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Abstract. Understanding of urban growth process is highly crucial in making 
development plan and sustainable growth management policy. As the process 
involves multi-actors, multi-behavior and various policies, it is endowed with 
unpredictable spatial and temporal complexities, it requires the occurrence of 
new simulation approach, which is process-oriented and has stronger capacities 
of interpretation. In this paper, A cellular automata-based model is designed for 
understanding the temporal process of urban growth by incorporating dynamic 
weighting concept and project-based approach. We argue that this methodology 
is able to interpret and visualize the dynamic process more temporally and 
transparently.  

 
 

1  Introduction 
 

The city is a typical complex system, which is characterized with a self-organization 
property [1, 2]. Understanding of urban development process is highly crucial in urban 
development planning and sustainable growth management. Urban development proc-
ess involves multi-actors, multi-behaviors and various policies, which results in their 
spatial and temporal complexities. Due to the hidden complexity of reality, our sci-
ence has become less orientated to prediction but more an aid to understanding, to 
structure debate [3]. Couclelis [4] first put forward the idea of spatial understanding 
support system (SUSS). Proper understanding of complex system is the prerequisite to 
its prediction.  

 
Cellular automata (CA), a technique developed recently, has been receiving more 

and more attention in GIS modeling due to its simplicity, transparency, strong capaci-
ties for dynamic spatial simulation, and innovative bottom-up approach. Numerous 
literatures can be seen even in the field of urban growth CA modeling on various 
scales (regional, municipal and town) e.g. [5-9]. 

 
In contrast to classic CA, more and more modifications have been made to improve 

its modeling capacity such as multi-states of cell, relaxing size of neighborhood with 
distance-decay effects, and linkage with complexity theory [10]. As the core of CA 
model, transition rules have also been modified and expanded to include notions such 
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as hierarchy, self-modification, probabilistic expressions, utility maximization, acces-
sibility measures, exogenous links, inertia, and stochasticity; in fact, many-if not all-
urban CA bear little resemblance to the formal CA model [11]. Nevertheless, interpre-
tation of transition rules, which is highly important for urban planners, still receives 
little attention in process modeling. Most studies focus on how to make complicated 
models.  

 
The previous studies of urban CA models ignore the fact that urban growth is a dy-

namic process rather than a static pattern. Similar patterns, the final outputs of CA 
simulation do not indicate similar processes. Thus, the transition rules tested are not 
evidential to explain the complex spatial behavior. Therefore, process rather than 
pattern oriented simulation should be the major concern of urban growth CA model-
ing. This point is started to be aware in some journals [11]. In GIS field, [12] applied 
fuzzy spatio-temporal interpolation to simulate changes that occurred between snap-
shots registered in a GIS database. The main advantage of the research lies in its 
flexibility to create various temporal scenarios of urbanization processes and to 
choose the desired temporal resolution. The author also declared that the approach 
does not explicitly provide causal factors, thus it is not an explanatory model. 

 
In summary, we need to take spatial and temporal process into CA modelling to 

achieve stronger interpretation capacities of causal factors. With this in mind, this 
paper is organized into four sections. Following the introduction, the next section 
discusses in detail a proposed methodology, which mainly comprises dynamic weight-
ing and  mathematical models of local growth. One of  major features in our CA 
model is to utilize dynamic weighting for linking pattern and process. Sections 3 
moves to the implementation of the methodology by a case study area from Wuhan 
City, P.R.China. Section 4 ends with some discussion and conclusions. 

 
 

2  Methodology 
 

As a typical self-organizing social-economic system (SOS), urban system modelling 
must call for an innovative bottom-up simulation approach. Complexity of urban 
growth comprises the multiplicity of spatial patterns and social economic processes, 
nonlinear interactions among numerous components and heterogeneity over a variety 
of spatial and temporal scales. Intuitively, the complexity of urban growth process can 
be transferred into spatial and temporal complexity when projected onto land system. 
The understanding rather than prediction of urban growth process based on SOS 
mechanisms is a feasible way. This understanding must be based on the integration of 
top-down and bottom-up approach. 

 
As an effective bottom-up simulation tool, CA firstly offers a new thinking way for 

dynamic spatial modelling, and secondly provides a laboratory for testing human 
being's decision making. However, the complexity of urban growth determines that the 
classic CA must be modified in order to deal with practical issues (the details are 
described in [4]). In this paper, we develop a modified CA model for understanding 



CA-based Temporal Process Modelling 

the spatial and temporal processes of urban growth based on dynamic weighting con-
cept and project-based approach to be described below. 

 
2.1  Temporal Heterogeneity (dynamic weighting) 

 
[13] applied logistic regression method for modelling land development patterns in 
two periods (1979-1987 and 1987-1992) based on parcel data extracted from aerial 
photos. They found that the major determinants of land development have changed 
significantly, e.g. from proximity to inter-city highways to proximity to city streets. 
Likewise, if we shrink the long period (1979-1992) to shorter period such as 1993-
2000 and also from the whole city to smaller part. The same principle should be work-
ing as well. As a consequence, the factors influencing local growth should be assigned 
with dynamic weight values. 

 
Obviously temporal pattern from time t1 to tn, is influenced by highly complicated 

spatial and temporal processes. However, similar patterns can result from numerous 
different processes. As a consequence, the understanding of process is more important 
than that of pattern. Pattern is only a phenomena but process is the essence. The inter-
action between pattern and process is a non-linear iteration function like other phe-
nomena: fractal, chaos etc. which are typically represented by non-linear iteration 
function (eq.1). 

    

X t+1=f (x t ) 

 
 

 In the case of urban growth, temporal complexity might be indicated by: 
 

•  Compared with major roads, minor roads especially in new zones, whic
new development units, may have certain time delay in affecting local g
between T0 and Tn, not immediately from T0; 

•  The spatial impacts of various factors such as road, center, rail are not s
ous temporally in effecting local growth;  

•  Neighbourhood effects may suffer from temporal variation, for examp
be stronger in T0 than in Tn, or vice versa. 

 
Figure 1 is only an example of temporal complexity involved in urba

T1,T2,T3 indicate time series. The same spatial pattern results from three (
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tions between road-influenced and center-based local growth. The arrows in
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effect.  If  we use D to denote the total amount of local growth, Dl for the lower part 
along road, Du for the upper part along road, Dc for the center part and Dt for the con-
tinuous development till time t. Hereby, D=Dn =Dl +Du + Dc.  Wr and Wc represent the 
weight value of factor ROAD and CENTER respectively. We are able to detect the 
following rules: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Convergence:  if  Dt < Dl + Du, Wr→1, Wc→0 (at T1 ); if Dt > Dl + Du, Wr→0, 
Wc→1 (at T2); 

 
In Sequence:  if  Dt < Dl , Wr→1, Wc→0 ( at T1); if Dt > Dl  and Dt < Dl + Dc, Wr→0, 
Wc→1 (at T2); if Dt > Dl + Dc and Dt < D, Wr→1, Wc→0 (at T3);  

 
In Divergence:  if  Dt < Dc, Wr→0, Wc→1 (at T1); if Dt > Dc and Dt < D, Wr→1, 
Wc→0 (at T2). 

 
Here, symbol "→" means "approaching to or close to". The three cases imply that the 
temporal complexity could be represented and understood through dynamic weighting. 
It means that factor weight is a function of temporal development amount, i.e. 
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Fig.1. Temporal Heterogeneity 
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2.2 Generalized mathematical models  
 
Urban growth process is effected by many factors, which may change their influential  
roles spatially and temporally. The spatial heterogeneity phenomena (heterogeneity in 
a spatial context means that the parameters describing the data vary from place to 
place) suggests that the search for general laws frequently fail in practice and it is 
being replaced by local area analysis like Geographically Weighted Regression 
(GWR) and others in the field of spatial statistics. As a consequence, a project-based 
local growth modelling is more reasonable for understanding of complex urban 
growth process. The spatial extent described below is limited to individual large-scale 
project. 

 
      
 
 
Here, Ld is the actual area of land development of one project d in the whole period 

[t=1∼ n]. Ld in principle should result from traditional top-down socio-economic mod-
els. Here it is assumed to be a known value. L(t) is the simulated area of land devel-
opment of same d till time t. L(t) will be calculated from the later section. As an ex-
ample, we only refer to project d; the others follow the same procedures. 
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Assuming that totally m constraints (1≤ i ≤ m) are considered, when k+1≤ i ≤ m,  ωi 
(binary variable: 0 or 1) are restrictive constraints such as water body, slope etc, 
which may include local, regional and global levels with equal weight.  

 
When 1≤ i ≤ k, they are non-restrictive constraints. Wi(t) is the weight value of con-

straint i computed from eq.5. For proximity variables like the distance to major road, 
here a negative exponential function is employed to calculate Vij(t). Urban models 
based on economic theory [14], and discrete choice theory [15]  had made widespread 
uses of the negative exponential function. 
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) 
Vij(t)=e-φ dij                 0<Vij(t)<1
roximity variable i at cell j. φ is the density gradient for quanti-
nce. Usually, 0<φ<1, and φ varies with factor i. Eq.7 is actually 
rictive variables. 
 the patterns that are closer to reality, a stochastic disturbance is 
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Based on equation 8 and 9, the state of cell j at time t+1 can be determined as fol-
lows: 

 
 
 
 
 
Simply, totally ∆L(t) cells will be selected at time t for the transition from develop-

able land (0) to urban (1) according to their development potential values Pj'(t). L(t) is 
to be determined as below. 

 
Another advantage of project-based CA modelling is able to control the temporal 

development pattern of each project. Previous studies suggest that urban development 
process (L(t) in eq.4) follows a logistic curve over time [17]. The logistic curve is 
illustrated as eq. 11. 

 
 
 
 
Assuming that L(0)=L0=1/(a+b)=1,  L(n)=Ln=1/(a+be(-cn))=Ld , the parameters a 

and b can be calculated as the functions of parameter c (eq.12): 
 
 
 
 
 
The shape of logistic curve usually represents the speed of urban development over 

time, which is controlled by the parameter c and n. Here, in simplicity, temporal con-
trol is classified as three types: slow growth, normal or basic growth and quick 
growth, which indicates three distinguishing scenarios (eq.13). Of course, you can 
define more classes or even use fuzzy logic. 

 
 
 
 
 
 
 
The selection of temporal control pattern is a top-down process of decision-making 

as shown in equation 14.  Where y denotes the real time-year (1∼ m) such as 1993 
(y=0) and 2000 (y=7), which is different from iteration number t  (1∼ n ) in simulation.  

 
 
 
 

                         1       if   P j (t) =P j' (t)  and   j'∈  [1 ∼  ∆L(t)] 

                         0      if   not                                                                    

              L(t)=1/(a+b*e(-c*t))                     

ba −=1
)e(l

lb
cnn

n

1
1

−
−=

−
(12) 

                                 Quick growth:  c *n > 25 
                            Basic growth:  c* n <25 and >15                        
                                 Slow growth:  c * n < 15                                 

Sj(t+1)=      (10) 

(11) 

(13) 
G(y)=ΣLd(y)                        y ≤ m                            (14) 
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G(y) denotes the total growth of the whole study area till year y, Ld(y) represents the 

total growth of only project d till year y. The assignment of Ld(y) should be deter-
mined from a top-down social-economic model. Eq.14 also offers a link between local 
growth and global development. It is a feedback between top-down and bottom-up 
decision-making. 
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Li(y)=h(Li(t) )   y=1, 2,...m;    t=1, 2, ...,n;  n>m            (15)
establishes a transition from Li(t) to Li(y). In the previous researches of CA 
n, a linear function is applied, i.e. t=∆*y. Here ∆ is assumed to be a con-
ch means equal growth rate. In reality, function h could be a non-linear func-
ration number t, which can be tested experimentally through visual explora-

lementation 

tudy 

 the largest mega city in central China. In1999, it had around 4 million non-
al population, 4 times more than that of 1949. During the last 5 decades, 
derwent rapid urban growth from 3000 ha of built-up area in 1949 to 3,0151 
0. As a result, Wuhan is a fresh and typical case for understanding the dy-
cess of  Chinese cities. 

he assistance of topographic maps of 1993 and SPOT Pan/Xs images of 
found that land cover change in the period 1993-2000 was dominated by 
tial agglomeration of a few large-scale projects, which take over 60% of 
ge. As a consequence, the understanding of local growth process of each 
highly crucial to that of whole study area. Here, Zukou car manufacturing 

e largest project, is taken as a case study for testing the methodology pro-
e influential factors include major roads, minor roads, master planning, 
onstraints from water body. The cell size in this research is 100x100 m2.  

mulation 

ation of parameters has been proven difficult for urban CA modelling [6, 16] 
lar when factors and parameters considered are voluminous. Here, we think 
al test is much quicker and also more interpretable, which is based on the 
reasonable understanding of urban growth process and visual exploration of 
tputs. The impact of each factor or parameter is assessed by changing its 
 holding the others constant. In this case study, the major parameters include 
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"distance to minor road" (OR), "distance to major road"(MR), "distance to cen-
ter"(CN), "density of neighbouring new development" (DN), " OR density gradient", 
"MR density gradient", "CN density gradient", and "Master planning". So their rela-
tive importance (weight values) could be assigned quantitatively by manual test, fur-
ther improvement can be done by limited number of automatic search like 1000 itera-
tions.  

 
Model accuracy depends on measure approach to comparing simulated and actual 

patterns. [6] chose four ways to  statistically test the degree of historical fit (three r-
squared fits and one modified Lee-Sallee shape index). The last one is a measurement 
of spatial fit between the simulated and the actual growth. Supposed that the actual is 
denoted by set A, the simulated B; the index is equal to (A ∩ B)/(A∪  B) mathemati-
cally.  This simple measure of shape was computed through counting the union and 
the intersection of their total areas on a pixel x pixel basis, and then dividing the inter-
section by the union. For a perfect match, the Lee Sallee measure gives a value of 1.0, 
and for all others ranging from 0 to 1. Clark reported the practical accuracy of his 
model is only 0.3 [6]. Other measures like fractal and Moran I index are also fre-
quently used for global pattern comparison e.g.[18]. In this paper, we use consistency 
co-efficient (CC) (spatial match between the simulated and the actual) and Lee-Sallee 
index (LI) for goodness of fit evaluation. Mathematically, CC is equal to (A ∩ B) / A.  
As the total number of pixels is set the same for the simulated as the actual, apparently 
here LI=CC/(2-CC). Following this formula, the Lee-Sallee index of Zuankou is com-
puted and listed in table 1. The model accuracy is 55% in CC and 39% in LI, which is 
greater than Clark's [6].  

 
Assisted with SPOT images of 1995, 2000 and IRS images of 1997, we are able to 

judge the temporal development pattern of Zuankou, compared with other parts of 
Wuhan city. In 1993, Zuankou was still completely rural and nearly half constructed 
in 1995. There was not much change from 1997 and 2000. So its temporal growth 
pattern is defined as "Quick". The number of iteration is defined as 50 (n=50) as prin-
cipally the greater the number is, the finer discriminative capacity the model has, 
which results in higher accuracy.  Therefore, when c=0.5, c*n=25. As described in 
equation 15, the result of simulation is Li(t), which is different from yearly actual 
amount Li(y).  We need a transition from Li(t) to Li(y). In simplicity, we just use equal 
time interval, i.e. a linear function:  y = t/7.  As t ranges from 1 to 50 and y is from 1 
to 7,  Li(y)= ΣLi(t) (t from 7*(y-1)+1 to 7*y). A new layer with 7-year urban growth 
(from 1993 to 2000) is input into animation software for dynamic exploration. This 
animation is helpful for comparing the distinguishing temporal development processes 
of various projects. 
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  Table 1. Test of temporal heterogeneity (Zuankou) 

 
Results Model 1 Model 2 
Total cells 1390 1390 
Accuracy (CC) 55% 55% 
Lee-Sallee Index 38% 38% 
Stochastic   
(α=10%) 

1% 1% 

Iteration number 50 50 
Neighb. size 6 6 
c 0.5 0.5 
Temporal division 100% <15%,      15%-50%,         >50% 
Major road (MR) 0.2 -                   0.5                   0.05 
Minor road (OR) 0.3 -                   0.1                  0.15 
Centers (CE) - 0.7                -                      0.5 
Neighb. (new) 0.3 0.3               0.1                   0.15 
Master Planning 0.2 -                   0.3                   0.15 
Total 100% 100%          100%            100% 
Gradient for MR 0.0005 0.0005 
Gradient for OR 0.002 0.002 
Gradient for CE - 0.0004 

Note( "-" :0) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Two models of Zuankou in Table 1 have similar model accuracy and also similar 
pattern (the CA model is over till the 28th step). However, their temporal processes 
shown in Figure 2 are quite different. The mode of temporal control is set the same 
(c=0.5). Model 1 exhibits a more random process. Model 2 shows a more organized 
process. Model 2 is based on the assumption that new development in Zuankou first 
occurred in the center, then along the major road and finally spread from the center. 
The assumption corresponds to a temporal process that is spatially controlled to by 
three sets of weight values (Table 1). In other words, the temporal process can enable 
us better understand the organized local growth. If we explore the changes of weight 
values, it can be found that the major changes are indicated in major road and center. 

Fig.2. Test of temporal heterogeneity (Model 1 & Model 2)  
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As explained in section 2 (eq. 3 and 4), weight values should be the functions of tem-
poral development demand. Table 1 also shows the functions are highly complicated 
in reality. A universal or standard function is not available. Rather it should be simpli-
fied and based on local knowledge. Model 2 actually is based on the interviews with 
local planners. 
 
 
4   Discussion and Conclusions 

 
Although the accuracy of two CA models is only 55%, simulation model accuracy, to 
some extent, depends on the complexity and stochasticity of real city and also the 
availability of more detailed information. From the previous part of this research, the 
accuracy of global pattern model that is based on logistic regression analysis with 10 
explanatory variables is only around 70%. If more detailed data like control plan 
scheme is available, more rigorous model calibration will become possible. From the 
angle of spatial modelling, as criticized by other researchers, CA is not an appropriate 
tool on micro scale, we need to integrate agent-based techniques e.g.[19]. Models of 
complex systems with geographic properties, such as city and ecology systems, usu-
ally involve spatial and temporal processes, which are difficult to embed within pro-
prietary GIS. Most CA software available such as AUGH, DUEM either lack GIS 
functions or do not fit specific complex city. A loose coupling strategy is still pre-
ferred, which is also adopted in this research. 

 
We can not ignore the fact that any advanced modelling techniques including CA 

must be based on the proper understanding and abstract of the system studied. The 
more proper, the more accurate it is. The ability of science to understand the real 
world is to a large extent dependent on knowledge constrained by the limits of our 
understanding of complexity. 

 
  CA is only a simulation tool for testing user's understanding. Limited by existing 

GIS theory and technique, the identification of spatial and temporal heterogeneity can 
not be completed without the assistance of local knowledge as rich historical data 
layers do not guarantee the improvement of model calibration. It implies that local 
knowledge is an important ancillary data sources for CA modelling.  During modeling, 
temporal control, dynamic weighting, and manual test need more local knowledge. For 
the division of temporal process, due to limited temporal resolution, local knowledge 
is a key source of qualitative information. 

 
The major purpose of CA simulation is to generate alternative scenarios for deci-

sion support in a smart growth management.  Apparently, the methodology developed 
here can be extended in this direction.  As it is based on the soft systems thinking, 
which stresses the role of users' subjectivity; Local planners'  intention can be trans-
formed into spatially and temporally explicit weight values and certain parameters.  
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