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Abstract 13 

The large increases in reactive nitrogen (N) deposition in developed countries since the Industrial 14 

Revolution have had a marked impact on ecosystem functioning, including declining species 15 

richness, shifts in species composition, and increased N leaching.  A potential mitigation of these 16 

harmful effects is the action of N as a fertiliser, which, through increasing primary productivity 17 

(and subsequently, organic matter production), has the potential to increase ecosystem carbon 18 

(C) storage.   Here we report the response of an upland heath to 10 years of experimental N 19 

addition.  We find large increases in plant and soil C and N pools, with N-driven C sequestration 20 

rates in the range of 13-138 kg C kg N-1.  These rates are higher than those previously found in 21 

forest and lowland heath, mainly due to higher C sequestration in the litter layer. C sequestration 22 

is highest at lower N treatments (10, 20, and 40 kg N ha-1 yr-1 above ambient), with evidence of 23 
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saturation at the highest N treatment, reflecting a physiologically aged Calluna vulgaris 24 

(Calluna) canopy.  To maintain these rates of sequestration, the Calluna canopy should be 25 

managed to maximise it’s time in the building phase. Scaling our results across UK heathlands, 26 

this equates to an additional 0.77 Mt CO2e per annum extra C sequestered into plant litter and 27 

the top 15 cm of heathland soil as a result of N deposition. The bulk of this is found in the litter 28 

and organic soil horizons that hold an average of 23% and 54% of soil C, respectively.  This 29 

additional C represents around 0.44% of UK annual anthropogenic GHG emissions.  When 30 

considered in the context of falling biodiversity and altered species composition in heathland, 31 

policy focus should remain on reducing N emissions. 32 

1. Introduction 33 

Since the Industrial Revolution and throughout most of the 20th century the level of reactive 34 

nitrogen (N) in the atmosphere (primarily NH3, NH4
+, NOx, NO3

-, and organic N) has increased 35 

due to fossil fuel burning and agricultural intensification (Galloway et al., 2004).  Between 1860 36 

and 1990, there was a 10-fold increase in reactive N, with a further doubling predicted by 2050 37 

(Galloway et al., 2004).  This greatly enhanced atmospheric N deposition has had profound effects 38 

on ecosystem functioning, including reduced terrestrial plant species diversity, altered species 39 

composition, and leaching of N to freshwater habitats following N saturation (Stevens et al. 2004; 40 

Clark and Tilman, 2008; Dise et al. 2011; Phoenix et al. 2012; Field et al. 2014). 41 

 42 

Potentially counteracting these negative effects of elevated N deposition is increased carbon (C) 43 

sequestration into ecosystems through enhanced plant growth (Yue et al. 2016) and, in some cases, 44 

a retardation of long-term decomposition rates (Berg and Laskowski 2006), thereby mitigating 45 

rising atmospheric CO2. In forests, both regional-scale N-gradient studies and N-addition 46 
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experiments have demonstrated N-driven increases in ecosystem C storage ranging from 12-36 kg 47 

C kg N-1 ha-1 (De Vries et al. 2006; Hyvönen et al. 2007; Pregitzer et al. 2007). However, most of 48 

the additional C stored in forests in response to N deposition is in new tree biomass rather than 49 

soil (Nadelhoffer et al. 1999), with high rates of soil C turnover further suggesting that Forests 50 

represent poor long-term soil C stores (Tipping et al. 2010; Mills et al. 2014). In contrast, 51 

ecosystems such as bogs and heathlands, that primarily sequester new C in soil can be significant 52 

C sinks for hundreds or thousands of years (Dise, 2009). This is due to high moisture levels and 53 

vegetation rich in recalcitrant compounds (e.g. Sphagnum mosses and ericaceous plants such as 54 

Calluna) limit decomposition rates, causing a build-up of soil organic matter (Anderson and 55 

Hetherington, 1999; Berg and Laskowski, 2006).  56 

 57 

Heathland ecosystems occur throughout much of the UK and north-western Europe, with closely 58 

related ecosystems in Western Australia (for example E. impressa heathland) and New Zealand, 59 

the oak-heathlands of eastern America, and arctic dwarf-shrub tundra.  All of these habitats are 60 

characterised by vegetation in the Ericaceae family and nutrient-poor, acidic soils. As such, 61 

heathlands represent potentially important long-term soil C stores: in the UK alone, they sequester 62 

around 120 Mt C in topsoil (0-15 cm) (Ostle et al. 2009); with some soil and ecological overlap 63 

existing between bog and heathland. Overall, UK soil C storage is around 10,000 Mt (all depths) 64 

and 1600 Mt (top 15 cm) (Emmett et al. 2010), almost half of which is in the organic rich soils of 65 

bogs and heaths (Milne and Brown, 1997).  66 

 67 

However, direct experimental evidence of changes in C accumulation in response to N deposition 68 

in heathland is limited. N has been shown to increase plant growth and litter production of the key 69 
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heathland species Calluna (Caporn et al. 1995; Power et al. 1995) and significant increases in 70 

heathland soil and plant N pools in response to N addition have been observed (Pilkington et al. 71 

2005a). Earlier work on smaller plots suggested that N addition enhanced soil C sequestration at 72 

the upland heath (Ruabon Moor-the subject of this study), largely through the increasing dry 73 

weight of the organic soil horizon and maintenance of C/N ratios (Evans et al. 2006). This work 74 

suggested a soil C increase of  between 20 and 34 kg C kg N-1 addition, but assumed a fixed C% 75 

for peat and mineral soil of 39.3 and 3.9, bulked soil samples, and less real-world realistic N 76 

additions of 40, 80 and 120 kg N. A study in a lowland heath in north-west England estimated a 77 

slightly lower sequestration rate of 20 kg C kg N-1 due to lower N retention in the more sandy soil 78 

(de Vries et al. 2009; Evans et al. 2006; Pilkington et al. 2005a). In south-east England, C 79 

sequestration estimates based upon N pools in soil and vegetation were approximately 33 kg C kg 80 

N-1 (de Vries et al. 2009).  However, neither of these estimates are based on direct measurement 81 

of C, instead they use measurements or model simulations of N pools and stoichiometric 82 

relationships to convert N to C.     83 

 84 

Here we report the first detailed analysis of organic and mineral soil C content in response to 85 

experimental N addition on an upland heath ecosystem. We also upscale the data to estimate the 86 

magnitude of N induced C sequestration at a landscape scale. We hypothesise that 1) N addition 87 

increases the rate of sequestration of C in the organic and mineral soil horizons, 2) that C/N 88 

stoichiometry is not fixed and therefore the rate of C sequestration will vary in response to N 89 

addition, and 3) N-induced sequestered C in heathland is a potentially significant sink in relation 90 

to the CO2 equivalents (CO2 eq) emitted in the UK through human activities.     91 

 92 
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2. Methods 93 

 94 

2.1. Study site 95 

 96 

Ruabon Moor is an upland heath situated at an altitude of 480 m, approximately 6 km north of 97 

Llangollen in North Wales, UK (Figure 1, UK Grid Reference SJ224491).  Annual precipitation is 98 

approximately 1000 mm, and total inorganic N deposition in 2008 was estimated as 23.1 kg N ha-99 

1yr-1 from APIS (Air Pollution Information System) data, which uses the CBED model (APIS, 100 

2008). The canopy is dominated by Calluna, although where burning has taken place or a gap in 101 

the canopy occurs naturally, Vaccinium myrtillus grows well before it is shaded out by Calluna 102 

regrowth. Understory vegetation consists mainly of the moss Hypnum jutlandicum; this 103 

combination of vegetation gives the site a British NVC classification of H12 Calluna – Vaccinium 104 

myrtillus heath (Rodwell, 1991) or a European EUNIS classification of F4.2.  Soil is an iron pan 105 

stagnopodzol (F.A.O. Placic Podzol) (Evans et al. 2006). N additions (of 0, 40, 80 and 120 kg N 106 

ha-1yr-1) to 20 plots at the site began in 1989 (Caporn et al. 1995) and these ‘old’ plots (1 × 1 m) 107 

were used by de Vries et al. (2009) in their study of N-induced C sequestration.  In 1998, 36 108 

rectangular (2 × 2 m) ‘new’ plots were established.  N as NH4NO3 solution is mixed with rainwater 109 

collected at the site and applied monthly to these new plots using a watering can at more realistic 110 

N additions of 0, 10, 20, 40 kg N ha-1yr-1  (‘+0, +10N, +20N, and +40N’, respectively). A higher 111 

120 kg N ha-1yr-1  (+120N) treatment is included to increase the N response gradient. A further 16 112 

plots incorporate phosphorus additions however, these are not used in this study. After 10 years of 113 

treatments, the cumulative additional N by treatment are 0, 100, 200, 400 and 1200 kg N ha-1y-1 114 

above ambient N deposition i.e. the lowest N treatment adds 10 kg N ha-1 yr-1, so after 10 years 115 
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this is an additional 100 kg N input. Each treatment is replicated 4 times in a randomized block 116 

design of overall size 20 x 20 m, with 20 plots in total used in this study. Earlier responses to N on 117 

these plots of biological and chemical indicators have been reported by Edmondson et al. (2010). 118 

 119 

The site has probably been a heathland since at least AD 1700, with active management as a grouse 120 

moor by fire and grazing since the 1800s (Cawley, 2000).  Over recent years the intensity of 121 

management, including burning, has been less intense and the focus has been on attracting black 122 

grouse (Tetrao tetrix) by cutting sections of heather to provide feeding close to nesting locations. 123 

The last management to the actual plots was a burn in 1988, 10 years before the experiment started. 124 

By the time soil cores were extracted in 2008, the plots were at the “mature to degenerate” stage, 125 

dominated by Calluna but with gaps beginning to form due to senescence of the heather 126 

(Gimingham, 1972).  127 

 128 

2.2. Plant biomass, canopy height and litter fall measurements 129 

Canopy height has been measured annually at the site since N additions began in 1998. It is 130 

recorded at 16 locations in each plot; with 4 treatment replicates this provides 64 height 131 

measurements for each N addition load (the mean height is presented in this study).  Since a 132 

destructive harvest is not possible, biomass was modelled by harvesting ten 1 x 1 m plant stands 133 

of comparable aged and sized Calluna located off the plots and relating this measurement to the 134 

canopy height of on- and off-plot plants using the equation: 135 

Equation (1) Biomass (g) = 1.94*(Canopy height)2 - 128.85*Canopy height + 3017.8 136 

R2=0.98, P<0.001. 137 
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A sample of ground plant tissue, incorporating recent shoot and leaf growth, per treatment level 138 

was collected and analysed for %C and %N on a LECO Truspec Carbon and Nitrogen Analyser 139 

(LECO Corporation, Michigan, USA). The plots represented a monoculture of Calluna, typical of 140 

managed heathlands in the UK, and no changes in the species composition of vascular plants were 141 

observed during the study period. 142 

 143 

Annual litter productivity (litter fall) was measured at the site between May 1st 2007 and April 30th 144 

2008. Five plastic plant pots (6.3 cm diameter) were set into the soil at random under the Calluna 145 

canopy of each plot. Upon collection, the pots and accumulated litter were collected and the 146 

contents dried and weighed. The results were used to calculate an annual rate of litter productivity 147 

(litter fall). 148 

 149 

2.3. Soil carbon and nitrogen 150 

In July 2008, following 10 years of N addition, three 15 cm soil cores were collected from each 151 

plot using a 3-cm diameter thin-walled steel corer. Since the experimental plots are all located 152 

within an approximately 20 × 20 m square, there is general uniformity between the soil type and 153 

horizon depths.  Distinct soil horizons are apparent:  154 

1. Litter (approx. 5cm).  Loose surface litter, fresh and partially decomposed 155 

2. OH1 (approx. 5cm depth) – the top organic layer of the soil consisting of fibrous roots and 156 

partially decomposed organic matter  157 

3. OH2 (approx. 5 cm depth) –  the next layer of richly organic soil beneath OH1 consisting 158 

mainly of humus/peat;  159 
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4. Gley (5-10 cm depth)– eluviated gley layer with little organic matter and a high mineral 160 

content.  161 

Difficulties in coring further into the mineral layer due to the presence of stones dictated a limit of 162 

2 cm in the Gley horizon.  163 

 164 

The individual soil horizons were dried at 80 oC for 24 hours. The depth of each soil horizon was 165 

then measured and its mass recorded. A significant litter layer is found at Ruabon, however since 166 

the coring technique tended to disturb the litter layer, litter depth was separately measured at 9 167 

fixed locations in each plot. Following measurement and weighing, material from each horizon 168 

was finely ground and a sub-sample analysed for C and N concentrations on the LECO Analyser. 169 

This gave a total of 60 cores (3 per plot x 20 plots), with 12 at each N addition level, and 240 170 

individual horizon profiles for C and N analyses.  Chemical concentrations were then multiplied 171 

by weight to give the pools of C and N of the litter layer and each soil horizon, the total C and N 172 

pools, and the total organic (Litter + OH1 + OH2) C and N pools. 173 

 174 

2.4. Statistical analysis 175 

Data analysis was carried out in R version 3.01 (R Core Team, 2012).  Due to heterogeneity of 176 

variance in the data, the assumptions of regression such as normality and heterogeneity were not 177 

always met. In these cases, notably the relationships between N deposition, litter and soil C, a 178 

Generalised Additive Model (GAM) was fitted (Wood, 2011). When modelling biomass from 179 

canopy height, the assumptions of regression were met and a relationship was fitted using quadratic 180 

regression. The upscaling to landscape level considered the +0 to +40N treatments only; no 181 

experimental additions between +40N and +120N were available and the highest +120N addition 182 
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is not representative of deposition loads found in the UK. In this case, the assumptions of 183 

regression were also met and a linear regression was used.  184 

 185 

Treatment differences of C%, N%, C/N and profile depth were investigated using either ANOVA, 186 

for normally distributed data, or Kruskal-Wallis tests after first being tested for normality using 187 

the Anderson-Darling test. Post-hoc comparisons were carried out using the Tukey test (for 188 

ANOVA) and Wilcoxon rank sum test with Holm P-value adjustment (for Kruskal-Wallis). All 189 

figures were produced using ggplot2 (Wickham, 2009). 190 

 191 

2.5. Nitrogen deposition mapping to heathlands and upscaling 192 

Concentration based estimated deposition (CBED) for N (and other pollutants) is mapped for the 193 

UK on a 5x5 km grid (RoTAP, 2012).  Values are derived from measurements of air concentrations 194 

of gases and aerosols, and concentrations in precipitation from the UK Eutrophying and Acidifying 195 

Pollutants (UKEAP) network.  The measurements are interpolated to generate concentration maps 196 

for the UK.  The ion concentrations in precipitation are combined with the UK Met Office annual 197 

precipitation map to generate maps of wet deposition.  The wet deposition includes direct 198 

deposition of cloud droplets to vegetation, and an orographic enhancement factor for the 199 

concentration of precipitation in upland regions due to the seeder-feeder effect (Fowler et al. 1988).  200 

Gas and particulate concentration maps are combined with spatially distributed estimates of 201 

vegetation-specific deposition velocities (Smith et al. 2000) to generate dry deposition.  Figure 1 202 

shows mean total N (wet + dry, oxidised + reduced) deposition for 2011-2013 for UK areas of 203 

dwarf shrub heath habitat.  The habitat distribution map has been generated for UK research on 204 

the impacts of air pollution using critical loads (Hall et al. 2015) and is defined from the CEH land 205 
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cover map 2000 (LCM2000: Fuller et al. 2002), further refined using ancillary data sets on species 206 

distributions (Preston et al. 2002).  The N deposition in Figure 1 is mapped for all 1x1 km squares 207 

containing dwarf shrub heath. An estimate of C sequestration in litter and the organic component 208 

of the soil (OH1 + OH2), by heathland area, was then modelled for each 1x1 km square, using the 209 

linear relationship below, derived from the data gathered in this study:  210 

 211 

Equation (2) Organic Carbon sequestered (kg) per ha= 46613 + 575.6*N deposition 212 

R2=0.17, P=0.007. 213 

C sequestered at an assumed background, pre-industrial N load of 1 kg N ha-1 yr-1 for each 1 x 1 214 

km square and the current N deposition load were calculated, with the increase in C sequestered 215 

due to anthropogenic N being the difference between the amounts modelled at each deposition 216 

load. In doing this, we assume that the relationship observed during experimentation is valid across 217 

a broader geographic area and at a range of N deposition loads. Whilst this is an over simplification 218 

and inherently flawed due to climatically-driven differences in plant growth and decomposition 219 

rate, it enables an indicative magnitude of the likely response to N to be considered. In a study of 220 

UK heathlands, canopy height was linearly associated with increasing N deposition across all sites 221 

studied over a deposition range of 6 kg N to 33 kg N (Southon et al. 2013) suggesting that such a 222 

response could exist at a landscape-scale.  223 
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 224 

Figure 1. The study site on Ruabon Moor in North Wales (marked with a      ) over a UK dwarf shrub heath distribution 225 

map shaded by nitrogen (N) deposition. UK heathland N deposition range is 2.7 to 63.6 kg N ha-1yr-1. 226 

 227 

3. Results 228 

3.1. Plant growth, biomass and litter fall 229 

Calluna showed a strong growth response following commencement of N additions in 1998, with 230 

increasing canopy height reflecting increasing N additions from the control (ambient N 231 

approximately 23 kg N ha-1 yr-1) up to +120N (Figure 2).  With the +120N treatment canopy height 232 

stabilised by 2003 (5 years after treatment, and 15 years after the last management by fire) and 233 
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began to decline in 2009 after 11 years of treatment.  This reflected a shift from plants in the mature 234 

to the degenerate stage, with active shoot growth declining and the canopy opening.  In all other 235 

treatment plots stabilisation occurred later, around 2009, followed three years later by the decline 236 

phase.  237 

 238 

Figure 2. Mean annual Calluna canopy height taken from 8 measurements per plot, 32 at each nitrogen (N) addition level. 

N treatment additions are: Control, +10 kg N, +20 kg N, +40 kg N, +120 kg N. Shaded bar illustrates when the sampling of 

the soil cores for CN analysis occurred. 

 239 

Total standing biomass C modelled from an off-plot harvest predicts increases in response to N 240 

addition, although incremental N above +20 kg N ha-1 yr-1 is not efficiently used, leading to falling 241 

incremental C per kg N added and increasing tissue N% (Table 1). However, at lower levels of N 242 

addition that are more relevant to those observed in the real-world, around 13 kg C are sequestered 243 

for every 1 kg increase in N deposition. On-site observations suggest much of this increased 244 

biomass is held in woody stems. Litter fall also increased in line with biomass from a mean of 245 

2534 kg ha-1 yr-1 in the control plots to 5272 kg ha-1 yr-1 in the +120N treatment, with an overall 246 

range of 1769 – 7487 kg ha-1 yr-1 (R2=0.49, P=0.003). 247 
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Table 1. Summary of annual litter productivity (litter fall), biomass carbon (C) and nitrogen (N) stores and C 248 

sequestration/kg N modelled from off-plot harvest and calibrated by canopy height. 249 

N addition 

(kg ha-1 yr-1) 

 

Total 

additional N 

(10 years 

treatment) 

Annual 

litter fall 

(kg ha-1) 

Biomass C  

(kg ha-1) 

Biomass N  

(kg ha-1) 

Biomass 

increase in C 

from ambient 

Biomass 

(∆Cseq/∆N 

(kg C kg N-1) 

Biomass 

C/N 

Biomass  

N % 

0 0 2534 5499 134.1 - - 41.0 1.33 

10 100 2766 6829 154.5 1330 13 44.2 1.24 

20 200 4059 8015 230.3 2515 13 34.8 1.57 

40 400 3750 8587 251.8 3088 8 34.1 1.60 

120 1200 5272 9743 298.0 4244 4 32.7 1.67 

 250 

3.2. Soil carbon and nitrogen CN pools  251 

Surface C and N pools both show a trend of increasing C and N sequestration as N addition 252 

increases (Figure 3 a) and b)). This trend appeared to saturate with lower N additions above 253 

background N deposition producing greater increases in C and N sequestration, and the highest 254 

120 N addition failing to cause further C or N storage. This relationship between increasing N 255 

addition and C and N pools was significant when fitted by General Additive Model (Deviance 256 

explained=14%, F=4.43, P=0.013; Deviance explained=27%, F=10.58, P<0.001, respectively).  257 

  258 

  259 
Figure 3. Total soil pools of a) carbon (C) and b) nitrogen (N) at increasing N deposition (ambient + experimental N 260 

addition). Ambient nitrogen deposition is circa. 23 kg N ha-1 yr-1. Fitted using a Generalized Additive Model (GAM). Shaded 261 

a) b) 
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areas represent 95% confidence limits. N treatment additions are: Control,  +10 kg N, +20 kg N,  +40 kg N, +120 kg N. 262 

Vertical dashed line shows the maximum modelled N deposition to UK heathlands. 263 

 264 

Of all measured horizons, litter layer C and N pools increased the most strongly with increasing N 265 

deposition, up to the +120N treatment (Figure 4 a) and b); Deviance explained =26.4%, F=10.02, 266 

P<0.001 for C; Deviance explained=38.9%, F=18.59, P<0001 for N). At +120N, the litter C pool 267 

declined to lower than that of both the +20 and +40N addition treatments (see Table 2 and Figure 268 

4a). Litter N also appeared to saturate (Figure 4), although less sharply than litter C, reflecting the 269 

large reduction in C/N at the highest +120N addition.  The OH1 horizon also showed a positive 270 

relationship between N deposition and C and N storage (Figure 4; Deviance explained =12%, 271 

F=2.9, P<0.001 for C; Deviance explained=10.8%, F=2.65, P=0.05 for N), whilst the OH2 and 272 

Gley horizons showed weak but non-significant, general trends of increasing soil C and N pools. 273 

Across the sum totals of C and N in the litter, OH1 and OH2 soil horizons, considering the 274 

difficulty in separating the profiles consistently, there was a significant relationship with N 275 

deposition (Deviance explained=16.4%, F=5,13, P=0.009 for C, see Figure 7a; Deviance 276 

explained=25.2%, F=9.52, P<0001 for N). It should be noted that, whilst the highest rate of 277 

increase in soil C and N occurred in the litter layer, the largest total increase of C and N was in the 278 

organic horizons (OH), reflecting the higher bulk densities of these horizons.  279 

   280 

 281 

a) b) 

c) d) 
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 282 

 283 

 284 

Figure 4. Soil carbon (C) and nitrogen (N) pools at increasing N deposition (ambient + experimental N addition), by horizon: 285 

Litter (a,b), OH1 (c,d), OH2 (e,f), and Gley (g,h). N treatment additions are: control (0) +10 kg N ha-1 y-1, +20 kg N ha-1 yr-286 
1,  +40 kg N ha-1 yr-1, +120 kg N ha-1 yr-1. Ambient N deposition is circa. 23 kg N ha-1 yr-1. Fitted using Generalized Additive 287 

Models (GAM). Shaded areas represent 95% confidence limits. Vertical dashed line shows the maximum modelled N 288 

deposition to UK heathlands. 289 

  290 

e) f) 

g) h) 
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3.3. Soil carbon and nitrogen concentrations 291 

The highest concentrations of both C and N were in the litter and organic horizons, with both 292 

declining strongly in the gley horizon (Table 3).  However, there is no significant effect of the N 293 

treatment on litter or organic horizon C concentrations (Table 3), but there is a trend of higher C% 294 

at the intermediate N treatment levels. The higher N treatments significantly increased N% in the 295 

litter and OH1 horizons, and significantly reduced C/N in the litter layer (ANOVA, F=9.7, 296 

P<0.001) and in both OH horizons (OH1:Kruskal-Wallis, H=17.1, P=0.002; OH2: Kruskal-Wallis, 297 

H=10.2, P=0.04), particularly at the +120N addition. No significant differences in %C, %N or C/N 298 

were found between treatments in the Gley horizon. 299 

 300 

Figure 5. Box plots showing carbon (C)/ nitrogen (N) ratio in the four soil horizons sampled: Litter (a), OH1 (b), OH2 (c) 301 

and Gley (d). Median value shown by the horizontal line, the inter-quartile range by the outline of the box, smallest and 302 

largest values that are not classed as outliers by whiskers with bar ends. Outliers more than 1.5 times from the inter-quartile 303 

range are shown by circles. 304 

 305 
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All N additions of +20 kg N ha-1 yr-1 or higher resulted in a deeper litter (Table 3), storing 306 

significantly more C and N than the control plots. The OH1 horizon increased significantly in 307 

depth, but only at the +20N addition, the other treatments were not significantly different. No 308 

significant differences existed in the OH2 horizon, and the Gley horizon was sampled to a fixed 309 

depth to ensure comparability across the cores. 310 

 311 

Table 3. Soil carbon (C) %, nitrogen (N) %, C/N ratio and profile depth for Litter, Organic 1, Organic 2 and Gley soil 

horizons. P values highlighted in bold represent significant differences. Individual deposition levels compared by post-hoc 

pairwise comparisons, values sharing a letter are not significantly different. 

  

C% 

 

N% 

 

C/N  

Profile depth 

(m)  

 mean Std. 

error 

P mean Std. 

error 

p mean Std. 

error 

p mean Std. 

error 

P 

   Litter    

Control 43.51 a 0.952  1.27 a 0.026  34.54 a 0.954  0.025 a 0.004 

+10 41.00 a 1.200  1.26 a 0.027  32.49 a 0.310  0.040 ab 0.006  

0.001 +20 46.17 a 0.166 0.300 1.37 a 0.011 <0.001 33.77 a 0.384 <0.001 0.055 b 0.008 

+40 44.12 a 0.715  1.48 ab 0.044  30.23 a 1.370  0.058 b 0.007 

+120 40.13 a 1.799  1.78 b 0.056  22.58 b 0.760  0.051 b 0.003  

   OH 1   

Control 46.56 a 0.612  1.48 a 0.004  31.72 a 0.732  0.019 ab 0.003  

 

0.025 

+10 46.27 a 0.668  1.54 a 0.061  30.66 ab 1.222  0.019 ab 0.003 

+20 47.06 a 0.351 0.263 1.63 ab 0.059 0.002 29.38 ab 1.047 <0.001 0.027 a 0.004 

+40 45.33 a 0.687  1.72 ab 0.075  26.83 bc 1.206  0.019 ab 0.002 

+120 44.49 a 1.326  1.92 b 0.088  23.52 c 0.721  0.012 b 0.002  

   OH 2    

Control 39.33 a 1.669  1.30 a 0.043  30.38 ab 0.530  0.024 0.002  

+10 38.76 a 2.974  1.28 a 0.061  30.94 a 1.261  0.026 0.005  

+20 40.01 a 1.750 0.261 1.51 a 0.059 0.037 27.13 ab 1.065 0.005 0.020 0.002 0.117 

+40 42.80 a .977  1.58 a 0.075  27.42 ab 1.005  0.027 0.002  

+120 36.46 a 2.329  1.43 a 0.088  26.40 b 1.022  0.027 0.003  

   Gley    

Control   9.66 a 0.694  0.38 a 0.024  25.32 a 0.416   

 

+10 16.13 a 0.601  0.55 a 0.022  28.08 a 0.428   

+20 13.60 a 
1.358 

0.167 0.51 a 
0.045 

0.277 26.71 a 
1.414 

0.074 n/a 

fixed at 0.02 m for all 

+40 11.49 a 1.384  0.49 a 0.049  23.09 a 0.975  Cores 

+120 13.91 a 2.625  0.55 a 0.082  23.57 a 1.620   
 

 312 

The increase in soil C per unit of N added (∆Cseq/∆N, in kg C per kg N) is very high at the lowest 313 

N addition loads, peaking at 121 kg C kg N-1 in the +20N treatment (see Table 2), with 62 and 10 314 
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kg C/ kg N at +40N and +120N, respectively. Across all the plots and both C and N pools, the 315 

increases were most obvious in the biomass, litter and organic soil horizons (Figure 6).  316 

 317 

Figure 6. Amounts of (a) carbon (C) and (b) nitrogen (N) in plant biomass and each soil horizon, plotted with biomass at 318 

the top descending through the soil profiles. 319 

 320 

3.4. UK heathland soil carbon 321 

Using the relationship between litter and organic soil (OH1 and OH2) C and N deposition (Figure 322 

7a), we can extrapolate the results of the experimental plots to a UK-wide scale to provide an initial 323 

estimate of the gains in C that are stimulated by N deposition in heathland over a typical 324 

management cycle of around 20 years (Figure 7b). Based on a UK heathland area of approximately 325 

2.5 million hectares, the total heathland C store for the top 15 cm of litter and soil (including 326 

mineral layer) is an estimated 172 Mt C, and for the litter and organic component only, it is 130 327 

Mt C. If we assume a pre-industrial N deposition of 1 kg N ha-1 yr-1 (based on contemporary 328 

measurements in northern Sweden – DeLuca et al. 2008), then the additional C sequestered due to 329 

contemporary N deposition above this level is 14 Mt, or around 0.7 Mt C per year over a 20 year 330 

management cycle. 331 
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 332 

Figure 7. a) The fitted Generalized Additive Model (GAM) relationship between the organic C store (Litter + OH1 + OH2) 333 

and nitrogen (N) deposition (ambient + experimental N addition). Ambient N deposition is circa 23 kg ha-1 yr-1. Shaded area 334 

indicates 95% confidence limits, vertical dashed lines show the minimum and maximum modelled N deposition to UK 335 

heathlands. b) Area weighted N driven C sequestration totalled across plant litter, and OH1 and OH2 soil horizons is plotted 336 

on the primary y-axis – dark grey dots. Cumulative heathland habitat area at increasing N deposition on the secondary y-337 

axis – solid black line. 338 

 339 

4. Discussion 340 

Consistent with findings in forest ecosystems and previous heathland data, measured heathland 341 

litter and soil C storage increased with N addition at the Ruabon experimental site. However, we 342 

also found that this N-induced C accumulation appeared to saturate at high deposition loads, 343 

decreasing from 101 and 121 kg C kg N-1 at +10N and +20N, to just 10 kg C kg N-1 at +120N. 344 

This saturation was reflected in the falling soil C/N stoichiometry, particularly at the highest 345 

+120N addition. Of the total C accumulated by the ecosystem, an average of 8% was in plant 346 

biomass, 23% in litter, 54% in the organic soil, and 15% in the mineral soil.   347 

 348 

The results suggest that at the lower levels of N deposition, C sequestration through photosynthesis 349 

exceeds C lost through autotrophic and heterotrophic respiration. When the soil cores were 350 

sampled in 2008, the site had last been managed 20 years earlier, and the plots were between their 351 

mature (~15 years) and degenerate (~25 years) stages of growth (Gimingham, 1972). Calluna 352 

biomass is at its most productive, with the greatest annual increments, during the mature stage 353 

a) b) 



20 
 

(Gimingham, 1972). Therefore, for N-induced C pools in shrublands to be sustainable in the 354 

longer-term, ecosystems should be managed in a way that enables the vegetation to remain in this 355 

active ‘mature’ growth phase.  Without management the C sink could saturate during the 356 

degenerate stage within a short timescale. 357 

 358 

Growth measurements at the study site on older plots demonstrated the same pattern of rapid 359 

growth response to N addition in the years following commencement of treatments (Carroll et al. 360 

1999), followed by a slowing of response. The authors suggested that N deposition seemed to 361 

advance the physiological age of Calluna (Carroll et al. 1999), with plants receiving higher levels 362 

of N deposition moving through the growth phases sooner. This is reflected in the 6-year earlier 363 

stabilisation in canopy height at the highest N addition (Figure 2) as the canopy opens and supports 364 

the saturating response observed in the soil and litter C and N pools. Observations at the site reveal 365 

that the +10N and +20N plants were in the mature and mature-degenerate growth-phases of the 366 

Calluna life cycle, whereas the highest +120N plants were notably more degenerate. Koptittke et 367 

al. (2012) measured C stock in the vegetation and soil at 11, 18 and 27 years post-management at 368 

a Dutch lowland heathland and found that biomass peaked at around 18 years and fell back in the 369 

older plots, although still remained greater than in the 11 year old plots. In their study, soil organic 370 

C stores did not follow the same pattern, although C in the upper mineral component peaked in the 371 

18 year old plots. Biomass C values in the control plots of around 10000 kg ha-1 were at the lower 372 

end of the range found in some studies (e.g. Santana et al.  2016 – range circa 8000-18000 kg ha-373 

1) but at the upper end of others (e.g. Milne et al. 2002 – range circa 3000-9000 kg ha-1). 374 

 375 
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Modelling of C stocks on heather moorland growing on blanket peat suggests a strong relationship 376 

between canopy height and gross photosynthesis (Dixon et al. 2015). However, as plants became 377 

taller, the relationship between canopy height and ecosystem respiration became stronger, 378 

suggesting that C stocks were not sustainable in the long-term without active ecosystem 379 

management (Dixon et al. 2015). In the current study, growth in the ambient and low N plots 380 

saturated 21 years after management and in the high N plots 15 years after management. A spatial 381 

survey study across UK heathlands has demonstrated a link between N deposition and canopy 382 

height (Southon et al. 2013), suggesting that there is potential for N-driven increases in C 383 

sequestration in heather biomass at a regional scale. The increase in plant biomass in the current 384 

study has contributed directly to larger litter stores in the N addition plots, and in turn to greater 385 

sequestration of organic soil C. The mechanism for this appears to have been the markedly higher 386 

litter fall observed in the elevated N plots. With a range of 1700-7500 kg ha-1 yr-1, this is similar 387 

to work on older plots at the study site at the site (Carroll et al. 1999 – range circa 3800 – 6600 kg 388 

ha-1 yr-1; Pilkington et al. 2005b – range circa 3200 – 7200 kg ha-1 yr-1), and the mean values from 389 

the control plots similar to those in other studies (e.g. Chapman 1967 – 3160 kg ha-1 yr-1; Trinder 390 

et al. 2008 – 2760 kg ha-1 yr-1). However, at a landscape-scale, grazing will influence biomass and 391 

therefore also litter (Smith et al. 2015). 392 

 393 

With a range of 13-138 kg C kg N-1, soil C sequestration calculated from this study is more 394 

variable, and on average higher, than that calculated by de Vries et al. (2009) (20-34 kg C kg N-1) 395 

from the smaller “old” plots at Ruabon. This appears primarily due to higher rates measured in the 396 

litter layer in this study and the lower N additions in this study; C sequestration appears to saturate 397 

at higher N. We also find higher N-driven soil C storage rates in this heathland than those 398 
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calculated from most forest data (e.g. Pregitzer et al. 2007; Hyvonen et al. (2008), but see Magnani 399 

et al. 2007). There is however, considerable variability in the published data  from forests with 400 

Pregitzer et al. (2007) presenting an average C sequestration of 23 kg C kg N-1 following 10 years 401 

of N, although the study included a much larger maximum of 63 kg C kg N-1. This figure was also 402 

after removal of the litter layer. Hyvonen et al. (2008) presented a soil C sequestration range of 3 403 

- 20 kg C kg N-1, however, total N added was in the range 600 – 1800 kg N ha-1 yr-1 over 14-30 404 

years. In this study, the total amount of N added to the system was 100 – 1200 kg ha-1 yr-1 over 10 405 

years. Decomposition processes will therefore play a significant role in controlling the proportion 406 

of plant or tree litter that remains in a system over the medium to longer term and this may mean 407 

that figures quoted from relatively short-term studies exaggerate the long-term storage potential 408 

that elevated N deposition provides. However, heathland soil is often waterlogged or partly 409 

anaerobic, and vegetation is dominated by ericaceous shrubs that are high in lignin (Calluna at 410 

Ruabon) (Berg and Laskowski, 2006) – both of these factors slow decomposition rates and increase 411 

the potential for net C accumulation.   412 

 413 

Extrapolation of the experimental data to a heathland area of just under 2.5 million hectares gives 414 

an estimated pool of 172 Mt C in the top 15 cm of soil for all UK heathlands, and 120 Mt C in the 415 

litter and organic component of the soil.  Both these figures compare well to an estimated 120 Mt 416 

C based on UK Countryside Survey data (Ostle et al. 2009), which may be slightly lower than our 417 

value since it includes on balance more  heathlands located further north in the UK, where growth 418 

rates are likely slower. Based on our experiment we estimate that 14 Mt C, or 8% of the total, has 419 

accumulated in UK heathland as a result of enhanced N deposition over a 20-year management 420 

cycle.  This equates to average figure of 0.7 Mt C, or 2.52 Mt CO2e per annum and represents 421 
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0.44% of UK annual GHG emissions of 568 Mt CO2e (UK National Statistics, 2013). As the 422 

response appeared to saturate as the canopy moved into the degenerate stage (observed in the 423 

highest +120N treatment), management interaction is required to sustain growth rate; in areas 424 

without regular management, C sequestration rates are likely to be much lower.  The absence of 425 

data from other UK habitats such as bogs or grasslands means that it is difficult to put these N 426 

driven increases in heathland C in context. In bogs, experimental N deposition initially increased 427 

C sequestration but as shrub cover increased, C losses became greater (Bubier et al. 2007) and, 428 

whilst owing to a larger surface area, grasslands may hold a greater overall C-store, faster 429 

decomposing processes could mean less C entering the soil from plant litter. Further research 430 

should aim to elucidate responses to N in these ecosystems. 431 

 432 

Whilst our modelling clearly oversimplifies responses, as many other factors not least climate, are 433 

likely to affect plant growth and C storage at a countrywide-scale, it highlights the potential 434 

magnitude of N-driven C sequestration in heathlands. The total heathland organic C store of around 435 

120 Mt C or 432 Mt CO2e represents around 76 % of annual UK GHG emissions. This represents 436 

just under 8% of UK soil C in the top 15 cm soil (Carey et al. 2008) and in this context the long-437 

term stabilisation of this pool is important. This stabilisation will depend upon climate and 438 

management intensity e.g. shallow burning or cutting of biomass compared to intensive burns to 439 

the litter layer.  440 

 441 

There may also be alternative succession scenarios for heathlands that could stabilise and enhance 442 

this pool. In the UK, heathlands are often a plagio-climax community that in drier areas would 443 

usually shift to woodland if unmanaged. It is also worth noting that heathland ecosystems on 444 
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organo-mineral soils, such as Ruabon, lie on an ecological continuum that extends to Calluna-445 

Sphagnum blanket bog over deep peat on poorly drained areas nearby. Thus it is possible that 446 

increased organic matter accumulation due to N addition could shift some heathland ecosystems 447 

more towards C-accumulating peatland ecosystems (e.g. Turunen et al., 2004), provided that N 448 

deposition levels and/or management practices are not so intensive as to restrict the growth of peat-449 

forming species (e.g. Evans et al., 2014). Both these successions would provide long-term 450 

stabilisation of soil C with little management interference. 451 

 452 

It must also be remembered that N deposition has been associated with large-scale reductions in 453 

biodiversity. In heathlands specifically, N deposition is linked with falls in species richness of up 454 

to 40%, and shifts in species composition (Southon et al. 2013; Field et al. 2014), with lower plants 455 

such as bryophytes and forbs proving particularly sensitive in both experiments and gradient 456 

surveys at the expense of faster growing grasses and shrubs (Edmondson et al. 2013; Southon et 457 

al. 2013).  458 

 459 

5. Conclusion 460 

Plant litter, organic soil C accumulation and canopy height at Ruabon show clear positive 461 

responses to moderate levels of N deposition, suggesting that C sequestration of ericaceous 462 

ecosystems is increased by anthropogenically-enhanced N deposition.  The amount and duration 463 

of this extra C storage will depend on many factors, including climate, management, the level of 464 

long-term N deposition, and the level of N saturation capacity of the ecosystem.  The relationship 465 

between N and plant growth are reflected at the landscape scale, suggesting the potential for N-466 

driven increases in C sequestration at levels of N deposition found across the UK and Western 467 
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Europe.  However, in relation to the CO2 equivalents released by human activity, the gains in C 468 

storage are relatively modest.  When considered in the context of falling biodiversity and altered 469 

species composition in heathland, policy focus should remain on reducing N emissions.  470 
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Table 2. Summary of soil carbon (C) stores with C sequestration per kg nitrogen (N) addition over the 10 year duration of the 648 

experiment.   649 

 650 
  Total Soil C Litter C Organic Horizons Total C (OH1 

+ OH2)  

Eluviated gley Horizon C (EAG)  

N addition 

(kg ha-1 yr-1) 

Total 

additional N  

(10 years 

treatments) 

(kg ha-

1) 

∆C from 

ambient 

kg C 

kg N-1 

(kg ha-

1) 

∆C 

from 

ambie

nt 

∆% 

from 

ambie

nt 

(kg 

ha-1) 

∆C from 

ambient 

∆% from 

ambient 

(kg ha-1) ∆C from 

ambient 

∆% from 

ambient 

0 0 72289 - - 11619 - - 44123 - - 16547 - - 

10 100 82421 10131 101 16756 5137 44 47612 3489 8 19763 3216 9 

20 200 96586 24297 121 26935 15316 132 49201 5078 12 20402 3855 24 

40 400 97190 24900 62 26884 15264 131 52204 8081 18 18102 1555 9 

120 1200 83847 11557 10 21341 9722 84 40784 -3340 -8 21722 5175 31 

 651 

 652 

  653 

 654 


