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Abstract     

 

Remarkable advances have been made in the development of an environmentally-friendly 

approach for the rapid and simple construction of the Active Pharmaceutical Ingredient (API) 

Fluoxetine (1). These include the use of ball milling and microwave irradiation as greener 

alternatives  compared to conventional heating  to provide the energy needed for the chemical 

transformations. 
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1. Introduction    

 

Pharmaceutical manufacturing is the most solvent-intensive and the least efficient of all chemical 

industries in terms of waste generated per unit of product. Statistics compiled across the industry 

point to an average waste-to-product ratio of 200. In other words, factories generate 200 

kilograms of waste for every kilogram of active pharmaceutical ingredient produced and the 

financial burden associated with the processing and disposal of these sizeable waste-streams is 

considerable (Rajagopal 2014). Furthermore, pharmaceutical manufacturing plants devote 

exorbitant amounts of money each year for the fuel and electricity they need to keep their 

facilities running (Galitsky et al. 2008). As a counter to this, various “green” approaches have 

become popular as a means to reduce the ecological impact of the pharmaceutical industry 

including the use of solvent-free synthetic procedures and alternative energy sources (Markarian 

2016). In this context, mechanosynthesis [or synthesis in a ball mill (Tan et al. 2016)] and 

microwave assisted synthesis (Wagner 2006, Sekhon 2010), have recently become very popular 

as cleaner technologies in the pharmaceutical sector (Cernansky 2015). 

Mechanosynthetic methods – grinding of (solid) reactants in a ball mill – avoid the use of 

solvents and at the same time utilize mechanical energy from the grinding for the formation/ 

breaking of new bonds (André et al. 2011, Baig et al. 2012, Bonnamour et al. 2013, James et al. 

2012, Jones et al. 2014, Konnert et al. 2014, Konnert et al. 2016, Tan et al. 2014, Tan et al. 

2016.). Similarly, microwave assisted synthesis is particularly interesting due to its high 

efficiency, leading to drastically reduced reaction times and higher yields, both of which result in 

energy savings. In addition, there is clear evidence that these technologies offer new 
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opportunities to the synthetic chemist in the form of complementary reactions that are not 

possible using conventional methods. As such, both mechano- and microwave assisted synthesis 

provide a general answer to the demands of pharmaceutical industry for cleaner, safer and 

efficient synthetic solutions. Their implementation into the pharmaceutical industry could lead to 

a decrease in the number of process operations, thus allowing both the simplification of the 

processes and the reduction of costs to the manufacturer and, ultimately, to the consumer 

(Bruckmann et al. 2008, Mikhailenko et al. 2004). 

 

This work focuses on the synthesis of the antidepressant Fluoxetine (commercialised as Prozac), 

via environmentally-friendly ball milling and microwave assisted techniques. A simplified and 

fast synthetic pathway for the eco-friendly synthesis of Fluoxetine is here reported, where the 

utilisation of solvent and energy consumption have been minimized. 

 

2. Materials and Methods     

 

2.1. General instrumentation: 

 

TLC: Thin layer chromatography (TLC) was run on silica gel 60 aluminium sheets, 0.25 mm 

thick (F254 Merck KGaA®). The components were visualized by UV light (254 nm), 

phosphomolybdic acid or KMnO4 staining solutions.  

IR: IR spectra were recorded on Nicolet® 380 FT/IR – Fourier Transform Infrared 

Spectrometer. Only the most significant frequencies have been considered for the 

characterisation, and have been reported in cm-1.   

NMR: 1H NMR, 13C NMR and 19F NMR were recorded on a JEOL® ECS-400 (400, 100.6 and 

376.5 MHz, respectively) using CDCl3 as solvent. Chemical shift values are reported in ppm 

with TMS as internal standard (CDCl3: δ 7.26 for 1H-NMR, δ 77.0 for 13C-NMR). Data are 

reported as follows: chemical shifts, multiplicity (s= singlet, d= doublet, t= triplet, q= quartet, 

m= multiplet, br= broad), coupling constants (Hz), and integration. 

Flash chromatography: Column chromatography was carried out using Geduran® Silica gel 

60, 40-63 microns RE.  

Melting points: Melting points were measured in a Stuart® SMP10 melting point apparatus and 

are not corrected. 

GCMS: Low resolution mass spectra were recorded on a GC-MS spectrometer (Hewlett 

Packard® HP 5890 Series II GC System) equipped with a DB-5 column (J&W Scientific®, 30 m 

× 0.32 mm), connected to a Hewlett Packard® HP 5972 Series Mass Selective Detector. Helium 

was used as carrier gas at 10 psi, and the samples were ionized by an electronic impact (EI) 

source at 70 eV. 

HRMS: High resolution mass spectra were obtained on a Agilent Technologies® 6540 Ultra-

High-Definition (UHD) Accurate-Mass equipped with a time of flight (Q-TOF) analyzer and the 

samples were ionized by ESI techniques and introduced through a high pressure liquid 



chromatography (HPLC) model Agilent Technologies® 1260 Infinity Quaternary LC system. 

Samples were eluted with mixture of MeOH and 0.1% formic acid, with a flow of 0.2 ml/min.  

Shaker ball mill: Reactions in the shaker ball mill were carried out in a Retsch® MM200 

(shaker mill) using a 25 mL stainless steel grinding jar provided with one stainless steel grinding 

ball of 2.5 cm of diameter.  

Planetary ball mill: Reactions in the planetary ball mill were carried out in a Retsch® PM100 

using a 50 mL stainless steel grinding jar and different sets of the grinding balls: (a) 2 stainless 

steel grinding balls of 1.5 cm diameter each, (b) 5 stainless steel grinding balls of 1 cm diameter 

each, (c) 10 stainless steel grinding balls of 0.8 cm diameter each, (d) 10 stainless steel grinding 

balls of 0.7 cm diameter each, (e) 5 stainless steel grinding balls of 0.6 cm diameter each, (f) 10 

stainless steel grinding balls of 0.4 cm diameter each, or (d) 20 zirconium-coated grinding balls 

of 0.3 cm diameter each. 

MW: The microwave irradiation was carried out in an Anton Paar® Monowave 300, Microwave 

Synthesis Reactor, using 10 and 30 mL glass vials sealed with a PTFE-coated silicone septum 

and closed with a snap cap made of PEEK. 

 

2.2. General methods and considerations: 

 

All commercially available reagents were purchased from Aldrich, Acros, Alfa Aesar and 

Maybridge and used without further purification, unless stated otherwise. 

Ball mill reactions: Before starting the grinding process, the grinding jar was flushed for 0.5 

min with a stream of argon after all the reagents were added.  

MW reactions: A dry MW-glass vial was filled with argon and sealed with a rubber septum. All 

the chemicals were added under argon atmosphere. The septum was quickly changed for a snap 

cap before putting the vial inside the Microwave Synthesis Reactor. 

 

2.3. Experimental procedure and data of compounds 

 

2.3.1. Mannich Reactions 

 

2.3.1.1. 3-(Dimethylamino)propiophenone hydrochloride (3a) 

(Istanbullu et al. 2015). Concentrated HCl (40 µL, 0.5 mmol) was added 

dropwise to a solution of acetophenone (961 mg, 8 mmol), 

dimethylamine hydrochloride (832 mg, 10 mmol) and paraformaldehyde 

(360 mg, 12 mmol) in iPrOH (4 mL) at RT under Ar atmosphere, in a 30 

mL MW glass tube. The mixture was heated in the MW to 110 °C for 60 min and a solid 

precipitated inside the glass tube. The resulting solid was filtrated and washed with acetone and 

concentrated under vacuum. Pure 3-(dimethylamino)propiophenone hydrochloride (3a) was 

obtained as a white solid (1.099 g, 65%). Mp = 153–156 °C [lit. Mp = 153–154 °C (Roman et al. 

2013)]. IR (ATR) 3400 (br), 2946, 2662, 1674, 1334, 1222, 958 cm-1. 1H NMR (400 MHz, 



CD3OD) δ 8.80–7.20 (5H, m, ArH), 4.45–2.25 (4H, m, CH2CH2N(CH3)2), 3.75 (6H, s, N(CH3)2). 
13C NMR (100.6 MHz, CD3OD) δ 198.3, 137.2, 135.0, 129.9, 129.3, 54.4, 43.9, 34.2. Data in 

agreement with the literature. 

 

2.3.1.2. 3-(Methylamino)-1-phenylpropan-1-one hydrochloride (3b) 

(Hu et al. 2015). Concentrated HCl (125 µL, 1.5 mmol) was added 

dropwise to a solution of acetophenone (3.004 g, 25 mmol), methylamine 

hydrochloride (1.86 g, 27.5 mmol) and paraformaldehyde (1.05 g, 35 

mmol) in EtOH (12.5 mL) at RT under Ar atmosphere, in a 30 mL MW 

glass tube. The mixture was heated in the MW to 130 °C for 5 h. The solvent was then 

concentrated under vacuum and the crude was purified by recrystallization (iPrOH/AcOEt) to 

afford pure 3-(methylamino)-1-phenylpropan-1-one hydrochloride (3b) as a white solid (2.818 g, 

57%). Mp = 113–118 °C [lit Mp = 113–115 °C (Hu et al. 2015)]. IR (ATR) 3390 (br), 2941, 

2694, 2448, 1679, 1373, 1223, 749 cm-1. 1H NMR (400 MHz, CD3OD) δ 8.10–7.45 (5H, m, 

ArH), 3.58–3.35 (4H, m, CH2CH2NCH3), 2.77 (3H, s, NCH3). 13C NMR (100.6 MHz, CD3OD) 

δ 198.6, 137.2, 135.0, 129.9, 129.3, 45.5, 35.5, 34.1. Data in agreement with the literature. 

 

2.3.2. Carbonyl reduction in the shaker mill 

 

2.3.2.1. 3-Dimethylamino-1-phenylpropan-1-ol (4a) (Xu et al. 2015). 

Aminoketone hydrochloride 3a (107 mg, 0.5 mmol) and NaBH4 (25 mg, 

0.65 mmol) were added into a 25 mL stainless steel grinding jar with a 25 

mm Ø stainless steel ball. The grinding jar was flushed with a stream of 

argon and the mixture was shaken at 20.0 Hz for 25 min. The reaction 

crude was dissolved with water and acetone and transferred into a separating funnel. 

Concentrated HCl (5 mL) was added and the aqueous layer was washed with CH2Cl2 (3  20 

mL) and the organic layer was discarded. A solution of NaOH 5 N (15 mL) was added to the 

aqueous layer, and was subsequently extracted with CH2Cl2 (4  25 mL). The combined organic 

layers were dried with MgSO4 and concentrated under vacuum. To afford pure 3-dimethylamino-

1-phenylpropan-1-ol (4a) as a white solid (86 mg, 96%). Mp = 45–47 °C [lit. Mp = 47–48 °C 

(Miyano  et al. 1985)]. Rf (MeOH) = 0.25. IR (ATR) 3076 (br), 2970, 2821, 1602, 1450, 1027, 

700 cm-1. 1H NMR (400 MHz, CDCl3) δ 7.40–7.15 (5H, m, ArH), 4.93 (1H, dd, J = 7.6, 4.0 Hz, 

CHOH), 2.68–2.44 (2H, m, CH2CHOH), 2.30 (6H, s, N(CH3)2), 1.85–1.78 (2H, m, 

CH2N(CH3)2). 13C NMR (100.6 MHz, CDCl3) δ 145.1, 128.1, 126.8, 125.5, 75.8, 58.4, 45.3, 

34.5. Data in agreement with the literature. 

 

2.3.2.2. 3-Methylamino-1-phenylpropan-1-ol (4b) (Calow et al. 2014). 

Aminoketone hydrochloride 3b (105 mg, 0.5 mmol) and NaBH4 (39 mg, 

1.0 mmol) were added into a 25 mL stainless steel grinding jar with a 25 

mm Ø stainless steel ball. The grinding jar was flushed with a stream of 



argon and the mixture was shaken at 20.0 Hz for 5 min. The reaction crude was dissolved with 

water and acetone and transferred into a separating funnel. Concentrated HCl (5 mL) was added 

and the aqueous layer was washed with CH2Cl2 (3  20 mL) and the organic layer was discarded. 

A solution of NaOH 5 N (15 mL) was added to the aqueous layer, and was subsequently 

extracted with CH2Cl2 (4  25 mL). The combined organic layers were dried with MgSO4 and 

concentrated under vacuum to afford pure 3-methylamino-1-phenylpropan-1-ol (4b) as a white 

solid (73 mg, 83%). Mp = 66–73 °C [lit. Mp = 50–60 °C (Mathad et al. 2005)]. Rf (AcOEt/MeOH 

1:1) = 0.20. IR (ATR) 3281, 2927, 2793, 1600, 1450, 1080, 1080 cm-1. 1H NMR (400 MHz, 

CDCl3) δ 7.40–7.20 (5H, m, ArH), 4.94 (1H, dd, J = 8.8, 3,2 Hz, CHOH), 3.95 (1H, s (broad), 

NH), 2.94–2.83 (2H, m, CH2CHOH), 2.45 (3H, s, NCH3), 1.90–1.73 (2H, m, CH2NCH3). 13C 

NMR (100.6 MHz, CDCl3) δ 145.1, 128.2, 126.9, 125.6, 75.6, 50.5, 36.8, 36.0. Data in 

agreement with the literature. 

 

2.3.3. MW-assisted copper catalysed O-arylation  

 

2.3.3.1. 3-Dimethylamino-1-phenyl-1-(4-

trifluoromethylphenoxy)propane (5) (Andersen et al. 2014). 4-

Iodobenzotrifluoride (40 µL, 0.275 mmol) was added dropwise to a 

solution of amino alcohol 4a (45 mg, 0.25 mmol), CuI (5 mg, 0.025 

mmol) and Cs2CO3 (163 mg, 0.50 mmol) in o-xylene (2.5 mL) at RT 

under Ar atmosphere, in a 10 mL MW glass tube. The mixture was 

heated in the MW using the following heating program: 120 °C for 10 min, then 150 °C for 10 

min and last 200 °C for 3 h. After that time, GC-MS analysis confirmed 99% conversion. The 

resulting solution was filtrated through a plug of Celite® and eluted with EtOAc. After 

concentrating the solvent under vacuum, pure 3-dimethylamino-1-phenyl-1-(4-

trifluoromethylphenoxy)propane (5) was obtained as a brown oil (84 mg,99%). Rf 

(CH2Cl2/MeOH 95:5) = 0.25. IR (ATR) 2946, 2768, 1614, 1517, 1323, 1248, 1108 cm-1. 1H 

NMR (400 MHz, CDCl3) δ 7.45–6.88 (9H, m, ArH), 5.28 (1H, dd, J = 8.4, 5.2 Hz, CHOAr), 

2.50–2.36 (2H, m, CH2CHOAr), 2.25 (6H, s, N(CH3)2), 2.30–1.94 (2H, m, CH2N(CH3)2). 13C 

NMR (100.6 MHz, CDCl3) δ 160.6, 141.1, 128.7, 127.8, 126.7 (q, J = 15.2 Hz), 125.8, 123.0, 

122.7 (q, J = 129.6 Hz), 115.8, 78.5, 55.7, 45.4, 36.7. 19F NMR (376.5 MHz, CDCl3) δ –61.52. 

HRMS (+ESI): m/z calculated for C18H21NOF3 [M+H]+: 324.1575. Found: 324.1572. Data in 

agreement with the literature. 

 

2.3.3.2. N-methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]propan-

1-amine (1) (Siddappa et al. 2014). 4-Iodobenzotrifluoride (40 µL, 

0.275 mmol) was added dropwise to a solution of amino alcohol 4b (41 

mg, 0.25 mmol), CuI (5 mg, 0.025 mmol) and Cs2CO3 (163 mg, 0.50 

mmol) in o-xylene (2.5 mL) at RT under Ar atmosphere, in a 10 mL 

MW glass tube. The mixture was heated in the MW using the following 



heating program: 120 °C for 10 min, then 150 °C for 10 min and last 200 °C for 2 h. After that 

time, GC-MS analysis confirmed full conversion. The resulting solution was filtrated through a 

plug of Celite® and eluted with EtOAc. After concentrating the solvent under vacuum, pure N-

methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]propan-1-amine (1) was obtained as a yellow oil 

(81 mg, >99%). Rf (CH2Cl2/MeOH 95:5) = 0.25. IR (ATR) 2927, 2849, 1613, 1516, 1323, 1107 

cm-1. 1H NMR (400 MHz, CDCl3) δ 7.37–6.82 (9H, m, ArH), 5.27 (1H, dd, J = 8.4, 4.8 Hz, 

CHOAr), 3.03 (1H, s(broad), NH), 2.82–2.70 (2H, m, CH2CHOAr), 2.41 (3H, s, NCH3), 2.30–

1.98 (2H, m, CH2NCH3). 13C NMR (100.6 MHz, CDCl3) δ 160.3, 140.5, 128.8, 128.0, 126.8 (q, 

J = 15.2 Hz), 125.7, 122.9 (q, J = 130.0 Hz), 115.8, 78.2, 47.8, 37.7, 35.7, 30.9. 19F NMR (376.5 

MHz, CDCl3) δ –61.44. Data in agreement with the literature. 

 

2.3.4. N-demethylation 

 

2.3.4.1. N-methyl-3-(4-trifluoromethylphenoxy)-3-phenylpro 

pylamine hydrochloride / Fluoxetine hydrochloride (1·HCl) 

(Chang et al 2006). -Chloroethyl chloroformate (108 µL, 1.0 

mmol) was added dropwise to a solution of 3-dimethylamino-1-

phenyl-1-(4-trifluoromethylphenoxy)propane (5) (81 mg, 0.25 

mmol) in dichloroethane (2.5 mL) at RT under argon atmosphere, in 

a 10 mL MW glass tube. The mixture was heated in the MW at 120 

°C for 1 h and at 150 °C for 1 h. The resulting solution was 

concentrated under vacuum and heated (MW) with MeOH (2.5 mL) at 120 °C for 1 h. The crude 

oil was purified by recrystallization (EtOAc/hexane) to afford of pure Fluoxetine hydrochloride 

(1·HCl) (66 mg, 76%) as a white solid. Mp = 152–154 °C [lit. MP = 156–158 °C (Srivastava  et 

al. 2004)]. Rf (CH2Cl2/MeOH 95:5) = 0.30). IR (ATR) 2858, 2730, 2450, 1614, 1517, 1325, 

1241, 1107 cm-1. 1H NMR (400 MHz, CDCl3) δ 9.69 (2H, s (broad), NH2), 7.45–6.85 (9H, m, 

ArH), 5.46 (1H, dd, J = 7.6, 4.0 Hz, CHOAr), 3.20–3.05 (2H, m, CH2CHOAr), 2.63 (3H, s, 

NCH3), 2.58–2.37 (2H, m, CH2NCH3). 13C NMR (100.6 MHz, CDCl3) δ 159.6, 139.0, 129.0, 

128.4, 126.8 (q, J = 15.2 Hz), 125.7, 123.3 (q, J = 129.6 Hz), 122.8, 115.8, 76.9, 46.1, 34.5, 33.0. 
19F NMR (376.5 MHz, CDCl3) δ –61.54. Data in agreement with the literature. 

 

3. Results and Discussion    

 

Two synthetic routes (A and B) for the preparation of racemic Fluoxetine (Jakobsen et al. 1991, 

Fuller et al. 1991, Molloy et al. 1982, Wirth et al. 2000) have been studied (Scheme 1). Both 

pathways consist of a Mannich condensation, a carbonyl reduction, O-arylation and, in the case 

of Route A, a final N-demethylation reaction.  

 



 
 

Scheme 1 – Fluoxetine synthetic pathways evaluated in this study 

 

The Mannich condensation between acetophenone (2) and dimethyl- or methylamine 

hydrochlorides has been previously described under conventional heating conditions, to provide 

adducts 3a (Abid et al. 2005, Borah at al. 2015, Cablewski et al. 1994, Kaiser et al. 2006) and 3b 

(Liu et al. 2005), respectively.  

The analogous Mannich reactions were attempted under mechanochemical conditions, using 

both a shaker and a planetary mill. A wide screening of various grinding parameters and reaction 

conditions was performed; unfortunately, no conversion higher than 10% was achieved for either 

3a or 3b.  

Next, we performed the reactions under microwave irradiation, which provided higher yields in 

shorter times than the corresponding reactions under conventional heating (Abid et al. 2005, 

Borah at al. 2015, Cablewski et al. 1994, Kaiser et al. 2006, Liu et al. 2005). Thus, the reaction 

of 2 with 1.25 eq of dimethylamine hydrochloride and 1.50 eq of paraformaldehyde in 

isopropanol, provided the hydrochloride salt 3a in 65% yield in only 1 h at 110 oC (entry 1, 

Table 1). Longer reaction times did not improve the yield of the reaction (entry 2, Table 1). 

Similarly, the synthesis of 3b was achieved in 40% yield, using ethanol as solvent and 

microwave assisted heating at 130 °C (entry 3, Table 1). In this case, the yield of the reaction 

could be improved to 57% with longer reaction times (5 h, entry 4, Table 1).  

 

Table 1 – MW assisted Mannich reaction for the synthesis of 3a and 3b.a 

 



 
 

Entry HNRMe 

(eq) 

HO(CH2O)nH 

(eq) 

Solvent T (oC) Product Time (h) Yield (%)b 

1 HNMe2 

(1.25) 

1.50 iPrOH 110 3a 1 65 

2 HNMe2 

(1.25) 

1.50 iPrOH 110 3a 4 59 

3 H2NMe 

(1.10) 

1.40 EtOH 130 3b 2 40 

4 H2NMe 

(1.10) 

1.40 EtOH 130 3b 5 57 

a Reaction Conditions: 2 (1 eq), HNRMe, paraformaldehyde, solvent, MW . b Isolated yield. 

 

We studied the reduction of 3a-b to their corresponding alcohols 4a-b (Scheme 1). Mack et al. 

(2007) described a solvent-free method for the reduction of carbonyl compounds (non-

functionalised aldehydes and ketones) using NaBH4 as a reducing agent in a high-speed ball mill 

(HSBM). A similar procedure was reported by Cho et al. (2006) and Shalbaf (2010) in a pestle 

and mortar, using NaBH4 in the presence of some activators, such as PTSA, H3BO3, benzoic 

acid, or Al2O3, which provided shorter reactions times and higher yields. 

Based on these literature precedents, we envisioned that the development of a ball milling 

methodology for the reduction of amino ketones 3a-b under solvent-free conditions could be 

feasible. 

The reduction reactions of 3a-b using NaBH4 were studied in both in a shaker and a planetary 

ball mill, using stainless steel grinding jars in both cases. Different parameters were scrutinized, 

such as (i) the number and size of the stainless steel grinding balls (in the case of the planetary 

mill, zirconium coated grinding balls were also evaluated); (b) reaction scale; (c) liquid assisted 

grinding (using 100 L of MeOH per mmol of substrate); (c) equivalents of NaBH4; (d) reaction 

time and (e) different work-up procedures (filtration, wash, acid/base extraction, etc). 

The shaker mill  equipped with a single steel ball of 2.5 cm of diameter in the 25 mL grinding 

jar  proved more efficient than the planetary mill. After 25 min of grinding at 20.0 Hz in the 

shaker mill, salt 3a fully reacted to the corresponding aminoalcohol 4a, using 1 eq of NaBH4 and 

in the absence of solvent. Next, a mere acid/base extraction provided the product 4a in 96% yield 



(Scheme 2). This methodology reduces the reaction time to 25 min, compared to 15 h needed in 

the solution-based reactions described in the literature (Jakobsen et al. 1991).  

Under analogous conditions the reduction of 3b was completed after 5 min of grinding, 

providing 4b in 83% yield. (Scheme 2). 

 

 
 

Scheme 2 – Carbonyl reduction in the ball mill 

 

The absence of solvent to act as a heat-sink for the system is an obvious concern and we 

therefore tracked the temperature increase in the system with the aid of an IR thermometer for 

the reduction of 3a. As represented in Figure 1 below, the temperature of the grinding ball, and 

both inside and outside walls of the grinding jar increases by an average of 4.5 °C during the 25 

min of grinding due to friction. We believe this increase is not significant and is not a 

determining factor for the reaction. When the reaction was performed in intervals of 5 min, 

leaving the system enough time to cool down to room temperature, analogous results were 

obtained. 

 
 

Figure 1 – Temperature of the grinding ball and inside and outside walls of the grinding jar for 

the reduction of 3a to 4a. 



With amino alcohols 4a-b in hand, we continued with the optimization of the third step of the 

synthetic sequence (Scheme 1). The SN2 reactions of the corresponding mesylated derivatives 4, 

using p-trifluoromethylphenol as nucleophile, have been previously described (O'Brien et al. 

2002). Likewise, Mitsunobu procedures (Rej et al. 2013) are also known for the synthesis of 5 

and 1 from 4a-b, respectively. However, these methods are unfavourable due to the high levels 

of waste generated. 

Thus, we focused our efforts in the development of an efficient O-arylation procedure of 4a-b, 

using aryl halides as coupling partners. Based on the knowledge that i) O-arylation reactions of 

aliphatic alcohols can be readily performed in the presence of catalytic amounts of CuI and 1,10-

phenantroline as ligand (Altman et al. 2008, Vorogushin et al. 2005, Wolter et al. 2002, Wu et al. 

2011); ii) the O-arylation reactions of certain aminoalcohols are also known to proceed under 

copper catalysis in the absence of ligands (Job et al. 2002, Shafir et al. 2007), we carried out an 

extensive investigation to perform the O-arylation reaction of 4a-b under mechanochemical 

conditions. Varying bases, metal salts (copper, palladium and nickel) and ligands (1,10-

phenantroline, 2,2’-bipyridine, NHC ligands, etc.) were evaluated as catalysts, under both solid 

grinding and liquid assisted grinding conditions (both planetary and shaker mill were tested). 

Unfortunately, no higher conversions than 20% were reached in any case and starting materials 

were recovered.  

The use of Microwave assisted heating, however, provided better results and the O-arylation of 

4a could be successfully carried out under copper catalysis (Table 2). 

 

Table 2 – Optimisation of the O-arylation reaction of 4a in the MW.a 

 

 
 

Entry X Copper salt 

(mol%) 

Ligand (mol%) Base Solvent Conv 

(%)b 

1 I CuI (10) 1,10-

phenanthroline (10) 

Cs2CO3 toluene 60 

2 I CuI (10) 2,2'-bipyridine (10) Cs2CO3 toluene 73 

3 I CuI (10) 2,2'-bipyridine (10) KOH toluene 0 

4 I CuI (10) 2,2'-bipyridine (10) Cs2CO3 o-xylene 98 

5 I CuI (10) - Cs2CO3 o-xylene 99 

6 I CuCl (10) - Cs2CO3 o-xylene 99 



7 I CuI (5) - Cs2CO3 o-xylene 90 

8c I CuCl (10)  Cs2CO3 o-xylene 23 

9 Br CuI (10) - Cs2CO3 o-xylene 51 

10 Cl CuI (10) - Cs2CO3 o-xylene 1 
a Reaction conditions: 4a (1.0 eq, 0.1 M), X(C6H4)CF3 (1.1 eq), copper salt, ligand, 

Cs2CO3(2.0 eq), solvent, 200 oC, MW, 3 h. b Conversion determined by CG. c 

Conventional reflux conditions. 

 

The reaction of 4a with 4-iodobenzotrifluoride, in the presence of 10 mol% CuI and 1,10-

phenanthroline or 2,2'-bipyridine as ligand provided 60 and 73% conversion, respectively, when 

Cs2CO3 was used as base and toluene as solvent (entries 1-2). Using 2,2'-bipyridine as ligand, 

other bases were also evaluated, but lower conversions were obtained in all cases. Intriguingly, 

no conversion was observed when KOH was used as base (entry 3). Other solvents were also 

tested in the reaction; while 1,2-dichlorobenzene, DMF and ethylbenzene all gave lower 

conversions than toluene (63-81%), o-xylene proved more efficient (entry 4). Next, we observed 

that the reaction was equally effective in the absence of ligand (entry 5) and that no 

regioselectivity issues (N-arylation versus O-arylation) arose. A meticulous screening of copper 

sources revealed that CuCl was also a suitable salt for the reaction (entry 6). Lowering the 

catalyst loading from 10 to 5 mol% caused a drop in the conversion of the reaction (entry 7). For 

comparison, we performed our optimized reaction under conventional heating (reflux conditions) 

and only 23% conversion was observed after 3 h (entry 8). 

Lastly, we evaluated the use of other aryl halides as coupling partners (entries 9-10). Under the 

optimized conditions, the reaction of 4a with 4-bromobenzotrifluoride proceeded in 51% 

conversion (entry 9), while for the 4-chlorobenzotrifluoride, no product was observed (entry 10). 

Higher temperatures and longer reaction times did not improve these results. 

Satisfyingly, when the O-arylation reaction of 4b was performed using the optimized conditions 

(entry 6, Table 2) full conversion and excellent regioselectivity were obtained after only 2 h of 

heating at 200 °C. A simple filtration through a plug of Celite gave Fluoxetine 1 in quantitative 

yield (Scheme 3).   

 

 
 

Scheme 3 – MW assisted O-Arylation of 4b.  



 

The last step in our synthetic pathway (Scheme 1) was the N-demethylation of intermediate 5. In 

1984, Olofson and Senet described the use of -chloroethyl chloroformate for the selective N-

dealkylation of tertiary amines (Olofson et al. 1984). Some years later, in 2000, Ohkuma et al. 

successfully applied this methodology to the N-demethylation of 5 that allowed the isolation of 

fluoxetine hydrochloride (1·HCl) in 96% yield (Ohkuma et al. 2000).  

After several unsuccessful attempts to reproduce Ohkuma’s experiments, we decided to 

investigate the reaction in the ball mill and the microwave reactor. Thus, the reaction was 

attempted in the solid state, using both planetary and shaker ball mills, although negligible 

conversions (<3%) were obtained in all cases. Fortunately, the reaction could be optimized under 

microwave assisted heating. Thus, irradiation of 5 (120-150 oC for 2 h) with -chloroethyl 

chloroformate (4.0 eq), in dichloroethane as solvent, followed by reaction with MeOH (MW, 120 
oC, 1 h) afforded the desired Fluoxetine hydrochloride (1·HCl) in 89% conversion and 76% 

yield after recrystallization (Scheme 4). Longer reaction times did not improve the conversion of 

the reaction. 

 

 
 

Scheme 4 – N-demethylation reaction with MW assisted heating 

 

4. Conclusions    

 

In summary, Fluoxetine hydrochloride (1·HCl) and Fluoxetine (1) have been obtained with an 

overall yield of 47% through Route A or B, respectively. The use of ball milling and microwave 

assisted heating implies a substantial improvement compared to the previously described 

synthetic methodologies based on conventional heating methods, not only by allowing higher 

yields and shorter reaction times, but also by reducing the amount of solvent necessary for the 

process and simplifying the number of technological steps in the procedure. This work expands 

the applicability of ball milling and microwave assisted reactions in total synthesis and opens up 

new possibilities for greener chemistry. 
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