations using the expression of 

Bessel function [99] but also it can gives details of phase influences that result in 

interferences between AM and PM components.  

In addition, | a ( ) ( ) | 1m mt b t << . This approximation leads to more simplified expression:  

y( ) {cos(2 ) a (t) cos(2 ) (t)sin(2 )}m c m c m ct I f t f t b f tπ π π≈ + −     (4.25) 

substituting a (t)m  and b ( )m t  into (4.24) yields the expression of the vibration response in the 

format of sideband components as:  

(t) {cos(2 ) cos(2 )cos(2 ) cos(2 )sin(2 )}
{cos(2 ) cos(2 )cos(2 ) cos(2 )sin(2 )}
{cos(2 )

[cos(2 ( ) ) cos(2 ( ) )]
2

[sin(2 ( ) ) si
2

m c F c F c

m c F c F c

m c

c F c F

c F

y I f t A f t f t f t f t
I f t A f t f t f t f t
I f t

A f f t f f t

f f t

π π π β π ϕ π
π π π β π ϕ π
π

π π

β π ϕ

≈ + − −

= + − −

=

+ − + +

− − + + n(2 ( ) )}c Ff f tπ ϕ+ −

  

  (4.26) 

combining the sine and cosine terms in (4.26) to obtain sideband amplitudes: 
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( ) {cos(2 )

[cos(2 ( ) ) cos(2 ( ) )]
2

[sin(2 ( ) ) cos( ) cos(2 ( ) )sin( )
2
sin(2 ( ) ) cos( ) cos(2 ( ) )sin( )]}
{cos(2 )

sin( ) cos( )cos(2 ( ) ) sin(
2 2

m c

c F c F

c F c F

c F c F

m c

c F

y t I f t
A f f t f f t

f f t f f t

f f t f f t
I f t

A f f t

π

π π

β π ϕ π ϕ

π ϕ π ϕ
π

β ϕ β ϕπ

=

+ − + +

− − + −

+ + − +

=

−
+ − − 2 ( ) )

sin( ) cos( )cos(2 ( ) ) sin(2 ( ) )};
2 2

{cos(2 ) cos(2 ( ) ) cos(2 ( ) )}

c F

c F c F

m c L c F L H c F H

f f t

A f f t f f t

I f t A f f t A f f t

π

β ϕ β ϕπ π

π π δ π δ

−

+
+ + − +

= + − − + + −

   

(4.27) 

where the magnitudes of the lower and higher sidebands are 

2 2

2 2

sin( ) cos( )A ( ) ( )
2 2

1 2 sin( )
2

L
A

A A

β ϕ β ϕ

β β ϕ

−
= +

= + −

     (4.28) 

2 2

2 2

sin( ) cos( )A ( ) ( )
2 2

1 2 sin( )
2

H
A

A A

β ϕ β ϕ

β β ϕ

+
= +

= + +

     (4.29) 

And the associated phase angles are 

cos( )tan( )
sin( )L A

β ϕδ
β ϕ

−
=

−
   (4.30) 

and  

cos( )tan( )
sin( )H A

β ϕδ
β ϕ

−
=

+
   (4.31) 
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It shows that the magnitudes of the lower sideband and the higher sideband are different in 

amplitudes, instead, they can change with not only the modulation levels but also the phase 

difference between AM and PM. In addition, the phase also exhibits the same characteristics 

as the magnitudes[97][98]. Consequently, diagnostic results using sideband magnitudes 

directly will be unstable or unreliable if the phase difference is not taken into account 

adequately.  

4.9 The Estimation of Modulation Magnitudes 

For diagnosing the severity of a fault, it is obvious to include the entire amplitude of the 

modulation from both AM and PM. As shown in Equations (4.27) and (4. 28) the maximum 

value of sideband amplitude can be the combination of the sum of powered amplitudes, 

which ignores the effect of phase interference. Therefore, a modulation power index (MPI) is 

proposed, the MPI is defined as: 

2 2 2A βΖ = +    (4.32) 

to represent the full effect of both PM and AM. So it can be more reliable comprehensive for 

fault severity assessment by using this quantity. Alternatively, it means that the amplitude 

reduction due to phase influences should be removed in quantifying the combined 

modulation for gear diagnosis.  

By power spectrum analysis, the amplitude of sidebands can be estimated to be 2ÂL  and 2ÂH  

which appear at the lower and higher sideband frequencies respectively. According to 

Equations (4.28) and (4.29), it can be known that: 

2 2ˆ4A 2 sin( )L Z Aβ ϕ= −    (4.33) 

2 2ˆ4A 2 sin( )H Z Aβ ϕ= +    (4.34) 
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By adding these two equations, it is straightforward to yield the MPI from power spectrum as 

2 2 2ˆ ˆZ 2(A A )L H= +    (4.35) 

This means that using conventional spectrum the AM-PM effect can be quantified using 

(4.35). Unfortunately, many developed fault diagnostic features have not adopted this 

relationship appropriately, leading to a considerable number of parameters which needs 

dimensionality reduction techniques in order to implement automated gear fault diagnosis 

[99].  

Moreover, measured signals are inevitably contaminated by various noises such as stationary 

white noise and random aperiodic impulses[100]. Power spectrum analysis has no means to 

remove such noises. Therefore, power spectrum based estimation often results in 

unsatisfactory results for small signals due to incipient faults.  
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4.10 Chapter Summary 

In this chapter gear vibration responses have been examined through developing models that 

takes into account varying tooth stiffness, various errors and fault failures. It is concluded in 

theory that gear vibration signals consists of high frequency meshing components and its 

higher order harmonics AM, PM and low frequency harmonics that induces the AM and PM 

components. 

To separate and quantify these components for the purpose of diagnostics, the overall power 

of PM and AM, defined as modulation power index (MPI) is necessary. Power spectrum 

analysis can provide information for calculate MPI but it will result in low accuracy because 

power spectrum does not include signal phase effect to suppress the influences of various 

noise including different gear errors.  

Therefore, it is essential to suppress these noises for achieving accurate diagnosis of gear 

faults. 

Equation Chapter (Next) Section 1 
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CHAPTER 5.   

MODULATION SIGNAL BISPECTRUM BASED GEAR FAULT DETECTION 

AND DIAGNOSIS 

5.1 Introduction 

To suppress noise and interferences, TSA analysis has been long regarded as one of the most 

effective approaches in CM fields. However, it has not been found that TSA is examined 

rigorously to characterise AM-PM effect under high noise conditions. In addition, the TSA 

analysis implemented based on meshing phase calculation can have the shortage of sensitive 

to noise. Moreover, TSA results discard the useful information for diagnosing gearbox 

bearing problems as bearing characteristic frequencies are usually not integer times of shaft 

frequency.  

To obtain accurate diagnosis results this chapter examines conventional bispectrum that has 

the high performance of noise reduction and nonlinearity characterisation as overviewed 

during literature review. However, it has found that it is unable to effectively characterise the 

modulations in a low frequency range. In other words, it needs a frequency bands as wide as 

2 5me rf f> +  for getting diagnostic information. This wide band is not very appropriated as 

wide frequency spans mean more interferences and noise from vibration transmission path. 

Therefore, the modulation bispectrum is examined more extensively as it has been shown to 

have the same performances as CB for noise suppression but needs narrower bandwidth to 

analyse the vibrations with modulation nonlinearity. In addition, it allows a more sparse 

representation of the AM-PM signals. 
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The chapter starts with an outline of power spectrum, CB and MSB, then a new signal 

processing technique based on MSB is developed for more accurate modulation power 

estimation. Finally, it verifies the new estimator by a comprehensive simulation study under 

different noise scenarios. 

5.2 Conventional Bispectrum Based Diagnosis 

For a discrete time gear vibration signal )(tx  its Discrete Fourier transform (DFT) )( fX  is in 

the form of: 

2( ) ( ) j t

t
X f x t e π∞ −

∑
=−∞

=    (5.1) 

which usually can be obtained efficiently by the well-known algorithm – fast Fourier 

transform (FFT). With the DFT results, the second-order measure of power spectrum (PS) of 

)(tx  can be estimated by the formula: 

*( ) ( ) ( )P f E X f X f=    (5.2) 

where )(* fX  is the complex conjugate of ( )X f  and E is the statistical expectation. The 

power spectrum is the popular method for vibration signal analysis in condition monitoring 

because it can be particularly effective in characterising the inherent periodicity in vibration 

signals from rotation machines and produce a quick result of different frequency 

components. 

However, it contains only magnitude information of individual component f  and ignores 

the effects of signal phases, leading to random noise inclusion and consequently 

unsatisfactory diagnosis performance. 
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Extending this definition to the measures of order three gives rise to the estimation of 

conventional bispectrum (CB) [101][102]: 

1 2 1 2 1 2( , ) ( ) ( ) ( )B f f E X f X f X f f∗= +   (5.3) 

where 21 , ff  and 21 ff + .are three individual frequency components in a vibration signal. 

Note that, unlike the power spectrum which is the second-order measures of vibration 

statistics, this third-order measurement is a complex quantity which contains both magnitude 

and phase information regarding the original time domain based signal )(tx . If the three 

spectral components 21 , ff  and 21 ff +  are non-linearly coupled with one another, the overall 

phases of the three components no longer remain random. However, the individual phases of 

each component remains random, in particular, the relationship between phases for three 

components are shown in the following formula: 

2 1 2 1( ) ( ) ( )f f f fϕ ϕ ϕ+ = +    (5.4) 

As a result, statistical averaging will result in a non-zero value in the overall, bispectrum but 

a distinctive magnitude. A peak in the bispectrum at the bifrequency pair indicates the 

nonlinear coupling 1 2( , )f f . 

In contrast, if the frequency components 21 , ff  and 21 ff +  are all independent components, 

each frequency will be characterised by the statistically independent random phases 

distributed between –π and π. Upon statistical averaging denoted by the expectation operator 

E  in Equation. (5.3), their bispectrum magnitude 1 2( , )B f f  will tend towards zero due to 

the random phase mixing effect. In this way, random noise or vibration contents can be 

suppressed effectively. 
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To measure the degree of coupling between coupled components, a normalised form of the 

bispectrum or coherence is usually, which is defined as  

( )
( ) ( ) ( )

2
2 1 2

1 2 2 2
1 2 1 2

| ( , ) |,
| | | |

B f fb f f
E X f X f E X f f

=
+

  (5.5) 

The bicoherence is independent of the amplitude of the triple product of the DFT amplitudes 

and its values are bounded between 0 and 1. The bicoherence is close to 1 if there are 

nonlinear interactions among frequency combinations 21 , ff  and 21 ff + . Conversely, a 

value of near 0 implies an absence of interactions between the components or noise content 

only. The possible amplitudes in the latter case may suggest that the components are 

originated independently from a system or resulted from random noise. Therefore, based on 

the amplitude of bicoherence the nonlinear interactions can be detected and the interaction 

degrees can be also measured between the coupling components, giving a confident 

quantitative assessment on the component of interest.  

It has been shown recently in [103] that vibration signals for tooth breakages can be analysed 

by using CB for diagnostics. Especially, it has been shown that bispectrum peaks will exist at 

bifrequencies (m ,n )me mf f . However, the diagnostic results were achieved through the 

components which have phase value with zero or π in order, being attempt to meet the 

condition when CB is originally applied to detect the effect of quadratic phase coupling 

(QPC). However, this outlook the fact that the combined AM-PM modulation of gear 

vibration often does not follow the phase relations for pure AM or PM modulation process. 

The restriction of using zero or π may be not an adequate choice as it can discard majority 

useful information that comes from the common situation of the combination between AM 

and PM. As shown in Equation (5.4), CB magnitude peaks can appear as long as the biphase 

2 1 2 1( ) ( ) ( ) constantf f f fϕ ϕ ϕ+ = + = . This means that the combined modulation can be 
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indicated by CB as the coupled signals keep constant phase values across different 

measurement instants or measurement times, which is opposite to the fact that the random 

content of a signal will have a nil CM magnitude as its phase changes with different 

measurement instants. Therefore, there are many CB peaks that could be used for gear fault 

diagnosis rather just than that with phase values close 0 or π. 

 

 

Figure 5.1 CB magnitudes for tooth breakage diagnosis. 

Figure 5.1 presents a typical analysis results of CB for different degrees of tooth breakage in 

which a meshing frequency is 1380Hz and the shaft frequency is at 1f = 23.8Hz. It can be 

seen that distinctive CB magnitude peaks appears across a wide bifrequency range, especially 

2f  being as wide as that from 2 400f Hz=  to 2 1400f Hz= . Moreover, The CB magnitudes in 

several sub-frequency frequency bands can be based on for fault diagnosis. At bifrequencies 
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such as (23.8, 600-800), (2×23.8, 600-800) etc, which are all lower than the meshing 

frequency, and mainly of the terms of shaft frequencies and its higher order harmonics i.e. for 

the signal model case when meshing frequency 0emf = , i.e.  

0
( ) [1 (t)]cos[ (t)]

M

m m m m
m

x t I a bφ
=

= + +∑   (5.6) 

The clear increase in amplitudes with fault severity can be used to quantify the severity of the 

fault and 23.8Hz and its harmonics shows that the fault is from the gear rotating at a shaft 

frequency of 23.8Hz. This correct diagnosis shows the CB can provide reliable and rich 

information for gear conditions. 

Moreover the significance of the CB peaks is fully supported by CB coherence results. As 

shown in Figure 5.2, high coherence values appearing at the bifrequency bands correspond to 

the high peaks in CB magnitude results of Figure 5.1. It shows that vibration components are 

coupling each other with a wide frequency range. This coupling effect enhances the 

definitive components such as those relating to the faults while the random noise contents are 

suppressed significantly. This effect is a very outstanding property compared with power 

spectrum which is unable to suppress noise. Therefore, the CB results are more reliable.   

In addition, the number of coherence peaks is also increasing more with the increase of fault 

severity. This means that that CB coherence can be also employed for fault severity 

diagnosis.   
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Figure 5.2 CB coherence magnitudes for tooth breakage diagnosis. 

Figure 5.3 shows the CB phase results corresponding to the three cases. For highlighting the 

important components, the results are presented for the CB peaks that have coherence values 

higher than 0.8. This range can reflect the full changes of CB with respective to the fault 

cases. However, the phase values are spreading between 0 and π in a nearly random matter. 

This shows that phase may be used for location diagnosis but not for severity. Moreover, it 

shows that phase values other than 0 and π also contains the useful detection information and 

the ignorance of phase related component would lead to lower detection performance.  
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Figure 5.3 CB coherence phases for tooth breakage diagnosis. 

Nevertheless, CB magnitude and coherence already provide sufficient diagnostic 

information. From this demonstration it can be drawn that CB has superior performance for 

gear fault diagnosis, which also shows that it is very effective to suppress noises.  

However, it has also noticed that CB has a shortage of over populated bispectrum peaks. 

These superfluous peaks can cause confusions and make it very difficult to find the optimal 

one for diagnostics. This may stem from that CB highlights only the presence of nonlinearity 

from the harmonically related frequency components: 21 , ff  and 21 ff + . As gear meshing 

process can excite components over a wide frequency, the coupling of these components thus 

can result in a very dense CB peaks. This becomes even worse for a scenario when a multi 

stage gearbox is concerned to be under a local fault such as tooth damage which will bring 

more frequency contents. 
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5.3 Modulation Bispectrum 

As examined in previous section, CB highlights sideband components at 1 2f f+  but 

overlooks the possibility that the occurrence of 1 2f f−  may be also so due to the nonlinearity 

between 1f  and 2f . Because of this, it is not very effective to describe modulation signals 

which are the most important characteristics of gear signals discussed in Chapter 4. As a 

result CB produces the superfluous peaks.  

To overcome this shortage, the formalisation of including both sidebands in bispectrum 

analysis was introduced in [104]. The authors [105][106][107] have found that the 

formalisation is particularly useful in extracting weak fault signatures in motor current 

signals. It also allows an accurate quantification of quantify modulating components in 

diagnosing different types of mechanical and electrical faults in a machine. Subsequently it 

has named as MSB to highlight the unique properties of characterising modulating 

component and make difference from the conventional bispectrum. In the frequency domain, 

MSB of a signal )(tx  in the form of the Discrete Fourier transform (DFT) )( fX  is defined 

as: 

* *( , ) ( ) ( ) ( ) ( )MS x c c x c x c xB f f E X f f X f f X f X f= + −   (5.7) 

The phase relationship of MSB is 

( , ) ( ) ( ) ( ) ( )MS x c c x c x c xf f f f f f f fϕ ϕ ϕ ϕ ϕ= + + − − −   (5.8) 

where is xf  is modulating frequency; cf  is the carrier frequency, xc ff +  and xc ff −  are the 

higher and lower sideband frequencies respectively. It takes into account both xc ff +  and 

xc ff −  simultaneously in Equation. (5.7) for quantifying the nonlinear effects of modulation 
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signals. If they are due to the modulation effect between cf  and xf , there will be a bispectral 

peak at bifrequency ( , )MS x cB f f . On the other hand, if these components such as various 

noises are not coupled but have random distribution, their magnitude of MSB will be close to 

nil. In this way, it allows the wideband noise and aperiodic components in gear vibration 

signals to be suppressed effectively so that the discrete components relating modulation 

effects can be represented sparsely and characterised more accurately. In the meantime, 

superfluous peaks from CB can be also restricted significantly.  

Similar to CB coherence in Equation. (5.5), a normalized form of MSB, also named as 

modulated signal bicoherence, is introduced as  

( )
( ) ( ) ( ) ( ) ( ) ( )

2
2

* * 2 2

| ( , ) |,
| | | |

x

MS x c
MS x c

c x c c x c x

B f fb f f
E X f X f X f X f E X f f X f f

=
+ −

 (5.9) 

to measure the degree of coupling between three components against nose influences in the 

same way as the conventional bicoherence. 

According to Equation (4.25), the MSB magnitude of the first harmonic component for the 

faulty gear is 

4

4
2 2 2 2

( , )

2 sin( ) 2 sin( )
4

MS F c m L H

m

B f f I A A

I A A A Aβ β ϕ β β ϕ

=

= + − + +
  (5.10) 

And phase  

( , ) 2MS F cf fϕ δ= −    (5.11) 

This shows that MSB combines the carrier and modulating components effectively to reflect 

the characteristics of the modulated gear signals. The magnitude shows the strength of 

interaction between modulating component and the carrier while the phase provides 
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information upon if the modulation is PM and AM individually or in the form of 

combination. 

5.4 Modulation Signal Bispectrum Based Sideband Estimation  

To quantify the effect of the modulating components or sideband amplitudes only, MSB can 

be further improved by removing the high magnitude influence of cf  components through a 

magnitude normalisation. To differentiate this improvement from a normal MSB it is known 

as the MSB sideband estimator to highlight its capability of the reflection of only modulating 

component and also abbreviated to MSB-SE [106]. 

( ) ( )
( )

0.5
,

,
0,

MS m cSE
MS m c

MS c

B f f
B f f

B f
=    (5.12) 

where ( ),0SE
MS cB f = ( ) 4

cX f is the squared power spectrum estimation at 0xf = . According to 

Equation (5.2), the power spectrum can be obtained through MSB as 

( )
0.5

( ) 0,MS cPS f B f=    (5.13) 

which is also an important property that can be based on to calculate individual sideband 

amplitude in assessing the modulation effect. This scheme of modulation sideband estimation 

has been shown in [106] to give more accurate result in diagnosing the small rotor bar 

breakage in electrical machines. By this normalisation, the modulating component of the 

fault gear signal can be 

2
2 2 2 2( , ) 2 sin( ) 2 sin( )

4
SE m
MS F c

IB f f A A A Aβ β ϕ β β ϕ= + − + +   (5.14) 

to show the modulating strength due to gear fault contributions. In the meantime, MSB hpase 

stile the same.  
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5.5 Modulation Signal Bispectrum Based Detector 

According to Equations. (5.7) or (5.10), it is straightforward to know that the best band for 

detecting a gear fault is at a cf  slice which has the highest peak: ( )*,SE
MS m cB f f  when 

0mf >  in line with that it consists of significant peaks at characteristic frequencies 

corresponding to higher order harmonics in the direction of mf  increment. Figure 5.4(a) 

shows the result of typical gear vibration signal. As illustrated by ‘*’ markers in Figure 5.4 

(b) and (c), four cf  slices can be taken as optimal bands to characterise the modulation 

jointly as shown in Figure 5.4(d). Based on this observation, fault detection can be 

straightforwardly implemented. This avoids preliminary processing steps for selecting the 

optimal band in the envelope calculation, such as the situations for bearing fault diagnosis in 

which the selection of an adequate band has been investigated extensively [108][109]. 

Moreover, MSB significantly suppresses random noise and aperiodic impulse interferences 

in line with the enhancement of the modulation components. Therefore, it is very potential to 

result in a robust and accurate detection and diagnosis result. 

Furthermore, to achieve more robust results, the MSB based detection scheme can be 

improved based on an average of several suboptimal cf  slices such as those with ‘*’ markers 

in Figure 5.4, which leads to a robust MSB detector: 

( )
( )( )1

,1( )
max ,

SE k
K MS m c

m SE kk
MS m c

B f f
B f

K B f f=
= ∑    (5.15) 

where K is the total number of the selected cf  suboptimal slices, which can be the first 

several significant MSB peaks which depends on the values of MSB coherence. In this way, 

it can utilise more wideband characteristics of the impulsive excitations due to gear defects, 
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which ensures results to be more robust by suppressing possible strong interferences 

presenting in an individual cf  slice due to possible interferences.  

 

Figure 5.4 MSB and robust detector 

 

In order to obtain the reliable  cf  slices, a number of suboptimal ( ),SE k
MS c cB f f  can be 

determined based on a MSB coherence slices ( )cB f  which is calculated by averaging MSB 

coherence ( )2 ,MS m cb f f  in the direction of cf increment and expressed as:  

( )2 2
2

1( ) ,
1

iN
iMS c MS m cb f b f f

N == ∑
−

   (5.16) 

It is worthy note that the average start with 2nd index of mf  indices to avoid the inclusion of 

the power spectrum connected slice in Equation (5.16) because its coherence are close to 1 or 

it has no effect on noise reduction. 
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Specifically, the robust MSB detector can be implemented according to five main steps: 

1) Calculate MSB results using Equations. (5.7) and (5.9); 

2) Calculate reliable MSB coherence slice ( )cB f  by Equation (5.10);  

3) Select the significant peaks as the suboptimal slices by setting a threshold such as 0.1; 

4) Calculate MSB-SE ( ),SE
MS m cB f f  by Equation (5.15); and  

5) Calculate the detector by Equation (5.18). 

The determination of threshold do not needs many trials. A true RMS value of ( )cB f  can be 

an effective one for the separation of several distinctive peaks from ( )cB f as MSB already 

has  suppressed most of the components that are not coupled but only those left are correlated 

in the form of modulations. 

5.6 Modulation Signal Bispectrum Based AM-PM Estimator 

Chapter 4 has introduced the use of modulation power index (MPI) for the measure of 

combined modulation effects of AM and PM and shown that the calculation of MPI estimator 

can be from power spectrum analysis. In the meantime, it also points out that power spectrum 

includes noise effect, and the estimator is developed thus is an overestimation which will 

results in low accuracy and unstable diagnostic results. 

To improve the modulation estimator, MSB sideband estimator can be very useful. 

According to Equation (5.10) as well as (5.11), the MSB-SE can be expressed as a product 

between the lower sideband AL  and higher sideband AH . In terms of square power the 

connection between MSB-SE and sidebands is  

2 2 2B | A ASE
ms L H=    (5.17) 

In addition, the difference between the squared sideband magnitudes is also defined as 

2 2A AL H∆ = −    (5.18) 
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where 2AL  and 2AH can be obtained using MSB results through Equation. (5.11). It means that 

it is without the need to have the storage space for the power spectrum as shown in Equation 

(5.2). It is worthy to note that ∆  is a noise minimised estimation because it is very common 

that the noise content are additive in measured vibration signals and that the bandwidth 

between two sidebands is narrow. 

Letting 2 2A AH L= − ∆  and substituting it into Equation (5.20) yield a quadratic equation:  

4 2 2A A | B | 0SE
L L ms− ∆ − =    (5.19) 

Equation. (5.22) is the standard form of quadratic equation in which the coefficients of the 

quadratic formula are as 

21; ; | B |SE
msa b c= = −∆ = −   (5.20) 

Importantly, both ∆  and 2| B |SE
ms  are both noise minimised quantities. Solutions of 2AL  and 

2AH  by using Equation (5.23) are more accurate and reliable. Therefore, the modulation 

power index for reflecting combined modulation effects of AM and PM: 

2 2 2Z 2(A A )L H= +    (5.21) 

will be more accurately quantify the effect of modulations to achieve accurate diagnostic 

results. 

5.7 Characteristics of Simulated Modulation Signals 

To evaluate the performance of the MSB based estimator, it has been applied to simulated 

signals with different degrees of phase variation and noise levels. In the meantime, as the 

effective methods accepted widely, TSA, CB analyses are also applied to the signals in order 
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to benchmark the performance that are resulted from MSB in characterising the interference 

of AM-PM modulation and in suppressing noise influences.  

The signal is based on the model in Chapter 4 but it consists of only several lower orders of 

modulation components, for being clear in presentation and explanation. Moreover it 

includes the all necessary components of a gear vibration signal which includes the low 

frequency harmonic components, AM and PM components, meshing components and noise 

content. Specifically, the signal has following terms: 

( ) (t) [1 ( )]cos[2 120 (t)] (t)x t a a t t b nπ= + + × + +   (5.22) 

in which ( )n t  is Gaussian noise with a standard deviation (ST) 0.35. This value is used, as a 

higher value than that would cause TSA implementation unstable and make effective 

comparisons with MSB analysis. It results in a SNR of about 8dB for the signal as a whole, 

which can vary with modulation interference levels. The carrier is at 120Hz, and the 

modulating signals (t)a  and b(t)  are  

( ) cos[2 20 ] 0.8 cos[4 20 ] 0.5 cos[6 20 ]a t A t A t A tπ π π= + +   (5.23) 

b( ) cos[2 20 ]t A tχ π ϕ= −    (5.24) 

Where A=0.1, being 10% of the carrier and common cases for small faults. PM coefficient 

varies in the range 0,0.1,0.2,0.3,0.4,0.5χ = . It means that the maximum PM magnitude is 0.05 

or 5% of variation of shaft speed which is the common of tolerance for most industrial motor 

systems. The carrier frequency is the result of 20Hz×6=120Hz. It implies that the signal is 

from a system with a baseline shaft frequency of 20Hz on which is installed a gear with 6 

meshing teeth.  
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Figure 5.5 A typical signal simulated under 0.1χ = and /10ϕ π= , with its power 

spectrum 

The AM signal is created to have three components in order to show the effect of 

interferences between modulation and harmonic components, which is common cases gear 

signals especially that of multistage gearboxes as they have multiple meshing and error 

components in the signal. The PM signal only has one contents but its amplitude and phase 

vary in a wide range to show the influences of noise and interaction on the estimation 

accuracy. In addition, 0.1A =  which 10% of the carrier for reflecting the small modulation 

content from incipient faults in measured gear vibration signals.  

The simulation is carried out based on a sampling frequency of 1024Hz, and 1024 points is 

for all FFT calculations including the power spectrum and CB, MSB. This FFT frame allows 

the avoidance of error due to spectral leakage in DFT calculations. In addition the overall 
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length of signal is 51712 points in order to obtain sufficient averages for noise reduction in 

implementing CB and MSB approaches.  

Figure 5.5 illustrates a typical subsection of the signal simulated with both PM magnitude 

and phase effect interferences when 0.1χ =  and /10ϕ π= . As the magnitude of PM only 

10% of that of AM its SNR is only -25.9dB, compared with the noise content added, whereas 

the AM component has a SNR of -8.85dB. Although these additional components including 

the harmonic components are have small amplitude, simulated signals exhibit clear 

modulation phenomena. However, the signal still shows relatively clean as the noise content 

is much lower compared the sinusoidal wave at the carrier frequency. 

Meanwhile, its power spectrum also can allow these small modulations observable in the 

magnified graph, showing the powerful effectiveness of spectrum analysis. As shown in 

Figure 5.5 (b), all the sidebands around 120Hz and the harmonics in the low frequency range 

can be seen clearly. However, they show higher amplitudes compared with its noise-free 

case. Because of the noise addition, the amplitude estimation from the average of the 

sideband pairs will have an overestimation. As shown in the figure, the magnitudes at the 

sideband pair at (120-20)Hz and (120+20)Hz is slightly higher than that of noise free one. 

Consequently, the calculation of MPI or Z-square at the 1st set of sidebands due to the 

sidebands give an error of over 20%, being significantly lower than that of the induced 

components for both PM and AM. Obviously such an error can lead to a poor diagnosis. 
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Figure 5.6 TSA signal and its order spectrum for modulation analysis 

5.8 TSA based analysis 

To examine the effectiveness of TSA analysis upon this signal, the increment phase signal of 

the carrier at 120Hz is calculated using Hilbert transform, the raw signal is then resampled to 

be decomposed into the phase signal to obtain signals in the angular domain. Following this, 

the resampled signal is divided into smaller segments with a length of integer periods of the 

PM signal, and finally the average can be performed across different segments to obtain the 

TSA signal. For this case the segment length is of 5 periods of the baseline frequency 20Hz. 

This TSA analysis attains 200 averages and adequate resolution for separating each 

component induced in the order domain which is realised by applying FFT to the TSA signal. 

Figure 5.6 shows the results from TSA analysis of the same signal as that of implementing 

power spectrum analysis. 
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The TSA signal in the angular domain (expressed in PM period) in Figure 5.6 (a) presents 

similar information to the raw signals, which tells that the signal consists of mainly the 

carrier component and certain degrees of modulation. However, its order spectrum in Figure 

5.6 (b) exhibits distinctive sidebands and much lower noise floor. As this TSA signal 

spectrum shows typical modulation sidebands, its corresponding MPI can be calculated 

according to Equation (5.24) for measuring the combined modulation of AM and PM. For 

this lower noise sideband, however, it produces a result 12.3% higher than that of the induced 

components for both PM and AM. Although the error is lower than that of PS based 

estimation, it is still very significant to influence diagnostic result.  

 

 Figure 5.7 Envelope and phase by TSA analysis 

Further examination of the reasons behind of this high error resulted from TSA by changing 

the noise levels added to the signal has found that the high error value is originated from the 
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low robustness of the algorithm. When the noise level is higher than that of the PM 

amplitudes it is difficult to obtain reliable phase estimations and consequently, the TSA result 

cannot be accurate. Figure 5.7 shows both the envelop signal and the phase signal obtained in 

the process of TSA analysis. They have very significant distortion to the original signals. 

Especially, the phase distortion on which TSA is based for implementing the resampling 

using a cubic spline data interpolation can cause significant errors to the resampled signals. 

Therefore, the TSA analysis of high noisy signals can lead to high errors. 

 

Figure 5.8 Envelope and phase by TSA analysis 

Furthermore, examining the phase and envelop signals in the frequency domain has found 

that the distortion appears mainly in high frequency or high order components, as shown in 
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Figure 5.8. These are resulted from the interference between the sideband and the higher 

order harmonics due to the first term in Equation (5.19). It seems that a narrow band filter 

can be applied to eliminate these components. In practice, it is difficult to determine the 

bandwidth as gear faults could induce components in a very wide band. Nevertheless, the 

selection of an optimal band for implementing TSA for gear diagnosis has received 

considerable attention as outlined in Chapter 3.  

However, it is worth noting that the error of MPI by using TSA envelop and phase signals is 

10.1%, being a slight improvement compared using TSA signal directly. Even though, this 

inaccuracy can be still too high to obtain accurate diagnosis. In addition, more numerical 

investigation by adding more noise such as at ST= 0.4, TSA operation is unstable, resulting 

in extreme deviation in MPI. In this sense, it is not very robust. Therefore, the use of TSA 

needs more attention in selecting appreciate parameters for reliable implementation, which is 

still an open problem deserving more studies 

5.9 CB analysis 

Figure 5.9 presents results from CB analysis for the same signal case when the PM is 2% of 

AM and the phase difference is 
10
πϕ = . The calculation uses a 1024 point FFT which 

produces a 1Hz frequency resolution. By overlapping 50% between FFT data frames, which 

are applied by Hanning windows, 100 averages are achieved during the calculation. For 

comparison, the results are presented only in the same frequency bandwidth as before in 

order to examine their performance in a low or a narrower frequency range. In addition, it 

ignores the redundant contents as they are symmetrical to that presented in Figure 5.9.  

Aiming at separating modulation effect, CB results are mainly addressed regarding to 

components relating to sidebands. Thus distinctive components in CB magnitude results such 
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as three main peaks at bifrequencies (20, 120), (40,120) and (60, 120) Hz are from the 

coupling between the carrier and one sideband only, rather than the matching pair. For 

instance, the peak at bifrequency (20, 120) Hz is the product between 20Hz, 120Hz and 

140Hz, which does not include the lower sideband of 100Hz, It means that these peaks are 

not capable of obtain the full information about the modulation. Therefore, it is impossible to 

calculate the MPI for quantifying modulations adequately. 

 

Figure 5.9 Results from CB analysis  

In addition, the high density of coherence peaks shows that the non-modulation components: 

20Hz, 40Hz and 60Hz can lead to interactions with themselves and the modulating and 

carrier components. These surplus components can make it even more difficult to select 

useful components.  
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The modulation effect in CB could be shown in a higher frequency range such as 

2×fc=240Hz for the closest one. This means that it needs a wider band to show full 

modulation effect, and hence consume more computational resources. This can be a 

considerable deficiency for real time diagnosis. Not only more computation is needed for CB 

analysis but the resulted components are more likely to be inadequate representation of 

modulation because the vibration responses of a system can be very different between two 

components with distant frequency bands, which will be examined further in experimental 

study contents.  

5.10 MSB analysis 

By using the same analysing parameters as CB, MSB produces corresponding results as 

shown in Figure 5.10. From the magnitude results, it is clearly shown that MSB is very 

selectable for the modulation components of interest, enabling enhancing the three 

components of AM+PM by a MSB slice at fc=120Hz and sparse representation. 

Figure 5.10(a) shows three distinctive peaks appearing at bifrequencies (20, 120), (40,120) 

and (60, 120) Hz respectively. According to the definition of MSB these peaks reflect the 

modulation of three AM components, one PM component with the carrier respectively. 

However, because of the interferences between the PM and the first AM components, the 

phase peak at (20, 120) Hz is 0.51rad instead of zero. So does the phase of the peak at (60, 

120) because the interference occurs between the component at frequency (120-60) Hz of 

AM modulation and at 60Hz of the third harmonics of AM when taking as the low frequency 

harmonics. As a result of these interferences, the magnitudes do not represent the real degree 

of modulations corresponding to the levels induced to the signal. 
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Figure. 5.10 Results from MSB analysis (fm>1) 

Moreover, these MSB peaks are ensured by their corresponding coherence peaks as shown in 

Figure 5.10 (c). These high coherence peaks indicate that these peaks are very outstanding 

from the noise levels and corresponding magnitudes can be trusted for further analysis. 

However, the coherence still shows many other peaks due to the interactions between any 

spectral peaks with their neighbour peaks each side. For example the AM harmonic peak at 

40Hz can produces interactions with 20Hz and 60Hz, leading to a MSB peaks at (20, 60). 

Although the number of peaks is much less than that of CB, they can also cause troubles to 

be separated from true modulations for diagnosis. Nevertheless, these peaks all stem from the 

same excitations as that of modulation. The involvement of them as the ways for modulation 

would increase the reliability for detection.   
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Moreover, MSB results shows that the modulation effect can be fully reflected at the slice of 

fc=120Hz i.e. the meshing component. This will simplify the understanding and as well as 

computational consumption. 

Based on these observations, MPI can be obtained by following steps: 

1) Select the maximum or mean of coherence values across different fme slices, leading to 

Figure 5.11 (a); 

2) Calculate MSB-SE at 120Hz slices for the detector ; 

3) Calculate MPI at those frequencies by using a coherence threshold such as higher than 

0.1, which results in Figure 11(b).  

Compared with the TSA and PS, the MPI from MSB analysis at the first sideband set has an 

error 6.5%, showing a significant improvement. This shows more that MSB is more effective 

in characterising the modulations. 

It is worthy mention that phase results for both CB and MSB have found to be not as useful 

as the magnitude and coherence for the purpose of modulation quantification. However, as 

discussed previously it can help to differentiate whether a MSB peak is from single type of 

modulation or both. As shown in the Figure 11 (c), because the second peak is from pure 

AM, its phase is close to zero. Others peaks having phase values higher than zeros may show 

that they are from the combination between AM and PM modulations. This will be helpful in 

explaining mechanisms for the MSB peaks identified. Moreover, phase characteristics 

associated with modulating components have already played decisive roles to suppress noises 

and enhance modulations during the MSB calculation process. 
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Figure. 5.11 Results from MSB analysis for 20mf >  Hz 

5.11 Performance Comparison 

As CB has the deficiency in representing modulation effects inadequately, a full performance 

benchmark of MSB is made against just TSA analysis and power spectrum analysis. 

Simulation studies were conducted to obtain MPIs under different interferences between AM 

and PM under the noise level SD=0.35 at which TSA can be relatively stable to allow the 

results at different cases to be achieved. As shown in Section 5.8 and Section 5.9 the MSB 

based estimator is achieved by using the MSB-SE slice at the 120cf = Hz and that of 

20mf = Hz. All methods are compared for the estimation of the AM-PM component at 20Hz 
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and the result is ensured by over 20 randomised Monte Carlo tests, where the noise was 

different for every case. 
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Figure 5.12 Comparison between MSB based estimation and TSA based estimation of the 

AM-PM effect. 
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Figure 5.12(a) shows - the comparison between different estimators and against the 

theoretical MPI. It shows that MPI values increase with more PM content induced even if the 

PM phases vary between 0 and π. It shows that MPI gives full measures of the combination 

of PM and AM. 

Compared with noise free case, PS based method produces the highest deviations whereas 

MSB based method gives the best estimation. The estimation from TSA signal sideband 

fluctuated around, showing that the phase errors can be significantly wide deviations due to 

noise influences.  

TSA envelope and phase signals can jointly produce results closer to the theoretical but has 

error showing that the estimation is slightly lower. This shows that this method can be also 

accurate if phase noise is filtered effectively. 

Moreover, as shown in Figure 5.12 (b) the errors variation over different PM interferences 

has little influences on the accuracy of MSB based estimation. Overall, its average error is as 

low as less than 1%, which will allow produce accurate estimation of modulation effects for 

vibration based fault severity diagnosis, verifying that MSB based analysis outperforms the 

others.   

In addition, Figure 5.13 (a) also shows that MSB based estimate can show stable results for 

different PM phases. It means that the MSB estimator is not only robust to noise but also to 

the influences of phase interferences.  

On the other hand, the estimation directly from MSB peaks shown in Fig 5.13 (b) shows 

highly fluctuation. It means that it is not possible to obtain a stable result for diagnosing fault 

severity as the PM effect in gearbox vibrations can exhibit different phases relative to AM 
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due to possible changes in gear fault severity, operating load, running speed and noise 

contents between different measurements. 
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Figure 5.13 The estimation of AM-PM effect by PM phase variation. 
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5.12 Chapter Summary 

Based on the characteristics of MSB analysis, a new indicator, referred to as modulation 

power index (MPI) is developed to accurately reflect the content of both AM and PM in gear 

vibration signals. Moreover, it shows that MSB based analysis outperforms TSA and CB 

based on simulated signals generated from the gearbox model. 

Equation Chapter (Next) Section 1
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CHAPTER 6.  

GEARBOX VIBRATION DATASETS FOR EXPERIMENTAL STUDY 

6.1 Introduction 

To verify approaches in previous sections, in particular the simulated faults in Chapter 5, 

vibration datasets were acquired based on a typical industrial gearbox operating under 

different gear conditions including local tooth defect and uniform tooth wear, which are 

common failure modes in gear transmission [110][111].  

The details of the test system and its simulated faults are outlined in this chapter. The type of 

gearbox used is two staged with helical gears (the gearbox is commonly used commercially, 

so data collected is more realistic and relatable to industrial applications). Firstly, an overall 

layout of the test rig is provided, then the chapter explains each of the components which 

make up the test rig. Then information is provided on the type and severity of tooth breakage 

faults which were used and how they were created. The chapter also looks at how the 

vibration data was processed and collected, the position of the accelerometers and the 

different operating conditions under which they were collected. Finally, the layout of the data 

set is given, the data collected will be used to test the advanced signal processing techniques 

in order to find the simulated faults. 

6.2 Experimental Rig Setup 

A complex test rig is required to collect enough accurate data that can be used to test 

complex signal processing techniques. Experimental work had to be conducted using a test 
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rig developed at the University of Huddersfield in order to gather an accurate and reliable 

data set.  

First of all a 3-phase induction motor which provides drive to two permanent helical 

gearboxes connected back to back, couplings, load devices, and a resistor bank, as shown in 

Figure 6.1, the schematic diagram of the rig is shown in Figure 6.2. 

The main aim of these experimental studies is to monitor the condition of a healthy gearbox 

operating under different loads, piezoelectric accelerometers are placed on the casing to 

provide accurate vibration data.  

 

Figure 6.1 The experimental test rig with motor, load and both gearboxes 

 

The faults induced in the first gearbox are local specific teeth removal fault and general 

fatigue gear teeth wear from prolong use. The faults were firstly a percentage of breakage in 

a specific gear tooth, this local breakage fault was induced artificially, and secondly a fatigue 

fault of the gear was created from the prolonged operation of the gearbox that was being 
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tested. Vibration data is collected from both faults are to be used for CM technique 

application. 

This experiment set up was used as it allows for various faults to be artificially created in the 

gears, it also allows for the data to be collected relatively easily. Also since the setup is 

commonly used in industry, it has practical applications. 

6.3 Experimental Rig Layout 

The schematic of the experimental rig for this research is shown in Figure 6.2.  

 

Figure 6.2 Schematic layout of the experimental gearbox test rig 

 

The main gearbox (test gearbox) acts as a speed reducer flanged in a cantilever type 

arrangement with the induction motor made by Electro-drives Company. The two gearboxes 

are both two stage helical gearboxes manufactured by David Brown Radian Limited, the 

Electronic 
Control Unit 

3-Phase 
induction motor 

Two stage helical gearboxes DC generator Resistor bank 
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gearboxes are connected back-to-back. Mechanical specifications of both gearboxes are 

provided in Table 6.1 below. 

Table 6.1 Performance specification of the two-stage helical gearbox 

Description First Stage (Input Shaft I) Second Stage (Output Shaft III) 

Number of teeth Z1/Z2=58/47  Z3/Z4=13/59 

Shaft speeds(Hz) 
at rated load and 

speed 
1rf = 24.42 (input) =30.16 (middle) =6.64 (output) 

Meshing 
frequency 12mef = 1416.36 Hz 34mef = =391.76 Hz 

Contact ratio 1.450 1.469 

Reduction  ratio 0.8103 4.5385 

Shaft 42mm 40mm 

 

First of all, using a control panel, a three phase system provides power to the AC motor. The 

AC motor is already integrated with the gearbox, in its output is directly connected to the 

input of the testing gearbox. This minimises the need for extra components thus reducing the 

cost and also improves reliability. 

The output of the main gearbox is connected to the second gearbox via a flexible coupling, 

another flexible coupling is again used to connect the output of the second gearbox to the DC 

generator. The combination of the second gearbox and the DC generator acts as a mechanical 

load for the output of the experimental gearbox, which operates at a low rpm and high torque. 

Since the DC generator requires a high rotational speed of around 1750 rpm for its input, a 

second identical gearbox that is reversed is required to increase the rotational speed again so 

that it will fulfil the requirements of the DC generator. 

Finally, the mechanical energy supplied from the output of the second gearbox is converted 

back to electrical energy by the DC generator, this electric energy is finally dissipated in the 



118 

 

resistor bank. By controlling the resistor values of the resistance bank, different load values 

for the system can be simulated. 

6.4 AC Motor  

The power supplied to the rig is a three phased AC motor, a photo of the power generator is 

shown in Figure 6.23. The AC motor is rated at 11kW and has 2 pairs of poles, its output is 

1465rpm at full load, further specifications can be found in Table 5.2. 

 

Figure 6.3 Photograph of an AC motor/gearbox combination 

 

The operation of an AC asynchronous motor starts with the stator winding coil being 

energized by the AC power supplied to it a 3-phase electric current passes through the 

windings of the stator will induce a 3-phase electromagnetic field [112], with each of the 

phases being equal in magnitude. This creates magnetic poles that fluctuate back and forth 

synchronised with the direction of the current. These electromagnets are positioned so that 
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when active the magnetic poles appear to rotate around the rotor, this rotation speed is also 

known as the synchronous speed ( ), and as a consequence a magnetic field will be induced 

in the rotor which will create a tangential magnetics force. The rotor can then rotate if this 

magnetics force is greater than the torque of the motor. 

 

Table 6.2 Induction motor electrical specification 

Type of Motor Induction 

No. of phases 3 

No. of poles 2-Pair 

Rated power 11kW 

Rated voltage 415 V 

Current 22A @Full Load 

Rated speed 1465 rpm @Full Load 

Winding Y Star To ∆ delta 

Number of stator slots 48 

Number of Rotor slots 40 

 

The rotational speed of the rotor,  is determined by the supply frequency of the rotor and its 

number of poles. By using (6.1) and (6.2), the motor’s synchronous speed can calculated 

from the main supply frequency multiplied by the phase difference between the stator coils 

(120°), the number of poles and the slip of the motor [113]. Once the AC motor is 

manufactured, the number of poles and its slip are fixed and cannot be changed. 

120. main
s

fN
P

=    (6.1) 
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( )1r sN N S= −    (6.2) 

120
s

fN
P

=    (6.3) 

Where:  is the synchronous speed;  represents the rotor speed;  is the main supply 

frequency; P is the number of poles, and finally S is the slip. 

6.5 Gearbox 

The gearbox was supplied by a major manufacturer, it is connected in a cantilever type 

arrangement with the AC induction motor as shown in Figure 6.3. The major mechanical 

specifications of the helical gearbox are found in table 6.1. The gearbox has two stages, in 

the first stage the first pinion is attached to the first gear, where the ratio is reduced by 0.8103 

(or an increase of 1.2341). The first gear lies on the same shaft as the second pinion, which is 

attached to the second gear, this reduction ratio is 4.385. The second gear’s output is 

connected via a coupling to the second slave gearbox which reverses the ratios. 

 

Figure 6.4 the schematic diagram of the two-stage helical gearbox. 
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Consumer demand for lower rotational speed and higher torque output has increased the 

popularity of AC motors already combined with a gearbox. Thus there is no longer any 

requirement for an extra coupling to connect the output shaft of the AC motor and the input 

shaft of the gearbox, this prevents the occurrence any misalignment errors at the coupling. 

The motor and gearbox combination is constructed by installing the front flange plate of the 

gearbox directly onto the flange plate of the AC motor, with no gaps in between the two 

plates.  

 

6.6 DC Generator (The Mechanical Load) 

The experimental set up uses a DC motor as the generator. A DC motors converts the 

mechanical rotational energy into electrical energy. When the shaft is rotating, the stator 

windings of the stator produce electro-magnetic flux lines that flow around the stator [114]. 

Figure 6.5 shows a simplified diagram of the components that make up a typical DC 

generator.  

 

Figure6.5 Outer and Rotor Design of a DC Motor 
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Between the pole and the armature is a small air gap, the magnetic flux lines cut the armature 

windings. The field current is relatively low as there are multiple coils generating the 

magnetic field, it will increase slightly if a given large increase in the DC motor power is 

provided. 

 

 

Figure6.6 DC generator (mechanical load) 

 

The specific DC generator motor that is used in the experiment setup is shown in Figure 6.6. 

The generator can produce 85kW at 1750 rpm. This is rated much higher than the output of 

the AC motor, therefore the generator needs to be adapted so it can operate at the necessary 

loads and rotational speeds. The setup utilises a resistor bank to dissipate the electrical 

energy generated by the motor so that it stays an open system, this prevents any electrical 

noise from affecting the rest of the experiment setup[115]. 
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Classification DC (shunt) 

Number of phases 3 

Number of poles 2pair 

Rated power 85 kW 

Voltage (excitation) 360 V 

Current 4.7A 

Rated speed 1750 rpm 

6.7 Test System Electronic Control Unit 

An electronic control unit was employed to ensure accurate operation environment, thereby 

gathering reliable data and minimising any discrepancies. It will allow the collection of 

obtain multiple repeated testing whilst maintaining the identical operating speed and load 

profile consistently throughout the experiment’s run [116]. The electronic unit monitors 

details of the operating condition which includes the speed, load and temperature. These 

factors are kept the same to ensure that they do not influence the data after the gearbox faults 

are introduced  

For the controlled test, 5 repeating AC and DC motor settings were used. The AC motor ran 

at 100% speed throughout these 5 tests, whereas the DC motor was loaded at 20%, 40%, 

60% 80% and 100% of its full load. 
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Figure 6.7 Test rig control panel 

6.7.1 Electrical Drive Specification 

A major advantage of an AC drive is that the speed of the induction can be controlled 

precisely. There are several methods by which induction motor speed control is achieved: 

• Open loop (no feedback) 

• Closed loop (a feedback device is mounted on the induction motor to supply a 

feedback signal representing the actual shaft rpm) 

• Slip compensation (uses the output current transducers for current feedback to 

estimate the slip of the induction motor). 

The present test rig was operated with an open loop system and used simple push buttons for 

start and stop conditions. 

6.7.2 Load Control  

The required operating condition for the induction motor used in this research is the motor 

mechanical load. 
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This is provided by the DC motor. It is not controlled by a DC drive -- as an alternative the 

motor dissipates the generating power of the loading in form of heat by a resistor bank 

connected to the test rig. The DC motor field current is controlled by a DC drive connected to 

two supply phases that are organized to provide a current which is pre-set by a potentiometer. 

This provides a wide range of test rig load conditions (from 0 to 100% load) to be applied to 

the AC motor. 

6.7.3 Speed control  

Figure 6.8 illustrates the layout of the test rig. The inverter is connected to the mains (the 

three-phase 415 VAC) supply to attain speed control. Due to the speed set point, the inverter 

changes the supply frequency in order to generate new supply voltages for the AC motor. 

Then a new voltage is applied to the AC motor and the system will operate at a required 

speed. 

 

AC Motor
Gearbox 

(Mechanical 
Transmission)

Load

AC

AC

Inverter Power
resistors

Input from 
3-phase 
supply

Load 
setpoint

AC M

Speed 
setpoint Start PB Stop PB

Field
controller

DC

AC
 

Figure 6.8 Block diagram of the experimental test rig 

 

6.7.4 Test Rig Measurement Devices  

A photo and diagram of the three-phase current measurement unit are presented in Figure 6.9 

and Figure 6.10 respectively. The motor current in each phase was measured using a Printed 

circuit board (PCB) mounted Hall Effect Current Transformer (CT). The measured value for 
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the current in each line is fed into the data acquisition system (DAS) unit, which converts this 

into a voltage measurement, provides appropriate filtering and anti-aliasing, and feeds the 

signals to the data collection channel of a data collector/analyser. Thus this device can be 

used to measure the instantaneous current in each of the three phases, the instantaneous 

voltage of each of the three phases and the instantaneous electrical power supplied by each of 

the three phases. 

 

Figure 6.9 Three-phase current measuring unit 

Table 6.3 Specification of three-phase measurement unit 

Classification Specification 

Phase current Max. voltage reading: 12.8V at 5A/Volt 

Line to Line voltage Max. voltage reading: 12.8V at 100V/Volt 

Total power Max. power reading 10 VDC at 2kw/Volt 
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Figure 6.10 Diagram of three phase measurement unit 

 

Where: 

 VL1L2, VL2L3 and VL1L3 are line to line voltages,  

IL1, IL2 and IL3 are the three line currents, 

 

6.7.5 Speed Measurements  

An incremental optical encoder (Manufacturer: HENGSTLER; Type: RS-32-0/100ER 

.11KB, 30VDC=/0.1A) fitted at the end of the AC shaft as seen Figure 6.11 has been used to 

calculate the Instantaneous Angular Speed (IAS) and shaft phases in order to calibrate the 

current signal and implement TSA. The optical encoder output is connected to the data 

acquisition system (DAS), which is connected directly to a host computer. The encoder 

produces a square pulse output, being 100 pulses per revolution and allowing IAS to be 

obtained up to 50 orders of the shaft frequency. This is sufficiently high for the test system.  
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In addition, it also ensures that the signal average produced is synchronised with a known 

shaft position, and that the location of the broken tooth can be determined [117]. 

 

Figure 6.11 Mounting of motor encoder 

6.7.6 Temperature Measurement 

Measurement of the oil temperature inside the gearbox was obtained by installing 

thermocouples inside the gearbox casing through a hole drilled in the oil drain tab as shown 

in Figure 6.12. These were K-type thermocouples with a linear response from –20oC to 

220oC. The main idea behind gearbox temperature monitoring was not only for safety 

considerations but also to keep the gearbox temperature in the same range during all test 

steps. This avoids any change in gearbox vibration due to increase/decrease in its 

temperature. In addition, the gearbox temperature was measured to ensure the safe operation 

of other measurement sensors. 
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Figure 6.12 Thermocouple sensor placement 

6.7.7 Data Measurement and Acquisition 

Having converted the collected electric current by current transducers into low voltage 

signals using the analyser, the signals need to be recorded on to a hard disk for further 

processing by a DAS, which consists of a PD2-MF-16-500/16L Analogue to Digital 

converter (ADC), the electrical power analyser, a speed measurement device, two channels 

for vibration sensors, and one channel for the temperature device. In addition, the DAS runs a 

computer program to control the data acquisition process. 

The data acquisition card used in this research has the major specifications shown in Table 

6.4. It has 16 input channels which allow the electrical current, speed, vibration and 

temperature to be measured simultaneously for more accurate analysis. Moreover, it has a 16 

bit data resolution which is equivalent to a dynamic range as high as 90dB and allows weak 

signals such as the modulated components to be measured with high accuracy. 

The program of the data acquisition control is developed on Lab-windows and consists of a 

main data check panel and a parameters panel. It has the ability to execute on-line data 

checking. Required settings such as the number of channels, data length, sampling frequency 

and filenames can be collected and recorded on a separate set-up page of the software. 
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Table 6.4 Main specification of data acquisition system  

Parameter Performance 

Number of channels 16 differential, 16 single ended 

Data resolution 16 bits 

Sampling rate (maximum) 500 k samples/s for 16 channel 

Maximum input voltage ±10 V 

 

The experimental tests were conducted on a test rig system, where 1.6 x 106 data points were 

collected at a sampling rate of 100 kHz, so a frequency resolution of 0.000625Hz was 

obtained. The data points were collected and recorded over 20 seconds. The raw data were 

measured and recorded six times, three for healthy conditions and three for faulty conditions, 

and saved in separate files at the same operating conditions. 

 

Figure 6.13 Schematic layout of data acquisition system 
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The data was anti-alias filtered before passing through an A/D converter, including the optic 

triggering signals. Although the dynamic signal analyser was capable of calculating the FFT 

and simple statistical parameters of the signals, it was only used for data acquisition and 

recording. More complicated signal processing techniques were carried out in MATLAB. A 

block diagram in Figure 6.13 shows a schematic diagram of the instrumentation connections. 

6.7.8 Software: Lab Windows 

The software of the DAS is improved using National Instruments Lab Windows TM/CVI 

Version 5.5. A programme in C language was used to write the interface environment [118] 

because it has a large set of run-time libraries for analysis, data acquisition and. instrument 

control. The Lab Windows development environment offers such features as automatic code 

generation, making measurement tasks much easier than in traditional C or C++ 

environments. The data acquisition software can control the data acquisition process so that 

multiple channels of dynamic data can be acquired at different rates and data lengths. It can 

be used to acquire current, vibration, instantaneous angular speed (IAS), noise, and 

temperature measurements. The software package has an acquisition set-up panel so that the 

user can make modifications to e.g. the sampling frequency and sample data length. The 

control commands and status indicators are listed on the screen. This will ensure an optimal 

data set is collected for off-line data analysis. 
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Figure 6.14 Set-up screen of data acquisition software 

 

Figure 6.14 shows the set-up screen: here the sampling frequency is set at 100 kHz (this 

enables the high frequencies associated with transient events to be collected) and the data 

length is set at 300,000 samples. The time duration of the data point collection = number of 

samples ÷ sampling frequency, so the real time duration of the data record is 30.0 seconds. 

The panel created to display the data collected for gearbox monitoring. It included several 

scopes that displayed sensor signals and digital indicators that displayed numerical values of 
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the monitored parameters. When the test rig starts operation the DAS starts data collection so 

that each pulse is always measured at exactly the same input shaft position to ensure accurate 

time domain averaging. Data files were saved in binary format to save disk space for further 

analysis in order to obtain the results and the Figures in the later chapters of this research 

work in the MATLAB environment 

6.7.9 Signal Channels and Screenshots of Data Acquisition  

The data acquisition system can be configured to take a maximum of 16 channels, of which a 

total of five were actually used for this gear condition monitoring experiment. A PC card is 

connected to a spare PCI (Peripheral Card Interface) slot in the computer. This configuration 

is shown in Figure 6.16 below: 

Gear Test Rig

Channel 0

Channel 1

Channel 3

Channel 2

Channel 4

PC Data
acquisition

card
Computer

 

Figure 6.15 Diagram of measured signals 

Channel 0 – Blue: signal from shaft encoder (1 pulse / revolution) to determine average 

speed calculation 

Channel 1 – Dark Green: Signal from shaft encoder (100 pulses / revolution) for 

Instantaneous Angular Speed 

Channel 2 – Bright Red: Motor current  

Channel 3 – Yellow: Vibration signal from gearbox 

Channel 4 – Dark magenta: Vibration signal from motor flange. 
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These five signals are measured from the test rig and sent to the data acquisition system 

which is connected to a software package allowing the display of virtual instruments on the 

computer screen. The data acquisition system display is shown in Figure 6.16: 

 

Figure 6.16 Screenshot of measured signals 

Also, the software allows the display of operating conditions through a real-time ‘dashboard’ 

shown in Figure 6.17, allowing basic status to be monitored and taking correcting actions if 

any abnormality found in these parameters: 

 

Figure 6.17 Screenshot of operating status through 'dashboard' 
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6.8 Vibration Measurement (Accelerometers)  

An accelerometer was attached to the casing of the gearbox to collect the vibration data, the 

piezoelectric crystal generates a small charge when a small acceleration is applied which is 

proportional to the size of the acceleration. The type of accelerometer used to collect the data 

in this thesis is an integrated circuit piezoelectric (ICP) accelerometer, specifically the model 

338C04 manufactured by PZB Piezotronics as showing in Figure 6.18 below.  

 

Figure 6.18 PZB 338C04 ICP accelerometer 

 

The accelerometers has a sensitivity of 10.2mV/ms-2, with a measurement range of up to 

±490.5 ms-2 peak-to-peak. The accelerometers are directly attached the side of the gearbox 

itself and at the top of the gearbox. The accelerometers are connected to the casing using a 

screw-threaded brass stud, ceramic cement is also used to prevent any over-heating. 

6.9 Fault Types of the Testing Gearbox  

In this thesis, two types of fault were examined: a gear wear produced from a prolonged 

operation of the gearbox and a gear tooth breakage with two percentages (50%, 100%) of 

tooth breakage (artificially induced) in the drive and driven gear at the first stage of the 

helical gearbox.  
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Gear fatigue failure is an uniformly distributed gear fault, it can be broadly splits into two 

major categories: bending fatigue and surface contact fatigue bending is created by the 

expansion of a crack near the root of a teeth leading to partial or a complete tooth fracture 

[119][120]. Gear teeth surface contact fatigue (wear) is considered to be one of the most 

common causes of gear failures. This is because surfaces that are constantly exposed to 

rolling and sliding contact under varying load conditions results in local Hertzian contact, as 

a result, the gear will often suffer from contact fatigue [121]. The fault can be further 

categorised into two main types: pitting and spalling. Pitting arises with meshing gears along 

the contact region as a result of a subsurface crack. On the other hand spalling is associated 

with the existence of deep craters on the tooth surface [122][123]. Spalling and pitting are 

generally the most common causes of fatigue failure in gears [124][125]. 

All the studies reviewed so far have confirmed the fact that the uniform wear of gear teeth is 

another common kind of gear failure [126]. Many gears, especially those that are installed in 

industrial machinery, are commonly subjected to continuous prolonged running with a heavy 

load. Under these circumstances their pitting durability is decreased, their bending strength 

and also their operating life are also affected. The evaluation of gear teeth conditions after a 

definite period of their utilization has great importance in avoiding any unexpected and 

severe failures. As a consequence of gear teeth wear their shape is altering continuously and 

this causes the alteration of gear ratios -- leading to angular acceleration and an additional 

dynamic load in the region of gear teeth contact and further increases in the gear teeth wear 

level. This process is a continuous one with various levels of severity during the whole 

period of utilisation. 

In recent years, there have been a signification amount of publications on gear wear failures. 

Ma and Li found that up to 65% of gearbox failures are caused by gears faults, and 
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approximately all gear faults are caused by fatigue induced fractures [126]. Further Lin and 

Zuo have demonstrated that tooth breakage is the most serious gear defect because it will 

lead to the completely failure of the gearbox [127]. Initially a fatigue crack developing at a 

particular tooth is not considered to be a serious fault, but as it accelerates, further 

consequences such as tooth failure can appear, which will often prove catastrophic to the 

system. In fact, fatigue will often result from continuous gear working and fluctuation of load 

and speed application conditions, poor construction, installation and maintenance will often 

exasperate the problem further. 

6.9.1 Localised Gearbox Faults 

Localised gear faults such as tooth breakages are a very common occurrence in gear 

transmission because of high bending loads on gear tooth which cause high stress on gear 

roots. This type of fault starts with individual tooth which may have manufacturing or 

material defects.  Moreover, this is the ultimate type of gear failure that could cause high 

negative consequences. Therefore, it has been studied extensively in CM. Because of the 

high overlap ratio of the helical gears, this type of fault only has a small impact on the overall 

power transmission of the gearbox and gear dynamics. Early studies relating to tooth 

breakage in gearboxes use conventional techniques such as vibration signal analysis to 

diagnose the faults, however such techniques have often proved unreliable to be in detecting 

the presence and severity of tooth breakage faults [128].  

The two localised faults were artificially introduced firstly to the drive gear  and then to 

the driven gear  as well, both faults were introduced only to the first stage in the 

gearbox. And both faults were tested independently. In total 3 sets of gears were used for 

local tooth fault data collection, one where there were no faults, one set where there was a 
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tooth breakage fault in the driven gear and another set where the fault was on the driving 

gear. The test data used in this thesis are from seeded faults of tooth breakages of two 

scenarios: faults of 50% and 100% for the drive gear , and 30%, 60% and 100% for 

driven gear  , These allow for rigorous evaluation in which more advanced techniques 

can better perform the diagnosis. Especially, the driven gear is seeded with a small fault 

(30%). This can evaluate the detection sensitivity and diagnosis accuracy of TSA, CB and 

MSB in differentiating incipient faults. 

6.9.2 Fatigued Gearbox Faults 

In order to investigate the consequences of the prolonged operation of the gearbox a long-

term fatigue test was conducted on the gearbox. 

The gears which were used in this thesis are helical gears that relatively wide, they also have 

a high average number of teeth, therefore contact up to 4 teeth are in contact with one another 

during the meshing cycle. Since it would be impractical to conduct a long enough run time 

for the gear to indicate signs of fatigue wear in the lab, the process needs to be accelerated. 

As seen in Figure 6.19, the width of the gear being test ( ), was reduced by half (50%) 

before it was ran to simulate fatigue wear. Then gear ( ) was installed in the gearbox system 

as it appears in the schematic diagram Figure 6.20, which shows how gear ( ) meshes with 

gear ( ) in the first stage. 
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Figure 6.19 - Simulated fault on Z1 

 

Figure 6.20 - The first gear ( ) with the simulated fault mesh with the second figure the first stage 

 

Before beginning the test, the gearbox was run for 4 hours at 95% of its full load (19A), this 

allowed the gearbox warm up to reach its operational temperature of 55°C. 

The 50% reduction in the width of the gear has meant that the tooth overlaps has also 

reduced by 50%, therefore the force applied to the tooth is now doubled, this will result in 
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shortening the service life of the gear due to higher contact and bending stresses. The 

gearbox vibration signals were visually monitored on a daily basis while the signals were 

recorded at approximately one hour intervals and continuously analysed using RMS and 

kurtosis techniques, this was done to avoid any catastrophic breakdowns that might occur. 

The load was also continuously varied to simulate applications in real industries such as 

automotive transmissions, centrifugal pumps and steel rolling machines.  

However, the test was terminated after 470 hours, due to a significant increase in monitored 

electrical current amplitude, vibration monitoring signals as well as a high noise level, 

indicating there was clearly an abnormality occurring in the system. The gearbox was 

dismantled and the presence of a distributed wear fault could be seen on the pinion teeth, 

illustrated in Figure 6.21 and Figure 6.22 in which the tooth surfaces have clear fatigue 

pitting dents. 

 

Figure 6.21 Pitted areas after 470 hours of operation 
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Figure 6.22 Zoomed pitted area for tested gear after 470 hours of operation 

6.10 Chapter Summary 

The experimental rig that was used is made up of 3 key components. Firstly, an 11kW AC 

motor provides drive to the system, its output was 1465rpm. Two gearboxes were used as 

part of the overall setup, only the first gearbox had faults introduced to it and was monitored. 

Finally, a DC generator was used to act as a load for the system. There is also an extensive 

control unit in place to provide continuous monitoring ensuring that the experiment is 

running effectively without any problems. This is to provide accurate and reliable data with 

minimal anomalies. 

Two types of faults were added to the gearbox separately. Firstly, a local fault was created, 

this was done by wearing down a tooth on the gear. A 50% and 100% tooth damages were 

created sequentially. Because of the high contact ratios of the testing gear, a local tooth 

damage does not have a significant impact on the transmission performances, therefore, the 

only a significant local fault is detectable.  
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Another common cause of the failure of gearboxes is fatigue wear of a particular gear under 

prolonged operation, this is a non-localised fault and the damage to the gear is distributed 

evenly. Because it would require running the test rig for a significant amount of time to 

simulate the gear damage, the width of the gear was reduced by 50% to speed up this 

process. The gear used for the fatigue fault was in operation for 470 hours at full load in 

which datasets were taken at every 50 minutes.  

These two datasets will be utilised for evaluating TSA, CB and MSB analysis in the 

following chapters. 
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CHAPTER 7.  

LOCAL GEAR FAULT DETECTION AND DAIGNOSIS  

7.1 Introduction 

To verify MSB based diagnosis approaches proposed the first two experimental datasets are 

employed. These two sets of gears depicted in Chapter 6 are from the same type of gear 

defect modes-local faults, but with different fault severity and locations, and as well as 

different gear error characteristics. Each of them was induced manually with local tooth 

breakages of different severity. The fault for first set has the fault induced to the pinion gear 

on the first shaft, referred as to Gear-11 (11 is one of 20 gears tested in one experiment) or 

Z1 alternatively as necessary, whereas the second has the fault on the driven gear which is 

mounted on shaft 2, denoted as Gear-D (D is one of 8 gears tested in another experiment) or 

Z2. These fault scenarios allow the diagnosis performance to be evaluated not only on the 

fault severities but also the fault locations. Obviously these details are critical for take 

maintenance actions accurately. The notations for gear sets are due to experimental 

convenience in testing multiple gear sets in the rig.  

Moreover, as the two sets of gears were obtained directly from supplier at different time 

periods, they will have slightly different manufacturing accuracy. Therefore, it helps to verify 

the robustness of upon the error influences and develop more effective diagnosis scheme 

based MSB. Nevertheless, during the test the re-installation of testing gears after creating 

different degrees of the tooth defects will also bring errors due to changes in different fitting 

clearances between the shafts and gears. 
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The evaluation starts with investigating the characteristics of MSB results. Then shows how a 

more reliable MSB based MPI or Z-square value is calculated to achieve accurate diagnostic 

results. Subsequently, CB and TSA results are also presented for each set of the gears to 

make comparisons between different methods in terms of information provisions and 

diagnostic performance and implementation requirements.  

7.2 Representative Power Spectrum of Vibration Responses 

Before applying MSB analysis, a typical power spectrum analysis is performed to show 

general properties of vibration content from the testing of gearbox acceleration signals. As 

shown in Figure 7.1, where the frequency range was examined up to 1500Hz, being less than 

(fme12+5×fr2) as depicted in Table 6.1, the baseline spectrum have many observable 

components including the meshing components of the first meshing component fme12 from the 

higher speed stage, or the first stage, and three components from the second stage or lower 

speed stage . In addition, the baseline also has sidebands at two high frequency meshing 

components: fme12 = 1416.36 Hz and 3× fme34=3×391.76Hz, showing the effect of 

manufacturing errors. Especially since the sidebands are asymmetric, they indicate the co-

existence of AM and PM and their interference effects [129][130]. Therefore, it is not 

possible to make an accurate diagnosis of the fault severity by using these components 

directly.  
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Figure 7.1– Power spectrum of Gear-D for baseline and small fault case 

However, the fault causes a clear increase of spectrum amplitudes in the frequency band 

around 590Hz. This band is far away from the meshing frequency of fme12 =1416.36Hz at 

which the fault should exhibit more sidebands. Clearly, this changing pattern in spectrum is 

not consistent with that common knowledge of diagnosing the local faults based on spectral 

changes around meshing frequencies, which is published previously in numerous papers 

[131][132]. 

Nevertheless, the spectrum shows agreeable features as discussed in the contents of vibration 

signal models and fault diagnosis theories development in Chapter 4 and 5 respectively.  

7.3 MSB Characteristics of Tooth Breakage on Drive Gear  

As the length of each data record is 3,000,000 samples and the sampling rate is 100kHz. To 

achieve a frequency resolution of 1.5Hz for the spectrum analysis, allowing each possible 
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sidebands at about 24Hz, 30Hz and 6Hz (varying slightly due to speed accuracy achiable by 

the speed controller) to be seperated, FFT frame is 65536 points. With 50% data fame 

overlapping between different frames of FFT calculations, the data length allows 90 averages 

for MSB and spectrum calculation. Obviously, the greater the number of averaging, the lower 

the noise level obtained. Howerer, more averages need more calculational consumption, 

which is a drawback for online monitoring. In this study, it has tested that 50 averages would 

produce a result that is close to that presented in the thesis. However, for higher robustness 

and more averages required by other methods, 90 averages achiveable are adopted in 

calculating CB and MSB. 

In addition, CB results are presented for its principal frequency ranges and MSB is in the 

range for postive fm reanges to avoid any information reduntances. Magnitudes of MSB have 

been root-squared to promote graph displays of small components in MSB results, which also 

can be matched approximately with those of power spectrum in order to make direct 

comparisons between the two. The characterstic frequencies of gear vibrations are 

particularly labelled on the bifrequency plane for highliting MSB contents of interest. It is 

worth noting that these frquency values can be different slightly due to errors in opearting 

speed control. In addition, the MSB phases are adjusted to show only the values with 

coherences higher than 0.1 to show only significant components with cleaner graph 

presentations.  

7.3.1 Baseline of the Tooth Breakage on Z1 

Figure 7.2 shows the MSB magnitude results for the tooth breakages on gear Z1 in different 

frequency bands, which are divided according to the carrier frequency of fc. For the baseline 

case shown in Figure 7.2(a), it can be observed that distinctive peaks present in four 

incrementing bands i.e. fc slices which are at or around 381.9Hz, 763.7Hz, 1146Hz, and 
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1381Hz, the first four harmonics of fme34. The first three frequencies are the meshing 

component of the second stage and its 2nd and 3rd harmonics, whereas the fourth one is the 

meshing frequency of the first stage transmission. These shows that the meshing content are 

the main vibration responses, being agreeable with theoretical prediction in Chapter 4. 

In addition, there is one more significant peak at 590Hz. It may indicate the occurrence of a 

resonance. 

 

Figure 7.2 MSB magnitude results for Gear 11 under different fault severities 

(in which gear characteristic frequencies are labeled with fc=1fme34, 2fme34, 3fme34 and 1fme12 and 
fm=1fr2,…4fr2) 

However, among these four meshing frequency slices at 381.9Hz, 763.7Hz, 1146Hz, and 

1381Hz, only the first meshing component at 381Hz and 1381Hz for the first stage and 
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second stage respectively can be ensured to be significant because of their corresponding 

coherence values are correspondingly high as shown in Figure 7.3 (b). These high coherence 

peaks convince more that the signal at these components are strong and hence can be relied 

on to evaluate possible modulation effect due to manufacturing errors. Together with MSB 

magnitude results, it can be seen that the baseline of this gear set has high levels of errors on 

the first gear or Z1 because the clear peak at bifrequencies (23.8, 1381) Hz and (2×23.8, 

1381) Hz. In addition, as the error is high it also modulates the third meshing harmonics of 

the second stage, leading to the MSB peak at bifrequency (23.8, 1146.0) Hz. 

 

 

Figure 7.3 MSB coherence results for Gear 11 under different fault severities 
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In the meantime, baseline phase results in Figure 7.4 (a) have shown that these MSB peaks 

with high coherence values in Figure 7.3(a) have scattered widely between 0 and π. This 

shows that the modulations are more likely to be combined between AM and PM and 

indicates that MSB magnitude peaks are not very accurate to represent the modulation levels. 

Therefore, it needs to further demodulation in order to obtain MPI.  

 

Figure 7.4 MSB phase results for Gear-11 under different fault severities 

7.3.2 Fault Detection and Diagnosis of Tooth Breakage on Z1 

Although the occurrence of AM-PM interferences indicated by phase results, both MSB 

magnitude and coherence can provide sufficient information for fault severity and location 

diagnosis. Comparing MSB magnitude results between the baseline and the two fault cases, it 

is obvious that there are many MSB slices associating with different carrier fc that show 
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consistently increasing peaks with fault severity and hence they can indicate the fault 

severity. Moreover, these peaks appear at bifrequencies relating to 23.8Hz and its higher 

harmonics. This indicates that the fault occurs on the first gear. Therefore, the faults can be 

differentiated by using both MSB magnitude and coherence without any uncertainties. In 

addition, this also demonstrates that the frequency bandwidth up to fme12+5×fr2 is sufficiently 

wide to cover full diagnostic information.  

It is worthy note that the peak at bifrequency (23.8, 1183) Hz shows lower magnitude for the 

50% tooth breakage, compared with that of baseline. This could lead to incorrect detection 

result if this meshing component is used for diagnosis. However, common understandings are 

that the component coupled with the tooth meshing 1183Hz and can have good SNR and 

hence accurate diagnosis. Obviously this is not true for this test case. Instead the peaks can be 

reduced by both the out-phase modulations or interference between AM and PM as pointed 

out in the studies made in Chapter 4 and 5. This out-phase modulations can be from the fault 

effect or the errors as a result of reinstallation after the fault was created offline. This will be 

clarified in the section addressing accurate diagnostics. 

In addition, the significant peaks of MSB magnitudes in the frequency ranges appearing 

around fc=766Hz and fc =550Hz in Figure 2 (b) and (c) can be diagnosed as a resonance of 

the system. This is because that of impulsive excitation of the local tooth breakage fault can 

result in wideband components that cause higher responses in the resonance range. 

Especially, the 766Hz is the second harmonics of fm34 and very distinctive. It can indicate 

that there is a significant resonance at this band, being likely the one of the modes from the 

second shaft which needs to be confirmed by further studies. Nevertheless, this resonance 

magnification helps to obtain a high SNR for detection and diagnosis. Moreover, when the 

occurrence of a resonance, either AM or PM will be more dominant, i.e. one of them is much 
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larger than the other, leading to interference between AM and PM insignificance. Therefore, 

the diagnosis can also be more consistent.  

Overall, MSB analysis can provide plenty of accurate components for obtaining reliable 

performance of both localising the fault and quantifying fault severity. However, it remains 

question that which of them are optimal. Obviously the solution will lead to more success to 

detect and diagnose even smaller fault.  

Figure 7.5 MSB magnitude results for Gear-D under different fault severities  

7.3.3 Fault Detection and Diagnosis of Tooth Breakage on Z2 

MSB results for the gear on the second shaft shows more modulation for the baseline case, 

compared with that of Z1 tooth breakage. As shown in the magnitude and coherence results 

in Figures 7.5(a) and 7.6(a) respectively the bifrequencies of (29.3, 1375) Hz, (2×29.3, 1375) 

Hz, and (3×29.3, 1375) Hz all have distinctive peaks. Moreover, they have higher 
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magnitudes than that of Z1 tooth breakage. This indicates that this gear set have higher errors 

which can influence the accuracy of fault diagnosis. In fact, if a diagnosis is based on the 

meshing component slice at fc = fme12 = 1375Hz, the results are not consistent with the fault 

severities induced, which are clearly shown by the irregular variation of the magnitudes 

between different fault cases for this gear. Therefore, it is further proof that the meshing 

components are not very suitable for the purposes of fault detection and diagnosis because of 

the error influences. 

 

 

Figure 7.6 MSB coherence results for Gear-D under different fault severities 

Apart from the meshing component at fme12, the other bands can show similar increasing 

changes to Z1 breakages in that the magnitudes and coherence increase consistently with 
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fault severity. In particular, the smaller fault case of 30% tooth breakage can be diagnosed by 

the clear increase in many MSB peaks at such bifrequencies (29.3,380.6) Hz, (29.3, 761.2) 

Hz, (29.3, 1142) and also their higher harmonics relating to 29.3Hz, which is the frequency 

that the gear operates with the tooth breakage. Therefore, it shows that MSB performs 

outstandingly in diagnosing this incipient fault.  

Moreover, for the two large fault cases, the resonance induced responses at about 2×fme34 

=760Hz are still very dominant. MSB magnitudes shows agreeable increments across 

different severities, showing more support that higher SNR signals at resonance bands give a 

more accurate diagnosis 

 

Figure 7.7 MSB phase results at a resonance for Gear-D under different fault severities 
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More interestingly, the phase results give more convincible supports that either AM or PM is 

dominant at a resonance but dese not interfere with each other. As shown in Figure 7.7, phase 

values in Figure 7.7 (c) and (d) are relatively stable across different fm components, 

indicating that only type of modulations occurs. On the other hand, AM and PM interferences 

exhibit large phase differences between different components even if they are close each 

other as shown in Figure 7.7 (b). 

Obviously, system identification is one of important and yet open subjects in dynamics and 

has been investigated actively for many decades. An in-depth and systematic investigation of 

using MSB for system identification deserves attention but may deviate too much from main 

subject addressed in this thesis. Nevertheless, it is believed that MSB can help to obtain more 

accurate results because of its superior noise suppression performance. 

In general, this second verification of MSB performance has found that MSB can detect even 

smaller fault. This is achieved successfully by observing the changes in the components other 

than the meshing components where the fault induced to. Instead the components which are 

insignificant under baseline have been much less influenced by errors. Therefore, they are 

likely to be more apparent once a fault has small amplitude and hence can be based on for 

achieving more reliable and accurate detection and diagnosis. 

7.4 MSB based Local Fault Detection and Diagnosis  

As discussed, MSB can produce good results for gear fault detection and diagnosis. For more 

accurate diagnostics, MSB results can be further improved by combining AM and PM effects 

together. In addition, it has shown that the meshing component has been influenced more by 

inherent gear errors. This suggests that another band other than the meshing components 

need to be identified for obtaining optimal diagnosis. Amongst different bands examined that 

can provide consistent diagnosis, the resonance bands can provide better results because of 
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the magnification of modulation effect. However, this resonance probably only happens in 

limited scenarios, not the general characteristics for every industrial gearbox. Furthermore, 

an automated implementation MSB analysis always is required for high efficient diagnosis. 

To deal with these issues, a comprehensive diagnostic procedure needs to be developed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 A flow chart of automated diagnosis using MSB 
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Firstly, to avoid or minimize error influences, a frequency band for the cf  in MSB can be 

used that does not include the first meshing frequency. For current gearbox the band can be 

from 500Hz to 1300Hz in which there are only two higher order harmonics of fme34 but not 

the first from both fme34 and fme12. Obviously, it not only includes the resonant bands but a 

sufficiently wide range of band that potentially appear new components when a fault occurs. 

Secondly, the frequency band for mf  can be set based on the same principle as that of cf  for 

minimising manufacturing errors. This means that the first few components of different shaft 

frequencies need to be avoided as it is the most common error can occur in a gearbox due to 

not only manufacturing accumulative pitch problems, but also due to misalignment and 

unbalances during installation. In addition the highest can be 4 or 5 times of rf  which is 

sufficiently wide to include most sideband components of interest.  

 

Figure 7.9 Illustration of optimal MSB components 
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Once theses bandwidth is determined, an automatic procedure can be implemented to select 

optimal MSB components inside the band for diagnosis, which is depicted in the flow chart 

of Figure 7.8. As it can be seen in the procedure, a critical step of the procedure is required to 

obtain averaged MPI for more accurate and robust detection and diagnosis. Figure 7.9 

exemplifies a typical implementation for determining the critical steps. Figure 7.8(a) is the 

result from Step 3, in which the first index I is set to an mf  index values equivalent to 

rf =32Hz to void the first harmonic. The MSB-SE is from a peak in the averaged coherence. 

This value is away from the resonance to show the effect of MPI in Figure 7.9(b). Compared 

with MSB-SE, the MPI values are enhanced around 29.2 Hz and 58.5Hz with different 

degrees. As a result, the value at 58.5Hz seems lower but it will give more correct estimation. 

In addition, the peak at 29.2Hz has very low coherence, indicating that it is influenced more 

by noise and will be discarded in the average processing.  

 

Figure 7.10 Location diagnosis based MSB Detector for the breakage Z1 
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Figures 7.10 and 7.11 present the diagnostic results for both fault location and severities for 

the Z1 tooth breakage cases. And Figures 7.12 and 7.13 present the diagnostic results for 

both fault location and severities for the Z2 tooth breakage cases. These results are fully 

consistent with the fault scenarios induced during data acquisition. Therefore, it shows that:  

1) MPI suggested is accurate to quantify AM and PM combination; 

2)  MSB-SE detector developed is reliable to select optimal bands; 

3) The proposed automatic procedure is feasible and reliable; and  

4) The scheme for using frequency band other than meshing component is correct. 

 

Figure 7.11 Severity diagnosis based MSB-MPI for the breakages on Z1 
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Figure 7.12 Location diagnosis based MSB Detector for the breakage Z2 

 

Figure 7.13 Severity diagnosis based MSB MPI for the breakages on Z2 
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7.5 CB Characteristics of Tooth Breakage  

Figure 7.14 and 7.15 show the results from CB analysis for the two cases of tooth breakages 

respectively examined in Section 7.3. Based on CB magnitude increase characteristics it can 

be seen that they can detect and diagnose the fault locations and severity when the faults are 

very severe i.e. for the cases of 100% tooth breakages. These inferior results are due to that 

CB results have combined changes due to the faults with the error effects from the lower 

order components. As discussed in Section 7.2, these errors can also cause problems with 

less accuracy in estimating the meshing components, which in turn also causes CB to 

produce incorrect diagnostic results. Therefore, in this frequency range of interest CB 

performs poorly in diagnosing tooth breakages, compared with MSB.   

 

Figure 7.14 CB results for tooth breakages on Z1 
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Figure 7.15 CB results for the tooth breakages on Z2 

 

7.6 TSA Signal Characteristics of Tooth Breakage Vibration Responses  

For more benchmarks, TSA signals for the case of Z1 tooth breakage are also obtained as 

shown in Figure 7.16. The signals resulted from the phase signal of shaft 1, denoted as tsa1, 

shows clear spikes with the increase in fault severity. In the meantime, TSA signals obtained 

based on the phase of other two shaft exhibit stationary waves, showing they are in healthy 

statues. This demonstrates that TSA signal allows this fault case to be separated correctly. 
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Figure 7.16 Location and severity diagnosis based on TSA signals for the breakage on Z1 

 

However, diagnosing the fault on Z2 based on TSA signals results in lower performances. As 

it can be seen in Figure 7.17 that the spike signature appears in tsa2 signals until the fault 

severity is at 60%. It means that it is not sufficiently sensitive to the small fault. This 

deficiency may be still from the influences of phase calculation error which has discussed in 

the simulation studies. As gained from MSB analysis, this gear has higher manufacturing 

errors. These errors may induce more phase deviation and makes the overall results are 

poorer.  
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In addition, TSA signals for the third shaft also show similar spikes to that of tsa2 signal. 

This can lead to a completely incorrect diagnosis.  

 

Figure 7.17 Location and severity diagnosis based on TSA signals for the breakage on Z2 

Furthermore, characteristic frequencies of roller bearing are usually fractional values of shaft 

frequencies and their amplitudes are much smaller than meshing components. This means 

that TSA based on meshing frequency phases can remove these bearing contents, as they are 

asynchronous to any shaft components. This is another shortfall of TSA, which means that 

TSA is not particularly suitable for implementing a comprehensive gearbox condition 

monitoring system.  
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7.7 Chapter Summary 

MSB based magnitude and coherence showed that it can provide an accurate diagnosis of the 

fault severity and also the location of the fault. However, when CB is applied to the same 

signals, the error at lower order components results in less robust performances for 

distinguishing fault locations. TSA can again produce erroneous results and the amplitude of 

the fault frequencies are dominated by the magnitude of the meshing frequencies. 
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CHAPTER 8.  

DISTRIBUTED GEAR FAULT DETECTION AND DIAGNOSIS 

8.1 Introduction 

With the same bandwidth and analysis parameters as in Chapter 7, the diagnosis procedure is 

applied the datasets from the run to failure test. Only typical results are presented which are 

identified to indicate important deterioration events occurring on the testing gear set. 

In addition, the test has not resulted in local tooth breakages but instead has led to clear tooth 

surface wear phenomena such as pitted areas, fatigue zones and micro scratch markers as 

illustrated in Chapter 6. These defects are found across most teeth of the meshing gears. 

Therefore, this gear set is regarded as distributed faults, which often is found more difficult 

to be detected and quantified. 

Furthermore, as the testing gear was operated by keeping the test rig under the same 

configuration during the full test course. It means that errors due to reinstallation are avoided, 

which can happen for the previous tests as the tooth breakages need to be created by taking 

the gear out of the case each time. This means that any errors observed in this test would only 

the inherent manufacturing errors. Moreover, it is interesting to know how MSB responses to 

the gradual changes while the gears are deteriorating.  

8.2 MSB Characteristics of Asymmetric Tooth Wear  

Figures 8.1, 8.2 and 8.3 present MSB magnitude, coherence and phase results respectively 

for six representative operating time instants. These time instants are identified by referring 

previous analysis results using motor current signature analysis (MCSA) applied to the same 
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test by Haram et al [133]. Specifically, by analysing the sidebands relating to the first shaft 

which are extracted from motor current signals, the results for operating period from 3.1 

hours to 210 hours has no clear indications of change. Then it has found that there is a 

gradual increase trend of the sideband which allows the deterioration of the gearbox system 

to be detected. However, it has the concerns that the results may also include the influences 

of other part of the test rig such as the drive motor. 

However, by examining these MSB results, it is difficult to find a meaningful component that 

can be consistent with the deterioration process positively. Especially, the meshing 

components at fme12 exhibit a large degree of oscillations across different cases, showing that 

is highly unstable stable and yet again proves the claim that the meshing frequency is not a 

very effective band for diagnosis.  
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Figure 8.1 MSB magnitude results for Gear-B under different fault severities 

In addition, it is not very clear to show the occurrence of the resonances. This can be well 

understood in that such distributed faults often induce additional vibration in narrower bands 

because of relatively smoother interference of the abnormal meshing process.  

However, a closer examination has found that there are still many peaks showing gradual 

increase with operation times even though they appear in different frequency bands. 

 

Figure 8.2 MSB coherence results for Gear-B under different fault severities 

 

Also it is found that from the coherence and phase results that the number of MSB peaks 

show gradual decrease. This may indicate that the AM and PM interferences are relatively 

stable to suite to a particular status of modulation as the gears are deteriorated more.  
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In general, these observations are not very convincing in making some definitive decisions 

on the exact condition of the gears. 

 

Figure 8.3 MSB phase results for Gear-B under different fault severities 

 

8.3 Detection and Diagnosis of Gear Tooth Wear based on MSB 

However, by applying the automated detection and diagnosis procedure developed with the 

same parameters it has obtained positive results as shown in Figure 8.4 and 8.5 regarding to 

location and severity respectively. 

Firstly, the location diagnosis shows that the gear deterioration process has a clear transection 

phase from Z2 to Z1. At early stage Z2 may has higher errors than Z1. This has been shown 

by the detection results from Figure 8.4(a) to 8.4 (c) in which the more modulation effects at 
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Z2 appear slightly more than that of Z1. However, with more operation progression, Z1 is 

subjected to the effect of higher misalignments from the drive motor it connects to. As a 

result, the wear degree on Z1 becomes more significant and asymmetric, leading to greater 

modulation effect appear on Z1. This typical asymmetric wear has been found in the majority 

gear systems. 

 

Figure 8.4 Location diagnosis based MSB Detector for Gear-B under the different fault severities 
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Figure 8.5 Severity diagnosis using MSB MPI for Gear-B  

In the meantime, the MPI shows consistent results with the operation progress. However, in 

the beginning, MPI value is slightly higher, which is mainly due to the error effect or 

commonly known as running-in effect. After which, MPI shows an increase trend to reflect 

the severity correctly. Furthermore, the diagnosis results are ensured by high coherence 

values as shown in Figure 8.5(b) which are in the similar ranges as those in previous cases.  

Overall, thorough and accurate diagnosis results achieved for this difficult case shows that 

this proposed diagnosis procedure is powerful and reliable. 

8.4 CB Characteristics of Tooth Wear 

Because of being sensitive to errors at Z1, CB results in Figures 8.6 and 8.7 cannot give very 

meaningful indication of the gear deterioration process due to inconsistent changes in 

magnitudes over the time instants. This confirms that more that the CB is not very effective 

for gear wear diagnosis in this lower frequency bands.  
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Figure 8.6 CB magnitude results for the gear tooth wear 
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 Figure 8.7 CB coherence results for the gear tooth wear 

 

8.5 TSA Signal Characteristics of Tooth Wear  

For the similar reasons, the inherent error of this gear set also leads to incorrect diagnosis by 

using TSA signals. As shown Figure 8.8, tsa1 signals show a clear envelope over the 

rotational period of the first shaft. This means that the error of asymmetry on Z1 is very 

significant at early stages but it become lower at late stages because of the effect of 

asymmetric tooth wear.  

TSA signals for tsa2 and tsa3 also show inconsistent changes and cannot be based on for 

making diagnostic decisions positively. 

Probably, because of the clear periodic envelopes on of tsa1 signals, it can lead to a diagnosis 

that Z1 is the main problem of the system. However, it is not convincible because the 
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amplitude decreases with operation progress. Therefore, TSA approaches are also very 

ineffective in diagnosing this distributed fault.  

 

 

Figure 8.8 Diagnosis based on TSA signals for gear tooth wear 
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Figure 8.9 Time domain based diagnosis based on TSA signals for gear tooth wear 

 

Figure 8.9 shows further that although there is a difference between the RMS values for the 

three TSA signals at the gearbox’s healthy condition compared to the rest of the RMS values, 

it cannot provide any more inconsistent information other than that the gearbox is not at its 

ideal condition. 
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8.6 Chapter Summary 

The progression of fatigue errors cannot be reliably diagnosed using CB since the method is 

not sensitive enough to detect the small changes over time. TSA is also unsuitable for usage 

as a fatigue diagnostic tool as the results are inconsistent with time. Whereas MSB coherence 

and phase results can confirm that as the severity of the fatigue wear increases, so does its 

MPI value, proving that it is the most accurate technique for diagnosing small fatigue faults 

in gearboxes. 
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CHAPTER 9.  

CONCLUSIONS AND FURTHER WORK 

Vibration generated by a gearbox provides a great deal of information regarding its heathy 

condition. However, the influences of noise and interference content make it very difficult to 

extract the useful information for achieving a reliable and accurate diagnosis of gearbox 

faults. Therefore, it is critical to investigate novel approaches to effectively suppress noise 

and decouple the interferences. Of numerous signal processing techniques investigated in 

recent years, TSA, CB and MSB have been focused in this thesis for the purpose of noise 

suppression and interference decoupling because they have the capability of noise reduction. 

Especially, MSB can additionally highlight modulation characteristics that are of the primary 

properties of vibrations in a multi stage gearbox.  

TSA is very effective to extract vibration content that are synchronous with a particular gear 

and exclude any non- synchronous contents such as from other gears and noise. However, it 

has found that TSA signal also destroy the PM content. Consequently, it does not take the 

full information of AM-PM effect and result in low diagnostic performance, which is because 

the phase signal relied on by TSA is numerically unstable due to strong noise effect. In 

addition, TSA analysis also removes the diagnostic information for roller bearings, which 

make it impossible to achieve a comprehensive system for gearbox condition monitoring.  

Convention bispectrum (CB) can reduce Gaussian noise in signals by highlighting 

components that are coupled in both frequency and phase. It is particularly useful for 

extracting QPC contents. However, it is inefficient in extract AM-PM components in that it 



177 

 

can results in overpopulated CB components due to the multiple couplings between low 

frequency components including their harmonics and high frequency meshing components 

which are present inherently in multiple stage gearboxes. This make it difficult to extract 

correct information for implementing diagnosis. In addition, the low frequency components 

can be easily influenced by distant vibrations and gear errors. So the components are not very 

reliable for gear diagnosis. It is feasible to have AM-PM contents in the high frequency range 

from the first to second harmonics of meshing frequency. However, the frequency span 

between the two mesh harmonics often is sufficiently wide to cover different structural 

vibration modes, resulting in a poor estimation of AM-PM effect by using two demodulated 

components from two meshing harmonics.  

On the other hand, recently focused MSB can demodulate the modulation components 

around just one meshing components, which can improve estimation significantly, even if the 

meshing frequency is close to a resonant band. In the meantime MSB maintains the 

properties of noise suppression and inclusion of power spectrum content. Therefore, it is 

more effective in characterising the gear vibration signals for accurate diagnostic results. 

Specifically, MSB combines the carrier and modulation components as the products between 

the two sidebands and the carrier. It allows the small modulation content highlighted due to 

the distinctive peaks of the carrier. This means that the week modulation can be enhanced to 

show up by the high amplitude of the meshing content. Phase To separate between the 

modulation and the meshing carrier, the MSB-estimator can be used to remove the carrier 

magnitude, leaving only the product of just two sidebands, which can be sufficient to 

quantify the modulation levels due to gear faults. 

However, because AM-PM combination can be resulted from various phase differences 

between AM and PM, the sideband product is not necessarily a complete measure of AM and 
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PM. Therefore, based on the model of AM-PM formalisation in gearbox vibration signals, a 

MPI is suggested to reflect the combination of the power in AM and PM to reflect the 

maximum consequence of the interfered modulation that can favourite the early fault 

detection. 

Subsequently, a new scheme to calculate the MPI is developed based on MSB results. Using 

the sideband product from MSB component of interest and the sideband difference from 

MSB at zero frequency of modulation, an optimal estimation of MPI can be obtained by 

solving a quadratic equation. As the sideband product and difference are the noise 

minimisation components, the estimator produce a more accurate and reliable results for 

qualifying the gear modulations. 

Besides, MSB phase results can show the interference degrees between AM and PM. Any 

phase value apart from 0 and π means that the occurrence of AM-PM interference and the 

proposed scheme is required for decoupling them. However, this approach of detecting 

interference often not very efficient and accurate as the angle calculation often suffer from 

numerical instability, which has had significant influences on TSA. To avoid this MSB 

coherence results are employed. It can be based on to select MSB components which exhibit 

high coherence values to be the candidates for applying the scheme, leading to a MSB-

detector. Moreover, high coherence results are referenced as the conditions to determine 

significant optimal carrier ranges for achieving reliable AM-PM decoupling. Finally, 

coherence can be an important reference to confirm the detection, the cases in experimental 

evaluation studies carried out in this research should possess coherence values of at least 

higher than 0.1.  

Vibration datasets ware collected under different fault conditions including local tooth faults 

and asymmetric tooth wear in a two stage helical gearbox which is from a major gear 
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company in U.K. supplying such gearboxes to different power transmission systems in 

industry available. These datasets can be representative and the evaluation is reliable. 

Two cases of local faults on the gearbox are examined, one is at the input shaft and other is at 

the middle shaft. Diagnostic results show that the new MPI gives a monochromatic increase 

trend that is consistent with the fault severity induced to corresponding to the faulty gear 

locations, showing that the detector and estimator give correct diagnostic results. Specially, 

the 30% tooth defect cannot be separated correctly by previous know methods. Therefore, it 

is can be deemed that the new scheme is more reliable and accurate in diagnosing tooth 

breakages. 

To further examine the performance, the datasets from a run-to-failure test are utilised with 

the same parameters setting to the MSB methods in detecting tooth breakage. The diagnosis 

obtained by the dataset has identified that the gear condition has deteriorated significantly at 

the middle phase of the test operation, providing an early warn that the over-worn gear set 

occurs more at the first stage of the gearbox. This confirms that the developed scheme is also 

effective to diagnosing distributed gear fault which is a subject that has received considerable 

researches. 

9.1 Conclusions 

Overall the research carried out through theoretical analysis and experimental studies has 

yielded following key findings and main conclusions which are also deemed to be novel as 

they are obtained for the first time in this thesis: 

1. The key issues need to be tackled for achieving accurate gear diagnostics are both 

noise reduction and AM-PM decoupling. 



180 

 

2. The decoupling can be achieved by power spectrum analysis but not accurate enough 

to resolve the low modulation of incipient faults. 

3. TSA analysis is unable to reliably decouple AM-PM in gear signals for diagnosis 

because its phase signal is sensitive to noise; 

4. CB requires a wide bandwidth to achieve demodulation and decoupling which result 

in not only poor results and but also not suitable for emerging technologies that can 

be used for condition monitoring  

5. MSB is particularly suitable for gear vibration analysis because it include phase 

information in achieving noise reduction and modulation enhancements; 

6. The developed MSB detector and estimator are reliable and accurate for diagnosing 

different gear faults. 

7. The optimal bandwidth can be the range that has few components observable in MSB 

results of baseline signals. 

8. The first modulation component needs to be avoided to reduce the influences of 

possible gear manufacturing errors. 

9.  The commonly recognised bandwidth around meshing frequencies is not the optimal 

one as it can be influenced significantly by manufacturing errors. 

10. This MSB based diagnosis scheme is more suitable to be embedded into emerging 

techniques for cost-effective real time monitoring. 

11. MSB estimated by FFT and Welch’s estimator is sufficiently accurate to produce 

correct diagnosis. 

9.2 Future Works 

To further improve the diagnostic performance of multistage gearboxes using the vibrations, 

researches in the direction of noise reduction and modulation decoupling can be further 
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carried out in the two approaches: MSB based methods and new signals processing method 

based methods: 

9.2.1 MSB based Methods 

1 To improve computational efficiency of MSB in order to allow for real-time monitoring 

and embedded devices; 

2 To investigate applying the MSB based detector and estimator to diagnosing gearbox 

bearing faults and separating gear and bearing faults which occur concurrently; 

3 To confirm and improve MSB based system resonance identification in theory and by 

experiments; 

4 To identify MSB components from non-modulation contents to further achieve sparse 

representation; 

5 To develop sensing systems embedded with MSB analysis. 

9.2.2  New Signal Processing Framework based Methods 

1 To investigate compressive sensing techniques such as random or sparse sampling for 

gearbox real time monitoring; 

2 To investigate nonlinear model based signal processing techniques such as manifold 

learning and stochastic resonance approaches; 

3 To investigate artificial intelligent based signal technologies which include genetic 

algorithms, particle swarm algorithms for optimising diagnostic accuracies and various 

neural networks for the modelling and classification of completed datasets; 
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4 As a fast devolvement technique wavelet analysis can be effective in de-noising stationary 

random and highlight nonstationary content of local gear faults, which can be a prepressing 

method for MSB analysis in order to further improve the diagnostic accuracy.  
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APPENDICES 

A.1 MEMS Sensor 

The MEMS accelerometer, which includes both the signal conditioning circuitry and the 

sensor are fabricated together on a single monolithic chip. The output signals are analogue 

voltages that are proportional to acceleration. It uses sensing change in capacitance as shown 

in Figure 2. The deflection of the internal mass changes the capacitance between the finger 

and the adjacent cantilever beams. The sensor has an electronic device that will convert the 

capacitance change due to acceleration into a voltage.  

Its major benefit is that it is cheap and has low power consumption, this means that 

measuring vibration no longer needs to be expensive, which is a major disadvantage as 

summarised in Table 11.1.  
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Figure A.1 Capacitive MEMS accelerometer 

 

The choice of accelerometers depends on several factors and some of them are listed below: 

Static characteristics of sensors   

• Input range : interval between the maximum and minimum of input 

• Output range :  interval between the maximum and minimum of output 

• Span : the interval of output range of a measurement system Span= Omax  -

omin     

• Zero: the system output corresponding to a zero input.  

• Resolution: is the smallest detectable incremental change of input that can 

be detected in output signal.  

• Sensitivity: is the rate of change in output corresponding to the rate of 

change in input.  

• Repeatability: inability of a sensor to represent the same value under 

identical conditions. 

• Deadband: range of input in which the output remains at zero.  

• Hysteresis: the delay phenomenon in output due to energy dissipation. 

Dynamic characteristics of sensors   

A measure of a sensor’s capability of the following rapid change in input: 

• Delay (response time) 

• Rise time  



196 

 

• Overshoot 

• Settling time 

 

Figure A3 dynamic characteristics of sensor 

There are more factors to consider when choosing the sensor such as cost, size, weight, 

linearity, and environment (temperature, shock, vibration, etc.). Based on these factors, 3 

different MEMs sensors were chosen for further testing. 

 

A.2 DsPIC Processor 

Due to the cheap cost of DsPIC, it is economically feasible to embed any required number of 

them within a machine or process[A.1]. Each device may be specially configured to act a 

sensing system for a particular machine element or process function.  Then, they can be 

linked together to form a distributed sensor network. Digital signal processing applications 

seek to extract useful information from an incoming set of signals, represented by sequence 
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of numbers. The algorithms, or computational prescriptions, for extracting this information 

are originally invented and developed in general-purpose computing environments in which 

the speed of modifying and retesting the algorithm is more important than the speed of 

executing the algorithm [A.2]. 

In a real time signal processing application, the samples of the digital signals arrive at the 

input of the processing system. The samples arrive over some interval of time, until a group 

of samples, known as a frame, have arrived that are sufficient to begin processing. Processing 

then begins to obtain a more information rich version of the sample data. Performing these 

computations on this sample requires a certain computational time.  

Real time signal processing completes the computation of the output associated with a frame 

of input signal samples in a time that does not exceed the duration of that time [A.3]. In 

generally, for a real time application, portable implementation is necessary if that algorithm 

is 

to find practical use. The dsPIC microcontrollers can be able to implement such 

implementations. In this paper, a dsPIC microcontroller based device which allows 

monitoring and processing of analogue signals such as physiological originated signals 

(ECG, EMG, EEG, etc.), is proposed. This device consists of following hardware stages; a 

microcontroller adaptor board, dsPIC development board, (128×64) graphic LCD, and (4×4) 

keypad. Also, there are five different software modules which are ADC, FFT, graphic LCD, 

keypad, and filter programs. The proposed device takes analogue signals via an ADC module 

and processes them with dsPIC by using keypad commands and then allows to plot at graphic 

LCD. 
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A.3 Software Modules 

In the system design, the speed of computation and memory capacity are considered as two 

most important characteristics. Since dsPIC30F6010 device has these properties, it has been 

chosen for our design. This chip has the following specifications; 

 30 MIPs processor speed 

 10 bit ADC 

 4 Kbyte EEPROM 

 8 Kbyte SRAM 

 144 Kbyte program memory 

 24 bit instruction bus 

 16 bit data bus 

 1 clock cycle DSP processing 

 Optimised instruction architectures featuring flexible addressing modes. 

 Microchip MPLAB v2.50 is used for software modules. Then, C codes are compiled by 

using C30 compiler. The following sub-modules constructed the main software 

module; 

 ADC program 

 FFT program 

  Graphic LCD program 

 Keypad program 

 Filter application program 
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A.4 ADC Program 

To process the analogue signals coming from some physical originated sources, those signals 

must be converted to the digital form via ADC. For this aim, we used a 10 bit A/D converter 

module [A.3]. The conversion speed is adjusted by SAMC (Auto-Sample Time Bits) bits 

which are located in ADCON3 (A/D Control Register 3). After that, they obtained 16 bits 

binary value is written in ADCBUFO register. The ADC timing diagram is given in Figure 1. 

Since dsPIC signal processing function were written with signal fractional numerical format, 

we have used this format for all signal processing functions that we developed. For some 

applications, we have formed signal sequence with different lengths. For example, the FFT 

calculation uses a sequence with 512 samples.  

 

A.5 FFT Program 

In order to adjust FFT length, FFT_BLOCK_LENGTH and LOG_BLOCK_LENGTH 

coefficient must be defined in “parameter.h” user defined library. This module can be able to 

calculate a FFT process with 64, 128, 256, and 512 sample lengths. DSP processing cycles 

are given in Table 2 and FFT processing can be implemented as following way [A.4]: 

 Initialization: Twiddle factor coefficients are defined. 

 Input signal is scaled to be located at between the -0.5 and 0.5 interval. 

 Butterfly computation is implemented by calling “FFTComplexIP ( )” function from 

microchip signal processing library. 

 Bit-reversed RE_ordering is a part of FFT algorithm. In this routine, FFT sequence is 

re-ordered in bit-reversed manner. 

 Square the magnitude computation of every complex entity for the FFT outputs. 
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 The peak value searching is implemented by “vector max ( )” function. 

Table A.2 DSP Processing cycles [A.4]. 

 

 

A.6 Wireless Sensor Network 

Wireless Sensor Networks (WSN) are a trend of the last few years due to the advances made 

in the wireless communication, information technologies and electronics field. The 

developments of low-cost, low-powered, multifunctional sensors have received increasing 

attention from various industries [A.6]. WSN is a wireless network composed of autonomous 

and compact devices called sensor nodes or motes.  

A sensor network is designed to detect desired phenomena, then collect, process the data and 

transmit this information to users. Sensor nodes or motes in WSNs are small sized and are 

capable of sensing, gathering and processing data while communicating with other connected 
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nodes in the network, via radio frequency (RF) channel. The sensor nodes scattered in a 

sensor field where each sensor nodes collects data and route the data back through a multi-

hop hybrid wireless communications.  The design of the sensor network is influenced by 

factors including scalability, operating system, fault tolerance, sensor network topology, 

hardware constrains, transmission media, and power consumption [A.7]. The developments 

is low-cost, low-powered, multifunctional sensor have received increasing attention from 

various industries [A.6].  

There are two kinds of sensor used in the network. First is the normal sensor node deployed, 

the other is a gateway node that interfaces sensor network to the external world. Sensors 

which measure vibration, acoustic emissions, light and temperature are among the types of 

sensor being used depending on the application. The system architecture of a sensor node 

consists of a radio transceiver or optical as the communication unit, microcontroller for the 

processing unit, sensor as the sensing unit and battery as the power unit. The hardware device 

in the sensing unit may consist up to several sensors. This device produces measurable 

response to change which acts as an interface between motes to the environment.  The 

processing unit or control unit (CU) is responsible for the collecting and processing of the 

captured signal from the sensor unit. These signals are then transmitted to the network. It 

determines both energy consumption as well as computational capabilities of the sensor 

node. The power unit consisting of battery supplies power to the sensor node. It is important 

to choose the battery type since durability will affect the design of sensor node [A.7]. 

WSNs has been used in high-end application such as radiation and nuclear-threat detection 

systems, weapons sensors for ships, biomedical applications, habitat sensing and seismic 

monitoring [A.8]. Measurable changes are vibration, temperature, sound, motion, pollutants 

or pressure in environmental conditions [A.7]. There is also the possibility of a ultra-
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compact, high data-rate wireless sensor node is constructed using eCAM miniature camera, 

plugging a VGA video camera to an Eco node. The purpose is to show that high data-rate 

wireless capability and expandability of a platform can came in a miniature package. The 

camera module itself already performs compression in hardware thus represents an optimized 

subsystem in terms of its power consumption and bandwidth demand [A.9], [A.10]. This is 

however expensive and is beyond what is proposed for this project. 

A low cost, more readily available solution is MiWi, its protocol is based on the MAC and 

PHY layers of the IEEE 802.15.4 specification [A.11], and is tailored for simple network 

development in the 2.4 GHz and sub-GHz ISM frequency bands. The protocol provides the 

features to find form and join a network, as well as discovering nodes on the network and 

route to them. It does not cover any application-specific issues, such as how to select which 

network to join to, how to decided when a link is broken or how often devices should 

communicate. This flexibility can minimise power consumption if properly implemented. 

The low cost and power consumption of the MiWi protocol makes it ideal for providing 

wireless communication in the WSN allowing several smart sensors on a wind farm to 

communicate with each other. 
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