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Abstract 

Motor impairments caused by stroke and cerebral palsy (CP) are common and often affect the 

function of the upper limb, which to be restored requires rehabilitation. As positive outcome is 

correlated to how early and intensive therapy is and since the resources of the healthcare providers 

are limited, robotic devices have been introduced to provide adjunctive therapy. The algorithms that 

control the manner those devices apply forces to the impaired limb are called haptic control 

algorithms (HCA) and to this date there has not been conclusive evidence as to what the behaviour 

of these algorithms should be. One type of HCAs is error augmentation (EA) which is a rather 

understudied but promising approach. This work presents to the literature two novel control strategies 

of the EA type that incorporate adaptive features namely Error Augmenting Adaptive(EA) and Error 

Augmenting Proportional (EA). Those two algorithms were implemented for and deployed to a 

single point of attachment robotic rehabilitation system. 

The effectiveness in inducing motor learning of the developed algorithms was evaluated in a trial 

with able-bodied participants and compared against a third more established assistive HCA namely 

Assistance As Needed (AAN) and a control condition (no forces). Four groups (one per condition) 

practised reaching movements with a speed and accuracy requirement using their non-dominant arm 

to interact with the robot under a visual rotation of a 100o. To assess learning kinematic measures 

were collected to measure their performance on reaching and circle-drawing movements. Also, 

bilateral transfer to the arm that did not receive practice was assessed. Changes in the participants’ 

valence, arousal and dominance were assessed with a Self-Assessment Manikin questionnaire. 

All groups learned to move their non-dominant arm under a visual perturbation showing comparable 

improvements in all key measures (p<0.05). Passive movements and EAP led to greater improvement 

in movement smoothness (p<0.05) and resulted in more retention of the improvements after a 

washout block (p<0.05) was introduced. Conversely, EAA showed a better effect on improving mean 

velocity (p<0.05). All groups performed similarly in terms of improving movement error and 

duration but EAA and AAN achieved peak performance faster (p<0.05). Similar improvements were 

measured on the arm that did not receive any training which were fully retained post-washout 

indicating that bilateral transfer occurred and led to better retention (p<0.05). 

The findings of this work indicate that different attributes can be exploited from the developed HCAs 

to induce motor learning and improve different aspects of the movement suggesting that multimodal 

training protocols tailored to the needs of the patient are the way forward. Also, this work showed 

that bilateral transfer training has great potential in upper limb rehabilitation and the positive effects 

of the different HCAs on the arm that received practice transfer to the one that did not receive 

training. It is recommended that the findings of this work to be further investigated in experimental 

therapy protocols for those who suffer from neurological impairments such stroke and CP. 
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1 Introduction to research 

Neurological impairments such as stroke and cerebral palsy often result in upper limb 

impairments. To treat those impairments, the patients, rely on rehabilitation therapy provided 

by rehabilitation experts such as physiotherapists. Improvement in the function of the 

impaired patients is correlated to how early they receive therapy and the intensity of that 

therapy (Masiero et al., 2011). As a result of the breakthroughs in medicine and technology, 

life expectancy has increased globally and is projected to increase even more so, over the 

next century (United Nations, Department of Economic and Social Affairs, 2013). Due to 

the ageing of the population the prevalence of chronic diseases has increased significantly, 

stretching the capabilities of the healthcare providers and in turn resulting in reduced access 

to their services by the patients. 

To overcome the aforementioned limitations, the scientific community introduced robotic 

devices in order to provide adjunctive therapy to the patient’s limb either in the clinical or 

in the home environment and as a result a new field of research was established, 

rehabilitation robotics. The paradigm introduced with rehabilitation robotics is similar to the 

conventional therapy where the patient practices therapeutic movements; however, in this 

case the patients are interacting with the rehabilitation robot through their impaired limb. As 

the patients are performing movements the robot is applying forces to their limb to either 

assist or challenge their movements. The manner that these forces should be applied to 

maximise the rehabilitation outcome (Haptic Control Algorithms) is still an active topic of 

research as the research community has not yet concluded on the merits of a single approach 

(Marchal-Crespo and Reinkensmeyer, 2009).  

This project introduces new haptic control algorithms whose conception and development is 

informed by the existing literature (Alexoulis-Chrysovergis et al., 2013). To develop and 
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deploy these algorithms a rehabilitation robot developed by researchers at the University of 

Leeds, was used whose designs were made available to the researcher. Some of the designs 

of the rehabilitation robot had errors and certain components were outdated as such the 

project started with updating its design followed by the manufacturing and assembly process. 

Furthermore, all the necessary software was developed to control the rehabilitation robot as 

well as a gaming environment to be used as an interface of the user with the robot.  

Thesis overview:  

Chapter 2: This chapter introduces the reader to the literature relevant to the field of error 

augmentation in the form of a literature survey. Subsequently the aim of this project is 

presented along with the objectives set to meet that aim. Finally, the conceptual design 

informed by the literature survey of three haptic control algorithms is presented in the end 

of the chapter. Namely, three algorithms were to be developed namely assistance as needed 

(AAN), error augmenting adaptive (EAA) and error augmenting proportional (EAP). 

Chapter 3: This chapter presents the reader with the all the software development undertaken 

to actuate the rehabilitation robot, interface it with the user and ultimately implement the 

conceptualised haptic control algorithms. Furthermore, the testing undertaken to ensure that 

the operation of the system is within the set parameters, is presented. 

Chapter 4: The effectiveness of the developed haptic control algorithms on promoting motor 

learning was tested in a trial with healthy participants. Informed by the existing literature a 

trial protocol was designed. This pilot trial had two main objectives, the first one was to test 

the effectiveness of the trial protocol in successfully measuring motor changes in motor 

learning. The second part of the trial was to test whether the rate that a haptic control 

algorithm evaluates the performance of the user and adapts accordingly, affects motor 

learning. Informed by the findings of the pilot trial the protocol and the analysis methodology 
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were updated and implemented in an investigatory trial. The aim of this trial was to collect 

kinematic and psychological data in order to evaluate the effect of the developed haptic 

control algorithms. The final part of this chapter presents the protocol used in the main trial 

of this body of work. 

Chapter 5: In this chapter the findings of the statistical analysis which compared the effect 

of AAN on the motor learning of healthy adults against a Control group that did not receive 

any forces by the rehabilitation robot, are presented. 

Chapter 6: In this chapter the findings of the statistical analysis which compared the effect 

of EAA on the motor learning of healthy adults against a Control group that did not receive 

any forces by the rehabilitation robot, are presented. 

Chapter 7: In this chapter the findings of the statistical analysis which compared the effect 

of EAP on the motor learning of healthy adults against a Control group that did not receive 

any forces by the rehabilitation robot are presented. 

Chapter 8: In this chapter the findings of the statistical analysis are presented which 

compared all developed haptic control algorithms against each other and the movements 

without any forces applied by the robot (control condition). This chapter is primarily focused 

on identifying differences between the developed HCAs, on how they affect motor learning 

in adults and on how they affect their psychological state. 

Chapter 9: This is the final chapter of this work where the conclusions of this programme of 

work are drawn and suggestions for future work are presented. 
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2 Literature review 

 Upper limb motor impairment caused by neurological conditions 

Pathophysiology of any disease is defined as the manner that the normal physiology is 

altered by a disease, injury or a syndrome (Nair and Peate, 2012). Long term neurological 

conditions such as stroke and multiple sclerosis are common in the UK affecting an 

estimated 10 million adults in Britain (Turner-Stokes et al., 2008). Long term neurological 

conditions (LTNC) result from disease, injury or damage to the body’s nervous system (i.e. 

brain, central nervous system) and affect the individual and their family for the rest of their 

lives (Agrawal and Mitchell, 2005). Such neurological conditions can be categorised as: a) 

Progressive conditions, such as multiple sclerosis (MS) and Parkinson’s; b) Suddenly 

acquired conditions such as brain injury and stroke; c) Stable/intermittent conditions such as 

epilepsy and cerebral palsy (CP) (Jackson et al., 2013). 

Symptoms in neurological disorders vary according to the affected area of the central 

nervous system and the type of damage/deficiency (pathology). An overview of the functions 

of certain regions of the brain is provided in Figure 2-1. A common effect of neurological 

conditions is that they often lead to motor impairment and thus the patients experience 

difficulty in controlling the movement of their otherwise healthy extremities. Motor 

impairments can be distinguished according to the number of extremities involved. As such 

in monoplegia only one limb is affected (involved), in diplegia two, in triplegia three and in 

quadriplegia all four limbs are affected (World Health Organization (WHO), 2001). In the 

cases where only one hemisphere of the brain is affected, impairments are located in just one 

side of the body (hemiplegia). Often in literature, the term hemiparesis is used instead of 

hemiplegia to define partial paralysis or weakness in one side of the body. A further 
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classification of motor impairments is according to whether the impairment is located on the 

upper extremities or the lower extremities (upper or lower limb impairments). 

 

Figure 2-1: Structures of the brain and their functions. Source:(Utley and Astill, 2008) 

As different conditions have different causes and demonstrate different pathophysiology 

only two conditions, namely stroke and cerebral palsy, which share similar symptoms related 

to neuromuscular control, will be reviewed as they are two of the most common causes of 

upper limb impairment in adults and children, respectively. Moreover, this programme of 

work is focused on impairments on the upper limb therefore only such impairments are 

considered in this review. 
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 Common causes of neurological impairment 

2.2.1 Physiopathology of stroke and its effects on upper limb function 

Stroke is defined as a neurological deficit attributed to an acute focal injury in the central 

nervous system (CNS) by a vascular cause such as, an ischemic stroke (cerebral infarction) 

or a haemorrhagic stroke (Sacco et al., 2013). Ischemic strokes are caused when blood supply 

to a region of the brain is obstructed, typically due to thrombosis (blood clot), and as a result 

the affected area is not oxygenated resulting in necrosis (death) of the brain cells. On the 

other hand, haemorrhagic stroke is caused by either a leak of a blood vessel or a rapture of 

an aneurysm (swelling- area where blood is concentrated) (Heiss and Hossmann, 2009). This 

results in accumulation of blood in the affected area of the brain which leads to an increase 

in pressure that subsequently damages the specific region of the brain. 

Symptoms in stroke patients vary according to the part of the brain that has been affected as 

well as according to the severity of the damage inflicted. As such stroke can affect the 

patients’ i) mental status (e.g. lethargy, confusion, loss of memory), ii) motor function (e.g. 

limb impairments), iii) sensation (e.g. hyperesthesia, anaesthesia), iv) vision and audition 

(e.g. loss of vision/hearing ,visual/auditory impairments such as: double vision and 

dizziness), v) language (e.g. disturbance of language function i.e. aphasia resulting in 

difficulties in speaking or difficulties in speaking (e.g. motor output difficulty)) and in 

understanding language (e.g. receptive aphasia), vi) swallowing (difficulty to 

swallow/aphagia) (Massey, 2014). 

Stroke is a leading cause of adult disability in the UK, with an estimated 1.1 million stroke 

patients under recovery in England and 110000 new stroke incidences annually 

(Scarborough et al., 2009). The most common effect of stroke is motor impairment, affecting 

80% of the total stroke population (Langhorne et al., 2009) while 67% of stroke patients 
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suffer from upper limb impairment (Liao et al., 2012). The latter, affects the volitional 

movement of the upper limb causing weakness (paresis), spasticity and loss of selective 

muscle control (Kelly-Hayes et al., 1998). Lance et al. define movement spasticity as a 

velocity dependent hypersensitivity of stretch reflex (Lance, 1990). As a result movement 

accuracy, velocity and smoothness of the impaired limb is affected (Elizabeth B. Brokaw et 

al., 2011). Consequently, the ability of the patients to perform activities of daily living 

(ADL) is hindered and as a result they become dependent on others (Rønning and Guldvog, 

1998), depressed and they often display reduced social participation (Cooper et al., 2015). 

2.2.2 Physiopathology of cerebral palsy and how it affects upper limb function 

In Europe, cerebral palsy (CP) is the most common cause of severe disability among 

children. A study by Surman et al, 2006 which collected and examined registers of children 

with CP in the UK between 1986 and 1996, concluded that for every 1000 children born, 2 

would be affected by CP (Surman et al., 2006). CP is an umbrella term used to describe a 

group of disorders of the development of movement and posture. As a result, the patients 

exhibit limited activity and often suffer from disturbances in sensation, cognition, 

communication, perception and/or behaviour, and/or suffer from seizure disorder. The cause 

of CP is attributed to non-progressive disturbances that occur during the development of the 

foetal or infant brain. (Bax et al., 2005) 

CP can have different manifestations and impact on each patient. Four out of five children 

with CP suffer from upper limb impairment that affects arm and hand, which demonstrate 

weakness, spasticity and reduced muscle tone usually associated with spasticity, dystonia or 

disuse. As a result, the affected individuals face difficulties with reaching, pointing, grasping 

and manipulating objects  (Boyd et al., 2001). 
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 Assessment of motor impairment in upper limbs after stroke and 

Cerebral Palsy-Outcome measures 

2.3.1 Standard clinical measures for assessing upper limb impairment 

In 2001 the World Health Organisation (WHO) published the International Classification of 

Functioning (ICF), Disability and Health Framework. With the ICF the WHO aimed to 

standardise the language and framework describing health and health-related states (World 

Health Organization (WHO), 2001). Since the publication of the ICF there has been an 

increasing interest to link outcome measures used in rehabilitation to the classification 

suggested by this framework. Indicative of that are the findings of the overview of reviews 

paper on upper extremity outcome measures after stroke (Alt Murphy et al., 2015) where the 

authors report that all thirteen identified review papers used the ICF to classify outcome 

measures. 

ICF consists of two parts, with each part being divided into two main categories. The first 

part regarding functioning and disability, is divided in a) Body Functions and Structures and 

b) Activity and Participation. The second part is about Contextual Factors and it is further 

divided into a) Environmental Factors and d) Personal Factors (World Health Organization 

(WHO), 2001). An overview of the ICF classification can be found in Table 2-1. It is out of 

the scope of this report to describe in detail the different clinical measures being used for 

assessing upper limb impairment after stroke and CP. However, Figure 2-2 and Figure 2-3 

provide an overview of well-established clinical measures for assessing upper limb 

impairment after stroke (Sivan et al., 2011) and CP (Levitt, 2010; Schiariti et al., 2014) , 

respectively.  
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Table 2-1: ICF overview. Adapted from (World Health Organization (WHO), 2001; Jette, 2006) 

 Part 1: Functioning and Disability Part 2: Contextual factors 

Components Body Functions 

(physiological 

functions of 

body systems) 

and Structures 

(anatomical 

parts of the 

body, organs, 

limbs etc.) 

Activities 

(execution of 

task or action) 

and Participation 

(involvement in a 

life situation) 

Environmental 

Factors 

(Individual (e.g. 

home, work etc.) 

and Societal (e.g. 

organizations, 

services) 

Personal 

Factors 

(the 

particular 

background 

of an 

individual’s 

life and 

living) 

Domains Body functions 

Body structures 

Life areas 

(tasks, actions) 

External 

influences of 

functioning and 

disability 

Internal 

influences of 

function and 

disability 

Constructs Change in body 

functions 

(physiological) 

 

Change in body 

functions 

(anatomical) 

Capacity 

executing tasks 

in a standard 

environment 

 

Performance 

executing tasks 

in the current 

environment 

Facilitating or 

hindering impact 

of features of the 

physical, social, 

and attitudinal 

world 

Impact of 

attributes of 

the person 

Outcome measures for the 

upper limb - Stroke

Body function

FM motor: Fugl-Meyer motor 

subscale

MSS: Motor Status Score

CMSA: Chedoke-McMaster 

Stroke Assessment

MAS: Modified Asworth Scale

EMG: Electromyogram

NHPT: Nine Hole Peg Test

BBT: Box and Block Test

ROM: Range of Motion/

Movement

VAS pain: Visual Analogue 

Scale for pain

NSA: Nottingham Sensory 

Assessment 

fMRI: Functional Magnetic 

Resonance Imaging

Activities

ARAT: Action Research Arm 

Test

WMFT: Wolf Motor Function 

Test

BI: Barthel Index

FIM: Function Independece 

Measure

FAT: Frenchay Arm Test

CAHAI: Chedoke Arm and 

Hand Activity Inventory

RMA: Rivermead Motor 

Assessment

AMAT: Arm Motor Ability 

Test 

Motor AS: Motor Assessment 

Scale

ABILHAND

Participation

SIS: Stroke Impact Scale

EQ-5D: EuroQol Quality of Life Scale

Environmental/ Personal factors

Patient/Carer impressions

Patient satisfaction

 

Figure 2-2: Clinical measure scales for upper limb impairment after stroke. Adapted from (Sivan et al., 2011) 
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Outcome measures for the 
upper limb – Cerebral Palsy

Body function

QUEST: Quality of Upper 

Extremity 

Skills Test

Melbourne Assessment of 

Unilateral  Upper Limb 

Function

Activities

PEDI: Paediatric Evaluation of 

Disability Inventory

WeeFIM: Wee Functional 

Independence measure for 

Children

GMFM: Gross Motor Function 

Scale 

ASK: Activities Scale for Kids

CHQ: Child Health 

Questionnaire

Gillette FAQ

PODCI: Paediatric Outcomes 

Data Collection Instrument

FMS: Functional Mobility Scale

Participation

LAQ-CP: Lifestyle Assessment 

Questionnaire- Cerebral Palsy

PedQL

GMFM: Gross Motor Function Scale

Environmental/Personal factors

Patient/Carer impressions

Patient satisfaction

 

Figure 2-3: Clinical measure scales for upper limb impairment after CP. Adapted from (Levitt, 2010; Schiariti 

et al., 2014) 

2.3.2 Kinematic measures for assessment of upper limb function 

Standard clinical measures have been established as valid and reliable evaluation methods 

of the abilities of the affected individuals. However, such measures have limited sensitivity 

to assess discrete differences in performance because of their scalar nature (Bosecker et al., 

2010). Furthermore, they often rely on the ability of the individual practitioner to assess 

upper limb function (Krebs et al., 2014). Motion analysis on the other hand is a reliable and 

objective method for movement quantification (Butler et al., 2010; Colombo et al., 2014; 

Duret et al., 2016).  

Kinematic measures, which are derived from motion analysis, have been extensively used 

in rehabilitation robotics research for assessing upper limb function (Subramanian et al., 

2010; Chen and Howard, 2014). Kinematic measures are fundamental for assessing human 

movement as they can more accurately analyse movements (Alt Murphy et al., 2015) and as 

such they have been increasingly popular in robotic rehabilitation studies alongside standard 
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clinical scales (Santisteban et al., 2016). Additionally, there have been successful attempts 

(Bosecker et al., 2010; Krebs et al., 2014) to correlate kinematic measures with clinical scales 

such as Fugl-Meyer (Fugl-Meyer et al., 1974) and Modified Ashworth Scale (Ashworth, 

1964), advances that may potentially lead to the assessment of human upper limb function 

only by the use of kinematic measures. 

A popular manner of performing kinematic assessment is by using marker-based motion 

tracking systems (Alt Murphy et al., 2015). Such systems utilise a set of markers placed onto 

the subject. Detectors are used to triangulate the position of the markers and hence derive 

the coordinates of each marker relative to the reference system (De Vito et al., 2014). Such 

systems are usually divided in passive and active marker systems. Passive marker systems 

such as the VICON™ by Motion Systems, Ltd., Oxford, England are utilising passive 

reflective markers and a carefully positioned array of infra-red cameras (Hingtgen et al., 

2006). In active marker systems such as the NDI Measurement Sciences© Optotrack 

Certus™ (NDI Measurement Sciences, 2016) the markers emit infra-red light which is then 

captured by the detectors. 

Another approach is to utilise inertial sensors (a combination of accelerometers, gyroscopes 

and magnetometers) which accurately measure the velocity, orientation and gravitational 

forces of an object (Leuenberger et al., 2016). By attaching an array of inertial sensors into 

known locations of the arm and by using reconstruction software these systems can track the 

movement of the arm without the need of an external reference (Pérez et al., 2010).  

Finally, kinematic data can be collected by utilising the sensors of a rehabilitation robot in 

real time. In the case of an exoskeleton for example, which is coupled to the arm movement, 

the embedded sensors on the actuators report their respective position to the system. By 
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using inverse kinematics, a method very common in robotics, one can track the movement 

of the arm accurately in real time (Sivan et al., 2011). 

The kinematic assessment is usually performed while the participants perform reaching 

movements without receiving external forces (unconstrained movements). Those 

movements resemble movements performed during exercise. As such, by measuring changes 

in kinematic parameters the therapists can identify the outcome of therapy. Several studies 

have also introduced an unpractised task to the assessment protocol (Dipietro et al., 2007; 

Bosecker et al., 2010; Celik and O’Malley, 2010) where the participants are asked to draw 

circles using their arms. This circle-drawing task allows to evaluate whether improvement 

in the practised task transfers to other unpractised tasks (Casellato et al., 2012). Furthermore, 

such a task requires coordination of both the shoulder and elbow and as such allows the 

evaluation of synergetic movements (Krabben et al., 2011). Figure 2-4 shows how different 

kinematic measures link to symptoms caused by stroke. 
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By reviewing the literature, a number of kinematic assessment parameters (measures) were 

identified that have been used in conventional as well as in robotic rehabilitation: 

a) Time to perform a movement (duration):  

The time to perform a certain movement is measured (Finley et al., 2005). For example, in 

a reaching task the time to reach from target A to target B is measured (Figure 2-5). The 

movement of the impaired limb is characterised by extended movement time (Cirstea and 

Levin, 2000; Balasubramanian et al., 2009) which is often reduced when improvement in 

function occurs (Chang et al., 2007; Frascarelli et al., 2009) hence making duration of 

movement a good measure of functional recovery. This metric is relative to the task and 

performance can either be established through comparison with a Control group or through 

comparison with a baseline measurement.  

 

Figure 2-5: Different arm movements for A) a healthy participant and B) three stroke subjects. Source: (Cirstea 

and Levin, 2000). The healthy participant perform accurate movements regardless of the speed of the 

movement. On the other hand the impaired participants despite performing slower movements their movements 

are inaccurate. 
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b) Movement accuracy: 

This is a measure of the error/deviation of movement from a theoretical or predefined desired 

trajectory usually measured in millimetres (Colombo et al., 2010). Several studies (Hingtgen 

et al., 2006; Novakovic and Sanguineti, 2011; Preston et al., 2014) indicate that movement 

of an impaired limb is less accurate when compared with that of a healthy individual. 

Furthermore, there is evidence that improvements in accuracy are correlated with the 

patient’s recovery (Colombo et al., 2005). Movement accuracy is usually measured in 

millimetres. 

c) Movement velocity:  

The velocity profile of the movement of an impaired limb is not smooth with high peaks in 

velocity (Krakauer, 2005). On other hand, for healthy individuals the velocity profiles, for 

example in a reaching task, are smooth and bell-shaped similar to the velocity profile 

displayed in Figure 2-6c. As such acquiring the velocity profile can provide good insight on 

the performance of the impaired limb (Colombo et al., 2005, 2010).  

 

Figure 2-6: Thick lines represent tangential velocity profiles of a curved movement for three different stroke 

patients with different levels of impairment with a) being the more severe and c) the least severe. Source: 

(Cirstea and Levin, 2000) 

Additionally, mean and/or peak velocity of a certain movement are measured. Several 

studies have measured significant improvements in both metrics (Rohrer et al., 2002; 
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Colombo et al., 2005) for stroke patients after receiving therapy (Figure 2-7). Furthermore, 

there is a direct correlation between the outcome of clinical scales such as FMA and MSS 

(Figure 2-2) and the outcome of studies that utilise both peak and mean velocity metrics 

(Nordin, S. Xie, et al., 2014). 

 

Figure 2-7: Mean velocity measurement for a stroke patient during the course of rehabilitation therapy. 

Source: (Colombo et al., 2005)  

d) Movement smoothness:  

The movements of those with a neurological impairment such as stroke or CP are not smooth 

as they appear to be divided into a series of discrete sub-movements. There is evidence that 

improvement in the motor performance correlates to more unified, less spastic movements 

(Rohrer et al., 2002), hence making smoothness a good measure of upper limb function (Yoo 

and Kim, 2015). 

A common measure of smoothness is calculating the deviation from the minimum jerk 

(Equation( 1 )), which is the third time derivative (Equation ( 2 )) of the position, along the 

trajectory of the movement (Wang et al., 2010; Kadivar, Sullivan, et al., 2011). This measure 

has been extensively used as a measure of performance in conventional therapy (Rohrer et 

al., 2004) as well as in robotic therapy (Colombo et al., 2005). 
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𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 =  ∫ 𝑥(𝑡)2
𝑡𝑗

𝑡𝑖

𝑑𝑡 ( 1 ) Minimum jerk for movement smoothness 

Where: 

 

𝑥(𝑡) =  
𝑑3𝑥(𝑡)

𝑑𝑡3
 ( 2 ) The equation for jerk 

Normalised jerk (Equation ( 3 )) is also a common metric in rehabilitation (Chang et al., 

2007; Peter R Culmer et al., 2009; Celik and O’Malley, 2010). Jerk is being normalised 

regarding the duration and length of the movement hence allowing the comparison of 

different trajectories (Preston et al., 2014). 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑗𝑒𝑟𝑘 = √1
2⁄  ∫ 𝑥(𝑡)2

𝑡𝑗

𝑡𝑖

∗ (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛5 𝑙𝑒𝑛𝑔𝑡ℎ2⁄ )𝑑𝑡 

( 3 ) Normalised jerk 

 

e) Movement synergy: 

Synergy patterns are defined as the coupling of joints or muscles in certain movements 

(Kung et al., 2010). Patients suffering from neurological impairments appear to have 

abnormal movement synergies on the affected limb (van Roon et al., 2005; Lang et al., 2013). 

By collecting kinematic data these synergies can be visualized and evaluated and thus be 

used to assess improvement and/or to provide specialized rehabilitation (Safavynia et al., 

2011). 

A measure of movement synergy was proposed for reaching movements by 

(Balasubramanian et al., 2009) and is presented in Equation ( 4 ). In this equation N is the 

number of samples of data in the reaching movement and d(i) is the perpendicular distance 
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between the arm’s endpoint and the straight line joining the initial position with the target 

position (Colombo et al., 2010). 

𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑠𝑦𝑛𝑒𝑟𝑔𝑦 =  √
1

𝑁
∑(𝑑(𝑖))2

𝑁

𝑖=1

 

 

( 4 ) Calculation of movement synergy for 

a reaching movement 

f) Active range of motion: 

Active range of motion is a well-established measure used in the clinical environment (Beebe 

and Lang, 2009; Posteraro et al., 2010). Reduced joint range is a characteristic orthopaedic 

deformity of the paretic limb (Butler et al., 2000). An example of reaching trajectories pre- 

and post-intervention for a stroke patient can be seen in Figure 2-8. By acquiring goniometric 

measurements during active movement of a joint, potential limitations of its motion can be 

identified (Gajdosik and Bohannon, 1987). As such the range of motion is measured to 

determine the muscle shrinkage and joint movement reduction as well as any improvement 

caused by rehabilitation (Ostensjø et al., 2004). 

Figure 2-8 demonstrates a good example of improvement in the range of motion for a stroke 

patient. The trajectories of the endpoint during reaching movements are displayed pre-and 

post-intervention. The patient was unable to reach the most distal targets pre-intervention 

while managing successfully to reach all targets after receiving rehabilitation therapy. 
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Figure 2-8: Movement trajectories towards eight targets pre- a) and b) post-intervention for a stroke patient. 

The patient was incapable of reaching the targets on the top half of the workspace at the beginning of training. 

(Finley et al., 2005) 

g) Movement circularity: 

Circularity (or roundness) is a measure of how circular a trajectory is. If circular movements 

are imperfect they result to elliptic trajectories instead. To measure circularity an ellipse is 

fitted to the participants’ movement trajectory (Figure 2-9). By calculating the eccentricity 

of the fitted ellipse, which is defined as the ratio between the lengths of the minor axis and 

the major axis, a measure of the circularity of the trajectory is acquired. A value of 1 in 

circularity represents a perfectly circular trajectory. The smaller its value the less circular 

the trajectory is.  

The most common method amongst the reviewed studies (Dipietro et al., 2007; Krabben et 

al., 2011) for determining movement circularity was the one suggested by (Oliveira et al., 

1996) which uses principal component analysis to fit an ellipse to a given dataset. In Figure 

2-9 two attempted circular trajectories by a stroke patient’s paretic limb are shown pre-and 

post-intervention in a study contacted by Dipietro et al., 2009. It is clear that the post-

intervention movement is more circular than the pre-intervention.  
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Figure 2-9: Movement circularity of a stroke patient pre-and post-intervention. Adapted from: (Dipietro et al., 

2009) 
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 Conventional methods for upper limb rehabilitation after 

neurological impairment 

2.4.1 Stroke rehabilitation of the upper limb 

It has been shown by several studies that in the incidence of a stroke early and intensive 

therapy has a better outcome in upper limb function when compared to later intervention 

(Kwakkel et al., 2007; French et al., 2009). A review paper by Langhorne et al., 2009 

identified 13 different theoretical approaches of intervention with examples being motor 

learning, bilateral training, constraint-induced therapy and electrical stimulation. An 

overview of the intervention modalities as reviewed by Langhorne et al. is provided in Table 

2-2. 
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Table 2-2: Intervention modalities for upper limb rehabilitation following stroke (Langhorne et al. 2009) 

Approach Description 

Mixed approaches Utilises treatment components that originate in various theoretical 

approaches 

Motor learning Assumes neurologically impaired people learn in the same way as 

healthy people; focus on context-specific cognitive learning by 

use of feedback and practice 

Neurophysiological 

approaches 

Various therapeutic approaches based on neurophysiological 

knowledge and theories, most commonly used is the Bobath 

approach 

Bilateral training Involves use of both upper limbs to perform identical activities 

simultaneously but independently 

Biofeedback: force 

and position 

feedback 

On a force platform, special force sensors measure the weight 

under each foot and the position or movement of the body’s centre 

of pressure; information (feedback) about the distribution of 

weight between the legs and about movement of the centre of 

pressure can be given to the patient by use of visual or auditory 

feedback 

Constraint-

induced movement 

therapy 

Involves restraint of the intact limb, in combination with a large 

number of repetitions of task-specific training 

Electromyographic 

biofeedback 

Involves the use of instrumentation applied to muscles with 

external electrodes to capture motor unit electrical potentials; the 

instrumentation converts the potentials into audio or visual 

information 

Electrostimulation Electrostimulation can be delivered to the peripheral 

neuromuscular system by external or internal electrodes, at a 

range of frequencies, intensities, and patterns of delivery 

High-Intensity 

Therapy 

Increased amount of focused therapy or interventions compared 

with a reference group 

Mental Practice 

with Motor 

Imagery 

Cognitive rehearsal of a physical action; aims to improve goal-

orientated movement or stabilisation of a given movement 

Repetitive task 

training 

Active motor sequence performed repetitively within a single 

training session, aimed towards a clear functional goal 

Robotics Robotic devices enable high-intensity, repetitive, task-specific, 

and interactive treatment of the upper limb independent of a 

therapist 

Splinting or 

orthosis 

Splints or orthoses are external, removable devices that are used 

to meet several clinical aims: a decrease in spasticity and pain, 

improvement in functional movement, and prevention of 

contracture, over-stretching, and oedema 
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2.4.2 Treatment of upper limb impairment in children with Cerebral Palsy 

There has been a plethora of proposed interventions to treat upper limb impairment in 

children with CP which are summarised in Table 2-3. Despite the efforts of the scientific 

community to repair the damage to the affected brain, there has not been significant evidence 

of success of any of the approaches published so far (Rosenbaum, 2003; Goldstein, 2004). 

However, a more recent study (Novak et al., 2013) has found more substantial evidence of 

improvement in certain parameters (motor function, spasticity) of some modalities such as 

bimanual training, constraint induced movement training, occupational therapy, home 

rehabilitation interventions and approaches based on motor learning theory. 

Table 2-3: Intervention modalities for treatment of the upper limb in children with CP (Boyd et al. 2001) 

Treatment Modality Content 

Behavioural and environmental 

treatments 

Physiotherapy (e.g. constrain induced therapy) 

Occupational therapy 

Neurodevelopmental treatment 

Motor learning 

Conductive Education 

Strength training 

Peripheral splinting and casting Serial plaster casting 

Rigid bivalve casts 

Dynamic splints (polypropylene) 

Lycra UPSuit garments 

Electrophysical agents Neuromuscular Electrical Stimulation (NMES) 

Electromyography (EMG) biofeedback 

Pharmacological - focal Phenol 

Botulinum toxin type A (BTXA) 

Pharmacological- generalized 

spasticity management 

Continuous Intrathecal Baclofen (CITB) 

Surgery Selective Dorsal Rhizotomy (SDR) 

Upper limb surgery for function 

Surgery for deformity correction and cosmesis 

BTXA and surgery 
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2.4.3 Brain plasticity, motor learning and motor rehabilitation 

Some of the approaches in rehabilitation such as injections with Botulinum toxin type A 

(BTXA) and strength training are aiming to address the symptoms of the neurological 

conditions rather than the cause (BTXA is used to treat spasticity and strength training is 

used to address muscle weakness caused by disuse). Other approaches that aim to cure the 

cause of the impairment are based in the neuroplasticity theory.  

Neuroplasticity assumes that the nervous system can restructure itself to dynamically adapt 

to new environmental, developmental and experiential conditions (Levitt, 2010). There is 

evidence that the brain can dynamically restructure itself in order for unaffected areas of the 

brain to assume the function of an affected area (Bach-y-Rita, 1990). Furthermore, 

development in brain imaging technologies has allowed the scientific community to show 

that  brain cells can actually regenerate (neurogenesis) (Johansson, 2000).  

Motor learning is the active field of study regarding how a movement is learned and retained 

(Schmidt and Lee, 2005). Schmidt and Lee, 2005 define motor learning as “a set of (internal) 

processes associated with experience or practice leading to relatively permanent changes in 

one’s ability for skilled behaviour”. Learning is measured by the change in one’s capability 

to perform a motor task due to practice (Utley and Astill, 2008). Rehabilitation based on the 

motor learning theory aims to induce brain plasticity and hence recovery in the function of 

an impaired limb by using the principles of motor learning. As such, patients can learn (in 

the case of CP) or re-learn (in the case of stroke) how to use their impaired limb.  

Krakauer et al., 2006 identified five modalities for the upper limb rehabilitation of stroke 

patients, based on the principles of motor learning, namely arm ability training, constraint 

induced movement therapy (CIMT), electromyogram-triggered neuromuscular stimulation, 

interactive robotic therapy and virtual reality based rehabilitation (haptic simulation) (Table 
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2-2, Table 2-3). A brief overview of the first three is provided below while a more detailed 

review of robotic rehabilitation is provided in Section 2.5. 

Arm ability training (AAT): is method introduced by (Platz et al., 2001). AAT is focused 

on stroke patients with mild arm paresis and already improved arm function and muscle tone 

that are slow and uncoordinated in performing certain tasks. Such training emphasized on 

the accuracy and the speed of the performed tasks by introducing repetitive training of certain 

movements with a variation in the difficulty of the task. In the same paper by (Platz et al., 

2001) the authors performed a randomised control trial comparing AAT with conventional 

therapy and found superior improvement for the AAT group in activities of daily living 

(ADL) which was retained a year after therapy stopped. 

Constrained-induced movement therapy (CIMT): the healthy arm is constrained in a mitt 

or a cast for the waking hours while providing focused repetitive training to the impaired 

arm (Gordon, 2006). CIMT aims to reduce the dependence of the subjects to their healthy 

arm and as a result to maximise potential improvement of the impaired. A systematic review 

on randomised control trials (RCT) using CIMT to treat stroke patients (Hakkennes and 

Keating, 2005) identified fourteen relevant studies. The same review concluded that CIMT 

may have positive effects on improving upper limb function in stroke patients when 

compared to alternative or no treatment. However, a Cochrane literature review on the effect 

of CIMT in children with hemiplegic CP (Hoare et al., 2007) identified only three relevant 

studies, only one of which was an RCT. This review reported positive outcome of CIMT. 

However due to the small number of included studies and the lack of methodological quality 

in some, the authors recommended CIMT only for experimental treatment until more 

evidence is gathered.  
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Electromyogram (EMG)-triggered neuromuscular stimulation: in this approach sensors 

that record the electrical activity of the muscles (EMG) are attached to the limb. Voluntary 

movements, usually focused on specific muscles, are initiated and when the EMG signal 

reaches a certain level an electrical pulse is applied to the target-muscle(s) (neuromuscular 

stimulation) to initiate an involuntary contraction of the respective muscle(s) the predefined 

movement (Krakauer, 2006). Such approaches are based on the theory supporting that 

proprioceptive feedback (body’s sensation of movement) is fundamental for motor learning 

to occur (Cauraugh and Kim, 2002). Several studies have reported improvement in the hand 

and arm function of patients suffering from stroke (Bolton et al., 2004; IJzerman et al., 2009) 

and CP (Kerr et al., 2004). 

Since the publication of the review paper by Krakauer et al., 2006 another rehabilitation 

method was suggested based on the motor learning theory namely, bilateral transfer. 

Bilateral transfer occurs when a skill practised with one limb transfers to the other that did 

not receive any prior training (Ausenda and Carnovali, 2011). Bilateral transfer based 

therapy (BTT) is performed in the opposite manner than the CIMT as all the training is 

undertaken with the healthy limb with the intention to improve the function of the impaired. 

BTT is not to be confused with bimanual training as the latter requires coordinated 

movements of both limbs (Park et al., 2011). 

There is limited evidence for the efficacy of BTT however, promising results were observed 

in two Randomised Control Trials (RCTs) performed by (Ausenda and Carnovali, 2011) and 

(Ausenda, 2014) where stroke patients that received training with their non-affected arm 

improved their ability to perform functional movements with their impaired limb while the 

Control group that did not receive any training did not show any improvement. Furthermore, 

an RCT by (Iosa et al., 2013) showed that more transfer occurs when the higher skilled hand 

received therapy. The possible implications of the findings of the studies in upper limb 
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rehabilitation are great as they could potentially allow access to different training modalities 

for patients with severe impairments that prevented them to perform certain exercises such 

as reaching movements. 

 Robotic rehabilitation for the upper limb after stroke and Cerebral 

Palsy 

Although conventional therapy has been beneficial for upper limb impairments, it is labour 

intensive for the practitioner and it requires frequent visits to/by the rehabilitation experts 

which are often limited by difficulty of access as well as financial constraints of the 

healthcare providers (Krebs et al., 1998). To overcome the aforementioned limitations a new 

paradigm was introduced in literature (Prior and Warner, 1990) where rehabilitation would 

be provided under the supervision of a clinician but the exercise would be provided by a 

powered device (robot). These devices can be used as an adjunct to conventional therapy 

hence allowing the patient more access to beneficial therapy. 

Various approaches for robotic rehabilitation of the upper limb have been presented in 

literature over the years (Krebs et al., 2009; Waldner et al., 2009; Fasoli et al., 2012; Holt et 

al., 2013), but the concept behind most of these systems remains fundamentally the same. A 

robotic manipulandum is attached or held by the patient’s affected limb, the patient is asked 

to perform predefined tasks while interacting with a computer interface (Figure 2-10). The 

system provides one or more different types of feedback to the user namely, visual, audio, 

audio-visual or haptic, usually through a computer game environment. A haptic control 

algorithm (HCA) controls the systems response to the user’s movement utilising information 

collected by a setup of different sensors such as encoders, accelerometers, dynamometers 

and electromyography (EMG) signals. 
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Graphical user interface Single point of attachment rehabilitation robot

Motor controller running HCA

 

Figure 2-10: Example of typical robotic system for upper limb rehabilitation. Adapted from (Holt et al., 2013)  

In order to set a simple framework for developing robotic rehabilitation systems (Iosa et al., 

2016) recently suggested that such systems should comply with the following three laws: 

“1) A robot for neurorehabilitation may not injure a patient or allow a patient to come to 

harm, 2) A robot must obey the orders given it by therapists, except where such orders would 

conflict with the First Law, 3) A robot must adapt its behaviour to patients’ abilities in a 

transparent manner as long as this does not conflict with the First or Second Law”, (Iosa et 

al., 2016). As rehabilitation robotics become more popular and more systems reach 

commercialisation, a good framework surrounding those systems is required. Whether the 

aforementioned framework will be adopted by the scientific community is yet to be seen. 
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2.5.1 Existing robotic devices for upper limb rehabilitation after stroke and Cerebral 

Palsy 

Numerous designs of robotic devices for upper limb rehabilitation have been introduced in 

literature. One way to distinguish these devices is according to the type of actuators they are 

utilising (Gopura et al., 2009). As such there are systems actuated by electric motors (Krebs 

and Hogan, 2006), hydraulically (Stienen et al., 2007) and pneumatically (Secoli et al., 2011) 

actuated systems (Figure 2-11). 

Electric motors are the most commonly used actuators in upper limb rehabilitation as they 

provide relatively higher power and are easy to actuate and control. On the other hand 

pneumatic actuators are lighter and have lower impedance (Caldwell et al., 2007), but they 

are hard to control because of their non-linear nature (Lo and Xie, 2012). Additionally, in 

pneumatic systems the actuators despite being small and lightweight, the whole system is 

relatively large due to the compressor that is required to provide them with pressurised air 

thus making pneumatic actuated robots more suitable for applications where the system is 

stationary such as the clinical environment (Morales et al., 2011; Maciejasz et al., 2014). 

Finally, hydraulic actuators provide high torques, are very precise and responsive, but they 

have been rather underutilized in upper limb robotic rehabilitation (Umemura et al., 2009; 

Maciejasz et al., 2014). This is most likely due to the fact that such systems require frequent 

maintenance, they are prone to oil spillages and have large space requirements for their 

deployment. (Gopura, 2011) 
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Figure 2-11: Image a) The PERCRO-L-Exos electrically actuated exoskeleton, Image b) The Pneu-WREX 

pneumatically actuated exoskeleton, The NEUROExos hydraulically actuated exoskeleton Images retrieved 

by: a) (Frisoli et al., 2009), b) (Wolbrecht et al., 2010), c) (Lenzi et al., 2011)  

Nevertheless, the most common way of distinguishing robotic systems for upper limb 

rehabilitation is according to the number of points at which these devices apply forces to the 

user’s limb. As such there are single point of attachment devices, multiple point of 

attachment devices (Culmer et al., 2010) and exoskeletons (Maciejasz et al., 2014). 

Characteristic examples of such systems are displayed in Figure 2-12. A special case of 

rehabilitation robots are bimanual robots. Such robots can fall under either of the 

aforementioned categories with the only difference being that two robots are used in order 

to allow interaction with two arms. 

a) b)

c)



31 

 

a)

c)

b)

 

Figure 2-12: Image a) the MITmanus a single point of attachment system, Image b) The iPAM, a dual (multiple) 

point of attachment system, Image c) the ARMin III exoskeleton robot. Source: a)(Marchal-Crespo and 

Reinkensmeyer, 2009),b)(P R Culmer et al., 2009) c)(Elizabeth B. Brokaw et al., 2011)  

 Single point of attachment systems 

The most common design of single point of attachment systems are end effector systems 

(endpoint). These systems use a single distal attachment point on the forearm usually in the 

means of an orthosis (Loureiro et al., 2011). The main advantages of such systems are that 

they are usually more simple to manufacture and control thus making them less expensive. 

Some of these devices (Weightman et al., 2011; Holt et al., 2013) are portable and with a 

small footprint therefore they are ideal for home rehabilitation applications. Nonetheless, 

such systems can only control the position of the hand and not the corresponding position of 

the elbow and shoulder consequently allowing configurations that may potentially injure the 

arm (Babaiasl et al., 2015).  

A recent review by Maciejaz et al., 2014, identified that the majority of the single point of 

attachment systems that were reviewed, allowed movement in three dimensions. However, 

several systems have been developed that only allow movement on two dimensions. Such 
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systems, while being very simple and cost-effective, when combined with effective control 

algorithms can be comparably effective to the three dimensional single point of attachment 

systems (Loureiro et al., 2011).  

 Multiple point of attachment systems and exoskeletons 

These systems can control the full kinematics of the human arm. They allow the control of 

posture during the movement and control the synergies between the joints by allowing or 

prohibiting certain configurations (Gopura et al., 2016). Furthermore, because of their ability 

to precisely follow the movement of the human arm they provide very accurate means to 

collect kinematic measures in real-time. Conversely, these systems are usually large, utilise 

multiple actuators, are more complicated to design and control and as a result are more 

expensive. For all the aforementioned reasons such systems are more suitable for the clinical 

environment such as hospitals and rehabilitation centres and less suitable to be used in home 

rehabilitation applications (Lo and Xie, 2012; Maciejasz et al., 2014). 

 Bimanual training robots 

Bimanual robots (Figure 2-13) can fall under any of the abovementioned categories with the 

only difference being in their configuration. Such systems utilise two rehabilitation robots 

to provide bi-lateral training. They also allow a control scheme where the movement of the 

healthy limb is mirrored by the impaired (Song and Guo, 2012). One of the most advocated 

benefits of bimanual robots is that they allow practice of tasks which require the coordination 

of both limbs that simulate movements that the patients would have to perform in their 

activities of daily living (Li et al., 2013). There has been evidence suggesting bilateral 

training promotes better movement coordination compared to unilateral training (Sheng et 

al., 2015). 
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In addition, the second rehabilitation robot can be used to provide haptic guidance by a 

rehabilitation expert (Trlep et al., 2011) which can allow for tailored training schemes where 

the therapist assesses which movements would benefit the patient and demonstrate them 

while the patient tries to match the therapists’ movements with the robot assisting or 

perturbing those movements (Abdollahi et al., 2014) 

 

Figure 2-13: Example of a bimanual robot consisting of two single point of attachment robots. Source: (Li et 

al., 2009) 

2.5.2 Feedback in upper limb rehabilitation 

As stated in the beginning of this section the main paradigm of rehabilitation robotics 

involves providing feedback to the user through a computer interface. Feedback provided by 

the system has been shown to be an important factor affecting the outcome of the 

rehabilitation process regardless of the training method (Levin et al., 2010). Feedback when 

selected appropriately can be motivating to the user and as a result reduce abandonment 

(Perry and Andureu, 2010) and also provide the user with useful information about their 

improvement.  
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Feedback, is commonly distinguished according to its source to either intrinsic or extrinsic 

(van Vliet and Wulf, 2006). Intrinsic feedback results from the sensory information 

generated by an individual’s own movement while extrinsic or augmented feedback is 

information provided by external sources (Ryan and Deci, 2000; Molier et al., 2010). The 

latter can be provided in different forms to stimulate the different senses. As such, there is 

auditory, visual and haptic feedback (Sigrist et al., 2013). There has been evidence that 

extrinsic feedback can improve motor function, promote motor learning and increase 

retention of an acquired skill in stroke patients (van Vliet and Wulf, 2006) and children with 

CP (Burtner et al., 2014). However, the positive effect of extrinsic feedback on improving 

upper limb function is influenced by the type of feedback, the stage of the trial that is 

provided and the information it communicates to the user. An overview of the parameters 

that influence extrinsic feedback is shown in Figure 2-14. 

 

Figure 2-14: Different parameters of extrinsic feedback on upper limb rehabilitation 

 Type of feedback in terms of sensory information 

Robotic rehabilitation is often based in the interaction of the patient with the rehabilitation 

robot within a virtual computer environment, similar to a computer game. The virtual 

environment is providing extrinsic sensory feedback to the patients in order to provide them 
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with information about different parameters of the task. This information can include a visual 

representation position of the patients’ arm relative to the virtual workspace, trajectories that 

need to be followed, auditory cues for initiation of tasks. In the context of this report as a 

simplification the word feedback is used instead of extrinsic feedback. 

Visual feedback is the most commonly used type of feedback either being used alone or 

combined with auditory feedback. Visual feedback is displayed on a computer screen or in 

a virtual reality environment. Some recent studies have also explored the effects of visual 

feedback when provided through an augmented reality environment. There has been 

evidence of the benefits of visual feedback when provided in a carefully selected manner 

(Molier et al., 2010; Parker, 2011; Patton et al., 2013). 

Auditory feedback has been a rather understudied source of feedback (Sigrist et al., 2013). 

Recently there has been evidence presented in literature that auditory feedback promotes 

brain plasticity through mechanisms that are fundamental for the recovery from neurological 

injury (Rosati et al., 2013). Yet, the effect of auditory feedback may differ according to the 

side of the brain that has been affected (Robertson et al., 2009). Robertson et al. in their 

study with stroke patients with hemiparesis investigated the effect of auditory feedback 

according to the affected hemisphere. The results of their study indicated that although the 

group with damage on the right hemisphere improved in terms of kinematic outcomes the 

group with damage on the left hemisphere deteriorated (Robertson et al., 2009). 

Over the years, different definitions have been proposed for haptic feedback each definition 

usually related to the application. In the context of this programme of work the definition 

provided by Sigrist et al, 2013 seems to be appropriate as such “haptic feedback is defined 

as any kind of haptic perception that teaches the necessary features that guide the subject 

toward, and not necessarily through, the desired motion” (Sigrist et al., 2013). Haptic 
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feedback has been found to enhance participation and cooperation and promote motor 

learning (Sigrist et al., 2013; Santis et al., 2014). 

 Stage of trial where feedback should be provided 

Equally significant to the type of augmented feedback provided to the subject is the timing 

where feedback should be provided. There is still an open debate in the scientific community 

on whether feedback should be provided during the trial (concurrent feedback) or after its 

completion (terminal feedback). Concurrent feedback has been shown to have a positive 

effect on motor learning and skill acquisition. However, it has been observed that when only 

real-time concurrent feedback was provided the performance has reduced on follow-up 

retention tests (Park et al., 2000). This has been attributed to the fact that the patients become 

highly dependent on the feedback provided (Sigrist et al., 2013) . 

It has been suggested that concurrent feedback may only be useful in the early stages of a 

training scheme where the patient needs assistance in understanding the task needed to be 

performed and that it should be switched off in the subsequent trials (Park et al., 2000). An 

alternative is to only provide feedback at the end of a trial. This has been shown to reduce 

dependency but not eliminate it. As such, trials where no feedback is provided are required 

in order to strengthen the internal movement representation. (Sigrist et al., 2013) 

2.5.3 Control strategies that promote motor learning in upper limb  

Haptic Control Algorithms (HCAs) are algorithms that control a powered haptic system’s 

(rehabilitation robot) response, according to the user’s input. In rehabilitation robotics 

numerous control strategies have been introduced utilising different HCAs. Marchal-Crespo 

& Reinkensmeyer, 2009 performed a review on the control strategies used on robotic 

rehabilitation both for gait and upper limb. In their paper they categorised the HCAs used in 

robotic rehabilitation into three main categories namely, assistive, challenge-based and 
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haptic simulation (Marchal-Crespo and Reinkensmeyer, 2009) control strategies as shown 

in Figure 2-15. Since the publication of this review paper in 2009 this has been the most 

accepted manner of distinguishing the different HCAs used in upper limb rehabilitation 

robotics. 

 

Figure 2-15: Categorisation of control strategies for upper-limb robotic rehabilitation as suggested by 

(Marchal-Crespo and Reinkensmeyer, 2009) 

According to Marchal-Crespo and Reikensmeyer, strategies that utilise assistive haptic 

control help the user to move their limb to perform the desired movement. Challenge-based 

algorithms introduce a “challenge factor” to the movement. Finally, haptic simulation 

strategies involve practising of movements respective to activities of daily living (ADL) in 

a virtual environment. 

In a more recent systematic literature review on training modalities for upper limb robotic 

rehabilitation after stroke by Basteris et al., 2014 the authors stated that the commonly used 

terms for the classification of training modalities in the field were not specific allowing 

ambiguity in their definition. As such an alternate classification of HCAs was proposed by 

the authors based, not only on the features of the training modality (e.g. assistive, resistive 

etc.), but also on the manner that it is implemented. A brief overview of the Basteris 

classification of HCAs is provided in Table 2-4. In the same review the authors mentioned 

that the proposed classification of training modalities failed to describe a particular 
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implementation of HCA that induces challenges to the movement by augmenting movement 

errors.  

Whether the classification proposed by Basteris et al. will be adopted by the scientific 

community is yet to be seen nevertheless, certain adjustments are needed in order to describe 

all existing training modalities such as error augmentation and allow for the description of 

future ones. For the purpose of this review the classification introduced by Marchal-Crespo 

& Reikensmeyer will be used as it not only is the more established within the scientific 

community but also because it is based on a simplistic approach that successfully describes 

all the current training modalities. 
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Table 2-4: Basteris classification of HCAs for upper limb rehabilitation and the relation of the categories with 

the classification by Marchal-Crespo & Reinkensmeyer, 2009. (Basteris et al. 2014) 

Basteris classification 

Description by 

Marchal-Crespo & 

Reinkesmeyer 

Feature Specification  

Passive, passive 

mirrored 

The device follows a pre-programmed 

trajectory/force profile toward a desired 

trajectory. In the case of passive mirrored 

therapy, the unimpaired limb guides the 

affected limb. 

Assistive non-

adaptive 

Moving attractor Similar to passive with the only 

difference being that assistance varies 

according to different parameters 

Assistive adaptive 

Triggered 

assistance 

Assistive forces (similar to passive) are 

applied only after a threshold in 

performance is reached e.g. certain delay 

in performing the movement 

Assistive adaptive 

(performance based) 

Assistive force 

constant 

Constant forces towards the target or 

weight support (gravity compensation) 

Assistive 

Counterbalancing 

EMG-proportional EMG signals activate the robot’s 

actuators to perform the desired 

movement 

EMG-based assistance 

Pushing force (in 

case of delay) 

Force is applied towards the movement 

direction only when a delay occurs with 

regard to a desirable motion pattern 

Assistive adaptive 

(performance based) 

Spring-damper 

guidance 

Elastic or viscoelastic force fields that 

keep movement from deviating laterally 

from the desired trajectory 

Passive (haptic wall) 

Tunnels Similar to spring-damper systems but 

forces are applied only if certain threshold 

in error (lateral deviation from the desired 

trajectory) is reached. 

Assistive adaptive 

(performance based) 

Spring against 

movement 

Forces are applied in the direction 

opposite of that of the movement in the 

form of an elastic force field. 

Challenge based - 

Resistive 

Damper against 

movement 
Forces are applied against the direction 

movement based on the velocity 

Challenge based –

Resistive/Viscous 

force fields 

Not clear In some cases, the authors do not report 

the manner of implementation of the 

HCA but only state its purpose i.e. 

assistive algorithm, resistive algorithm 

N/A 
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 Control strategies that assist movement 

Assistive control strategies have been extensively studied in literature for the rehabilitation 

of stroke patients while a limited number of studies have explored the effects of assistive 

HCAs on the rehabilitation of the upper limb of children with CP (Bayón et al., 2016). 

Basteris et al. in their systematic review paper on training modalities for robotic stroke 

rehabilitation of the upper limb identified that from 126 groups of subjects (group sizes 

unclear) who participated in the reviewed studies 91 received assistive training either 

exclusively or in conjunction with other modalities. On the other hand, a mere 22 groups 

received resistive therapy. (Basteris et al., 2014). Similar to “active assist” exercise provided 

by clinical therapists (Marchal-Crespo and Reinkensmeyer, 2009), such strategies were 

initially developed to assist more severely impaired patients who due to their impairment 

could not complete the desired task (Wang, 2012). Such algorithms have been claimed to 

promote brain plasticity by introducing novel sensorimotor stimulation, augmenting effort 

and by provoking repetitive movement. (Marchal-Crespo and Reinkensmeyer, 2009)  

Several adaptations of assistive strategies have been proposed by the different research 

groups. These strategies usually fall under two categories; non-adaptive and adaptive 

assistive strategies, respectively. Non-adaptive assistive strategies apply a constant force to 

the impaired limb to assist movement (Kirihara et al., 2010), while adaptive strategies 

provide different levels of assistance based on predefined factors such as performance 

(Posteraro et al., 2010). There is evidence supporting that when moving under the effect of 

assistive force in robotic rehabilitation participants tend to incorporate these forces in their 

motor plan in order to reduce the voluntary control while keeping the error low (Emken et 

al., 2007). Furthermore, such strategies have been shown to have a better effect on improving 

outcome in ADLs when compared to conventional therapy (Chang and Kim, 2013). 



41 

 

To minimise reduced effort (slacking) several studies have introduced a forgetting factor to 

their systems. This was implemented in either a non-adaptive manner (forces switch off after 

a set or random number of movements) or in an adaptive manner where performance is 

evaluated at a certain amount of time/movements and assistance is adjusted accordingly. If 

performance is improved assistance is reduced to challenge the participants (assistance as 

needed) (Guidali et al., 2011). Adaptive algorithms such as the assistance as needed (AAN) 

aim to provide tailored rehabilitation by providing the minimum level of assistance for the 

patient to perform the intended movement (Xu et al., 2011; Carmichael and Liu, 2012; 

Pehlivan et al., 2016). There is evidence showing that algorithms such as AAN are better in 

promoting motor recovery over passive movements (Krebs et al., 2009) and have been 

shown to improve upper limb function in children with CP (Fasoli et al., 2008; Bayón et al., 

2016). 

 Control strategies that induce a challenge factor to the movement 

Challenge based control strategies aim to perform in an opposite manner to the assistive by 

making movements more demanding. Implementations of such strategies include resisting 

movement by applying opposing forces (Stienen et al., 2009; Conroy et al., 2011), 

introducing new environments to the movement such as resisting movement (Lum et al., 

2002; Stienen et al., 2009) , introducing viscous force fields (Sanguineti et al., 2009; Masia 

et al., 2011) and by enhancing error (Rozario and Housman, 2009; Shirzad and Van der 

Loos, 2012).  

There is sufficient evidence to suggest that training which requires higher effort from the 

paretic limb can improve motor function (Patten et al., 2006; Marchal-Crespo and 

Reinkensmeyer, 2009). In addition, in the case of resistive forces, movement oscillations are 

dampened hence promoting less spastic, smoother movements (Stienen and Kooij, 2007; 

Basteris et al., 2014). In a study by Patton et al. (2006), stroke patients had to perform 
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reaching movements within a curl force field where forces were applied orthogonally to the 

velocity of the movement forming a clockwise or anti-clockwise pattern. In this study 

improvement in terms of path errors occurred only in the directions where error was 

amplified by the applied forces (Patton, Stoykov, et al., 2006). Interestingly a literature 

review by (Proietti et al., 2016) on control strategies developed for exoskeletons did not 

identify any studies that implemented challenge-based algorithms. 

 Error-augmentation in upper-limb robotic rehabilitation 

Error augmenting (EA) strategies are challenge-based strategies which perform in an 

opposite manner to the assistive (error reducing strategies). In the case of error augmentation 

movement error is increased either haptically or visually. In haptic error augmentation, 

forces are applied in such a manner that movement is perturbed in the direction away from 

the desired trajectory. It must be noted that some implementations of haptic EA forces are 

applied away from the desired target  with a force proportional to the distance from a desired 

target (Lee and Choi, 2010; Givon-Mayo and Simons, 2014). Although, such algorithms are 

technically resistive according to the classification by (Marchal-Crespo and Reinkensmeyer, 

2009) they are often considered as EA (Israely and Carmeli, 2015) because they aim to 

increase movement errors and not just resist movement. Conversely, in visual error 

augmentation, the visual representation of the arm’s position is shifted away from its actual 

position in the workspace. Haptic error augmentation is more relevant to robotic therapy, as 

it utilises the force generating capabilities of such systems which is the focus of this project. 

For this reason; visual error augmentation will not be discussed further in this report. 

However, the interested reader can find information about its effectiveness on motor learning 

in a literature review paper by (Alexoulis-Chrysovergis et al., 2013). 

Error augmenting strategies are based on the recent evidence that motor adaptation relies on 

sensory error prediction or motor correction (Tseng et al., 2007) as such it is an error driven 
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process. It is assumed that by performing movements in an error rich environment the 

potential for error correction and therefore opportunities for brain plasticity are greater. 

Furthermore, error augmentation introduces a challenging training environment that 

provokes the patients by keeping them interested and concentrated on the task, which are 

significant factors that influence motor learning (Emken et al., 2007; Shirzad and Van Der 

Loos, 2013) as well as reduce abandonment (Shirzad and Van der Loos, 2012). 

To further investigate the potential of error augmentation a literature review was performed 

investigating its use in the robotic rehabilitation of the upper limb (Alexoulis-Chrysovergis 

et al., 2013). The review was not condition-specific in order to gather as much information 

on the effects of this modality to the rehabilitation of the upper limb. The results of the 

review were published as a review paper which can be found in Appendix B.  

From the thirteen studies that were reviewed, six explored the effects of EA on stroke 

participants and four on only able-bodied. Interestingly, none of the reviewed studies 

explored the effect of EA on children with CP which is further confirmed by a more recent 

review on robotic therapy interventions for children with CP which did not identify any EA 

interventions for children with CP (Bayón et al., 2016). Most of the reviewed studies 

reported positive outcomes, such as improvement of kinematic measures (Cesqui et al., 

2008; Rozario et al., 2009) in stroke patients and improvement in the optimal path control 

for patients with primary dystonia (Casellato et al., 2012). Furthermore, one of the studies 

identified potential benefits of EA forces in being more effective in improving large 

movement errors of the movements of stroke patients when compared to assistive forces 

(Patton, Stoykov, et al., 2006). However, there is very limited existing literature to support 

this finding. 
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A study by (Cesqui et al., 2008) compared the effects of EA against those of an assistive 

HCA. Fifteen stroke patients were divided into two groups and performed centre-out 

reaching movements towards targets placed in a circular configuration using a robotic 

manipulandum. The first group trained for two weeks with an error augmenting HCA that 

applied forces to the perpendicular direction away from the desired path with an amplitude 

proportional to the distance away from that path. After a two-week washout period (no 

robotic training) the participants trained with an assistive HCA that provided assistive forces 

when the participants were not able to complete a movement. The second group undertook 

the same protocol with the only difference being that its participants first received assistive 

training and then EA. Interestingly, the authors of the study concluded that patients with less 

severe upper limb impairment benefited more from the EA HCA while the more severely 

impaired benefited more from the assistive HCA. This is an intuitive finding as a severely 

impaired participant would benefit more from an assistive HCA as it would allow them to 

perform movements that they could not perform otherwise while an EA HCA would further 

impede those movements and vice versa. The implications of this study are great as it showed 

that an EA HCA had comparable effect on motor learning to an assistive HCA but also that 

different control strategies may be suitable for different impairments and in different stages 

of the recovery. 

The study by (Lee and Choi, 2010) which evaluated the effectiveness of an error augmenting 

HCA in a trial with able-bodied participants (N=60) reported different findings. The 

participants were randomly assigned into one of four intervention groups and performed 

tracking movements using a single point of attachment rehabilitation robot under one 

training condition. Those were an assistive HCA, an error-augmenting HCA in the form of 

resistive forces in the opposite direction of the vector pointing towards the target and an 

amplitude proportional to the distance between the robot’s endpoint and the target, random 
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direction and amplitude forces, and a control condition where no forces were exerted by the 

robot. The study considered one measure for the analysis of the results that is the mean error 

(distance from the target). In the assessment following the training stage of the trial the 

assistive condition was the one that reduced the error the most, while the error augmenting 

HCA was the one had the least effect. Nonetheless, an interesting finding of this study was 

that the in retention tests the group that received training with the EA HCA performed better 

than the one that practised with the assistive HCA. This suggest that assistive HCAs are 

better at inducing short term improvements but EA can provide longer lasting effects i.e. 

more retention. That is an interesting finding however, it must be taken with caution as the 

study is of limited methodological quality mostly due to the fact that the authors only report 

the findings of the analysis for one kinematic measure and as such it is difficult to draw 

conclusions as to what would be the effect of the different training modalities in other aspects 

of the movement such as duration, velocity and smoothness an issue that should be addressed 

in later repeatability studies. 

Furthermore, only few studies have investigated the effectiveness of haptic error 

augmentation when combined with adaptive features (visual or haptic) in conditions such as 

stroke (Abdollahi et al., 2014) and multiple sclerosis (Squeri et al., 2007; Vergaro et al., 

2010) and provide evidence of the potential of such control strategies. Such approaches 

include machine learning  (Patton, Kovic, et al., 2006; Shirzad and Van Der Loos, 2013) and 

performing a tracking task where the participant was asked to follow a therapist’s movement 

while the system is applying forces proportionally and in the direction of the error between 

the position of the therapist’s arm and the patient’s arm (F Abdollahi et al., 2011; Abdollahi 

et al., 2014).  

The study by (Patton, Kovic, et al., 2006) introduced a machine learning algorithm which in 

the course of an “algorithm learning stage” within a session the robot applied random 
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intermittent forces on the participants’ movement in order for the system to learn the average 

forces that are required to move the subjects’ arm to a certain position. To perform EA, the 

opposite vector of these forces was applied in the learning stage of the session. To test the 

effectiveness of that HCA on the rehabilitation of those suffering from stroke the authors 

performed a clinical trial. This trial had two intervention groups that trained on performing 

reaching movements with the robot either applying EA forces or no forces (Control group). 

The participants’ movements improved only in the directions with initial high errors. Both 

groups performed similarly in the kinematic measures but the treatment group showed a 

marginal but statistically significant improvement in the Fugl-Meyer Assessment (FMA) 

scale ( (1.6 points, p<0.06).  

A more recent study by (Givon-Mayo and Simons, 2014) with stroke participants (N=7) 

explored the effects of a velocity oriented EA approach. A healthy bell-shaped velocity 

profile was established by measuring movements of able-bodied subjects. The stroke 

participants were asked to perform a reaching task while following the optimal velocity 

profile and the system calculated the deviation (error) of the participants’ movement velocity 

from that profile. If participants ‘movement velocity deviated from the desired velocity 

profile a force was applied in the opposite direction of the movement in order to augment 

errors in movement velocity. As such for a high velocity movement the system would be 

opposing movement and hence reduce velocity while for a low velocity it would do the 

opposite. The study populations were divided in two groups with one being the treatment 

group (n=4) performing reaching movements while manipulating a single point of 

attachment rehabilitation robot under error augmenting forces and the other being the 

Control group (n=3) that did the same but without any forces. The authors reported that the 

treatment group improved movement smoothness as velocity profiles changed in the course 

of the trial to resemble more the optimal profile than the Control group did. Also, the 
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treatment group showed greater improvement in the Modified Ashworth Scale (MAS) 

(Figure 2-2) scale (≥40% improvement for treatment group, <12% for the Control group). 

Given the very small population the authors advise caution and suggest that trial with refined 

protocol and bigger population needs to be contacted to further explore this finding. 

It appears that studies in error augmentation for robotic rehabilitation suffer from low 

methodological quality as many studies found in literature are pilot/exploratory studies with 

small sample sizes and designs that allow bias (Israely and Carmeli, 2015). An exception to 

this was the Random Control Trial (RCT) study by (Abdollahi et al., 2014) where a crossover 

protocol was implemented. RCTs are considered to be of greater methodological quality 

(Dobkin, 2004). More, specifically, in the study by (Abdollahi et al., 2014) the same group 

of stroke patients received practice with a combination of visual and haptic EA and after a 

washout period of one week where no practice was received the participants undertook the 

same protocol but without any visual or haptic EA. The participants were randomly assigned 

to one of two groups. Each group underwent the same practice with the only difference being 

that one group was firstly trained with EA and after a washout period trained with the control 

condition while the other group did the opposite.  

The participants were asked to move the robot’s endpoint to match the movements of a 

cursor controlled by a therapist. The adaptive features of this approach were provided by the 

therapist who was adjusting the movements to tailor the training according to the needs of 

each participant. EA forces were proportional in magnitude to the distance from the 

participants’ hand to the that of the therapist and were applied in the opposite direction 

providing a resistive force. The authors reported that EA had a greater effect than the control 

condition with a better score in the FM and the Wolf Motor Function Test (WMFT) clinical 

scales (Figure 2-2) indicating improvements in motor function while no kinematic measures 

were evaluated. Despite the positive outcome such rehabilitation approaches can be 
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considered more of an enhancement to the traditional rehabilitation therapy rather than 

robotic rehabilitation approaches as they rely heavily on the presence and actions of a 

therapist hence not taking into advantage the main benefits of robotic therapy which places 

the therapist in a supervisory role overseeing the therapy of multiple patients in parallel 

rather than one at a time.  

Moreover, by studying the literature one can find limited evidence of studies investigating 

the effects of adaptive EA training. Most studies, adjust the magnitude of error 

amplification/the difficulty of the task by multiplying a fixed gain to the instantaneous error 

which is the same across all participants (Rozario et al., 2009; Abdollahi et al., 2014; Givon-

Mayo and Simons, 2014). Another approach that aims to provide for more individualised 

training, is the use of machine learning to assess the forces that are required to disturb 

movement the most efficiently for each individual (Patton, Kovic, et al., 2006) or predict 

what amount of difficulty the patients would desire to increase their motivation (Shirzad and 

Van der Loos, 2015). However, in order to train the algorithm for each individual the 

participant is required to perform many movements (200) before the actual therapy begins. 

As a result precious therapy time is been lost and therefore such approaches make impractical 

the adjustment of difficulty more than once in a session. 

Within the limited number of studies exploring the effects of EA on motor learning there is 

sufficient evidence to demonstrate that they can be beneficial for upper limb rehabilitation. 

Nevertheless, currently it is difficult to conclude what those benefits are and how EA 

compares against more established approaches such as assistive HCAs and free movements. 

The study by (Cesqui et al., 2008) indicated that the benefits on improving upper limb 

impairments of assistive and error augmented HCAs can be specific to the severity of the 

impairment. The logical question arising from this finding is if a single HCA with 

performance-based adaptive features could be more beneficial for a wider range of 
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impairment severities than a non-adaptive HCA and if so, does the type of the HCA have an 

effect on the outcome. To the author’s knowledge there has not been an attempt to answer 

this question as a comparison between performance-based adaptive assistive HCAs and their 

error-augmented counterparts has not yet been made. Furthermore, to this day the search for 

an optimal haptic control algorithm to promote motor learning on those with impairments 

still remains unanswered (Marchal-Crespo and Reinkensmeyer, 2009) leaving open the 

question of whether all possible strategies have been explored.  
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 Aim and objectives 

2.6.1 Aim 

The aim of this work was to develop novel haptic control algorithms utilising a single point 

of attachment haptic device and evaluate how they affect motor learning primarily in able-

bodied adults with the intention to transfer the findings to the stroke and cerebral palsy 

populations.  

2.6.2 Objectives 

1. Perform a literature review on upper limb robotic rehabilitation approaches for 

impairments caused by stroke and cerebral palsy to identify haptic control 

algorithm methodologies and trends in research. 

2. Further develop an existing single point of attachment upper limb rehabilitation 

device. 

3. Design simulation and development environments that can be used for the 

development and testing of haptic control algorithms. 

4. Develop a computer game environment to interface the single point of attachment 

rehabilitation device with the end user. 

5. Develop assistive and challenge based novel haptic control algorithms for upper 

limb rehabilitation.  

6. Design and perform an appropriate trial to evaluate the effect of the developed 

haptic control algorithms in the motor learning of able-bodied adults.  
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7. Analyse kinematic data collected in the trial in order to evaluate the effectiveness 

on motor learning of each of the haptic control algorithms and compare them 

against each other. 

2.6.3 Study Hypotheses 

During the selection and development as well as the testing of the haptic control algorithms 

certain hypotheses were made. These are as follows: 

1. Error augmented robotic rehabilitation would be better at inducing motor learning to 

the upper limb compared to assisted or free movements. 

2. Adaptive HCAs would better induce motor learning to the upper limb when 

compared to free movements. 

3. Training with one limb will induce bilateral transfer to the other. Error augmenting 

adaptive HCAs would be more effective in inducing bilateral transfer. 

4. Training with adaptive error augmenting HCAs would result to increased 

engagement and satisfaction to the users. 
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 Selection of algorithms for investigation 

From the findings of the literature review presented in this chapter it appears that only few 

studies have investigated the effectiveness of haptic error augmentation when combined with 

adaptive features in conditions such as stroke (Farnaz Abdollahi et al., 2011) and multiple 

sclerosis (Vergaro et al., 2010; Shirzad and Van Der Loos, 2013). Nevertheless, these studies 

provide promising evidence of the potential of this type of control strategies. Such 

approaches include machine learning (Patton and Mussa-Ivaldi, 2004; Shirzad and Van Der 

Loos, 2013) and performing a tracking task where the participant is asked to follow a 

therapist’s movement while the system is applying forces proportionally and in the direction 

of the error between the position of the therapist’s arm and the patient’s arm (Farnaz 

Abdollahi et al., 2011). 

The results of the literature survey indicated a lack of extensive study of error augmenting 

HCAs with adaptive features that are informed by the theory of motor learning. Two novel 

HCAs were selected for further study namely, error augmentation adaptive (EAA) and error 

augmentation proportional (EAP). Furthermore, to compare the effectiveness of the 

developed HCAs relative to other (more established) HCAs an assistive HCA was to be 

developed. This assistive algorithm was selected to be an implementation of a well-

established adaptive HCA namely assistance as needed (AAN). As current evidence in 

literature supports that active engagement is positively correlated with brain plasticity in 

robotic therapy (Blank et al., 2014) all of the developed HCAs had adaptive features that 

assess the participants’ performance and adjust accordingly to challenge them. As findings 

on motor learning of the able-bodied transfer to the impaired population (Krakauer, 2006), 

the effectiveness of the developed haptic control algorithms is evaluated in a trial with 

healthy participants and compared against established modalities of training such as AAN 

and free movements. It must be noted that as this body of work focuses on point to point 
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planar movements while following a desired trajectory, movement error is defined as the 

perpendicular distance away from the trajectory that is required to be followed. 

The following subsections present the conceptual design of the aforementioned HCAs. 

2.7.1 Error Augmentation Adaptive 

Error Augmentation Adaptive (EAA) is introducing a challenge factor to the movement by 

applying forces to increase movement error in an adaptive manner. In the context of this 

work the error is defined as the perpendicular distance from a desired trajectory. In a reaching 

task where the user is asked to move the robot’s endpoint across a straight line trajectory 

from point A to point B the robot provides forces in the perpendicular trajectory away from 

the desired path Figure 2-16. An adjustable band (deadband) is placed around the desired 

trajectory within which no forces are applied by the robot. The user’s performance is 

evaluated over a specific period of time td (or a set number of movements) as a running 

average. When time elapses equal to td the system reads the running average of error up to 

that point. Consequently, based on the value of this average the system makes a decision to 

adjust the deadband zone accordingly that is, as performance improves the deadband 

becomes narrower in order to make the task more difficult and vice versa. 
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Figure 2-16: Both figures show typical scenarios for different values of mean performance. The figure on the 

left demonstrates initial conditions while the one on the right shows how the system adapts if an improvement 

in the user’s performance has occurred 

This HCA is utilising haptic tunnels (but inversed) that have been extensively used with 

assistive adaptive HCAs (Basteris et al., 2014) and combines them with error augmentation. 

Other adaptive EA algorithms (Patton, Kovic, et al., 2006; Shirzad and Van Der Loos, 2013) 

require a lengthy learning phase at the beginning of the training session to adjust the 

difficulty of the movements according to the ability of the user hence making multiple 

adjustments within the same session impractical. Therefore, such HCAs do not take into 

account changes in the performance of the user within the session due to learning or even 

fatigue. The aim of this novel HCA is to provide challenge proportional to the performance 

by incrementally adapting to the patient’s performance. Several studies have demonstrated 

(Colombo et al., 2012; Chemuturi et al., 2013) that challenging tasks have a better effect on 

inducing motor learning. Still, there is evidence suggesting that incremental changes in the 

conditions (in this case incrementally increasing or decreasing the perturbation) of practise 

have a better potential in inducing motor learning (Bastian, 2008). 
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2.7.2 Error Augmentation Proportional 

Error Augmentation Proportional (EAP) is a challenge-based HCA that makes movements 

more difficult by applying forces towards the perpendicular direction away from the desired 

trajectory. Similar to the Error Augmentation Adaptive (EAA) HCA a zone within which no 

forces are applied (deadband) is positioned around the desired trajectory of movement. When 

the user moves the robots handle (endpoint) outside from the deadband then the robot applies 

a force in the perpendicular direction away from the desired trajectory. The further away 

from the deadband the more intense the perturbation is; as such the more challenging the 

movement becomes.  

Figure 2-17 provides an example of a reaching movement from A to B for different positions 

of the endpoint (cursor) with respect to the workspace (marker 1-6). When inside the 

deadband (zone defined by red dashed lines) no forces are applied by the robot (markers 

1,2). The area around the deadband is divided into zones of adjustable width. Within those 

zones forces are applied in the perpendicular direction away from the desired trajectory. The 

furthest the zone the greater the forces. For example, in the positions represented by markers 

3 and 4 the user will experience the same force amplitude but in different directions. On the 

other hand, in positions represented by markers 4-6 the user will experience forces in the 

same direction but of different amplitudes (force in marker 6 > force in position 5 > force in 

position 4). 
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Figure 2-17: When the participants moves within the deadband no forces are applied. When movement 

deviates from the deadband forces are applied in a perpendicular direction away from the desired trajectory. 

The greater the distance from the perpendicular error the greater the intensity of the perturbation. 

This HCA aims to increase effort and hence learning by introducing a penalty system. There 

is evidence supporting that humans adapt their movements to reduce effort (Todorov, 2004). 

This algorithm, exploits that feature of the human motor control system to guide the 

participants through the trajectories of reduced effort to promote desired trajectories. 

Inaccurate movements are penalised with higher perturbation making them more difficult to 

perform. Consequently, the participants can develop one of two strategies; either concentrate 

to attempt high accuracy movements or concentrate while resisting perturbing forces. If the 

force amplitudes are carefully mapped to the zones, the therapist can provide haptic 

trajectories that provide a compromise between accuracy and magnitude of perturbation 

hence training the internal system of the patients to move through these areas. As the 
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participant improves those “optimal” zones can be adjusted accordingly to be closer to the 

desired trajectory etc..  

Error augmentation proportional is based on an HCA developed by (Cesqui et al., 2008) 

where EA forces are proportional to movement error multiplied by a fixed gain but unlike 

this algorithm EAP allows for customisation of the forces to meet the requirements of the 

therapy as not only the different zones are adjustable in width but they can be assigned to a 

specific gain or response (magnitude of perturbation) within those zones (Figure 2-18). As 

such it is not bound by a linear relationship between error and magnitude of perturbation and 

other magnitude relationships can be achieved (Figure 2-19). Finally, in contrast to the 

algorithm introduced by (Cesqui et al., 2008) EAP allows for a deadband i.e. a zone where 

no forces are applied to allow movement for accurate but not perfect movements not to be 

penalised which in turn will decrease training fatigue when the participant achieved the error 

goal that was set for them. Furthermore, the use of a deadband allows the patients to have 

more control over their movements a feature that has been suggested to increase outcome 

(Tropea et al., 2013) 
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Figure 2-18: Perturbation magnitude in continuous proportional EA and proportional perturbation in zones 
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Figure 2-19:By adjusting the perturbation gains for each zone different patterns can be achieved to adjust the 

difficulty of the task at different distances from the desired trajectory (In the figure zone 1 is the nearest to the 

desired trajectory while zone 5 is the furthest). Zone 1 acts as deadband i.e. a zone where no forces are applied. 

2.7.3 Assistance As Needed 

Assistance as needed (AAN) is an assistive adaptive HCA. AAN provides forces towards 

the target of the movement. A neutral zone (deadband) is fitted around both sides of the 

desired trajectory within which no forces are applied. Performance in the form of tracking 

error away from the desired trajectory is measured over a period of time td. When td has 

elapsed the average error is calculated and the walls of the deadband are adjusted to become 

narrower (more assistance) when error is high and to become wider (less assistance) when 

error is low. Active assistive type algorithms are the most studied category of HCAs 

(Basteris et al., 2014). AAN algorithms have been shown to improve upper limb function 

(Kahn et al., 2004) while making movements faster, smoother and more accurate (Sanguineti 

et al., 2009). 



59 

 

B B

F

F

F

F

d 2*d

A: Starting point
B: Finishing point
D: deadband distance 
F: Force applied to the hand

Cursor
Target
Desired trajectory
Deadband border

0 t td td t 2*td

 

Figure 2-20: Both figures show typical scenarios for different values of mean performance. The figure on the 

left demonstrates initial conditions while the figure on the right shows how the system adapts if an improvement 

in the user’s performance has occurred 

 

 



60 

 

3 Development of the robotic rehabilitation system 

 Introduction 

The literature survey presented in Chapter 2 identified that error augmentation has potential 

in improving arm function on patients who suffer from neurological impairments. At the end 

of the chapter the concept behind the three haptic control algorithms considered in this thesis 

was introduced, namely Error Augmenting Adaptive (EAA), Error Augmenting Proportional 

(EAP) and Assistance As Needed (AAN). This chapter discusses the development of the 

hardware and software required to implement the aforementioned HCAs. 

The platform that these HCAs were to be developed for and deployed on, was a single point 

of attachment planar rehabilitation robot initially developed in the University of Leeds. The 

hardware designs of the aforementioned robot were made available to our research team. 

However, an attempt was made to further improve certain aspects of the robot such as an 

update of the electronic components and some changes in the original designs of the 

rehabilitation robot which are described in detail in Appendix A. Furthermore, it must be 

noted that all software developed for the purposes of this project was not based on the 

previous design. This chapter presents the details of the software development component 

of this work including the algorithmic implementation of the HCAs discussed in Section 2.7. 
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 Overview of the rehabilitation robot 

The rehabilitation robot used in this project was a single point of attachment rehabilitation 

robot originally developed by researchers at the University of Leeds for studying the effects 

of the robotic therapy to the rehabilitation of children with CP (Holt et al., 2013). A 

description of the original system can be found in (Holt et al., 2013; Sivan, 2014). The 

rehabilitation robot was developed as a low-cost solution that aimed to be more accessible 

to the public when compared to the more expensive rehabilitation systems such as the MIT-

MANUS (MacClellan and Bradham, 2005). It consisted of a two link planar robotic 

manipulator with two degrees of freedom (DoF) as shown in Figure 3-1 and Figure 3-2. Each 

link was actuated by a DC motor with magnetic rotary encoders to determine position.  

Elbow joint

Endpoint

Shoulder joint

Housing for the 
motors and gears 

Link 2

Link 1

 

Figure 3-1: The two degree of freedom rehabilitation robot 
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Figure 3-2: Overview of the workspace of the rehabilitation robot and dimensions. 

To control the robot a National Instruments compact Reconfigurable Input Output (cRIO) 

was used. The cRIO is a reconfigurable industrial controller, which combines a real-time 

(RT) processor and a Field Programmable Gate Array (FPGA). The processor was running 

a real time operating system, namely the NI Linux Real-Time Operating system that allows 

the deterministic execution of high-level operations such as communications, control, data 

logging and others. The FPGA can be programmed by the user to perform high-speed low-

level operations such as high-speed control, data processing and others. The cRIO was 

attached to a chassis that allowed several hot-swappable input/output (I/O) modules to be 

interfaced and to connect to a PC via crossover Ethernet to allow two-way communication. 

An overview of the electronic components of the system can be found in Table 3-1 and a 

basic connection diagram is provided in Figure 3-3. 
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Table 3-1: List of components and expansion modules that were used with the cRIO system 

Module Model Quantity 

Real-Time Controller 533 MHz processor, 256 MB DDR2 

RAM, 2 GB Storage 

cRIO-9022 1 

8-Slot, Virtex-5 LX110 CompactRIO Reconfigurable 

Chassis 

cRIO-9118 1 

Full H-Bridge Brushed DC Servo Drive Module NI 9505 2 

±10 V, Analog Output, 25 kS/s/ch, 16 Ch Module NI 9264 1 

±10 V, Simultaneous Analog Input, 100 kS/s, 4 Ch Module NI 9215 1 

Capacitive 
sensors

C

C

DC I/O

Motor 
Contollers

TCP/IP

Data 
Storage

PC

cRIO
 Real-time

cRIO
 FPGA

USB

 

Figure 3-3: The robotic rehabilitation system overview and basic connection diagram. 

Each of the two links of the rehabilitation robot is actuated by a brushed direct current motor 

(Maxon Motor Worldwide, part number 148867) with a maximum output of 150 Watts 

(Figure 3-4b). Each motor was fitted with a 15:1 ratio gearhead (Maxon Motor Worldwide, 

part number 203116) as shown in Figure 3-4a. The gear-motor combination had a nominal 

speed of 458 rpm and a nominal torque of 2443 mNm. Finally, a three channel (A, B, Index) 
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magnetic rotary encoder (Maxon Motor Worldwide, part number 225787) as shown in 

Figure 3-4c was attached to each of the motors.  

a) b) c)

+ +

Maxon 203116 Maxon 148867 Maxon 225787

 

Figure 3-4: The actuator used was comprised of a) a gearhead, b) a DC motor and c) an encoder (Maxon 

Motor Worldwide, 2014). 

 

Furthermore, as a safety mechanism, the system incorporated a capacitive sensor inside the 

handle of the device. The system detected changes in capacitance when a hand was in 

proximity to the sensor. As such, the robot would apply forces only when the users were 

holding the handle. Three the Atmel™ AT42QT1011 capacitive sensors were used mounted 

on a custom-designed Printed Circuit Board (PCB). This allowed sensing to be performed 

through multiple inputs for redundancy purposes in case a single sensor malfunctioned. The 

AT42QT1011 is a single channel capacitance sensing integrated circuit (IC). The specific 

IC was selected because it did not incorporate the Max on-duration feature, a common 

feature among the capacitive sensing IC’s which recalibrates the sensor when it is activated 

for a certain period of time (Atmel, 2013).  

Finally, the sensor board was interfaced with the cRIO. The supply voltage needed for the 

sensors operation was provided by the NI 9264 analogue output module and two of the 

sensors’ inputs were connected to the NI 9215 analogue input module. A program was 

developed in LabVIEW (Figure 3-5) so that the sensors’ output would perform as a switch 

that would output a signal only when one or both sensors were activated (Figure 3-6).  
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Figure 3-5: The user interface for the capacitive 

sensor program 
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Figure 3-6: Flowchart for the capacitive sensor 

program 
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 Software development for the rehabilitation robot 

As described in the previous section the rehabilitation system was comprised of three sub-

systems namely the FPGA and Real-time system of the cRIO and a gaming personal 

computer (PC). As such, the software development was divided accordingly to three main 

parts. The FPGA portion of the system was used to handle the low-level sensing and motor 

control. Furthermore, the real-time controller of the cRIO was used to handle the high-level 

motor control i.e. the haptic control algorithm, the data storage and communications. Finally, 

a graphic environment in the form of a computer game was developed for the computer, 

which received input from the cRIO through a TCP/IP Ethernet connection (Figure 3-7). 

Rehabilitation Robot   FPGA program

 Read sensors

 Low-level Motor 

Control

 Data acquisition

Real-time program

 HCA

 Comms (Host)

 Data storage

 Kinematics

PC (Client)

Computer game 

environment 

(GUI)

TCP/IP

 

Figure 3-7: The system architecture 

3.3.1 Field-Programmable Gate Array software development 

 Field-Programmable Gate Array software overview 

The cRIO’s FPGA was used to handle all the low-level operations of the system such as 

performing data acquisition for the motors encoders, implementing pulse-width modulation 

(PWM) and also implementing proportional integral derivative (PID) controllers for the 

motors. The FPGA is capable of executing multiple loops in parallel up to the maximum 

frequency supported by the cRIO which was 40 MHz. 

The FPGA portion of the architecture consisted of two sets of identical loops, one for each 

motor, as well as an additional loop that handled the input and output of the capacitive 
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sensors (Figure 3-8). The loop that is responsible for the operation of the capacitive sensor 

was described in Section 3.2 and a flowchart of the code is displayed in Figure 3-6. The 

design of the FPGA program for controlling the motors was based on the NI program for 

position control for NI 9505 as described in (National Instruments, 2010). Figure 3-10 

provides a flowchart of the FPGA programs for controlling one motor. 

Motor 1
Loops

Motor 2
Loops

Capacitive 
sensor loop

FPGA Program

 

Figure 3-8: The main components of the FPGA program 

The encoder loop, received input in the form of square waves generated from each channel 

of the motor’s encoder and decoded them in order to calculate the motors rotation as shown 

in Figure 3-9. Subsequently the rotational information was fed in to the input of the position 

loop, which used a PID controller to reach the requested setpoint (position control). The 

output of the position loop was used as an input by the current loop to act as the setpoint for 

a PID controller that also received a sample measurement from the current sense loop as its 

input (torque control). The output of the loop served as the duty cycle for the pulse width 

modulation (PWM). The PWM pulse had a maximum duty cycle of 20 kHz. Finally, the 

PWM loop implemented the PWM that was then outputted to the controller embedded in the 

NI 9505 and subsequently to the motor. Additionally, an error-monitoring loop monitored 

the system for overvoltage (Vsupply > 40V) or undervoltage (Vsupply < 8V) supply to the motors 

and also to monitor whether the motor terminal was directly connected to the power supply 

or the ground as well as to monitor for overheating within the module (Temperature > 115 

oC). 
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Figure 3-9: The outputs of the encoder channels when the encoder shaft is rotating and when it is not. By 

applying digital logic to the encoder’s outputs the rotation of the encoder shaft can be quantified as well as 

the direction of its rotation. 
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Figure 3-10: The FPGA program for position control of a single motor and the corresponding inputs and 

outputs (Figure adapted from (National Instruments Corp., 2010)) 

 Pulse-Width Modulation generation and current measurement 

The rehabilitation robot in its current configuration does not have force-sensing capabilities. 

As such, a current controller was used to control the torque of the robot’s motors and 

subsequently to control the forces exerted by the robot’s endpoint. The NI 9505 has an 

embedded current sensor that measures the current supplied to the motor at any time. The 

current sensing circuit used by the NI 9505 relies on two resistors (R1 and R2) each 
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connected to one end of the motor Figure 3-11. The potential difference (p.d.) across each 

of the resistors is measured and the difference between their voltages is calculated. The 

output of this operation is in turn amplified and converted to a 12-bit digital signal. The sign 

of the output signifies the motor’s direction of rotation. (National Instruments Corp., 2012).  

  

Figure 3-11: The current sensing circuit of the NI 9505. Source: (National Instruments Corp., 2012) 

During the off state of the PWM, current flows through both resistors on the NI 9505 as 

shown in Figure 3-12. This affects the output of the sensor giving incorrect readings. As 

such, current has to be sampled during the on state of the PWM where current is flowing 

through only one of the resistors. 

PWM on ON state PWM on OFF state

 

Figure 3-12: The current sensing circuit for both states of the PWM. Source: (National Instruments Corp., 

2012) 

Furthermore, during the on state of the PWM the current does not remain constant due to the 

motors inductance but it increases until the voltage drops again incrementally to its minimum 

value during the off state of the PWM as shown in Figure 3-13. To acquire a reliable 
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measurement, the current had to be sampled at the same point of the on state of the PWM 

and as the middle of the current pulse provides an average value this point was deemed 

suitable for sampling the current. 

 

Figure 3-13: Voltage and current for a DC motor where a PWM is applied at its input. Source:(Hughes and 

Drury, 2013)  

On the FPGA program, the current sense loop was triggered by the PWM loop to sample 

current in the midpoint of the on portion of the PWM. To compensate for delays that are 

inherent to the system and for the delay between sampling the current measurement and 

reading its value, the current measurement was triggered before the midpoint of the PWM 

so that the reading was received at the midpoint of the PWM pulse. To calculate the point of 

the PWM that the current sensing had to be triggered in order for the current measurement 

to be acquired in the specified time i.e. the midpoint of the On portion of the PWM Equation 

( 5 ) was used (National Instruments Corp., 2009). 

𝑡𝑐𝑢𝑟_𝑠𝑒𝑛𝑠𝑒_𝑡𝑟𝑖𝑔 = 𝑇 + 395 𝑛𝑠 −
𝑡𝑃𝑊𝑀𝑂𝑛

2
−

6

𝑓𝑐𝑙𝑘
 

( 5 ) 
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Where: 

𝑡𝑐𝑢𝑟_𝑠𝑒𝑛𝑠_𝑡𝑟𝑖𝑔
(𝑠) is the time between the falling edge of the PWM pulse until the current 

measurement to be acquired 

395𝑛𝑠 ns is the compensation for accumulated delays within the system 

𝑡𝑃𝑊𝑀𝑂𝑛
(s) is the requested time for the On portion of the PWM  

𝑓𝑐𝑙𝑘(Hz) is the frequency of the FPGA clock (40MHz) 

To test the implementation of the current measuring loop an LEM© PR30 current probe was 

used to acquire current measurements of the system’s motors under stall load (fixtures 

cancelled forces produced by motors) for different specified maximum permissible current 

requests and to compare them against the measurement received by the current sense loop. 

The output of the current probe overlaid with the PWM pulse is displayed in Figure 3-14. 

For a comparable measurement to be acquired the same process was followed as in the 

current sense measurement reading. The current was sampled at the midpoint of the on part 

of the PWM pulse (Figure 3-15). As such, a range of measurements was collected for current 

values between 1-6 A with a step size of 0.5A. The results of the experiment shown in Figure 

3-16 indicated that there was a close correlation between the two measuring methods (Mean 

error= 0.08A, standard deviation = 0.07A) indicating that reliable measurements could 

indeed be acquired using the current sense circuit within the NI 9505. 
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Figure 3-14: An example of the output of the PWM loop on Channel 2 and the current passing through the 

motors Channel 1 (conversion ratio is 100mv/A) on static load for a requested current of 5.5A 

Pulse width

Half Pulse width

Current 
Measurement

 

Figure 3-15: Current from the current probe is measured at the midpoint of the On state of the PWM pulse 
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Figure 3-16: Measurement comparison between the current measurements received by the current sense loop 

and the measurement of the current probe. (Mean error = 0.08 A, Standard deviation from expected value = 

0.07A) 

 Proportional-Integral-Derivative controller tuning 

As mentioned in Section 3.3.1.1 the system utilised two PID controllers per motor to perform 

position and torque control, respectively. PID controllers are feedback controllers whose 

performance is determined by three parameters namely the proportional (Kp) the integral 

(Ki) and the derivative (Kd) gains as shown in Figure 3-17 (McKerrow, 1991). By changing 

these parameters, the response of the controller can be adjusted to a given input in order to 

provide the desired output. Over the years several methods have been proposed for 

calculating suitable values for the PID parameters. An established approach to online tuning 

is the method developed by Zeigler-Nichols (Ziegler and Nichols, 1942) and its different 

variations presented over the years (Astrom and Hagglund, 2001). As such methods were 

developed for industrial operations they are not always accurate especially if error is 

introduced into the system.  

In industry, a common manner of tuning PID controllers is the manual tuning of the different 

parameters to achieve the desired output based on empirical rules (Johnson and Moradi, 

2005) as shown in Table 3-2. 
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Figure 3-17: Basic PID controller flowchart. 

Table 3-2: Tuning rules for the different parameters of the PID controller. Adapted from (Li et al., 2006) 

Gain Rise time Overshoot Settling Time Steady-State Error Stability 

↑Kp ↓ ↑ ↑ (Small) ↓ ↓ 

↑ Ki ↓ (Small) ↑ ↑ ↓ (Large) ↓ 

↑ Kd ↓ (Small) ↓ ↓ Negligible ↑ 

 

Potentially there is an infinite number of parameter values that could provide the desired 

output. As such a combination of the Ziegler-Nichols method and manual tuning was used 

to select appropriate values (tune) the individual controllers. The Ziegler-Nichols method 

was used to obtain initial values for the PID gains followed by manual adjustment of the 

different parameters to achieve the desired performance. To define acceptable performance 

of the controllers a critically damped response was set as the desired output, a stable system 

with a response to a step input that has low rising time, overshoot, and low steady state error. 

As the selected tuning approach usually requires a very large number of iterations to achieve 
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the required output it would not be possible to include all the different measurements 

however, two examples of the tuning process (one for each joint) are provided in Figure 3-18 

and Figure 3-19 where the response of the position controller to a step input of 5o with zero 

step time for four different sets of settings of the PID gains, is displayed. 

An example of the aforementioned process is shown in Figure 3-18 in the responses where 

a PD controller (responses where Ki = 0) is implemented for the shoulder joint with Kp = 

100. By changing the Kd a critically damped response was achieved at Kd = 1000 (response 

in blue) with a faster rising and settling time and low steady-state error. Furthermore, the 

response of the elbow joint (Figure 3-19) for the gain combination of the position controller 

shows that the responses in blue, green and cyan are overdamped and hence have slower 

rising times. Conversely, the response in red had a much shorter rising time while producing 

low overshoot and steady state error hence this set of gains was more suitable for the 

purposes of the application. 

 

Figure 3-18: The output of the controller for the shoulder joint for different combinations of the PID controller 

gains for a step input of 5o. 
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Figure 3-19: The output of the controller for the elbow joint for different combinations of the PID controller 

gains for a step input (setpoint) of 5o 

As the systems movement is dynamic with the movement of each joint affecting the response 

of the other, the response of the controllers was tested for all of the four possible 

combinations of movements between the two joints as displayed in Figure 3-20. It must be 

noted that due to the different positioning of the motors the clock-wise movement is defined 

as positive rotation of the shoulder and negative for the elbow. From these plots it can be 

seen that the response of the two joints is similar for all combinations of movements. The 

elbow joint reaching steady state after just above 0.05 seconds and the shoulder joint just 

below 0.2 seconds while the overshoot in all combinations was kept below 10% of the 

setpoint. 

Table 3-3: Possible combinations of rotation between the two joints. 

Combination  Shoulder joint Elbow joint 

1 CW CW 

2i CW CCW 

3 CCW CW 

4 CCW CCW 

CW: Clock-wise, CCW: Counter clock-wise 
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3.3.2 Real-time software development 

The real-time (RT) portion of the architecture was responsible for the high-level operation 

of the system by reacting to inputs received by the FPGA program and controlling its outputs. 

Furthermore, the RT program performed data acquisition and handled the communications 

between the cRIO and the client PC portion of the architecture. The flowchart of the RT 

program is displayed in Figure 3-21. 

To ensure the deterministic operation of the crucial functions of the program, data storage 

was designed to run independently from the other operations. To do so a producer-consumer 

architecture was used which is ideal for one-way asynchronous parallel operations (Lin et 

al., 2013). In this architecture, two loops run in parallel with one loop serving as the producer 

feeding data into a data buffer (queue) which in turn was accessed by the consumer loop. 

According to the principle of operation of queues, the received data were being accessed by 

the consumer loop in the sequence they entered the queue, resulting to a lossless 

communication between the two loops.  

The real-time program had a two-way communication with the FPGA. It read the raw 

position of the motors as it had been outputted by the decoder loop on the FPGA program 

and converted it to angular position. The angular position for each motor was fed into the 

forward kinematics function and the position of the endpoint was calculated. The positions 

of the targets were provided to the program as an input the function target_selec that 

comprised of a state machine architecture, which switched between the different targets as 

they were reached and outputted the coordinates of the active target and the previously active 

target. The aforementioned positions served as the starting (previously active target) and 

ending point (active target) of the desired path. 
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The coordinates of the active target as well as the ones of the endpoint were used as inputs 

by the HCA portion of the code that calculated the setpoint of the motors in order for the 

system to achieve the desired behaviour. Inverse kinematics were used to calculate the 

rotational position in degrees of the joints in order for the robot to move to the given setpoint. 

The angular position of the setpoint measured in degrees was then converted to raw angular 

position and then transmitted to the FPGA program to be used as the setpoint for the 

respective position loops. 

Finally, the real-time program transmitted two streams of data: one locally through a buffer 

to the consumer loop, and one over transmission control protocol/internet protocol (TCP/IP) 

to the client computer that was responsible for displaying the graphical user interface. The 

streams contained information concerning the number (ID) of the target that was active, the 

set of movements, the endpoint position, the distance from the desired trajectory and time. 

The consumer loop received the data buffer and accessed its elements in the same sequence 

they have initially entered the buffer and without any loses. The de-buffered data were then 

stored in a technical data management streaming (TDMS) file which was appended with 

every iteration of the loop to include the next set of data. The NI TDMS file format was 

developed by National Instruments and it was optimised for storing measurement data to 

hard drives using LabVIEW and NI hardware (National Instruments Corp., 2015). 



80 

 

 

Figure 3-21: The RT program. The consumer loop runs with a constant frequency of 100Hz (deterministic) 

while the producer loop runs unbound to accommodate for delays of the storage process. 
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 Forward and inverse kinematics for the rehabilitation robot 

Kinematic analysis of a robotic manipulator provides the spatial relationships of the links, 

the solid mechanical object between two joints, in order to calculate the position of the end-

effector (direct kinematics) or given the position of the end-effector provides the tools in 

order to calculate the respective angles of the joints for the manipulator to reach this position 

(inverse kinematics) (McKerrow, 1991). 

By utilizing information from the motor encoders of the robotic device and by using forward 

(FWD) kinematics the position of the end effector can be calculated. That position can be 

used to inform a virtual environment about the actual position of the robot in space, for 

example the cursor position providing information about the corresponding position of the 

joystick to the virtual environment workspace. On the other hand, inverse kinematics are 

crucial for robot control. For a given target, the desired position of the end effector is known. 

Inverse kinematics provide information on what the joint angles should be in order for the 

end effector to reach that position. By comparing the actual joint angles with the desired an 

error signal is generated that can be used for robot control.  

This section describes a trigonometric approach to calculate the forward and inverse 

kinematics for the robotic manipulator utilised in this project as well as their programmatic 

implementation in LabVIEW. The derivation of the equations of the forward and inverse 

kinematics for the two-degree of freedom planar manipulator is provided in Appendix A. 
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Figure 3-22: The two link manipulator for a given position of the end-effector  

The vector of the Cartesian coordinates (forward kinematics) of the endpoint of the two 

degrees of freedom (DOF) planar rehabilitation robot with rotational joints given joint angles 

θ1 and θ2 (Figure 3-22) is provided below in Equation ( 6 ). 

𝑝𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 = [
𝑥2

𝑦2
] =  [

𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2)

𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃1 + 𝜃2)
] 

( 6 ) vector for endpoint coordinates 

And the vector of coordinates of the elbow joint given a rotation θ1 of the shoulder joint is 

given by Equation ( 7 ) 

𝑝𝑒𝑙𝑏𝑜𝑤 = [
𝑥1

𝑦1
] =  [

𝑙1 cos(𝜃1)

𝑙1 sin(𝜃1)
]  

( 7 ) vector for the elbow coordinates 

 Inverse kinematics 

𝜃2 = ±𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝜃2, 𝑐𝑜𝑠𝜃2) ( 8 ) Angular position of the elbow joint 

Where:  𝑐𝑜𝑠𝜃2 = (
𝑥𝑒

2+𝑦𝑒
2−𝑙1

2−𝑙2
2

2𝑙1𝑙2
) and sin 𝜃2 = √1 − 𝑐𝑜𝑠2𝜃2 
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And  

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑝𝑦, 𝑝𝑥) − 𝑎𝑡𝑎𝑛2(𝑙2𝑠𝑖𝑛𝜃2, 𝑙1

+ 𝑙2𝑐𝑜𝑠𝜃2)  

( 9 )Angular position of the shoulder joint 

 

From the previous equations it is evident that 𝜃2 has two solutions; one for the positive result 

and for the two solutions of 𝜃2 there will be two respective solutions for 𝜃1. This is known 

as redundancy in robotics and it means that there are two possible configurations for the 

manipulator’s endpoint to reach a certain position (McKerrow, 1991). As for the specific 

application, there were no limitations on the design of the robot to indicate which angles 

should be selected and as such, either of the two sets of solutions is valid.  

A detail analysis of how the kinematic equations were derived is provided in Appendix A. 

 Simulation of the robot’s kinematics 

A kinematic model was programmatically implemented in order to create a simulation 

environment for the motion of the robotic manipulandum. The program accepted as an input 

the lengths of the links as well as their respective angles and displayed their position on the 

plane. The program could also accept as an input the position of the end-effector, calculate, 

and display the angles at which the respective links are positioned. Furthermore, the system 

provided a visual representation of the manipulator’s kinematics as well as a target whose 

position can be adjusted accordingly. In Figure 3-23 the simulation environment setup to 

verify the kinematic algorithms is shown. The angles of the links are inputted in the system, 

the forward kinematics are calculated and displayed and that output is connected to the input 

of the inverse kinematics algorithm whose results are then visualized.  
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 Workspace translations 

Multiple movement translations occurred at the system. Firstly, there was a translation of 

angular movement to linear movement as described by the forward kinematics in the 

previous section. The workspace where the endpoint of the robot moved that is, the physical 

workspace of the robot, was also translated to a virtual workspace on the computer screen. 

The gearhead of the Maxon© motors had a 15:1 gear reduction ratio. The movement of each 

motor was then transmitted to a set of gears with a 2:1 ratio (Figure 3-24). To convert the 

raw rotational data collected by the decoder loop into angular displacement the following 

formula was used 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝐴𝑛𝑔𝑙𝑒 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ×
360

𝑔𝑟1 × 𝑔𝑟2 × 𝑐𝑜𝑟 × 1024
 

( 10) 

where gr1 =91:6 was the reduction on the gearhead and gr2 = 2:1 is the reduction on the 

subsequent gears, 1024 is the number of pulses the motors encoder outputted per rotation 

and cor = 4 was used to correct for the fact that the encoder loop was measuring four pulses 

per unit of rotation. Once the angular displacement was calculated the FWD kinematics were 

calculated. As the encoders used are incremental, they do not measure position in an absolute 

manner, as such the position had to be reset to the same starting point before using the 

rehabilitation robot. The starting point was defined as the one where the robotic arm was 

fully extended while the shoulder joint was used on the rightmost position. 
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Figure 3-24: Gear ratio from motors to the robot’s links 

As the centre of the user’s workspace (Figure 3-25) was selected to be the point C (xc,yc), 

where the shoulder joint was at the middle of its range and the elbow joint was at a 90o angle 

with the first link. Given a square workspace of size L by L, its centre coordinates C (xc,yc) 

and an endpoint position of E(xa,ya) the workspace is defined by the following algorithm: 

𝑥 = {

𝐿, 𝑥 > 𝐿

𝑥𝑒 − 𝑥𝑐 +
𝐿

2

0, 𝑥 < 0

, 0 ≤ 𝑥 ≤ 𝐿     ,     y = {

𝐿, 𝑦 > 𝐿

𝑦𝑒 − 𝑦𝑐 +
𝐿

2

0, 𝑦 < 0

, 0 ≤ 𝑦 ≤ 𝐿 
( 11) 

 

A final translation occurs from the actual coordinate system of the robot to a virtual 

coordinate system on the computer screen (Figure 3-25). Given a square virtual workspace 

of N by N pixels and an actual workspace size of L by L meters the translation ratio is 

calculated as rt = L/N. As such, the coordinates of the endpoint on the virtual environment 

are calculated as follows: 

𝑥𝑣 = 𝑟𝑡𝑥  ,   𝑦𝑣 = 𝑟𝑡𝑦          ( 12) 

 

𝑊ℎ𝑒𝑟𝑒: 𝑥, 𝑦 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑎𝑛𝑑  𝑟𝑡 =
𝐿

𝑁
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 

 



87 

 

 

L mm

L m
m

C(Xc,Yc)

Actual 
workspace

N pixels

N
 p

ix
e

ls

Elbow 
rotationShoulder 

rotation

Virtual 
workspace

Starting position 
S(0,0)

 

Figure 3-25: Linear movement of the robot’s endpoint translates to rotational movement of the robot’s 

joints. By analysing the signal from the motors encoders, the angular displacement is calculated and by 

using FWD kinematics the position of the endpoint is calculated. Finally, the movement in the actual 

workspace is translated into movement in the virtual workspace of the computer screen. 

 Target selection state machine 

As previously mentioned the user is meant to interact with the system in order to follow 

trajectories towards alternating targets while the robot is providing forces according to an 

HCA. To ensure a robust deterministic operation of the cRIO in general and the RT program 

in particular, the cRIO portion of the system was designed not to rely on from the non-

deterministic portion of the system i.e. from the Windows™ PC running the GUI. As such 

only one-way communication was established between the RT and the PC with the RT being 

the host and the PC the client. 

To overcome this limitation two instances of the computer game were developed. One 

running on the cRIO (master) and one on the client PC (slave) with the first controlling the 

latter through TCP/IP. As such, the RT instance of the game was able to inform the system 

and the HCA about the position of the targets, the trajectories needed to be followed and 
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when a target was reached and a new one was activated i.e. there was a change in the 

trajectory needed to be followed. The PC instance of the game served as graphical user 

interface that allowed visualisation of the virtual environment created with the RT program. 

To do so, a virtual model of the environment was created. 

The position of the targets was provided to the system as a table in the initiation of the 

program. In its latest version, the system could interact with a maximum of sixteen targets. 

At any instance, there was only one target that was marked as active indicating the end 

position of the movement. The straight-line trajectory was calculated connecting the 

previously active target and the currently active target. The program outputted the 

coordinates of the active and the previously active target. A state machine was created to 

switch between the different targets and activate them once the previous target had been 

reached. To trigger the change in states i.e. for the next target to be activated, the endpoint 

of the robot needed to be within a virtual circle which was drawn around the coordinates of 

the target. The radius of the virtual circle was adjustable allowing the sensitivity of the 

system to be fully customisable. 

As described in the previous section a 16x2 table containing the x-y coordinates of the targets 

was used as an input to the system. The file was only read by the program once at its initiation 

and as a result the target coordinates could not be changed during the execution of the 

program. Furthermore, a 16x1-index table was used with each line having a unique value 

from 1-16. This index table served as a reference to each line of the table with the 

coordinates.  

Initially, there were sixteen identical states; one for each target, with the only difference 

being that each state would read a different line of the index table. As such, the first state 

would read the first line, the second the second line etc. In this manner, different coordinates 

would be accessed according to the respective index for the coordinate table. For example, 
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if the active state was the first one and the value of the first line of the index table was five, 

then the fifth line of the coordinate table would be accessed. Once the target was successfully 

reached by the robot’s endpoint, the program would move on to the second state where the 

value of the second line of the index table would have been accessed and as such the 

corresponding line of the coordinate table etc.  

All the states followed each other in a consecutive manner (state 1 was followed by state 2 

etc.). When the last target at the index was reached and before the transition to the first, the 

system had the capability of randomly reordering (shuffle) the values of the table of index 

in order to randomise the sequence the different targets would appear. The randomisation of 

the target sequence within each set of sixteen transitions could be turned on or off according 

to the needs of the application. Finally, during the transition from last to first state a counter 

is increased by one to serve as counter of sets (a full set is sixteen movements). 

The subroutine outputted constantly the coordinates of both the current target and the 

previous target, the set number and the value of the index table corresponding to the active 

target in order to be used by the other subroutines of the program such as the HCA subroutine 

and the communications subroutine. 

3.3.3 Haptic control algorithms 

A significant aspect of the system was the HCA portion of the program. The HCA controlled 

the direction and the intensity of the forces applied to the user’s hand. The HCAs developed 

fell under one of two categories namely assistive and challenge-based. To manipulate the 

direction of the forces position control was used. As such, by knowing the position of the 

endpoint and the virtual target and by applying geometrical operations the coordinates of the 

setpoint were calculated which then were transformed in angles by using inverse kinematics 

(Figure 3-26). Those angles were then used as an input by the position loop of the FPGA. 
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Also as a means of controlling the torque outputted by the system and hence the intensity of 

forces the setpoint of the current was also altered when needed.  

TargetAssistive Force

TargetResistive Force

Setpoint

Setpoint  

Figure 3-26: By placing the setpoint at different positions, the user experiences different forces as the robot is 

trying to reach the setpoint 

 Assistive Haptic Control Algorithms 

Assistive forces can be applied by the robot either a) towards the perpendicular direction 

from the endpoint of the robot towards the desired trajectory, or b) in the direction from the 

endpoint towards the desired trajectory or c) in all the directions pointing towards any point 

on the desired trajectory that is closer to the target from the point of intersection between the 

desired trajectory and the perpendicular line to the desired trajectory passing through the 

coordinates of the endpoint (Figure 3-27). 

For the user to experience an assistive force, the setpoint provided to the position controller 

should be placed between the position of the endpoint and the target or the desired trajectory 

and to be moving accordingly as the endpoint comes closer to the target. To do so the 

assistive HCA received as an input the coordinates of the endpoint and the current target as 

well as the previously active target. As desired trajectory was defined the straight line 

connecting the previously active target A with the currently active target B (active: next to 
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be reached). Furthermore, the perpendicular line from the endpoint position to the line 

containing the AB was drawn and the point of intersection was I. Finally, a third line was 

drawn connecting E and A. As such the orthogonal triangle EIB was formed. 

A B

E

I

Force direction:

Towards the target

Perpendicular

In-between

TargetTarget

Endpoint

 

Figure 3-27: Assistive forces can be generated towards the desired trajectory, the target or any angle between 

the two. 

A built-in function to LabVIEW namely, IMAQ GetPointsOnLine was used to output an 

array containing different points of a line given the coordinates of its starting point and end 

point. The GetPointsOnLine was used on the lines EB and EI to provide a set of potential 

setpoints on the direction of each of lines. An index was used to access the element at a given 

percentage of the length of the array/line. Furthermore, by getting the coordinates of the 

points on the two lines a third line was drawn connecting them. Again, the GetpointsOnLine 

function was used to get the individual points forming the line. By indexing the created array, 

the setpoint on the in-between line can be moved accordingly to get different angles from 

the robot’s endpoint towards the desired trajectory. (Figure 3-28) 
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Figure 3-28: Two different scenarios for setpoint calculation given the position of the endpoint E. The user 

can select which direction the forces will be applied towards by selecting p, i or s as the setpoint of the position 

controller. 

 Error augmenting Haptic Control Algorithms  

For the purposes of this work, error is defined as the perpendicular distance from the position 

endpoint to the desired trajectory. As such, an error-augmenting algorithm would provide 

forces on the perpendicular direction away from the desired trajectory. To do so the IMAQ 

VI Perpendicular line was used. This function calculates the perpendicular line to a reference 

line crossing a given point and outputs the points and the distance from that line.  

A virtual circle was drawn around the position of the endpoint. There were two points where 

the perpendicular line intersected the circle (Figure 3-29). If the setpoint was placed on the 

outermost point of intersection, then the user would experience a force that has a direction 

perpendicular and away from the desired trajectory. As such, this solution was used to set 
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the coordinates of the setpoint. In addition, from the main environment the user could alter 

the size of the virtual circle and as such how far from the endpoint the setpoint would be.  

A B

E

X

I

 

Figure 3-29: There are two points of intersection of the perpendicular line and the virtual circle. The distance 

from the desired trajectory of the solutions is calculated and the furthermost point is selected as the setpoint. 

Calculating the setpoint for error augmentation 

To calculate the points of intersection of a circle and a line the following algorithm is used:  

The points of intersection between a line that’s defined by two points A(x1,y1) and B(x2,y2) 

and a circle (x-a)2+(y-b)2 = r2  is given by Equations ( 13 ) and ( 14 ) respectively (Weisstein, 

2015). The derivation of these equations is provided in detail in Appendix A. 

𝑋1,2 =
𝐷𝑑𝑦 ± 𝑠(𝑑𝑦)𝑑𝑥√𝑟2𝑑𝑟

2 − 𝐷2

𝑑𝑟
2

 
( 13 ) 

𝑌1,2 =
−𝐷𝑑𝑥 ± 𝑠|𝑑𝑦|√𝑟2𝑑𝑟

2 − 𝐷2

𝑑𝑟
2

 
( 14 ) 

 

 



94 

 

Where: 

𝑠(𝑥) = {
−1 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

 ( 15 ) 

As such the two points of intersection between the perpendicular line and the circle around 

the endpoint are C(x1,y1) and D(x2,y2). To select the appropriate solution, the distances 

between the two points and the target B are calculated and compared as shown in Figure 

3-30. The solution that results in the greatest distance is selected as the endpoint as it will 

always be on the outermost section of the circle. 

Given Β(x3,y3) the coordinates of the target the distances from C and D are calculated 

𝐶𝐵⃗⃗⃗⃗  ⃗ = √(𝑥1 − 𝑥3)2 + (𝑦1 − 𝑦3)2 ( 16 ) 

𝐷𝐵⃗⃗⃗⃗⃗⃗ = √(𝑥2 − 𝑥3)2 + (𝑦2 − 𝑦3)2 ( 17 ) 

Is 𝐶𝐵⃗⃗⃗⃗  ⃗ >  𝐷𝐵⃗⃗⃗⃗⃗⃗  ?    {
𝑌𝑒𝑠, 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝐶
𝑁𝑜, 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝐷

  ( 18 ) 

A B

E

I

C

D

 

Figure 3-30: The points of intersection between the perpendicular line and the circle with the endpoint 

coordinates as a centre. The controller’s setpoint is selected as the solution that is the furthest away from the 

active target B. 
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 Performance based adaptation  

One required feature of the different HCAs was the ability to adapt to the user’s movement 

according to their performance and as a result make the task easier or more difficult. For 

example, in the case of an assistive HCA the system would provide less assistance as the 

user’s performance was improving and vice-versa, and in the case of a challenge-based HCA 

the system would be making the movement more challenging as the user’s performance 

improved.  

In the context of the project, performance was defined as tracking error that is, the 

perpendicular distance from the desired trajectory. Different types of adaptation were 

considered and implemented in the system for further experimentation. In total, there were 

three rules of adaptation developed. They were all based on haptic tunnels which are zones 

within the robot’s workspace where no forces are applied. By manipulating the width of the 

zones, the user’s movements would become easier or more difficult to perform. 

3.3.3.3.1 Adaptation in set zones 

A zone where no forces are applied to the user’s hand (deadband) was created. The zone was 

parallel and surrounded the desired trajectory and its walls were placed in equal distances 

from it. The possible distances away from the desired trajectory were divided in ten different 

bands namely, error bands. Once the mean value of error was calculated the system evaluated 

within which error band the performance fell under and would adjust the walls of the 

deadband according to the respective HCA. There were ten possible widths of the deadband 

with the first (width 1) being the narrower and the last (width 10) being the widest. For 

example, for an assistive HCA if tracking error was low (band 1) in the next iteration (after 

time = T had elapsed) the participants were assigned to a wider (width 10) deadband to 

receive less assistance by the rehabilitation robot. On the other hand, in a challenge-based 
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algorithm if tracking error was low (band 3) after time T had elapsed the user was assigned 

to a narrower deadband (zone 2) to make the movement more challenging (Figure 3-40).  

A B
Width 1

Width 2

Width  3

Width  4

Band 5

Band 4

Band 3

Band 2

Band 1Width  5

 

Figure 3-31: An example of the adaptation in zone for 5 zones. After the mean error is calculated and assigned 

to an error band the width of the deadband is adjusted according to the respective HCA to either assist or 

challenge the movement... 

Table 3-4: Deadband widths for the respective error zone according to the HCA. Width 1 is the narrower and 

Width 10 is the widest. 

Error Band Assistive HCA  

deadband width 

Challenge-based HCA 

deadband width 

Band 1 Width 10 Width 1 

Band 2 Width 9 Width 2 

Band 3 Width 8 Width 3 

Band 4 Width 7 Width 4 

Band 5 Width 6 Width 5 

Band 6 Width 5 Width 6 

Band 7 Width 4 Width 7 

Band 8 Width 3 Width 8 

Band 9 Width 2 Width 9 

Band 10 Width 1 Width 10 
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3.3.3.3.2 Infinite zones 

Similar to the set zone adaptation the infinite-zone adaptation used a deadband parallel to 

the desired trajectory with its walls at equal distances from it. The tracking error was again 

measured over time T. Once T had elapsed, the average tracking error εt was calculated. The 

width of the zones was then adjusted according to the following Equation ( 19 ). 

𝐷𝑒𝑎𝑑𝑏𝑎𝑛𝑑 𝑤𝑖𝑑𝑡ℎ = 2(𝜀𝑡 + 𝛼𝛽𝑊) ( 19 ) 

Where εt = perpendicular error, 0 ˂ α ˂ 0.5, W = workspace width,  

𝛽 = {
+1, 𝐴𝑠𝑠𝑖𝑠𝑡𝑖𝑣𝑒 𝐻𝐶𝐴                        
−1, 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 − 𝑏𝑎𝑠𝑒𝑑 𝐻𝐶𝐴     

    

The variable b was used to modify the behaviour of the program to suit the respective HCA. 

As such, b had a positive value for an assistive HCA and a negative value for a challenge-

based HCA. The purpose of this was to challenge the user by adjusting the deadband 

accordingly in such a manner that less assistance or more challenge would be provided to 

the user in small increments according to the participants’ previously measured performance. 

The idea behind this approach was that as the task became incrementally more difficult the 

users would be constantly challenged to improve further their performance. 

3.3.3.3.3 Incremental adaptation 

This approach also used a deadband with an adjustable width. On the initiation of the 

program the system was assigned to an initial value of error ε0 around which a zone was 

formed with its boarders being ± a percentage of the of value ε0. As such, there was an upper 

border and a lower border. The deadband width (dw) was twice the size of the initial error. 

Conversely, error was measured for a period of time T to calculate current error (εc) and then 

the system adjusted the deadband width according to the HCA.  
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An overview of this method of adaptation is provided in Figure 3-32. If error fell within the 

zone, the width of the deadband remained unchanged. In the case of an assistive HCA if 

error exceeded the upper limit of the zone (more error) the deadband width was adjusted to 

be twice the value of the zone’s lower band to provide more assistance. In the case error was 

under the lower limit of the zone the deadband was adjusted to be twice the size of the upper 

limit of the zone. In the case of a challenge-based HCA the exact opposite would happen i.e. 

when error exceeded the upper limit then the deadband was adjusted to be twice the width 

of the lower band of the zone and when error was below the lower limit the deadband width 

was set to twice the value of the lower limit. 
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Figure 3-32: The deadband width becomes wider or narrower in small increments. 

 Proportional forces 

As discussed in Section 2.7.2 EAP is a special case of performance based adaptation as it 

does not assess the user’s performance over a set period of time and adjusts accordingly like 

the EAA and AAN HCAs do. On the contrary, it measures the instant performance of the 

user by measuring the perpendicular distance from the robot’s endpoint to the desired 

trajectory and adjusts the magnitude of the forces accordingly. As mentioned previously 

(Section 3.3.1.2) the rehabilitation robot does not have force measuring capabilities. As such, 
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forces exerted by the robot are controlled indirectly by controlling the maximum permissible 

torque on the robot’s motors by adjusting the maximum permissible current (MPC). An 

attempt to map the different values of MPC to the maximum permissible forces on the 

robot’s endpoint is presented in Section 3.4.2. 

Nevertheless, to achieve the proportional forces behaviour required by the EAP the robot’s 

workspace is divided in eleven zones on each side the desired trajectory. The first zone is 

defined by the line of the desired trajectory and line a parallel (l1) to it at a distance d1. The 

walls of the second zone are defined by l2 on one side and the parallel line l2 at a distance 

away from the desired trajectory d2 and so on for all other zones. The zones and zone widths 

are mirrored for the other side of the desired trajectory. Within, each zone the value of 

maximum permissible current can be adjusted. The system checks whether the robot’s 

endpoint is within a certain zone and adjust the maximum permissible current accordingly.  
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Figure 3-33: Example for the proportional force algorithm for three zones. 

3.3.4 Computer game environment development 

In order to encourage the user to perform therapeutic movements while interacting with the 

rehabilitation device in a natural and comprehensive manner, a graphical user interface 

(GUI) in the form of a computer game was developed. So that incompatibilities with the 
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other components of the system such us the cRIO to be avoided, the computer game was 

also developed with National Instruments™ LabVIEW. Static games appear to induce more 

effort in stroke patients as opposed to dynamic and they appear to be preferred by the target 

population (Simkins et al., 2012). Furthermore, games in robotic rehabilitation are required 

to set clear tasks because such approaches have been beneficial for increasing motivation 

and to be challenging to increase engagement (Weightman et al., 2014). As such the main 

design considerations of the computer environment were simplicity and re-configurability 

as well as the ability to create different paths for the participants to follow. Finally, for the 

purposes of this study the computer environment needed to replicate configurations 

commonly used in literature in order to be used in the evaluation trial of the HCAs. 

The requirements for the software as they were set out in the design phase of this project are 

summarized below: 

Game environment requirements 

a) To be compatible with the cRIO system and hence the rehabilitation robot  

b) To accept as an input x-y coordinates to allow the translation of the robot’s endpoint 

planar movement into a virtual movement 

c) To display the current position of the manipulandum with an indicator - to serve as 

feedback of robot’s endpoint position 

d) To display multiple targets varying in number and size which could be displayed in 

adjustable positions on the screen – to generate targets in the virtual environment for 

the user to reach in the physical environment 

e) To provide feedback when the indicator reaches a target – provide feedback to the 

user about an achieved goal 

f) To be easily reconfigurable. This means, to allow easy configuration of parameters 

within the environment such as the colour of the indicator, targets and background, 
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the number and position and size of targets, and the sensitivity of when the indicator 

reaches the target – to allow experimentation with different settings and setups. 

 Development of a game environment for upper-limb rehabilitation 

The program accepts as an input the Cartesian coordinates of the manipulandum’s endpoint 

transmitted over TCP/IP from the real-time program and it displays its relevant position to 

the workspace with an indicator. As such by adjusting gains within the software, the actual 

movement of the robot can be translated into a movement in the virtual environment. For 

example, a 20 cm reaching movement in the real workspace can be displayed in a 2 cm 

movement in the virtual environment if a gain of 0.1 is used for the conversion. 

Moreover, multiple circle-shaped targets are displayed whose coordinates are read from the 

same file provided to the real-time controller file allowing an infinite number of 

combinations of the targets positions. These targets are displayed on the virtual environment 

but correspond to a position on the workspace of the robot (Figure 3-34). Likewise, the 

straight-line trajectory that connects two consecutive targets is displayed. When the indicator 

reaches a target, the system provides feedback to the user by changing the colour of the target 

to white. 
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Figure 3-34: By adjusting gains within the environment, the movement in the actual space can be visualised in 

a smaller movement in the virtual (game environment) workspace.  

Additionally, the sizes and colours of the targets, lines and indicator as well as the sensitivity 

of when the indicator was considered to have reached the target; were fully adjustable within 

the environment. Likewise, with small modifications to the code infinite number of targets 

could be added as well as to change the background into a different colour or image. 

Additionally, the size of the workspace could be changed and adjusted to any size of screen. 

However, during this project a square 800x800 pixel virtual workspace was used. Finally, to 

inform the participants about the initiation and the ending of a task messages would appear 

at the beginning of task providing instructions and at the end congratulating the participants 

accompanied by the sound of an applauding crowd.  
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Figure 3-35: Different variations of the game by changing parameters within the environment 
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Figure 3-36: The user experience of the game’s GUI. Settings are hidden away from the user but always 

accessible for the developer/researcher. 
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Figure 3-37: The GUI of the game in developer mode. When used the system would hide the settings menu by 

appearing empty in order to avoid distracting the user 
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The computer where the game was deployed on was a Windows™ 7 64-bit system with an 

Intel i5-3470 dual core CPU, 8 GB of DDR3 RAM and an AMD™ Radeon HD 7400 graphics 

card attached to a HannsG HW173A 17” LCD TFT monitor with a resolution of 1440x900 

pixels and a maximum refresh rate of 60 Hz. The main program of the computer game 

consisted of one loop which was not time-bounded so as the computer would run it as quickly 

as possible. According to (Funkhouser and Séquin, 1993) the frame rate of rendered game 

should be kept constantly above a certain level so as the experience is not affected. 

Furthermore, (Claypool and Claypool, 2007) state that the frame rate affects the performance 

of the user in gaming applications. To test whether the program could maintain a high frame 

rate a benchmark was undertaken counting the frame rate of the game while it was being 

played. 

The performance of the program was satisfactory as the frame rate remained well above 40 

frames per second (fps) with a maximum frame rate of 333 fps. As the subroutine that is 

responsible for the visual rotation is more expensive in processing power a drop on the 

average fps was expected when the subroutine was executed (rotation on). Indeed, the 

program had an average of 159 fps with the rotation turned off and an average of 105 fps 

when rotation was enabled (Figure 3-38, Figure 3-39). However, as the computer monitor 

that was used had a maximum refresh rate of 60 Hz (60 fps) the average frame rate that the 

computer game produced did not affect the experience of the user. 
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Figure 3-38: Frame rate per iteration with visual rotation turned off. 

  

Figure 3-39: Frame rate per iteration with visual rotation turned on. 
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 System verification tests 

This section provided an overview of the different tests that were carried out in order to 

ensure that the system operated as expected. The first test presented in Section 3.4.1 aimed 

to verify the accuracy of the system’s position controller by comparing data acquired by the 

robot’s sensors against the data acquired by a motion tracking system. The second test aimed 

to map the forces generated by the robot, as the robot in its current configuration has no 

embedded force sensors it can only measure torque generated by the motors indirectly as a 

factor of the current drawn.  

3.4.1 Evaluation of the accuracy of the position controller 

To evaluate the performance of the position controller as well as the stability and reliability 

of the system to accurately perform movements on the Cartesian plane, an experiment was 

devised and executed. This experiment compared positional information collected by the 

robotic system against data acquired by a motion tracking system. The aim of the trial was 

to establish to what extent the positional controller and the kinematic model used by the 

system was sufficiently accurate. As such, the experiment was focused on identifying two 

important factors; the accuracy of the system to perform required movements and the 

repeatability of the results in different trials and how those two were affected by different 

settings of the controller. 

 Experiment questions  

The questions that this experiment aimed to answer are summarised below: 

1) How accurately the system is measuring angular displacement of each joint of the 

robot? 

2) Are movements repeatable (repeatability test)? 

3) How the systems accuracy is affected by the maximum allowable torque/current? 
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 Methodology of kinematics evaluation experiment 

Kinematic data acquired by the encoders of the robot were compared against data acquired 

by the Xsens Motion Tracking (MT) development kit (DK), a motion tracking system that 

utilises miniature three-dimensional inertial measurement units (MTw). Each of the units 

has embedded an array of sensors including 3D accelerometers, gyroscopes, magnetometers 

and a barometer. Also, each unit has a processor for handling the data acquisition, wireless 

communication etc. The MTw SDK is using an array of MTw sensors in order to analyse 

complicated movements of articulated objects. (Xsens Technologies B.V., 2013).  

Table 3-5: Specifications of the sensors embedded in the Xsens MT units 

 
Angular 

Velocity 
Acceleration Magnetic Field Pressure 

Dimensions 3 axes 3 axes 3 axes - 

Full Scale ±1200 deg/s ±160 deg/s ± 1.5 Gauss 300-1100 mBar 

Linearity 0.1 % of FS 0.2 % of FS 0.2 % of FS 0.05% of FS 

Bias Stability 20 deg/hr  - 100 Pa/year 

Noise 0.05 deg/s/√Hz 0.003 deg/s/√Hz 0.15 Gauss/√Hz 0.85 Pa/√Hz 

Alignment error 0.1 deg 0.1 deg 0.1 deg - 

Internal 

Sampling rate 

1800 Hz 1800 Hz 120 Hz - 

Bandwidth 

(analogue) 

-120 Hz -140 Hz 10-60 Hz - 

 

The robot was programmed to move its endpoint in order to reach eight targets placed on a 

circle and at equal distances from each other. The robot started from the centre of the circle 

and moved towards each of the targets and back to the centre. As data acquisition for the 

rehabilitation robot and the motion tracking systems was not synchronised, the robot was 

programmed to move in a quasi-static manner. As such, the robot’s endpoint moved to the 

different targets (Figure 3-40) and remained at each position for a short period of time 
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(100ms). This was done to introduce discrete data points at the position where the robot 

reached the target which in turn assisted the process for the post-hoc manual synchronisation 

of the signal. Four different iterations of the same experiment were undertaken. The robot 

moved multiple times between the targets to ensure repeatability of the results. In addition, 

both systems were collecting data with a frequency of 100 Hz. 
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Figure 3-40: The robot’s endpoint cycled between the different targets starting from the centre. To distinguish 

between the movements an individual number was assigned to each movement direction. 

As the Xsens used accelerometers and inertial measurements to determine movement only 

the relative angle of the rotational movement could be measured by measuring the change 

in yaw of the robot’s links. Three sensors were used in total and their placement 

configuration is shown in Figure 3-41. One sensor was placed on the robot’s shoulder joint 

to provide a reference measurement for a static point. A second was placed on the robot’s 

elbow joint to measure the rotation of the first link. The third sensor was placed on the robot’s 

endpoint to measure the rotation of the second link (rotation of 2nd link = rotation measured 

on endpoint – rotation of 1st link).  
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Figure 3-41: Three MTw sensors were placed in three different locations to measure the rotation of the two 

joints.  

The MTw provided two manners of calculating the rotation across the vertical axis. One 

involved the use of the inertial sensor in the MTw which is measuring angular velocity. In 

this case velocity is integrated against time using the trapezoidal rule for integration (Brian 

H. Hahn, 2013) to calculate the angular displacement. Also, the MTw utilises a Kalman filter 

to fuse data acquired from the embedded sensors (gyroscopes, accelerometers and 

magnetometers) to compute 3D orientation (Xsens Technologies B.V., 2013). More 

specifically, to calculate the heading (Yaw) the sensors operate similar to a magnetic 

compass providing measurement with reference to earth’s magnetic North. Table 3-6 

provides information on the sensitivity characteristics of the characteristics of the MTw 

sensors.  
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Table 3-6: Orientation performance for the MTw sensors (Source: (Xsens Technologies B.V., 2013)) 

Dynamic range All angles in 3D 

Angular resolution <0.05 degrees 

Static accuracy (Roll/Pitch) 1 degree 

Static accuracy (Heading) 1 degree 

Dynamic Accuracy 2 degrees RMS 

 

The experiment consisted of four trials in total with different settings. In all trials the robot 

cycled between all sixteen movements with the only difference being the different maximum 

current setting (2A for Trials 1, 4 and 3A for Trials 2, 3).  

Table 3-7: The kinematics evaluation trial protocol. 

Trial no Number of sets Movement sequence Max motor current 

1 4 1-16 2 A 

2 4 1-16 3 A 

3 1 1-16 3 A 

4 4 1-16 2 A 

 Data analysis 

There was no option for synchronisation of the triggering between the two acquisition 

systems, as a result the synchronisation of the signals had to be performed post-hoc. To align 

the two signals several approaches for automatic data synchronisation and sensor fusion 

were considered. Such methods included the approach suggested by (Madgwick et al., 2011) 

and (Rhudy, 2014). Nevertheless, manual synchronisation was deemed as the most effective 

for the specific application. As such, for a given dataset from the Xsens the measurements 

were converted into angular displacement and then plotted against the data acquired from 

the robot. 
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Examination of the plots allowed the identification of the point in time where movement was 

initiated. By comparing, the time difference between these two points for the respective plot 

the delay was identified and finally that allowed the synchronisation of the signals by shifting 

one to match the other. The signals then were adjusted to be at the same rotational reference 

system. For example, the robot measures positive angular displacement clockwise while the 

Xsens counter-clockwise and the magnetometer provides readings of rotation according to 

earth’s magnetic North pole. As such, the first measurement was subtracted from all the 

subsequent measurements to bring all measurements to 0o rotation and the Xsens 

measurements were multiplied by -1 to match the orientation of the robot’s encoders (Figure 

3-42). In addition, the rotation of the second joint of the robot was calculated as the 

difference in angular displacement between sensor 3 and sensor 2 (Figure 3-41).  

Δt = 0.193s

 

Figure 3-42: Both plots display the angular displacement of the elbow joint after the signals were analysed for 

two movements before and after the synchronisation of the two signals. 
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 Results of the kinematic analysis 

Once the signals were analysed and synchronised angular error was calculated as the 

difference between the angular displacement and the data acquired by the Xsens. To answer 

the research questions set out at the initiation of this experiment statistical analysis was 

performed to check whether differences existed between the data measured by the robot and 

the Xsens, to measure accuracy, repeatability as well as whether there was an effect of the 

value of maximum torque applied to the previous two.  

A repeated measures analysis was performed using the linear mixed models. The targets 

were used as the subjects of the analysis and as repeated measures were set the trial numbers 

and the repetitions within the trials. The factoring variables used were i) the measurement 

methods i.e. the robot’s encoders (Robot/Xsens), ii) the trial number, and iii) the repetition 

number. The absolute value of the rotation in degrees i.e. the normalised rotation of the 

motors when the endpoint reached each target was used as the dependent variable. Constant 

variances were assumed between the different time points and the different repetitions. 

Furthermore, the analysis was performed separately for the shoulder and elbow joint of the 

robot to identify potential differences between the two links.  
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Figure 3-43: Mean absolute value of rotation for the shoulder joint as measured by the robot and the Xsens. 

 

Figure 3-44: Mean absolute value of rotation for the elbow joint as measured by the robot and the Xsens. 

The analysis indicated a significant difference between the two measuring methods i.e. the 

robot and the Xsens for both the shoulder joint F(375,1) = 43.953, p <0.01 and the elbow 



117 

 

joint F(375,1) = 343.864, p <0.01 across all the different trials. The mean difference between 

the two measuring methods was 0.33o (p<0.05) for the elbow joint and 0.68o (p<0.01).  

As the sensitivity of the Xsens for dynamic measurements is 2o and the measured angular 

differences are below that threshold it is hard to draw firm conclusions as to what the cause 

of this difference is. A potential source for this result could be partially attributed to backlash 

which is defined as the difference between the thickness of a gear tooth and the distance 

between the corresponding teeth of the engaging gear (Oberg et al., 2012). Furthermore, 

another potential cause of error could be attributed to vibrations caused by the robot’s 

movements to the mounting frame hence introducing noise to the measurements acquired by 

the Xsens but not to the motors due to their different frame of reference. 

When considering the effect of measurement type to the individual trials there was no 

significant effect identified for the shoulder F(375,6) = 0.305, p =0.934 but there was a 

significant effect for the elbow joint F(375,6) = 24.852, p < 0.01. However, when comparing 

the parameter estimates for the interactions between trial type and trial number all 

combinations provided insignificant differences (p>0.6) apart from trial 1 where the 

measurements acquired with the Xsens yielded a significant estimate of -0.78o (p < 0.01). 

However, further inspection of the results indicated that this was not a valid effect. As shown 

in Figure 3-45 the differences between the measurements for each target between the 

different trials appear to be random. Finally, there was no significant effect of repetition 

between the different trials as measured by the two measuring methods for both the shoulder 

joint F(375,6) = 0.684, p = 0.824 and the elbow joint F(375,6) = 0.471, p = 0.969. Both 

findings indicated that the accuracy of the robot is not affected by the maximum current 

(torque) settings or by the number of repetitions it performs. 
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3.4.2 Mapping the forces generated by the rehabilitation robot 

As described previously the robot cannot measure forces directly however, as mentioned in 

Section 3.3.1.2, by controlling the maximum permissible current (MPC) on each motor, the 

torque on that respective motor can be controlled. The rehabilitation robot was ultimately 

intended to be used by impaired adults and children as such, it was deemed crucial that the 

forces exerted by the robot’s endpoint to be known given a certain MPC. As such an 

experiment was carried out measuring the forces applied by the robot’s endpoint on a load 

cell. This experiment had a second purpose, that was to ensure that for a given value of MPC 

on the motors, the robot’s endpoint would apply forces uniformly in all directions. 

To measure the forces generated by the robot’s endpoint an ATI F/T Mini 40 AT-20-1 

force/torque (F/T) sensor was used (Figure 3-46) for which the measurement specifications 

can be found in Table 3-8. For this experiment the sensor was connected to a National 

Instruments CompactDAQ cDAQ-9178. To ensure that correct readings were acquired the 

sensor was calibrated on the z-axis. For the calibration process ten 100g (±0.01g) brass 

weights were used. The weights were mounted on the sensor one at a time until a maximum 

mass of 1kg was reached and then the weights were removed one at a time until no mass was 

loaded on the sensor. The process was repeated five times and the results of the 

measurements are displayed in Figure 3-47.  
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Figure 3-46: The ATI-20-1 Mini 40 force transducer. 

Table 3-8: Measurement specifications for the ATI-20-1 Mini 40 F/T sensor 

Sensor Sensing range Resolution 

Fx, Fy 20 N 0.01 N 

Fz 60 N 0.02 N 

Tx, Ty 1 Nm 1/4000 Nm 

Tz 1 Nm 1/4000 Nm 
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Figure 3-47: Calibration plot for the z-axis of the load cell.  

In the plot of force measured (N) versus load (kg) a regression line was fitted through the 

least squares method (Figure 3-47). The expected value of the slope of the regression line 

should have been the value or close to the value of the acceleration of gravity (9.81 m/s2) as 

Newton’s Second Law indicates. (F=mg) Furthermore, the y-intercept of that line was 

expected to be zero or very close to zero. Nevertheless, the regression analysis indicated that 

the gradient of the regression line was 6.18 m/s2 and the y-intercept was approximately 0 (-

6x10-3 N). The gradient was much smaller than expected (9.81 m/s2) and as such all 

subsequent measurements were adjusted by being multiplied by 1.59 (9.81 m/s2 divided by 

6.18 m/s2).  

From the results of the descriptive statistics (Table 3-9) for the calibrated forces it can be 

seen that the standard deviation from the mean was fluctuating between 0.1 N and 0.44 N as 
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such the practical accuracy of the load cell was deemed to be ±0.44 N which is much higher 

than the theoretical error provided by the manufacturer (0.02 N). 

Table 3-9: Descriptive statistics for the calibrated force measurements given a certain mass. 

Calibrated Force (N) 

Mass (kg) Mean 

Std. Error of 

Mean Std. Deviation 

Grouped 

Median 

.00 -.0751 .05729 .11458 -.1232 

.10 .8882 .03346 .09464 .8642 

.20 1.8782 .04576 .12943 1.8420 

.30 2.8272 .06001 .16974 2.8302 

.40 3.7560 .08508 .24065 3.7357 

.50 4.8183 .06181 .17483 4.8209 

.60 5.8043 .06455 .18258 5.8019 

.70 6.7496 .08449 .23898 6.7050 

.80 7.6875 .10976 .31044 7.7210 

.90 8.7796 .13120 .37108 8.7569 

1.00 9.7956 .21826 .43651 9.7817 

 

Once the load cell was calibrated the sensor was placed on its mount with its z-axis aligned 

to the direction of the movement of the robot’s endpoint (Figure 3-48). This test aimed to 

map the forces generated by the robot’s endpoint at different positions of its workspace as 

well as to see the effect of the different MPC settings to forces generated by the robot. 

To acquire the measurements, the robot’s endpoint was placed in the centre of its workspace. 

It was then programmed to move towards one of eight different directions equally distanced 

from each other by 45o as shown in Figure 3-40. The load cell was placed in such a manner 

that the z-axis was aligned to the direction of movement and the plate of the load cell was 

obstructing the movement of the endpoint towards that direction. As such, when the robot 

attempted to move, its path was obstructed by the plate of the load cells generating forces 
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that were in turn measured by the load sensor. For each direction two different distances 

from the centre of the robot’s workspace were tested at 0 mm and at 80 mm. Five different 

measurements were taken for each position under a certain setting of MPC and in total two 

different MPC settings were tested of 2 and 3 Amperes, respectively. 

Load Cell
Robot s 

endpoint

 

Figure 3-48: The experimental setup for force mapping. 
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Figure 3-49: The robot’s workspace and directions that were tested for the force measuring experiment. 



124 

 

The analysis of the results was performed individually for each value of MPC. For the 

statistical analysis SPSS version 22.0 was used. The model used was the equivalent of a 

General Linear Model by using the Linear Mixed Models options of SPSS. Force measured 

by the load cell was used as the dependant variable and target and distance were used as the 

independent. Apart from the estimates of fixed effects the estimate marginal means were 

calculated with Bonferroni correction for multiple comparisons. The same analysis was 

performed twice, one for each of the two MPC settings used in the experiment. A more 

extensive description of the statistical analysis method is provided in Section 4.3.5 and the 

findings of the statistical analysis are presented in more detail in Appendix C. 

 

Figure 3-50: Force measurements for eight different directions at two different distances from the workspace 

centre (0 mm and 80 mm) and two different settings of MPC (2A and 3A). 

With respect to the MPC= 2A the tests of fixed effects identified that there was a significant 

effect of direction on the forces exerted by the rehabilitation robot F(64,7)=146.037, p<0.005 

and also the statistically significant interaction between target and distance F(64,7) = 43.050, 
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p<0.005 (Appendix C). The pairwise comparisons showed that the forces exerted at the 

different targets varied between 5.4 N – 7.5 N at 0 mm and 5-7.4 N at 80 mm depending on 

the direction (Figure 3-50). Regarding the forces that were exerted for MPC=3 the tests of 

fixed effects identified a statistically significant effect of direction to the forces exerted by 

the robot’s endpoint F(64,7)=54.585.p <0.005 and also a statistically significant interaction 

between target and distance F(64,7)=7.939, p<0.005 (Appendix C). The pairwise 

comparisons showed that forces exerted at MPC=3 varied between 11.5-13.1 N at 0 mm and 

11.2-13.3 N at 80 mm (Figure 3-50). 

Interestingly the maximum range of measurements was very wide for both settings of MPC. 

More specifically the range of error in the measurements’ values was ±0.50 N  and ±0.65 N 

for MPC=2A and MPC=3A, respectively. As there range of error in the measurements by 

the load cell was established to be 0.88N (±0.44 N) that more error was introduced to the 

system most likely by the experimental setup that allowed for small misalignments between 

the load cell and the robots’ endpoint movement. However, as this is an exploratory study to 

acquire an indication of the forces exerted by the robot given a certain value of MPC, higher 

measurement accuracy was not a requirement. Nevertheless, if more precise force 

measurement is required in the future then a different experimental setup will be required 

where the load cell is attached to the robot’s endpoint and the robot’s endpoint is locked into 

position externally. 
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 Summary 

In this chapter the system development undertaken for this project was discussed. The 

hardware development phase of the project involved the re-design and further development 

of an existing single point of attachment rehabilitation robot that was to be used as the 

experimental apparatus in this work. The software development involved a software 

developed for the systems FPGA that contained all the low level functions to implement a 

PID position controller. Another, aspect of the program was the real-time portion of the 

architecture that was deployed on a real-time computer system. This program controlled all 

the high level functions of the program such as the setpoint calculation, forward and inverse 

kinematics for the robot, angle translations, data acquisition etc.  

Part of the real-time software was the HCA implementation. The different HCAs were the 

programs that controlled the behaviour of the system in response to the participants’ 

movements. To provide a meaningful interface between the user and the rehabilitation robot 

to promote therapeutic movements, a computer game was designed which was deployed on 

a personal computer system. Finally, at the end of the chapter different aspects of the system 

were assessed mainly its accuracy and repeatability to perform movements and also an 

attempt was made to map the forces generated by the robot in its workspace. 
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4 Pilot trial to test algorithm adaptiveness parameters 

and the overall trial protocol 

 Introduction 

In Section 2.7.3 an in-house implementation of the Assistance As Needed haptic control 

algorithm was introduced and the in Section 3.3.3.1 its implementation was discussed. AAN 

is a highly customisable HCA that allows control of different parameters to the user. Such 

parameters include the direction and amplitude of the forces produced by the robot, td (time 

between adjustment of deadband), forces applied by the robot etc.  

BA

Perpendicular 

Point to target

In between

Target

 

Figure 4-1: The different modes of providing forces by the AAN.  

By changing the direction of the forces different behaviours of the controller can be achieved 

(Figure 4-1). For example, when the system is set to provide forces in the perpendicular 

direction towards the desired trajectory the user is assisted to reduce tracking error but not 

to reach the target. On the other hand, when forces are directed towards the target of the 

movement the user is assisted to reach the target but without reducing accordingly the 

tracking error. Finally, by placing the forces between the target and the perpendicular 

direction then the forces are assisting to reduce tracking error while assisting the user to 
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reach the target. The system can be adjusted to move closer to one direction or the other in 

order to bias behaviour of the algorithm to apply forces towards one trajectory more than the 

other. 

Another feature that can be customised on AAN is the duration of time before performance 

is assessed and deadbands are adjusted accordingly. This feature is important as it allows for 

the system to adapt to participants’ performance that may vary throughout the training 

session for reasons such as fatigue, spasticity etc. and allow to complete their training.  

 Pilot trial 

As described in the previous section Assistance As Needed evaluates performance as the 

average movement error over certain period of time (td) however, by studying the literature 

it was unclear whether the duration of td would be a significant factor that would affect the 

effectiveness of AAN in the motor learning of healthy adults. It appears that other studies 

have chosen parameters of their controllers based on experience and trial and error (Krebs 

et al., 2003; Vergaro et al., 2010). To investigate if there is an optimal period of time within 

which the system should adapt to the user’s movement a human trial was designed with able-

bodied participants. This trial had also a second purpose, which was to serve as a pilot trial 

to test different parameters of the system as well as the trial protocol in order to make 

necessary adjustments before the human investigatory trial of this project. 

4.2.1 Research questions of the pilot trial 

The trial that was undertaken set out to answer three main research questions: 

1) Do different time intervals (td) where an HCA adapts to user’s performance (rates of 

adaptiveness) affect the motor learning process and its retention in healthy adults? 
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2) Can bilateral transfer of skills be measured by the system? Do different rates of 

adaptiveness of the Assistance As Needed haptic control algorithm affect it? 

3) Does the rate of adaptiveness of the algorithm affect the emotional state condition of 

the participant? 

Although Question no 2 is not directly related to robotic rehabilitation it can actually 

help in the understanding of the internal processes of the brain and how they are affected 

by robotic therapy. To the authors knowledge there has not been an attempt to study the 

effects of robot training and different HCAs on the bilateral transfer of learning as 

suggested where training has been only received one arm as suggest by the Bilateral 

Transfer Therapy (BTT) as described in Section 2.4.3 (i.e. not bimanual/mirror therapy).  

Furthermore, as this trial doubled as a pilot of a larger trial studying the effectiveness of 

different HCAs on the motor learning of healthy adults two more questions arose which 

are as follows: 

4) Is the trial protocol sufficiently measuring motor learning? 

5) How much exercise can healthy adults receive before they reach a plateau in their 

improvement? 

4.2.2 Pilot trial protocol 

Ten participants were included in this study all of which were volunteers that responded to 

an advertisement placed within the University campus. Inclusion criteria were non-

ambidextrous (Edinburgh Handedness Inventory score ≠ 0) able-bodied adults aged between 

18 and 65 years with no history of neurological impairment. The participants were randomly 

assigned to one of two groups. Both groups received identical amount of exercise while 

interacting with the rehabilitation robot implementing AAN. All settings of AAN were the 

same for both groups with the only difference being that the adaptation of the algorithm 
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occurred at different intervals td1 = 30 seconds and td2 = 60 seconds. From previous 

experimentation it was found that for a healthy individual it took on average 1.7 s to perform 

a reaching movement therefore 29s to complete one set of sixteen movements. Therefore the 

time intervals after which the HCA adapts for each group were selected to correspond to 

approximately one set of movements and two sets of movements for the 30s and 60s group 

respectively. 

Pre-trial, participants were asked to complete the Edinburgh Handedness Inventory (EHI) a 

measurement scale in the form of a questionnaire that assesses the dominance of an 

individual’s arm (Oldfield, 1971). The scale ranges from -10 to 10 with all values indicating 

dominance of the left arm, all the positive indicating dominance of the right arm and a value 

of 0 indicating ambidexterity. Participants received all exercise in one session that lasted 

approximately 2 hours. Once it was assured that participants met all the inclusion criteria 

they all signed an informed consent form in accordance to the ethics regulations of the 

Manchester Metropolitan University. For this trial ethical approval was received from the 

Ethics Committee of the Manchester Metropolitan University. 

4.2.3 Trial task 

The participants were sat in front of the rehabilitation robot holding its handle. By controlling 

the position of the endpoint of the rehabilitating robot they controlled a cursor in the game’s 

workspace displayed on a computer screen which was placed in front of them. In the game 

environment 9 targets were displayed all of which had the same colour. Eight of the targets 

were placed along a circle with a 45o degree distance between them and one target was placed 

in the centre of the circle.  

A target would change colour to indicate that it was active (ready to be reached) and a 

straight line would connect that currently active target with the one that was previously 
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activated. Once a target was reached it would change colour to indicate it was deactivated 

and another target would change colour to indicate that it was active. At any given time only 

one target would appear as active. Movements would always start from the centre towards 

an active target in the perimeter of the circle. Once that target was achieved then the centre 

target would be activated in order to initiate the target to centre movement. The participants 

were informed that the task was to follow the line that appeared on the screen from the 

current position of the cursor towards the active target as quickly and as accurately as they 

could (Figure 4-2).  
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Figure 4-2: The reaching task. Each movement was assigned to a number to distinguish between them. 

The actual workspace of the robot was 160 mm wide and 160 mm long and it was translated 

into an 800-pixel by 800-pixel workspace on the computer screen. As such there was a fixed 

translation ratio of 1mm to 5 pixels. Eight targets were placed in a circular orientation with 

a radius of 70 mm and each of the circle shaped targets had a radius of 5mm. As such the 

minimum length of movement between the targets was 60 mm (Minimum path length = 
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Centre to target length – Target 1 size – Target 2 size or Minimum path length = 70mm – 

5mm – 5mm). Figure 4-3 shows a dimension diagram of the actual workspace. 

 r = 5 mm
R =70 mm
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Figure 4-3: Trial workspace dimension diagram. 

4.2.4 Session protocol 

The participants were sat in front of a computer screen at a distance of approximately 0.5 

meters, while having the robot’s handle in the middle of their body (Figure 4-4). The seat 

was adjusted in height and position (forward and backward) in order to achieve a 90o angle 

of the elbow while holding the joystick placed in the centre of the workspace (neutral 

position) (Figure 4-4). In the beginning of the training session the participants undertook an 

adaptation (familiarisation) block where they performed a number of reaching movements 

from the centre towards one of the targets placed on a circle and back to the centre (Figure 

4-5). In this stage the joystick was moving passively (forces turned off). They performed 5 
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sets of movements (1 set = 16 trials, 1 trial = 1 reaching movement) with their Dominant- 

Arm (DA) and 5 sets of movements with their Non-Dominant Arm (NDA) while the visual 

feedback was rotated by 100o counter-clockwise (CCW) in order to introduce a new 

environment to the participants’ movements and consequently maximise the potential for 

motor learning. Moreover, during the adaptation and training blocks the targets would appear 

in a random sequence in order to make the task less repetitive. 

0.5 m

 

Figure 4-4: The angle of the elbow while holding the joystick at the neutral position (centre of workspace) 

was measured with a goniometer. In case the angle was not 90o the participant’s seat was adjusted in height 

and position (forward and backwards). 
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Figure 4-5: The reaching task. The user had to perform movements with rotated feedback of 100o CCW. 

After the adaptation block the participants were requested to perform an assessment block 

for each of their arms. The assessment block was designed in order to measure and evaluate 

different parameters of the participants’ performance in different stages of the trial. The 

assessment block consisted of three different tasks. In the first task of the assessment block 

participants had to complete a Self-Assessment Manikin (SAM) scale questionnaire for 

valence arousal and dominance as shown in Figure 4-6 (Bradley and Lang, 1994). For the 

second task participants had to perform 5 sets of reaching movements with a 100o CCW 

visual rotation while the robot remained passive. During the reaching movements the targets 

would appear in a clockwise sequence starting from the one placed on the 12 o’clock 

position.  

Finally, the participants had to perform two sets of a circle-drawing task under the same 

visual rotation and without any forces applied by the robot. To perform the circle drawing 

task the participants were moving the joystick in order to track a circle-shaped path in the 
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clockwise direction (Figure 4-7). The circular path was displayed and the targets would 

activate consequently to indicate the order they should be reached in. 
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Figure 4-6: The Self-Manikin Assessment questionnaire for Valence, Arousal and Dominance. Adapted from: 

(Bradley and Lang, 1994) 

 

 

Figure 4-7: As part of the assessment blocks participant had to perform a circle-drawing task. 

Once the last assessment was complete four identical blocks of training followed namely 

training block 1, 2, 3 and 4 with intermittent assessment blocks between them. During the 
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training blocks the participants performed 20 sets of 16 centre-out and back movements 

towards 8 targets while using their NDA. Similar to the adaptation block the targets were 

placed on a circular orientation 450 from each other however, in the training blocks the robot 

applied forces to the subject’s hand.  

Following the completion of the last assessment after training block 4 the participants 

undertook another assessment but this time on their DA. The assessment on the DA was 

followed by a de-adaptation block where the participants performed 10 sets of reaching 

movements, similar to the other blocks using their NDA with the robot not applying any 

forces to the hand and the manipulation (i.e. rotation) of visual feedback turned off. That 

was done in order to assess the rate of washout. Finally, the participants undertook one 

assessment block for each arm starting with the NDA and following with the DA where 

rotation was set to 100o exactly as in the previous assessment blocks in order to assess 

retention of the previously learned task. After each assessment block the participants were 

asked to rest for 1 minute or longer if that was necessary. An overview of the trial protocol 

is presented in Figure 4-8 and Figure 4-9. 
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Figure 4-8: The protocol for the pilot trial. 

Block name Description 
Duration 

(estimated) 

Adaptation 

 

5 sets– Forces are turned off (dominant arm) 

5 sets - Forces are turned off (non- dominant arm) 

2 min 

Training block 

1,2,3,4 

20 sets – Forces turned on (non-dominant arm) 10.5 min 

De-adaptation 10 sets - Forces turned off (non-dominant arm) 3 min 

Assessment 5 sets – Reaching movements with forces turned off 

(visual distortion on) 

2 sets of circle drawing with forces turned off (visual 

distortion on) 

2 min  

SAM 9-point Self-Assessment Manikin Scale for valence, 

arousal and dominance 

10 seconds 

Break No practice 1 min 

Figure 4-9: The different blocks of the trial protocol in detail (1 set = 16 trial/reaching movements). Visual 

distortion = visual rotation 100o CCW. 

4.2.5 Evaluation of performance 

During the assessment blocks the system was recording kinematic data (Cartesian 

coordinates (X-Y)) of the position of the robot, time elapsed between movements and the 

perpendicular distance away from the desired trajectory of the robot’s endpoint. In addition, 

for each of the measurements information was recorded as to which target was active at that 
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specific moment during which set of movement in order to be able to distinguish between 

specific movements and the stage of the assessment block that they occurred at. All data 

were recorded with a frequency of 100 Hz.  

The kinematic measures that were selected for further analysis were movement error (error 

to reach target), movement duration (time between beginning and end of a movement), mean 

velocity, normalised jerk as a measure of movement smoothness and finally initial error that 

is the direction that the movement had the first 100 ms from when it started. Furthermore, 

with the SAM questionnaire collected data on the emotional state of the participants during 

the different stages of the trial. 

4.2.6 Results of the pilot trial 

During the different assessment blocks performance was assessed in both arms at different 

stages of the trial. However, only the NDA received training with AAN. This approach was 

undertaken in order to measure whether the algorithm had an effect in bilateral transfer of 

the skill. The analysis of the results of the trial was undertaken on three stages in order to 

answer research questions one to three respectively. As such, the first stage was the analysis 

of the kinematic data collected for the NDA, the second was the analysis of the DA and 

finally the last question was the analysis of the results collected by the SAM questionnaire. 

The statistical analysis was performed with IBM SPSS™ statistics version 22.0. For the 

analysis of the trial a mixed design was selected with a within-subjects factor (assessment) 

and a between-subjects factor (HCA group). As such a two way repeated measures ANOVA 

using general linear models of variance was selected as the most suitable statistical model 

for the current trial design as it has been extensively used in (Casadio et al., 2009; Elizabeth 

B Brokaw et al., 2011).  
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Post-hoc tests were performed with Bonferroni correction for multiple measures. The results 

of the analysis are reported as a factor of three parameters. The F value (F-ratio) denotes 

how random the variation within a group is; with a value of 1 (or close to 1) confirming the 

null hypothesis i.e. the variation is random. The p value indicates the significance level 

between the difference of the measurement means. A value of p≤0.05 rejects the null 

hypothesis hence confirming that the differences are significant. Finally partial η2 is a 

measure of effect size in other words a measure of the treatment effect.(Salkind, 2007). 

According to the guidelines provided by (Cohen, 1977) for interpreting the effect sizes an 

effect size 0.20-0.5 is considered small while an effect size  0.50-0.8 is considered moderate 

and an effect size ≥ 0.80 is considered large. 

 Analysis of the non-dominant arm 

Performance on the NDA was evaluated in 6 assessments throughout the trial. Once pre-

training (Adaptation NDA), one after each training block (Training 1-4) and one after the 

washout phase (Washout NDA) as shown in Figure 4-8. It was hypothesized that 

performance would be at its lowest during the assessment after the adaptation block and then 

it would improve in the assessments following training blocks 1-4 where it would eventually 

reach a plateau. Finally, a deterioration in performance was expected during the washout 

phase. Improved performance would be reflected by lower error, duration and normalised 

jerk and increased mean velocity.  

It was also hypothesised that movement error and duration were correlated, as for the same 

level of skill (level of motor learning achieved) quicker movements would be expected to be 

prone to more (endpoint) error and vice-versa as indicated by Fitts’ law (Fitts, 1954). 

Although Fitts’ law predicts a linear relationship between movement duration and the 

difficulty of a task, the relationship between mean error and mean duration for a given 

assessment was expected to be quadratic forming a parabola where for a given level of 
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performance achieved there would be an optimal point with the lowest possible error and 

duration above which movements would become more accurate but slower or faster but less 

accurate. 

To investigate this hypothesis, mean error across all sets was calculated for each participant 

across each of the assessments. Mean values were selected instead of the individual 

measurements in an attempt to reduce variability of the data as reaching movements in 

humans vary greatly (Gordon et al., 1994). Then a scatter plot was generated with duration 

on Y-axis and error on the X-axis. The points were coloured according to the assessment 

they were collected in.  

Regression analysis was performed to estimate the relationship between error and movement 

duration in each of the assessments. The best fit to the data was a cubic relationship (Figure 

4-10) between the two variables as indicated by the high values of the coefficient of 

determination (R2) for the adaption, training one and training two assessment blocks (0.780 

≤ R2 ≤ 0.932). In assessment blocks following training blocks 3, 4 and the adaptation the 

values of R2 were significantly lower namely, 0.388, 0.336 and 0.499. This an interesting 

finding as it appears that the participants have changed their movement behaviour towards a 

more random pattern. This could be attributed to the long training protocol that potentially 

caused the participants to experience fatigue or loss of interest in the task which subsequently 

resulted in loss of concentration. 
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Figure 4-10: Relationship of mean Duration and mean Perpendicular Error across assessment blocks. The 

value of R2 demonstrates how good a curve fits to a dataset. Its values vary from 0 to 1 with 1 being an 

absolute fit to the data and the 0 a horizontal line crossing the Y axis at the mean value of the dataset. 

4.2.6.1.1 Kinematic analysis of the non-dominant arm 

As mentioned in the beginning of this sub-section to quantify motor learning different 

measures were selected namely error, duration, mean velocity and normalised jerk. 

Improvements in performing the task, hence motor learning, would result in reduced 

duration, error and normalised jerk and increased mean velocity. When considering 

movement error and duration (Figure 4-11) both T1 and T2 groups improved during the 

exercise part of the trial by performing quicker and more accurate movements.  

While both groups improved in a similar fashion in terms of duration two different patterns 

emerged when error was considered. The group that received AAN with rate of adaptiveness 

T1= 30s improved error throughout training blocks 1 and 2 until the assessment after training 

block no 3 where error increased slightly and after training block 4 where error reached 
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almost pre-training levels. However, those increases in error coincided with respective 

decreases in duration. At the assessment after the washout phase for both conditions error 

increased to above pre-training levels but duration only increased for T1= 30s and not for 

T2 = 60s.  

 

Figure 4-11: Mean error and mean duration across all the assessment blocks of the NDA for the two conditions. 

A mixed ANOVA was performed on the dataset for movement duration, error, mean velocity 

and normalised jerk. The between-subjects factor was the intervention groups they were 

assigned (T1 =3s, T2 = 60s) and the within subjects factor was the different assessment 

blocks for the NDA. A more detailed overview of the analysis is presented in Appendix A. 

When considering movement duration (Figure 4-11) there was no statistically significant 

interaction between the intervention groups and the assessment blocks on movement 

duration (p =0.263). This means that there was no statistically significant effect of the 
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intervention type to the two groups, however, there was a statistically significant difference 

in movement duration for the different assessment blocks, F(5, 25) = 10.980, p < 0.0005, 

partial η2 = 0.687. This indicates that motor learning occurred and there was retention in 

terms of duration. Finally, there was no statistically significant effect of duration between 

the groups (p = 0.401). This last finding verifies that both groups were not different from 

each other in terms of their movement duration. 

When considering movement error (Figure 4-11) in the analysis, findings were similar. 

Again there was no significant interaction between group and assessment blocks in terms of 

movement error (p = 0.844). Nevertheless, there was significant effect of the assessment 

blocks on movement error F(5, 30) = 0.6.697, p<0.005, partial η2 = 0.527. Finally, both 

groups behaved similarly as there was no effect of intervention group on movement error, 

(p = 0.129). 

Mean velocity (Figure 4-12) appears to have improved for both groups in a similar manner 

as there was no statistically significant interaction between group and assessment (p = 

0.545). However, there was a significant effect of the assessment blocks on movement error 

F(5, 30) = 390.458, p <0 .0005, partial η2 = 0.609, where velocity increased throughout the 

training blocks. After the washout phase it appears that velocity decreased but never reached 

the pre-training levels. Finally, both groups behaved similarly in terms of their mean velocity 

as there was no effect of intervention group to the velocity of the movements F(1, 6) = 4.322, 

p = 0.344, partial η2 = 0.149. 
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Figure 4-12: Mean velocity for each assessment block of the pilot trial for both groups. 

Participants’ movements became smoother (Figure 4-13) throughout the trial for both groups 

and were kept at the same levels after the washout block but this effect of training was not 

found to be significant for normalised jerk (p = 0.108). In addition, there was no effect of 

intervention type on the performance after the different blocks, (p = 0.401) and there was no 

effect of intervention groups on normalised jerk in general (p = 0.419) in that perspective in 

both groups movement smoothness was similar.  
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Figure 4-13: Normalised jerk for each of the assessment of the pilot trial for both groups. 

4.2.6.1.2 Kinematic analysis of the dominant arm 

Notwithstanding the NDA did not receive any exercise outside the adaptation stage it did 

show improvement before the washout phase in the error and duration of its movements 

(Figure 4-14) as well as the mean velocity (Figure 4-15) and normalised jerk (Figure 4-16). 

However, after the washout phase error was increased to even greater levels than the ones 

pre-training. An interesting remark was that although, for group T1 = 30s both duration and 

jerk increased, for group T2 = 60s both remained the same. Even more interestingly the 

velocity of movement dropped for group T1 pre-washout and increased post washout while 

group T2 increased its movement velocity throughout the trial. In either of these measures 

there was no significant effect of intervention. 

More specifically there was no significant interaction between group and assessment, for 

movement duration (p =0.508), movement error (p = 0.459), mean velocity (p = 0.471) and 

normalised jerk (p = 0.480). Conversely, there was a statistically significant interaction 
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between group and assessment for movement duration F(2, 8) = 10.306, p < 0.05, partial η2 

= 0.720), but not for movement error (p = 0.681), mean velocity ( p = 0.226) and normalised 

jerk (p = 0.200).  

This is an interesting finding indicating that even though there was an effect of bilateral 

transfer of learning for movement duration, this effect was not found for movement 

accuracy, mean velocity and movement smoothness. Lastly, both groups were similar in 

terms of performance as assessed by the different measures as there was no difference 

between group and duration (p = 0.137), error (p = 0.466), mean velocity (p = 0.151) and 

normalised jerk (p = 0.480). 

 

Figure 4-14: Mean error and mean duration across all the assessment blocks of the NDA for the two groups 

while using their DA.  
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Figure 4-15: Mean velocity for each assessment block of the pilot trial for both groups using their DA. 

 

Figure 4-16: Normalised jerk for each of the assessment of the pilot trial for both groups using their DA. 
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 Analysis of the Self-Assessment Manikin questionnaire 

With regard to the Valence, Arousal and Dominance measures the responses of participants 

demonstrated such a high variance between individuals that no useful results could be 

obtained. The analysis revealed that there was no statistically significant interaction between 

group and assessment for Valence (p = 0.249), Arousal (p = 0.999) and Dominance (p = 

0.974). Likewise, there was no effect of assessment on Valence (p = 0.882), Arousal (p = 

0.991) and Dominance (p = 0.974). Lastly, there was no effect of intervention type on 

Dominance (p = 1.000). Nonetheless, there was a statistically significant effect of 

intervention with regards to Valence (F(1,70) = 66.025, p < 0.01 and Arousal (F(1, 70) = 

8.222, p < 0.001) indicating that groups were inherently different on how they experienced 

dominance throughout the trial. 

More specifically, the 60s group experienced higher valence and arousal than the 30s group. 

The three plots below represent the mean answers of the participants on the SAM 

questionnaire at the different assessment blocks for Valence (Figure 4-17), Arousal (Figure 

4-18) and Dominance (Figure 4-19)  
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Figure 4-17: Mean score for Valence at the different assessment blocks for both groups. 

 

 

Figure 4-18: Mean score for Arousal at the different assessment blocks for both groups. 
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Figure 4-19: Mean score for Dominance at the different assessment blocks for both groups. 

4.2.7 Discussion 

With respect to the first question of this study as to whether the different rates of adaptation 

affected motor learning of healthy adults it appears that the two grouping conditions did not 

have a significant effect. This has been a consistent finding across all the different kinematic 

variables for both arms as well as across the different measures of the SAM assessment. 

Despite the small population size the results indicated that there was no effect of the rate of 

adaptation of the algorithm on the motor learning or bilateral transfer of that learning on 

able-bodied algorithms. 

The data analysis provided evidence indicating that intervention blocks had a clear effect on 

the performance of the participants. Regarding the NDA there was a significant improvement 

in movement error, duration and normalised jerk after the first training block and that 

improvement continued throughout the different training blocks but at a slower rate. 

Furthermore, after the washout block performance in all deteriorated but did not return to 
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the levels pre-training. This means that the washout block effectively washed-out the learned 

task but not completely which leads to the conclusion that there was measurable retention of 

the learned task. Another interesting finding was, that although normalised jerk followed the 

same trend (improvement post training, worsened after washout but never rose to the levels 

of the adaptation stage) however, the statistical analysis could not identify a statistically 

significant effect of the intervention to normalised jerk. 

The analysis of the assessments performed on the DA showed that there was a significant 

change between the different assessment blocks in terms of movement error, duration and 

mean velocity. Normalised jerk improved as well but results were not statistically 

significant. As the DA did not receive any exercise, improvement in its performance could 

be attributed to bilateral transfer. However, although DA did not receive training they 

performed 5 sets of movements on each assessment block which could potentially be 

significantly enough exercise to induce learning. Nonetheless, the fact that after the washout 

block there was a deterioration on the performance on the NDA indicates that the results 

were probably a cause of bilateral transfer. 

With respect to the impact of the intervention to the emotional state of the participants there 

was no significant effect of intervention type or training stage across both groups. However, 

some complained to the researcher about experiencing mental fatigue caused by the 

repetitive nature of the exercise. 

As mentioned in the introduction of this section the trial served as a pilot test trial in order 

to verify the experimental protocol and also as a means to identify weaknesses and aspects 

that may need change. The trial successfully measured motor learning as it occurred in 

different stages of the trial and for both arms. However, although there was a significant 

change from the baseline assessment during the training assessments the values of the 

different kinematic data during the pre-training sessions could have been affected by the 
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long adaptation blocks that preceded them within which learning may have already occurred. 

As such, by reducing the size of the adaptation blocks a more obvious effect of the 

intervention may be observed.  

Furthermore, in most measures the participants reached or approached a plateau after 

training block number three. In training block 4 movement duration and mean velocity 

improved significantly, but error worsened indicating that there was a shift towards quicker 

movements but with less attention to keeping the error low. This may be due to fatigue and 

loss of concentration caused by the prolonged duration of the protocol that in most cases 

lasted for more than two hours. This was a clear indication that the protocol needed to be 

shortened for the investigatory trial as the fourth block of training seemed to have a negative 

effect on one of the kinematic measures. 

When considering the suitability of the task for the purpose of the trial a methodological 

error was identified. As previously mentioned the task involved reaching movements from 

one target to another. Nevertheless, in the way the system was setup when one target was 

reached another would was activated instantly. The implication of that was that the 

movements were not discrete and had the form of a continuous movement from one target 

to another. Likewise, as the target was considered as being successfully reached in the 

instance the cursor reached its area, there was no way of determining whether that success 

in reaching the target accidental or intentional thus affecting the analysis of the movements. 

4.2.8 Considerations on the design of the pilot trial protocol 

As the main aim of this trial was to identify and quantify how motor learning in able bodied 

adults was affected by the different setting of the adaptiveness of the AAN throughout a 

course of a training exercise. For this a very common trial design was selected, that has been 
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extensively used in the literature (Bajaj et al., 2005; Finley et al., 2009; Shirzad and Van der 

Loos, 2012).  

Over the years, there have been many variations of this protocol presented in the literature 

yet, the main characteristics remain the same. According to this design the participants 

perform reaching movements from a starting point towards targets placed on a circular 

configuration around the starting point. As this protocol was designed for able bodied 

participants, they have to be presented with a new task in order for learning to occur. To 

achieve this a visual perturbation is implemented on the environment in the form of visual 

rotation of the visual feedback with respect to the coordinate frame of the actual movement 

(Figure 4-20).  

45o

 

Figure 4-20: An example of a rotation of the visual feedback of 45o counter-clockwise. On the left is the actual 

workspace of the robot and on the right a representation of what would be displayed on the computer screen  

In the studies where a visual rotation was introduced to the participants’ movements 

(Krakauer et al., 2005; Shirzad and Van der Loos, 2012; Patton et al., 2013) a value of 30o 

was commonly used as the angle of rotation. Nevertheless, the same studies did not specify 

why this value of visual rotation was chosen. As such, it appears that it has been selected 

more for historical reasons rather than scientific. A main consideration for the design of the 
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study was to maximise the difficulty of the task in order to allow for greater potential of 

motor learning to occur. It was hypothesised that the greater the amount of rotation the more 

difficult the task would be.  

To test this hypothesis, a trial was performed with a single able-bodied participant. The 

participant performed the same protocol for five rotations of the visual feedback 0o, 30o, 60o, 

80o and 100o respectively. The task involved the participant performing 5 sets of 16 reaching 

movements towards 8 targets in a circular configuration and back to the centre of the circle 

using the rehabilitation robot in passive mode (no forces). The path length was set to be 60 

mm. The participant used their non-dominant arm in order to maximise the potential for 

motor learning to occur. 

Two measures were analysed namely the perpendicular error and the movement duration. 

The hypothesis was that error and duration would be low for easier to learn visual rotations 

and high for more difficult. A limitation to the design of this trial was that the design was 

cross-over as the same participant was exposed to all the different conditions therefore it was 

unavoidable for some learning to occur between the iterations of the exercise. To compensate 

for this the user was introduced first to the smaller visual rotations and incrementally to 

larger visual rotations. As such, if for example motor learning occurred throughout the trial 

the conditions with larger visual rotations would benefit from improved levels of these 

measures as the participant would have received more exercise before. 

The analysis of the results indicated that in general performance deteriorated when the 

participant was introduced to a greater value of visual rotation. Figure 4-21 clearly 

demonstrates this trend. Interestingly, for the condition of visual rotation of 30o there was an 

improvement in performance as measured by the movement error and movement duration 

measures. An explanation for this would be that this is due to the similarity of this condition 

to the control condition of no rotations. Because of this similarity the participant was able to 
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adapt quickly to the new environment and further improve. This further supports the initial 

hypothesis that greater values of visual rotation would be more challenging to the participant 

as they provide greater deviation from the normal conditions where movement would occur 

hence an environment that is more novel to the participant.  

 

Figure 4-21: Mean Perpendicular error and mean Duration follow a similar pattern across the different 

conditions of visual rotation. There is a clear trend that the larger visual rotation is the worse the 

participant’s performance gets. 

Informed by the results of the trial with a single participant a visual rotation of 100o was 

selected to be used in further experiments in order to introduce the participants in a novel 

environment. Furthermore, in order to provide an extra level of difficulty to the participants 

they were asked to exercise using their non-dominant arm which would allow for potentially 

more motor learning to occur. 
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 Design of the trial for the investigation of the effectiveness of the 

developed HCAs on the motor learning of healthy adults 

The primary objective of the investigatory trial was to evaluate the effectiveness of the three 

haptic control algorithms (HCAs), that were developed for this project (EAA, EAP and 

AAN), on the motor learning of able-bodied adults. Details on the different HCAs can be 

found in Section 2.7. The design of the investigatory trial was informed by the findings of 

the pilot study described in Section 4.2 and adjusted accordingly. Only one trial was 

undertaken with participants being assigned to one of four different intervention groups (one 

for each algorithm and a Control group) however, four different analyses of the results were 

performed which will be presented in the following four chapters.  

The methodology of the analysis of the results remained the same for each of the 

analyses/models with the only difference being the groups that were under investigation. As 

such in chapter 6-8 each of the developed algorithms namely AAN, EAA and EAP is 

compared against the Control group while in chapter 9 all groups are compared against each 

other. This chapter serves as an introduction to the protocol that was used in the investigatory 

trial and the methodology of the analysis of its results. 

4.3.1 Trial protocol 

Forty subjects participated in the study, all of which responded to advertisements placed 

within the University campus. As it has been shown that findings of studies on the motor 

learning of able-bodied adults can transfer to the impaired (Iosa et al., 2016) the inclusion 

criteria were the same as in the pilot trial, able-bodied non-ambidextrous adults (18-65 years) 

with no history of neurological impairments. Participants were pseudo-randomly assigned 

into four equally sized intervention groups. Three groups received training with the robot 

implementing one of the developed HCAs while the fourth group performed passive 
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movements (no forces by the robot) throughout the trial. The participants were blinded with 

regards to which group they were assigned to. It must be noted that the magnitude of the 

forces exerted by the rehabilitation robot were selected in consultation with experienced 

physiotherapists to be suitable for able-bodied adults. 

Before undertaking the trial, all participants were asked to complete the extended Edinburgh 

Handedness Inventory (EHI) to assess the dominance of their arms. Once it was ensured the 

participants met all the inclusion criteria they had to provide signed consent in accordance 

with the Ethics regulations of Manchester Metropolitan University. An overview of the trial 

population and group allocation can be found in Tables 4-1 to 4-4. 

Table 4-1: Population characteristics for the AAN group. 

Participant Gender Age EHI score Dominant arm 

18 Male 27 R_2 Right 

19 Male 29   R_10 Right 

20 Female 31 R_4 Right 

21 Male 30 R_5 Right 

22 Female 33 R_8 Right 

43 Female 29 L_1 Left 

44 Female 37 R_2 Right 

45 Female 29   R_10 Right 

46 Male 38 R_1 Right 

47 Female 55 R_3 Right 

Table 4-2: Population characteristics for the EAA group. 

Participant Gender Age EHI score Dominant arm 

13 Male 27 L_4 Left 

14 Male 21 R_2 Right 

15 Male 22 R_6 Right 

16     Female 32 L_3 Left 

17 Female 35   R_10 Right 

38 Female 40 R_1 Right 

39 Male 24   R_10 Right 

40 Male 26 R_2 Right 

41 Female 46 R_1 Right 

42 Male 32 R_7 Right 



158 

 

Table 4-3: Population characteristics for the EAP group. 

Participant Gender Age EHI score Dominant arm 

28 Female 25 R_10 Right 

29 Female 38 R_5 Right 

30 Male 38 R_3 Right 

31 Male 21 R_7 Right 

32 Female 25 R_6 Right 

48 Male 34 R_6 Right 

49 Female 25 R_3 Right 

50 Male 27 L_2 Left 

51 Female 29 R_7 Right 

52 Female 30 R_6 Right 

 

Table 4-4: Population characteristics for the Control group. 

Participant Gender Age EHI score DA 

23 Female 37 R_10 Right 

24 Male 26 R_10 Right 

25 Female 26 L_3 Left 

26 Male 26 R_8 Right 

27 Male 31 R_10 Right 

33 Male 32 R_6 Right 

34 Male 35 R_1 Right 

35 Female 31 R_5 Right 

36 Male 32 R_1 Right 

37 Male 26 R_10 Right 

 

4.3.2 Tasks of the trial 

The task remained the same as described for the pilot trial, a description of which can be 

found in section 4.2.3. The users performed reaching movements from the centre out and 

back to eight targets placed on a circular configuration but there were some changes to the 

task from the pilot trial. The physical workspace of the robot was increased by 60 mm on 

each dimension (from 160 x 160 mm to a 220 x 220 mm). The sensitivity for reaching a 

target was set to 6.88 mm. As such the minimum length of movement between the target 

place on the centre and each of the surrounding targets was 82.45 mm (Minimum path length 
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= Centre to centre path length – Target 1 size – Target 2 size or Minimum path length = 

96.25 mm – 6.88 mm – 6.88 mm).  

Likewise, as mentioned in section 2.7 all developed HCAs had adaptive features. The 

frequency of adaptation (time where the system evaluates the user’s performance and adjusts 

the HCAs settings accordingly) was set to adapt every 16 reaching movements (1 set). This 

selection was informed by the results of the pilot trial, i.e. the rate the HCA adapts did not 

influence motor learning. Furthermore, the selection of number of movements instead of 

time to trigger the adaptation of the algorithm was to provide one less variable to the 

experiment as different individuals may have performed more movements or less 

movements within the time specified, hence experiencing changes of the algorithm caused 

by the system in more or less of their movements. The selection of the number of movements 

was such as to match the td
 = 30 s group, as the average movement time was evaluated to be 

approximately 2 seconds, hence 16 movements x 2 seconds = 32 seconds. 

4.3.3 Session protocol 

The protocol design of this trial was based on the protocol of the pilot trial which is 

extensively presented in section 4.2.4. Certain alterations were implemented though, 

informed by the findings of the pilot trial (section 4.2.7). One of the findings was that the 

protocols duration was impeding the participant’s performance mostly due to mental fatigue. 

As such the main concern was to reduce its duration. The first action taken to achieve this 

was to reduce the training time (robotic forces on) by removing one training block and the 

consequent assessment on the NDA that followed.  

Furthermore, as the adaptation stage in the pilot trial was performed under visual rotation 

and due to its long duration it allowed for motor learning to occur even before the exercise 

took place. This issue was addressed by reducing the adaptation stage to just one set of 
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movements by the DA with no visual rotation. With this it was ensured that the task was 

clear to the participants while no significant learning occurred before the actual training part 

of the trial. Another conclusion of the pilot trial was that reaching movements were not 

discrete i.e. there was no clear distinction of when a movement started and when it ended or 

whether the success in reaching the target was accidental or intentional. To overcome this a 

300 ms delay was introduced for the duration of which the user should have stayed within 

the area of the target in order for the movement to be deemed as successful by the system 

and another target to be activated.  

In the beginning of the trial all participants received an adaptation block where they 

performed one set (1 set = 16 movements) of reaching movements using their DA while the 

robot remained passive. In addition, during this block no visual rotation was introduced by 

the system. Following the adaptation block participants undertook one assessment block for 

each of their arms, starting with NDA. The assessment blocks had the same structure as in 

the pilot trial starting with the SAM questionnaire, then the reaching movements task 

followed by the circle drawing task. The only difference with the pilot trial protocol was that 

during the part where reaching movements were performed the number of sets was reduced 

from five to three.  

Following the assessment blocks the participants underwent a series of three training blocks 

with the NDA, each one of which was followed by an assessment block on the same arm. 

After the assessment following training block 3, another assessment block was undertaken 

on the DA. Finally, the participants were introduced to a washout block where they had to 

perform 10 sets of the reaching task without visual rotation or forces applied by the robot. 

This was then followed by one assessment block for each of the arms (starting with the 

NDA). A major difference from the pilot trial was that all reaching movements were 

performed with the 300 ms delay between the movements. 
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Figure 4-22: The protocol of the trial 

Table 4-5: The specifics of the trial blocks. Assessments 1,6 and 8 are performed on the DA and 2,3,4,5 and 7 

on the NDA. 

Adaptation  1 set DA –  visual rotation 100 deg. 

Training block A, B, 

C 
20 sets NDA –  visual rotation 100 deg. 

De-adaptation 

(Washout) 
10 sets NDA – rotation 0 degrees 

Assessment SAM, 3 sets aiming, 2 sets circle drawing 

Break 1-5 min. rest 

 

4.3.4 Analysis of the trial results 

Once the trial was completed kinematic data collected by the system were then processed 

following the same process as described in section 4.2.5 in order to extract the values of the 

measures that were later statistically analysed. The analysis of the results will be presented 

according to the research questions of this study. As such first the analysis of the kinematic 

data collected for the NDA will be presented in order to assess whether motor learning 

occurred and whether there was a difference between the intervention groups. Then the 

analysis of the DA will be presented in order to assess bilateral transfer of the motor learning. 
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Finally, the analysis of the data collected by the SAM assessment throughout the trial in 

order to get an insight to the psychological impact the two interventions had. 

The main purpose of the reaching task was to evaluate the participants’ performance and 

hence evaluate the level of motor learning that has occurred over the different stages of the 

trial. Five kinematic measures were analysed namely, movement error, movement duration, 

mean velocity, normalised jerk and initial error all measures that have been established in 

other studies and are commonly used in literature and are relevant to different movement 

parameters (de los Reyes-Guzmán et al., 2014; Nordin, S. Q. Xie, et al., 2014) 

 Perpendicular error (mm): was measured in millimetres and was defined as the 

perpendicular distance from the position of the endpoint and the desired trajectory. For 

each movement the mean error was calculated for further analysis. Improvement in 

this measure would be reflected by a drop in its value. 

 Movement duration (s): was measured in seconds and is a measure of the time that 

has elapsed between the movement initiation and completion. Lower values of 

movement duration would reflect better performance in the task. 

 Mean velocity (mm/s): measured in m/s is the mean velocity of each reaching 

movement. The higher mean velocity is the better the participants would be doing in 

the given task. 

 Normalised jerk (no units): was assessed as a measure of movement smoothness. 

The lower the normalised jerk the smoother the movements would be. 

 Initial error (mm): which is the perpendicular distance from the desired trajectory on 

the first 100 ms of the movement. In the initial phases of a movement where feedback 

is limited it is based mostly on the predictive part of motor control based on an internal 

model, that is commonly referred to as feedforward control (Patton, Kovic, et al., 2006; 

Shadmehr et al., 2010). As such, initial error is used as a measure to assess changes in 
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the internal model the predictive control relies on (Patton, Kovic, et al., 2006). 

Improvement in initial error would be reflected by smaller values of initial error. 

Furthermore, the circle-drawing task was introduced to measure whether potential learning 

that had occurred while performing the reaching task would transfer to a different task. 

Circle-drawing tasks are often used in motor learning studies to measure coordination of the 

arm (Dipietro et al., 2007; Casellato et al., 2012; Nordin, S. Xie, et al., 2014). A common 

measure for this task is movement circularity, measure as the ratio of two axes of the ellipse-

shaped trajectory of the participants’ movement. More particularly circularity is measure as 

the length of the short axis of the ellipse over the long axis. Where a value of 1 would 

describe a perfect circle. As such the higher the value of circularity the more circular the 

movement. Another measure used to analyse the circle-drawing task was movement duration 

i.e. time to complete a circular movement. The basis of this measure is that the more skilled 

one becomes in drawing circles the movements will become quicker while maintaining or 

improving the circularity of their movements.  

As such two more kinematic measures were analysed specifically to assess improvement in 

the circular movements task of the assessment. 

Circularity (no units): A measure of how circular an ellipse is. It values range from 0 to 1 

with 0 representing a line and 1 representing a perfect circle. The more circular the 

movement the better the coordination of the arm and as such the better the participants will 

be performing the task. 

Circular movement duration (s): Measures the time to complete one circular movement. 

Improvement in this measure would be reflected by shorter duration of the movements given 

the same or lower levels of movement circularity.  
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Finally, the beginning of each assessment block the participants had to answer the SAM-

questionnaire which provided a non-verbal 9-point nine scale that assesses three aspects of 

the psychological state of the participants namely valence, arousal and dominance. 

Furthermore, three assessments were undertaken using the DA of the participants. One after 

the adaptation block, one pre-washout and one after the washout assessment. This was done 

to measure whether learning would transfer from the NDA i.e. measure bilateral transfer and 

how it is affected by the different HCAs. 

4.3.5 Statistical analysis 

To analyse the data IBM SPSS Statistics version 22.0 was used. A mixed model analysis 

was performed using linear mixed models (LMM). LMM was selected as the preferred 

method of analysis as it takes into account random effects within the parameters, allow 

modelling of the variability, take into account dependent errors and also because they are 

robust against breaches of normality (Field, 2013). An example of linear mixed model which 

assumes random slopes and intercepts (Field, 2013) can be found in ( 20 ).- 

𝑌𝑖𝑗 = (𝑏0 + 𝑢0𝑗) + (𝑏1 + 𝑢1𝑗)𝑋𝑖𝑗 + 𝜀𝑖𝑗 ( 20 ) 

 

Where:  

b0: fixed intercept, 

b1: fixed slope,  

u0: random intercept, 

u1: random slope, εij: residuals 

j: levels of variable over which the intercept values 

 

Covariance structures can be fitted in the random effects and repeated measures of the linear 

mixed models (West et al., 2015). Examples of covariance structures are the unstructured 

covariance which assumes random covariance, first order autoregressive covariance’s which 

assumes that the correlation is higher the closer measurements with each other are, variance 

components which assumes that random effects are independent but have the same variances 

and diagonal which assumes independent random effects but with heterogeneous variances 
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(Field, 2013; West et al., 2015). To test the fit of the multilevel model chi-square likelihood 

tests are performed. SPSS reports the results of these tests as minus twice the log-likelihood 

(-2LL) and as such the lower the value the better the fit (Field, 2013). 

To achieve the best fit of the model different parameters were tested. Nevertheless, the model 

that provided the lowest –2LL and hence the better fit is as follows: 

Participants were set as subjects. As repeated measures were used the assessment number, 

set number and target number. As dependent variable was set the variable under 

investigation such as movement duration for example. As factors were set the HCA group 

and the Assessment number and full factorial analysis was performed for these fixed effects. 

Lastly, random intercepts were assumed between the participants. Covariance structure was 

set to diagonal for the repeated effects and the covariance model for the random effects was 

set to variance components. 

The same model was run for each individual measure for both the assessments on the DA (3 

assessments in total) and the NDA (5 assessments in total). Also, SAM measures were 

analysed throughout the trial and not separately for the each of the individual arm. As there 

was great variance within the participants’ answers to the SAM questionnaire scales were 

normalised by subtracting the score value acquired in the first assessment (adaptation on the 

DA) from each individual assessment. To evaluate the results, tests of fixed effects were 

performed along with estimates of fixed effects. Also, to get a better estimate of pairwise 

comparisons the estimated marginal means were calculated all with Bonferroni adjustment 

for multiple measurements.  
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 Summary 

In this chapter the findings of the pilot trial were presented. The evaluation of the results was 

split into two main areas of focus. Firstly, the evaluation aimed to identify whether different 

rates of adaptiveness of an adaptive assistive algorithm (AAN) affected motor learning 

differently on the upper limb of able-bodied adults. In that respect the analysis of the trial 

findings failed to identify a significant effect. The second aim of the trial was to assess the 

protocol and the analysis methodology in order to inform the design of the investigatory trial 

of this work comparing the effectiveness of the three developed HCAs, namely assistance as 

needed, error augmentation adaptive and error augmentation proportional. Overall, the trial 

was successful in inducing and capturing changes in motor learning. Nevertheless, certain 

key areas were identified that needed to be modified in the protocol design of the 

investigatory trial with the more significant being reducing the duration of the protocol. The 

next chapter presents the changes that were made to the trial protocol along with the updated 

investigatory trial protocol. 

This chapter also presented the trial protocol undertaken to study the effectiveness of the 

developed HCAs on promoting motor learning on the upper limb of able-bodied adults and 

allow a comparison to be drawn between in respect of their effectiveness. The design of the 

investigatory trial was based on the findings of the pilot trial. Overall, the protocol remained 

similar to the pilot trial with the most significant difference being a shortening in the amount 

of movements the participants had to perform in the practice part of the trial as well as within 

the assessments. One training block along with the subsequent assessment block were 

removed from the trial in order to shorten the duration of the trial protocol.  

The kinematic measures that were selected for this study, were the same as in the pilot trial 

with the only exception being the addition of initial error which was introduced to the 

analysis of the study as a measure of improvement in the early stages of the trial. A 
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significant difference form the pilot trial was the approach undertaken for the statistical 

analysis. Linear Mixed Models (LMM) analysis was used for the statistical analysis instead 

of the General Linear Models (GLM). This approach was selected as it takes into account 

random effects for the model. LMM are also more robust against breaches of normality and 

sphericity of the dataset, when compared to GLM. 

Finally, four different models were developed; the analysis of each is presented in the 

subsequent chapters. The first three models (presented in Chapters 5,6,7) are comparing 

directly one of the groups that practice with the developed HCAs to the Control group, while 

the fourth a modelling that consider all four groups is presented. As such the next chapter 

will be presenting the statistical model where the AAN group is compared against the 

Control group (Chapter 5). 
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5 Investigating the effects of Assistance As Needed 

control on motor learning 

 Introduction 

The primary objective of the investigatory trial was to evaluate the effectiveness of three 

HCAs, that were developed as part of this project (EAA, EAP and AAN), on the motor 

learning of able-bodied adults. Details on the AAN can be found in Sections 2.7.3 and 3.3.3. 

Although only one trial was undertaken with participants being assigned to four different 

intervention groups (one for each algorithm and a Control group) this chapter will present 

the findings of the statistical analysis of a model that only compares the findings for the 

AAN against the ones of the Control group. The design of the investigatory trial and the 

protocol undertaken for the data acquisition and analysis are presented in Section 4.3. In this 

chapter firstly an overview of the configuration of the AAN used in the trial is presented and 

then the research questions that the analysis aims to answer are presented. Finally, the main 

part of this chapter is focused on presenting and discussing the findings of the statistical 

analysis. 

 The Assistance As Needed algorithm 

As described in Section 3.3.3 the HCA portion of the software developed was highly 

customisable to allow for experimentation with different settings to fine-tune the behaviour 

of the respective HCA under implementation. There were three main features that could be 

adjusted namely, a) the direction of the forces, b) the method of adaptation and c) the 

maximum permissible current. Among them there is an infinite number of possible 

combinations and thus an infinite number of possible behaviours that can be achieved. To 

date there are no guidelines in literature on how to adjust a haptic control algorithm to fit for 
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purpose. As such, the required behaviour was achieved by trial and error informed by 

consulting experienced physiotherapists within the University.  

The final settings of the AAN were set as follows (Figure 5-1): 

a) The force direction was set by the line between the straight line trajectory connecting 

the target and the position of the endpoint and the perpendicular line connecting the 

endpoint and the trajectory. The direction of the forces was set 30% closer to the 

straight line connecting endpoint and target. To achieve this the parameters p, s were 

set to 50% and parameter i was set to 30% (Section 3.3.3.1). 

b) Maximum Permissible Current was set to 2A 

c) The method of adaptation was set to be adaptation in set zones (11 zones in total) 

with the width of each zone being defined by the following equation: 

width of zone i = i*6.5mm where 1≤i≤11 

B

d

A: Starting point
B: Finishing point
d: deadband width = i*6.5 mm

Cursor
Target
Desired trajectory
Deadband border
Direction of force

x
A

y

 

Figure 5-1: The final settings of the AAN algorithm. 
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 Research questions 

The questions that this analysis set out to answer are presented below: 

1) Does the AAN affect motor learning and retention of learning on the upper limb of 

the able-bodied adults? If yes, what is its effect? 

2) How does the effect of AAN compare to the participants’ performance if the same 

amount of practice was received without any forces being applied by the 

rehabilitation robot? 

3) Is bilateral transfer affected by the conditions of practice (assisted vs passive 

movements)? 

4) Does practice with the developed HCAs have an effect on the psychological state of 

the participants and if so how much of that can just be attributed to the exercise? 

 Results of the statistical analysis 

5.4.1 Analysis of the kinematic measures for the non-dominant arm 

Five assessments in total were undertaken by the participants using their NDA. The first one 

was carried out during the adaptation stage to form a baseline assessment of performance 

before exercise. Three more assessments were performed one after each training block and 

finally the last assessment block was performed just after the washout block to evaluate 

retention. Similar to the pilot trial the hypothesis was the intervention (training) would lead 

to participants improving their performance compared to the baseline assessment which then 

would deteriorate after the washout protocol. Based on the findings of the pilot trial it was 

expected that if retention did indeed occur then the deteriorated performance would be worse 

when compared to the training stage but would not reach pre-intervention levels. 
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Training 3
 

Figure 5-2: The assessments on the NDA. 

 Results for the reaching task on the non-dominant arm 

With respect to the reaching task for the NDA, both groups appear to have improved in terms 

of their movement duration throughout the training blocks (Figure 5-3). More specifically, 

the tests of fixed effects showed a statistically significant effect of practice F(4,1197.087) 

=329.547, p<0.005 on movement duration and a statistically significant interaction between 

HCA group and practice F(4,1197.087) =10.659, p<0.005. From the estimated marginal 

means it can be seen that movement duration decreased throughout the training for both 

groups and while post-washout there was an increase in duration it did not reach the levels 

achieved in the adaptation assessment.  

The estimates of fixed effects did not identify a statistically significant difference between 

the two groups on how movement duration changed between the adaptation assessment and 

training blocks 1 and 2 (p=0.095 and p=0.099, respectively). However, the same estimates 

indicated that the Control group improved in movement duration by 0.2s (p<0.005) more 

than the AAN group did when comparing the change in movement duration between the 

adaptation assessment and the one after training block 3. Also, post-washout, the Control 

group retained a greater difference, between the adaptation assessment and the post-washout 

assessment, than the AAN group did by an estimated 0.3s (p<0.005).  

As such, both groups reduced their movement duration throughout the training blocks when 

compared to the baseline assessment in the adaptation stage. Both groups reduced movement 

duration similarly in training blocks 1 and 2 but the Control group showed a larger 

improvement in training block 3 when compared to the AAN group. Finally, at the washout 
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assessment in both groups movement duration increased without returning to the baseline 

levels but the Control group retained more of the improved movement duration. 

 

Figure 5-3: Mean duration over the different assessment blocks on the NDA for the AAN and the Control 

group. 

Similar to movement duration there was a statistically significant effect of practice 

F(1042.231,4) = 281.020, p<0.005 on the perpendicular error of the movements (Figure 5-4) 

as indicated by the tests of fixed effects. Contrariwise, the same tests showed that there was 

no statistically significant effect of HCA group on perpendicular error F(1042.13,4) =0.852, 

p=0.492 indicating that both groups behaved similarly in terms of movement duration in the 

different assessment blocks. 

The absence of an effect of HCA group on perpendicular error is further supported by the 

non-statistically significant estimates of fixed effects regarding the interaction between HCA 
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group and practice (p>0.05). Therefore, only the estimates of fixed effects of practice for the 

entire population (AAN and control participants combined) were considered. Perpendicular 

error was reduced significantly after training block 1 with a mean difference of 3.4 mm 

(p<0.05) when compared to adaptation assessment (baseline) and continued to improve 

throughout the training blocks reaching a minimum in the assessment after training block 3 

with a mean difference from the adaptation assessment of 3.9 mm (p<0.005). Finally, the 

improvement in perpendicular error was completely washed-out at the post-washout 

assessment as there was no significant difference between the adaptation assessment and the 

washout assessment (p=0.163). 

From the aforementioned it can be derived that both groups behaved similarly in terms of 

the perpendicular error. There was a large improvement after training block 1 when 

compared to the adaptation assessment and perpendicular error improved further in the two 

assessments that followed. However, post-washout error reached the levels that were 

measured before any training was undertaken, indicating that any improvement in movement 

error was completely washed-out for both groups.  
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Figure 5-4: Mean perpendicular error over the different assessment blocks on the NDA for the AAN and the 

Control group. 

When considering the mean velocity of the participants’ movement (Figure 5-5) the tests of 

fixed effects indicated that practice had a significant effect, F(1325.366,4) =220.015, 

p<0.005 and also that there was a statistically significant interaction between HCA group 

and practice F(1325.366,4)=10.779, p<0.005. The estimates of fixed effects of practice 

regarding movement duration showed that both groups increased the mean velocity of their 

movements during the different training blocks reaching a maximum in mean velocity after 

training block 3. The mean difference in mean velocity between the adaptation assessment 

and training block 3 was 13.3 mm/s (p<0.005) for the AAN and 17.8 mm/s, p<0.005 as 

indicated by the estimated marginal means. Moreover, after the washout block the 

improvement in mean velocity was partially washed-out as mean velocity was reduced 

however, it did not revert back to the levels achieved in the adaptation assessment. 
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Likewise, the estimates of fixed effects revealed that both groups improved similarly after 

training blocks 1 (p=0.080) and 2 (p = 0.543) but that there was a statistically significant 

difference between them on how the mean velocity changed between the adaptation 

assessment and the one after training block 3. More specifically, the Control group improved 

by 4.5 mm/s (p<0.005) more than the AAN group between the two assessments. Post-

washout mean velocity was washed out less for the Control group by 6.0 mm/s (p<0.005) 

when compared to the AAN group. 

Mean velocity increased in both groups throughout the training blocks with the Control 

group achieving better performance than the AAN after training block 3. Also the improved 

movement duration was partially washed-out for both groups after the washout stage but the 

Control group retained more of the improved (during training) mean velocity than the AAN 

group did.

 

Figure 5-5: Mean velocity over the different assessment blocks on the NDA for the AAN and the Control 

group. 



176 

 

With respect to normalised jerk (Figure 5-6), the tests of fixed effects showed that there was 

a statistically significant effect of practice F(579.057,4) =0.209, p<0.005 as well as that there 

was a statistically significant interaction between HCA group and practice F(579.057,4) 

=7.961, p<0.005. From the estimated marginal means for the two groups, it can be derived 

that both groups started with very high normalised jerk that was rapidly decreased after the 

first block of training. Between the training blocks small changes occurred with the lowest 

normalised jerk being achieved after training block 3 with a mean difference from the 

adaptation assessment of 6.4 units (p < 0.005) for the AAN and 8.6 units (p< 0.005) for the 

Control group. 

To get an estimate of how the type of HCA affected the normalised jerk on the course of the 

trial the estimates of fixed effects were examined. The analysis showed that the Control 

group improved significantly more than the AAN group did after training block 3 by 

reducing normalised jerk from the adaptation assessment by 2.2 units (p<0.05) more than 

the AAN group did. Furthermore, the Control group retained more of the normalised jerk 

after the washout block when compared to the adaptation levels than the AAN did as the 

difference between the adaptation value and the post-washout value was 2.8 units (p<0.05) 

more for the Control group. 

To summarise both groups reduced dramatically the normalised jerk of their movements 

after they received the first block of training. Normalised jerk further improved in the course 

of the training part of the trial. Finally, normalised jerk was partially retained for both groups 

after the washout block as it was increased when compared to the pre-washout assessment 

levels but it did not approach the pre-training levels as measured by the adaptation 

assessment. Finally, the Control group performed better than the AAN group in terms of the 

normalised jerk as it improved more during the training stage and retained more of its 

improved normalised jerk post-washout. 
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Figure 5-6: Normalised jerk over the different assessment blocks on the NDA for the AAN and the Control 

group. 

When considering initial error (Figure 5-7) the tests of fixed effects showed a statistically 

significant effect of practice F(4,1539.747) = 5.720, p < 0.005 but also that there was no 

significant interaction between practice and HCA Group F(4,1539.747) = 5.720, p = 0.931. 

As such, it is logical to assume that both groups behaved in the same manner in the course 

of the trial with regards to initial error. To get some insight on what that behaviour was the 

estimates of fixed effects were examined with the assessment as the only factor. 

The results showed that there was no statistically significant difference in initial error 

between the adaptation and the assessments after training block 1 and the washout block 

(p>0.2). Nevertheless, the estimates showed a statistically significant difference in the initial 

error after training block 2 when compared to the adaptation, where initial error was reduced 

by 0.3 mm (p<0.005). Also, a marginally non-significant difference was found in initial error 
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between the adaptation and training block 3 with a difference of 0.2 mm (p=0.055). To 

conclude, there was no statistically significant effect of practice on the initial error except 

from a small reduction after training block 2. Also both groups behaved similarly as there 

were no significant differences on initial error between the two groups. 

 

Figure 5-7: Initial error over the different assessment blocks on the NDA for the AAN and the Control group 

 Results of the circle-drawing task for the non-dominant arm 

During the circle drawing task, both groups behaved in a similar manner in terms of how 

circular their movements were (Figure 5-8)  as the test of fixed effects did not show a 

statistically significant interaction between practice and HCA group F(4,47.499) =0.606, p 

= 0.660. However, the test of fixed effects showed a statistically significant effect of practice 

on movement circularity F(4,47.99) = 3.526, p < 0.05. Nevertheless, the analysis of the 

estimates of fixed effects revealed that there was no statistically significant difference 
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between the adaptation assessment and the other assessment blocks (p>0.05) with the only 

difference being a statistically significant increase by 0.04 units (p<0.01) in movement 

circularity after training block 3.This change in movement circularity could be attributed to 

learning that occurred in the course of the trial however as this finding is isolated (there is 

no evidence of learning in the previous training blocks) and very small it is highly probable 

this was a false positive result of the statistical analysis. 

 

Figure 5-8: Movement circularity over the different assessment blocks on the NDA for the AAN and the 

Control group. 

Nonetheless, both groups behaved similarly regarding the duration of the circular 

movements (Figure 5-9) as the tests of fixed effects did not find a statistically significant 

interaction between practice and HCA group, F(4,33.927) =1.845, p=0.143. However, the 

same tests showed that there was a significant effect of practice on the duration of the 

movements F(4,33.927) =5.239, p<0.005. The estimated marginal means indicated that 
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duration reached a statistically significant difference from the adaptation block in training 

block 2 with a mean difference of 2.4s (p<0.05). When comparing the different training 

blocks and also the washout block there was no statistically significant difference between 

them (p>0.05) indicating that movement duration remained at the same levels for the rest of 

the trial. 

 

Figure 5-9: Duration of the circular movements over the different assessment blocks on the NDA for the AAN 

and the Control group. 
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Table 5-1: Summary of the findings on the analysis of the effectiveness of the trial on the AAN and Control 

group for the NDA. 

Measure Learning 

pre-washout 

Retention 

post-washout 

Improved more 

pre-washout 

Retained more 

post-washout 

Duration Yes Yes Control Control 

Perpendicular 

error 

Yes No No difference No difference 

Mean velocity Yes Yes Control Control 

Normalised jerk Yes  Yes Control Control 

Initial error Yes  

(small) 

No No difference No difference 

Circularity Yes 

(small) 

No N/A N/A 

Circular 

movement 

duration 

Yes Yes No difference No difference 

 

5.4.2 Analysis of the kinematic measures for the dominant arm 

As in the pilot trial the DA did not receive any exercise during the session apart from the 

movements performed on the three assessment blocks one in the pre-training phase in order 

to serve as a baseline, one after the last training block (training block 3) to evaluate whether 

improvement occurred and hence bilateral transfer of learning, and one after the washout 

block in order to assess retention of the learning.  

 Results for the reaching task on the dominant arm 

With regards to movement duration of the DA (Figure 5-10), the tests of fixed effects showed 

that there was a statistically significant effect of practice F(2,487.545) =487.545, p<0.005 

and also that there was a statistically significant interaction between HCA group and practice 

F(2.487.545)=16.5572, p<0.005. By looking at the pairwise comparisons of the estimated 

marginal means there was a significant improvement in movement duration at the pre-
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washout assessment for both groups. More specifically the AAN group reduced the 

movement duration by a total of 1.5s (p<0.05) in the pre-washout assessment and the Control 

group by 2s (p<0.05). With regard to the post-washout assessment movement duration 

remained unchanged for the Control group (2s) as there was no statistically significant 

difference in duration pre and post-washout (p=0.375) indicating an absolute retention of the 

improvement. On the other hand, the AAN group increased their movement duration, when 

compared to the pre-washout levels, by an average of 0.1s (p<0.05). This last finding 

indicates that there was indeed a small amount of change/improvement in movement 

duration washed-out for the AAN group. 

From the estimates of fixed effects, it can be seen that the Control group reduced movement 

duration by 0.5s (p<0.005) more than the AAN did between the adaptation and the pre-

washout assessments. Post-washout the Control group appears to have retained more of the 

improved movement duration as it showed a larger difference of 0.6s (p<0.005) from the 

adaptation levels than the AAN did. This is consistent with the findings of the estimates of 

marginal means discussed in the previous paragraph indicating that the AAN group lost some 

of the improved movement duration to washout. To summarise both groups improved in 

movement duration after at the pre-washout assessment indicating that bilateral transfer did 

occur for both groups which was retained partially by the AAN group and totally by the 

Control group.  
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Figure 5-10: Mean duration over the different assessment blocks on the DA for the AAN and the Control 

group. 

When considering the perpendicular error (Figure 5-11), the tests of fixed effects showed 

that there was a statistically significant effect of practice F(2,1192.133) =179.631, p < 0.005 

and also that there was a statistically significant interaction between HCA group and practice 

F(2,1192.133) =10.543, p<0.005. The estimates of marginal means for the pairwise 

comparisons showed that the AAN group reduced error by an average of 4.3 mm (p<0.005) 

at the pre-washout assessment while the Control group reduced error by 3.2 mm (p< 0.005) 

at the same assessment. Furthermore, both groups seem to have retained the improved 

perpendicular error post-washout as there was not statistically significant difference pre-and 

post-washout for the AAN (p=1.00) and the Control group increased its mean error by an 

average of 0.6 mm (p< 0.05). 
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The estimates of fixed effects indicated that there was a difference on how the perpendicular 

error had changed for the two groups in the different assessment blocks. The AAN group 

reduced perpendicular error by 1.1 mm (p<0.005) more than the Control group did at the 

pre-washout assessment when compared to the baseline. Also, post-washout the mean 

difference of perpendicular error from the baseline was 1.9 mm greater for the AAN when 

compared to the Control group. This latter finding further supports the results of the 

estimates of fixed effects that showed that AAN retained completely the improved 

perpendicular error after the washout block while despite being very little (0.6 mm) there 

was some washout of the perpendicular error for the Control group. 

To summarise both groups improved at the pre-washout assessment indicating that bilateral 

transfer did indeed occur. The AAN group showed greater improvement than the Control 

group when comparing the adaptation assessment with the pre-washout. Also, the AAN 

group seemed to be unaffected by the washout block while the Control group reduced its 

accuracy on the same block. 
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Figure 5-11: Mean perpendicular error over the different assessment blocks on the DA for the AAN and the 

Control group. 

Similarly, the tests of fixed effects showed that there was a statistically significant effect of 

practice F(2,1491.542) =588.526, p<0.005 on the mean velocity of the DA and also that 

there was a statistically significant interaction between HCA group and practice 

F(2,1491.542) = 9.532, p<0.005. From the pairwise comparisons of the estimated marginal 

means it can be seen that both groups increased significantly the mean velocity of their 

movements in the pre-washout assessment with a mean increase of 14.4 mm/s (p<0.005) for 

the AAN group and 16.9 mm/s for the Control group (Figure 5-12). Post-washout the mean 

velocity remained unchanged for both the AAN group (p=1.000) and the Control group 

(p=1.000) indicating that the improvement in mean velocity was fully retained after the 

washout block. 
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The estimates of fixed effects showed that there was a statistically significant difference on 

how mean velocity changed for the two HCA groups. More specifically the Control group 

showed a greater difference between the adaptation and pre-washout assessments than the 

AAN group did, by an estimate of 2.5 mm/s. Furthermore, the estimates of fixed effects 

revealed that there was a significant difference in mean velocity between the two groups 

post-washout with the Control group retaining 4.6mm/sec more of the mean velocity when 

compared to the AAN group in the post-washout assessment.  

 

Figure 5-12: Mean velocity over the different assessment blocks on the DA for the AAN and the Control 

group. 

Regarding the normalised jerk of the DA (Figure 5-13) the tests of fixed effects showed a 

statistically significant effect of practice as well as a statistically significant interaction 

between HCA group and practice F(2,115.855) =20.820, p<0.005. For both groups 

movements became smoother on the pre-washout assessment block as normalised jerk 
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decreased by 13.7 units (p<0.005) for the AAN group and 27.6 units (p<0.005) for the 

Control group as indicated by the estimates of marginal means. Also, post-washout 

normalised jerk increased for both groups by 0.5 units (p<0.05). However, this increase was 

very small indicating that smoothness was retained after the washout block. 

The estimates of fixed effects showed that the Control group improved by 13.4 units (p< 

0.005) more than the AAN group did in the pre-washout assessment. However, this is 

probably due to the fact that the AAN group demonstrated significantly less normalised jerk 

in the adaptation assessment, as the Control group had 13.6 units (p<0.005) normalised jerk 

than the AAN group as shown by the estimated marginal means. However, it appears that 

both groups reached the same levels pre-washout as there was no difference in normalised 

jerk between the groups (p = 0.854). Also, post-washout both groups behaved similarly in 

terms of normalised jerk as there was no difference between the groups (p=0.0452). 

 

Figure 5-13: Normalised jerk over the different assessment blocks on the DA for the AAN and the Control 

group. 
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The tests of fixed effect showed that there was a statistically significant effect of practice on 

initial error F(2, 1655.068) =7.928, p<0.005 (Figure 5-14). Nevertheless, the same tests 

failed to identify a statistically significant interaction between HCA group and practice F(2, 

1655.068) =0.364, p=0.695. The estimates of fixed effects showed that initial error decreased 

for both groups by 0.29 mm (p<0.05) per washout. The same estimates showed that the 

difference from the adaptation assessment was 0.25 mm less than the adaptation assessment 

(p<0.05). Nevertheless, the estimated marginal means showed that initial error was not 

affected by the washout block as there was no statistically significant difference from its 

value pre and post-washout (p=0.645). 

 

 

Figure 5-14: Initial error over the different assessment blocks on the DA for the AAN and the Control group. 
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 Results of the circle-drawing task for the dominant arm 

The results of the tests of fixed effects for movement circularity (Figure 5-15) during circle-

drawing task of the DA indicated that there was no significant effect of practice F(2,69.348) 

=0.387, p=0.680. on movement circularity. Also, there was no significant interaction 

between HCA group and practice on movement circularity F(2,69.348) =0.472, p<0.626.  

 

Figure 5-15: Movement circularity over the different assessment blocks on the DA for the AAN and the 

Control group. 

With respect to the duration of the circular movements of the DA (Figure 5-16) the tests of 

fixed effects showed that there was a statistically significant effect of practice F(2,40.126) 

=17.852m p<0.005 but also showed there was no statistically significant interaction between 

HCA group and practice F(2,40.126) =0.590 p<0.005, indicating that both groups behaved 

similarly throughout the trial. The estimates of fixed effects indicated that movement 

duration was reduced at the pre-washout assessment when compared to the adaptation 
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assessment by an estimated 8.8s (p<0.005) and that it was reduced even further post-washout 

as the estimate of the circular movement duration was 9.3s (p<0.005).  

 

Figure 5-16: Movement duration over the different assessment blocks on the DA for the AAN and the Control 

group. 
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Table 5-2: Summary of the findings on the analysis of the effectiveness of the trial on the AAN and Control 

group for the DA. 

Measure Learning 

pre-washout 

Retention 

post-washout 

Improved more 

pre-washout 

Retained more 

post-washout 

Duration Yes Yes Control Control 

Perpendicular 

error 

Yes Yes AAN AAN 

Mean velocity Yes Yes Control Control 

Normalised jerk Yes  Yes Control No difference 

Initial error Yes  

(negligible) 

No No difference No difference 

Circularity No No N/A N/A 

Circular 

movement 

duration 

Yes Yes No difference No difference 

 

5.4.3 Analysis of the Self-Assessment Manikin questionnaire 

Considering the potential psychological effects of the trial at the different stages the 

participants were asked to complete the SAM questionnaire, where valence, arousal, and 

dominance were assessed in a scale from one (not at all) to nine (very much so). The tests of 

fixed effects results indicated that there was no statistically significant effect of practice on 

valence F(6,62.254) = 1.012, p = 0.426, nor was there a statistically significant interaction 

between HCA group and practice F(6,62.254) = 1.921, p = 0.091, as shown in Figure 5-17. 
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Figure 5-17:Mean change in Valence from the first assessment block (baseline).  

The tests of fixed effects showed that there was a statistically significant effect of training 

on the arousal of the participants F(6,55.658) = 2.723, p <0.05, (Figure 5-18) and a 

statistically significant interaction between HCA group and practice F(6,55.658) = 2.499, 

p<0.05. The participants’ arousal dropped in the course of the trial for both groups but it 

reached a mean difference of less than 1 unit (p<0.05). The estimates of fixed effects 

identified a statistically significant difference between the two groups when comparing the 

change in arousal the adaptation assessment of the NDA and the post-washout assessment 

on the NDA where the AAN group showed a higher arousal by an estimated 1 unit (p<0.05). 

However, as no other difference between the groups was identified this difference can be 

attributed a random occurrence rather an effect of HCA group. 
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Figure 5-18: Mean change in Arousal from the first assessment block (baseline). 

The tests of fixed effects showed a statistically significant effect of practice F(6,57.181) 

=5.871, p<0.005 on the participant’s dominance (Figure 5-19) but failed to identify a 

statistically significant interaction between HCA group and practice F(6,57.181) =1.593, 

p=1.66. The participants appear to have been feeling more in control in the pre-washout part 

of the trial. More specifically, dominance increased by an estimate of 0.6 units (p<0.05) in 

the adaptation assessment of the NDA and at the training stages the increase fluctuated 

between 0.8 and 0.9 units (p<0.05). In the post-washout assessment, the participants felt less 

in control (reduced dominance) as there was no statistically significant difference between 

the assessment following the adaptation on the NDA block and the post-washout assessment 

on the NDA (p=0.153). Finally, dominance increased in the final assessment (post-washout 

on the DA) by 0.9 units (p<0.05) when compared to the adaptation on the NDA assessment.  
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Figure 5-19: Mean difference in Dominance from the first assessment block (baseline). 

 

Table 5-3: Summary of the findings on the analysis of the effectiveness of the trial on the AAN and Control 

group for the SAM questionnaire 

Measure 
Effect of 

practice 

Difference between 

the groups? 

Valence No No 

Arousal Yes (↓) Yes 

Dominance Yes (↑) No 
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 Discussion 

The kinematic analysis of the reaching movements using the NDA indicated an interesting 

pattern for both groups. The values of all measures improved (e.g. reduced error/movement 

duration, increased mean velocity) throughout the different training blocks with the only 

exception being initial error which appears to be unaffected by the trial. This gradual 

improvement in all measures across the different training blocks indicated that motor 

learning occurred throughout the training part of the trial. Nevertheless, it must be noted that 

the most dramatic change in all measures that showed improvement, occurred after the first 

training block while in the subsequent training blocks changes were subtler. The latter 

finding indicated that most of the learning occurred in the first training block while in the 

subsequent training blocks the fine tuning took place. When comparing the effect of the 

groups had on motor learning, the Control group appears to have performed better than the 

AAN group. More specifically, the Control group improved more in the reaching movement 

duration, mean velocity and normalised jerk from the baseline assessment, while on the other 

measures no difference was identified between the two groups.  

Likewise, after the washout block most kinematic measures deteriorated slightly or remained 

at the same levels as pre-washout. Nevertheless, none of the measures returned to pre-

training levels indicating retention of the learned task a direct result of the exercise the 

participants received with the only exception being the perpendicular error which reverted 

back to the adaptation levels. The Control group retained a greater difference from the 

adaptation assessment in its movements’ duration, mean velocity and normalised jerk, than 

the AAN group did. In all other measures, namely perpendicular error and initial error both 

groups behaved similarly.  

When considering the circle-drawing task movements showed high circularity from the 

beginning of the session before any practice was undertaken and did not change in terms of 
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circularity throughout the trial. This can be partly explained by the fact that the participants 

were healthy and hence they did not experience abnormal muscle synergies, something that 

would affect circular movements. Furthermore, the circle-drawing task requires symmetrical 

movements around the centre of the workspace and as such it is likely that the participants 

choose to ignore the visual feedback and perform the movement based solely on 

proprioception. If this is indeed the case, then the visual rotation would have no impact in in 

making the task performed more challenging.  

This is further supported by the finding that although movement duration was reduced after 

training block 1 for both groups it remained at the same levels throughout the rest of the 

assessment blocks and more importantly the washout phase. The latter provides a clear 

indication that the de-adaptation phase (washout) did not have any effect on the circularity 

of the movements in the circle drawing task and subsequently the visual rotation did not 

affect the way the participants performed the circular movements. 

From the findings of the kinematic analysis of the participants NDA movements it can be 

derived that although both groups learned how to perform the reaching task under the visual 

rotation, unassisted movements were equal or better at inducing motor learning than the 

AAN algorithm did as indicated by the more improved kinematic measures of the Control 

group. The outcome of the analysis falls in line with other studies (Kahn et al., 2006; 

Kadivar, Sung, et al., 2011) that have shown that given the same amount of training assistive 

and unassisted movements have comparable effects on motor learning as demonstrated by 

the improvement in kinematic parameters, with unassisted movements having a small added 

benefit in improving certain kinematic parameters such as movement smoothness (Kahn et 

al., 2006).  

By analysing the kinematic measures collected during the assessments on the participant’s 

DA that did not receive any training but only performed three assessment blocks (pre-
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training, post-training, post-washout), the level of bilateral transfer of motor learning could 

be evaluated. Regarding the measures collected on the reaching task a clear pattern formed 

across all the kinematic measures assessed with the only exception being initial error which 

remained at the same levels throughout the trial. There was a significant improvement on the 

post-training assessment that was retained after the washout block. The AAN group showed 

a greater improvement and retention of the movement accuracy while the Control group 

resulted in more improved duration, velocity and smoothness. When comparing retention 

between the two groups, the AAN showed a greater difference in the perpendicular error 

between the adaptation and washout assessments while the Control group retained more of 

its mean velocity. Both groups performed similarly in all the other measures.  

Additionally, when comparing the participants’ performance on the circle-drawing task 

across the different assessment blocks there was no difference throughout the trial in terms 

of movement circularity. However, there was an improvement after the training block in 

movement duration that, as with the NDA, was retained after the washout block. This may 

be due to the same reasons that caused a similar behaviour in the NDA during this particular 

task i.e. the performance of this particular task was not affected by the visual rotation. 

From the analysis of the findings it can be derived that passive movements had a better 

impact on inducing bilateral transfer from the NDA to the DA as reflected by most kinematic 

measures while the AAN had a comparable effect. The findings of the analysis indicate that 

increased effort results in increased bilateral transfer. This is further supported by the 

findings of the study by (Park et al., 2012) which showed that an adaptive assistive algorithm 

that would provide assistance as needed had a greater effect on bilateral transfer from its 

non-adaptive equivalent. The implications of the findings of this study for the impaired 

population are great as they further support the existing evidence that bilateral transfer can 
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occur between the healthy and impaired arms and as such by practising movements with the 

healthy arm can transfer learning to the impaired.  

Another aspect of the assessment was a psychological test in the form of a questionnaire 

assessing participant’s valence, arousal and dominance throughout the assessment blocks. 

The results showed that the participants did not change their valence levels throughout the 

trial for both groups, as such the trial and training did not affect how happy the participants 

were. On the other hand, the statistical analysis indicated that both groups became less 

aroused in the course of the trial. This could be attributed to mental fatigue due to the 

repetitive nature of the trial task. Nevertheless, the mean difference in arousal that was 

observed was very small never exceeding 1 unit.  

The participants’ dominance increased in the training part of the trial for both groups 

indicating that the more the participants practised the more in control they felt. Interestingly 

in the first of the post-washout assessments (washout NDA) both groups reported a drop in 

their dominance which in the subsequent assessment returned to the elevated pre-washout 

levels. This drop in dominance could be an effect of the washout block which may have 

disrupted the participants’ confidence that was built up in the training blocks. This 

explanation also falls in line with the increased dominance in the second post-washout 

assessment where the participants after experiencing a more “familiar” environment for their 

movements in the washout assessment on the NDA felt again in control.  
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 Summary 

Some key findings of the analysis can be found below: 

 Both interventions (group training conditions) led to a) improvement in the 

participants’ movements of the NDA in all parameters pre-washout and b) retention 

of improvements post-washout except for perpendicular error, initial error and 

circularity.  

 AAN was less effective on improving and retaining movement duration, mean 

velocity.  

 Reaching tasks and bilateral transfer led to similar patterns of improvement except 

for perpendicular error where AAN was more effective in improving and retaining 

the improvements in this measure. 

 Bilateral transfer appears unaffected by washout. 

 There was no effect of practice type on the changes of the psychological state of the 

participants. 
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6 Investigating the effects of Error Augmentation 

Adaptive control on motor learning 

 Introduction 

The main aim of this chapter is to investigate the effect on motor learning of the EAA 

utilising the data acquired in the investigatory trial of this project (Chapter 4.3).  To do so 

the group that practised with EAA in the investigatory trial is compared against a Control 

group that undertook the same amount of practice but without any forces being applied to 

the participants’ arm from the rehabilitation robot. The findings of the analysis are meant to 

serve as preliminary evaluation that will inform a later trial with the participation of the 

impaired which is a common and recommended practice amongst relevant studies (Dobkin, 

2009). This chapter firstly presents the reader with the configuration of the EAA that was 

used in the trial followed by the research question the analysis set out to answer. Finally, the 

findings of the analysis are presented and discussed in the context of the research questions.  

 The Error Augmentation Adaptive Algorithm 

In Section 3.3.3 the software implementation of the EAA was presented. By adjusting 

parameters within the system the desired behaviour was achieved. There are three possible 

areas of adjustment within the software namely, a) the direction of the forces, b) the method 

of adaptation and c) the maximum permissible current. The selection of these settings was 

informed by trial and error as well as by consulting experienced physiotherapists. It must be 

noted that the settings were adjusted to be suitable for able-bodied users and in the case the 

system is used by the impaired they should be adjusted accordingly.  
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The final settings of the EAA were set as follows: 

a) The direction of the forces was set in the perpendicular direction away from the 

desired trajectory. 

b) Maximum Permissible Current was set to 2A to achieve a maximum permissible 

force of approximately 5N. 

c) The method adaptation was set to be adaptation in infinite zones as set by Equation 

( 19 ) where αW = 1.63 mm and β =-1. The minimum allowable width was set to be 

3.3 mm and the maximum allowable width of was set at 228 mm.  

An example of the configuration of the EAA is provided in Figure 6-1. 

Cursor
Target
Desired trajectory
Deadband border
Force direction

B

A

F

A: Starting point
B: Finishing point
d: Deadband width 
dmax: Maximum deadband width
dmin: Minimum deadband width

x

y

dmaxd

dmin

 

Figure 6-1: The EAA as it was implemented for the trial on able bodied participants. 
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 Research questions 

The questions that this analysis set out to answer are presented below: 

1) Does the EAA affect motor learning and retention of learning on the upper limb of 

the able-bodied adults? If yes, what is its effect? 

2) How does the effect of EAA compare to the participants’ performance if the same 

amount of practice was received without any forces being applied by the 

rehabilitation robot? 

3) Is bilateral transfer affected by the conditions of practice (EAA vs passive 

movements)? 

4) Does practice with the EAA have an effect on the psychological state of the 

participants and if so how much of that can just be attributed to the exercise? 

 Results of the statistical analysis 

6.4.1 Analysis of the kinematic measures for the non-dominant arm 

In total five assessment blocks were performed using the NDA. One assessment was 

undertaken before any exercise was received (baseline assessment), followed by three 

assessment blocks, one after each training block, and finally an assessment block that 

followed the washout block. According to the results of the previous trials, it was expected 

that performance in terms of kinematic measures would improve throughout the trial after 

the baseline assessment, until the washout block after which performance was expected to 

deteriorate but not to return pre-exercise levels. More detailed description about the 

measures used and analysis performed can be found in Section 4.3. 
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Assessment 

NDA (2) 

Adaptation

Assessment 

NDA (3) 

Training 1

Assessment 

NDA (4) 

Training 2

Assessment 

(7) (NDA) 

Washout

Assessment 

NDA (5) 

Training 3
 

Figure 6-2: The assessments on the NDA. 

 Results for the reaching task on the non-dominant arm 

When considering the movement duration (Figure 6-3) of the NDA in reaching movements 

of the NDA the tests of fixed effects showed that there was a statistically significant effect 

of practice in the duration of movements, F(4,1157.583) = 38.753, p <0.005. Also the tests 

of fixed effects showed a significant interaction between HCA group and practice 

F(4,1157.583) =12.288, p<0.005. However, the estimates of fixed effects for the interaction 

between the two groups showed that only in the washout assessment there was a statistically 

significant difference between the two groups where the Control group achieved a greater 

difference of 0.2 mm (p<0.005) between the adaptation and the washout assessment. This is 

an indication of the Control group retained more the improved duration post-washout than 

the EAA group did.  

With regard to the effects of practice in movement duration both groups behaved similarly 

in the training stage of the trial. The estimates of fixed effects showed that the maximum 

improvement occurred after training block 3 where the movements lasted for an estimated 

1.13s (p<0.005) less when compared to the adaptation assessment. Post-washout the duration 

was increased when compared the pre-washout levels with an estimated difference of 0.1s 

(p<0.05) for the EAA group and 0.3s (p<0.05) for the Control group indicating that the 

control retained more of the improved duration of its movements post-washout. 
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Figure 6-3: Mean duration over the different assessment blocks on the NDA for the EAA and the Control 

group. 

There was a statistically significant effect of practice on movement error (Figure 6-4) as 

indicated by the tests of fixed effects F(4,1075.187) = 288.935, p<0.005. Moreover, 

perpendicular error in the participants’ movements changed in the same manner for both 

groups as there was no statistically significant interaction between HCA group and practice 

F(4,1075.187) =0.580, p=0.677. By consulting the estimates of fixed effects, it can be 

derived that perpendicular error was reduced throughout the training blocks reaching a 

maximum difference of 3.9 mm (p<0.005) from the adaptation levels after training block 3.  

At the washout assessment perpendicular error increased to levels similar to the adaptation 

assessment. This is indicated by the estimates of fixed effects that failed to identify a 

statistically significant difference (p=0.178) between the adaptation and post-washout 

assessment in terms of the perpendicular error. To summarise both groups behaved similarly 

throughout the trial with respect to the perpendicular error of their movements. Perpendicular 
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error reduced throughout the training blocks of the trial indicating that learning did indeed 

occur. However, after the washout block error increased and reached values comparable to 

those achieved before any training had been undertaken indicating a complete washout. 

 

Figure 6-4: Mean perpendicular error over the different assessment blocks on the NDA for the EAA and the 

Control group. 

There was a significant effect of practice on the mean velocity F(4,1511.340)=298.312, 

p<0.005 of the reaching movement as indicated by the tests of fixed effects (Figure 6-5). 

Furthermore, the same tests showed a statistically significant interaction between HCA 

group and practice F(4,1511,340)=22.6, p<0.005. More specifically, both groups increased 

the mean velocity of their movements throughout the training part of the trial with the EAA 

group increasing its mean velocity by 26.9 mm/s (p<0.005) after training block 3 when 

compared to the adaptation assessment. The Control group also increased the mean velocity 

of the reaching movements by an estimate of 18.4 mm/s also after training block 3.  
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From the estimates of fixed effects, it can be seen that the EAA showed a greater change in 

mean velocity, when compared to the adaptation levels, than the Control group did 

throughout the trial reaching a maximum difference of 8.5 mm/s after training block 3. 

(p<0.005). Post-washout both groups reduced their mean velocity when compared to the pre-

washout levels with a mean difference in mean velocity pre and post washout of 16.0 mm/s 

(p<0.005) for the EAA and 5.0 mm/s (p<0.005) for the Control group. As such, although the 

EAA improved more in terms of the mean velocity in the training blocks of the trial, the 

Control group retained more of the improved mean velocity post-washout. 

 

Figure 6-5: Mean velocity over the different assessment blocks on the NDA for the EAA and the Control 

group. 

The tests of fixed effects showed that there was a statistically significant effect of practice 

on the normalised jerk (Figure 6-6) of the reaching movements F(4.492.668)=129.541, 

p<0.005 and also that there was a statistically significant interaction between HCA group 
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and practice F(4,432.668)=11.331, p<0.005. Both groups started with high normalised jerk 

at the adaptation stage that was substantially reduced after training block 1 (by 5.72 units, 

p<0.005 for the EAA and by 7.160 units for the Control group). The EAA group reached a 

plateau after training block 2 as the estimates of fixed effects did not show a significant 

difference between training blocks 2 and 3 (p=1.000) but the Control group improved 

throughout the training stage of the trial (p<0.005). The estimates of fixed effects showed 

that the Control group reduced normalised jerk by 2.6 units (p<0.05) more than the EAA 

group did during the training part of the trial. As such, the Control group demonstrated 

smoother movements than the EAA did, at training block 3 when compared to the adaptation 

assessment.  

Nevertheless, this bigger improvement may be due to the Control group demonstrating much 

higher normalised jerk (2.5 units, p<0.05) in their movements during the adaptation 

assessment than the EAA group did. This is further supported by the estimated marginal 

means that failed to identify any difference between the two groups in the assessments after 

training blocks 2-3 (p>0.1). Nevertheless, it must be noted the same estimates showed a 

marginally statistically insignificant difference between the groups at the assessment after 

training block 3 where the estimate for normalised jerk for the Control group was a 2.5 units 

lower (p=0.052) than the same estimate for the EAA group which suggest although both 

groups reached the same levels of improvement eventually the Control group improved 

faster than the EAA group.  

Post-washout both groups performed less smooth movements when compared to the pre-

washout assessment as they increased their normalised jerk by an average of 1.5 units 

(p<0.005) for the EAA group and 0.9 units (p<0.005) for the Control group between the pre- 

and post-washout assessments. As such, it appears that the Control group retained more of 

the improved smoothness post-washout than the EAA did. Nonetheless, both groups 
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demonstrated comparably improved smoothness when compared to the adaptation 

assessment. 

 

Figure 6-6: Normalised jerk over the different assessment blocks on the NDA for the EAA and the Control 

group. 

The tests of fixed effects showed that there was a marginally non statistically significant 

effect of practice on initial error F(4,1729.949) =2.354, p=0.052 and also that there was no 

statistically significant interaction between HCA group and practice F(4,1729.949) =0.547, 

p=0.701 (Figure 6-7). The estimates of fixed effects showed a similar pattern with initial 

error having no significant difference at any block of the trial (p>0.05) with the only 

exception being a statistically significant difference between the adaptation assessment and 

the assessment after training block 2 where initial error was increased by 0.29 mm (p<0.05. 

Nevertheless, this is probably a false significant result as the estimated marginal means failed 

to identify the same effect (p>0.05). As such, it appears that initial error of the reaching 
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movements of both groups was not affected by practice or by the HCA group the participants 

were assigned to. 

 

Figure 6-7: Initial error over the different assessment blocks on the NDA for the EAA and the Control group. 

 Results of the circle-drawing task for the non-dominant arm 

The tests of fixed effects showed that there was no statistically significant effect of practice 

F(4,46.643) =2.124, p = 0.093 on the circularity of the participants’ movements and that 

there was no statistically significant interaction between HCA group and practice 

F(4,46.643) =0.164, p=0.956. As such, the circularity of the movements was unchanged 

throughout the trial and both groups performed similarly circular movements (Figure 6-8).  
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Figure 6-8: Movement circularity over the different assessment blocks on the NDA for the EAA and the 

Control group. 

There was a statistically significant effect of practice F(4,43.719) = 9.049, p<0.005 on the 

duration of participants’ circular movements (Figure 6-9) as indicated by the test of fixed 

effects. The same tests failed to identify a statistically significant interaction between HCA 

group and practice indicating that both groups behaved in a similar manner in relation to the 

duration of the circular movements. The estimates of fixed effects showed that movements 

became increasingly shortened in duration throughout the different assessment blocks of the 

trial (including the washout) reaching a maximum difference, when compared to the 

adaptation levels, of 4.2 s (p<0.005) at the washout assessment. This is an indication that the 

duration of the circular movements by the washout was unaffected by the washout block. 
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Figure 6-9: Movement duration for the circle drawing task over the different assessment blocks on the NDA 

for the EAA and the Control group. 

Table 6-1:Summary of the findings on the analysis of the effectiveness of the trial on the EAA and Control 

group for the NDA. 

Measure Learning 

pre-washout 

Retention 

post-washout 

Improved more 

pre-washout 

Retained more 

post-washout 

Duration Yes Yes No difference Control 

Perpendicular 

error 

Yes No No difference No difference 

Mean velocity Yes Yes EAA Control 

Normalised jerk Yes Yes Control Control 

Initial error No No No difference No difference 

Circularity No No No difference No difference 

Circular 

movement 

duration 

Yes Yes No difference No difference 
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6.4.2 Analysis of the kinematic measures for the dominant arm 

The DA did not receive exercise during the training of the washout blocks. However, three 

assessment blocks were undertaken using the DA, one at the beginning of the session, one 

before the washout block and finally one at the end of the trial. It was hypothesized that if 

interhemispheric transfer did indeed occur then performance would be improved between in 

the pre-training assessment and the pre-washout assessment. Furthermore, if retention did 

occur there would be a deterioration of the different measures when compared to the pre-

washout assessment levels but would still remain improved with regards to the adaptation 

levels. 

Assessment 

DA (1)

Adaptation

Assessment 

DA (6) 

Pre-Washout

Assessment 

DA (8) 

Post-Washout
 

Figure 6-10: The assessments on the DA. 

 Results for the reaching task on the dominant arm 

Movement duration (Figure 6-11) of the DA has changed significantly for both groups in the 

course of the trial and also this change was different between the two groups as the tests of 

fixed effects showed a statistically significant effect of practice in movement duration 

F(2,775.828), p<0.005 and a significant interaction between HCA group and assessment 

F(2,775.818)=14.256, p<0.005. The estimates of fixed effects showed that both groups 

reduced duration of the movements in the pre-washout assessment (p<0.005) however the 

Control group reduced it by 0.45s (p<0.005) more than the EAA did. Post-washout, duration 

increased slightly when compared to the pre-washout assessment (0.08s for the EAA group 

and 0.04s for the Control group, p<0.05) indicating that movement duration achieved at the 

pre-washout level was almost completely retained.  
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Figure 6-11: Mean duration over the different assessment blocks on the DA for the EAA and the Control 

group. 

The tests of fixed effects showed a statistically significant effect of practice on the 

perpendicular error of the reaching movements F(2,1152.053) =121.181, p<0.005 and also 

that there was a statistically significant interaction between HCA group and practice 

F(2,1152.053) =5.983, p<0.005. Both groups reduced the perpendicular error (Figure 6-12) 

of their movements reaching a mean difference from adaptation of 3 mm for the Control 

group and 3.5mm for the EAA group. However, the estimates of fixed effects did not show 

a statistically significant difference (p=0.598) on how the error changed for the two groups 

between the adaptation and the pre-washout assessment. 

Post-washout perpendicular error remained at the same levels as it did pre-washout for the 

Control group as the estimate marginal means showed a non-significant difference (p=0.231) 

indicating complete retention of that improved error. Interestingly, the EAA group reduced 
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the perpendicular error even further at the post-washout assessment by an estimate of 0.7 

mm (p<0.05). 

 

Figure 6-12: Mean perpendicular error over the different assessment blocks on the DA for the EAA and the 

Control group. 

With respect to the mean velocity of the participants’ reaching movements (Figure 6-13), 

the tests of fixed effects showed that there was a statistically significant effect of practice 

F(2,1319.598)=553.582, p<0.05 and that there was a significant interaction between HCA 

group and practice F(2,1319.598)=13.117, p<0.05. 

When compared to the adaptation assessment mean velocity for both groups increased at the 

pre-washout assessment (mean difference, 21.0 mm/s, p<0.005 for the EAA group and 16.4 

mm/s for the Control group). Nevertheless, the estimates of fixed effects showed that the 

EAA group improved more than the Control group did by 5.0 mm/s (p<0.005) when 
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comparing the difference in mean velocity between the pre-washout and the adaptation 

assessments. Post-washout, mean velocity was reduced for the EAA group when compared 

to the pre-washout block by an estimated 16.0 mm/s, p<0.005, while it remained the same 

for the Control group as there was no statistically significant difference between the pre and 

post-washout assessments (p=0.533).  

To summarise, although both groups increased the mean velocity of their movements in the 

pre-washout assessment, the EAA showed a greater improvement. When it comes to the 

washout assessment, the Control group fully retained the mean velocity of the movements 

demonstrated at the pre-washout assessment while the EAA group only partially retained 

that improved velocity as the mean velocity of their movements was reduced but it remained 

significantly improved when compared to the adaptation assessment.  

 

Figure 6-13: Mean velocity over the different assessment blocks on the DA for the EAA and the Control 

group. 
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The tests of fixed effects for normalised jerk (Figure 6-14) showed that there was a 

statistically significant effect of practice F(2,352.911) =13.471, p<0.005 and also that there 

was a significant effect of HCA group and practice F(2,352.911) =13.053, p<0.005. Both 

groups reduced normalised jerk during the washout block with a mean difference from the 

adaptation assessment of 14.7 units (p<0.005) for the EAA and 25.2 units (p<0.005) for the 

Control group. As indicated by the estimates of fixed effects the Control group improved by 

10.5 (p<0.005) units more than the EAA group did when comparing the pre-washout 

assessment with the adaptation assessment. 

Post-washout normalised jerk remained the same for the Control group as there was no 

statistically significant difference in the normalised jerk of the participants’ movements pre- 

and post-washout. On the other hand, the EAA group increased the mean velocity of its 

movements by a mere 0.4 units (p<0.05) post-washout. As such, it is safe to conclude that 

both groups retained fully the improved smoothness even after the washout block. 
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Figure 6-14: Normalised jerk over the different assessment blocks on the DA for the EAA and the Control 

group. 

Regarding initial movement error (Figure 6-15), the tests of fixed effects indicated a 

statistically significant effect of practice F(1657.903) =11.643, p<0.005 but failed to identify 

a significant interaction between HCA group and practice F(1657.903) =11.643, p<0.005. 

The estimates of fixed effects showed that there was a statistically significant difference in 

initial error between the adaptation assessment and the pre-washout assessment where initial 

error was reduced by 0.31 mm (p<0.05) in the adaptation assessment. It appears that this 

improvement was fully retained post-washout as there was no statistically significant 

difference in initial error between the pre- and post-washout assessments (p=1.00). 
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Figure 6-15: Initial error over the different assessment blocks on the DA for the EAA and the Control group. 

 Results of the circle-drawing task for the dominant arm 

The LMM analysis of the duration of circular movements used for the previous measures, 

failed to converge and hence to provide a reliable result. Different attempts were made to 

change the settings of the estimation including changing the increasing the number of 

maximum iterations to run the model, the number of maximum step halving and also 

changing the estimation method from restricted maximum Likelihood (REML) to Maximum 

Likelihood as well as the covariance type. However, none of these attempts resulted in 

convergence of the model. Therefore, an alternative approach was undertaken that was to 

remove the random effects from the model. The analysis of the movement circularity of the 

DA remained the same as in all other measures (excluding duration of circular movements 

for the DA). 
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The analysis of movement circularity (Figure 6-16) on the circle drawing task showed that 

circularity remained unchanged for both groups as the tests of fixed effects failed to identify 

a significant effect of practice F(2,50.512) =2.640, p=0.081. 

 

Figure 6-16: Movement circularity over the different assessment blocks on the DA for the EAA and the 

Control group. 

Conversely, the duration of the circular movements (Figure 6-17) was affected by the 

different assessment blocks as the tests of fixed effects indicated a statistically significant 

effect of practice F(2,54.092) = 20.528, p < 0.005. In addition, the two groups behaved 

differently between the different assessment block as the same tests indicated a non-

statistically significant interaction between HCA Group and practice F(2,54.092) = 0.434, p 

=0.65.  



220 

 

Duration was reduced in the course of the trial as the mean difference between the baseline 

assessment and the pre-washout assessment was 8.8s (p<0.005), indicating that bilateral 

transfer of the circular movements did indeed occur. On the other hand, there was no 

statistically significant difference pre- and post-washout in the circular movement duration 

(p=1.00) indicating that the washout block did not have an effect on the participants’ 

performance in the circular task. 

 

Figure 6-17: Circular movement duration over the different assessment blocks on the DA for the EAA and 

the Control group. 
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Table 6-2:Summary of the findings on the analysis of the effectiveness of the trial on the EAA and Control 

group for the DA. 

Measure Learning 

pre-washout 

Retention 

post-washout 

Improved more 

pre-washout 

Retained more 

post-washout 

Duration Yes Yes Control Control 

Perpendicular 

error 

Yes Yes No difference EAA (↓) 

Mean velocity Yes Yes EAA Control 

Normalised jerk Yes Yes Control Control 

Initial error Yes Yes No difference No difference 

Circularity No  N/A No difference No difference 

Circular 

movement 

duration 

Yes Yes No difference No difference 

 

6.4.3 Analysis of the Self-Assessment Manikin questionnaire 

The SAM questionnaire was administered to the participants during the different assessment 

blocks in an attempt to measure potential changes in the emotional state of the participants 

throughout the trial in terms of their valence, arousal and dominance.  

Assessment 

DA (1) 

Adaptation

Assessment 

NDA (2) 

Adaptation

Assessment 

NDA (3) 

Training 1

Assessment 

NDA (5) 

Washout

Assessment 

NDA (4) 

Training 2

Assessment 

NDA (6) 

Pre-Washout

Assessment 

(7) (NDA) 

Washout

Assessment 

DA (8) 

Washout
 

Figure 6-18: The different assessment blocks where the SAM questionnaire was administered. 

The tests of fixed effects with regards to valence (Figure 6-19) indicated that there was a 

statistically significant effect of practice F(6, 56.213) = 3.173, p < 0.05 but that there was no 
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statistically significant interaction between HCA group and practice F(6, 56.213) = 1.221, 

p=0.310. Nevertheless, the estimates of fixed effects showed only a statistically significant 

difference on how valence changed between the adaptation assessment on the DA and the 

adaptation assessment on the NDA where valence was reduced by an estimate mean of 0.4 

units (p<0.05) on the adaptation assessment on the NDA. Due the small difference between 

the two assessments and the lack of any other difference between the assessment blocks, the 

change that was measured can be attributed to a random occurrence rather than an actual 

effect of practice. 

 

Figure 6-19: Valence over the different assessment blocks on the DA for the EAA and the Control group. 

According to the tests of fixed effects there was a statistically significant effect of practice 

on the participants’ arousal F(6,45.522) = 8.013, p <0.005 and that there was no statistically 

significant interaction between HCA group and practice F(6,45.522) =0.852, p=0.537 

(Figure 6-20). The estimates of fixed effects showed a statistically significant difference in 
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the participants’ arousal which decreased throughout the trial, reaching a maximum 

difference of 0.9 units (p<0.05) at the washout assessment of the NDA. According to the 

results of this model it appears that participants became more relaxed in the course of the 

trial irrespective of the task that they were asked to perform. 

 

 

Figure 6-20: Arousal over the different assessment blocks on the DA for the EAA and the Control group. 

The tests of fixed effects indicated that there was a statistically significant effect of practice 

F(6,53.442) =4.394, p<0.05 on the participants’ dominance (Figure 6-21) but no significant 

interaction between HCA group and the practice F(6,53.442) =1.447, p=0.214. According to 

the estimates of fixed effects the participants became more empowered (dominant) in the 

course of the trial reaching a statistically significant difference from the adaptation 

assessment of 0.9 units (p<0.005) at the assessment after training block 2 which remained at 

similar levels (fluctuated between 0.8 and 0.9) for the rest of the trial with the only exception 
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being a marginally insignificant difference in the post-washout assessment of the NDA 

where the difference dropped by 0.5 units (p=0.053). As such, the participants felt more 

empowered at the course of the trial when compared to the initial stages of the trials. 

 

Figure 6-21: Dominance over the different assessment blocks on the DA for the EAA and the Control group. 

Table 6-3: Summary of the findings on the analysis of the effectiveness of the trial on the EAA and the Control 

group for the SAM questionnaire. 

Measure Effect of 

practice 

Difference between 

the groups? 

Valence No No 

Arousal Yes (↓) No 

Dominance Yes (↑) No 
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 Discussion 

The analysis of the kinematic measures collected during the reaching task drew a clear 

pattern. Performance, as reflected by the values of the different kinematic measures 

improved throughout the training phase of the trial indicating that motor learning did indeed 

occur on the NDA during the course of the trial. The only exception to this pattern was initial 

error which remained unaffected throughout the trial. Interestingly, the analysis showed that 

the Control group improved more than the EAA group in the smoothness of its movements 

while EAA group demonstrated a greater improvement in the mean velocity of its 

movements. Furthermore, there was no difference between the two groups on how 

movement duration, perpendicular error and initial error had changed throughout the trial.  

The latter supports the findings of a recent study by (Majeed et al., 2015) which compared 

the effect of an error augmentation algorithm based on machine learning to movements under 

no robotic forces in the rehabilitation of the upper limb of stroke patients. This study 

although it successfully measured improvement in both groups as reflected by several 

kinematic measures such us perpendicular error and movement duration it failed to identify 

differences between the two conditions. Interestingly, the same study found no difference 

between the two conditions on the velocity of the movements and their smoothness which is 

in contrast to the findings presented in this report that indicated an increased benefit of EAA 

on the mean velocity and of movements under no force by the rehabilitation robot to 

movement smoothness. 

A possible interpretation of this finding could be that two different strategies were 

undertaken by the two groups both equally effective in completing the task accurately and 

quickly. According to this interpretation the EAA group improved the velocity of its sub-

movements in the expense of smoothness and vice versa. In the case that the aforementioned 
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interpretation holds ground then it can be assumed that this was an actual effect of the HCA 

assigned to each group (EAA, no forces). 

Another interpretation of the abovementioned findings of the trial could be that both groups 

behaved similarly in improving the different measures to the same levels close to the possible 

limits of performance (plateau) in these measures that could be achieved for this task. As 

such, the group that demonstrated the worse initial performance would show greater 

improvement (change) in these measures while reaching similar levels of performance at the 

training stage as the other group. This interpretation described quite accurately the findings 

for normalised jerk where the Control group demonstrated significantly higher normalised 

jerk than the EAA did in the adaptation stage, which was reduced to similar levels to the 

EAA in the training stage of the trial. However, the results for mean velocity contradict this 

interpretation as the group that improved the most (EAA), was the one with that 

demonstrated better performance (higher mean velocity) in the beginning of the trial. 

Regarding the circle-drawing task using performed using NDA, the circularity of the 

movements for both groups was unaffected by practice as it remained the same throughout 

the trial. Nevertheless, the duration of the circular movements was reduced for both groups 

in the course of the training part of the trial. The latter can be explained if it is assumed that 

learning within this task did indeed occur solely reflected by the decrease in movement 

duration. Interestingly, movement duration continued improving even after the washout 

block. This is indication that learning in the circle drawing task, did occur due to the 

participants practising the circle-drawing movements rather than as an effect of the training 

part of the trial. 

After the washout block most measures deteriorated but did not reach the pre-training levels. 

This was a clear evidence of retention. Post-washout, the Control group retained more of the 

improved duration, mean velocity and normalised jerk when compared to the adaptation 
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assessment than the EAA group did. This can be attributed to an effect of the group the 

participants were assigned to. However, an alternative interpretation could be once more that 

both groups achieved similar levels on each measure in the post-washout assessment but as 

the Control group demonstrated worse performance than the EAA group in the adaptation 

stage, the difference between that baseline assessment and the washout assessment would 

favour the Control group as it will be greater. As such, in this case the difference captured 

by these measures wouldn’t be an effect of the algorithm (or the absence of) that is measured 

but an inherent heterogeneity between the two groups before any training was received. The 

latter explanation is the most likely to be accurate as it is further supported by the absence 

of a statistically significant difference between the two groups in the estimated marginal 

means of movement duration, mean velocity and normalised jerk in the washout assessment, 

while the same estimates show worse values for the Control group in the adaptation 

assessment. 

With respect to the reaching task on the DA all measures improved in the pre-washout 

assessment for both groups indicating that bilateral transfer of the learning did occur. The 

Control group improved more in the mean duration of its movements as well as in the 

smoothness of its movements than the EAA group did. On the other hand, the EAA improved 

more in the mean velocity of its movements. Finally, there was no difference between the 

two groups on how the perpendicular error and the initial error had changed between the 

adaptation and pre-washout assessment. The higher improvement in movement duration for 

the Control group could be possibly attributed to the higher initial movement duration that 

the Control group demonstrated in the adaptation assessment. This is further supported by 

the finding that both groups reduced their movement duration in similar values as the 

estimates of marginal means did not identify a difference in the value of movement duration 

(p=0.189) in the pre-washout assessment. 
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The abovementioned interpretation however is contradicted by the findings of the analysis 

regarding the mean velocity of the movements and the normalised jerk where the group that 

improved the most (EAA in mean velocity, control in normalised jerk) was the group that 

demonstrated better performance in the adaptation assessment. These findings could be 

interpreted by the different strategies approach described earlier in this section. Nevertheless, 

it is a very interesting finding that improvement of the DA mirrored the improvement that 

occurred on the NDA, with the EAA group improving more the mean velocity for both the 

DA and NDA and the Control group improving more the normalised jerk of its movements 

for both arms. Such a feature can be exploited in the upper limb rehabilitation of those with 

severe neurological impairments that cannot complete movements with the impaired limb as 

it opens the possibility of benefiting from practising with challenge-based algorithms using 

their unimpaired limb. 

With respect to the circle drawing task for the DA there was no difference between the HCA 

groups. Movement circularity remained unchanged for both groups throughout the trial. 

Nevertheless, the duration of the circular movements was reduced in the pre-washout 

assessment indicating that transfer of learning to this task did occur. One the other hand, 

because there was a lack of a measured effect post-washout, the pre-washout improvement 

can be also attributed to potential learning that occurred within the assessment block on the 

DA. 

Finally, it appears that neither of the algorithms or the intervention in total had a significant 

effect on the participants’ valence. Nonetheless, participants’ arousal was reduced in the 

course of the trial while their dominance increased. Although a small change was measured 

in the two measures it is indicating a clear pattern that as participants felt more comfortable 

in performing the task, they became more relaxed and felt more empowered. This is further 

supported by a small drop that was measured in the participants’ dominance in the first 
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assessment post-washout which in turn was restored in the subsequent assessment. An 

explanation for this finding can be that the participants felt less capable of performing the 

reaching task under the visual rotation post-washout, also by the change in kinematic 

measures. During the post-washout assessment on the NDA some learning occurred and 

hence their confidence was restored in the subsequent assessment. No difference was 

measured between the groups in either of the SAM questionnaire measures indicating that 

both groups were equally affected by the trial. 

Interestingly, the findings of the analysis were opposite to the findings of the study by 

(Shirzad and Van der Loos, 2012) where healthy participants increased their valence and 

arousal while experiencing reduced dominance in the course of the trial while performing 

movements under a combination of visual and haptic error augmentation. As the 

aforementioned study had a very small population (N=10) and followed a crossover protocol 

where the participants were subjected to five different conditions within the same trial it is 

difficult to draw any firm conclusions. Nevertheless, the difference of the findings of this 

study and the study by (Shirzad and Van der Loos, 2012) could be potentially interpreted as 

an effect of the visual error augmentation and as such further investigation is recommended. 
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 Summary 

Some key findings of the analysis can be found below: 

 Both interventions (group training conditions) led to a) improvement in the 

participants’ movements of the NDA in all parameters except for initial error and 

movement circularity pre-washout and b) retention of improvements post-washout 

except for perpendicular error, initial error and circularity.  

 EAA was more effective on improving mean velocity. 

 EAA was less effective in improving movement smoothness. 

 Reaching tasks and bilateral transfer led to similar patterns of improvement. 

 Bilateral transfer appears unaffected by washout. 

 There was no effect of practice type on the changes of the psychological state of the 

participants. 
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7 Investigating the effect of Error Augmented 

Proportional control on motor learning 

 Introduction 

The main aim of this chapter is to present the findings of the statistical analysis comparing 

the EAP and Control groups from the trial described in Section 4.3. While the algorithm’s 

effect on motor learning is evaluated with able-bodied participants the findings of the 

analysis are transferable to the impaired population (Krakauer, 2006). Firstly, an overview 

of the configuration of the EAP used in the trial followed by the research questions that this 

analysis was trying to answer. Finally, the results of the analysis are presented and discussed 

at the end of the chapter.  

 The Error Augmented Proportional algorithm 

In Section 2.7.2 the conceptual design of the EAP HCA was introduced while in Section 

3.3.3 the software implementation was presented. EAP as well the other developed HCAs is 

highly customisable offering an infinite number of configurations. EAP adjusts the 

magnitude of the maximum permissible forces that are exerted by the robot’s endpoint on to 

the user’s hand proportionally to the distance away from the desired trajectory. As such the 

further, the endpoint is, the greater the magnitude of the maximum permissible forces will 

be. The direction of the forces is always away from the desired trajectory. To achieve this 

behaviour, the workspace is divided into eleven zones of adjustable width which are placed 

on each side of the desired trajectory (Figure 7-1). Also within each zone the maximum 

permissible force applied to the participants’ arm can be adjusted as a factor of the maximum 

permissible current. The settings selected for this algorithm were adjusted to be appropriate 

for able-bodied participants and need to be adjusted accordingly if they are to be used by 

impaired. 
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The settings selected for the EAP are as follows: 

a) The direction of the forces was set in the perpendicular direction away from the 

desired trajectory 

b) The robot’s outer wall of each zone was placed in distances equal to n*1.6 mm where 

n the zone number on each side of the desired trajectory 

c) The MPC on each zone was set to be (n-1)0.3A, where n is the zone number on each 

side of the desired trajectory. As such, the values of MPC would range from 0A for 

zone 1 to 3A for zone 11. 

An example for the first four zone is provided in Figure 7-1. 

A

B

Cursor
Target
Desired trajectory
Gain adjustment zone
Force vector
Desired trajectoryAB :

x

y

 

Figure 7-1: Example of the EAP for the first four zones. 



233 

 

 Research questions 

The questions that this analysis sets out to answer are presented below: 

1) Does the EAP affect motor learning and retention of learning on the upper limb of 

the able-bodied adults? If yes, what is its effect? 

2) How does the effect of EAP compare to the participants’ performance if the same 

amount of practice was received without any forces being applied by the 

rehabilitation robot? 

3) Is bilateral transfer affected by the conditions of practice (EAP vs passive 

movements)? 

4) Does practice with the EAP have an effect on the psychological state of the 

participants and if so how much of that can just be attributed to the exercise? 

 Results of the statistical analysis 

To test the effect of EAP on motor learning a trial was conducted with able-bodied 

participants. The trial protocol and the analysis methodology are both described extensively 

in Section 4.3. 

7.4.1 Analysis of the kinematic measures for the non-dominant arm 

Five in total assessments were performed with the participants using their NDA. The first 

assessment was carried out after the adaptation stage before any training took place. The 

subsequent three assessments were undertaken after each of the training blocks and the final 

assessment was carried out after the washout phase in order to assess retention. Performance 

was evaluated from the values of the kinematic measures collected throughout the trial. In 

the course of the trial as the participants practised more it was expected that performance, as 

reflected by the values of the kinematic measures, would improve when compared to the 
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baseline (adaptation) assessment. Also, if retention did indeed occur then this would be 

reflected by better performance when compared to the baseline assessment and comparable 

levels of the kinematic measures to the pre-washout assessments. 

Assessment 

NDA (2) 

Adaptation

Assessment 

NDA (3) 

Training 1

Assessment 

NDA (4) 

Training 2

Assessment 

(7) (NDA) 

Washout

Assessment 

NDA (5) 

Training 3
 

Figure 7-2: The assessments on the NDA. 

 Results for the reaching task on the non-dominant arm 

The test of fixed effects indicated that there was a statistically significant effect of practice 

on movement duration as it was measured in the different assessment blocks F(4,1265.586) 

= 395.687, p <0.005. Additionally, the same tests identified a statistically significant 

interaction between HCA group and practice F(4,1265.586) = 8.330, p<0.005. 

More specifically, movement duration (Figure 7-3) dropped throughout the training blocks 

when compared to the baseline assessment (the assessment after the adaptation block). After 

training block 3, the duration of the participants’ movements was reduced by 1.3s (p < 0.01) 

for the EAP group and 1.1s for the Control group. After the washout block the participants’ 

movements became slower, when compared to levels achieved at the training stage of the 

trial, but remained improved when compared to the adaptation block by 0.9s (p < 0.005) for 

the EAP group and by 0.8s (p<0.005) for the Control group.  

When comparing the two groups, the EAP improved the duration of its movements by 0.18s 

(p<0.05) more than the Control group did when looking at the difference between the 

assessment after training block 3 and the adaptation assessment. On, the other hand the EAP 

group increased its movement duration post-washout by 0.03s (p<0.005) more than the 

Control group did. Conversely, for both groups movement duration improved throughout the 

training part of the trial with both groups reaching similar levels of movement duration after 
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training block 3. However, it must be noted that the EAP group started with a higher 

movement duration which might be the cause of the greater improvement when compared 

to the Control group. Furthermore, post-washout both groups reduced their movement 

duration to levels similar to the ones achieved in training block 1, indicating that partial 

washout did occur but not complete washout. The Control group demonstrated more 

retention of movement duration but only for a negligible amount of 0.03s (p<0.05). 

 

Figure 7-3: Mean duration over the different assessment blocks on the NDA for the EAP and the Control 

group. 

Similarly, there was a statistically significant effect of practice group on movement error 

F(4,1088.906) =334.469, p<0.005 as indicated by the tests of fixed effects. On the contrary, 

the same tests failed to identify a significant interaction between HCA group and practice 

F(4,1088.906) =1.721, p=0.143 indicating that the there was no significant difference 
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between the two groups on how the perpendicular error of the movements has changed 

throughout the trial. 

From the estimates of fixed effects, it can be seen that movements became more accurate as 

perpendicular error was reduced in the different assessment blocks following the training 

stage of the trial, reaching a maximum difference with the baseline assessment of 3.8 mm (p 

< 0.005) after training block 3 (Figure 7-4). Post-washout movement error increased to the 

levels of the adaptation assessment (no statistically difference between the washout 

assessment and the adaptation assessment, p=0.536) indicating that improvement in 

movement error was completely washed out. 

 

Figure 7-4: Mean perpendicular error over the different assessment blocks on the NDA for the EAP and the 

Control group. 
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With respect to the mean velocity (Figure 7-5) the test of fixed effects showed a statistically 

significant effect of practice F(4,1392.531) =402.921, p<0.005 along with a statistically 

significant interaction between HCA group and practice F(4,1392.531) =15.436, p<0.005.  

When compared to the baseline assessment the mean velocity increased in the training part 

of the trial with the EAP group reaching a maximum mean difference from the baseline 

assessment of 18.0 mm/s (p<0.005) after training block 2 while the Control group reached 

the same difference after training block 3 (p<0.005). After training block 3 the EAP group 

did not improve further as there was no statistically significant difference (p=0.216) in 

movement duration between the assessment after training blocks 2 and 3. Post-washout 

movement velocity was partially washed-out as it was reduced for both groups by an average 

of 5.0 mm/s (p<0.005) from training block 3 however it remained significantly improved 

when compared to the training block 1 for both groups. 

As such, both groups increased the mean velocity throughout the training stage of the trial 

with the EAP group reaching its peak mean velocity one training block faster than the 

Control group (training block 2 for EAP and training block 3 for the Control group). When 

it comes to washout, both groups reduced the mean velocity of their movements when 

compared to the pre-washout assessments indicating that mean velocity was partially washed 

for both groups and that the washout was the same for both groups. 
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Figure 7-5: Mean velocity over the different assessment blocks on the NDA for the EAP and the Control 

group. 

In relation to movement smoothness as measured by the normalised jerk (Figure 7-6) the 

tests of fixed effects showed that there was a statistically significant effect of practice 

F(4,522.801) =161.235, p<0.005 as well as a statistically significant interaction between 

HCA group and practice F(4,522.801) =3.803, p<0.05. 

The interaction between HCA groups and practice identified by the tests of fixed reflects is 

not evident in the estimates of fixed effects as it appears that there is no significant difference 

between the two groups on how normalised jerk changed in the different assessments 

(p>0.05). As such, only the estimates of fixed effects for both groups as one population will 

be taken into account. Consequently, the estimates of fixed effects showed that the 

participants’ movements became smoother as normalised jerk was reduced in the assessment 

following the training part of the trial with a maximum difference from the adaptation being 
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reached in the assessment following training block 3 where normalised jerk was reduced by 

10 units, p<.005. Post-washout normalised jerk was increased when compared to the pre-

washout assessment by 1 unit (p<0.005) indicating that a partial washout did indeed occur 

to movement smoothness. Nevertheless, the participants retained most of the improved 

smoothness after the washout block, as the mean difference from the adaptation assessment 

was approximately 9 units (p<0.005). 

 

Figure 7-6: Normalised jerk over the different assessment blocks on the NDA for the EAP and the Control 

group. 

The estimates of fixed effects showed that there was a statistically significant effect of 

practice on the initial error of the movements F(4,1808.927) =3.337. p<0.05 (Figure 7-7). 

On the contrary, the same tests did not identify a statistically significant interaction between 

HCA group and practice F(4,1808.927) =0.256, p=0.901. However, the test of fixed effects 

only showed a significant difference in the initial error of the participants’ movements 
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between the adaptation assessment and the assessment after training block 2, where initial 

error was reduced by an estimated 0.25mm (p<0.05). However, due to the lack of significant 

difference between the adaptation assessment and the other assessments (except for the one 

following training block 3) it can be concluded that there was no real effect of practice on 

initial error. 

 

Figure 7-7: Initial error over the different assessment blocks on the NDA for the EAP and the Control group. 

 Results of the circle-drawing task for the non-dominant arm 

Regarding the circle-drawing task (Figure 7-8) the tests of fixed effects showed that there 

was a statistically significant effect of practice F(4,34.778) =2.768, p<0.05 but no 

statistically significant interaction between HCA group and practice F(4,34.778) =1.756, 

p=0.160. Nevertheless, the estimates of fixed effects did not identify a significant difference 

in movement circularity between the adaptation assessment and the other assessments 
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(p>0.05). Consequently, it is logical to conclude that movement circularity was unaffected 

by practice pre- and post-washout. 

 

Figure 7-8: Movement circularity over the different assessment blocks on the NDA for the EAP and the 

Control group. 

The duration of movements in the circular task (Figure 7-9) was significantly affected by 

practice F(4,35.629) =11.954, p<0.05 as indicated by the tests of fixed effects. In contrast, 

there was no statistically significant interaction between HCA group and practice as 

indicated by the same tests F(4,35.629) =0.380, p=0.822. The estimates of fixed effects, 

showed that the duration of the circular movements was reduced throughout the training part 

of the trial reaching a maximum difference from the adaptation assessment of 4s (p<0.005) 

after training block 3. Post-washout movements continued to shorten in duration as in the 

washout assessment duration was improved by 4.3s (p<0.005) indicating that the washout 

block did not affect the duration of the circular movements.  
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0

 

Figure 7-9: Movement duration for the circle-drawing task over the different assessment blocks on the NDA 

for the EAP and the Control group. 
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Table 7-1:Summary of the findings on the analysis of the effectiveness of the trial on the EAP and Control 

group for the NDA. 

Measure Learning 

pre-washout 

Retention 

post-washout 

Improved more 

pre-washout 

Retained more 

post-washout 

Duration Yes Yes EAP Control 

Perpendicular 

error 

Yes No No difference No difference 

Mean velocity Yes Yes EAP 

(same levels but 

achieved them 

faster) 

No difference 

Normalised jerk Yes Yes No difference No difference 

Initial error No Ν/Α No difference No difference 

Circularity No Ν/Α No difference No difference 

Circular 

movement 

duration 

Yes Yes (↓) No difference No difference 

7.4.2 Analysis of the kinematic measures for the dominant arm 

Assessments on the DA were performed in order to evaluate the effect of the different 

interventions on the bilateral transfer of motor learning and subsequently motor skills. Apart 

from the assessment blocks, no training was received by the DA during the course of the 

trial. In total three assessment blocks were undertaken using their DA, one pre-training, one 

at the end of the training blocks and one after the washout phase. 

The hypothesis of this experiment was that if bilateral transfer did indeed occur the kinematic 

measures post-training would show improvement when compared to the pre-training levels. 

Furthermore, it was expected that if the values of the kinematic measures would remain 

improved at the post-washout assessment when compared to the pre-training levels, this 

would suggest retention of the acquired skills.  
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Assessment 

DA (1)

Adaptation

Assessment 

DA (6) 

Pre-Washout

Assessment 

DA (8) 

Post-Washout
 

Figure 7-10: The assessments on the DA. 

 Results for the reaching task on the dominant arm 

Regarding the movement duration of the DA (Figure 7-11), the tests of fixed effects showed 

a statistically significant effect of practice F(2,704.132) =425.886, p<0.005 and a statistically 

significant interaction between HCA group and practice F(2,704.132) =3.734, p<0.05. The 

estimated marginal mean showed that both groups reduced the duration of the movements 

in the pre-washout assessment when compared to the adaptation assessment. More 

specifically, the EAP group reduced the duration of its movements by an average of 2.4s 

(p<0.005) while the Control group reduced movement duration by 2s (p<0.005).  

The estimates of fixed effects showed that there was indeed a statistically significant 

difference between the two groups on how movement duration has changed between the 

adaptation and pre-washout assessment with the EAP group improving by a 0.4s (p<0.05) 

more than the Control group did. Post-washout both groups retained the improved movement 

duration they demonstrated in the pre-washout block, as the estimates of fixed effects 

showed that there was no statistically significant difference in movement duration between 

the pre- and post-washout assessment (p=1.000 for the EAP, p=0.977 for the Control group) 
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Figure 7-11: Mean duration over the different assessment blocks on the DA for the EAP and the Control 

group. 

The tests of fixed effects revealed that there was a statistically significant effect of practice 

on the perpendicular error of the movements F(2,1183.64) =119.305, p<0.005, but that there 

was no statistically significant interaction between HCA group and practice F(2,1183.64) 

=1.526, p=0.218. From the estimates of fixed effects, it can be seen that perpendicular error 

was reduced for both groups (Figure 7-12) by an estimate of 3.2 mm (p<0.005) in the pre-

washout assessment. Post-washout, the estimates of fixed effects showed a difference from 

the adaptation assessment of 2.7 mm (p<0.05), which indicates that perpendicular error, 

increased post-washout. However, this finding must be considered with caution as the 

estimated marginal means failed to identify a statistically significant difference in 

perpendicular error between the pre- and post-washout assessments (p=0.540). 
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Figure 7-12: Mean perpendicular error over the different assessment blocks on the DA for the EAP and the 

Control group. 

Similarly, the mean velocity of the movements (Figure 7-13) was significantly affected by 

practice F(2,1516.893) =1033.428, p<0.005 as the tests of fixed effects indicated. 

Furthermore, the same tests showed that there was a statistically significant interaction 

between HCA group and practice F(2,1516.893) =8.960, p<0.005.  

The estimated marginal means showed that both groups increased the mean velocity of their 

movements in the pre-washout assessment with a mean difference from the adaptation 

assessment of 21.0 mm/s (p<0.005) for the EAP group and 17.0 mm/s for the Control group. 

Furthermore, the estimates of fixed effects also verified that the EAP increased its mean 

velocity by 4 mm/s (p<0.005) more than the Control group did between the adaptation and 

the pre-washout assessment. The estimated marginal means of the fitted models showed that 

there was no statistically significant difference in mean velocity between the two groups pre- 
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and post-washout (p=1.000 for the EAP and p=0.354). However, the estimates of fixed 

effects showed a small increase post-washout in mean velocity for both groups with the EAP 

group increasing its mean velocity by 3.0 mm/s than the Control group did. It is difficult to 

distinguish whether this is a valid effect of the intervention. Nevertheless, the findings of the 

analysis showed that the mean velocity of the movements of both groups was unaffected by 

the washout block. 

 

Figure 7-13: Mean velocity over the different assessment blocks on the DA for the EAP and the Control 

group. 

Normalised jerk (Figure 7-14) was affected by practice as indicated by the tests of fixed 

effects F(2,228.987) =89.209, p<0.005. The same tests did not identify a significant 

interaction between HCA group and practice F(2,228.987) =0.873, p=0.419. The latter 

finding indicates that both groups behaved similarly regarding the smoothness of their 

movement as measured by the normalised jerk measure throughout the trial. As such, the 
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estimates of fixed effects showed that movement became smoother after the training stage 

of the trail, as normalised jerk was significantly reduced from the adaptation assessment in 

the pre-washout assessment by an estimated of 25.2 units (p<0.005). The improved 

smoothness was fully retained post-washout as there was no statistically significant 

difference in the normalised jerk between the pre- and post-washout assessments (p=1.000) 

as the estimates of marginal means indicated. 

 

Figure 7-14: Normalised jerk over the different assessment blocks on the DA for the EAP and the Control 

group. 

Initial error of the DA (Figure 7-15) was unaffected by practice and by the HCA group the 

participants were assigned to, as the estimates of fixed effects did not identify a significant 

effect of practice F(2,1662.252) =1.963, p=0.141 or a significant interaction between HCA 

group and practice F(2,1662.252) =1.706, p=0.182. 
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Figure 7-15: Initial error over the different assessment blocks on the DA for the EAP and the Control group. 

 Results of the circle-drawing task for the dominant arm 

The test of fixed effects failed to identify a statistically significant effect of practice on 

movement circularity (p=0.321) or a statistically significant interaction between HCA group 

and practice (p=0.987). As such, movement circularity (Figure 7-16) remained unchanged 

throughout the trial for both groups. 
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Figure 7-16: Movement circularity over the different assessment blocks on the DA for the EAP and the 

Control group. 

In the case of duration of the circular movements the standard LMM analysis undertaken 

failed to converge to a solution similar to what was described in Section 6.4.2.2. As such, 

the same solution was employed which was to not consider any random effects in the 

statistical model. 

The estimates of fixed effects showed that there was a statistically significant effect of 

practice in the duration of the circular movements F(2,47.196) =16.743, p<0.005 and also 

that there was no statistically significant interaction between HCA group and practice 

F(2,47.196) =0.005, p=0.995 (Figure 7-17). This indicates that the duration of the movement 

of both groups had changed similarly in the course of the trial. More specifically, the duration 

of the movements became shorter in the pre-washout assessment by 9.1s (p<0.005) when 
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compared to the adaptation assessment. Interestingly, the estimates of fixed effects found an 

even bigger difference (9.8s, p<0.005) between the post-washout and the adaptation 

assessment. However, as the estimated marginal means failed to identify a statistically 

significant difference in the duration of the circular movement between the pre- and the post-

washout assessment (p=1.000) it can be concluded that the washout block did not have an 

effect on the circular movement duration. 

 

Figure 7-17: Movement duration over the different assessment blocks on the DA for the EAP and the Control 

group. 
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Table 7-2:Summary of the findings on the analysis of the effectiveness of the trial on the EAP and Control 

group for the DA 

Measure Learning 

pre-washout 

Retention 

post-washout 

Improved more 

pre-washout 

Retained more 

post-washout 

Duration Yes Yes EAP No difference 

Perpendicular 

error 

Yes Yes No difference No difference 

Mean velocity Yes Yes EAP No difference 

Normalised jerk Yes Yes No difference No difference 

Initial error No N/A No difference No difference 

Circularity No N/A No difference No difference 

Circular 

movement 

duration 

Yes Yes No difference No difference 

 

7.4.3 Analysis of the Self-Assessment Manikin questionnaire 

The same questionnaire was undertaken by the participants at the beginning of each 

assessment block in order to identify potential changes in the participants Dominance, 

Arousal and Valence during the course of the trial.  

Assessment 

DA (1) 

Adaptation

Assessment 

NDA (2) 

Adaptation

Assessment 

NDA (3) 

Training 1

Assessment 

NDA (5) 

Washout

Assessment 

NDA (4) 

Training 2

Assessment 

NDA (6) 

Pre-Washout

Assessment 

(7) (NDA) 

Washout

Assessment 

DA (8) 

Washout
 

Figure 7-18: The different assessment blocks where the SAM questionnaire was administered. 
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According to the estimates of fixed effects there was no statistically significant effect of 

practice F(6,56.663) =1.144, p=0.348 on the participants’ valence (Figure 7-19) as well as 

there was no statistically significant interaction between HCA group and practice 

F(6,56.663) =0.433, p=0.854. This finding indicates that the participants’ valence remained 

unchanged throughout the trial. 

 

Figure 7-19: Valence over the different assessment blocks for the EAP and the Control group. 

With respect to arousal (Figure 7-20), there was no statistically significant effect of practice 

F(6,45.530) =1.887, p=0.104 nor was there a statistically significant interaction between 

HCA group and practice F(6,45.530) =0.823, p=0.558. As such, according to the results of 

this model participants’ arousal remained unaffected by the trial. 
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Figure 7-20: Arousal over the different assessment blocks for the EAP and the Control group. 

The tests of fixed effects indicated a statistically significant effect of practice F(6,45.967) 

=3.516, p<0.05 on the participants’ dominance (Figure 7-21) but not a statistically 

significant interaction between HCA group and practice F(6,45.967) =1.224, p=0.311. The 

estimates of fixed effects showed that participants’ dominance increased in the course of the 

trial. More specifically, the participants felt that they were more in control (increased 

dominance) in the assessment blocks following the adaptation block for the DA up until the 

assessment after training block 3, reaching differences in arousal of 0.6-0.9 units (p<0.05). 

After the washout block on the NDA the dominance returned to the initial levels (p=0.129). 

However, at the last assessment of the trial (washout on the DA) dominance increased again 

to the improved levels (0.9, p<0.05) of the pre-washout assessments.  
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Figure 7-21: Dominance over the different assessment blocks for the EAP and the Control group. 

Table 7-3: Summary of the findings on the analysis of the effectiveness of the trial on the EAP and the Control 

group for the SAM questionnaire 

Measure Effect of 

practice 

Difference between 

the groups? 

Valence No No 

Arousal No Yes 

Dominance Yes (↑) No 
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 Discussion 

The analysis of the kinematic measures collected for the NDA during the reaching task 

showed that motor learning did occur, for the participants of the EAP and Control groups, 

throughout the trial as all kinematic measures improved on the course of the training. This 

improvement was sustained for all measures after the washout phase of the trial, with the 

only exception being the perpendicular error and the initial error which both returned to the 

adaptation levels. It must be noted that although a statistically significant effect of practice 

was identified for the initial error this was discarded as a false positive effect in the analysis 

of the results as it appeared to be a random occurrence in just one assessment block. 

When comparing the two groups namely EAP and control, they performed similarly in all 

measures except for the movement duration and mean velocity. EAP demonstrated a greater 

improvement in the duration of its movements than the Control group did. That is an 

interesting finding that can be attributed to the merits of the particular control algorithm. 

However, it must be noted that the EAP group demonstrated a higher movement duration in 

the adaptation assessment and the estimated marginal means did not identify a statistically 

significant difference at the levels achieved by both groups in movement duration as it was 

measured in the assessment after training block 3. This indicates that both groups reached a 

minimum in the duration of their movements that was possible to be achieved given the 

practice they received. Therefore, it is likely that the highest improvement for the EAP group 

in movement duration was due to the initial higher levels measured in the adaptation 

assessment. Nevertheless, an unexpected finding of the analysis was that post-washout there 

was more retention of the practice effect related to movement duration for the Control group 

when compared to the EAP group. The author failed to identify a similar occurrence in other 

studies or a possible explanation of this finding in the existing literature. As such, further 

investigation is recommended in order to identify whether this is a valid effect of the 
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different HCAs and if this is indeed the case to identify a possible interpretation of this 

finding. 

When looking at the mean velocity of the movements both groups achieved the same levels 

of improvement in the assessment following training block 3. The analysis however, showed 

that the EAP group achieved its maximum improvement in training block 2. Therefore, 

despite the fact that the two groups increased the mean velocity of their movements at the 

same levels the EAP group achieved that improvement faster. That is an indication of a 

potential effect of HCA indicating that the EAP group may be promoting increased 

movement velocity. Yet, the analysis showed that there was no difference between the two 

groups on how much they retained of their increased mean velocity after the washout block. 

The analysis of the circle-drawing task for the NDA yielded that the intervention and the 

group assigned were not factors that affected the circularity of the participants’ movements. 

However, although the participants’ movement circularity remained at similar levels 

throughout the session the duration of the circular movements improved throughout the 

training part of the trial. Post-washout movement duration kept improving for both groups 

indicating that the washout block had no effect on the circle drawing task. 

As with the EAA it appears that the EAP was more effective at improving the mean 

movement velocity indicating a potential benefit of EA on this specific measure. 

Furthermore, EAP was better at improving mean duration of the movements but not at 

retaining it. Given that both groups performed similarly with regard to movement error it 

appears that EAP was more effective at inducing motor learning than the control condition 

as the group that received training with this HCA completed quicker its movements while 

maintaining the same amount of error. Movement duration and perpendicular error are the 

most relevant kinematic measures to the task (participants were asked to perform the 

movements as quickly and as accurately as possible) and hence better descriptors for 
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potential motor learning that occurred. A randomised control trial (RCT) study with a 

crossover design stroke participants by (Abdollahi et al., 2014) reported  a better outcome in 

clinical scales such as the Fugl-Meyer Assessment (FMA) and the Wolf Motor Function Test 

(Section 2.3.1) when participants trained with EA instead of training without any forces or 

visual error augmentation provided by the system. Although only kinematic parameters were 

considered in the trial presented in this report the findings can be linked to clinical scales as 

it has been shown that kinematic measures such as perpendicular error and movement 

duration correlate to clinical scales such as the FMA (Bosecker et al., 2010) and WMFT 

(Rohafza et al., 2014). 

Regarding the reaching task on the DA, all kinematic measures improved during the training 

stages of the trial with the only exception being initial error that remained unchanged 

throughout the trial for both groups. As with the NDA, EAP improved more in terms of the 

duration and the mean velocity of its movements than the Control group did. In both 

measures EAP showed worse performance in the adaptation assessment and reached same 

levels with the Control group in the pre-washout assessment. As such, it is less likely that 

this greater improvement of the EAP in movement duration and velocity was an effect of the 

assigned HCA (or absence of) and more likely that it was due to inherent difference between 

the population of the groups. This interpretation is further supported by the absence of 

differences between the groups on how all measures changed in the post-washout 

assessment. Nevertheless, both groups showed signs of bilateral transfer from the NDA to 

the DA throughout the trial that were not washed-out. 

Movement circularity in the circle-drawing task using the DA remained unchanged 

throughout the trial. On the other hand, the duration of the circular movement was reduced 

for both groups in the pre-washout assessment and retained fully post-washout. The latter 

finding indicates that learning did indeed occur for the DA on the circle-drawing task 
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however, it is impossible to distinguish whether that learning occurred due to bilateral 

transfer or due to motor learning that occurred within the adaptation assessments on the DA. 

Nevertheless, there were no differences on how the two groups behaved in the circle-drawing 

task as measured by the kinematic measures. 

Finally, there was no difference between the two groups on the valence and arousal of the 

participants of either group but there was an increase in their dominance pre-washout. In the 

first post washout assessment (washout on the NDA) dominance returned to the adaptation 

levels which in turn were restored in the second washout assessment back to the increased 

levels post-washout. A possible explanation of this finding could be that as the participants 

improved throughout the trial felt more confident and hence more in control. This confidence 

was briefly disturbed by the washout block but as visual rotation was turned back on the 

participants felt again confident at performing the task and hence in control. It must be noted 

that no differences were identified between the groups on how either of the SAM 

questionnaire measures. 
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 Summary 

Some key findings of the analysis can be found below: 

 Both interventions (group training conditions) led to a) improvement in the 

participants’ movements of the NDA in all parameters except for initial error and 

movement circularity pre-washout and b) retention of improvements post-washout 

except for perpendicular error, initial error and circularity.  

 EAP was more effective on improving movement duration and mean velocity. 

 EAP was less effective on retaining improvements in movement duration. 

 Reaching tasks and bilateral transfer led to similar patterns of improvement. 

 Bilateral transfer appears unaffected by washout. 

 There was no effect of practice type on the changes of the psychological state of the 

participants. 
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8 Comparison between the developed algorithms on 

their effect on inducing motor learning 

 Introduction 

In Chapters 6-8, the three developed haptic control algorithms namely Assistance As 

Needed, Error Augmenting Adaptive and Error Augmenting Proportional were compared 

individually against the Control group with regards to their effect on motor learning of able-

bodied adults. The participants were randomly assigned to one of four groups. The first three 

groups practised reaching movements while the rehabilitation robot was implementing one 

of the developed HCAs while the fourth group (Control group) underwent the same protocol 

but without receiving any forces by the robot. 

Each of the previous chapters presented the results of the trial for the groups that received 

training with corresponding HCA in comparison to the results of the Control group. This 

chapter aims to compare the findings of a statistical analysis including of all four groups, in 

order to extract meaningful insight not only on how motor learning, retention and bilateral 

transfer on performing the practised task was affected by the four conditions but also how 

the three HCAs compare against each other in promoting motor learning. As this trial is 

meant to serve as an exploratory study with able-bodied participants whose results are to be 

applied on the impaired population (from CP/stroke), a recommended practice in the field 

(Dobkin, 2009), the results will be discussed with reference not only to the able-bodied 

population but also to those who suffer from upper limb impairments caused by stroke and 

CP . An overview of the four algorithms is provided in Figure 8-1.  
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Figure 8-1: Each of the groups received training with one of four conditions. a) AAN, b) EAA, c) EAP, d) 

Control 
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 Research questions 

1) Is there a difference in how the different HCAs affect motor learning on the upper 

limb of the able-bodied adults and if so what are those differences? 

2) Is bilateral transfer affected by the conditions of exercise / intervention? 

3) Is there a difference between the different HCAs on how the participants’ emotional 

state is affected? 

 Results of the statistical analysis 

This section provides an overview of the trial and results for all four groups in order for 

comparisons to be made in their effect on motor learning and ultimately to identify potential 

differences between them. The trial protocol and the analysis methodology are presented in 

Section 4.3. 

8.3.1 Analysis of the kinematic measures for the non-dominant arm 

During the course of the trial the participants underwent five assessment blocks using their 

NDA (Figure 8-2), one after the adaptation block, one after each of the three training blocks 

and one after the washout block. The first provided a baseline measurement as no training 

was undertaken by the participants. The assessments following the training blocks were 

performed in order to assess the potential changes in the values of the kinematic measures 

at different stages of the trial. Finally, the post-washout assessment was introduced in order 

to measure at what level the changes in the kinematic measures were retained by comparing 

the values to compared to assessments pre-washout. 

Assessment 

NDA (2) 

Adaptation

Assessment 

NDA (3) 

Training 1

Assessment 

NDA (4) 

Training 2

Assessment 

(7) (NDA) 

Washout

Assessment 

NDA (5) 

Training 3
 

Figure 8-2: The assessments on the NDA. 
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 Result of the reaching task where the non-dominant arm was used 

The tests of fixed effects indicated that there was a statistically significant effect of HCA 

group on the duration of the movements F(4,2716.601) = 715.873, p<0.05 and a statistically 

significant interaction between HCA group and practice F(12,2716.601) =13.041, p<0.005 

indicating that there were significant differences between the groups on how the movement 

duration had changed throughout practice (Figure 8-3). All groups reduced the duration of 

their reaching movements in the different training blocks of the trial. However, the EAA and 

the AAN groups reached a minimum in movement duration after training block 2 as there 

were no statistically significant differences between the training blocks 2 and 3 in the 

estimated marginal means for these two groups (p=0.496 for the EAA and p=0.808 for the 

AAN). The estimates of fixed effects however, showed that all groups improved similarly 

when comparing movement duration after training block 3 with the adaptation assessment 

with the only exception being the AAN group which improved by 0.23s (p<0.005) less than 

the other groups.  

From the estimated marginal means it can be seen that post-washout all groups significantly 

increased their movement duration (p<0.05) indicating partial washout. Furthermore, the 

EAP and the Control group increased their movement duration similarly as the estimates of 

fixed effects did not identify a significant difference between these two groups (p=0.108). 

The EAA and the AAN groups retained less of the improved movement duration than the 

EAP and the Control group did. This can be seen in the estimates of fixed effects where the 

duration of the movements of the EAA and the ANN on the post-washout assessment were 

closer to the adaptation values than the other two groups by 0.24s (p<0.005) and 0.32s 

(p<0.005), respectively. As such, the EAP and the Control group retained more of the 

improved duration after the washout assessment. 
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Figure 8-3: Mean duration over the different assessment blocks on the NDA for the four intervention groups. 

The tests of fixed effects showed that there was a statistically significant effect of practice 

F(12,2308.211) =552.687, p<0.005 on the perpendicular error of the movements (Figure 8-4) 

and also that there was a statistically significant interaction between HCA group and practice 

F(12,2308.211) =1.877, p<0.05. The estimates of fixed effects showed that there was no 

difference on how the perpendicular error was changed in the training stage of the trial 

between the EAA, AAN and the Control group (p>0.05).  

The EAP group demonstrated similar performance to the other groups on how error changed 

from the adaptation assessment in the assessments after training blocks 1 and 3 as there was 

no statistically significant difference (p>0.05). However, the EAP showed a statistically 

significant difference (p<0.05) on how the perpendicular error was reduced between the 

adaptation assessment and on the assessment after training block 2 where improvement was 
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0.9 mm less than the other three groups. Also the estimated marginal means showed that all 

groups except for the EAP reached the minimum in the perpendicular error of their 

movements in training block 1 as there was no statistically significant difference in 

perpendicular error between the assessments after trainings block 1-3 (p>0.05) for the EAA, 

AAN and Control group. The latter two findings if combined demonstrate a potential effect 

on the EAP group, which although it reached the same level of improvement at the end of 

the training part of the trial (after training block 3), it did so slower than the other three 

groups. 

Post-washout all groups behaved similarly as the estimates of fixed effects failed to identify 

a significant difference (p>0.05) on how the perpendicular error of the different groups was 

changed between the post-washout and adaptation assessment. More specifically, the 

improvement in perpendicular error that the participants demonstrated at the training part of 

the trial it was completely washed-out and returned to the levels achieved at the adaptation 

assessment. This is supported by the estimates of fixed effects that showed no statistically 

significant difference between the adaptation and washout assessment (p>0.05). 
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Figure 8-4: Mean perpendicular error over the different assessment blocks for the four intervention groups. 

Practice had a statistically significant effect on the mean velocity of the reaching movements 

(Figure 8-5)as the tests of fixed effects indicated F(4,3165.041) =555.966, p<0.005. The 

same tests also identified a statistically significant interaction between HCA group and 

practice F(12,3165.041) =20.396, p<0.005. All groups reduced their mean velocity 

throughout the training stage of the trial.  

Both the Control group and the EAP increased their mean velocity in a similar manner as 

the estimates of fixed effects could not identify a statistically significant difference on how 

the mean velocity had changed between the adaptation assessment and the assessment 

following training block 3, between the two groups (p=0.190). The EAA group improved 

more than the control and EAP groups did after training block 3 as it increased its velocity 

by 9.0 mm/s (p<0.005) more than the other two groups did after training block 3. On the 
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other hand, the AAN group improved less than the other groups after training block 3 with 

an estimated difference of 5.0 mm/s (p<0.005), in the increase of mean velocity between the 

adaptation assessment and the one after training block 3, when compared to the control and 

EAP.  

Post-washout, all groups reduced the mean velocity of their movements indicating that the 

improvement measured in training block 3 was partially washed out. Nevertheless, the EAP 

and control once more experienced a similar washout as the estimates of fixed indicated 

there was no statistically significant difference between the difference in mean velocity 

between the washout and the adaptation assessment (p=0.069). Conversely, on the same 

comparison between the adaptation and the washout assessment the estimates of fixed effects 

showed that there was a statistically significant difference between the AAN and the Control 

groups. The EAA retained less of its mean velocity than the EAP and Control group by 3 

mm/s (p<0.05). On the other hand, the AAN group retained less of the improved velocity 

than the other groups did by an estimate of 6.1 mm/s p<0.005) when compared to the control 

and the EAP groups. 
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Figure 8-5: Mean velocity over the different assessment blocks on the NDA for the four intervention groups. 

When considering movement smoothness (Figure 8-6) as measured by the normalised jerk 

measure, the estimates of fixed effects identified a statistically significant effect of practice 

F(4,1285.826) =223.559, p<0.005 as well as a statistically significant interaction between 

HCA group and practice F(12,1285.826) =11.617, p<0.005. All groups improved in terms 

of their movement smoothness in the training part of the trial. More specifically, the EAA 

and AAN groups reached a peak in the improvement of normalised jerk in training block 2 

(the estimates of marginal means showed no statistically significant difference between 

training block 2 and 3, p>0.05). On the other hand, the Control group kept improving until 

the end of the training part of trial (estimates of marginal means showed a significant 

difference between training block 2 and 3, P<0.005). 
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The estimates of fixed effects indicated that the EAP and the Control group performed 

similarly throughout the trial as there was no statistically significant difference on how 

normalised jerk has changed in the different assessment blocks when compared to the 

adaptation assessment (p>0.05). However, the same estimates showed a statistically 

significant difference in the change of normalised jerk between the EAA and the control (and 

EAP) group as well as between the AAN and the Control group. More specifically, the EAA 

and the AAN groups improved by 3.8 units (p<0.005) and 3.5 units (p<0.005) less than the 

Control group did between the adaptation assessment and the assessment after training block 

3. As such, the movements of the EAP and the Control group demonstrated the greatest 

improvement during the training stage of the trial. 

When it comes to the change in normalised jerk after the washout block all groups increased 

the normalised jerk of their movements (movements became less smooth) indicating that 

washout did indeed occur. However, this washout was only partial as the movements of all 

groups despite being less smooth when compared to the pre-washout levels they remained 

significantly smoother than the ones in the adaptation block (p<0.005). From the estimates 

of fixed effects, it can be seen that there was no statistically significant difference on how 

normalised jerk was changed at the washout assessment when compared to the adaptation 

assessment, between the EAP and the Control group. The same tests found a statistically 

significant difference between washout and the adaptation assessment between the EAA and 

AAN groups and the Control group. More specifically, both the EAA and the AAN groups 

retained less of the normalised jerk of their movements post-washout when compared to the 

Control group (4.4 units (p<0.005) for the EAA and 4.0 units less (p<0.05) for the AAN). 
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Figure 8-6: Normalised jerk over the different assessment blocks on the NDA for the four intervention 

groups. 

The tests fixed effects indicated a significant effect of practice F(4,3181.375) =5.691, 

p<0.005 on initial error (Figure 8-7) but did not show a significant interaction between HCA 

group and practice F(12,3181.375) =0.545, p<0.886. The estimates of fixed effects found a 

statistically significant reduction in initial error after training block 2 (-0.24 mm, p<0.05) 

and training block 3 (0.25 mm, p<0.05) when compared to the initial error achieved in the 

adaptation assessment. This finding indicates that movements became more accurate in the 

initial stage in the course of the training part of the trial. Nevertheless, the estimates of fixed 

effects did not find a statistically significant difference in initial error between the washout 

assessment and the adaptation assessment (p<0.802) indicating that the improvement that 

occurred in training blocks 2 and 3 was completely washed out. 
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Figure 8-7: Initial error over the different assessment blocks on the NDA for the four intervention groups. 

 Results of the circle-drawing task for the non-dominant arm 

In the circle-drawing task, movement circularity (Figure 8-8) appears not to be affected by 

practice as the tests of fixed effects did not find a statistically significant effect (p=0.470). 

Also the same test showed that there was no statistically significant interaction between HCA 

group and practice (p=0.437). Due to the aforementioned it can be concluded that no learning 

(or washout) in terms of circularity had occurred during the trial. 
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Figure 8-8: Movement circularity over the different assessment blocks on the NDA for the four intervention 

groups. 

The tests of fixed effects showed that there was a statistically significant effect of practice 

F(4,66.452) =16.865, p<0.005 on the duration of the circular movements (Figure 8-9) but 

did not identify a significant interaction between HCA group and assessment F(12,66.452) 

=1.662, p=0.096. As demonstrated by the estimates of fixed effects the duration of the 

circular movements was reduced throughout the trial reaching a maximum difference from 

the adaptation assessment of 4.5s (p<0.005) at the washout assessment. This latter finding 

indicates that some learning did indeed occur and it was not impeded by the washout block 

as movement duration kept improving post-washout. 
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Figure 8-9: Movement duration for the circle-drawing task over the different assessment blocks on the NDA 

for the four intervention groups. 
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Table 8-1:Summary of the findings on the analysis of the effectiveness of the trial on the four different groups 

for the NDA. 

Measure 
Learning 

pre-washout 

Retention 

post-washout 

Improved more 

pre-washout 

Retained more 

post-washout 

Duration Yes Yes EAA, EAP, 

Control 

(AAN, EAA 

reached peak 

performance 

sooner) 

Control, EAP 

Perpendicular 

error 

Yes No No difference 

(EAP reached 

peak 

performance 

slower) 

No difference 

Mean velocity Yes  Yes EAA Control, EAP 

Normalised jerk Yes Yes Control, EAP Control, EAP 

Initial error Yes No No difference No difference 

Circularity No  N/A No difference No difference 

Circular 

movement 

duration 

Yes Yes (↑) No difference No difference 
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8.3.2 Analysis of the kinematic measures for the dominant arm 

Only three assessment blocks were performed using the DA (Figure 8-10). One assessment 

block was undertaken in the beginning of the trial, in order to serve as a baseline assessment 

before any learning had occurred. One more assessment was performed at the end of the 

training phase of the trial to assess if learning had occurred for the DA and hence whether 

bilateral transfer took place. The final assessment was performed post-washout in order to 

assess potential retention of the learning. 

Assessment 

DA (1)

Adaptation

Assessment 

DA (6) 

Pre-Washout

Assessment 

DA (8) 

Post-Washout
 

Figure 8-10: The assessment on the DA. 

 Results of the reaching task for the dominant arm 

The tests of fixed effects showed a statistically significant effect of practice F(2,1654.946) 

=743.691, p < 0.005 on the duration of the reaching movements (Figure 8-11) as well as 

statistically significant interaction between HCA group and practice F(6,1654.946) =16.880, 

p < 0.005. More specifically, all four groups reduced the duration of the reaching movements 

of their DA in the pre-washout assessment when compared to the adaptation assessment. 

The estimates of fixed effects showed that the EAA and AAN improved less than the Control 

group did when comparing the pre-washout assessment to the adaptation assessment by an 

estimated 0.47 s (p<0.005) and 0.57s (p<0.005), respectively. On the other hand, the EAP 

group was the one that improved the most in the pre-washout assessment as the duration of 

the reaching movements was reduced by an estimated 0.5s more than the Control group did 

(p<0.005).  

Post-washout all groups retained most of the improved movement duration achieved in the 

pre-washout assessment. The estimates of marginal means indicated that there was no 
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washout in movement duration for the EAA,EAP and control groups, as there was no 

difference between pre- and post-washout assessments (p>0.05) while the EAA experienced 

negligible washout in the order of 0.01 s (p<0.05). As such it can be concluded that all groups 

were unaffected by the washout. 

 

Figure 8-11: Mean duration over the different assessment blocks on the DA for the four intervention groups. 

The perpendicular error (Figure 8-12) of the reaching movements was significantly affected 

by practice F(2,2535.887) =315.537, p<0.005 as indicated by the tests of fixed effects. The 

same tests also showed a statistically significant interaction between HCA group and 

practice F(6,2535.887) =5.856, p<0.005. All groups reduced the perpendicular error of their 

reaching movements at the pre-washout assessment. The estimates of fixed effects showed 

that the difference in the perpendicular error, achieved between the adaptation assessment 

and the pre-washout assessment, was not significantly different (p>0.05) for the EAA, EAP 
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and the Control groups. Nevertheless, the same estimates showed significant difference 

between the Control group and the AAN, where the AAN improved by 0.1 mm (p<0.05) 

more than the Control group did between the adaptation and the pre-washout assessment 

which is a negligible difference and hence not been taken into account.  

Post-washout, all groups showed some retention of the improved perpendicular error. The 

estimates of fixed effects did not indicate a statistically significant difference between the 

EAP and the Control groups on how error has changed in the post-washout assessment 

compared to the adaptation assessment (p>0.05). Nevertheless, from the estimated marginal 

means it can derived that there was no washout for the AAN, EAP and Control groups (no 

difference between pre and post washout, p>0.05) while there was small but negligible 

washout for the EAA (difference pre- and post-washout=0.6 mm, p<0.05). 

 

Figure 8-12: Mean perpendicular error over the different assessment blocks on the DA for the four 

intervention groups. 
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The tests of fixed effects identified a statistically significant effect of practice F(2, 3108.405) 

=1201.352, p <0.005 on mean velocity (Figure 8-13) and a statistically significant interaction 

between the HCA group and practice F(6, 3108.405) =15.375, p<0.005. Mean velocity of 

the reaching movements increased for all groups in the post-washout assessment. When 

considering the difference in mean velocity between the adaptation assessment and the pre-

washout assessment the estimates of fixed effects failed to identify a statistically significant 

difference between the AAN and the Control group (p=0.076). Nevertheless, the same 

comparison identified a statistically significant difference between the Control group and the 

EAA and EAP groups. The EAA and the EAP groups improved more than the Control group 

did by an estimated 4.8 mm/s (p<0.05) for both EAA for the EAP. Also, the AAN was the 

group that improved the least. 

Post-washout, the estimated marginal means showed that all groups retained their mean 

velocity fully as there was no statistically significant difference between the pre-washout 

assessment and the post-washout assessment (p=0.640 for the AAN, p=1.000) for the EAP, 

p=0.640 for the control) with the only exception being the EAA group which reduced its 

mean velocity by an estimated 5.7 mm/s (p<0.005) from the pre-washout assessment. 
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Figure 8-13: Mean velocity over the different assessment blocks on the DA for the four intervention groups. 

There was a statistically significant effect of practice F(2,752.144) =141.208, p<0.005 on 

the normalised jerk of the participants’ movements (Figure 8-14), as indicated by the tests 

of fixed effects. The tests of fixed effects also showed a statistically significant interaction 

between HCA group and practice F(6,752.144) =11.475, p <0.005. All groups reduced 

significantly the normalised jerk of their movements from the adaptation assessment to the 

pre-washout assessment. More specifically, the estimates of fixed effects showed that there 

was no statistically significant difference between the EAP and the Control group on how 

the normalised jerk has changed between the adaptation assessment and the pre-washout 

assessment (p=0.064).  

On the other hand, the EAA and the AAN reduced the normalised jerk of their movements 

by significantly less in the pre-washout assessment than the Control group did. More 
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specifically the EAA and AAN reduced the normalised jerk of their movements between the 

pre-washout assessment and the adaptation assessment by 12.7 units (p<0.005) for the EAA 

and 16.1 units (p<0.005) for the AAN, less than the Control group did. This very big 

difference in improvement may be influenced by the very large initial normalised jerk in the 

movements of the control (estimated mean =34.6 units, p<0.05) and EAP (estimated 

mean=42 units, p<0.05) groups when compared to the EAA (estimated mean=18.2 units,  

p<0.05) and AAN (estimated mean = 20.627 units, p<0.05).  

Post-washout the EAA and the EAP groups fully retained the improved normalised jerk of 

their movements as the estimated marginal means failed to identify a statistically significant 

difference between the pre and post-washout assessments (p=0.118 for EAA and p=0.833 

for EAP). On the other hand, both the AAN group increased its normalised jerk from the 

pre-washout assessment by an estimated 0.589 units (p<0.05) in the post-washout 

assessment. Moreover, the Control group further reduced the normalised jerk of its 

movements in the post-washout assessment by an estimated 0.662 units (p<0.005). These 

are very small differences compared to the initial drop of the normalised jerk in the pre-

washout assessment. As such, it can be concluded that all groups retained the improved 

normalised jerk in their reaching movement with the AAN experiencing a small but 

statistically significant washout. 
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Figure 8-14: Normalised jerk over the different assessment blocks on the DA for four intervention groups. 

The estimates of fixed effects showed that there was a statistically significant effect of 

practice F(2, 3474.130) =10.943, p<0.005 on the initial error (Figure 8-15) of the 

participants’ movements but did not identify a significant interaction of HCA group and 

practice regarding the same F(6,3474.130) =1.351, p=0.231. From the estimates of fixed 

effects, it can be seen initial error was reduced in the movements of the participants in the 

pre-washout assessment by 0.29 mm (p<0.05). From the estimated marginal means it can be 

seen that initial error was fully retained post-washout as there was no statistically significant 

difference between the pre- and post-washout assessment (p=0.469). 
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Figure 8-15: Initial error over the different assessment blocks on the DA for the four intervention groups. 

 Results of the circle-drawing task for the dominant arm 

In the circle-drawing task it appears that the circularity (Figure 8-16) of the participants’ 

movements was not affected by the training. This can be seen in the estimates of fixed effects 

that failed to identify a statistically significant effect of practice F(2,105.43) =0.801, p=0.064 

or a statistically significant interaction between HCA group and practice F(6,105.43) =2.815, 

p=0.571 regarding movement circularity. 
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Figure 8-16: Movement circularity over the different assessment blocks on the DA for the four different 

groups. 

The tests of fixed effects showed that there was a statistically significant effect of practice 

on the duration of the circular movements F(2,68.974) = 3.208, p<0.005 and also that there 

was no interaction between HCA group and practice F(6,68.974) =1.000, p=0.432. From the 

estimates of fixed effects, it can be seen that movement duration (Figure 8-17) was reduced 

in the pre-washout assessment by an estimated 0.91s (p<0.005). Furthermore, this 

improvement was completely retained post-washout as there was no statistically significant 

difference between the pre- and-post-washout assessment as the estimated marginal means 

indicated (p=0.099). 
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Figure 8-17: Circular movement duration over the different assessment blocks on the DA for the four 

intervention groups. 
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Table 8-2:Summary of the findings on the analysis of the effectiveness of the trial on the four different groups 

for the DA. 

Measure Learning 

pre-washout 

Retention 

post-washout 

Improved more 

pre-washout 

Retained more 

post-washout 

Duration Yes Yes EAP 

 

No difference 

Perpendicular 

error 

Yes Yes No difference  

 

No difference 

Mean velocity Yes Yes EAA, EAP ANN, EAP, 

Control 

Normalised jerk Yes Yes EAP, Control No difference 

Initial error Yes Yes No difference No difference 

Circularity No Yes No difference No difference 

Circular 

movement 

duration 

Yes Yes No difference No difference 

 

  



287 

 

8.3.3 Analysis of the Self-Assessment Manikin questionnaire 

As a means to assess changes in the emotional state of the participants at the beginning of 

each assessment block they were asked to complete a 9-point SAM questionnaire for 

valence, arousal and dominance. 

Assessment 

DA (1) 

Adaptation

Assessment 

NDA (2) 

Adaptation

Assessment 

NDA (3) 

Training 1

Assessment 

NDA (5) 

Washout

Assessment 

NDA (4) 

Training 2

Assessment 

NDA (6) 

Pre-Washout

Assessment 

(7) (NDA) 

Washout

Assessment 

DA (8) 

Washout
 

Figure 8-18: The different assessment blocks where the SAM questionnaire was administered. 

The tests of fixed effects showed that there was no statistically significant effect of practice 

on the valence of the participants F(6,116.045) =1.778, p=0.110 and also that there was no 

statistically significant interaction between HCA group and practice F(18,116.045) =1.013, 

p=0451. This is a clear indication that the participants’ valence remained unaffected 

throughout the trial (Figure 8-19) 



288 

 

 

Figure 8-19: Valence over the different assessment blocks for the four intervention groups. 

The tests of fixed effects showed a statistically significant effect of practice F(6,109.743) 

=5.640, p<0.005 on the arousal (Figure 8-20) of the participants but no statistically 

significant interaction between HCA group and practice F(18,109.743) =1.538, p=0.090. 

The estimates of fixed effects showed a statistically significant reduction in arousal in the 

assessments after training block 3 which fluctuated between 0.8-0.9 units (p<0.05) until the 

end of the trial. 
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Figure 8-20: Arousal over the different assessment blocks for the four intervention groups. 

The tests of fixed effects indicated that there was a statistically significant effect of practice 

F(6,104.020) =6.413, p<0.005 on the participants’ dominance (Figure 8-21) but no 

statistically significant interaction between HCA group and practice F(18,104.020) =1.625, 

p=0.067. The estimates of fixed effects showed a statistically significant difference on how 

dominance changed throughout the trial. More specifically, it increased and its mean value 

fluctuated between 0.6-0.9 units (p<0.05) in the different assessment blocks pre-washout. 

Interestingly in the post-washout assessment on the NDA no statistically significant 

difference (p=0.129) was found with the adaptation assessment on the NDA (first 

assessment) indicating that the participants felt less dominant than they did in the preceding 

assessment blocks. Finally, the dominance increased again in the last assessment block by 

an estimated 0.9 units (p<0.05) when compared to the adaptation on the NDA assessment. 
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Figure 8-21: Dominance over the different assessment blocks for the four intervention groups. 

Table 8-3: Summary of the findings on the analysis of the effectiveness of the trial on the four different groups. 

Measure Effect of 

practice 

Difference between 

the groups? 

Valence No No 

Arousal Yes (↓) No 

Dominance Yes (↑) No 
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 Discussion 

The reaching task did successfully induce motor learning on the NDA of the participants of 

the trial, irrespective of the group they were assigned to. All kinematic measures except for 

initial error improved in the course of the trial when compared to the baseline assessment 

and continued to improve right until the end of the training phase of the experiment. All 

groups improved similarly in terms of the duration of their reaching movements pre-washout 

with the only difference being that the AAN and EAA groups reached a peak in their 

performance in training block 2 while the EAP and the Control groups reached the same 

levels of improvement but in training block 3. Furthermore, there was no difference on how 

much all groups reduced the perpendicular error of their movements in the training part of 

the trial. However, the EAP group reached peak performance slower than the other groups 

did (training block 3 instead of 2).  

There is preliminary evidence indicating that assistive algorithms may improve tracking 

errors in the short term but as participants become reliant on those forces perform worse in 

retention assessments where assistive forces are not present (Lee and Choi, 2010). The 

findings of this study seem to confirm this as the only difference between the four different 

groups in terms of duration and perpendicular error was that that the EAP group and the 

Control groups retained more of the improved movement duration post-washout. The 

implications of this finding is that despite the similar or superior effect on improving task 

performance of an assistive algorithm during the training stage of the trial challenge-based 

algorithms may be more effective in promoting long-lasting effects (retention of learning). 

The EAA group improved the most in terms of the mean velocity of the reaching movements. 

This appears to be a genuine effect of the HCA as it was not the group with the worst initial 

mean velocity. Regarding the normalised jerk of the movement all groups showed a very 

significant drop in the assessment after training block 1. In the subsequent training blocks 
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normalised jerk improved further but only marginally when compared to the initial drop. 

Nevertheless, the Control and EAP groups were the groups that reduced the most the 

normalised jerk in their movements from the levels measured in the adaptation assessment. 

However, both groups demonstrated higher initial normalised jerk in the adaptation 

assessment when compared to the EAA and the AAN group.  

From the findings of the analysis presented in this chapter as well as from the analysis 

presented on Chapter 6 significant evidence has been identified that the EAA has an effect 

on promoting higher movement velocity in the reaching movements when compared to the 

other HCAs. To the author’s knowledge this is the first time a study has identified benefits 

of an EA algorithm in the mean velocity of the movements. Nevertheless, EAA was not as 

effective in retaining the improved mean velocity as the EAP and Control retained more of 

their improved mean velocity. Interestingly, the analysis showed that the EAA algorithm 

was less effective on improving movement smoothness while the passive movements and 

EAP were the most effective on improving and retaining movement smoothness as indicated 

by the findings of the analysis.  

The aforementioned  findings are not in-line with the conclusions reported in the study by 

(Givon-Mayo and Simons, 2014) which applied error augmentation based on the velocity 

profile of stroke patients. More specifically, the participants were asked to follow an 

“optimal” bell-shaped velocity profile as accurately as possible while resistive forces were 

applied to enhance errors in the velocity profile. The authors reported that the Control group 

(no forces, N = 3) improved more the velocity of its movements while the EA group (N=4) 

improved more the smoothness of its movements as it managed to follow more accurately 

the “optimal” velocity profile. 

A possible interpretation of this difference in the findings between the two studies is that the 

direction of forces during robot rehabilitation are affecting movement smoothness and mean 
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velocity i.e. perpendicular forces to the movement promote high movement velocities but 

result in less smooth movements while parallel resistive forces promote smoother 

movements but don’t have as good effect on improving movement velocity. Surprisingly 

this cannot be extended to the assistive forces as the AAN did not have a similar effect on 

smoothness. Given the small sample of the study by (Givon-Mayo and Simons, 2014) it is 

difficult to arrive to definitive conclusions before these findings are confirmed in a trial with 

a bigger population. Nonetheless, it is recommended that future studies/interventions should 

consider different directions of forces applied by the robot when designing their HCAs. 

Patton et al. in a study that investigated force fields that either enhance or reduce error in 

planar movements of stroke participants found that motor learning occurred only towards 

the directions where the forces increased errors (Patton, Stoykov, et al., 2006). However, 

there is very limited evidence of such clear cut findings in the relevant literature (Alexoulis-

Chrysovergis et al., 2013; Israely and Carmeli, 2015) suggesting that benefits of specific 

HCAs may be limited to specific movement parameters or impairment levels. 

The trial had no effect on the circularity of the movements in the circle-drawing task but did 

have an effect on the duration of the circular movements which was reduced in the course of 

the trial. More specifically, the duration of the movements was reduced throughout the trial 

even after the washout block. The aforementioned improvement indicates that the 

coordination of shoulder-elbow that the circle-drawing task assessments did occur as the 

circularity of the movements was maintained while their duration became shorter. However, 

it is possible that the measured improvement may have occurred as a result of practice within 

the assessment blocks rather than effect of the training part of the trial. Furthermore, the 

visual rotation appears to have had little or no effect on the circle drawing task post-washout 

as the duration of the movements not only was not washed-out but it improved further. This 
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claim is further supported by the observation that the participants maintained high circularity 

throughout the trial and even post-washout.  

In a study by (Krabben et al., 2011) where able-bodied participants were asked to perform 

circular movements without any visual or other perturbation with just using their arm the 

mean circularity of the participants’ movements was found to be on average 0.66±7. In the 

trial presented in this work movement circularity remained always above 0.80 irrespective 

of the arm performing the movements. This indicated that there might be a bias towards 

more circular movements introduced by the geometry of the rehabilitation robot.  

The reaching movements of the DA demonstrated a similar pattern. All kinematic measures 

improved after training except for the initial error which remained unaffected throughout the 

trial. Nevertheless, EAP had a better effect on improving movement duration. In addition, 

the EAA and EAP improved more mean velocity however the EAA was not as effective in 

its retention. Likewise, the EAP and control groups improved the most in movement 

smoothness however, this may be a true effect of the condition of practice. It appears that 

EA algorithms were found more effective in improving movement duration, velocity and 

smoothness over the AAN. While this finding does not provide conclusive evidence of the 

EA-type algorithms being more beneficial on bilateral transfer than AAN, it provides 

sufficient indication to justify further study. 

The results regarding mean velocity and normalised jerk of the DA follow a similar pattern 

with the results of the NDA. The EAA and EAP were the groups that improved the most in 

terms of mean velocity pre-washout. This appears once more to be a genuine effect of the 

EA HCAs and are consistent with the findings of the analysis on the NDA for the EAA. 

Also, the Control and EAP groups improved the most in terms of normalised jerk. 

Nevertheless, as these two groups were the ones with the highest normalised jerk in the 

adaptation assessment it is unclear whether this was an effect of the HCA group the 
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participants were assigned or whether it was due to inherent differences between the groups 

pre-training. In terms of retention post-washout all groups retained improvements in all 

measures fully with the only exception being a small washout in mean velocity for the EAA 

group. 

Finally, there was no significant change in the participants’ valence for any of the 

intervention groups. Conversely, the participants became more relaxed in the course of the 

trial as reflected by a drop in arousal. Moreover, the participants felt more empowered as 

dominance increased in the course of the trial. It must be noted that there were no differences 

between the groups on how any of the SAM questionnaire measures changed during the trial. 

As such, the findings from the study by (Shirzad and Van der Loos, 2012) where the 

participants’ valence and arousal increased while their dominance was reduced in the course 

of the trial, were not replicated.  

Furthermore, the psychological state of the participants appears not to be affected by the type 

of training they receive but by the training itself. The repetitive nature of the exercise appears 

to have affected negatively the participants’ attentiveness (arousal) which was reduced in 

the course of the trial. On the other hand, a change in the participants’ confidence was 

measured as reflected by the dominance measure of the SAM-questionnaire. This can be 

derived by the following observation; as kinematic measures improved dominance increased 

while in the first post-washout assessment where movement error for the participants’ was 

completely washed-out dominance was reduced. Nevertheless, in the second post-washout 

assessment (DA) where movement error was retained dominance was restored to the 

increased pre-washout levels. 
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 Summary 

Some findings of the analysis can be found below: 

 All interventions (group training conditions) led to a) improvement in the 

participants’ movements of the NDA in all parameters except for movement 

circularity pre-washout and b) retention of improvements post-washout except for 

perpendicular error, initial error and circularity. 

 EAA and AAN may be more effective in inducing faster improvement in motor 

learning (as reflected by the movement error and duration measures).  

 EAP led to more retention of improvements in movement duration. 

 Improved kinematic measure values of the NDA were retained post-washout in all 

measures except for perpendicular error. 

 For improvement on mean velocity EAA shows the most promising results both in 

conventional motor learning and bilateral transfer however, EAP may be more 

effective in retaining improvements in this measure. 

 EAA is not as effective in improving or retaining movement smoothness as the other 

modalities are. 

 All training conditions led to bilateral transfer. 

 Error augmented strategies seem more beneficial for bilateral transfer. 

 The different interventions/practice conditions affected the psychological state of the 

participants in a similar manner. 
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9 Conclusions and future work 

 Introduction 

The aim of this research project was to develop novel HCAs for upper limb rehabilitation 

whose design was informed by the existing literature and test their effectiveness on 

promoting motor learning in able-bodied adults. The findings of this project are intended to 

be used on further studies with the participation of adult stroke sufferers and children with 

CP. To reach this aim seven objectives were set in Section 2.6.2. A brief overview of the 

objectives identifying which chapter of the thesis they are considered and if they have been 

achieved is provided in Section 9.2. This chapter provides an evaluation of achievement of 

the set objectives. After this, the limitations of this work are presented followed by 

conclusions and recommendations for future work. 

 Evaluation of objectives 

This section provides a critical review of to what extent the objectives set for this project 

were achieved. 

Objective 1: Perform a literature review on upper limb robotic rehabilitation 

approaches for impairments caused by stroke and cerebral palsy to identify haptic 

control algorithm methodologies and trends in research. 

A review of the existing literature on upper limb rehabilitation was performed in the initiation 

of this project and presented in Chapter 2 . As rehabilitation robotics is a multidisciplinary 

field of study different aspects were reviewed involving the conventional and robotic 

rehabilitation literature such as robotic rehabilitation devices for upper limb rehabilitation, 

conventional approaches for rehabilitation, robotic approaches (HCA) for upper limb 

rehabilitation, scales to measure effectiveness of the rehabilitation and others. This literature 



298 

 

review informed the author’s contribution in sections 2.6 and 2.7 of the following conference 

paper (Weightman et al., 2014).  

The review of literature identified an understudied haptic control strategy, namely error 

augmentation. To further investigate its effects a systematic literature review was published; 

(Alexoulis-Chrysovergis et al., 2013) the findings of which, updated with more recent 

relevant publications, are discussed in the same chapter. Subsequently, informed by the 

findings of the review of literature two novel haptic control algorithms were introduced both 

of the error augmenting type namely, Error Augmenting Adaptive and Error Augmenting 

Proportional. Also, a third algorithm was presented which was an in house implementation 

of a well-studied HCA that is Assistance As Needed. 

Objective 2: Further develop an existing single point of attachment upper limb 

rehabilitation device. 

The conceptualised HCAs were to be developed for and deployed on a single point of 

attachment rehabilitation robot initially developed at the University of Leeds. Certain aspects 

of the original device were revised to further improve the robotic rehabilitation system. The 

first part of Chapter 3 presents the components that were developed for the rehabilitation 

robot while the last section of the chapter presented the testing procedure that was undertaken 

to ensure its correct operation. 

Objective 3: Design simulation and development environments that can be used for 

the development and testing of haptic control algorithms. 

A simulation model was presented in Section 3.3.2.3 for the robot’s kinematics. Section 

3.4.1.4 presents the trial performed to verify the developed model by deploying it on the 

rehabilitation robot and comparing against experimental kinematic measurements collected 

by a motion tracking system utilising inertial sensors namely the XSens for its accuracy. 
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Objective 4: Develop a computer game environment to interface the single point of 

attachment rehabilitation device with the end user. 

In section 3.3.4 the development of a computer game environment is presented. The purpose 

of this environment was to provide an interface for the user to interact with the rehabilitation 

robot. The developed computer game met all the requirements set and presented in the design 

stage of the project. The game environment was appropriate for the purposes of this research 

project and the main engine which is based on, is robust and offers multiple options to the 

programmer and the therapist. Nevertheless, if it is to be deployed in multisession trials with 

practice protocols that are long in duration the graphics of the computer game need to be 

updated and diversified as in its current configuration the game can be repetitive. 

Objective 5: Develop assistive and challenge based novel haptic control algorithms for 

upper limb rehabilitation. 

In Section 3.3.3 the software implementation of the three different HCAs is presented. In the 

same section all the software that was developed to achieve the behaviour described by the 

concept phase of the design of the algorithms (see objective 1), is presented. Furthermore, 

all the HCAs were developed to be highly customisable to allow experimentation with 

different behaviours. The final fine-tuned settings for each of the developed algorithms 

namely AAN, EAA and EAP are presented in sections 5.2, 6.2, and 7.2, respectively.  

Objective 6: Design and perform an appropriate trial to evaluate the effect of the 

developed haptic control algorithms in the motor learning of able-bodied adult. 

To test the effect of the developed HCAs on the motor learning of able-bodied adults a trial 

had to be performed where different groups of participants would practice a new task while 

being assigned to the one of the developed HCAs. The design of the trial was informed by 

existing trials in literature as well as by the research questions that the trial aimed to answer. 
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To test the trial protocol as well as the appropriateness of the task and the measures selected, 

a pilot trial was performed presented in Chapter 4. In this pilot trial it was established that 

the protocol allowed the measurement of changes in motor learning and also identified areas 

that required improvement. Informed by the findings of the pilot, the investigatory trial 

design was adjusted accordingly and presented in Section 4.3. The trial protocol along with 

a description of the developed algorithms was published as a conference poster in 

(Weightman et al., 2015) 

Objective 7: Analyse kinematic data collected in the trial in order to evaluate the 

effectiveness of each of the haptic control algorithms and compare them against each 

other. 

Four different statistical models were designed to analyse the data collected from the 

investigatory trial. The first three are comparing the Control group against one of the 

developed HCAs ignoring the others, while the fourth model included all four intervention 

groups. This approach was undertaken to satisfy the main research questions of this study. 

The one to one comparisons allowed a detailed analysis aimed to identify whether practice 

with the developed HCAs had a different effect on motor learning than passive movements 

would. Once this was established, a more complicated statistical model was created in order 

to identify differences between all three developed HCAs. The findings of the different 

analyses are presented in Chapters 5-8. 
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 Limitations of this work 

Several limitations were set by the configuration of the rehabilitation robot used in this work. 

As mentioned previously (Section 3.2), the design strategy behind the system aimed to 

reduce cost in order to increase the accessibility of the system to the impaired public. The 

system was a single-point of attachment rehabilitation robot and as a result only the position 

of the hand could be controlled directly by the robot and not the corresponding position of 

the elbow and shoulder. As such it is unknown if the task or the developed HCAs promoted 

abnormal synergies to the participants’ movements. Moreover, to further reduce the cost of 

the system, the rehabilitation robot did not have force sensing capabilities (force transducers) 

in its joints and this limited the types of control strategies that could be developed in this 

project to just two namely position control and velocity control or a hybrid controller which 

would be a combination of the two. As a result, force control schemes such as impedance 

and admittance control were not an option to implement (Sigrist et al., 2013). Additionally, 

the robot’s workspace allowed only the control of two-dimensional movements of the hand 

and within a limited workspace (220 mm by 220 mm). 

Other limitations were set by the trial design. The participants recruited in the studies were 

healthy which means that the potential of motor learning to occur was very small despite the 

visual perturbation introduced in the task to make it more difficult. Although it has been 

shown that findings of studies with able-bodied participants can be transferred to the 

impaired population (Krakauer, 2006) the potential difference to be measured can be very 

small and hence difficult to measure. Furthermore, the developed HCAs were designed to 

be used in the rehabilitation of impaired patients and assist on certain aspects of the impaired 

limbs movements certain features of those HCAs specific to the impaired population were 

not relevant to the able-bodied. For example, the main feature of assistive algorithms is to 

assist movements that the participants would not be able to perform unassisted. However, 
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all of the participants in the trial presented in this work was capable of performing reaching 

movements even under the effect of a visual perturbation. 

Another limitation for this work lies within the protocol design of the trial. To ensure 

retention of the participants the intervention was designed as a single session which is a 

common practice among similar studies (Patton, Stoykov, et al., 2006; Elizabeth B Brokaw 

et al., 2011; Shirzad and Van der Loos, 2015) . To measure retention of learning within the 

same session, washout was artificially introduced at the last part of the session. In that the 

participants practised reaching movements with the visual rotation turned off. That was done 

with the assumption that the predominant internal model of moving under no visual rotation 

would be triggered and that would result in simulating the effects of washout that would 

have been caused naturally; i.e. if the participants after the session went about their day 

performing reaching movements for the different ADLs (under no visual rotation) and came 

back for the washout assessment on the next day. It is impossible to know the exact number 

of movements under no visual rotation that would cause complete washout as this may vary 

between participants. This was addressed by providing as much washout practice as it was 

deemed practically possible.  

Other studies (Kitago et al., 2013; Rotella et al., 2013) with similar protocols and amount of 

washout practice, reported complete washout of the adaptation however, there is the 

possibility of the retention measured in different measures throughout the trial to be due to 

the lack of sufficient washout practice. Nevertheless, this is unlikely as perpendicular error 

which is one of the main indicators of motor learning (Seidler et al., 2013) was completely 

washed out indicating that sufficient washout practice has been introduced to the 

participants. Likewise, there is evidence showing that successful washout of adaptation to a 

perturbation can occur after only 75 movements (Patton and Mussa-Ivaldi, 2004) and 
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therefore the 160 washout movements practised in the trial described in this work should 

have been more than sufficient to cause complete washout. 

Finally, the sample size of this exploratory study was relatively small allowing the potential 

for Type II errors. Nevertheless, the study identified an effect of practice and small but 

significant differences on the effect of the different intervention groups on motor learning. 

Furthermore, the population size was sufficient for a Stage II (Table 9-1) type of trial 

(Dobkin, 2009). 

 Conclusions 

The main contributions of this project in the research field of rehabilitation robotics is the 

introduction of two novel haptic control algorithms in the limited existing literature on the 

effects of error augmentation and the evaluation of their effectiveness in promoting motor 

learning. A study by Tropea et al the authors concluded with the following “Our findings 

point to the need for novel neuro-rehabilitative treatments using highly-motivating 

environments that allow greater patient control over the movement to be performed.”. This 

highlights the need for more investigation of different modalities of EA and their effects on 

the upper limb robotic rehabilitation.  

In addition, a comprehensive comparison of high methodological quality was performed that 

compared the two main types of haptic control strategies in upper limb rehabilitation namely 

assistive and challenge-based algorithms. As to the time this was written there is no 

consensus or sufficient evidence in the literature as to what are the effects of each type of 

control strategy and whether one is more effective over the other (Marchal-Crespo and 

Reinkensmeyer, 2009), this work contributes to the existing literature attempting to 

investigate this aspect by providing a clear comparison of the effect of assistive, challenge-
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based and no robotic forces in inducing motor learning to the upper limb the findings of 

which can transfer to the impaired population from conditions such as stroke and CP. 

More specifically the findings of the analysis did not provide clear answer as to which 

algorithm/condition of training was the most effective in inducing motor learning as 

reflected by changes in the selected kinematic measures. The differences between the effects 

were more discrete and it appears that although all algorithms/training conditions have a 

positive effect on motor learning there were some additional benefits to certain movement 

parameters when training was undertaken under a certain HCA/training condition. More 

specifically, when compared to the other interventions EAA appears to have an effect on 

improving movement duration and mean velocity while the control condition and EAP 

appear to have a better effect on promoting movement smoothness movements and better 

retention on movement duration, mean velocity and normalised jerk. 

A significant outcome of this study was that that all groups/practice conditions were 

successful in promoting motor learning on able-bodied participants as reflected by the 

improvement in the values of the kinematic measures in the course the training part of the 

trial and none of the impeded learning. All intervention groups showed a similar pattern on 

how the values of the kinematic measures changed throughout the trial indicating that there 

were no adverse effects of the intervention as all kinematic measures (except for initial error 

and movement circularity) showed improvement throughout the trial for all four 

groups/conditions. Furthermore, the analysis concluded that the satisfaction (as measured by 

the SAM questionnaire) remained unaffected for all training groups/practice conditions 

which indicates that their reaction to the type interventions/HCA was the same.  

Recently there has been evidence (McCabe et al., 2015) indicating that motor recovery in 

stroke is mainly affected by how intense practice is rather than the type of practice. 

Nevertheless, the type of intervention may still play a significant role on the recovery of the 
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patients. An example of the this can be seen in the study by (Milot et al., 2010) where 

participants received training with haptic guidance (assistive forces) and error augmentation 

both groups improved equally well. However, when the authors compared the effects of 

training on a subset of the participants with better initial performance; the group that received 

error augmentation showed greater improvement in performing the task, indicating that the 

participants that received assistive forces reached plateau in their improvement quicker than 

the EA group.  

The findings of this project in combination with the abovementioned findings of other 

studies provide an indication of the potential of high-intensity combinatorial protocols that 

are adjusted to needs of individual patient. For example, for a severely impaired patient who 

cannot initiate or complete a reaching movement, an assistive HCA would be more 

appropriate. However, as the function of this patient’s limb improves and reaches a plateau 

EA based algorithms with adaptive features can induce further improvement. This is further 

supported by studies comparing assistive movements to error augmentation on healthy (Lee 

and Choi, 2010) and stroke (Cesqui et al., 2008) participants, found that participants with 

worse initial performance to benefit more from assistive training while participants with 

better initial performance to improve more under EA training. 

Another important contribution of this work is in the field of bilateral transfer. More 

specifically, the improvements measured in the movements of the limb that received practice 

translated into improvements of the limb that did not practise confirming the potential of this 

approach as a valid rehabilitation strategy. More interestingly, bilateral transfer seemed to 

be unaffected by the washout as the limb that received no training retained improvements in 

all measures that were achieved pre-washout. To the author’s knowledge this is the first time 

such a finding is reported; the implications of which can be great, as BTT can be used not 

only to induce learning but also to promote retention of the learning achieved. There is 



306 

 

extensive evidence of the positive outcome of robotic therapy bimanual training in literature 

(Van Delden et al., 2012). However, this approach requires traditionally two robotic 

manipulators (one for each arm) which results in such systems being expensive and thus not 

suitable for cost effective robotic rehabilitation solutions. On the other hand, BTT requires 

practice with only one arm and for that reason can be deployed in unimanual systems.  

An additional novelty of this work in the field of bilateral transfer was that it directly 

compared the effects of movements under assistive HCAs with movements under challenge-

based HCAs (more specifically EA) and movements under no robotic forces to the transfer 

of learning. The findings of this study can be useful to therapists that are looking to utilise 

BTT for upper limb rehabilitation as to which strategy would be more beneficial for 

improving a certain movement parameter (e.g. EAP more beneficial in improving movement 

duration, velocity and smoothness).  

Given the promising findings of this study on the employment of BTT in the robotic 

rehabilitation of the upper limb it is recommended that further investigation needs to be 

performed exploring the effects of BTT in upper limb robotic rehabilitation of patients with 

stroke and/or CP.  
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 Future work 

At the conclusion of this research project several key areas were identified for future work. 

These areas involve mostly transferring the findings of the exploratory study into a trial with 

impaired participants suffering from stroke or CP and to perform the required changes to the 

system and the HCAs to adapt them to the target population.  

9.5.1 Trials with participation of the impaired 

The HCAs introduced in this work were primarily designed for the rehabilitation of the upper 

limb of the impaired participants. The trial presented in this work comparing the effects of 

the developed HCAs on the motor learning of healthy adults was designed to serve as a pilot 

investigation. As such future work should focus on designing a randomised control trial with 

an intensive multi-session protocol that compares the effectiveness of the developed 

algorithms on the rehabilitation of patients suffering with CP or stroke.  

Dobkin et al. recommend that trials on motor rehabilitation should be performed in four 

phases (Dobkin, 2009) an overview of which can be found in Table 9-1. According to this 

classification the pilot trial presented in Chapter 4 can be considered as a Stage I type trial 

with the (main) trial described in Section 4.3 Chapters 5-8 can be considered as Stage II. 

Since potential benefits of the developed HCAs (EAA, EAP) were found and the safety of 

the system was established it would be recommended for a Stage III trial to be performed 

with the participation of participants that suffer from stroke or CP. 
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Table 9-1: Stages of clinical trials in motor rehabilitation as suggested by (Dobkin, 2009). Adapted from:(Iosa 

et al., 2016) 

Stage Studies in rehabilitation Purpose 

Stage I Consideration of concept trials 

(on 6-12 patients/healthy) 

To test concepts and related safety on 

animals or on a small group of patients 

Stage II Development of Concept Trials 

(>15 participants) 

To standardize the new intervention and 

add a Control group, randomization, and 

masked outcomes. To establish the best 

dose of therapy. To assess sample size 

Stage III Demonstration of Concept 

Trials (on a sample with a 

properly computed size) 

To prove effectiveness and safety of 

intervention 

Stage IV Proof of concept (multicenter 

randomized clinical trials) 

To establish generalizable efficacy and 

safety 

The protocol followed and the kinematic measures used in the trial presented in this work 

were deemed to be suitable to capture changes in aspects of the movement as well as motor 

learning (Figure 2-4) however, it is recommended that established clinical measures to also 

be used for the assessment of the participants’ function such us the Fugl-Meyer assessment 

and the Gross Motor Function Measure (GMFM) scale (Sivan et al., 2011). The findings of 

this study indicated that the developed algorithms have great potential in promoting motor 

learning. Nevertheless, it must be noted that EA-based HCAs may not be suitable for severe 

neurological impairments where the participants cannot initiate or perform movements 

unassisted. 

In addition, the effects of the developed HCAs on bilateral transfer need to be investigated 

further in the abovementioned or a separate trial with impaired participants from stroke or 

CP. This will allow to identify whether the positive findings on bilateral transfer of this study 

on the able-bodied population would transfer to those with impairments. 

Moreover, in the light of the recent findings of the study by (McCabe et al., 2015) that 

intensity of practice is more important than the nature of practice it is recommended to 

explore the benefits of a combinatorial training scheme where participants instead of being 



309 

 

assigned to a single adaptive algorithm the type of algorithm would be adapted according to 

the needs of the participants. An example of such a training scheme could be the following: 

A severely impaired participant that cannot complete a reaching movement can firstly be 

assigned to an assistive HCA. Once the participant is able to complete the movement a 

challenge-based HCA can be introduced to allow them to increase their engagement and 

effort two factors directly linked to be beneficial in inducing motor learning (Lee et al., 1994; 

Emken et al., 2007). With such an approach, it is hypothesised by the author that the potential 

for motor learning and improving function would lead to better outcome. 

9.5.2 Amendments in the developed Haptic Control Algorithms 

As the focus of future work is for the developed HCAs to be deployed in trials with impaired 

participants they need to be adjusted for the target population. More specifically, suitable 

maximum permissible current values need to be identified to adjust the forces applied by the 

robot to the participants’ arm to requirements and capabilities of the impaired population. 

Identification of suitable forces can be either identified through a small pilot trial with 

impaired participants or through consultation with experienced rehabilitation therapists. 

Another aspect that will require adjustment is the rate of adaptiveness of the system i.e. the 

time period/number of movements after which the system evaluates the user’s performance 

and adapts accordingly. The benefit of a time based adaptation system takes into account 

that the patients may not be capable of completing the set number of movements given a 

setting of difficulty and the system should be able to adapt accordingly. A suggested period 

of adaptiveness would be an estimate of the time required by an impaired participant to 

complete a set of reaching movements. This could be also established by a pilot trial or with 

a pre-trial assessment for each individual patient. 
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Furthermore, to establish that the behaviour of the developed HCAs in large scale trial a pilot 

trial would be beneficial with the participation of the impaired to collect kinematic data 

during training. This will help to analyse how the algorithms adapt the participants’ 

movements and therefore provide insight into how better adjust them to suit the rehabilitation 

of the impaired. 

Finally, as it is likely in the proposed trial with the neurologically impaired that the system 

will be used under the supervision of rehabilitation therapists or researchers which are not 

familiar with the system the graphical user interface controlling the HCAs should be 

simplified in order to ensure its ease of use. 

9.5.3 Modifications to the rehabilitation robot 

Several improvements can be made to the rehabilitation robot. Firstly, the handle of the 

rehabilitation robot should be re-designed to allow for support of the arm. Such an approach 

has been undertaken with similar systems (Johnson, 2006) to counterbalance the weight of 

the arm and as such  allow severely impaired patients to perform movements(Sanchez et al., 

2005). As the handle of the rehabilitation robot is resembling a joystick handle, patients with 

severe neurological impairments may not be able to hold it or even support the weight of 

their arm for the duration of a practice session. As such it is recommended that the handle is 

rebuilt so the arm can rest on it rather than hold on to it (Figure 9-1). 
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Arm support

 

Figure 9-1: Example of hand support for an endpoint rehabilitation robot. Adapted from:(Interactive Motion 

Technologies, 2016) 

Furthermore, the trolley where the rehabilitation robot is mounted on was designed to fit an 

E-ATX computer case along with all the electronic components required to control the 

rehabilitation robot namely the cRIO and the power source. Due to the recent developments 

in computing and miniaturisation technologies very powerful computers have been 

introduced that fit into very small form factors such as tablet computers such as the Microsoft 

Surface Pro® line or the systems in a stick such as Intel Compute stick® (Figure 9-2). Such 

computers are more than capable of running desktop grade computer games at satisfactory 

resolutions/frame rates. As such, the desktop unit was replaced with one of the suggested 

types of systems this would allow the trolley mount for the robot to be re-designed to and 

reduce the footprint of the system significantly. As the system was initially designed to be 

deployed in the home environment where there are space restrictions a redesign of the system 

into a smaller form factor would benefit this use-case. 
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a) b)

 

Figure 9-2: a) Examples of miniaturised computers in different form factors such as tablet computer and 

computer on a stick. Source a) (Microsoft Coorporation, 2016) and b) (Intel Corportation, 2016) 

Furthermore, the mount for the rehabilitation robot needs to be re-designed in order to allow 

for height adjustability. This will allow the system to be used by patients on wheel chairs 

which are not height adjustable. 

9.5.4 Game environment 

Motivation and active engagement have been shown to have a positive correlation to the 

outcome of rehabilitation therapy (Colombo et al., 2007). There is evidence showing that the 

games used in robotic rehabilitation can increase engagement and motivation which is 

hindered by the repetitive nature of the practice (Rego et al., 2010). Although the game 

environment developed and presented in this work served its purpose for the needs for the 

research undertaken it requires further development to allow for more complex, interesting 

and diversified graphics tailored to the target population all important features that help 

increase engagement (Flores et al., 2008). This is expected to motivate the users and the keep 

them more interested in performing the required task. Furthermore, a possible direction of 

research is to explore the integration of augmented reality with rehabilitation therapy. 

Augmented reality (AR) is a method of visualisation where 3D virtual objects are overlaid 

on the 3D actual field of view of the user. Such methods allow the participants to practise 

within a more natural environment that resembles better, activities of daily living (Alamri et 

al., 2010; Mousavi et al., 2013).  
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Appendix A 

A1 Development of the robotic rehabilitation system 

Robot development overview

Hardware development

Mechanical Electronics FPGA Real-time PC
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Figure A-1: Overview of the development of the robotic rehabilitation system 

Modifications on the electronic design of the rehabilitation robot 

In the original design of the rehabilitation device a printed circuit board (PCB) was 

developed, to handle the differential signalling of the encoder, utilising a differential line 

receiver to add the respective signals from each encoder’s outputs while subtracting the 

noise. The inputs and outputs of the circuit board were then connected to a multiple high-

speed digital input/output module. 

To simplify the design of the rehabilitation robot and to enhance its capabilities each motor 

was directly connected to a National Instruments™ 9505 DC brushed motor servo drive 

module, which handled and outputs the Pulse Width Modulation (PWM) signals generated 

by the cRIO directly to the motor and provided an interface for direct connection of the 
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quadrature encoder channels. The NI 9505 was externally powered by a power source and 

its output was connected to the two input terminals of the motor. To interface the motors’ 

encoder (outputs female 2x5way receptacle) with the encoder on the NI 9505 a custom 

adapter was created as shown in Figure A-2 and Figure A-3. The benefits of this approach 

was that only one NI module was required per motor (Figure A-4) instead of two (high speed 

digital I/O and motor controller) and also it did not require the manufacture of custom PCBs 

which further reduced the complexity of the system. Finally, an added benefit was that the 

NI 9505 module had a current sensing circuit which allowed indirect measurement of the 

load on the motors. 

 a) Maxon motor encoder DIN interface

b) NI 9505encoder D-sub interface

c) DIN to D-sub adapter pin allocation

 

Figure A-2: The different interfaces of the components and the DIN-d-SUB custom adapter pin allocation. 

Figures a, b from (Maxon Motor Worldwide 2014; National Instruments Corp. 2010) 
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Furthermore, as a safety mechanism, the system incorporated a capacitive sensor inside the 

handle of the device. The system detected changes in capacitance when a hand was in 

proximity to the sensor. As such, the robot would apply forces only when the users were 

holding the handle. In the original design, a circuit board with capacitive sensing capabilities 

was developed and used to sense the presence of the hand on the handle of the robot. 

Responsible for the sensing was an Atmel™ QT-240-ISSG, which is a four channel 

capacitive sensing circuit. However, QT-240-ISSG was discontinued and a replacement was 

required. By researching the market as a suitable replacement, the Atmel™ AT42QT1011 

was identified. AT42QT1011 was a single channel capacitance sensing integrated circuit 

(IC). The specific IC was selected because it did not incorporate the Max on-duration feature, 

a common feature among the capacitive sensing IC’s which recalibrates the sensor when it 

is activated for a certain period of time (Atmel, 2013).  

Due to the different layout of the new IC; a new Printed Circuit Board (PCB) was to be 

designed which would include the regulation circuitry to power the IC as well as the 

electronic elements (resistors, capacitors) needed for the correct operation of the system. The 

requirements for this new PCB were that it should have been small enough in order to fit 

inside the handle of the robot and that it should have been able to house at least two sensors 

(channels) for redundancy purposes, that is to ensure operation in the case that one sensor 

malfunctioned or received a false reading. As such, a PCB was designed (Figure A-5) and 

Figure A-3: The 2x5 way DIN 

to 9-way d-Sub adapter 

Figure A-4: Testing the interface 

between the motor and NI 9505 
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manufactured (Figure A-6) with the capability of housing three sensors and all the relevant 

circuitry and electronic components for their operation.  

 

Figure A-5: The three channel capacitive sensing PCB layout 

 

Figure A-6: The capacitive sensor board 

Finally, two channels were used with the input of each sensor being connected to a long 

insulated copper wire, which performed as the sensor receiver. Both wires were wrapped 

around the outer perimeter of the handle in a coil configuration to ensure maximum 

coverage. The systems performance on detecting the human hand was tested for different 

grip positions. After the correct operation was ensured i.e. the sensor would correctly detect 

the presence of the hand, the handle was covered with a heat shrinking tube with a non-slip 

textured finish, for better grip, and then the system was tested again in order to verify that 

the addition of the heat shrinking sleeve did not affect its operation (Figure A-7).  
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Figure A-7: Testing the sensor with different grip patterns with and without the heat-shrinking sleeve 

Modifications of the mechanical design of the rehabilitation robot 

On the initiation of this project most of the components of the rehabilitation robot were either 

already manufactured/delivered or were on the process of being manufactured. During the 

assembly process of the robotic manipulandum several issues arose regarding different 

components that were either mismatching due to errors on the initial designs or needed 

further processing. Furthermore, there were other components that needed to be re-designed. 

It is out of the scope of this report to describe the numerous actions that were undertaken to 

resolve these issues in every detail but this section will provide an overview of some key 

points of the process. 

1) All the components that were to be exposed into plain view were to be powder coated 

not only for aesthetic reasons but also to reduce the reflectivity of the aluminium surfaces so 

that the robotic device would be suitable to be used with the VICON motion tracking system 

whose performance can be affected by reflective surfaces (Figure A-8). Powder coating was 

chosen as a painting technique as it provides a harder finish than paint and hence makes the 

coloured surface more resistant to scratches and marks. To reduce the reflectivity to a 
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minimum all surfaces were painted in matt black. Before submitting the components for 

powder coating all surfaces that were not to be painted were covered with high temperature 

masking tape. Moreover, to avoid blockage from the painting material all holes were sealed. 

 

 

Figure A-8: Preparation of the components before being submitted for powder coating 

2) Some components needed to be re-designed. For example, one of the rods, that 

formed the frame of the main body, had to be redesigned as the holes for the screws that 

connected the rod with the top and bottom cover plates were misaligned. Furthermore, all 

the rods were shorter than they should have by 2 mm. Instead of redesigning and 

manufacturing each rod to resolve this, custom washers for each rod were designed and 

manufactured in order to make up for the mismatch (Figure A-9). Such an approach saved 

time and material without compromising the structural integrity of the device.  
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Figure A-9: Example of different parts that were re-designed 

3) A number of components needed further processing after they were manufactured to 

ensure correct fit within the assembly (Figure A-10). 

 

Figure A-10: Example of type of work undertaken to modify the design. The holes for the screws that attached 

the back plate to the main frame of the joystick were misaligned as such new holes were drilled 

When all components were in place the device was assembled (Figure A-11) and then tested 

while being unpowered for smooth-unobstructed operation (Figure A-12). 
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Figure A-11: Different stages of the assembly sequence 

 

Figure A-12: The assembled rehabilitation device 

4) To allow for the system to be portable a trolley was designed for the rehabilitation 

robot to be mounted on. The trolley also had to house a gaming PC (E-ATX size) and all the 

electronic hardware required for the rehabilitation robot i.e. the compact-RIO and the power 

supply. The overall footprint of the trolley was approximately 880 mm x 850 mm (Figure 

A-13). In this configuration the robot was fixed on the frame of the trolley with the tip of the 

joystick handle being 800 mm from the ground. Also, the system was designed to be 

interchangeable i.e. the screen and robot could be mounted on either side of the trolley. 
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Figure A-13: Dimensional drawing of the trolley design where the robot was mounted 

The trolley also needed to have a mounting for the computer screen. For health and safety 

reasons panels needed to be fitted to prevent the users from accessing components of the 

rehabilitation robot. To allow access to the inside of the trolley cut-outs were made to the 

panels with the rear opening being large enough to allow for an extended-advanced 

technology extended (E-ATX) computer case to fit inside (Figure A-13). Finally, a monitor 

mount was fitted to the rear using a mount with adjustable height pitch, yaw and roll (Figure 

A-14). The minimum height the computer screen could be placed was 800mm (from the 

floor to the centre of the screen). 
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Left panels Right panels

Cut-outs 
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Figure A-14: Panel design for the rehabilitation robot trolley. The front and rear panels have opening for 

doors to be fitted. 

 

Figure A-15: The screen mount of the rehabilitation robot 
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Summary of the modifications performed to the robotic rehabilitation system 

As described in the previous subsections certain changes were performed in the original 

design of the system. A flowchart with an overview of those changes is provided in Figure 

A-16. 

Overview of modifications on the original 

design of the robotic rehabilitation system

Mechanical design

New motor controllers were 

used with embedded encoder 

circuit (NI 9505)

Designs of the supporting 

rods within the robot casing 

were re-designed to be made 

taller (2 mm)

Re-design of the touch 

sensing board to operate with 

two sensors to allow 

redundancies within the 

system

Timing belt tensioner was re-

designed to extent by 1 mm 

its outer perimeter

Design of trolley for 

mounting the robot and 

housing the system

Custom connector design to 

interface the motors with the 

encoder

Design of trolley for 

mounting the robot and 

housing the system

Re-design of the back panel 

of the robot s housing reduce 

the size by 10 mm and 

relocate the openings for the 

connectors and bolts

Design of trolley for 

mounting the robot and 

housing the system

Electronic design

 

Figure A-16: Summary of modifications performed to the robotic rehabilitation system 
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A2 Forward and inverse kinematics for a two-link planar robotic 

manipulator 

y0

x0

y2
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P02
0

P12
0

P01
0

 

Figure A-17: Two link manipulator for a random position of the end-effector  

Forward kinematics 

The vector from the origin of frame 0 to frame 1 is given by ( 21) and the vector r from the 

origin of frame 1 to the origin of frame 2 is provided in ( 22). 

 

𝑝0,1
0 = (𝑙1 cos(𝜃1) , 𝑙1 sin(𝜃1)) ( 21 ):vector from frame 0 to frame 1 

𝑝1,2
0 = (𝑙2 cos(𝜃1 + 𝜃2) , 𝑙2 sin(𝜃1 + 𝜃2)) ( 22 ): vector from frame 1 to frame 2 
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𝑝0,2
0 = [

𝑝𝑥

𝑝𝑦
] = [

𝑦
𝑦]

= [
𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2)

𝑙1 sin(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2)
] 

( 23 ): transformation matrix for the 

endpoint 

Hence, the x-y coordinates of the position of the endpoint are given by ( 24 ) and ( 25 ) 

𝑝𝑥 = (𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2)) ( 24 ) vector for the x coordinate of the 

endpoint 

𝑝𝑦 = (𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃1 + 𝜃2)) ( 25 ) vector for the y coordinate of the 

endpoint 

Inverse kinematics 

In the previous section, the vectors for the position of the endpoint were derived ( 24 ), ( 25 ). 

𝑝𝑥
2 + 𝑝𝑦 

2 = (𝑙1𝑐𝑜𝑠𝜃1 + cos (𝜃1 + 𝜃2))
2 + (𝑙1𝑠𝑖𝑛𝜃1 + 𝑙2sin (𝜃1 + 𝜃2))

2 =. .

=  𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2𝑐𝑜𝑠𝜃2 

𝑐𝑜𝑠𝜃2 = (
𝑝𝑥

2 + 𝑝𝑦
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
) 

( 26 ) 

𝑠𝑖𝑛2𝜃2 + 𝑐𝑜𝑠2𝜃2 = 1 
 

⇔ sin 𝜃2 = √1 − 𝑐𝑜𝑠2𝜃2 ( 27 ) 

𝜃2 = ±𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝜃2, 𝑐𝑜𝑠𝜃2) ( 28 ) 

From the previous equations it is evident that 𝜃2 has two solutions; one for the positive result 

and one for the negative result of ( 28 ) To find 𝜃1: 
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𝑝𝑥 = 𝑙1𝑐𝑜𝑠𝜃1 + 𝑙2𝑐𝑜𝑠(𝜃1 + 𝜃2)

= 𝑙1𝑐𝑜𝑠𝜃1 + 𝑙2𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 − 𝑙2𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2

= (𝑙1 + 𝑙2𝑐𝑜𝑠𝜃2)𝑐𝑜𝑠𝜃1 − 𝑙2𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 

( 29 ) 

𝑝𝑦 = 𝑙1𝑠𝑖𝑛𝜃1 + 𝑙2𝑠𝑖𝑛(𝜃1 + 𝜃2)

= 𝑙1𝑠𝑖𝑛𝜃1 + 𝑙2𝑠𝑖𝑛𝜃1𝑐𝑜𝑠𝜃2 − 𝑙2𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2

= (𝑙1 + 𝑙2𝑐𝑜𝑠𝜃2)𝑠𝑖𝑛𝜃1 − 𝑙2𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2 

( 30 ) 

By dividing ( 29 ) by ( 30 ): 

𝑝𝑦

𝑝𝑥
=

(𝑙1 + 𝑙2𝑐𝑜𝑠𝜃2)𝑠𝑖𝑛𝜃1 − 𝑙2𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2

(𝑙1 + 𝑙2𝑐𝑜𝑠𝜃2)𝑐𝑜𝑠𝜃1 − 𝑙2𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2
=

𝑠𝑖𝑛𝜃1

𝑐𝑜𝑠𝜃2
+

𝑙2𝑠𝑖𝑛𝜃2

(𝑙1 + 𝑙2𝑐𝑜𝑠𝜃2)

1 −
𝑙2𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2

(𝑙1 + 𝑙2𝑐𝑜𝑠𝜃2)𝑐𝑜𝑠𝜃1

=
𝑡𝑎𝑛𝜃1 +

𝑙2𝑠𝑖𝑛𝜃2

(𝑙1 + 𝑙2𝑐𝑜𝑠𝜃2)

1 − 𝑡𝑎𝑛𝜃1
𝑙2𝑠𝑖𝑛𝜃2

(𝑙1 + 𝑙2𝑐𝑜𝑠𝜃2)

 

 

 

 

( 31 ) 

 

 

Because  

tan(𝜑 + 𝜃) =
tan𝜑 + 𝑡𝑎𝑛𝜃 

1 − 𝑡𝑎𝑛𝜑𝑡𝑎𝑛𝜃
 

( 31 ) becomes:  

tan−1
𝑝𝑦

𝑝𝑥
= tan−1(𝑡𝑎𝑛𝜃1)

+ tan−1(
𝑙2𝑠𝑖𝑛𝜃2

(𝑙1 + 𝑙2𝑐𝑜𝑠𝜃2)
) 

( 32 ) 
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By solving ( 32 ) for θ1:  

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑝𝑦, 𝑝𝑥) − 𝑎𝑡𝑎𝑛2(𝑙2𝑠𝑖𝑛𝜃2, 𝑙1

+ 𝑙2𝑐𝑜𝑠𝜃2)  

 

( 33 ) 

 

For the two solution of 𝜃2 there will be two respective solutions for 𝜃1. This is known as 

redundancy in robotics and it means there two different configurations for the manipulator’s 

endpoint to reach a certain position (McKerrow, 1991). As for the specific application, there 

were no limitations on the design of the robot to indicate which angles should be selected 

and as such, either of the two sets of solutions is valid. 
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A3 Calculating the setpoint for error augmentation 

To calculate the points of intersection of a circle and a line the following algorithm is used 

(Weisstein, 2015) :  

Given a line that’s defined by two points A(x1,y1) and B(x2,y2) and a circle (x-a)2+(y-b)2 = 

r2 

We define:  

𝑑𝑥 = (𝑥2 + 𝑎) − (𝑥1 + 𝑎) = 𝑥2 − 𝑥1 ( 34 ) 

𝑑𝑦 = (𝑦2 + 𝑏) − (𝑦1 + 𝑏) = 𝑦2 − 𝑦1 ( 35 ) 

𝑑𝑟 = √𝑑𝑥
2 + 𝑑𝑦

2 ( 36 ) 

𝐷 = |
𝑥1 𝑥2

𝑦1 𝑦2
| = (𝑥1 + 𝑎)(𝑦2 + 𝑏) − (𝑥2 + 𝑎)(𝑦1 + 𝑏) ( 37 ) 

The coordinates of the points of intersection x and y are given by Equations ( 13 ) and ( 14 ) 

respectively 

𝑋1,2 =
𝐷𝑑𝑦 ± 𝑠(𝑑𝑦)𝑑𝑥√𝑟2𝑑𝑟

2 − 𝐷2

𝑑𝑟
2

 
( 38 ) 

𝑌1,2 =
−𝐷𝑑𝑥 ± 𝑠|𝑑𝑦|√𝑟2𝑑𝑟

2 − 𝐷2

𝑑𝑟
2

 
( 39 ) 

Where: 

𝑠(𝑥) = {
−1 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

 ( 40 ) 

As such the two points of intersection between the perpendicular line and the circle around 

the endpoint are C(x1,y1) and D(x2,y2). To select the appropriate solution, the distances 

between the two points and the target B are calculated and compared. The solution that 
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results in the greatest distance is selected as the endpoint as it will always be on the outermost 

section of the circle. 

Given Β(x3,y3) the coordinates of the target the distances from C and D are calculated 

𝐶𝐵⃗⃗⃗⃗  ⃗ = √(𝑥1 − 𝑥3)2 + (𝑦1 − 𝑦3)2 ( 41 ) 

𝐷𝐵⃗⃗⃗⃗⃗⃗ = √(𝑥2 − 𝑥3)2 + (𝑦2 − 𝑦3)2 ( 42 ) 

Is 𝐶𝐵⃗⃗⃗⃗  ⃗ >  𝐷𝐵⃗⃗⃗⃗⃗⃗  ?    {
𝑌𝑒𝑠, 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝐶
𝑁𝑜, 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝐷

  ( 43 ) 
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Appendix B 

This section contains work published from this research project.
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Appendix C 

Chapter 3: Force measurement mapping 

MPC = 2 A, 
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MPC = 3 A 
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Chapter 5: Results of the statistical analysis 

Analysis of the NDA 

Duration 

 

 

 

Group 0: EAA 

Group 1: AAN 

Group 2: EAP 

Group 4: Control 
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Assessment 5: Training 2 
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Assessment 1: Washout DA 
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Perpendicular error 
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Mean velocity 
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