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Abstract. Understanding the dynamic process of urban growth is a prerequisite to the prediction 

of land cover change and the support of urban development planning and sustainable growth 

management. The spatial and temporal complexity inherent in urban growth requires the 

occurrence of a new simulation approach, which should be process-oriented and have a stronger 

capacity of interpretation. This paper presents an innovative methodology to understand spatial 

processes and their temporal dynamics on two interrelated scales (municipality and project), by a 

multi-stage framework and dynamic weighting concept. The multi-stage framework aims to 

model local spatial processes and global temporal dynamics by incorporating explicit decision-

making processes. It is divided into four stages: project planning, site selection, local growth and 

temporal control. These four steps represent the interactions between top-down and bottom-up 

decision making involved in land development of large-scale projects. Project-based cellular 

automata modelling is developed for interpreting the spatial and temporal logic between various 

projects forming the whole urban growth. Dynamic weighting attempts to model local temporal 

dynamics at the project level as an extension of the local growth stage. As a non-linear function 

of temporal land development, dynamic weighting is able to link spatial processes and temporal 

patterns. The methodology is tested with reference to the urban growth of a fast growing city, 
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Wuhan in the Peoples' Republic of China from 1993 to 2000. The findings from this research 

suggest that this methodology can facilitate the interpretation and visualisation of the dynamic 

process of urban growth more temporally and transparently, globally and locally.  

Keywords: urban growth, spatial and temporal processes, cellular automata, multi-stage, dynamic 

weighting. 

 

1  Introduction 

Understanding of urban development process is highly crucial in urban development planning and 

sustainable growth management. The urban development process involves multi-actors, multi-

behaviours and various policies, which results in its spatial and temporal complexity. The non-

linear dynamics inherent in these growth processes opens up the possibility for emergencies 

(sudden changes) that are difficult or impossible to predict. Due to the hidden complexity of 

reality, our science has become less orientated to prediction but more as an aid to understanding, 

to structure debate (Batty and Torrens, 2001). Orjan (1999) argued that without a proper 

understanding of the recent past we are in no position to comprehend- let alone predict-emerging 

patterns and processes. Couclelis (1997) first put forward the idea of a spatial understanding 

support system (SUSS). Horita (2000) reported a new SUSS for representing community 

disputes. Limited by existing sciences and techniques, understanding-oriented modelling is more 

practicability than prediction-oriented, or rather, a proper understanding of complex system is the 

prerequisite to its prediction. Towards reasonable understanding, we need reliable information 

sources and models. Successful models should have a stronger capacity for interpretation and 

interactive environment to simulate 'what-if' scenarios.  Consequently, it requires an innovative 

simulation approach. The first step to aid such decision-making is to identify the process of 

decision-making. This is the same as the area of information management, where we need to 

recognise the data flow chart and data model before establishing any operational information 

system. 
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Remote sensing and geographical information science (GIS) have been proven an effective means 

for extracting and processing varied resolutions of spatial information for monitoring urban 

growth (Masser, 2001). However, they are still not adequate for process-oriented modelling as 

they lack social and economic attributes in particular on detailed scales. In developing countries, 

socio-economic data acquisition and integration still have a long way to go. On this occasion, 

local knowledge (expert opinions, historical documents), albeit only qualitative or semi-

quantitative, can be very valuable in assisting process understanding such as urban growth 

patterns, driving forces and major actors involved. Hence, local knowledge should be 

incorporated into simulation modelling at certain stage and in certain ways. 

Cellular automata (CA), a technique developed recently, has been receiving more and more 

attention in urban and GIS modelling due to its simplicity, transparency, strong capacities for 

dynamic spatial simulation, and innovative bottom-up approach. When applied to real urban 

systems, CA models have to be modified such as multi-states of cell, relaxing size of 

neighbourhood with distance-decay effects, probabilistic rules, and link with complexity theory. 

In fact, many-if not all-urban CA bear little resemblance to the formal CA model (Torrens and 

O'Sullivan, 2001). Numerous literature can be seen in the field of urban CA modelling, which 

include at least two classes of successful applications on various spatial and temporal scales. One 

is concentrated on artificial cities to test the theories of complexity and urban studies (Couclelis, 

1997; Benati, 1997; Batty, 1998; Wu, 1998). Another is focused on real cities to aid decision 

support of urban planning at the regional, municipal and town levels (Besussi et al., 1998; Clarke 

and Gaydos, 1998; Ward et al., 2000; White and Engelen, 2000; Yeh and Li, 2001; Silva and 

Clarke, 2002; Wu, 2002).  These studies have revealed that urban CA-like models are effective in 

simulating the complexity of urban systems and its sub systems from emergence, feedback and 

self-organisation. Nevertheless, the interpretation of transition rules, which is highly important for 

urban planners, still receives little attention in urban CA modelling, particularly in linking with 

the process of urban planning.   
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Moreover, previous studies of urban CA models ignore the fact that urban growth is a dynamic 

process rather than a static pattern. For example, the urban growth model of Clarke and Gaydos ( 

1998) has attracted a lot of attention in urban growth prediction e.g.(Silva and Clarke, 2002). 

Their CA model controls the evolution of city growth by five coefficients (diffusion, breed, 

spread, slope and roads). The diffusion factor determines the overall outward dispersive nature of 

the distribution. The breed coefficient specifies how likely a newly generated detached settlement 

is to begin its own growth cycle. The spread coefficient controls how much diffusion expansion 

occurs from existing settlements. The slope resistance factor influences the likelihood of 

settlement extending up steeper slopes. The road-gravity factor attracts new settlements toward 

and along roads. This is a successful simulation model of patterns, which principally focuses on 

such patterns as spontaneous, organic, spread, road-influenced and diffusive. It still lacks the 

capacity of interpretation of casual factors to be a complete process model because similar 

patterns from the final outputs of CA simulation do not indicate similar processes. Thus, the 

transition rules validated are not evidential to explain the complex spatial behaviours behind the 

process. Therefore, process rather than pattern-oriented simulation should be the main concern of 

new urban growth CA modelling. This point is supported and recognised recently in some 

journals (Torrens and O'Sullivan, 2001). Dragicevic et al.(2001) apply fuzzy spatio-temporal 

interpolation to simulate changes that occurred between snapshots registered in a GIS database. 

The main advantage of the research lies in its flexibility to create various temporal scenarios of 

urbanisation processes and to choose the desired temporal resolution. The authors also declared 

that the approach does not explicitly provide causal factors, thus it is not an explanatory model. 

 

Wu (1998) developed an AHP-driven CA model to simulate the spatial decision-making process 

of land conversion. AHP refers to analytical hierarchy process originated by Saaty (1980). The 

AHP uses pair-wise comparisons to reveal the preferences of decision makers. AHP is an ideal 

means for calculating weight values from the qualitative knowledge of local experts. This CA 
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model is in essence a dynamic Multi-Criteria Evaluation (MCE) as a dynamic neighbourhood 

(updated during model iteration) is treated as an independent variable. This model is successful in 

linking explicit decision-making processes with CA. The adjustment of factor weights is able to 

generate distinguishing scenarios. Hence, this model has a stronger capacity of interpretation. 

However, the AHP-driven decision-making process is not spatially and temporally explicit as the 

weight values are fixed for the whole study area and for the whole period of modelling. They are 

not able to model process especially temporal dynamics. The incorporation of spatially and 

temporally explicit decision-making processes into CA model has not been reported so far. 

 

In summary, we need to develop a new methodology based on present urban CA, which is able to 

model and interpret spatial process and temporal dynamics, and also incorporates local 

knowledge for interpreting these processes. With this in mind, this paper is organised into four 

sections. Following the introduction, the next section first introduces the concepts regarding 

urban growth understanding: process, dynamics, global and local; second discusses in detail a 

proposed methodology, which mainly comprises a multi-stage framework and dynamic weighting 

concept. The former incorporates explicit decision-making processes into modelling of local 

spatial processes and global temporal dynamics. The latter continues to model local temporal 

dynamics by representing the dynamic interaction between pattern and process at a lower level. 

CA-based simulation is developed to support and implement each method. Their mathematical 

models are described step by step. Section three focuses on the implementation of the 

methodology by a case study of Wuhan City, P.R.China. Section four ends with some further 

discussion and conclusions. 
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2  Methodology 

2.1 Complex processes and dynamics 

 

Urban growth can be defined as a system resulting from the complex interactions between urban 

social and economic activities, physical ecological units in regional areas and future urban 

development plans. This interaction is an open, non-linear, dynamic and local process, which 

leads to the emergence of global growth patterns. The urban growth process is a self-organised 

system(Allen, 1997). 

Process generally refers to the sequence of changes in space and time; the former is called spatial 

process, the latter temporal process. It should be noted that strictly speaking spatial and temporal 

process can not be separated exactly as any geographical phenomena are bound to have a spatial 

and temporal dimension. Understanding change through both time and space should, 

theoretically, lead to an improved understanding of change and of the processes driving change 

(Gregory, 2002). However, the spatial process is much more than any sequence of changes. It 

implies a logical sequence of changes being carried on in some definite manner, which lead to a 

recognisable result (Getis and Boots, 1978).  

Summing up, the key components of process are change and logical sequence. The former is 

defined by a series of patterns and the latter implies an understanding of process. In contrast to 

pattern, process contains a dynamic component. 

An urban growth system consists of a large number of new projects on varied scales. Large-scale 

projects are characterised by dominant functions, heavy investment, long term construction and a 

number of actors involved; examples include airports, industrial parks, and universities. In 

contrast, small-scale projects are characterised by single function, rapid construction, light 

investment, and few actors; examples can be a private house and a small shop. The project, as the 

basic unit of urban development, is the physical carrier of complex social and economic activities. 
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The spatial and temporal heterogeneity of social and economic activities create massive flows of 

matter, people, energy and information between new projects and also between the projects and 

the other systems (developable, developed and planned). They are the sources of the complex 

interactions inherent in urban growth. As such, the urban growth process is the spatial and 

temporal logic between varied scales of land development projects. The spatial and temporal 

organisation of projects is the key to understanding processes and dynamics. This understanding 

can be based on two scales: municipality (global) and project (local). For instance, on global 

scale, in space, projects can be organised into clustered or dispersed patterns, the former implies a 

self-organised process, the latter a stochastic process. In time, projects can be organised into 

quick or slow patterns. The local process refers to spatial growth at the project level. Global 

dynamics means the temporal logic between the projects forming the whole urban growth, local 

dynamics only the temporal logic between the spatial factors or elements within a project. This 

research has two specific objectives towards systematically understanding the spatial and 

temporal process of urban growth: 

 To understand the local spatial process at the project level and the global temporal dynamics 

based on a multi-stage framework; 

 To understand local temporal dynamics at the project level based on dynamic weighting 

concept. 

 

2.2 A conceptual model for global dynamics 

The complexity of the urban growth process can intuitively be projected onto decision-making 

processes, and the spatial/temporal dimensions. The former involves multiple actors and 

behaviours. The latter involves various spatial and temporal heterogeneity. Or we can say, the 

former is a cause, the latter the effect and projection. In consequence, we must start with the 

decision making process to understand the spatial and temporal processes of urban growth. 
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Decision making in urban growth is related to plans, policies and projects. Projects are special 

land use or development proposals initiated usually by various levels of actors such as investors, 

planners, developers, land owners and work units. They evolve in the context of various levels of 

policy and plans. The project development process is a dynamic nested hierarchy of multiple 

decision-making procedures spatially from municipal to building level and vice versa. The global 

dynamics of urban growth results from the interactions between the top-down and bottom-up 

processes of decision-making. Top-down decision-making includes financial resources allocation, 

master planning, and time schedule of projects; with bottom-up decision-making containing 

building style, building density, and plot ratio. 

Global patterns can be described as a cumulative and aggregate order that results from numerous 

locally made decisions involving a large number of intelligent and adaptive agents. On the 

municipal scale, its decision making process can fall into four stages: project planning, site 

selection, local growth and temporal control, as illustrated in figure 1. 
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Figure 1. A conceptual model of the decision-making process (a): 

project planning; (b): site selection; (c): local growth and (d): 

temporal control 

(a) (b) 

(c) (d) 
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The first stage (project planning) answers the questions "how many large-scale projects were  

planned in the past periods?" and "how much area was constructed in each project ?" This stage is 

a typical top-down decision-making process based on the systematic consideration of physical 

and socio-economic systems. Municipalities need to plan land consumption according to their 

social-economic development demand. When land consumption is projected onto the physical 

land cover system, it results in different scales of new projects. Land development projects can be 

divided into spontaneous and self-organisational types (Wu, 2000). The former corresponds to 

small scale or sparse development, which may contain more stochastic disturbance and involve 

lower level actors such as individuals or organisations. The latter represents larger-scale projects 

with a dominant land use and  higher level of actors. They are the main concern of this project 

planning stage. The project here can be called an  'agent', which is a spatial entity linking with 

distinct actors and spatial and temporal behaviours. In this sense, the project-based approach 

proposed here is also a kind of agent-like modelling. 

The first stage belongs to non-spatial modelling, resulting in proposals for development projects. 

These new developments will be projected in their spatial and temporal dimensions. Spatial 

complexity can be considered from two aspects: location of site and spatial interactions among 

sites.  The former is the issue of spatial site selection or location, which is becoming the second 

stage. The latter is the issue of local growth or the control of development density and pattern, the 

third stage of the framework. Temporal complexity, which is typically indicated by temporal 

heterogeneity or the timing of local growth, will be described in the temporal control section. 

The second stage (site selection) deals with the question "where were the various scales of 

projects located?" This stage is a typical spatial decision process involving municipal decision-

makers. This aims to systematically optimise and balance the spatial distributions of socio-

economic activities as each project has specific socio-economic functions planned. This stage is 

the static projection of the projects planned at the first stage. The rules of site selection are 

represented by multiple physical, socio-economic and institutional factors, incorporating various 



 10 

global and local constraints. Rules are differentiated between planned projects in terms of 

influential factors, weights and constraints. To some extent, the stage provides growth boundaries 

and seeds for the next stage (local growth). Apparently, this site selection stage results in a 

number of potential spatial sub-systems through the top-down process. 

The third stage (local growth) copes with the question "how did each project grow locally?" This 

question includes development density, intensity and the spatial organisation of development 

units.  After being spatially located, each project was developed based on more local decision-

making from land owners, investors and individuals. This results in different spatial processes. 

The outcomes of these local growth processes can be concentric, spread, road-influenced and 

leap-frog. They are affected by numerous factors, which change their influential roles spatially 

and temporally. The spatial heterogeneity (heterogeneity in a spatial context means that the 

parameters describing the data vary from place to place) suggests that spatial processes are locally 

varied. In spatial statistics, global analysis is being complemented by local area analysis such as 

Local Indicators of Spatial Association (LISA) (Anselin, 1995) and Geographically Weighted 

Regression (GWR) (Fotheringham and Rogerson, 1994). As for understanding local urban 

growth, its spatial process mostly depends on the local conditions, which include not only 

physical constraints but also the socio-economic circumstance. Based on cellular automata, we 

are able to explore the dominant causal factors locally. The stage is dominated by the bottom-up 

approach.  

The last stage (temporal control) answers the question "How fast did each project grow 

temporally?"  This stage shifts to master the local growth speed from a global perspective. The 

image of the whole urban growth process comprises temporal sequences of all projects. For 

example, we can define such patterns as quick, basic or normal and slow local growth 

representing three identifiable timing modes. The rate of local growth is governed by numerous 

factors resulting from top-down and bottom-up decision making. For example, the former 

includes financial resources allocation from higher-level organisations and master and land use 



 11 

planning control. The latter include man-power allocation and facility supply. The temporal land 

demand amount decided at this stage should be input as a guide or constraint to the local growth 

stage. Hence, the stage is primarily a top-town procedure for controlling local temporal patterns 

and conditioned by a bottom-up one. 

It should be noted that each stage described above involves the interactions between top-down 

and bottom-up decision-making. For example, although the land demand of each project is 

planned by municipal organisations, actual consumption is influenced by a number of local 

constraints. The whole process of urban growth should contain numerous feedback loops between 

both on various spatial and temporal scales. To be a focus, top-down socio-economic modelling 

at certain stages are treated as exogenous variables in this research. 

This framework is primarily designed for understanding the dynamic processes of urban growth. 

When used for planning support, the first question will become "How many large-scale projects 

will be planned in the coming years". The socio-economic model for determining land 

consumption should be included at this stage in this case. The other questions at various stages 

will follow similar modification. Such a multi-stage framework can offer a transparent and 

friendly environment for constructing various scenarios of plans.  

 

2.3 Land transition model 

The multi-stage framework discussed above has conceptually transformed the global dynamics of 

the whole urban growth process into the local land conversion processes of large-scale projects. 

These local processes have complex spatial and temporal interactions between them, which can 

be simulated by urban CA approach. The identification of large-scale projects and their functions 

is of importance for understanding the spatial behaviour of relevant actors. 'Large-scale' has two 

meanings from the spatial and socio-economic perspective respectively. One refers to a certain 

scale of spatial clustering of new development units. The project defined in this way may have no 

definite socio-economic implication as it was not planned as a complete spatial entity. This is a 
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relative spatial division. Another refers to larger-area land development with special socio-

economic functions such as car manufacturing centre. The project defined in this way may have 

no ideal spatial agglomeration  as it is low in building density. To be a focus on interpretation, the 

latter is highlighted in this research as it is linked to the underlying socio-economic activities. 

However, it should be noted that the former is also significant and necessary in some spatial 

process modelling. Small-scale projects with mixed functions are conceptually merged into one 

class. Historical documents and interviews with local planning organisation are a necessary 

means for identifying large-scale projects. As the process of CA modelling is identical to each 

project, as an example, we only refer to project d in the following description; the other projects 

follow the same procedures. 

2.3.1 Project planning  

 

      

Here, Ld is the actual (or planned) area of land development project d (from stage 1) in the whole 

period [t=1n]. Ld in principle should result from traditional top-down socio-economic models 

e.g. (White and Engelen, 2000). Here it is assumed to be an exogenous variable (known value 

from the urban growth analysis of past years), for example, a shopping centre occupied 5 ha from 

1993 to 2000, i.e. Ld=5 (ha). L(t) is the simulated area of land development project d till time t, 

L(1996) means the simulated land transition amount from 1993 to 1996. L(t) will be calculated 

from the section of temporal control.  

 

2.3.2 Constraint-based site selection model 
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Here, site selection of projects includes a central point and its surrounding spatial extent or 

neighbourhood. The location of the centre is determined by various critical constraints. Like other 

research (Ward et al., 2000; Yeh and Li, 2001), constraints operate at the local, regional and 

global levels. Global constraints taking an account of the whole study area include physical (e.g. 

ecological protection zone, accessibility to transport infrastructure and city centres/sub-centres), 

and economic (e.g. investment, land value), social (population density) and institutional (master 

planning) aspects. Regional constraints are defined by the availability of the developable or 

developed land and its density in a neighbourhood. It should be noted that the regional level has a 

varied spatial extent as the size of neighbourhood varies from project to project. In some cases, 

we have to define multi-level regions e.g.(Batty et al., 1999). Local constraints refer to the 

physical conditions of a site or pixel such as slope, soil quality, and geological condition. All the 

criteria at three levels vary from project to project, and from case to case, as they should be able 

to interpret the specific spatial behaviours of the actors involved in each project. For example, 

slope does not take effect in a flat city. Equation 2 is based on the assumption that site selection 

depends on a limited number of equally weighting constraints as in practice decision making 

process is primarily qualitative and simple among decision makers. This stage is implemented by 

GIS analysis based on spatial operation (e.g. 'find distance', 'neighbourhood statistics', and 'map 

calculation') and by heuristic rules operation (e.g. if rule1 and rule2 ... then do) based on visual 

programming. GIS visual functions can help modellers test their systematic thinking i.e. whether 

this rule can create ideal sites for a planned project.  

 

2.3.3 Local growth model 

 

This model aims to seek major spatial determinants for interpreting local spatial process based on 

bottom-up CA simulation. Cellular automata are dynamic discrete space and time systems. A 

cellular automaton system consists of a regular grid of cells, each of which can be in one of a 
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finite number of possible states, updated synchronously in discrete time steps according to a local, 

identical interaction rule. In this model, the cell state is binary (1-land cover transition from non-

urban to urban, 0-not), limited in the cellular space of each project. CA simulation is carried out 

by dynamic evaluation and updating of the development probabilities at each cell in the cellular 

space. The cells selected in each iteration will be changed from 0 to 1. The development potential 

of each cell j at time t is defined as: 

 

 

 

Where Pj(t) refers to the development potential of cell j at time t. It is assumed that totally m 

constraints (1 i  m) are considered, comprising k non-restrictive and m-k restrictive constraints. 

When k+1 i  m, i is a binary variable (0 or 1) representing restrictive constraints from local, 

regional and global levels (equation 3). i =0 means that a cell is absolutely restricted from 

transition into urban use in relation to constraint i, e.g. the centre of a large lake.  

When 1 i  k, they are non-restrictive constraints or named factors in order to be distinguished 

from restrictive constraints. These factors complementarily contribute to the development 

potential of a cell. The potential of transition depends on a linear weighted additive sum of 

development factors. Wi(t) is the relative weight value of factor i to be calibrated from data. 

Largely, Wi(t) interpret the casual-effects of local growth process. In the case of global temporal 

dynamics, Wi(t) is treated temporally as constant Wi. The functions Wi(t) will be discussed in 

detail in the next section of local temporal dynamics. Vij(t) is the standardised score (within the 

range 0~1) of factor i at cell j at time t. In urban growth, the frequently selected  factors include 

transport accessibility, urban centres/sub-centres accessibility, suitability, planning input and 

dynamic neighbourhood e.g. (White et al., 1997; Clarke and Gaydos, 1998; Wu, 1998; Ward et 

al., 2000). Suitability analysis has been implemented at the stage of site selection. The other four 
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factors  are selected for evaluating Pj(t) at this stage. For accessibility factors such as the 

accessibility to a major road, a negative exponential function is employed to quantify the 

distance-decay effect Vij(t) (equation 4).  Urban models based on economic theory (Muth, 1969) 

and discrete choice theory (Anas, 1982) made widespread use of the negative exponential 

function. Previous research for the same case study (Cheng and Masser, 2003) confirmed its 

effectiveness although the inverse power function has also frequently been successfully employed 

for quantifying the distance-decay effect (Batty and Kim, 1992). 

 

 

 

Where dij is the distance from cell j to any spatial element defined in factor i such as to a major 

road network.  is gradient of density for quantifying its spatial influence degree on land 

transition. Usually, 0<<1, and  varies with factor i. The parameter  can be determined by 

global exploratory data analysis  of urban growth pattern (Cheng and Masser, 2003), where  is a 

slope value of the log-linear relationship between probability of transition and distance dij. 

Equation 4 calculates the potential of land conversion Vij(t) contributed from any proximity 

factor. In this study, accessibility factors are fixed or static during the modelling period as the 

spatial factors (e.g. road networks) are not updated temporally, so Vij(t)=Vij. 

In our model, neighbourhood size is not globally universal but locally parameterised, which 

varies with different projects. The neighbourhood effect (action-at-distance) is represented as a 

non-restrictive factor in equation 3, which indicates the spatial influences of developed cells on 

land conversion in surrounding sites. Developed cells come from the previously transited cells or 

the old urban area. Strictly speaking, the former reflects the local spatial self-organisation of land 

conversion in each project as a dynamic variable updating in each iteration. The latter depends on 

Vij(t)=e-dij                            0  Vij(t ) 1,    1 i  k                                         (4) 
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existing global urban activities as a fixed spatial factor. They are treated as two independent 

factors in this research. 

In practice, restrictive and non-restrictive constraints are a relative division. They are temporally 

varied. For example, ponds may be a restrictive constraint in 1950 but become non-restrictive in 

2000 as no large quantity of developable land is available in the later period. 

 

 

  

        

 

Principally, land conversion is allocated according to the highest score of the potential, however, 

practically, this is subject to stochastic disturbance and imperfect information. To generate the 

patterns that are closer to reality, a stochastic disturbance is introduced as (1+ln()) (Li and Yeh, 

2001).  is a random variable within the range [01].  is a parameter controlling the size or 

strength of the stochastic perturbation. Like other CA applications (White et al., 1997; Wu and 

Webster, 1998; Ward et al., 2000), Pj'(t) in equation 5 represents the probability of land transition 

at cell j at time t, which is the major driving force of local growth. 

Whether a cell is to be transited or not from time t-1 to t depends on the probability Pj'(t) at each 

iteration. Selection will start from the maximum of {Pj'(t)} until it reaches the required number of 

cells, i.e.L(t) for the iteration between time t-1 and t. The demand of land consumption L(t) in 

equation 6 will be calculated from the stage of temporal control as L(t) is the accumulative 

amount of land development until time t.   

 

2.3.4 Temporal control model 

 

 Pj'(t) = (1+ln(§) a) Pj(t)                                                               

ΔL(t)=L(t)-L(t-1),   L(0)=0                                                       

(5) 

(6) 
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Previous studies suggest that urban development process L(t) in equations 1 and 6 follows a 

logistic curve over time (Herbert and Thomas, 1997). For example,  Sui and Hui (2001) simulated 

the expansion trend of the desakota regions between 1990 and 2010 by using a logistic equation, 

where the total number of converted urban pixels was a logistic function of the year. Here, the 

same principle is applied for the temporal control of each project. A standard logistic curve is 

illustrated in equation 7. 

 

Where a, b and c are unknown parameter, t (1~n) the time step and L(t) the amount of land 

development till time t. If it is assumed that L(0)=L0=a/(1+b)=1,  L(n)=Ln=a/(1+be-cn)=Ld, Here, 

n, Ld are the same definition as in equation 1, the equation 7 can be revised as in equations 8 and 

9: 

 

X in equation 8 and 9 implies the long-term limit of L(t) behaviour. The shape of the logistic 

curve usually represents the speed of project development over time, which is controlled by the 

parameters c, n and Ld. Here, in simplicity, temporal control is classified as three types: slow 

growth, normal growth and quick growth, which indicates three distinguishing scenarios. If it is 

assumed that L(t)=Ld / when t = n/2, c = 2log( (Ld -)/(-1))/n. Further, L(t) can be the function 

of both time t and parameter  when n and Ld are set.. Consequently, the value of  will 

determine the shape of logistic curve. As such, we can define slow, normal and quick growth in 
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equation 10 according to . Of course, we can define more classes such as 'very slow', 'very 

quick' by assigning different  value.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 is an example of three modes, where Ld=500, n=30,  is equal to 4/3, 2 and 4 

respectively for the three patterns. However, iteration time t (1~n) in simulation is different from 

the real time: year y (1m) such as 1993 (y=0) and 2000 (y=7). If let Li(y) denote the total growth 

of project i until year y,  a transition from Li(t) to Li(y) should be established as equation 11. 

 

 

 

 

"Quick growth":       = 4/3 

"Normal growth":    = 2                                                          (10) 

"Slow growth":        = 4                                                                    

Li(y)=h(Li(t) )   y=1, 2,...m;    t=1, 2, ...,n;  n>m                                      (11) 

Figure 2. An illustration of temporal development patterns 
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In previous research on CA applications, a linear function is applied, i.e. t=*y. Here  is 

assumed to be a constant, which means equal growth rate. For example, when y=5 years, t=20 

iterations, in the case of linear relationship, it can be defined as t = 4*y. So y(1)=∑L(t), 0<t<5. In 

reality, function h could be a non-linear function of iteration number t, which can be tested 

experimentally through qualitative understanding and visual exploration of the difference 

between actual and simulated processes.  

 

2.4.  A conceptual model for local temporal dynamics 

 

The multi-stage method can understand the global temporal dynamics of the whole study area 

rather than local dynamics of each project. The latter requires a different perspective focusing on 

more detailed spatial and temporal processes. 

Heterogeneity in a temporal context means that the parameters describing any geographical 

phenomena vary from phase to phase in the whole period studied. For example, Wu and Yeh 

(1997) applied logistic regression methods for modelling land development patterns in two 

periods (1979-1987 and 1987-1992) based on parcel data extracted from aerial photographs. They 

found that the major determinants of land development have changed from distance from the city 

centre to closeness to the city centre; from proximity to inter-city highways to proximity to city 

streets; and are more related than less related to the physical condition of the sites. This suggests 

that various factors are changing their roles in the process of land development. Likewise, if we 

shrink the long period (1979-1992) to a shorter period such as 1993-2000 and zoom out the 

spatial extent from whole city to a smaller part such as a large-scale project, the same principle 

should be working as well. Therefore, temporal heterogeneity results in complex spatial and 

temporal process, which need to be identified in modelling. As similar patterns can result from 

numerous different processes, the understanding of process is more important than that of pattern. 

Pattern is only a phenomena but process is the essence.  
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Figure 3 is only an example of spatial pattern and processes involved in urban growth. T1,T2,T3 

indicate time series of land development. The grey level means the temporal order of land 

development. The same spatial pattern results from three (in reality, more) distinct spatial-

temporal processes, which reflect the spatial and temporal interactions between road-influenced 

and centre-based local growth patterns. The arrows indicate the trend of temporal development, 

from which we can define them as three different processes (convergence, sequence and 

divergence).  

The basic principle behind the phenomena is that various physical factors like road and centre 

take temporally varied roles in the course of local growth. In the first one (convergence), the road 

is more important than the centre at time T1, but less important at T2. This means that local 

growth occurs along the road first and then moves to the centre. The third one has an opposite 

effect.  If we use L to denote the total amount of local growth, Ll for the lower part along road, Lu 

for the upper part along road, Lc for the centre part and Lt for the continuous development amount 

till time t, L = Ll +Lu + Lc .  Wr and Wc represent the weight value of spatial factor ROAD and 

CENTER respectively. The rules detected are listed in table 1. The three cases imply that 

temporal dynamics could be represented and understood through the dynamic weighting concept. 

Dynamic weighting means that factor weight is not a constant but a function of temporal 

development amount (equation 12). 

 

Figure 3. Different spatial-temporal process 
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Table 1. Dynamics in local spatial-temporal processes 

Process T1 T2 T3 

Convergence 
Wr 1, Wc 0  

(if Lt  < Ll + Lu ) 

Wr 0, Wc 1  

(if Lt  > Ll + Lu) 
- 

Sequence 
Wr 1, Wc 0  

(if Lt < Ll) 

Wr 0, Wc 1  

(if Lt > Ll  & Lt < Ll + Lc) 

Wr 1, Wc 0  

(if Lt > Ll + Lc & Lt < L) 

Divergence Wr 0, Wc 1  

(if Lt < Lc) 

Wr 1, Wc 0  

(if Lt > Lc and Lt < L) 
- 

Note: symbol "" means "approaching to or close to" 

 

 

To some extent, this equation suggests a dynamic feedback between wi(t) and Lt, representing the 

complex interaction between pattern and process. Lt indicates the temporal pattern in amount, and 

the process is described by the changing roles of multiple factors wi(t); actually, Lt is also 

impacted by wi(t).  In principle, the functions fi(Lt) should be continuous, which can be a step 

linear or more complicated non-linear function as wi(t) is not negatively or positively linear to Lt 

in most cases. For example, in the case of the sequence (table 1), Wr  temporally experiences a  

decrease from 1 to 0 and then an increase from 0 to 1 from T1 to T3. Apparently, Wr is a non-

linear function of Lt. When fi(Lt) is constant in relation to t, wi  is becoming universe temporally, 

as applied in most CA applications. However, this treatment is effective for understanding global 

dynamics in equation 3 but not local dynamics at project level illustrated in figure 3. The design 

of function fi(Lt) is a critical point.  Empirical study can be carried out based on a theoretical 

understanding of the interaction. Higher temporal resolution such as a series of actual value Lt can 

be used to calibrate the temporal rules wi(t). In simplicity, the functions fi can be discretised. This 

implies that the whole period needs to be divided into a few phases t1 ~ tn, in which varied weight 

values are defined with the assistance of local knowledge or by calibration from data.  

 

 

 

Wi (t) = fi (Lt)             i=1,2 (12) 
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3 Implementation 

Towards understanding the dynamic process of urban growth in a rapidly growing metropolitan 

region, a case study of Wuhan city, P.R.China is used for testing the methodology presented 

above. 

 

3.1 Wuhan context 

As the capital of Hubei Province, Wuhan is the largest megacity in central China and in the 

middle reaches of the Yangtze River (Figure 4). In 1999, it had an urban population of around 4 

million, 4 times more than that of 1949. During the last 5 decades, Wuhan underwent rapid urban 

growth from 3,000 ha of built-up area in 1949 to 27,515 ha in 2000. As a result, Wuhan is a good 

case for understanding the dynamic processes of urban growth in a fast developing country. In 

this paper, the urban growth of Wuhan in the period 1993-2000 will be modelled based on the 

methodology discussed in section 2. 

 

 

 

 

 

 

 

 

Operational CA models need access to real databases for better simulation performance(Li and 

Yeh, 2001).The imagery employed here includes SPOT PAN/XS of 2000, which covers the 

whole study area. The images are utilised as the primary data source for creating a land cover 

change map from 1993 to 2000. The topographic map (scale 1:10,000) of 1993 was used for 

imagery geo-coding registration and also for producing the land cover map of 1993. The 

[2] Location of Wuhan in Hubei Province [1] Location of Hubei in China 

Figure 4.  Location of Wuhan city 

Yangtze River 

Wuhan 

Han River 
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secondary sources include planning scheme maps, traffic/tourism maps, street boundary maps, 

and population census and statistical yearbook. They are used to create the required spatial factors 

(e.g. proximity and density variables) for CA modelling based on simple GIS operations such as 

overlay, buffering and neighbourhood statistics. The image processing for land cover mapping is 

implemented through ERDAS IMAGINE 8.4 package and on-screen digitising and spatial data 

analysis is carried out in ArcView environment (Cheng and Masser, 2003).  

 

Table 2. Land cover transition from 1993 to 2000 (unit of area: ha)  

Major types Waters Town/Villages Agricultural land Others Total 

Area in 1993 30,258 8,669 51,585 - - 

Transited Area   1,131 1,530   3,527 72 6,260 

Transition percent 18.1% 24.4% 56.3% 1.2% 100% 

Annual Transition rate 0.5% 2.3% 0.9% - - 

 

Land cover transition from 1993 to 2000 is calculated based on a 10*10 m2 cell size and listed in 

table2. This table shows that major land use/cover changes come from waters, town/villages and 

agricultural land, which were physically or functionally transferred into the urban built-up area. 

Town/villages with the highest annual transition rate were only functionally transferred to urban 

administration due to the rapid expansion of Wuhan municipality. Agricultural land is the 

dominant one with the highest transition percentage. Here, the water body includes ponds and 

lakes. A higher percentage area is taken for transition from ponds than from lakes (see map of 

actual pattern in figure 6). The item 'Others' includes green areas, sands, and mis-classification 

from images processing etc, which is omitted for modelling. 

 

3.2  Project planning and site selection 

With assistance from historical documents, local planners and fieldwork, four large-scale 

projects, which were planned before or around 1993 were identified (WBUPLA, 1995). All 
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small-scale projects were merged into one class, which results in five projects (Figure 6 and table 

3) as follows:  

1) Zuankou:  car manufacturing plant (planned from 1988); 

2) Wujiashan: Taiwanese investment zone (planned from 1992); 

3) Guanshan: hi-tech development zone (planned from 1988); 

4) Changqing: large-scale residential zone (planned from 1994); 

5) The rest: small-scale development (commercial/institutional/residential). 

 

In a GIS environment (ArcView 3.2a), we create the required spatial layers (figure 5) including 

land cover of 1993, distance to road networks and city centres/sub-centres, master plan (1996-

2020), and population density. These layers are exported into a computational program for testing 

different site selection rules for each project according to equation 2. As a result of a sensitivity 

analysis conducted in a visual programming environment, the tested constraints at three levels for 

each project are listed in table 3. The total amount of development Ld (from the actual urban 

growth in figure 6) and the temporal control mode (from document and interviews) are also 

displayed in this table. After 1992, Wuhan entered a new wave of development characterised by 

more actors, diverse functions and new industry structure (Cheng and Masser, 2003). From this 

table, we are able to explain the spatial behaviour of the actors involved in each project. For 

instance, the dominant actor in Zuankou, Wujiashan and Guanshan projects is Wuhan 

municipality, which obtained financial resources from the central government, foreign investors 

and local enterprises. Being the owner of the land, the actor did not need to consider the costs of 

land utilisation. Hence, for large-scale projects, the first rule is the availability of a certain amount 

of developable land. Being manufacturing and tertiary industry oriented, the second rule is 

accessibility to major road networks. Strictly speaking, the second one is not only true for large-

scale but also for small-scale land development such as commercial use.  
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Table 3. Site selection rules of five projects  

Project Zuankou (1) Wujiashan (2) Guanshan (3) Changqing (4) 

 

The Rest(5) 

 

Cells -  Ld  1,390 314 514 160 3,710 

Functions Manufacturing Economic zone High-tech zone Residential Mixture 

 

Global 

constraints 

 

< 300 m to 

 major road 

 

< 300 m to major 

road 

 

< 300 m to major 

road; 

 

<4.2 km to the 

university street 

 

< 300 m to major 

road; 

< 3.5 km to  

sub-centres; 

> 560 (person/ha) 

in net population 

density. 

 

 

Close to city 

centres/sub 

centres; 

 

Close to road 

network. 

 

Regional 

constraint 

 

Density of 

developable land 

 

> 62% 

in a 4.5 x 4.5 km2 

square; 

& 

>  90% in a 2 x 2 

km2 square 

 

 

Density of 

developable land 

 

>69% in a 1 x 1 

km2 square; 

 

Density of 

developed area 

 

> 18.7% in a 2 x 2 

km2 square. 

 

 

Density of 

developable land 

 

> 68% 

in a 3 x 3 km2    

square 

 

 

Density of 

developable land  

 

> 60% in a 1 x 1 

km2 square; 

 

Density of 

developed area  

 

>10% in a 2 x 2 

km2 square 

 

Higher 

density of 

developed 

areas 

 

Local 

constraint 

 

Agricultural, 

village 

 

Agricultural, 

village 

 

Agricultural, 

village, hill 

 

Agricultural, pond 

 

Agricultural, 

village, pond, 

lake 

 

Temporal 

control 

 

Quick 

 

 

Slow 

 

Quick 

 

Quick 

 

Normal 

 

Moreover, the accessibility to developed areas is very crucial for the economic development zone 

(Wujiashan) and the high-tech zone (Guanshan). Access to research resources including nearly 

20 universities is a prerequisite to locating a high-tech zone (Guanshan).  In contrast, the major 

actors in Changqing housing project are local real estate companies and relevant work units. Land 

value is becoming an important criteria, which weakens the role of accessibility to the city 

centres. Low quality land cover such as ponds is much cheaper than agricultural land. Higher 

population density can guarantee better market demand as an influential factor for residential 

development. For small-scale projects especially inside urban districts, more actors are involved 

in the decision-making including local residents, investors, work units, planners, and the lower 
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levels of local government. This results in a more stochastic process of site selection as a result of 

which the constraints become more uncertain and fuzzy. However, generally speaking, 

accessibility to the city centre/sub-centre and road networks is the key factor. 

 

3.3 Local growth 

The cell size in this research is 100 x 100 m2, which results in a 640 x 410 grid. A smaller cell 

size (such as 10 x 10 m2) would cause an overload in terms of model computation. The state of 

cells is binary (1-change, 0-nonchange). The initial layer is the 1993 land cover. This includes 

Developed, Agricultural (A), Village/town (V), Pond (P), Lake (L), and Protected (Green, Park, 

and Sands). In figure 5a, P and L are merged into water bodies, and 'others' include protected. As 

described in 3.1, only 4 types A, V, P and L underwent much change. As explored by the pattern 

model from another part of this research (Cheng and Masser, 2003), the major spatial 

determinants of urban growth in 1993-2000 included major road networks, minor road networks, 

centres/sub-centres and master planning, as displayed in figure 5. They are selected here as non-

constrictive factors for evaluating the potential for land conversion. 

It should be noted that the classification of each layer is of great importance and modelling is 

sensitive to the classification particularly when the study area is large and the period is long. For 

instance, the construction of roads may occur in different phases of the period to be modelled. 

Their construction time should be taken into account. In this research, a major road connection 

(linking with the third bridge over the Yangtze River) was completed in early 2000. This is 

clearly visible in the 2000 SPOT images. However, this major road is not be included in the 

major road network layer because it had no practical impacts on urban development in the period 

1993-2000. This judgement is also confirmed by very sparse and limited land cover change 

surrounding the road. Other layers are spatially defined by following similar rules.  
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Wuhan city can be treated as a flat landscape as its elevation ranges between 22~27 m above sea 

level in addition to few hills. Hence, slope is not an influential factor. Physical constraints 

principally comprise water bodies (see figure 5a). Theoretically, water bodies should be 

completely excluded. However, in this case study, 18% of the land cover change comes from 

water bodies, which include ponds and lakes (see table 2). As this comes mostly from either 

small-scale ponds or the fringe of large lakes, a general procedure can be designed for defining a 

specific layer (Exclusion Layer):      

 Extracting a water body from the land cover layer of 1993; 

 Neighbourhood statistics (based on a circular neighbourhood with a 200-m radius); 

 Selecting sum > 4 (neighbouring 4-ha area are also water) 

 

The layer will be utilised as physical constraint from the water body, defining excluded zones 

from transition.  

In the five CA models corresponding to five projects, a circular neighbourhood is chosen because 

it does not have significant directional distortion. Its size varies with different projects, ranging 

from 3 to 9 cells. The selection of neighbourhood size for each project relies on empirical study 

and sensitivity analysis (see a later section). The heterogeneity of spatial processes is indicated by 

varied combination of influential factors, weight values and parameters, which imply 

distinguishing local spatial behaviour. 

Given that local growth is impacted by the master plan to be implemented in this period, we must 

incorporate the master plan for 1996-2020 as an influential factor (this scheme was initiated in 

1990 and approved by the Central Government in 1996). Due to the rapid urban expansion in the 

fringe, some projects such as Changqing, Wujiashan had not even been planned until their 

construction. These will be excluded from the master planning analysis. Only the projects 

covered by master planning are considered i.e. Guanshan, Zuankou and The Rest.  Each cell is 

assigned with a value Pi, representing the influential degree of the planned land use i on land 
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cover transition in a project. If let Mi denotes the total area of land use i in a specific project, Ci 

denotes the transited part of Mi, Pi = Ci / Mi. The Pi value of major land uses is listed in table 4. 

This code follows the National Urban Land-use Classification Standard (NULCS). In figure 5d, 

'Residential' includes R1 - R3, 'Green' G1~G3, ‘Street’ S1, the rest (C1, C3, C4, C5) are all merged 

into 'Others'. Pi  needs to be standardised according to Pi/max(Pi) before it can be incorporated 

into the evaluation formula (equation 3). Generally, table 4 reveals that the master plan was more 

successful in guiding large-scale projects in the fringe than small-scale ones in urban districts. 

Table 4.  Influential degree of master planning on land cover transition 

Code Classification Zuankou 

  Pi                                 Mi   

Guanshan 

   Pi                            Mi  
The Rest 

  Pi                                      Mi  

R1 Low-rise residential 0.237 265 0.23 57 0.087 1082 

R3 Poorer environment - - - - 0.1333 149 

M Industry 0.318 508 0.24 172 0.049 419 

G1 Public green 0.27 137 - - 0.0916 416 

G2 Protected land 0.147 58 0.33 112 0.041 222 

G3 Ecological agriculture - - - - 0.0216 82 

C1 Administration/Offices 0.26 52 - - 0.0787 17 

C3 Cultural/Recreational 0.528 16 - - - - 

C4 Sports facility - - 0.3 44 0.035 89 

C5 Hospital/Health 0.742 33 - - - - 

S1 Street - - - - 0.069 354 

 "-": Mi   <15 (omitted)  

 

The calibration of parameters has proven to be a difficult task in urban CA modelling (Clarke and 

Gaydos, 1998; Li and Yeh, 2001) particularly when there are many factors and parameters to be 

considered. The difficulty lies in the fact that most urban CA modelling takes the whole 

municipality into calibration procedure, which results in intensive computation overload. In this 

research,  project-based CA modelling has largely reduced the computational time of calibration 

as the spatial extent of project is much smaller than the whole study area as shown in table5 and 

figure 6.  

The factors and parameters for model calibration includes six spatial factors,  neighbourhood size 

and stochastic disturbance . Other parameters (e.g. temporal pattern mode λ, iteration time t) are 

utilised for sensitivity analysis in section 4.1. Six spatial factors are   "distance to minor road" 
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(OR), "distance to major road"(MR), "distance to centre/sub-centres"(CN), "density of 

neighbouring developed areas"(DD), "density of neighbouring new development" (DN), and 

"master planning". Their gradient of density  (in equation 4) are taken from the global pattern 

model of logistic regression carried out in the another part of this research (Cheng and Masser, 

2003). Automatic search for the best-fit parameters is carried out by using a hierarchical means 

i.e. to reduce step size for five loops corresponding to six factors at two stages. For example, the 

step size of loops in calculating the weight values is set as 0.05 first, i.e. from 0.05 to 1 step 0.05. 

When the parameter scope of the ideal accuracy is determined, e.g. from 0.2 to 0.25, we can set a 

second step size 0.005 for finer calibration, i.e. from 0.2 to 0.25 step 0.005.  

The validation accuracy depends on the  approach used to compare simulated and actual patterns. 

This is traditionally measured by a coincidence matrix generated by a cell-cell comparison of two 

pattern maps. Some researchers argue that CA simulations should not be assessed just on the 

goodness of fit (a cell by cell basis) but also on their feasibility and plausibility as urban systems 

are rather complicated and their exact evolution is unpredictable (Yeh and Li, 2001). Some global 

measures that have been used for testing the validity of CA simulation, include the fractal and 

Moran I index (Wu, 1998), fractal analysis (Yeh and Li, 2001), and landscape metric (Soares-

Filho et al., 2002). Wu (2002) emphasises the need to validate the model through both structural  

and cross-tabulation measures. Structural measures can only compare pattern (outcome of 

process) not the spatial location (or process). We consider that spatially location match is also of 

great importance for supporting planning decision making despite the difficulties imposed by CA  

modelling. Another reason lies in the fact that local processes at the project level require more 

accurate cell-based measure, as their morphology is less definite compared with those at the 

global level. 

Clarke and Gaydos (1998) outline four ways to statistically test the degree of historical fit (three 

r-squared fits and one modified Lee-Sallee shape index). For the Lee-Sallee shape index 
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(combining the actual and the simulated distributions as binary urban/non-urban, and computing 

the ratio of the intersection over the union), they reported that the practical accuracy is only 0.3.  

Table 5. CA Simulation of five projects 

Projects Zuankou-1 Zuankou-2 Wujiashan Guanshan Changqing Rest 

Land demand Ld   1390 1390 314 514 160 3710 

Accuracy CC 54% 54% 51.6% 53.2% 85% 55% 

Lee-Sallee Index 0.37 0.37 0.35 0.36 0.74 0.38 

Neighbourhood Size 6 6 5 8 3 7  

  4/3 4/3 4 4/3 4/3 2 

Dynamic weighting - <15% 15-55%      >55% - - - - 

Major road (MR) 0.2 -                 0.5         0.05 0.325 - 0.1 0.3 

Minor road (OR) 0.3 -                 0.1         0.15 0.1 0.35 0.55 0.15 

Centres (CE) - 0.7               -           0.5 - - - 0.2 

Neighbourhood-new  0.3 0.3              0.1        0.15 0.3 0.35 0.35 0.1 

Neighbourhood-old - -                     -           - 0.275 0.25 - 0.2 

Master Planning 0.2 -                  0.3       0.15 - 0.05 - 0.05 

Total  100% 100%         100%      100% 100% 100% 100% 100% 

Note: =1%, n=50, Gradient for MR, OR and CN: 0.000765, 0.0012 and 0.000272 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Spatial factors and constraints for site selection and CA modelling, 

a) land cover of 1993; b) population density (persons/ha); c) road networks 

and centres/sub-centres; d) master plan 1996-2020. 

(a) (b) 

(c) (d) 
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In this paper, we use consistency coefficients (CC) (the percentage of the matched over the 

actual) and the Lee-Sallee index (LI) for the evaluation of goodness of fit. As the total number of 

pixels is set the same for simulation as the actual pattern, i.e. Ld = Ln. as such LI=CC/(2-CC). For 

example when CC=0.57, LI=0.4.  Following this formula, the Lee-Sallee index for 5 projects are 

computed and listed in table 5. The overall accuracy based on the weighted combination (Ld) of 5 

projects,  is 0.554 in CC and 0.383 in LI, greater than Clarke's. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Simulated (1994-2000 in order) and actual patterns (last map) 
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3.4 Temporal control 

 

With local knowledge, we are able to identify the patterns of temporal development of each 

project (see table 3). In 1993, Zuankou was still completely rural. By 1995 it was nearly half 

constructed. There was not much change from 1997 and 2000. Therefore, its temporal growth 

pattern is defined as "Quick". The small-scale projects (the Rest are a mixture of all three 

patterns. Some may be quick and others slow. On average, it is reasonable to classify them as 

"Normal". The number of iterations is defined as n = 50 because the greater the number the finer 

discriminative capacity of the models.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7 exhibits the trajectories of temporal development of the five projects respectively, 

according to the results of the validated CA simulation. As described in equation 12, the output of 

CA simulation is Li(t) (1~n), which is different from yearly actual amount Li(y) (1~m) for each 

project i.  We need a transition from Li(t) to Li(y). The transition function h in equation 12 should 

be based on an understanding of the actual temporal development process, which is determined 

by its socio-economic development. For the sake of simplicity, we use an equal time interval, i.e. 

Figure 7. Temporal control patterns of five projects 
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a linear function:  y = t/7.  As t ranges from 1 to 50 (n=50) and y from 1 to 7 (m=7),  Li(y)= 

Li(t), t from 7*(y-1)+1 to 7*y. A series of new created layers of the whole study area 

corresponding to the 7-year urban growth (from 1993 to 2000, figure 6) have been imported into 

animation software (Animagic32) for dynamic visualisation. This animation is helpful for 

exploring and comparing the temporal dynamics of spatial processes. 

Table 5 shows the spatial heterogeneity of the causal factors, which vary spatially in terms of 

their weight values. The neighbourhood effect is represented by neighbourhood size, and the 

weight values of new and old developed areas. This table suggests that there are some similarities 

and some dissimilarity between the five projects. The weight values of the major roads, minor 

roads, city centre/sub-centres and master planning also show some differences. Major roads play 

a greater role in "The Rest" and Wujiashan, and less important roles in Changqing, and 

Guanshan. Conversely, minor roads play a greater role in the latter projects than the former ones. 

By linking the site selection rules shown in table 3, it can be seen that the road networks system 

actually takes varying roles during different phases of urban growth. The major road network is 

the key at the stage of site selection and remains important for some areas at the stage of local 

growth. However, the minor road network is only active at the stage of local growth. This is due 

to the fact that minor road networks are created after the stage of site selection together with the 

new growth. Relatively, city centres/sub-centres are influential only for "The Rest" as the others 

are located in the urban fringe. Master planning is less influential than others. The spatial 

heterogeneity described above suggests that the casual-effects of urban growth vary from place to 

place.  Local process modelling can offer deeper insights into urban growth processes. 

 

3.5.Local temporal dynamics 

Local temporal dynamics are focused on each project and are indicated by the following 

examples: 
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 Compared with the major road network, minor roads, especially in new zones which are also 

new development units, may occur temporally at different phases of the period studied, i.e. 

between T0 and Tn, but not immediately from T0; 

 The spatial impacts of various factors such as roads and centres are not simultaneous in 

temporally affecting local growth;  

 Neighbourhood effects may suffer from temporal variation. For example, it may be stronger 

at T0 than at Tn, or vice versa. 

 

 

 

 

 

 

 

 

 

These examples qualitatively show the complex pattern and process interaction as explained in 

section 2.4. Two models of Zuankou in table 5 have similar model accuracy and similar patterns. 

However, their spatial-temporal processes are quite different as quantitatively shown in figure 8. 

Model 1 exhibits a more random process. Model 2 shows a more self-organised process. Model 2 

is based on the assumption that new development in Zuankou first occurred in the centre, then 

along the major road and finally spread from the centre. The assumption corresponds to a 

temporal dynamics that is spatially controlled by three sets of weight values (table 5). To calibrate 

this process-oriented CA model, the manual tests based on the modeller's understanding of local 

growth processes and the visual exploration of model outputs (temporal patterns) are very 

Figure 8.  Local temporal dynamics (Zuankou-1 and -2 in table 5)  
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important for reducing  parameter ranges and making rough estimates of dynamic weight values. 

Limited automatic search can be followed for the best ideal combination of parameters.  

To some extent, the dynamic weighting implies the temporal lag of the spatial influences of 

locational factors on urban growth. This example suggests that local temporal dynamics can 

enable us to better understand the organised local growth. If we explore the changes in weight 

values, it can be found that the major changes are indicated in major roads and centres. As 

explained in equation 13, the weight values should be non-linear functions of temporal land 

development demand. Table 5 also shows the functions are highly complex in reality. They are 

frequently phased. Model 2 is actually based on local knowledge. Other projects can be calibrated 

temporally by the same procedures as  in the Zuankou project. 

 

4.  Discussion and Conclusions 

4.1  Model calibration and validation 

Li and Yeh (2001) report a calibration procedure of CA modelling by using artificial neural 

network. In their method, a neural network is utilised to obtain the optimal parameter values 

automatically based on training empirical data and then the parameter values calibrated are used 

to carry out CA simulation for new data. In CA models of this kind, the transition rules 

represented by the neural network structure are not transparent to users. Consequently, this 

method can be used for prediction by using the same set of rules, but it is not ideal for interpreting 

the logic of land conversion or spatial-temporal processes as it is a black box (Wu, 2002). 

It has been found in this research that visual tests offer a useful and quick way of calibrating and 

verifying a CA model (Clarke et al., 1997; Ward et al., 2000) particularly with respect to 

sensitivity analysis. In this project-based CA modelling, calibration has proven not to be a severe 

problem in computation time. However, the optimal combination of parameters from automatic 

search may not give the best results as socio-economic systems essentially produce no best 

solution. Consequently, the calibrated results need further confirmation according to the 
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interpretation and plausibility of their spatial and temporal processes. In table 6, the Wujiashan 

project is taken as an example to illustrate this issue. When neighbourhood size is set as 5, the 

optimal parameters with accuracy 52.8% are calculated from automatic search (step of weight 

value is 0.005), together with the other combination of parameters. However, the spatial 

processes produced by the weight values (0.2, 0.1, 0.45, 0.25) are not the same as the real 

temporal pattern based on visual comparison. Conversely, another combination (0.325, 0.1, 

0.3,0.275) can create more satisfactory temporal patterns although its model accuracy (51.6% in 

CC) is lower. Consequently, visual tests are still a necessary means for process rather than pattern 

modelling.  

 

Table 6. Calibration of CA modelling and sensitivity analysis (Wujiashan project) 

Accuracy CC 52.8% 51.6% 51.3% 50.8% 29.5% 46% 49.7% 50% 50.8%  

Neighbourhood size 5 5 5 5 5 8 6 4 5 (=4.5) 

Major road (MR) 0.2 0.325 0.325 0.225 0.375 0.1 0.325 0.325 0.325 

Minor road (OR) 0.1 0.1 0.05 0.25 0.3 0.3 0.1 0.1 0.1 

Neighbourhood (new) 0.45 0.3 0.35 0.15 0.3 0.4 0.3 0.3 0.3 

Neighbourhood (old) 0.25 0.275 0.275 0.375 0.025 0.2 0.275 0.275 0.275 

Total  100% 100% 100% 100% 100% 100% 100% 100% 100% 

Note: =1%, n=50, =4, Gradient for MR, OR and CN: 0.000765, 0.0012 and 0.000272 

 

Another part of calibration is sensitivity analysis as the results of CA simulation are very 

sensitive to the parameter values (e.g. neighbourhood size, weight values,  and n). This is the 

issue of uncertainty existing in CA simulation that has not been given enough attention in most 

applications. For the Wujiashan project, before accepting  (0.325, 0.1, 0.3,0.275), we need to test 

its stability by slightly or greatly adjusting the weight values and the other parameters such as 

neighbourhood size as listed in table 6. The changes (slight or great) in validation accuracy that is 

identical to those in parameters assure the reliability of this set.  
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4.2  Visualisation of processes 

To implement site selection and CA modelling, a loose coupling strategy is frequently adopted 

for various applications (Clarke and Gaydos, 1998; Bell et al., 2000). Loose coupling means that 

a data transfer procedure is frequently implemented between a CA model, GIS, and an animation 

module. This loose-coupling strategy sacrifices the friendly interface but improves the 

computation efficiency of CA simulation. Here the site selection rules  and the CA model is 

programmed in object-oriented programming language. Spatial data analysis and visual 

exploration tasks are implemented under a GIS environment - ArcView platform. Each layer 

produced is exported as an ASCII raster file. A sub procedure is programmed to read and write 

the ASCII raster files between CA and ArcView. The major parameters include the weight 

values, the temporal pattern control , the neighbourhood size and the stochastic perturbation . 

The validation results are automatically stored into a text file and an ASCII raster file.  A 

validated urban growth layer (1993-2000) from the simulation is separated into a series of maps, 

each corresponding to one year. The layers created are exported as a JPG or any other type of 

image file. These are inserted as an individual frame into the animation file for visual check of 

spatial process. However, a major deficiency of this strategy is that it is not a very friendly 

environment for the immediate visualisation of spatial-temporal processes although it is effective 

for model calibration. In the future, CA modelling tightly coupled with GIS and animation should 

be further studied to enhance its visualisation function of spatial-temporal processes. 

 

4.3  Importance of local knowledge 

We cannot ignore the fact that any advanced modelling technique including CA must be based on 

a proper understanding and abstraction of the systems studied. The better the understanding the 

more accurate it is likely to be. Planning will never be a hard science, for it is built on humanistic 

assumptions, values and goals (Shmueli, 1998).Our understanding of the new urban reality will 

be ultimately based upon a combination of computers and human judgement (Sui, 1998). 
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CA is only a simulation tool for testing a decision-maker's understanding. Limited by existing 

GIS theory and methods, the identification of various spatial and temporal heterogeneity cannot 

be completed without the assistance of local knowledge. This implies that local knowledge is an 

important ancillary data source for CA modelling especially under the framework presented in 

this paper.  During the process of the modelling, project planning and temporal control needs 

more input from local experts. For dynamic weighting, due to the limited temporal resolution, 

local knowledge is an essential source of qualitative information. It has been stressed in this 

research that a soft-system methodology, stressing the roles of decision-makers, and feedback 

both between modellers and users and between stages of decision-making process is helpful 

especially when complete information resources are not guaranteed. 

 

4.4.Process modelling 

To some extent, the accuracy of a simulation model depends on the complexity and stochasticity 

of the real city and also on the availability of more detailed information. Although the overall 

accuracy of five CA models is only 55% based on a cell by cell basis, the methodology proposed 

in this paper illustrates the potential for understanding spatial processes and their temporal 

dynamics at the two levels based on the methodology. The spatial clustering of land development 

projects indicates a self-organising process. The timing schedule of various projects exhibits 

global temporal dynamics. Dynamic weighting is an important concept for simulating process 

rather than pattern. Spatial classification based on the project concept is subjective and 

transparent to urban planners. The spatial-temporal processes explored by project-based 

modelling can easily be interpreted with reference to socio-economic and decision-making 

processes. To be a true process model, CA modelling as suggested in this research should 

incorporate dynamic weighting methods although there is still much difficulty in systematically 

defining these functions in practice. 
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From local spatial modelling point of view, a possible direction lies in applying a moving window 

or kernel in defining a project for each cell, so that generalised local process modelling can be 

repeatedly applied for each cell. This is a similar principle to that applied in geographically 

weighted regression (GWR) modelling. This idea can result in universally localised process 

modelling. The parameters for understanding local processes vary with the cell. Users can 

redefine interesting projects for further interpretation by focusing on some hot-spots.   

From the perspective of spatial data analysis, the methodology can be utilised to discover the 

hidden processes from required integrated spatial database regarding temporal urban growth. This 

has been one of the major concerns in the field of spatial data mining or knowledge discovery. 

When socio-economic data at detailed levels become available, project-based CA modelling can 

be further linked with micro-scale multi-agent and economic modelling. Such integration can 

explore the spatial and economic behaviour of various actors at the micro scale.  

The major purpose of CA simulation is to generate alternative scenarios for decision support in a 

smart growth management.  The methodology developed here can be extended in this direction. 

In this new case, stages 1 and 4 need to incorporate top-down socio-economic models for 

predicting the demand for new land development in the future i.e. Ld  in equation 1. Stage 2 and 3 

are subject to some modification in quantification. The construction of plan scenarios is based on 

soft systems thinking, which stresses the role of users' subjectivity. In this way local planners' 

intentions can be transformed into spatially and temporally explicit weight values and certain 

parameters e.g.(Wu, 1998). With a user friendly visualisation environment, the framework tested 

in this research can facilitate decision- making of urban spatial development. 

 

Acknowledgement 

This research was financially supported by the DSO-SUS project between CHINA and the 

Netherlands. The authors gratefully thank all persons who assisted in collecting data. Thanks are 



 40 

also extended to three anonymous reviewers for their constructive and critical comments which 

helped create the current version. 

 

References 

Anas, A., 1982  Residential Location Markets and Urban Transportation: Economic Theory, 

Econometrics and Policy Analysis with Discrete Choice Models (Academic Press, New York) 

Anselin, L., 1995, "Local indicators of spatial association - LISA" Geographical Analysis 27(2) 

93-115 

Batty, M., 1998, "Urban evolution on the desktop: simulation with the use of extended CA" 

Environment and Planning A 30(11) 1943-1967 

Batty, M.,Kim, K. S., 1992, "Form follows function: reformulating urban population density 

functions" Urban Studies 29 1043-1070 

Batty, M.,Torrens, P. M., 2001, "Modeling complexity: the  limits to prediction" CyberGeo 

(online journal) 201  

Batty, M., Xie, Y.,Sun, Z., 1999, "Modelling urban dynamics through GIS-based cellular 

automata" Computers, Environment and Urban Systems 23 205-233 

Bell, M., Dean, C.,Blake, M., 2000, "Forecasting the pattern of urban growth with PUP: a web-

based model interfaced with GIS and 3D animation" Computers, Environment and Urban 

Systems 24 559-581 

Benati, S., 1997, "A cellular automata for the simulation of competitive location" Environment 

and Planning B: Planning and Design 24 205-218 

Besussi, E., Cecchini, A.,Rinaldi, E., 1998, "The diffused city of the Italian north-east: 

identification of urban dynamics using CA urban models" Computers, Environment and Urban 

Systems 22(5) 497-523 

Cheng, J.,Masser, I., 2003, "Urban growth pattern modelling, a case study of Wuhan, P.R.China" 

Landscape and Urban Planning 62(4) 199-217 



 41 

Clarke, K. C.,Gaydos, L. J., 1998, "Louse-coupling a CA model and GIS: long-term urban growth 

prediction for San Franciso and Wanshington/Baltimore" International Journal of Geographical 

Information Science 12(7) 699-714 

Clarke, K. C., Hoppen, S.,Gaydos, L., 1997, "A self-modifying cellular automaton of historical 

urbanization in the San Francisco Bay area" Environment and Planning B: Planning and Design 

24 247-262 

Couclelis, H., 1997, "From cellular automata to urban models: new principles for model 

development and implementation" Environment and Planning B: Planning and Design 24 165-

174 

Dragicevic, S., Marceau, D. J.,Marois, C., 2001, "Space, time, and dynamics modeling in 

historical GIS databases: a fuzzy logic approach" Environment and Planning B: Planning and 

Design 28 545- 562 

Fotheringham, S.,Rogerson, P., 1994  Spatial Analysis and GIS (Taylor & Francis Ltd, New 

York) 

Getis, A.,Boots, B., 1978  Models of Spatial Process: An Approach to the Study of Point, Line 

and Area Patterns (Cambridge University Press, London) 

Gregory, I. N., 2002, "Time-variant GIS database of changing historical administrative 

boundaries: a European comparison" Transactions in GIS 6(2) 161-178 

Herbert, D. T.,Thomas, C. J., 1997  Cities in Space: City as Place, 3nd edn (David Fulton 

Publishers, London) 

Horita, M., 2000, "Mapping policy discourse with CRANES: spatial understanding support 

systems as a medium for community conflict resolution" Environment and Planning B: Planning 

and Design 27(6) 801-814 

Li, X.,Yeh, A. G.-O., 2001, "Calibration of cellular automata by using neural networks for the 

simulation of complex urban systems" Environment and Planning A 33 1445-1462 



 42 

Masser, I., 2001, "Managing our urban future: the role of remote sensing and geographic 

information systems" Habitat International 25 503-512 

Muth, R., 1969  Cities and Housing: The Spatial Pattern of Urban Residential Land Use 

(Chicago University Press, Chicago, IL.) 

Orjan, S., 1999, "Shortage, priority and urban growth: towards a theory of urbanisation under 

central planning" Urban Study 36(13) 2217-2236 

Saaty, T. L., 1980  The Analytical Hierarchy Process: Planning, Priority Setting, Resource 

Allocation (McGraw-Hill, New York) 

Shmueli, D., 1998, "Applications of neural networks in transportation planning" Progress in 

Planning 50 141-204 

Silva, E. A.,Clarke, K. C., 2002, "Calibration of the SLEUTH urban growth model for Lisbon and 

Porto, Portugal" Computers, Environment and Urban Systems 26(6) 525-552 

Soares-Filho, B. S., Coutinho-Cerqueira-G.,Lopes-Pennachin-C., 2002, "DINAMICA - A 

stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian 

colonization frontier" Ecological Modelling 154(3) 217-235 

Sui, D. Z., 1998, "GIS-based urban modelling: practices, problems, and prospects" International 

Journal of Geographical Information Science 12(7) 651-671 

Sui, D. Z.,Hui, Z., 2001, "Modeling the dynamics of landscape structure in Asia's emerging 

desakota regions: a case study in Shenzhen" Landscape and Urban Planning 53 37-52 

Torrens, P. M.,O'Sullivan, D., 2001, "Cellular automata and urban simulation: where do we go 

from here?" Environment and Planning B: Planning and Design 28 163-168 

Ward, D. P., Murray, A. T.,Phinn, S. R., 2000, "A stochastically constrained cellular model of 

urban growth" Computers, Environment and Urban Systems 24 539-558 

WBUPLA, 1995  Wuhan Urban Planning Record (Wuhan Press, Wuhan) 

White, R.,Engelen, G., 2000, "High resolution integrated modelling of the spatial dynamics of 

urban and regional systems" Computers, Environment and Urban systems 24 383-440 



 43 

White, R., Engelen, G.,Uljee, I., 1997, "The use of constrained automata for high-resolution 

modelling of urban land-use dynamics" Environmentand Planning B: Planning and Design 24 

323-343 

Wu, F., 1998, "An experiment on the generic polycentricity of urban growth in a cellular 

automata city" Environment and Planning B: Planning and Design 25 731-752 

Wu, F., 1998, "SimLand: a prototype to simulate land conversion through the integrated GIS and 

CA with AHP-derived transition rules" International Journal of Geographic Information Science 

12(1) 63-82 

Wu, F., 2000, "A parameterised urban cellular model combining spontaneous and self-organizing 

growth". GIS and Geocomputation (Innovations in GIS 7). P. Atkinson and D. Martin. (Taylor & 

Francis, New York): 73-86 

Wu, F., 2002, "Calibration of stochastic cellular automata: the application to rural-urban land 

conversions" International Journal of Geographical Information Science 16(8) 795-818 

Wu, F.,Webster, C. T., 1998, "Simulation of land development through the integration of cellular 

automata and multi-criteria evaluation" Environment and Planning B: Planning and Design 25  

Wu, F.,Yeh, A. G.-O., 1997, "Changing spatial distribution and determinants of land development 

in Chinese cities in the transition from a centrally planned economy to a socialist market 

economy: a case study of Guangzhou" Urban Studies 34(11) 1851-1879 

Yeh, A. G.,Li, X., 2001, "A constrained CA model for the simulation and planning of sustainable 

urban forms by using GIS" Environment and Planning B: Planning and Design 28 733 - 753 


